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Abstract

This thesis focuses on using MARL as a decision tool for post-earthquake repair scheduling of

interdependent infrastructure. MARL is a multi-agent ML paradigm which combines traditional ML

research and game-theoretical approaches. Given the relative increase in natural disaster frequency

and the lack of available post-disaster tools such tools are crucial in increasing the climate resilience

of cities. Given the stochastic nature of earthquake events and subsequent losses, MARL can be

helpful in navigating this uncertainty and finding preferable joint policies.The methodology involves

multi-scenario-based seismic hazard assessment, stochastic fragility modelling and prediction of several

direct and indirect losses to aggregate them into a holistic community resilience metric. This is then

used to compute the instantaneous and cumulative recovery resilience loss values. The tested approach

uses two custom built test-beds of 4 and 30 components, and MARL is compared against baseline solvers,

including random and importance-based policies. Value Decomposition Network with Parameter

Sharing (𝑉𝐷𝑁 − 𝑃𝑆), Q-Learning with Mixer Network and Parameter Sharing (𝑄𝑀𝐼𝑋 − 𝑃𝑆), Deep

Centralised Multi-Agent Actor Critic (𝐷𝐶𝑀𝐴𝐶) are the algorithms tested. 𝑉𝐷𝑁 and 𝑄𝑀𝐼𝑋 are shown

to perform similarly to each other and sub-optimally relative to 𝐷𝐶𝑀𝐴𝐶. 𝐷𝐶𝑀𝐴𝐶 is shown to match

importance-based policies when considering full recovery, but convincingly outperforms all other 𝐷𝑅𝐿
methods and importance-based policies when considering partial recovery. This shows that 𝐷𝐶𝑀𝐴𝐶
and 𝐷𝑅𝐿 more generally is effective at swift early recovery by prioritising components that contribute

most to community functionality.
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1
Introduction

1.1. Natural Disaster Preparedness
Natural disasters such as floods, earthquakes and tornadoes cause immediate injury, loss of life, stress

on infrastructure, all of which have cascading effects, which might persist long after the disastrous event.

Cities can be thought to act as complex systems of different demographic groups and infrastructure

networks, where initially observed structural damage and injury is subsequently seen to extend and

impact various aspects of a community’s functionality. The manifestation of such cascading effects is

described as the interdependency between different infrastructure networks, but also people, [44]. For

instance, the traffic patterns of a community after a disaster can be interdependent to the amount of

injury caused as rescue missions increase in frequency. Such cascading effects and relationships are

often clear to see retrospectively but are seldom strategised for pre-emptively. This is because the

analysis of such relationships does not take priority when time is of the essence and rescue and recovery

are paramount. Therefore, the nature of interdependencies calls for a heightened level of preparedness

to natural disasters, as decision makers are faced with the non-trivial and complex nature of cascading

damaging effects.

Figure 1.1: Global trend showing the number of recorded natural disaster events over recent years, Our World in Data, 2024,

Ritchie, Rosado, and Roser [73]
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Additionally, the apparent frequency and severity of certain natural disaster types, or hazards, is

seen to increase in many places around the world, [91, 85, 19]. While this is not true for all hazards,

this increase in frequency can be at least partially attributed to climate change. The disaster-specific

mechanisms that cause this are either difficult or sometimes impossible to model. In effect, this increases

the exposure of communities to natural disasters and thus makes the need for recovery more frequent.

The combination of increasing disaster frequency and complex nature of interdependent infrastructure

increases the hazard risk of many communities around the world. There is also a correlation with many

underdeveloped areas and areas of extreme climate events which increases this pressure, [5, 29, 76].

(a) Landslide disaster in the town of Blatten, Switzerland. Landslides

such as this can exhibit the combined effects of exceeding amounts of

fast-moving debris and flooding. Foulkes [38]

(b) Floods causing exceeding transportation, building and economic

losses in Spain, showing the results of exteme flow carrying vehicles to

one concentrated road segment. Sofia Ferreira Santos [88]

(c) First-hand photograph taken in the El Haouz region of Morocco, approximately 5 months after the 2023 Marrakesh-Safi 6.9M earthquake.

Uniquely, residences were interdependent to each other as the lack of centralised planning policies allowed different families to expand on existing

residences organically, making the financing of repairs challenging.

Figure 1.2: Natural Disasters can come in many different forms and their impact can vary between different communities.

Damage after natural disasters is often formulated in terms of losses. Losses can be seen as either direct,

indirect or human losses, [36, 28, 16]. Direct losses are related to the induced structural stress and

response of infrastructure, and are manifested as repair times, costs, and reduced access to infrastructure.

Indirect losses are related to the indirect damage caused by a disaster and can be manifested as income

losses, relocation costs etc. Human losses are often seen during or directly after a disastrous event and

are the injury or death of people. More generally, the expected physical damage to a community’s

infrastructure after a disaster is described as the fragility of that community’s infrastructure. Likewise,
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the expected indirect losses of a community are described as the vulnerability of a community to a

disaster. Human losses are different from direct and indirect losses as they can depend a lot more on

first-response efforts and general behaviour of healthcare professionals, more so than the infrastructure

itself. It is important to note that losses are usually computed probabilistically; thus, they are usually

referred to as expected. This is done because the scale and complex nature of cities as described above

make the deterministic computation of losses exceedingly difficult. Specifics on vulnerability and

fragility are discussed in the literature review. Considering the above, the risk of a community to

hazards can be thought of as a combination of exposure, vulnerability, fragility and ability to recover.

Figure 1.3: A general framework to conceptualise hazard risk as a function of hazard exposure, recovery and response and

mitigation and preparedness

The significance of the problem at hand is the heightened risk posed to communities around the world

due to natural disasters. Risk can be mitigated by reducing exposure, fragility or vulnerability to

disasters, or improving recovery ability by means of strategising for optimal repair strategies. Exposure

is evidently very difficult to reduce as it is inherently dependent on the location of a specific city.

Fragility of infrastructure can be reduced by increasing its capacity to loads caused by disasters.

Vulnerability can be reduced by developing a community such that its socioeconomic indicators increase

and expected indirect or human losses are reduced. This might be in the form of emergency shelter

construction, healthcare system improvement, unemployment reduction etc. Risk mitigation via

fragility and vulnerability reduction focuses on preventative measures and is studied more often than

recovery ability improvement, [95]. Recovery is purely concerned with the time during and after a

disaster. Thus, improving recovery ability is principally concerned with the decision-making process

of post-disaster repair. The specifics of this thesis’ objectives are outlined in the following section;

however, it is important to note that risk mitigation should always be a continuing and holistic effort to

reduce fragility, vulnerability and improve recovery ability. This assumes a continuing collaboration

between international, national and municipal decision makers, engineers and designers, contractors

and healthcare and rescue professionals. In doing so, the aim should be to mitigate risk via the most

cost- and time-effective manner available, aiming to maintain a community’s functionality as close to

pre-disaster levels as possible.
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(a) People requiring assistance after disasters. (b) Local disaster strategies vs. national alignment.

Figure 1.4: Disaster impact and preparedness strategy indicators, Ritchie, Rosado, and Roser [73]

Figure 1.5: A community functionality-time curve for a community after a severe disruption, such as an earthquake

1.2. Engineering Reliability and Resilience
Before introducing the specific aims of the thesis, it is important to define resilience, which is the

principal concept governing the measurement of successful natural disaster risk mitigation approaches.

While specifics on mathematical definitions of resilience are given in the literature review, the core idea

of resilience is centred around minimising the effect of expected disruptions on infrastructure networks

and communities, thus increasing the reliability of infrastructure, [71, 14, 33, 41], . More specifically,

resilience and resilience loss are usually computed as areas under or over a functionality-time curve of a

specific system or community. That is, functionality is a dimension-less quantity which is an aggregate

of sub-system functionalities and usually ranges between 0 (completely dysfunctional) to 1 (completely
functional). For instance, in the event of a sever disruption, Fig 1.5 shows such a curve. A disruption

happens at time 𝑡𝑑 which causes a decrease in functionality, funds and expertise are mobilised at time

𝑡𝑚 → 𝑡0 while functionality is assumed to stay constant and an appropriate repair strategy is carried out

to return to a desired fraction of pre-disruption functionality. The impact time interval 𝑡𝑚 − 𝑡𝑑 is often

not explicitly considered when modelling disasters; the decision to explicitly model it is predominantly

dependant on whether decision-making during its duration can affect the resultant losses. For instance,

given the short duration of earthquake action, the decision-making process during an earthquake is

largely placed on the individual, and there is little centralised decision makers can do to affect losses

in the minutes or hours during which ground motion occurs. Conversely, a wildfire can last weeks

or months, leaving crucial time during which decision makers can gather and centrally strategise and

allocate tasks accordingly, before the disaster event terminates. Of course, one can define the behaviour
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of functionality before, during and after a disruption in non-constant terms. For instance, within

agriculture, the economic performance of a wheat seed index before economic disruptions is likely

to cycle in a manner that follows growing and harvesting seasons, or other extraneous factors. The

principal approaches for measuring resilience are similar.

The concept of resilience is thus not unique to engineering structures and can be used for gauging the

performance after disruptions in economic markets, food security, water scarcity etc. However, in the

context of this thesis, resilience is applied as it relates to civil engineering systems and infrastructure.

In doing so, the aim is to use the functionality of infrastructure after disruptions to predict direct and

indirect losses and thus predict resilience and resilience loss. It is important to note that this concept is

not only applicable to natural disasters, but rather any disruption that causes a decrease in functionality.

This thesis specifically considers disasters as the disruption type, however related work in infrastructure

management under deterioration disruptions is also of interest, [14]. An example of a non-severe

disruption of infrastructure is the effect of fatigue, which is the deterioration of structural systems due to

continuous cyclical loading, [72]. More generally, the study of measuring the resilience of infrastructure

systems under deterioration and strategising inspection and repair actions is usually referred to as

maintenance planning, while the study of measuring resilience and strategising interventions after severe

disruptions or disasters is referred to as repair scheduling. The core difference is that disruptions under

maintenance planning are assumed to be ongoing, while disruptions under repair scheduling are

unique, severe and discrete events with high probabilities of complete or partial failure. Both types of

disruptions can coexist and affect infrastructure concurrently.

Conclusively, the aim of both approaches is to increase the reliability of engineering systems by

considering minimising of any of the associated resilience loss metrics, e.g impact resilience losses

or mobilisation resilience losses. For instance, one could aim to increase the residual performance of

a system under disruptions by increasing its capacity to the expected loads. Conversely, one could

strategise for desired post-disruption policies that aim to rebound the functionality of the system as

quickly and as effectively as possible. Thus, reliability is not only related to the performance of the

engineering system of question, but also to the decision-making process of designers to prioritise

intervention and retrofit actions that might increase expected residual performance or inspection and

repair actions that aim to quickly rebound performance after a disruption. Decision making science is

then seen as being central to the practice of reliability engineering as engineers are often faced with

making long-term decisions using fuzzy data, and having to advise multiple stakeholders on decisions

with critical consequences, [21].

1.3. Decision Making under Uncertainty
The above sections lay out a basic introduction on the growing concern of infrastructure reliability

as it relates to an increased natural disaster hazard risk. This thesis focuses on civil infrastructure

and the associated decision-making process of increasing their reliability in face of increasing natural

disaster frequency by looking at their resilience. Regardless of the severity of the disruption or the type

of infrastructure, the decision-making process often involves many stakeholders and is accompanied

with considerable uncertainty. A city’s infrastructure usually depends on the decisions of municipal-

and national-level officials, but also on lawyers, insurance companies, engineers, designers and trade

professionals. They each have to take decisions individually, but also work collectively to find ways of

maintaining their city’s infrastructure access or improving its performance. Furthermore, decisions

are often made using incomplete information on infrastructure performance but also on the expected

behaviour of infrastructure under a given disruption. This is because the current state of different

infrastructure components is often known to a partial degree and decisions are made based on estimates

and expert knowledge. For instance, a city’s catalogue of street lights might include information on their

construction date, materials, required voltage and links to adjacent power links. However, even if this

information is available, which it often is not, it is difficult to predict the current performance of all street

lights with high certainty, and even more so to predict the performance of any one street light when

subject to disruptions from high winds, floods or earthquakes. For example Fig 1.6 shows a collection of

infrastructure components and an example distribution of how their expected repair times might vary

probabilistically given a certain loading condition. For this reason, any decision-making framework
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aimed at increasing infrastructure reliability should take into account the relative uncertainty associated

with a city’s infrastructure portfolio. This is especially true as the number of infrastructure components

and the number of decision makers considered grows.

Figure 1.6: The deterioration properties of an infrastructure portfolio can often be modelled stochastically as their exact state is

often hard to deduce

While highly bespoke and location-specific studies might include infrastructure portfolios with well-

described and certain behaviour, the aim of this thesis is to develop decision-making tools that can

generalise well across different cities and infrastructure networks. For this reason, this thesis focuses

on decision-making tools with methods that deal well with relatively high levels of uncertainty and

with many decision makers. Specific state-of-the-art approaches in decision making for infrastructure

management under disruptions is presented in later sections, however this thesis principally considers the

use of Multi-Agent Reinforcement Learning (𝑀𝐴𝑅𝐿) as the test method for infrastructure management

under uncertainty, [4, 11, 7]. 𝑀𝐴𝑅𝐿 is the multi-agent version of Single-Agent Reinforcement Learning

(𝑆𝐴𝑅𝐿) and draws upon research in Game Theory (𝐺𝑇) and Machine Learning (𝑀𝐿) to effectively

model and solve multi-agent interactions in complex and uncertain decision-making scenarios, [18]. It is

chosen as it has produced limited but promising results in the field of infrastructure management, thus

demonstrating that its use can be favourable, but requires further research efforts to standardise its use.

𝐺𝑇 is a field of knowledge which developed separately from𝑀𝐿 and attempts to describe the cooperative

or competitive interactions between many decision makers with shared or individual goals, [68, 63].

Traditionally, game theory research is focused on competitive economic and political games, with

cooperation often being an unexpected, but favourable behaviour in many competitive games. Thus,

the word game is used to describe the multi-agent interactions of decision making scenarios, specifically

in infrastructure management under disruptions; it is not intended to take away from the severity

of natural disasters or other disruptions. This thesis specifically considers cooperative games, as the

various decision makers such as engineers and municipal officials are assumed to be willing to cooperate

to increase infrastructure reliability and reduce risk. Machine Learning is a field of study in computer

science, mathematics and biology which aims to approximate the functions of neurons in brains to

process and learn from large amounts of data, with little explicit rule-based instructions. Principally,

ML aims to make predictions on unseen data that are otherwise extremely difficult or sometimes

impossible for humans to dissect with traditional data analysis. 𝑀𝐴𝑅𝐿 uses 𝐺𝑇 to effectively describe

and abstract complex decision-making scenarios and ML to learn from the data associated with specific

decisions; it then aims to choose optimal actions, given the associated observations after taking an

action. Figure 1.7 shows a simplistic version of an 𝑀𝐴𝑅𝐿 framework for infrastructure management. A

set of decision-making agents act on a set of infrastructure components, the state and outcome of their
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decisions is collected and passed into an ML learning function, which aims to learn an optimal action to

maximise the outcome, or reward, of all agents. Of course, this framework can vary in architecture and

complexity, agents can act on one or multiple infrastructure components, they can each have their own

learning function, their rewards can be individual or shared, and the learning functions can directly

learn an optimal action or try to predict the quality of a given action.

Figure 1.7: Multi-Agent interaction in an infrastructure management decision making scenario

Decision making frameworks for infrastructure management traditionally include importance-based

methods, i.e repairing all hospitals before repairing residential buildings. This is described as heuristic,

or rule-based decision making. Rule-based decision making can be highly complex, include many

conditional rules and yield very good results. However, the use of MARL as a competitive strategy to

rule-based decision making is not yet fully explored in the field of infrastructure management. This

thesis tests the hypothesis that ML, and specifically 𝑀𝐴𝑅𝐿 is favourable to importance-based decision

making and can thus help decision-makers make smarter decisions based on data derived from the

computational simulation of a plethora of decision-making events. The ML learning function is an

Artificial Neural Network (𝐴𝑁𝑁/𝑁𝑁) which is the principal way most ML tools and frameworks

operate, [74, 94, 77, 2]. 𝐴𝑁𝑁𝑠 are interconnected networks of neurons that receive a set of input features

and predict a single or a set of output labels on that data. The layers of neurons between input and

output layers are called hidden layers. The way that hidden layers are connected to each other, the

way that neurons activate and the type of neurons can all vary between neural networks to allow them

to make predictions on specific types of data such as text-based prompts, graph-based network data,

financial data, etc. Figure 1.8 shows a highly simplistic version of an 𝑁𝑁 with one hidden layer, this is

described as a fully connected 𝑁𝑁 as all neurons of one layer are connected to all neurons of the following

layer.
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Figure 1.8: The two underlying ideas in 𝐴𝑁𝑁𝑠 from one of the foundational papers by Rumelhart, Widrow, and Lehr [78]. Figure
1 shows the behaviour a single neuron as having three key aspects: (a) a weighted sum of input vector [𝑥1 , 𝑥2 . . . 𝑥𝑛] (b) a bias 𝛽
which shifts the activation function in 𝑥 and (c) a, usually, non-linear activation function such as the sigmoid function. Learning is

the act of tuning all weights w = [𝑤1 , 𝑤2 , . . . , 𝑤𝑛]⊤ and biases b = [𝑏1 , 𝑏2 , . . . , 𝑏𝑚]⊤ in the network, by minimizing a loss function

ℒ(ŷ, y) with respect to the model’s predictions ŷ and the true labels y, typically using gradient-based optimization. Figure 2
shows the architecture of such a network, such that the connectivity, amount, layering and other hyper-parameters affect the overall

prediction performance of the network.

In the case of this thesis, the 𝑁𝑁 receives some numerical description of the state of infrastructure

components and makes a direct prediction on the optimal intervention action given that state, or on the

quality of an action given that state. Learning is the act of tuning individual neuron weights such that

the output intervention action is optimal. Optimality of decisions is measured via the reward function,

which in the case of this thesis is done in terms of resilience, such that an action is most optimal if it

yields the lowest resilience loss. 𝑁𝑁𝑠 are not fully explained in this section, however some notable

examples of highly complex 𝑁𝑁𝑠 that make impressive predictions are tools such as OpenAI’s ChatGPT

or Google’s Gemini, which effectively auto-correct user prompts. 𝑁𝑁𝑠 such as those include billions or

trillions of neurons, complex architectures and are able to make context-dependent predictions. In the

context of this thesis, the number of neurons, or parameters used, is in the order of tens or hundreds.

In complex infrastructure management scenarios modelled as games, finding a mathematically optimal,

or best solution is often infeasible due to the high degree of uncertainty and the vastness of the action

and observation spaces. As a result, the performance of a given strategy cannot be measured against

a known optimal solution, but rather must be evaluated in relation to other competitive strategies.

This benchmarking approach makes objective performance measurement inherently comparative.

Consequently, the goal shifts from identifying an optimal strategy to developing one that consistently

outperforms a given baseline. Conversely, in scenarios where an optimal strategy is known, performance

evaluation can be conducted through optimality-based assessment, where a strategy’s effectiveness is

measured directly against the best-known solution. This allows for an absolute, rather than relative,

evaluation of performance. Considering the complexity of interdependent infrastructure networks and

cities as a whole, the use of MARL can be intuitive as it is easy to see that human decision makers

and rule-based frameworks can have limitations in concurrently processing and analysing the complex

interactions of interdependencies, but also the uncertainty associated with infrastructure performance.

However, it must be noted that the aim of the thesis is not to suggest a MARL-only methodology, but
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rather use MARL as a decision-making tool to assist engineers and other officials. This is because

many ML methods, including MARL, are often eventually understood as black-box functions where the

output is impossible to deduce logically from a set of inputs. Given the critical nature of infrastructure

management, decision-makers should always be aware of the consequences of their decisions and

should not solely rely on such tools to make decisions, but rather use them to benchmark their current

approaches. In this way, MARL can allow decision makers to think critically about what interventions to

make and potentially offer valuable insights in situations where rule-based decision-making falls short.

1.4. Objectives and Research Questions
This thesis addresses the critical challenge of infrastructure management and reliability in the face

of extreme weather events. The decision-making processes involved are characterized by high levels

of uncertainty, creating an opportunity for innovative research approaches. This thesis proposes

and evaluates the use of Multi-Agent Reinforcement Learning (MARL), benchmarking it against

importance-based decision-making approaches to provide a comparative analysis.

While risk mitigation can address various factors, this study concentrates on the post-disaster recovery

phase. Specifically, the thesis investigates the problem of post-earthquake repair scheduling of

interdependent infrastructure networks. The focus on the recovery phase is motivated by a recognized

gap in the existing literature, which has more extensively covered mitigation and preparedness.

Earthquakes have been selected as the specific hazard due to the existence of mature and validated tools

for modelling their geological mechanisms and the resulting structural response of various infrastructure

categories. In contrast, modelling other hazards, such as floods or tsunamis, often involves more

prolonged simulation times and bespoke data requirements. The computational efficiency of both

disaster and recovery simulations is a governing factor in the success of the proposed methodology,

making the choice of earthquakes particularly suitable.

The specific interdependency considered in this thesis is the impact of building debris on adjacent

traffic links and, by extension, overall transportation network performance. Consequently, the analysis

focuses on two networks: the Building Portfolio (BP) and the Transportation Network (TN). Community

resilience losses are measured through repair times, repair costs, relocation costs, income losses, and

traffic delay costs, as these metrics align well with the interdependency between roads and buildings.

The table below positions this thesis within the broader field of infrastructure management by outlining

the key study areas of focus.

Category Model Component Included

Hazard Model

Earthquake Yes

Flood No

Tsunami No

Hurricane No

Drought No

Multi-Hazard No

Infrastructure Model

Transportation Network (TN) Yes

Building Portfolio (BP) Yes

Gas Network (GN) No

Electrical Power Network (EPN) No

Interdependencies Yes

Phase

Mitigation No

Recovery Yes

Maintenance (Deterioration) No

Stochasticity

Stochastic Disaster Model Yes

Stochastic Loss Model Yes

Stochastic Structural Response Model Yes

Table 1.1: Model Components and Their Inclusion Status



1.5. Related Work 10

The problem statement of this thesis is:

• Natural Disasters are increasing in frequency and are causing exceeding economic and human

losses to communities around the world. Decision-makers have little access to tools that can help

them reduce their communities’ disaster risk before, during and after disastrous events.

The research questions and objectives of this thesis are outlined as:

1. Principal Research Question:

(a) How effective is Reinforcement Learning when used as a decision-making tool for post-

earthquake repair scheduling of interdependent infrastructures and when compared to

baseline methods?

2. Sub-Questions:

(a) How accurate is the computational modelling of earthquakes for different locations?

(b) What are the factors contributing to community functionality before and after an earthquake

disaster?

(c) How can different community functionality metrics be distilled into an aggregate community

functionality metric?

(d) How can an aggregate community functionality metric be used to describe the resilience of a

community in terms of its ability to rebound after an earthquake?

The main contribution of this thesis while answering the above questions is the modelling of a community

before, during and after a disaster as a holistic simulation environment. This is implemented in the

Python programming language. The key objectives are then to:

• Model building and road infrastructure, their interdependencies, and their response to an

earthquake in an integrated simulation environment.

• Formulate a description of community functionality in an aggregate metric that uses existing

knowledge on community performance indicators.

• Provide means of modelling the environment such that it can be applicable in a wide range of

contexts.

• Use Deep Reinforcement Learning as a decision-making tool for favourable repair scheduling

policies

• Compare Deep Reinforcement Learning to heuristic repair scheduling strategies.

1.5. Related Work
Having established the problem statement and objectives of this thesis in the above sections, this

section serves as a brief overview of the general approaches for providing decision-making support

frameworks for infrastructure management. This section does not provide details on the methodology

of each research but rather points out the efforts that have been made. The respective methodologies

are explained in detail in the literature review. The two overarching objectives of this section are to

then provide an insight into existing work on Deep Reinforcement Learning (𝐷𝑅𝐿) for infrastructure

management, but also infrastructure resilience modelling. In the context of this thesis, 𝐷𝑅𝐿 for

infrastructure management can be seen as the solution concept of a game, where infrastructure resilience

modelling is the game or environment. The two study aspects work together to form a decision support

framework.

While the application of Deep Reinforcement Learning (𝐷𝑅𝐿) to infrastructure management has

predominantly focused on deterioration rather than post-disaster repair scheduling, the underlying

optimization problem remains the same: scheduling inspection and repair actions to maximize an

objective function. The key modelling dimensions of an infrastructure management decision making

environment are:

• Infrastructure component type-agnostic or type-specific formulations.
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• The observability of component states, i.e fully-observable or partially observable.

• The stationarity of the system’s dynamics, i.e the change in the confidence of observations across,

usually, time.

Firstly, several research efforts have been conducted on abstract and component-specific environments

that are aimed to generalise well and formalise the overarching methods concerning 𝐷𝑅𝐿 for in-

frastructure management, [6, 7, 11, 12, 57, 62]. While these works often show crossover between

component-specific and component-agnostic environments, they aim to define the mathematical formu-

lation of the environment and the objective function rigorously. The infrastructure environments are

often parallel, in-series or are described by k-ou-of-n failure modes. Parallel and in-series environments

describe the way components might be dependent to each other and are useful for systems that rely

on inter-component connectivity, [14]. K-out-of-n environments are ones where failure modes are

defined when k components out of a total of n components are in a severe damage state. The authors

use 𝐷𝑅𝐿 and conduct comparative analysis of its performance against classical or custom inspection

and maintenance planning strategies. These approaches are also applied to transportation networks,

[79, 47, 55]. The key takeaways from this area of research principally relate to the formulation of the

environment (i.e type of infrastructure, type of actions etc.) and by extension to the 𝐷𝑅𝐿 solver used to

maximise the objective function. There are summarised as:

• Maintenance planning 𝐷𝑅𝐿 environments are most often modelled with agents that have partial

observability over their attributed components. Inspection actions increase an agent’s confidence

in the observation they already hold, or change it altogether.

• Repair actions can either major or minor and relate to the repair effort and the cost associated

with carrying out that repair effort.

• Without considering the objective function or the𝐷𝑅𝐿 algorithms used, the behaviour of inspection

actions the belief updates of agents is the crux of modelling such environments. Inspection

behaviour can be non-stationary across a realisation and it can also affect the belief over states of

neighbouring components, such as correlated k-out-of-n environments, [57].

• In practical terms, 𝐷𝑅𝐿 is extremely resource-intensive and requires state-of-the-art hardware to

train within reasonable timescales.

• A researcher’s choice of 𝐷𝑅𝐿 algorithms is usually governed by the training and execution

being either centralised or decentralised. Centralised training defines that all agents have access

to all other agents’ beliefs / states. This is to say that the input feature vector to the 𝐴𝑁𝑁𝑠
grows in proportion to the number of agents. Centralised execution defines that the controller

network has access to all agents’ beliefs. Generally, centralised methods perform better for smaller

environments but don’t scale well to larger ones due to the curse of dimensionality, i.e all things

considered, many smaller networks are easier to train than one big network, [48].

When looking closer at work focusing on post-earthquake recovery and 𝐷𝑅𝐿, there are few efforts that

explicitly address this problem. Two efforts exists that address this problem directly, [31, 96]. The first

looks are a multi-hazard approach for road network recovery using Singe-Agent 𝐷𝑅𝐿 and the second

focuses on Multi-Agent 𝐷𝑅𝐿 for post-earthquake recovery of interdependent infrastructure networks.

They both used graph-based state definitions to describe the state of the networks as they can be useful

in describing transportation networks. Secondly, both research efforts make use of community resilience
as a concept around which the objective function is defined. This contrasts the other works mentioned

that usually employ monetary costs as negative rewards. Some key takeaways are:

• Graph Neural Networks are intensive to train as the graph embedding needs to be learnt

concurrently with the action prediction. This adds a significant layer of complexity to the overall

approach. However, 𝐺𝐶𝑁𝑠 should generally be expected to perform better in this kind of task,

even though there doesn’t exist work on post-earthquake recovery that does not use 𝐺𝐶𝑁𝑠.

• Reward is formulated as positive when it is a function of resilience or negative when it is a function

of resilience loss.

• Single- and Multi-Agent 𝐷𝑅𝐿 should be expected to perform better than rule-based scheduling

algorithms, given training convergence.
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To contextualise these research efforts, approaches that do not use 𝐷𝑅𝐿 might include networks in

the order of 10
2 − 10

3
components, whereas Single-, and especially Multi-Agent 𝐷𝑅𝐿 has not seen any

use for environments above 10
2

components. Overall, the benefits of 𝐷𝑅𝐿 are clear but still require

further research to be applied on a large scale. While approaches on the side of reliability research and

structural risk are certainly advancing in being able to use larger environments, such breakthroughs

are also largely expected due to advances in computer science, where the theory and algorithms for

𝐷𝑅𝐿 are developed before they see use in reliability research. In general, the research falls into two

main categories: one that uses deteriorating environments and one that uses post-hazard environments.

The former approaches usually employ monetary cost-based rewards and partial observability over

damage states, while the latter uses resilience- or resilience-loss based reward or costs and employs full

observability over damage states.

1.6. Contributions
The contributions made in this thesis are principally concerned with the environment formulation and

community functionality / resilience definitions. The thesis uses adapted but existing 𝐷𝑅𝐿 frameworks

for infrastructure management. The proposed contributions are principally seen the integration of

such frameworks in a post-disaster scenario, but also in the definition of community functionality as a

holistic measure that aims to incorporate various indirect losses related to a community’s well-being.

An overview of the methodology is provided in figure 1.9. First, data is collected to produce an test

bed environment, then the various losses are predicted. The interdependency of roads to building

debris and the computed losses are all used to compute community functionality and thus resilience

losses. This is then used as the cost, or negative reward of an MARL agent. The results of which are

benchmarked against random and importance-based policies.

Generalisable Study Environments: A methodology is introduced for automatically generating

generalisable test-beds for any metropolitan area within the United States. This framework leverages

open-source data from OpenStreetMap (OSM) and the National Structure Inventory (NSI), integrating

established vulnerability and fragility functions from HAZUS and the Federal Highway Administration

(FHWA). This approach ensures a unified data schema across generated environments, a significant

improvement over previous single-context studies. While highly scalable within data-rich environments

like the U.S., global generalisation remains a challenge due to data availability. While these environments

are not specifically tested using DRL given their large scale, the functions for doing so in the future are

provided.

Holistic Loss and Interdependency Modelling: This research incorporates indirect losses and an

interdependency which are not seen in the studies looking at 𝐷𝑅𝐿 for infrastructure management.

Beyond direct building and road repair costs and times, the thesis accounts for traffic delay costs, income

losses, and relocation costs. Crucially, the interdependency between building debris and traffic link

capacity reduction is modelled, impacting community functionality through cumulative traffic delay

costs. Additionally, the normalised performance indicators of hospitals and other lifeline infrastructure

components are considered and are aggregated with economic functionality to compute a holistic

measure of community functionality. This expands upon prior work, such as that by Yang et al. [96],

by integrating economic functionality (income losses and relocation costs) alongside infrastructure

performance, thereby offering a more complete assessment of post-disaster community resilience.

Probabilistic Seismic Hazard: Unlike other approaches that use a deterministic earthquake scenario.

This thesis considers the simulation of a multitude of earthquake ground motion before training and

samples a given ground motion profile in each training realisation. Ground motion prediction is done

multiple times per earthquake magnitude, thus providing a diverse set of data that can be used to

simulated losses. Fig. 1.12 shows the expected initial functionality robustness for each earthquake that

is simulated. Robustness in this case is the residual community functionality just after the earthquake.

While not expanding on the specifics of the results themselves, the comparison of performance between

heuristic and 𝐷𝑅𝐿 approaches is significant in the prioritisation of recovery and the 𝑁 − 𝑝𝑒𝑟𝑐𝑒𝑛𝑡
resilience. In essence, the tested heuristic policy is seen to perform well in effectively recovering 100% of

community functionality, whereas the best performing 𝐷𝑅𝐿 policies perform better when considering
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Figure 1.9: Methodology Flowchart

Figure 1.10: The methodology includes functions for incorporating custom test beds or download existing datasets from

US-based metropolitan areas
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Figure 1.11: The proposed resilience formulation uses critical, economic, transport and healthcare functionalities to compute an

aggregate metric.
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Figure 1.12: A scenario-based seismic hazard assessment is used. Synthetic earthquake 𝐼𝑀𝑠 are attenuated with magnitudes

ranging from 6.0 to 8.0 M with 0.5 increments. 100 realisations are generated per magnitude. The residual functionality (y-axis) is

the functionality that is left-over just after the earthquake.

the partial recovery of the network. In doing so, 𝐷𝑅𝐿 shows poor performance in fully recovering

the community, but with steeper early recovery curves, achieving fractional recovery quicker than the

heuristic policy. This shows that𝐷𝑅𝐿 performs favourably early on in the recovery process, but is unable

to achieve full recovery as the rewards for doing become negligible later on in the recovery process.

Figures X and Y show a snapshot of the results; cumulative losses when using 𝐷𝑅𝐿 policies generated

from three different algorithms: 𝐷𝐶𝑀𝐴𝐶, 𝑄𝑀𝐼𝑋 − 𝑃𝑆 and 𝑉𝐷𝑁 − 𝑃𝑆 on average only match or fall

short of 𝐼𝑀𝑃𝐵 (Importance-Based) repair scheduling and are even poorer-performing than a random

policy in the case of 𝑉𝐷𝑁 − 𝑃𝑆 and 𝑄𝑀𝐼𝑋 − 𝑃𝑆. Conversely, when considering recovery of 70% of the

initial losses, the three algorithms perform better than 𝐼𝑀𝑃𝐵, yielding lower losses for partial recovery.

The reasons for the behaviour exhibited by the 𝐷𝑅𝐿 algorithms are discussed at length in the results

section; however, an important aspect of this recovery behaviour is the limitation posed by computational

complexity. 𝐷𝑅𝐿 training is seen to take in excess of 30 hours, given the available hardware, and thus

full training convergence is not achieved. It is difficult to say that this behaviour can be completely

eradicated just by training for more time-steps, however the lack of convergence points in that direction.

Additionally, other limitations relating to the production of environments and how closely they can

model a realistic infrastructure network are also of interest and are discussed.

Conclusively, the environment modelling contributions lie in the modelling of an interdependent

infrastructure network such that it reflects holistic community resilience. Additionally, probabilistic

seismic hazard assessment allows for the evaluation of stochastic disruptions to the network. 𝐷𝑅𝐿 is

shown to perform very well early on in the recovery process by rebounding the initial loss of resilience

swiftly; however, it falls short in fully recovering all losses induces by seismic impact. Nevertheless, the

results show that the advantage of using 𝐷𝑅𝐿 lies in the early recovery phase; doing so by effective

repair prioritisation in a stochastic infrastructure management environment.

1.7. Summary
This thesis addresses the challenge of infrastructure reliability in the face of extreme weather events,

specifically focusing on post-earthquake repair scheduling of interdependent infrastructure networks.

It proposes and evaluates Multi-Agent Reinforcement Learning (𝑀𝐴𝑅𝐿) as a decision-making tool,
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benchmarking its effectiveness against importance-based approaches under uncertainty.

The research concentrates on the post-disaster recovery phase, identifying a gap in existing literature

that predominantly focuses on mitigation and preparedness. Earthquakes are chosen as the specific

hazard due to the maturity of available simulation tools, but also their relatively swift simulation time.

The study investigates the interdependency between building debris and adjacent traffic links, impacting

mean travel time. The analysis centres on the Building Portfolio (BP) and Transportation Network (TN),

with economic resilience losses quantified by repair times and costs, relocation costs, income losses, and

traffic delay costs. Critical and healthcare resilience losses are integrated with economic ones to derive

an aggregate measure of holistic community losses.

Key contributions include a methodology for generating generalizable test-beds for U.S-based metropoli-

tan areas using open-source data and established vulnerability and fragility functions. Furthermore, the

thesis introduces holistic loss modelling by using existing research, encompassing direct and indirect

losses and the impact of building debris on traffic capacity. Unlike deterministic approaches, this work

incorporates a probabilistic seismic hazard by simulating a multitude of earthquake ground motions.

The research leverages an adapted 𝐷𝑅𝐿 framework used for deteriorating infrastructure environments,

with the developed code openly published on GitHub to foster transparency and future research.



2
Literature Review

This research investigates strategies to enhance the recovery resilience of communities following

earthquake disasters. As outlined in previous sections, the general approach models the post-earthquake

repair scheduling problem as a game, and explores the application of Multi-Agent Reinforcement Learning
(MARL) as a solution concept. The performance of MARL is benchmarked against baseline methods, such

as importance-based repair scheduling. This literature review is structured as follows:

1. Post-Earthquake Repair Scheduling Environments

(a) Studies on computational modelling of earthquakes, Ground Motion Prediction Equations

(𝐺𝑀𝑃𝐸𝑠) and Probabilistic Seismic Hazard Assessment (𝑃𝑆𝐻𝐴),
(b) Research on modelling interdepent infrastructure networks,

(c) Literature on community resilience modelling,

2. State of the Art of Infrastructure Management Literature

(a) Research on using 𝐷𝑅𝐿 for deteriorating infrastructure environments,

(b) Research on using 𝐷𝑅𝐿 for post-earthquake repair scheduling environments,

(c) Research on heuristic or rule-based approaches for infrastructure management.

2.1. Seismic Hazard Assessment
Predicting ground motion during an earthquake event is usually done with attenuation models, which

use 𝐺𝑀𝑃𝐸𝑠 (Ground Motion Prediction Equations). While approaches differ, the conventional method

to model earthquake ground motion in seismically active regions begins in the collection of strong

motion data on the field using accelerograms and is followed by regression analysis [56]. Strong motion

refers to the motion caused by earthquake shaking within a certain distance away from the quake

epicentre, usually around 50 𝑘𝑚 but varying based on the specifics of the collected data. Regression

analysis results in𝐺𝑀𝑃𝐸𝑠, which are algebraic expressions that predict 𝑃𝐺𝐴 (Peak Ground Acceleration)

and 𝑆𝐴 (Response Spectral Acceleration). The variables contributing to 𝐺𝑀𝑃𝐸𝑠 are the earthquake

magnitude (𝑀), site-source distance (𝑅) and the qualitative site-class, which is a categorical variable

that usually considers an aggregate of metrics related to soil-type and earthquake fault-type [56]. Other

intensity measures (𝐼𝑀𝑠) can be derived from the three mentioned above using established theorems in

seismology, and more generally in physics.

Intensity Measures are related to the disaster event itself and their prediction is an area of research in

seismology and geology. Many different 𝐼𝑀𝑠 can be produced by an earthquake, however three main

ones are generally used in fragility assessment:

17
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Figure 2.1: Illustration of a structure oscilating at its antural frequency, Chopra [23]

• Peak Ground Acceleration, 𝑃𝐺𝐴 (𝑔) is the highest rate of change of ground velocity at a particular

site. 𝑃𝐺𝐴 is the 𝐼𝑀 that is used most commonly.

• Permanent Ground Displacement, 𝑃𝐺𝐷 (𝑖𝑛𝑐ℎ𝑒𝑠, 𝑐𝑚, 𝑚...) is the ground displacement that

remains after an earthquake at a particular site. It is often caused by lateral spreading and soil

liquefaction. This 𝐼𝑀 is not often directly attenuated using 𝐺𝑀𝑃𝐸𝑠, it often derived using 𝑃𝐺𝐴
and certain soil classification variables.

• Spectral Acceleration, 𝑆𝐴 (𝑔) is earthquake-agnostic and structure-specific. It is used to describe

the resulting acceleration of a structure when subject to oscillation with a particular period of

vibration.

𝑃𝐺𝐴 and 𝑃𝐺𝐷 are more intuitive to understand than 𝑆𝐴 as it is dependent on the natural period of

vibration of a structure. The natural period of a system is the period with which a system oscillates

such as to produce the largest displacement from its equilibrium position, and is the frequency it will

oscillate with when displaced and allowed to move freely.

Figure 2.1 shows the free vibration of a structure oscillating between states 𝑎, 𝑏, 𝑐, 𝑑, 𝑒. Free is taken

to mean without the effect of external forces. The natural frequency is then defined as the frequency

𝑇𝑛 at which the maximum displacement 𝑢0 is achieved. Considering an earthquake with a period of

vibration 𝑇𝑛 then this structure would vibrate with a maximum displacement 𝑢0. This displacement,

in the context of buildings, is often said to be the inter-story drift ratio, i.e. the relative horizontal

movement of one floor to the next. Therefore, the spectral acceleration of a structure is the maximum

acceleration it will experience given a specific natural period of vibration.

Considering the overarching theme of fragility, specific spectral accelerations are used based on the

expected natural period of vibrations of different structures. For instance 𝐹𝐸𝑀𝐴 prescribes the use of

𝑆𝐴0.3𝑠 and 𝑆𝐴1.0𝑠 for the fragility analysis of bridges as through empirical research it was deduced that

most bridges tend to have a natural period of vibration of 0.3 to 1.0 second, 𝐹𝐸𝑀𝐴 [35]. Acceleration is

not the only 𝐼𝑀 that can be analysed spectrally; however, spectral velocity and displacement are rarely

mentioned in fragility analysis research and are thus not explored in this thesis.

Probabilistic Seismic Hazard Assessment (𝑃𝑆𝐻𝐴) is the underlying objective of using 𝐺𝑀𝑃𝐸𝑠 [56].

𝑃𝑆𝐻𝐴 is concerned with producing seismic hazard maps and using those to model earthquake risk in

seismically active regions. The crux of this area of research comes in identifying the distribution of

active faults in regions with low to moderate seismic activity and allowing different models to generalise

over a broad range of site-source distances and site-conditions. Civil and other engineers don’t usually
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Figure 2.2: Earthquake forecast logic tree for the𝑈𝐶𝐸𝑅𝐹3 Fault database. Field et al. [37]. Each child node is connected to the

following parent node of the next model, thus the illustration shown here is condensed for visual purposes

concern themselves with 𝐺𝑀𝑃𝐸𝑠 specifically; rather, international, national and regional building codes

specify design response spectra which agree (within reason) to predictions made by 𝑃𝑆𝐻𝐴 models, like

in 𝐸𝑢𝑟𝑜𝑐𝑜𝑑𝑒8, [24]. It is important to note that the crux and benefit of employing 𝑃𝑆𝐻𝐴 is in logic-trees
which are decision trees that aim to hedge the epistemic uncertainty associated with different fault,

attenuation, magnitude scaling and other seismic component models [8]. Epistemic uncertainty is a

lack-of-knowledge uncertainty, where we say that we are not sure how exactly an earthquake should be

modelled, but given a set of of modelling techniques, we can sample a sequence of models and given a

large enough set of samples, 𝑃𝑆𝐻𝐴 should approximate ground motion with an acceptable degree of

error [8]. The type of models used in each phase of the logic tree and the weights of each model are not

a trivial task. 𝑃𝑆𝐻𝐴 at its core remains an open question, with several available approaches that usually

site-specific. For example a widely accepted 𝑃𝑆𝐻𝐴 logic tree for California earthquake forecasting is

shown in Figure figure 2.2, following the Third California Earthquake Rupture Forecast (𝑈𝐶𝐸𝑅𝐹3) [37].

Note that this model does not include attenuation and is purely concerned with the occurrence model

of earthquakes in California. It can then be easy to see that holistic models that include rupture and

occurrence modelling as well as attenuation modelling are exceedingly difficult to formulate.

The potential disconnect between design response spectra and 𝑃𝑆𝐻𝐴 becomes particularly important for

site conditions that are unique or severely out of the scope of a specific 𝑃𝑆𝐻𝐴 site-class and site-source

distance domain. Other practical challenges in this area of research are the inherent difficulty of
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collecting data given the relative low frequency of earthquakes, and that the area for which data should

be collected is exceedingly large.

Foundational early research and ongoing large-scale efforts on the field are seen to usually originate

from two countries: USA and Japan. In the US, early research on the field was made by James Brune

in the 70s and David M. Boore in the 90s, with more recent efforts seen in the development of Next

Generation Attenuation Models (𝑁𝐺𝐴), which is an effort by the Pacific Earthquake Engineering Centre

(PEER), based at the University of California, Berkley [61] [22], [20], [1]. 𝑁𝐺𝐴 includes two sub-datasets,

𝑁𝐺𝐴 −𝑊𝑒𝑠𝑡2 and 𝑁𝐺𝐴 − 𝐸𝑎𝑠𝑡. Both datasets solely consider shallow-crustal earthquakes; the former

is broader and applies to quakes worldwide, in active tectonic regions; the latter is specific to central

and eastern US regions. 𝑁𝐺𝐴 includes 5 attenuation models and a dataset of 3552 recorded earthquake

events. The 5 models are:

Reference VS,30 Demand
Types

M
Range

Period
Range

RJB

Atkinson and Boore, 2008 (AB2008)[61] 180 to

1300

m/s

PGA,

PGV, 5%

PSA

5.0 to

8.0

0.01s to

10s

0 to 200

km

Campbell and Bozorgnia, 2008 (CB2008)[20] < 180

m/s

PGA,

PGV, 5%

PSA

4.0 to

8.0

0.01s to

10s

0 to 200

km

Chiou and Youngs, 2008 (CY2008)[22] 300 to

400 m/s

PGA,

PGV, 5%

PSA

4.0 to

8.0

0.01s to

10s

0 to 200

km

Idriss, 2007 (I2007) [50] 450 to

900 m/s

PGA,

PGV, 5%

PSA

5.0 to

8.0

0.01s to

10s

0 to 200

km

Abrahamson and Silva, 2010 (AS2010)[1] 1000

m/s

PGA,

PGV, 5%

PSA

5.0 to

8.5

0.01s to

10s

0 to

200km

Table 2.1: Summary of Ground Motion Prediction Equations (GMPEs) used in NGA

All the reviewed models include simillar boundary conditions and are less accurate for very extreme

earthquakes, but also very small earthquakes. Nonetheless, they have all gone under review by the

USGS (United States Geological Society) and are in use in many derivate resilience-based hazard-analysis

tools like INCORE [90]. Allthough less broad, research in Japan is highly rigorous and consistent and

focuses on analysis of soil-conditions specific to Japan (crustal earthquakes), but also the development of

advanced GMPEs specifically focusing on energy infrastructure risk reduction and accordance to Senior

Seismic Hazard Analysis Committee (SSHAC) Level 3 recommendations [39]. Specifically, given the

high density of nuclear power stations in Japan and the combined effect of the country’s high seismicity,

the research is crucial given the severe implications of nuclear power plant disasters. However, this

thesis principally focuses on research efforts originating from the US as they align well with ongoing

efforts for structural fragility assessemenet of US-specific infrastructure archetypes.

Computational 𝐺𝑀𝑃𝐸 tools can be sparse as their integration is often secondary to an different

overarching project goal; thus, they are not often produced as stand-alone tools. 𝐼𝑁𝐶𝑂𝑅𝐸 [90] and

𝑂𝑝𝑒𝑛𝑄𝑢𝑎𝑘𝑒 [86] are some of the most accessible tools; while INCORE focuses on US-based integrated

community resilience, 𝑂𝑝𝑒𝑛𝑄𝑢𝑎𝑘𝑒 is centered around world-wide, location-specific attenuation

modelling. 𝐼𝑁𝐶𝑂𝑅𝐸 is a project from the Center of Excellence for Risk-Based Community Resilience

Planing (𝐶𝑜𝐸), which is funded by the National Institute for Standards and Technology (𝑁𝐼𝑆𝑇). It

specifically focuses on post-disaster resilience loss and recovery of interdependent infrastructure systems

and communities. It is built as a Python client which connects to distributed servers running on Docker

and 𝐾𝑢𝑏𝑒𝑟𝑛𝑒𝑡𝑒𝑠, which are tools to effectively deploy large-scale applications in a wide range of

machines. 𝑂𝑝𝑒𝑛𝑄𝑢𝑎𝑘𝑒 is part of the Global Earthquake Model (GEM) and is a global effort to bring

together national and international organisations for the development of both uniform standards and
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computational 𝐺𝑀𝑃𝐸 tools [86].

This thesis uses 𝐼𝑁𝐶𝑂𝑅𝐸 as it is native to a Python environment and does not require re-building

it from binaries. 𝑂𝑝𝑒𝑛𝑄𝑢𝑎𝑘𝑒 is more easily used in a web-based interface or integrated desktop

client. Additionally, 𝐼𝑁𝐶𝑂𝑅𝐸 allows for the future integration of more infrastructure networks when

appropriate data schemas are used. One can perform many different analyses through 𝐼𝑁𝐶𝑂𝑅𝐸 that

relate to direct, indirect, and human losses. A simplified illustration of 𝐼𝑁𝐶𝑂𝑅𝐸’s tech stack is shown

in figure 2.3 which is built as a containerised application and includes several web-based tools and the

python package itself.

Figure 2.3: INCORE Tech Stack is built as a Docker container and distributed using Kubernetes on AWS (Amazon) servers. This is

a common approach for many cloud-based software solutions Standards et al. [90].

2.2. Structural Fragility Assessment
Attenuation models discussed principally focus on shalow-crust earthquake strong motion. This is

noted as other types of earthquakes or human-induced earthquakes are not considered of interest.

An example of research conducted on human-induced earthquakes and fragility is in the Groningen

gas field, where chronic natural gas extraction has led to ground failure and thus human-induced

earthquakes [26]. While this research is crucial for regional fragility assessment, it does not generalise

for intraplate shallow-crust earthquakes. Large-scale efforts in national- and international- fragility

assessment are a topic of research which has only seen significant results in the past decade and is still

ongoing.

This section focuses on laying out the foundation for predicting the structural damage caused by

earthquakes on infrastructure components. Structural response and thus damage is often analysed at the

scale of one or a handful of structures with an existing detailed description of their structural makeup,

materials and behaviour. This is done using accurate but computationally expensive methods like Finite

Element Analysis (FEA). Conversely, such a task on the scale of a town or a city is difficult as detailed

structural descriptions of large building portfolios are not commonplace and the cost of performing

FEA at such a scale becomes a limiting factor. Thus, the usual approach is to classify structures and

components and use empirical data to fit statistical models for predicting structural response given a

loading scenario. This can generally be described as the concept of fragility. Fragility is defined as:

𝐹𝑟𝑎𝑔𝑖𝑙𝑖𝑡𝑦𝑖 = 𝑃(𝐷𝑆𝑛|𝐼𝑀 = 𝑦) (2.1)

where:

• 𝐹𝑟𝑎𝑔𝑖𝑙𝑖𝑡𝑦𝑖 is the probability that a component or system 𝑐 is at or above damage state 𝐷𝑆𝑛 given

a realised value 𝑦 of intensity measure 𝐼𝑀.

The damage state, 𝐷𝑆 is a categorical variable used to classify the severity of damage a component or

structure has incurred, based on observed indicators. For instance, a building in a slight damage state
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Figure 2.4: A set of example damage that illustrate building damage due to lava flow,𝑈𝑆𝐺𝑆 [87]

might show minor wall cracks and fallen interior panelling. These states, whether defined qualitatively by

specific performance indicators or quantitatively, must align with empirical expectations of a structure’s

usability and collapse risk. Essentially, predicting damage states involves categorizing structural damage

into discrete levels, with each level correlating to a specific fraction of baseline functionality or an

increased risk of collapse or injury. For instance, a building with no or negligible damage could be

fully functional, while one with minor damage might retain half its original functionality, and damage

exceeding a moderate level could render it completely dysfunctional. figure 2.4 shows an example set of

damage states for buildings affected by lava flows. This thesis employs five damage states, including

None or No Visible, but any number can be used, provided there’s enough data to establish the necessary

probability distributions.

The task of inventory data collection and structural classification is not trivial and very few counties

have made extensive efforts in doing this. Furthermore, a fragility model is only useful for structures

whose behaviour is close to that of the data collected. For instance, a three-floor masonry building

with a footprint of 1000 𝑚2
in America is likely to have high similarity in its structural response to an

earthquake as another building of the same type within the US. However, the structural response may

differ significantly if the same building were located in Europe. This point undermines an overarching

theme of this thesis which is that any work in aiming to improve recovery resilience should start with

thorough inventory and data collection.

Specific intensity measures are discussed later; however, a brief description is that an intensity measure,

in the case of an earthquake, is a type of ground strong-motion which induces a structural demand on a

structure. This movement can come in the form of velocity, acceleration, displacement, or any measure

which can affect structural damage. While different statistical formulations exist for the definition of

fragility, the most normal includes a log-normal cumulative probability distribution function:

𝑃(𝐷𝑆𝑛|𝐼𝑀 = 𝑥) = Φ
[

1

𝛽𝐷𝑆𝑛
∗ ln

(
𝑥

𝐼𝑀𝐷𝑆𝑛

)]
(2.2)

where:

• Φ(·) is the standard cumulative distribution function (𝐶𝐷𝐹),
• 𝛽𝐷𝑆𝑛 = 𝜎

ln(IM)|DS𝑛
is the standard deviation of the natural logarithm of the intensity measure at

which damage state 𝐷𝑆𝑛 occurs, (i.e., the dispersion in naural log space),

• 𝐼𝑀𝐷𝑆𝑛 is the mean intensity measure at which damage state 𝐷𝑆𝑛 occurs,

• 𝑥 is the realised intensity measure value of intensity measure type 𝐼𝑀.

or using the median 𝜃̂ instead:

𝑃(𝐶|𝐼𝑀 = 𝑥) = Φ
[
ln (𝑥/𝜃)

𝛽

]
(2.3)
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where 𝑃(𝐶|𝐼𝑀 = 𝑥) is the probability of collapse, given that intensity measure 𝐼𝑀 is equal to 𝑥. Figure

2.5shows two sets of fragility curves for two different building archetypes, as defined in HAZUS’s 2024

Earthquake Model Technical Manual, Equivalent-PGA Structural Fragility - Low-Code Seismic Design Level,
𝐹𝐸𝑀𝐴 [35]. The specifics of the manual are explored later in the literature review; however, the two

sets of curves are shown to highlight the difference between two different types of buildings.

Figure 2.5: Example fragility curves for damage state-exceedance and damage state probabilities from FEMA [35]. S5L = Steel

building of 5 floors with a footprint less than 1500m. PC2H = Precast concrete building of 2 floors with a footprint more than

3000m.

One can sample the probability distribution for each damage state, ensuring that the total probability

sums to 1. The cumulative probabilities for each damage state can be represented as follows:
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• Sample the probability for the most severe state 𝑃(DS4):

𝑃(DS4) = 𝑝sampled, DS4

• Sample the probability for DS3, and subtract 𝑃(DS4) to get the probability of being in DS3 but not

in DS4:

𝑃(DS3) = 𝑝sampled, DS3 − 𝑃(DS4)

• Sample the probability for DS2, and subtract 𝑃(DS3) and 𝑃(DS4) to get the probability of being in

DS2 but not in DS3 or DS4:

𝑃(DS2) = 𝑝sampled, DS2 − 𝑃(DS3) − 𝑃(DS4)

• Sample the probability for DS1, and subtract 𝑃(DS2), 𝑃(DS3), and 𝑃(DS4) to get the probability of

being in DS1 but not in higher states:

𝑃(DS1) = 𝑝sampled, DS1 − 𝑃(DS2) − 𝑃(DS3) − 𝑃(DS4)

• Finally, calculate the probability for "None" (no damage):

𝑃(None) = 1 − 𝑃(DS1) − 𝑃(DS2) − 𝑃(DS3) − 𝑃(DS4)

Estimating the parameters of analytical fragility functions such 𝛽 and 𝐼𝑀 (or 𝜇) can be done in a variety

of different ways including incremental dynamic analysis, truncated incremental dynamic analysis,

multiple stripes analysis. These methods assume the availability of observations or structural analysis

results [9]. Incremental dynamic analysis involves scaling a given ground motion parameter until it

causes the simulated or observed collapse of a structure; the estimation of the probability of collapse at

a given 𝐼𝑀 intensity level, 𝑥 is then the fraction of records that collapse below 𝑥, [9]. The dispersion 𝛽
and median 𝜃 parameters can then be estimated by taking the natural log of 𝑥 associated with the onset

of collapse. These can be estimated using:

ln(𝜃̂) = 1

𝑛

𝑛∑
𝑖=1

ln(IM𝑖) (2.4)

𝛽̂ =

√√
1

𝑛 − 1

𝑛∑
𝑖=1

(
ln

(
IM𝑖

𝜃̂

))
2

(2.5)

where:

• 𝜃̂ is the 𝐼𝑀 level with a 50% probabiltiy of collapse (the median)

• 𝛽 is the standard deviation in natural log space

• 𝑛 is the number of samples

These are used to fit the fragility function following equation (2.3). An example of this fitting is seen

below:
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Figure 2.6: a) Example incremental dynamic analyses results, used to identify 𝐼𝑀 values associated with collapse for each ground

motion. b) Observed fractions of collapse as a function of 𝐼𝑀, and a fragility function estimated using equations (2.4) and (2.5).

Extracted from Baker [9]

Truncated incremental dynamic analysis truncated the samples used for fitting below a certain threshold

as analysis of exceedingly high 𝐼𝑀 values is computationally expensive and normally lower 𝐼𝑀𝑠 are of

higher interest. Multiple stripe analysis involves the discretisation of 𝐼𝑀 levels and different ground

motions for each 𝐼𝑀 level [9].

𝑂𝑝𝑒𝑛𝑄𝑢𝑎𝑘𝑒 has made a significant effort in aggregating fragility assessment models around the world

and has compiled them into open computational tools[86].

(a) Available regional fragility and seismic hazard assessment tools

using 𝑂𝑝𝑒𝑛𝑄𝑢𝑎𝑘𝑒 [86]

(b) Location of ground motion recording stations around the world

(accelerometers) [86]

Figure 2.7: Available GMPE / Fragiltiy modelling tooling and locations of ground recording stations[86].

As can be seen by figure 2.7a and figure 2.7, there is a clear correlation between the number of recording

stations (accelerometers) and the extent of fragility assessment modelling. Four countries that show

more extensive efforts to model regional infrastructure fragility are the US, Turkey, Italy, and Greece.

Fragility assessment is normally done by predicting the occurrence of complete or partial structural

collapse, given a ground motion and a structural analysis result, [9]. These functions can be derived in a

number of different ways including field observations and qualitative judgment; however, the focus

in this thesis is to use analytical fragility functions which can accept varied 𝐼𝑀 values, given enough

analyses for those 𝐼𝑀𝑠.

Fragility assessment for infrastructure in Greece includes assessment of timber-frame masonry buildings

[53], fragility assessment of retaining walls [54] post-earthquake recovery phase monitoring using

digitally sourced UAS video footage [89], and rapid damage assessment, recovery, education, and

resilience in post-earthquake scenarios [70]. Efforts in Italy are seen in scenario-based fragility assessment

of non-ductile RC buildings [40], empirical derivation of fragility curves from post-disaster survey

data [76], empirical derivation of fragility curves for residential RC buildings [75], and URM buildings [27],

and urban-based fragility curves for URM buildings in small- or medium-sized communities in Italy [80].
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Existing work in Turkey includes studies like the assessment of one-story precast RC buildings [69]

and [83], seismic fragility assessment of typical high-way bridges, fragility assessmenent of public

buildings [13] and fragility assessement of mid-rise RC buildings [30]. All though these studies are

highly extensive, the lack of large-scale GIS data on transportation and building portfolios makes the

use of these analysis methods difficult as crucial large-scale data on the structural makeup of buildings

is hard to come by in southern Europe.

Conversely, the US provides the most in-depth and publicly-available fragility and vulnerability

assessment frameworks that exist to date. These efforts are seen principally in organisations like

FEMA, who have developed HAZUS. HAZUS is an integrated software package for earthquake risk

assessment and also includes extensive documentation, results and relevant datasets available for public

use. Furthermore, FEMA P-58 methodology Volumes 1 to 7 provide building-specific tools for fragility

and vulnerability assessment [36]. FEMA P-58 spans from basic fragility assessment to environmental,

human, direct and indirect losses and implementation guides. It is important to note that the US is in

the favourable position of having relatively newly- and thus more uniformly-constructed buildings as

compared to southern Europe. This makes the act of fragility and vulnerability assessment less uncertain

and allows for a higher level of standardisation; this is because infrastructure can be categorised into

archetypes / classes more easily. Furthermore, one has to keep in mind that this assessment is specific

to earthquake disasters. For instance, all four countries are faced with high and increasing wildfire risk

and little available research and tools to reduce or combat it.

FEMA’s HAZUS Earthquake Model Technical Manual [35] and Inventory Technical Manual [34] are

comprehensive guides on the topic and were released in 2024 and 2022 respectively. The former

includes FEMA’s HAZUS Loss Estimation Methodology. Within it, one can find data and methods

on US site-classification and ground motion, physical (structural and non-structural) damage through

fragility assessment on buildings and infrastructure (EPN, WN, GS, TN), vulnerability assessment in

terms of human, direct and indirect losses and induced damage functions such as urban fires following

earthquakes. The inventory technical manual includes sources and specific data on building and

infrastructure inventory data collection, demographic data such as income, rent and healthcare facilities,

and various factors used for different loss estimations.

2.3. Infrastructure Interdependencies
This section of the literature review focuses on existing formulations of modelling interdependencies

in infrastructure systems. Interdependencies generally refer to the cascading effects of one type of

infrastructure to one or more other infrastructures. For instance, one can think of the inability of water

wells to functions without functioning EPN substations. Interdependencies of different infrastructures

usually rely on associative relationships between different infrastructures to couple them together in such

a way that performance reduction in one type of infrastrustructure affects another type of infrastructure.

Guidotti et al. describe and formalize methods for modelling critical infrastructures while considering

these dependencies under a post-disaster scenario [45]. The authors’ goals are to develop a methodology

that models network dependencies, integrate it into a probabilistic framework which considers the

stochastic aspects of infrastructure modelling and apply the framework to a case study involving Water

Networks (WN) and Electrical Power Networks (EPN), both having either demand or supply nodes.

More generally, the authors define four types of interdependencies (Guidotti et al., 2016):

• Physical : the functionality state of one infrastructure affects the material outputs of another

infrastructure (i.e non functional EPN substations affect co-located water pumps).

• Cyber: the transmission of information from one infrastructure affects the state of another

infrastructure (i.e lack of control in a telecommunications network result in EPN functionality

reduction).

• Geographic: the functionality of an IC is dependent on a proximal or co-located IC of a different

infrastructure network (i.e building debris might affect traffic performance in the Transport

Network (TN))

• Logical: the functionality reduction of one type of infrastructure has wider societal effects that
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can likely influence other networks (i.e a drop in performance of the EPN might induce a change

in the price of fuel).

The categorical classification of different interdependencies is useful as it allows clarity in what kind

of interdependencies are modelled and how exactly cascading effects are predicted. For example a

geographic interdependency can be that of building debris having an effect on the transportation

network; a logical interdependency can be when the transportation network has an effect on the income

of a community if traffic delays increase. Thus, interdependencies are thought of as cascading, such

that an effect on one infrastructure affects another, which in itself might affect more systems down the

line. The adjacency matrix of a network and the formulation that the authors use is as follows:

Let 𝐴 = [𝑎𝑖 , 𝑗] be the adjacency matrix of a graph with 𝑛 nodes, defined as:

𝑎𝑖 , 𝑗 =

{
1, if there is an edge between node 𝑖 and node 𝑗

0, otherwise

The matrix 𝐴 can be represented as:

𝐴 =


𝑎1,1 𝑎1,2 · · · 𝑎1,𝑛

𝑎2,1 𝑎2,2 · · · 𝑎2,𝑛

...
...

. . .
...

𝑎𝑛,1 𝑎𝑛,2 · · · 𝑎𝑛,𝑛


The authors then describe the augmented adjacency table 𝐴𝑠,𝑡 for two networks 𝑠 and 𝑡, with nodes 𝑛
and 𝑘, as a matrix in which each entry represents the dependency of node 𝑖 in network 𝑠 on node 𝑗 in

network 𝑡. This formulation allows for either a symmetrical or an asymmetrical matrix. For example,

debris from building 𝑖 might directly influence the accessibility or damage of road 𝑗, but damage to

road 𝑗 might not necessarily affect the structural integrity of building 𝑖.

The augmented adjacency matrix 𝐴𝑠,𝑡 is defined as:

𝐴𝑠,𝑡 = [𝑎∗𝑖 , 𝑗], where 𝑎∗𝑖 , 𝑗 =

{
1, if node 𝑖 ∈ 𝑠 depends on node 𝑗 ∈ 𝑡
0, otherwise

Its general form is:

𝐴𝑠,𝑡 =


𝑎∗𝑠1 ,𝑡1 𝑎∗𝑠1 ,𝑡2 · · · 𝑎∗𝑠1 ,𝑡𝑘
𝑎∗𝑠2 ,𝑡1 𝑎∗𝑠2 ,𝑡2 · · · 𝑎∗𝑠2 ,𝑡𝑘
...

...
. . .

...
𝑎∗𝑠𝑛 ,𝑡1 𝑎∗𝑠𝑛 ,𝑡2 · · · 𝑎∗𝑠𝑛 ,𝑡𝑘


Here, 𝑛 is the number of nodes in network 𝑠, and 𝑘 is the number of nodes in network 𝑡. The structure

of 𝐴∗
enables modeling of complex interdependencies across different network layers, including

unidirectional or asymmetric influences.

Furthermore, the authors describe the use of a likelihood table 𝐿 of size 𝑠 × 𝑡, where 𝑠 and 𝑡 are the number

of nodes in networks 𝑠 and 𝑡, respectively. The likelihood matrix 𝐿 introduces probabilistic relationships

between nodes in different networks. Specifically, if a water well 𝑖 in network 𝑠 is powered equally by

two electrical power network (EPN) substations 𝑗 and 𝑘 in network 𝑡, and both substations contribute

equally to the operation of the well, then the likelihood values of 𝑗 and 𝑘 influencing 𝑖 are each 0.5.

The likelihood matrix 𝐿 is defined as:

𝐿 = [ℓ𝑖 , 𝑗], where ℓ𝑖 , 𝑗 ∈ [0, 1]
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To capture both the dependency (from the augmented adjacency matrix 𝐴∗
) and its weight (in 𝐿), the

authors define a dependency matrix 𝑃 as the element-wise product of 𝐴∗
and 𝐿:

𝑃 = [𝑝𝑖 , 𝑗], where 𝑝𝑖 , 𝑗 = 𝑎∗𝑖 , 𝑗 · ℓ𝑖 , 𝑗

This matrix 𝑃 captures both a binary relationship between nodes in networks 𝑠 and 𝑡, as well as the

likelihood or weight of that relationship, expressed as a continuous value between 0 and 1. This allows

for more nuanced interdependency modelling between infrastructure networks.

Different literature on infrastructure interdependencies and resilience employ similar formalisms to

describing the interdependencies of infrastructures. Gonzalez et. al. model EPN, WN and GN networks

with a similar approach [44]. The authors use 4 types of interdependencies structured as matrices and

related to Guidotti et al, 2016 like so:

• Geographical: interdependencies of one node directly affecting another node due to co-location

• Logical: a node in a network can only be functional is there is at least one node in its dependent

network that is functional.

• Physical: a node in a network can only be functional if there is a subset of functional nodes in

another network.

• Physical: a node in a network can be partially functional if there is a subset of functional nodes in

another network with the origin node having partial dependencies (likelihoods) to each node in

the subset.

Additionally, the authors also consider that these interdependencies not only affect the performance of

interdependent nodes, but also their repair. Specifically, the repair of a node is broken down into a

repair preparation and a repair action, i.e preparing the site and conducting the repair. They consider

that given two interdependent nodes 𝑖 and 𝑗, repairing node 𝑖 reduces node 𝑗’s repair time by a repair

preparation time (Gonzalez et al., 2016). The authors then use these interdependencies to solve a traffic

assignment problem with custom cost and flow functions based on the interdependencies affecting flow

to and from nodes in different networks but also their repair times. A similar formulation is seen in Yang

et al. where the authors model EPN, TN and WN as interdependent and attempt to use RL in predicting

an optimal sequence of post-earthquake repairs. The authors model the EPN and WN as graphs and a

hyper-graph of the geographical interdependencies of the WN to the EPN due to co-location (Yang et.

al, 2024). In this case the WN and EPN graphs are two adjacency tables but with added attributes such

as repair time, size etc. The hyper-graph connecting them is structured like the augmented adjacency

table seen in Guidotti et al., 2016.

Similarly, Sedieket al. model a transport network and healthcare network and their interdependencies

to building debris due to building damage under an earthquake [82]. The authors use geographical

interdependencies to describe the effect of building debris reducing the capacity of nearby roads and the

effect of capacity reduction to traffic performance and healthcare performance, i.e ambulances taking

longer to reach the hospital. Furthermore, the authors use the logical interdependency of hospital

capacity to building damage, i.e the amount of injured victims affects the capacity of hospitals in terms

of the available hospital beds. Ghorbani-Renani et al. model WN, EPN and GN networks with binary

relationships (not specifically weights) [42]. Conversely to the other research efforts, the paper considers

resilience related to an ‘attack’ like an earthquake in a three-level approach. This approach includes

defending from the attack, intruding the attack and recovering from the attack. They associate a cost for

defending, intruding and recovering from an attack to each node. These papers show a varying level

of analysis of nodal interdependency in infrastructures; some authors choose to include weights for

differently interdependent nodes and different kinds of interdependencies like in Gonzalez et al. ([44].

On the other hand Ghorbani-Renani et al. [42] employ simpler methods of binary interdependency

(non-weighted). This shows that both methods can be applicable and eventually relate to the definition

of resilience. Sharma et. al. employ a model with binary interdependencies between networks to predict

optimal repair scheduling for interdependent infrastructures [84]. What is interesting in their research

is that they organize recovery actions of EPN substations into recovery zones which might have an

associated set of sub-actions, like repairing circuit breakers or transformers. This allows for the model
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to scale up to larger city environments and potentially consider more large-scale interdependencies.

However, it is difficult to maintain accuracy to realistic recovery situations as the scale of the environment

grows. It is therefore imperative to relate the interdependencies of a model, its scale and how they affect

the measurement of resilience.

2.4. Community Functionality and Resilience
This sections provides an overview and review of different approaches to defining and measuring

recovery resilience. Focusing on infrastructure systems, it highlights that the combined aim of resilience

formulations are to well describe community functionality but also be formulated in such a way as to

allow for better post-disaster bounce-backs in performance are represented by higher resilience values.

Different researchers measure resilience using various sub-system types and behaviours. Gerges et al.

provide a general formulation for resilience which is the basis for resilience formulations in this thesis.

They define sub-system resilience attributes as weighted sums of sub-system attribute sub-functionalities

[41]. For example, the transportation resilience might dependent on both healthcare trips and business

trips. They define a given sub-system resilience 𝑅𝑒𝑠𝑠𝑢𝑏 as:

𝑅𝑒𝑠𝑠𝑢𝑏(𝑡) =
𝑠𝑢𝑏∑
𝑖

𝑤𝑠𝑢𝑏(𝑖) ∗ 𝑅𝑄,𝑠𝑢𝑏(𝑡) (2.6)

Furthermore, they define a variable, 𝑃 ∈ [0, 1] which conditional on the essential facility functionality

and discounts total resilience if an n-out-of-k essential functionalities are below a threshold minimum

value. Sub-system resilience attributes are then defined as:

𝑅𝑄𝑖 =

∫ 𝑡

𝑡0
𝑄𝑖(𝑡)𝑑𝑡
𝑇 − 𝑡0 (2.7)

where 𝑠 is timestep. This general formulation for resilience is commonplace for most literature where

resilience and resilience loss are associated with an area under a functionality-time graph.Guidotti et al.

focus on Water Network (WN) performance and its interdependency with the Energy Power Network

(EPN) [45]. They use two metrics: the fraction of demand nodes in a network that meet a specified

baseline demand, where 𝑞 𝑖𝑛 is the flow delivered to node 𝑛 and 𝑄 𝑖
𝑛 is the baseline demand for node 𝑛 at

time 𝑡 (a node meets demand if 𝑞 𝑖𝑛 ≥ 𝑄 𝑖
𝑛); and whether a node meets a pressure threshold of 180 kPa.

This approach directly analyzes one network’s performance as the measure of resilience, with the EPN

interdependency being implicit. Relating this to Firas Gerges et al. [41], this work considers only the

Energy attribute of resilience in their measurement.

Gonzalez et al. (2016) focus on interdependencies between EPN, GN and WN. In their work, they

consider interdependencies of components in terms of costs of site preparation due to adjacent damage.

They define their experiment as an optimisation problem. As well as site preparation costs, five other

costs are considered: guaranteeing flow balance, ensuring arc flows are within capacity, linking flow to

the functionality of head and tail nodes, and limiting resource use in construction. This is highlighted

as it models interdependencies of traffic networks very effectively and in a high level of detail by

considering many cascading effects due to interdependencies. If related to Gerges et al. [41], this

research considers Energy and Transportation resilience attributes.

Yang et al. (2024) model three networks (TN, EPN, WN) and use Reinforcement Learning (RL) to predict

optimal post-earthquake repair sequences [96]. Unlike the previous two, they measure resilience based

on the buildings that access these networks, not the networks themselves. The loss of resilience after an

event (𝑡 = 0) at time 𝑡 is defined as:

𝐿𝑅(𝑡) =
∫ 𝑡

0

[𝑄0 −𝑄(𝑡)]𝑑𝑡 (2.8)

where 𝑄(𝑡) is the community functionality at time 𝑡 after the earthquake, 𝑄0 is the pre-disaster

community functionality. Community functionality 𝑄(𝑡) is defined as:
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𝑄(𝑡) = 1

𝐶

∑
𝑖

𝛼𝑖𝑄𝑝ℎ𝑦𝑖 (𝑡) (2.9)

where:

• 𝛼𝑖 is the importance weight of each building 𝑖,

• 𝑄𝑝ℎ𝑦𝑖 (𝑡) is the physical functionality of building 𝑖,

• 𝐶 is a normalization constant.

The normalization constant 𝐶 is defined as:

𝐶 =

∑
𝑖

𝛼𝑖𝑆𝑖 (2.10)

where is the total surface area of each building 𝑖. The physical functionality of building 𝑖, 𝑄𝑝ℎ𝑦𝑖 , is then

defined as:

𝑄𝑝ℎ𝑦𝑖 (𝑡) =
∑
𝑗

𝛽𝑖 𝑗 𝐼𝑖 𝑗(𝑡) (2.11)

where:

• 𝐼𝑖 𝑗(𝑡) indicates whether building 𝑖 has access to use infrastructure 𝑗 at time 𝑡

• 𝛽𝑖 𝑗 represents the importance of infrastructure 𝑗 to building 𝑖

Considering Firas Gerges et al. (2023) [41], Yang et al. employ Transport, Socio-Economic, and Energy

attributes to define resilience [96]. This approach focuses on buildings as the source point of losses and

resilience is more broadly taken as the approach in the methodology. Furthermore, this conception of

resilience is intuitive as most community users more directly interact with buildings than any other

infrastructure.

Sediek et al. focus on post-earthquake performance of the healthcare and transportation networks

by considering the interdependency between building debris and road capacity [82]. They model

the expected human losses in terms of injury or death and measure traffic performance both using

general network performance and healthcare-specific post-earthquake trip performance. They predict

building debris using available empirical data and NNs. Their formulation for debris prediction and

road capacity reduction is used in this thesis methodology. As Fig X shows, they define modes of

building collapse for (a) RC Frames, (b) Masonry and (c) other types of buildings. For masonry and

other types of buildings, collapse is deterministic through relationships found in associated literature,

[81]. For masonry buildings they define four modes of collapse which they predict using a trained

NN and median and dispersion values for a,b, c and c; these are properties of a lognormal cumulative

distribution function.

For transportation resilience, they propose the Network Resilience Index (NRI), defined as:

𝑁𝑅𝐼 =

∫ 𝑇𝑁𝐹

0

𝑄𝑇𝑁 (𝑡)𝑑𝑡 (2.12)

where𝑇𝑁𝐹 is the time required for the functionality of the transportation network to return to pre-disaster

levels, and 𝑄𝑇𝑁 (𝑡) is the weighted functionality of the transportation network. 𝑄𝑇𝑁 (𝑡) itself is weighted

based on link capacity and defined as:

𝑄𝑇𝑁 (𝑡) =
∑𝑛
𝑖=1
𝐶𝑖𝑞𝑖(𝑡)∑𝑛
𝑖=1
𝐶𝑖

(2.13)

where 𝑛 is the number of links, 𝐶𝑖 is the traffic flow capacity of link 𝑖, and 𝑞𝑖(𝑡) is the functionality of

link 𝑖 at time 𝑡. The functionality 𝑞𝑖(𝑡) is defined as:
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Figure 2.8: Debris collapse per building type, Sediek, El-Tawil, and McCormick [81]

𝑞𝑖(𝑡) = 1 − %𝐵𝑖(𝑡) (2.14)

where %𝐵𝑖(𝑡) is the percentage of blockage of link 𝑖 at time 𝑡, or in other words the capacity reduction of

link 𝑖 at time 𝑡. The removal, storage and recycling of debris are all defined during simulation. Given a

number of available trucks and the time taken to transport the debris from a building to the Temporary

Debris Management Site (TDM), the flow chart of the debris DES simulation is shown in figure 2.9.

the amount of debris that can be collected is given as:

𝐷𝑒𝑏𝑟𝑖𝑠/𝑇𝑟𝑢𝑐𝑘 =
∑
𝑇𝑑𝑒𝑏𝑟𝑖𝑠 + 𝑡𝑡𝑟𝑎𝑣𝑒𝑙 + 𝑡𝑢𝑛𝑙𝑜𝑎𝑑

𝑡𝑤𝑜𝑟𝑘
(2.15)

where:

•

∑
𝑇𝑑𝑒𝑏𝑟𝑖𝑠 is the sum of debris clearance time components, considering there can be structural,

non-structural and other debris.

• 𝑡𝑡𝑟𝑎𝑣𝑒𝑙 + 𝑡𝑢𝑛𝑙𝑜𝑎𝑑 + 𝑡𝑤𝑜𝑟𝑘 are the travelling, unloading and working hours. Working hours are

computed per decision step.

Considering traffic performance, The NRI thus captures the interdependency of traffic performance

with building debris and bridge damage. Sediek et al. also propose the Network Performance Index

(NPI):

𝑁𝑃𝐼 =

∫ 𝑇𝑁𝑃

0

(1 −𝑀𝑇𝑇𝑅(𝑡))𝑑𝑡 (2.16)

It represents the area under the Mean Travel Time Ratio (𝑀𝑇𝑇𝑅) graph, where 𝑇𝑁𝑃 is the time required

to return to pre-disaster levels, and 𝑀𝑇𝑇𝑅(𝑡) is the mean travel time ratio at time 𝑡. NPI is noted as

similar to Yang et al.’s Resilience Loss metric in terms of the general mathematical approach. Both
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Figure 2.9: Debris DES Simulation from Sediek, El-Tawil, and McCormick [82]. Given one of three possible sites for the debris to

be taken (TDMS, Landfill, Recycling), the simulatore defines several rules for the amount of debris that is transported, how much

of the debris is recyclable and the effect on traffic.

approaches measure the index of performance as the finite-time interval of a system’s functionality, 𝑄(𝑡).
The only difference is that Sediek et al. use a cost-based variable (MTT) rather than a reward-based 𝑄(𝑡)
variable like seen in Yang et al, [96].

Regarding healthcare functionality, Sediek et al. [82] define three indices: Hospital Use Index (HUI),

In-community Mobilization Index (IMI), and Waiting for Admission Index (WAI), all being areas under

healthcare performance-loss to time curves. The three metrics use absolute functionality values, like the

number of injuries still needing to be treated. For instance, the HUI is given as:

%𝐻𝑈𝐼 =

∫ 𝑇𝐻

0

𝐼𝑇𝑅𝐸(𝑡)
𝑇𝐻

× 100 (2.17)

where 𝐼𝑇𝑅𝐸(𝑡) is the normalised value of the number of injuries currently being treated in hospitals

against the capacity of the hospitals. Likewise, WAI uses the number of injuries waiting for admission

against the hospital capacity. The computation of the healthcare performance indices is made using

route-specific performance of trips to and back from the hospital as they are being affected by the load

posed on the hospitals. Notably, this is possible at high fidelity since the authors use a dynamic time

simulation with shorter early recovery durations. Both healthcare and traffic Discrete Event Simulations

(DES) run at a time-step of seconds during the earthquake, 2ℎ in the first 30 days after the earthquake,

and only for the traffic network, 10 days after the first 30 days. The authors employ the use of traffic

assignment zones within the network in order to generate realistic 𝑂 − 𝐷 matrices.

Sharma et al. present a resilience framework that can work across scales and takes into account spatial

and temporal variation in the recovery phase [84]. They define rigorous mathematical formulations

for spatial and temportal resilience and apply it in the case study of component-level repairs of EPN

sub-stations. They define the effective area of a repair action as recovery zones which are computed from

tributary areas of sub-stations. They define two resilience metrics, both of which defined as Temporal
versions as well:

• Center of Resilience, (𝜌𝑄),

• Resilience Bandwidth, (𝜒𝑄).
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Figure 2.10: The environment used by Seidk et al. [82]. It includes 3 hospitals, 1 debris management site, 1 landfill and 1 recycling

facility. Their approach is simulated before, during and after and earthquake; they model traffic using dynamic post-earthquake

𝑂 − 𝐷 matrices considering the increase in hospital trips

Figure 2.11: Region of Interest partitioning of interdependent infrastructures into recovery zones, Sharma et al. [84]
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As defined in their study, temporal metrics are associated with the instantaneous resilience at each

timestep. The exact definitions of the two metrics are not given. However, more generally, the center of

resilience considers the residual post-disaster performance combined with the total recovery duration

[84]. Resilience bandwidth is a measure of the spread of recovery in time, i.e the concentration of

effective recovery in time. The researchers then solve post-disaster repair scheduling as a multi-objective

optimisation problem, which is conducted using linear optimised paper flow solver using the Python

package 𝑃𝑦𝑃𝑆𝐴. 𝑃𝑦𝑃𝑆𝐴 is a tool specifically developed for power system analysis [17].

Gomez and Baker employ an optimisation-based approach for coupled pre- and post-earthquake decision

making, [43]. They look at the time frame before, but also after an earthquake concerning a large-scale

transportation bridge and road network in San Francisco. The decision making problem is whether to

pre-emptively retrofit structures before an earthquake or strategise for optimal post-earthquake repair.

They conduct spatially correlated scenario-based probabilistic seismic hazard assessment for the San

Francisco Bay area. The network is shown in figure 2.12.

Figure 2.12: an Francisco/Oakland network: (a) nodes in origin-destination pairs (in red); and (b) bridges considered in the

optimization problem (in red). (For interpretation of the references to colour in this figure legend, the reader is referred to the

web version of this article. Extracted from Gomez and Baker [43])

The decision problem is to minimise the investments needed, given the expected consequences generated

from seismic hazard assessment:

𝑚𝑖𝑛(𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝑠 + 𝐸(𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒)) (2.18)

The consequences the authors measure are related to retrofit and repair actions and include indirect

consequences under a given scenario, monetary costs of retrofit and repair actions and travel time [43].

The master objective function is then defined as:

𝑚𝑖𝑛

[∑
𝑎∈𝐺

𝑐𝑎𝑥𝑎 +
∑
𝜉∈Ξ

𝑟𝜉𝜃𝜉

]
(2.19)

where:

• where 𝜉 is a damage scenario in the scenario set Ξ,

• 𝑎 is a traffic link or bridge in transportation network 𝐺,

• 𝑐𝑎 is the cost of a retrofit action on a traffic link or bridge,

• 𝑥𝑎 is a binary decision variable, where 𝑥𝑎 = 1 indicates a retrofit action on arc 𝑎,

• 𝜃𝜉 is an artificial variable used to estimate the value of the function iteratively by means of

constraints.
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They use the 𝐺𝑢𝑟𝑜𝑏𝑖 solver in 𝑃𝑦𝑡ℎ𝑜𝑛 2.7 and show results of optimal decision-making policies for

several intervention scenarios of 𝑁 − % of the bridges, random policy, and fix-all policy. Their results

are shown in figure 2.13

Figure 2.13: Exceedance curves for aggregate users’ travel time for the network: without intervention (red), with full intervention

(green), with optimal intervention of [jT of bridges (blue), with optimal intervention of ]jT of bridges (purple), with greedy

randomized intervention of [jT of bridges (cyan), and with greedy randomized intervention of ]jT of bridges (yellow). (For

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.). Extracted

from Gomez and Baker [43]

Kammouh et al. present a multi-system optimisation approach for interdependent infrastructure man-

agement by introducng the 3𝐶 concept, integrating multiple infrastructure networks and stakeholders,

[52]. The 3𝐶 concept is a complex system-based methodology, focusing on the effect of individual and

clustered actions not on individual components but on the totality of the system itself [52]. The concept

is divided into three phases, the first two are Centralisation and Clustering:

• Centralisation: Intervention actions are either central or non-central. Central actions are pre-

emptively planned intervention actions, whose time of occurrence cannot be delayed or advanced.

They are implemented following a maintenance-planning approach where an intervention action

on the same component is time-dependent. Non-central interventions occur during the downtime

due to central interventions and are component-condition-dependant [52]

• Clustering: Non-central intervention actions are clustered with central intervention actions such

that they respect some overlying constraints, such as the planned interval between intervention

actions on the same component type, [52].

The third phase is to calculate the intervention program such that it meets the optimisation objective,

which in the authors’ case is minimising global cost. The novely of this approach is that it considers

an environment that can effectively simulate the decision-making process across a tree of operator -

network - asset - object - intervention dependencies. This tree is shown in figure 2.15.
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Figure 2.14: Clustered Non-Central and Central actions involve the temporal offset of non-centralised actions to a centralised

planned action. Extracted from Kammouh et al. [52]

Figure 2.15: Relationships between operators, infrastructure networks (Net), Assets (Ass), objects (Obj), and intervention types

(Int). Extracted from Kammouh et al. [52]

They define their objective function as:

min( 𝑓1 + 𝑓2) (4)

where 𝑓1 is the total cost of interventions, given by:
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𝑓1 =

𝑇∑
𝑡=1

𝑐𝑘𝑀 =

𝑇∑
𝑡=1

𝑐𝑘[𝑚𝑘,𝑡] (2.20)

where 𝑐𝑘 ∈ R+
is the cost of performing an intervention of type 𝑘 with 𝑘 = 1, 2, . . . , 𝐾, 𝐾 ∈ N+

being

the number of intervention types, 𝑇 ∈ N+
is the number of time steps considered in the analysis, and

𝑚𝑘,𝑡 ∈ {0, 1} are the components of 𝑀 indicating at which time steps each intervention type is conducted

over the total time of analysis. It is assumed that each intervention is entirely performed within a time

interval.

And 𝑓2 is the total service unavailability cost caused by the interventions:

𝑓2 =

𝑇∑
𝑡=1

𝑐𝑙𝑖 𝛿(𝐼𝑡 × 𝑅 ×𝑀) =
𝑇∑
𝑡=1

𝑐𝑙𝑖 𝛿
(
[𝐼𝑖 𝑗]𝑡[𝑟𝑖 ,𝑘][𝑚𝑘,𝑡]

)
(2.21)

The optimisation problem is subject to two constraints considering a discrete time-step 𝑔 modelled as

a positive natural number. The first is that that any two successive intervention actions 𝑘 are to have

a time-interval of at least 𝐺𝑚𝑖𝑛,𝑘 ∈ N+
. The second constraint restrict any two successive intervention

actions of type 𝑘 to have a time-interval larger than 𝐺𝑚𝑎𝑥,𝑘 ∈ N+
. The authors test their method on a

network with 12 components as shown in figure 2.16.

Figure 2.16: Infrastructure networks with preventive interventions to be planned. Extracted from Kammouh et al. [52]

The authors solve the optimisation problem using 𝑀𝑎𝑡𝑙𝑎𝑏 and achieve approximately 15% lower costs

than the baseline policy of each operator individually planning their own intervention. The results are

shown in figure 2.17.

Figure 2.17: Cost comparison between optimal and sub-optimal intervention programs. Extracted from Kammouh et al. [52]
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2.5. State of the Art
This section presents state-of-the-art approaches for infrastructure decision making. Specifically, it looks

at three key areas of research:

• 𝐷𝑅𝐿 for deteriorating infrastructure decision making.

• 𝐷𝑅𝐿 for post-earthquake recovery infrastructure decision making.

The aim in presenting research on the three topics is to provide an overview of how 𝐷𝑅𝐿 has been used

both in deteriorating but also post-disaster environments. Additionally, rule-based approaches that

focus solely on post-earthquake recovery are presented as they provide highly complex and effective

algorithms for baseline approaches against which 𝐷𝑅𝐿 can be compared. Rule-based approaches to

deteriorating infrastructure decision making that don’t focus on post-earthquake recovery are of less

interest as the specific rules don’t generalise well to the research proposed in this thesis.

The use of𝐷𝑅𝐿 for infrastructure decision making is seen to principally focus on modelling infrastructure

environments stochastically, such that the observed state of components is uncertain at initialisation as

well as during simulation. Considering that the principal damage model is deterioration, the incurred

damage on a components happens gradually and is associated with high uncertainty; therefore, the

modelling of component states as stochastic is crucial as the effects are long-term and rely heavily

on field or remote inspection. Conversely, this thesis as well as other work that focuses solely on

post-earthquake recovery that does not include deterioration effects usually employs fully-observable

component damage or repair states. Even though a stochastic model is almost always more realistic, the

action of inspection is less crucial in post-earthquake scenarios as the damage is usually more apparent

and more severe. This is the key difference between work that focuses on deteriorating effects when

compared to work that looks at severe disruptions such as earthquakes. In essence, the damage model

informs the dynamics of the decision making model.

2.6. Supporting Materials

In modelling decision-making environments, particularly in multi-agent settings under uncertainty, it is

important to consider how information is represented and shared among agents. A decision making

scenario involving two or more agents is described as a game, [66]. Frameworks for mathematically

describing and modelling games come in many forms, but usually Markov Decision Processes (𝑀𝐷𝑃𝑠)
are used. 𝑀𝐷𝑃𝑆 can be modelled stochastically such that the perceived state, or observation of each

agent is stochastic and might also be non-stationary across a trajectory. These are described as partially

observable 𝑀𝐷𝑃𝑠, or 𝑃𝑂𝑀𝐷𝑃𝑠. They are a case of Partially Observable Stochastic Games (𝑃𝑂𝑆𝐺𝑠),
[4].

2.6.1. Markov Decision Processes (MDPs)
An 𝑀𝐷𝑃 is a mathematical framework used to model decision-making in environments that are fully

observable. An 𝑀𝐷𝑃 is defined by the tuple ⟨𝒮 ,𝒜, 𝑃, 𝑅, 𝛾⟩, where:

• 𝒮 is a finite set of states,

• 𝒜 is a finite set of actions,

• 𝑃 : 𝒮 ×𝒜 × 𝒮 → [0, 1] is the transition probability function

• 𝑅 : 𝒮 ×𝒜 → R is the reward function,

• 𝛾 ∈ [0, 1] is the discount factor.

In the context of infrastructure management the state is usually some deterioration condition of a

combination of many deterioration conditions. For instance, the state of a component could be the tuple

of its repair time and damage state, or it could just be its damage state. A realisation of acting through

an 𝑀𝐷𝑃 happens by beginning at some starting state 𝑠0, acting on the 𝑀𝐷𝑃 through transition states 𝑠

and reaching an absorbing state 𝒮, or truncating to a state 𝒮ℋ , given a time horizon 𝑡𝐻 . A realisation 𝜏
with a truncation condition is described as the sequence of state-action-reward-transition state items:
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𝜏 = (𝑠0 , 𝑎0 , 𝑟0 , 𝑠1 , 𝑎1 , 𝑟1 . . . 𝑠𝐻−1 , 𝑎𝐻−1 , 𝑟𝐻−1 , 𝑠𝐻) (2.22)

and for an absorbing state:

𝜏 = (𝑠0 , 𝑎0 , 𝑟0 , 𝑠1 , 𝑎1 , 𝑟1 . . . 𝑠𝑇−1 , 𝑎𝑇−1 , 𝑟𝑇−1 , 𝑆, 𝑟𝑇) (2.23)

The cumulative discounted reward of a trajectory is described as the returns of a trajectory, 𝐺(𝜏). In the

finite horizon case, this is described as:

𝐺(𝜏) =
𝑡𝐻−1∑
𝑡=0

𝛾𝑡𝑟𝑡 (2.24)

The discount factor has two main purposes: (a) bound the returns between negative and positive infinity

(assuming that 𝑅 ∈ R), (b) provide the agents a sense of sight, such that they value current rewards

more than future rewards. The strategy of a given solver is the policy, 𝜋, which is the stochastic or

deterministic mapping between states and actions. Stochastic policies are more often used and describe

the probability of ttaking action 𝑎 when in state 𝑠:

𝜋(𝑎 | 𝑠) = 𝑃[𝑎𝑡 = 𝑎 | 𝑠𝑡 = 𝑠] (2.25)

The two metrics that are most commonly used during 𝐷𝑅𝐿 training are the state-value function 𝑉𝜋(𝑠)
and the state-action-value function, 𝑄𝜋(𝑠). The state-value function describes the goodness of being in a

state and is action-agnostic, it is defined as the sum of expected future rewards when being in state 𝑠
and following policy 𝜋:

𝑉𝜋(𝑠) = E
[ 𝑡𝐻−1∑
𝑡=0

𝛾𝑡𝑟𝑡 |𝑠0 = 𝑠

]
(2.26)

The state-action-value function describes the goodness of taking an action 𝑎 when being in state 𝑠 and

following policy 𝜋 thereafter:

𝑄𝜋(𝑠𝑡 , 𝑎𝑡) = 𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛾E[𝑄𝜋(𝑠𝑡+1 , 𝑎𝑡+1)] (2.27)

2.6.2. Partially Observable Markov Decision Processes (POMDPs)
𝑃𝑂𝑀𝐷𝑃𝑠 extend 𝑀𝐷𝑃𝑠 to handle uncertainty in state information. In a 𝑃𝑂𝑀𝐷𝑃, the agent does not

have direct access to the true environment state but instead receives observations that provide partial

information about the state. A 𝑃𝑂𝑀𝐷𝑃 is defined by the tuple ⟨𝒮 ,𝒜, 𝑃, 𝑅,𝒪 , 𝑂, 𝛾⟩, where:

• 𝒪 is the set of possible observations,

• 𝑂 : 𝒮 × 𝒜 × 𝒪 → [0, 1] is the observation function, where 𝑂(𝑜|𝑠′, 𝑎) gives the probability of

observing 𝑜 after taking action 𝑎 and transitioning to state 𝑠′.

The key challenge in solving a 𝑃𝑂𝑀𝐷𝑃 lies in maintaining a belief over the possible states, typically

represented as a probability distribution 𝑏(𝑠) over all 𝑠 ∈ 𝒮. Agents then choose actions based on their

belief states rather than true states. The value function in a 𝑃𝑂𝑀𝐷𝑃 then becomes:

𝑉(𝑏𝑡) = max

𝑎∈𝒜

{∑
𝑠∈𝒮

𝑏𝑡(𝑠)𝑟(𝑠, 𝑎) + 𝛾
∑
𝑜∈𝒪

𝑝(𝑜 | 𝑏𝑡 , 𝑎)𝑉(𝑏𝑡+1)
}

(2.28)

where:
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• 𝑏𝑡(𝑠) is the belief (probability) that the system is in state 𝑠 at time 𝑡.

• 𝑟(𝑠, 𝑎) is the immediate reward received for taking action 𝑎 in state 𝑠.

• 𝛾 is the discount factor.

• 𝑝(𝑜 | 𝑏𝑡 , 𝑎) is the probability of observing 𝑜 given belief 𝑏𝑡 and action 𝑎.

2.7. DRL for Infrastructure Decision Making

Andriotis and Papakonstantinou present a framework for managing both abstract and applied infras-

tructure environments with large action and observation spaces [7]. They address the issue that arises

when using numerical optimisers such as linear and mixed integer programming for infrastructure envi-

ronments with many components, stochastic state dynamics and large action spaces. These simulators

are seen in the work presented above where an objective function is directly optimised, without the use

𝐷𝑅𝐿. The authors navigate this by using 𝐷𝑅𝐿, specifically Deep Centralised Multi-Agent Actor Critic

(𝐷𝐶𝑀𝐴𝐶) solvers. DCMAC is used as the solver of the three decision making environments presented;

they model the environments as Partially Observable Markov Decision Processes (𝑃𝑂𝑀𝐷𝑃𝑠) which

allow for the effective simulation of decision-making trajectories.

The authors test three different environments: (a) An abstract parallel-series system with 5 components

modelled as a 𝑃𝑂𝑀𝐷𝑃 with stationary state-transition probability matrices, (b) A k-out-of-n system

with 10 components, 2 failure modes and non-stationary state-transition probability matrices, (c) A

steel-truss bridge system with 25 components and non-stationary state-transition probability matrices,

which is modelled as a numerical 𝐹𝐸𝐴 model. These are shown in

Figure 2.18: System I: 5 components, stationary dynamics, parallel-series. System II: 10 Components, non-stationary dynamics,

k-out-n with 2 failure modes. System II: Steel truss bridge, non-stationary dynamics, 25 components. Extracted from Andriotis

and Papakonstantinou [7]

The authors principally test𝐷𝐶𝑀𝐴𝐶 (Deep Centralised Multi-Agent Actor Critic), which is an on-policy

actor-critic 𝐷𝑅𝐿 method for multi-agent environments, [59]. 𝐷𝐶𝑀𝐴𝐶 is an example of a Centralised

Training with Centralised Execution (𝐶𝑇𝐶𝐸) method, 𝐷𝐶𝑀𝐴𝐶 and other 𝐶𝑇𝐶𝐸 methods are shown to

outpeform other approaches but face challenges in large environments. Their work is seminal in the

field as it is the first use of 𝐷𝐶𝑀𝐴𝐶 for multi-component, partially observable abstract and applied

engineering infrastructure systems. 𝐷𝐶𝑀𝐴𝐶 employs two learning networks with centralised learning,

i.e the number of networks does not grow with the number of agents, but the input features to the

networks is the joint trajectories of all agents. The actor network directly learns the stochastic policy

𝜋(𝑎𝑡 |𝑠𝑡). This is evaluated by the critic network through the advantage function 𝐴𝜋(𝑎𝑡 |𝑠𝑡), and through

back propagation the networks’ parameters are tuned. This architecture is illustrated in figure 2.19.

The advantage function𝐴𝜋(𝑎𝑡 |𝑠𝑡)when following policy𝜋 is the difference between the state-action-value

function 𝑄𝜋(𝑠𝑡 |𝑎𝑡) and the state-value function 𝑉𝜋(𝑠𝑡):

𝐴𝜋(𝑠𝑡 |𝑎𝑡) = 𝑄𝜋(𝑠𝑡 |𝑎𝑡) −𝑉𝜋(𝑠𝑡) (2.29)

The authors test the use of 𝐷𝐶𝑀𝐴𝐶 against several iterations of 4 different baseline policies:
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Figure 2.19: Deep Centralized Multi-agent Actor Critic (DCMAC) architecture. Forward pass for function evaluations (black

links) and weighted advantage back-propagation for training (red links). Dashed lines represent operations and dependencies

that do not involve deep network parameters. Extracted from Andriotis and Papakonstantinou [7]

.

• Condition-Based Maintenance I (CBM-I): Components reaching or exceeding severe damage

state (3) are replaced.

• Condition-Based Maintenance I (CBM-II): Components with minor or no damage state are

assigned do-nothing actions. Minor repair is assigned to severe damage state components and

replace failure is assigned for all probabilities 𝑝 = [0.9, 0.8, .0.7], making three different CBM-II

versions.

• Time-Condition-Based Maintenance I (TCBM-I): Similar to CBM-I but with the inclusion of

major-repair and replacement actions.

• Time-Conditioned-Based Maintenance II: (TCBM-II): Simillar to CBM-II but with the inclusion

of major-repair and replacement actions.

The authors model the environments with a discrete decision time-step of 1 year. In System I, the authors

tested 𝐷𝐶𝑀𝐴𝐶 and 𝐷𝑄𝑁 which all converged to the same solution, as can be seen in figure 2.20.

Regarding System-II, 𝐷𝐶𝑀𝐴𝐶 with a probability of replacement, 𝑝 = 1.0 outperformed all other

policies as can be seen in figure 2.21.

Leroy et al. look into inspection-maintenance planning using MARL and produced a suite of environ-

ments and agents, [57]. They model four different environments:

• k-out-of-n: A system of n components which fails if (𝑛 − 𝑘 + 1) components fail.

• Offshore wind farm
• Correlated k-out-of-n: an environment that is partially observable and inspections on one

component might affect the observed state of another component.

• Campaign Cost Environment:

The researchers develop Multi-Agent systems which are similar to single agent RL but can include

behaviour such as competition, cooperation or critique. The MARL experiment setup of the environments

can include 2 to 100 agents like seen below:

The actions are defined as do-nothing, inspect and repair. Inspect and Repair actions have significant costs

associated with them which are included in the 𝐷𝑒𝑐 − 𝑃𝑂𝑀𝐷𝑃 (Deconstructed Partially Observable

Markov Decision Process). A𝐷𝑒𝑐−𝑃𝑂𝑀𝐷𝑃 is simillar to a 𝑃𝑂𝑀𝐷𝑃, but includes the joint observation
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Figure 2.20: Policy realizations for all System I components at three different training episodes, based on DCMAC and DQN

solutions. All component policies converge to the exact solution for both methods after 10 thousand episodes, expect for

components 1 and 3 for the DQN solution. Extracted from [7]

.

Figure 2.21: Expected life-cycle cost estimates of DCMAC solutions and baseline policies, for System II, for different observability

accuracies. DCMAC outperforms all optimized baselines even when these operate under better observability. Extracted from

Andriotis and Papakonstantinou [7]

.
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Table 2.2: Number of agents specified in IMP-MARL, [57]

IMP environments Number of agents
k-out-of-n system 3, 5, 10, 50, 100

Correlated k-out-of-n system 3, 5, 10, 50, 100

Offshore wind farm 2, 4, 10, 50, 100

Figure 2.22: Visual representation of available IMP-MARL environment sets and options. In 2a, a 4-out-of-5 system fails if 2 or

more components fail. In 2b, a wind turbine fails if any constituent component fails. In 2c, when the environment is under

deterioration correlation, the information collected by inspecting one component also influences uninspected components. In 2d

campaign cost environments, a global cost is incurred if any component is inspected and/or repaired plus a surplus per

inspected/repaired component. Extracted from Leroy et al. [57]

space 𝒪 and observation probability function 𝒵 , [4]. Reward is given as the negative cost of following

an action 𝑅𝑖𝑛𝑠 , 𝑅𝑟𝑒𝑝 , 𝑅𝑛𝑜 in addition to a system failure risk 𝑅 𝑓 . The authors use two reward models,

first a campaign reward which is incurred if at least one component is inspected or repaired, which

is added together with the 𝑅𝑖𝑛𝑠 and 𝑅𝑟𝑒𝑝 per selected / repaired component. Second, they use no

campaign reward. The experiment is tested over the finite-horizon case and agents act to maximise their

expected sum of discounted rewards. The researchers test 7 MARL approaches, one fully centralised,

one fully decentralised and 5 𝐶𝑇𝐷𝐸 (Centralised Training for Decentralised Execution) methods, [57].

𝐷𝑄𝑁 (Deep Q Learning) is used for the fully centralised approach, where all agents receive the same

observations about the state of the environment and are controller by one controller. 𝐼𝑄𝐿 (Implicit

Q-Learning) where each agent is independently trained.

The five 𝐶𝑇𝐷𝐸 methods are not examples of off-policy learning. Specifically, they use 𝑄𝑀𝐼𝑋, 𝑄𝑉𝑀𝑖𝑥,

𝑄𝑃𝐿𝐸𝑋, where the value function is factorised to each agent during training; this way agents can choose

different actions that follow the same value functions, [57]. The 4 techniques for 𝐶𝑇𝐷𝐸 are not explored

fully, but more generally they rely on Q-learning, specifically the Q Action-Value function. In essence,

Q-learning is concerned with the value associated with taking any action from a particular state and

only then following the optimal policy. The researchers explain that the results of using MARL were

superior to heuristic methods as they yield higher expected sum of total rewards. However, performance

varies across RL methods; for example, when dealing with a high number of agents, the campaign cost

reward model yielded better results. This is because of the explicit incentive of agent cooperation in the

campaign reward. The results are summarised in figure 2.23

The authors show that 𝐶𝑇𝐷𝐸 methods outperform 𝐼𝑄𝐿. Fully centralised approaches such as 𝐷𝑄𝑁
perform better than heuristic policies but are outperformed by 𝐶𝑇𝐷𝐸 methods. They point out that
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Figure 2.23: Performance reached by MARL methods in terms of normalised discounted rewards with respect to expert-based

heuristic policies in all IMP environments, H referring to the heuristics result. Every boxplot gathers the best policies from each of

10 executed training realisations, indicating the 25th-75th percentile range, median, minimum, and maximum obtained results.

The coloured boxplots are grouped per method, vertically arranging environments with an increasing number of n agents, as

indicated in the top-left legend boxes. Note that the results are clipped at −100%. Extracted from Leroy et al. [57]
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further work is needed to make training 𝐷𝑅𝐿 agents more stable and increase the complexity of the

engineering environments tested.

Bhustali and Andriotis test 7 𝐷𝑅𝐿 methods for inspection maintenance planning of deteriorating

infrastructure environments, [12]. They test a k-out-of-n system with 5 components, 4 damage states and

3 actions (do-nothing, repair, inspect). They test 4 k-out-of-n failure modes for 𝑘 = [1, 2, 3, 4]. They test

the performance of 𝐷𝑅𝐿 against a baseline policy of time-periodic inspections with condition-based

maintenance (𝑇𝑃𝐼 − 𝐶𝐵𝑀). This policy involves inspecting components at fixed time-intervals Δ𝑡𝑖𝑛𝑠𝑝 ,
and based on the observations 𝑜𝑖𝑛𝑠𝑝 , the policy aims to minimise the expected discount sum of future

costs (negative rewards). The 7 frameworks they test are as follows:

Figure 2.24: The 7 𝑀𝐴𝑅𝐿 methods tested in Bhustali and Andriotis [12]

The authors show that the results show that most 𝐷𝑅𝐿 approaches can outperform heuristic methods as

seen in figure 2.25. They show that 𝐶𝑇𝐶𝐸 methods like𝐽𝐴𝐶 and 𝐷𝐶𝑀𝐴𝐶 outperform all other 𝑀𝐴𝑅𝐿
methods but are also susceptible to sub-optimal policies arising from the issue of exploration induced

by the joint action spaces, [12]. They show that 𝐷𝑇𝐷𝐸 and 𝐷𝑇𝐷𝐸 approaches scale better than 𝐶𝑇𝐶𝐸
approaches but face challenges in training due to the decentralisation of observation and action spaces.
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Figure 2.25: Box plots summarizing the performance of the best policies across fifteen training instances for all k-out-of-n settings.

The dotted line indicates the TPI-CBM heuristic and the whiskers denote the minimum and maximum values observed. Extracted

from Bhustali and Andriotis [12]
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2.8. DRL for Post-Earthquake Infrastructure

In this line of research, two key research effort are identified that most well aligns with this research

focus. The approaches use Single- or Multi-Agent 𝐷𝑅𝐿 for post-earthquake recovery of transportation,

lifeline or energy infrastructure systems, [96, 81]. More generally, the section begins by indicating some

approaches that can be used as baselines, to which 𝐷𝑅𝐿 can be compared.

• Rule-Based Methods: Methods that assign some online or offline ranking on components, and

use that to prioritise intervention actions, [65, 58, 67, 49]. Offline ranking does not have access

to dynamic information about components such as damage states repair times etc. Most online

approaches make use of importance and performance indices in the form of:

Importance Index =
𝑑𝑒𝑚(𝑡)
𝑐𝑎𝑝(𝑡) (2.30)

Performance Index =
𝑞(𝑡)
𝑞∗(𝑡) (2.31)

where 𝑑𝑒𝑚(𝑡) and 𝑐𝑎𝑝(𝑡) are the demand and capacity of a component; 𝑞(𝑡) and 𝑞∗(𝑡) are the

current and nominal functionalities of a component. Demand and capacity can be related to the

criticality of infrastructure or some absolute value of performance such as the number traffic

trips, number of injuries etc. Methods for computing these can be complex and include rules for

bounding their value when critical, or other indicators, are not met. These often do not account

for dynamic effects such as interdependencies explicitly. Interdependencies can be easier to

describe than use in rank-based decision-making directly. This is because the significance of an

interdependency to a network is potentially cascading, making its behaviour difficult to predict

using rule-based approaches.

• Genetic Algorithm: This is a search algorithm that can be competitive to 𝐷𝑅𝐿 and was originally

developed before major 𝑀𝐿 breakthroughs. When using the 𝐺𝐴, the action component of a

trajectory is considered as the genome, with step-wise joint actions being genes; genomes undergo

processes like mutation and crossover to develop action trajectories, or genome configurations that

maximise the objective function, [46]. GA performance is often cursed with finding local optima.

Yang et al. use Deep 𝑀𝐴𝑅𝐿 for post-earthquake repair scheduling of interdependent infrastructure

networks, [96]. This is contrasted with Sediek et al who use a heuristic method that integrates traffic

modelling, the healthcare network and the interdependency of debris to traffic links, [82].

Yang et al employ the use of one 𝐶𝑇𝐶𝐸 method, 𝐷𝐶𝑀𝐴𝐶, and model a fully observable 𝑀𝐷𝑃 of

components of a Water Network (WN) and Electrical Power Network (EPN). They use two actions repair
or do-nothing and measure community functionality and resilience by measuring the derivative effect

of WN wells and EPN substation downtime on the community’s buildings, which themselves are not

included in the 𝑀𝐷𝑃. Their work is novel as it uses a graph-based state description of the environment

and uses that as the input features to the actor and critic networks, [96]. The graph-based nature of their

envirnment formulation is illustrated in figure 2.26.
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Figure 2.26: The 𝑀𝐷𝑃 components of Yang et al.’s approach are the water wells and EPN substations, but agent reward is given

form the cascading effect of WN wells and EPN substations to accessing buildings. Extracted from Yang et al. [96]

The reward function is defined as:

𝑅(𝑡) = 𝑅𝐿(𝑡) =
∫ 𝑡

𝑡−1

[1 −𝑄𝑐𝑜𝑚(𝑡)]𝑑𝑡 (2.32)

where:

• 𝑅(𝑡) is the common reward of all agents at time 𝑡,

• 𝑅𝐿(𝑡) is the loss of resilience at time 𝑡,

• 𝑄𝑐𝑜𝑚(𝑡) is the community functionality as time 𝑡

Community functionality is defined as:

𝑄𝑐𝑜𝑚(𝑡) =
∑
𝑏∈𝐵 𝑄

𝑝ℎ𝑦𝑠

𝑏∑
𝑏∈𝐵 𝑆𝑏

(2.33)

where 𝑆𝑏 is the total area of building 𝑏 and 𝑄
𝑝ℎ𝑦𝑠

𝑏
is the physical functionality of building 𝑏:

𝑄
𝑝ℎ𝑦𝑠

𝑏
= 𝑆𝑏 × (𝐼𝑤

𝑏
𝛽𝑤
𝑏
+ 𝐼𝑝

𝑏
𝛽
𝑝

𝑏
+ 𝐼𝑡𝑖 𝛽𝑡𝑏) (2.34)

where the 𝛽’s are the importance factors of the water wells, water pipelines and power transmission

networks respectively. The 𝐼’s are the binary performance indicator factors of each building’s access

to the respective infrastructure. This formulation of community functionality and resilience is highly

appropriate for post-earthquake infrastructure environments and is the main anchor point for this

thesis’s methodology. The authors test their approach against an importance-based algorithm, random

policy and simulated annealing and show that 𝐷𝑅𝐿 outperforms all of them especially early on in the

recovery process. The key limitations of this work are in that the authors use a deterministic seismic

hazard and fragility scenario and the only source of uncertainty is the repair times which are sampled

form a distribution. Their results are summarised in figure 2.27

Fan et al. propose a GCN-based Single-Agent 𝐷𝑅𝐿 framework for the recovery of road networks, [31].

The use a resilience-based reward and define resilience as it relates to the distance of points in the

network to emergency facilities. Their methodology overview is seen in

Damage to road links results in a lower reliability of road links as the authors put it, and by assigning a

weight to each intersection in the network, the authors derive an aggregate network performance metric.
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Figure 2.27: Environment and results from Yang et al. MARL is seen to perform better than Importance-Based scheduling,

especially in the early recovery phase.

Figure 2.28: The single-agent 𝐺𝐶𝑁-𝐷𝑅𝐿 methodology employed in Fan et al. [31]
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It is important to note the authors do not conduct traffic analysis, but rather use the metric explained

below as an indicator for network performance. The weight 𝑤𝑖 of each intersection 𝑖 is defined as:

𝑤𝑖 =
Ω𝑖∑𝑛
𝑗=1

Ω𝑗

(2.35)

where:

𝜔𝑖 =

{
1

min(𝐷𝑖 ) if min(𝐷𝑖) > 1 km

1 otherwise

(2.36)

where 𝐷𝑖 is the set of distances of intersection 𝑖 to a set of pre-defined emergency response sites. The

authors then calculate the average number of reliable independent pathways of each intersection to the

set of emergency response sites as:

𝑟𝑖 =
1

𝑛 − 1

𝑛∑
𝑗=1, 𝑗≠𝑖

𝐾(𝑖 ,)𝑗∑
𝑘=1

𝑣𝑘(𝑖 , 𝑗)𝑅𝑘(𝑖 , 𝑗) (2.37)

where the reliability 𝑅𝑘(𝑖 , 𝑗) of path 𝑘 between nodes 𝑖 and 𝑗 is defined as:

𝑅𝑘(𝑖 , 𝑗) =
∏

∀𝑙∈𝑃𝑘 (𝑖 , 𝑗)
𝑅𝑙 (2.38)

and wight of 𝑘𝑡ℎ independent path through an intersection is defined as:

𝑣𝑘(𝑖 , 𝑗) =
𝐿𝑚𝑎𝑥(𝑖 , 𝑗)

𝐿𝑃𝑘(𝑖 , 𝑗) ·
∑𝐾(𝑖 , 𝑗)
𝑘=1

(
𝐿𝑚𝑎𝑥(𝑖 , 𝑗)
𝐿𝑃𝑘{(𝑖 , 𝑗)

) × 𝐾(𝑖 , 𝑗) (2.39)

where 𝐾(𝑖 , 𝑗) is the number of all independent paths between nodes 𝑖 and 𝑗. 𝐿𝑚𝑎𝑥(𝑖 , 𝑗) is the maximum

length of all paths and 𝐿𝑃𝑘(𝑖 , 𝑗) is the 𝑘𝑡ℎ path’s length, [31]. The performance of the network is then given

as 𝑝(𝑡):

𝑝(𝑡) =
[ 𝑛∑
𝑖=1

𝑤𝑖𝑟𝑖

]
× 100 (2.40)

Essentially, this approach uses a weighted sum of sub-system functionalities to derive an aggregate

system functionality like seen in other resilience approaches, [41, 71]. In this case, the definition of

system functionality does not necessarily extend to community functionality but instead narrows down

on transportation network functionality. The authors then use the following reward defintion:

𝑅𝑡 =
𝑝(𝑡 + 1) − 𝑝(𝑡)

𝑇𝑡
(2.41)

where 𝑇𝑡 is the sum of all road repair times. The authors calculate the future performance using

bootstrapping. The authors use four deterministic damage scenarios and four distinct training

experiments and predict damage using HAZUS fragility function [31, 35]. The authors train the 𝑆𝐴𝑅𝐿
model for 500 training time-steps and benchmark it against two baseline strategies: (a) Genetic Algorithm

(GA), (b) Betweenness-centrality-based scheduling. The GA is not explained in depth; however, it is

an optimisation-based approach that aims to simulate biological process of mutation and crossover

of genes to choose optimal actions. A common limitation of the GA is that it is usually susceptible to
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Figure 2.29: Results showing 𝐷𝑅𝐿 performs better than the two chosen baselines by Fan et al. [31]. It is interesting to note that

𝐷𝑅𝐿 and the other baselines basicallt perform the same for the first 300 days of repair.

following locally optimal solutions and its overall methodology does not allow for much exploration to

be explicitly targeted for. The second baseline uses the graph attribute of betweenness-centrality to

rank roads. Betweenness-centrality of a node 𝑖 is the ratio between the number of of shortest paths that

include node 𝑖 over the number of all shortest paths in the graph. This metrics essentially ranks the

connectivity of each node. The authors then train a slightly bigger network over 4000 training time steps

with a flood hazard. The results for post-earthquake recovery are shown in figure 2.29 show that 𝐷𝑅𝐿
outperforms the other two baselines across the 4 scenarios.

What is interesting to note here is that𝐷𝑅𝐿 outperforms the other policies mostly after 300 days of repair.

This could be due to their approach being single-agent. Considering that all actions in a single-agent

realisation happen only consequently and never concurrently then at the beginning of a repairing

sequence when most roads are highly damaged, the optimal repair action might be easy to find the

the GA and the BC baseline. Conversely, as most roads begin to get repaired and their damage is

lower, it is harder to predict which one road is of most interest. Aside from the results themselves, it is

easy to see the stark difference in performance of 𝑆𝐴𝑅𝐿 and 𝑀𝐴𝑅𝐿. The authors achieve very good

performance within 500 timesteps for a network with 136 road segments. This kind of performance for

such a large network is not yet possible using 𝑀𝐴𝑅𝐿. However, 𝑆𝐴𝑅𝐿 as a method avoids the concept

of the environment being a game, as there is only one decision-maker involved. There is no room for

cooperation between multiple agents, which can better describe the recovery of a network or community.



3
Methodology

This section presents the various steps and techniques used to answer the principal research question

as well as sub-questions. The methods presented are integrated into a simulation environment using

the programming language 𝑃𝑦𝑡ℎ𝑜𝑛. The methods for generating the environments and the various

losses as well as interdependency modelling are novel and were developed solely by the author. Traffic

modelling is conducted using a wrapper of the repository by Matteo Bettini, [10]. The 𝑀𝐴𝑅𝐿 framework

used is a very slightly adapted version of Prateek Bhustali’s framework for deteriorating infrastructure

environments, [11].

The sub-sections that follow begin by describing the general methodology of conducting this experiment,

followed by details on data collection and fragility/vulnerability functions and resilience formulation.

Consequently, the 𝑀𝐷𝑃 tuple formulation which describes the environment is described along with

the reward function. The algorithms used for MARL are shortly explained. The goal of this experiment

is to provide means both for creating a repair-scheduling environment, as well as for solving that

environment using 𝑀𝐴𝑅𝐿 and baseline solvers.

3.1. Overview
As outlined above, the proposed methodology aims at being applicable on custom test beds as well

existing communities for the general metropolitan United States. The objective is to test the hypothesis

that 𝐷𝑅𝐿 is favourable for post-earthquake repair scheduling policies. This hypothesis is tested using

two custom test beds. This section describes the key steps of the methodology; specifically, the sources

and nature of the collected data that is used to construct the environment, the environment formulation

and 𝑀𝐷𝑃 and the solvers used to predict post-earthquake repair scheduling policies.

52
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Figure 3.1: Overview of the methodology. Data for constructing an environment is either collected from 𝑂𝑆𝑀, 𝑁𝑆𝐼 and 𝑁𝐵𝐼 or

constructed locally using the appropriate data schemas. An environment is constructed from that data. Two baseline solvers are

used to benchmark the performance of 𝑀𝐴𝑅𝐿 algorithms in providing stochastic and performative post-earthquake repair

scheduling policies

The experiment conducted in this research is visually outlined in Fig 3.1. Data is produced locally in

the form of a building portfolio and transportation network. This data is in the form of geo-referenced

tabular data. 𝐼𝑁 − 𝐶𝑂𝑅𝐸 is used to retrieve Intensity Measure (𝐼𝑀) values at building and road centre

points [64]. 𝐼𝑁 −𝐶𝑂𝑅𝐸 is a suite of tools for multi-hazard analysis and recovery which is accessible as a

python package and is explained in detail in the literature review. 𝐻𝐴𝑍𝑈𝑆′𝑠 earthquake model technical

manual [35] provides fragility and recovery functions for building, road and bridge classes. Specifically

building structural damage states are predicted using 𝑃𝐺𝐴, road damage states are predicted using

𝑃𝐺𝐷 and bridge damage states are predicted using 𝑃𝐺𝐷 and 𝑆𝐴0.3 and 𝑆𝐴1.0. Non-structural damage

to buildings is not considered.

Traffic is modelled using the interdependency of building debris affecting adjacent road capacities and is

then used along with other costs and functionalities to compute an aggregate metric for the resilience of

the community. This is then used to give a scalar shared reward to all agents in the environment. MARL

is benchmarked against two baseline solvers: random policy and importance-based policy. The two test

beds considered in the case study are shown in figure 3.2. The smaller one is composed of 4 components,

a highway road, a highway bridge, a 6-story residential building and an 8-story hospital. The second

environment is composed of 30 components, including two bridges, a hospital and a fire-station. The

methods and data used for each of the methods described in this section are explained in detail in the

following sections of the methodology.
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(a) Toy-city-3, a test bed with 4 components, 2 buildings and 2 roads.

(b) Toy-city-30, a test bed with 30 components, 15 buildings and 15 roads, two of which are bridges.

Figure 3.2: The two test beds used for conducting the underlying 𝑀𝐴𝑅𝐿 experiments. Semi-transparent yellow areas

surrounding buildings indicate debris, whose direction is sampled stochastically at every realisation following [82]

3.2. Network Interdependency
The set of infrastructure components is denoted by 𝒞 , such that: 𝒞 := 𝒞ℬ ∪ 𝒞ℛ, where 𝒞ℬ is the set of

buildings and 𝒞ℛ is the set of roads, with 𝑏 ∈ 𝒞ℬ and 𝑟 ∈ 𝒞ℛ. While not directly considered as repair

components, the environment makes use of a traffic network. This network is different from the road

network as transportation networks are often modelled with a lower level of detail than a full road

network and don’t directly match spatially. Roads form a network 𝒢𝑅 = (𝒱𝑅 ,ℰ𝑅), where 𝒱𝑅 represents

the set of road nodes and ℰ𝑅 ⊆ 𝒞𝑅 represents the road segments connecting them. Mean Travel Time

(MTT) is the mean travel times of all trips in the networks and is the basis with which traffic performance

is calculated using the traffic network 𝒢𝑇 = (𝒱𝑇 ,ℒ𝑇), where 𝒱𝑇 is the set of traffic nodes and ℒ𝑇 is the

set of traffic links. All, or a subset of these nodes are defined as either origin- or destination-nodes and

are used for traffic assignment; this is explained in later sections. Each traffic link ℓ ∈ ℒ𝑇 is mapped to a

unique shortest path on 𝒢𝑅, defined by the path 𝑃𝑎𝑡ℎ(ℓ ) between the closest pair of start and end nodes

in 𝒱𝑅 corresponding to the origin and destination of ℓ .
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for each ℓ = (𝑜, 𝑑) ∈ ℒ𝑇 :

𝑃𝑎𝑡ℎ(ℓ ) = arg min

𝑝∈𝒫(𝑣𝑜 ,𝑣𝑑)

∑
𝑒∈𝑝

𝑐𝑜𝑠𝑡𝑒 , (3.1)

where:

• 𝑣𝑜 = arg min𝑣∈𝒱𝑅 dist(𝑜, 𝑣), closest road node to traffic origin-node

• 𝑣𝑑 = arg min𝑣∈𝒱𝑅 dist(𝑑, 𝑣), closest road node to traffic destination node

• 𝒫(𝑣𝑜 , 𝑣𝑑) is the set of all paths from 𝑣𝑜 to 𝑣𝑑 in 𝒢𝑅, and 𝑐𝑜𝑠𝑡𝑒 is distance.

Figure 3.3: Path mapping between the high-fidelity road network and the traffic network. This is implemented as a practical

consideration as most traffic O-D matrices do not included for all nodes, thus the attributes of a traffic link can be assumed to

depend on a route in the road network rather than a single road.

This can be seen in Figure X. Distance is the minimisation objective because this mapping considers

ideal conditions, i.e the undisturbed traffic network before the earthquake. This is minimised using

any established weighted shortest path algorithm, in this case A* search is used to find the shortest

path. Each building is mapped to a road in 𝒢𝑅, this is the closest road that the building accesses and is

represented as a matrix 𝐴𝑏,𝑟 ∈ {0, 1}|𝒞𝐵|×|ℰ𝑅 |.

𝐴𝑏,𝑟 =

{
1, if building 𝑏 ∈ 𝒞𝐵 is assigned to road segment 𝑟 ∈ ℰ𝑅 ,
0, otherwise.

(3.2)

Consider the network shown in figure 3.4 , each building is accessed by one road and the dependency

matrix 𝐴𝑏,𝑟 is visualised in Table 3.1.

Figure 3.4: Example network of building and roads, not used

in the case study of this thesis.

Edge 1 2 3

(𝑎, 𝑏)
(𝑏, 𝑐)
(𝑏, 𝑓 )
( 𝑓 , 𝑒)
(𝑒 , 𝑐)
(𝑐, 𝑑)

Table 3.1: Road-Building Interdependency matrix, where

black = 1, white = 0
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The network is modelled as interdependent in its modelling of traffic, using a co-location interdependency

of roads to buildings, using 𝐴𝑏,𝑟 , this interdependency is chosen because it aligns well with the available

infrastructure components chosen: buildings and roads. Other infrastructure networks such as EPN

and GN can also have complex and cascading effects on the functionality of critical facilities, residential

buildings, rescue efforts etc. However, in the interest of facilitating a feasible runtime for the environment,

the number of infrastructure categories was limited to two as computation time for the various methods

discussed can become the limiting factor fairly easily. Furthermore, a major assumption made here is

that the debris of one building can only affect one road, this can be far fro reality as one might expect that

building 2 for example produces debris which affects road segments (𝑒 , 𝑐) and (𝑐, 𝑑). This assumption

is made as for The specific debris-road interdependency outlined is formalised in Guidotti et l, 2016

[45] and Gonzalez et al., 2016[44]. Sediek et al. The debris area prediction differs from Sediek et al.

in that they use a trained NN to predict the direction of debris fall in reinforced concrete structures;

this thesis considers a random direction. Debris from damaged buildings affects the associated roads’

capacities, and thus the post-earthquake MTT of the whole network. The debris area prediction differs

from Sediek et al. in that they use a trained NN to predict the direction of debris fall in reinforced

conrete structures, this thesis considers a randomly sampled direction. Debris from damaged buildings

affects the associated roads’ capacities, and thus the post-earthquake MTT of the whole network. For

each building 𝑏 ∈ 𝒞𝐵, let 𝑒𝑏 ∈ ℰ𝑅 denote the single road edge affected by debris from 𝑏. The capacity 𝜇𝑒
of each affected edge 𝑒 ∈ ℰ𝑏 is reduced according to a debris impact function 𝑓debris(𝑏), such that:

𝑢′𝑒 = 𝑢𝑒 ·
1 − max

𝑏∈𝒞𝐵
𝐴𝑏,𝑒=1

𝑓debris(𝑏)
 , ∀𝑒 ∈ ℰ𝑅 , (3.3)

where 𝑢′𝑒 is the effective (post-debris) capacity of edge 𝑒. If no building affects edge 𝑒, the maximum is

taken to be zero. 𝑓𝑑𝑒𝑏𝑟𝑖𝑠 is defined as the maximum lane width reduction that debris imposes on the

road. Like seen in Fig X. This is calculated using a predicted lane width using HAZUS’s earthquake

model technical manual. As centerlines are normally the available geometry for roads, they are used for

the distance calculation.

Figure 3.5: Width reduction due to debris is calculated using the road centreline

The capacity reduction 𝑓𝑑𝑒𝑏𝑟𝑖𝑠 of road 𝑟 due to building 𝑏 is as follows:

𝑓debris(𝑏) =


𝑤+
𝑏,𝑟

+ 1

2
𝑤𝑟

𝑤𝑟
, if debris overlaps road centreline,

𝑤−
𝑏,𝑟

𝑤𝑟
, otherwise

(3.4)
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where 𝑤+
𝑏,𝑟

is the minimum distance from any point on building 𝑏’s debris rectangle perimeter to

the centre line of road 𝑟. This interdependency only affects the resulting MTT when conducting

post-earthquake traffic assignment. When acting in time-step 𝑡 after an earthquake, 𝑀𝑇𝑇(𝑡) is the Mean

Travel Time of the traffic network and is used to calculate a cost using pre-earthquake MTT, 𝑀𝑇𝑇(𝑡𝑑).
The time taken to remove debris is principally a function of weight, which is calculated deterministically

using HAZUS’s Earthquake Model Technical Manual, [35]. The overarching equation used is simillar to

Sediek, El-Tawil, and McCormick [82]. Debris clean-up time is defined using the following variables

and method:

• 𝐷 : Total debris weight (tons)

• 𝑇 : Number of trucks available per day, (default = 0.1)

• 𝐿 : Loading time per truck (hours), (default =1), [82]

• 𝐶 : Truck capacity (tons) (default=5), [82]

• 𝜏 : One-way travel time to depot (hours), (default=2)

• 𝐻 : Working hours per day (hours), (default=8)

Trips, 𝑁 Required:

𝑁 =
𝐷

𝐶
(3.5)

Total Travel Time, 𝑇𝑡𝑟𝑎𝑣𝑒𝑙 :

𝑇travel = 2𝜏 · 𝑁 − 𝜏 = (2𝑁 − 1)𝜏 (3.6)

This computes travel time to the disposal site twice per trip (there and back) for a total of 𝑁 trips, and

subtracts the last trip from the the disposal to the building, which is assumed to not be taken as all

debris is cleared. Total Loading Time is computed as:

𝑇load =
𝑁 · 𝐿
𝑇

(3.7)

Total Working Time:

𝑇total = 𝑇travel + 𝑇load = (2𝑁 − 1)𝜏 + 𝑁 · 𝐿
𝑇

(3.8)

Number of Working Days are computed using a conservative upper estimate:

Days =

⌈
𝑇total

𝐻

⌉
(3.9)

This method is rudimentary compared to the supporting work of Sediek, El-Tawil, and McCormick [82].

The assumptions on debris weight prediction and truck loading time are deemed to be appropriate

as they can have less variability. However, the time for trips to disposal sites is assumed at a static

value. This does not consider any extraneous traffic changes that occur due to capacity reduction and

could become an issue for larger environments where trucks have to travel deep into the network to

recover debris. Furthermore, considering that most debris is usually clear somewhat concurrently, as

the buildings and roads can’t be repaired if debris is around, the effect of a multitude of large debris
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clearing trucks on the traffic network is almost certainly going to cause bottlenecks. In this thesis, it is

assumed that even if all the buildings are cleared of debris concurrently, there is no effect on the traffic

network.

3.3. Vehicle Traffic Simulation
Traffic simulation is used to compute the 𝑀𝑇𝑇 of the traffic network. 𝑀𝑇𝑇 is the sum of the network’s

trips at time 𝑡 after the earthquake, 𝑀𝑇𝑇(𝑡). Formally, traffic simulation occurs for a type of commodity

flowing through a network and can be modelled for different kinds of flowing behaviours, commodities

and networks settings [15]. In the case of this thesis, the commodity of the network is driver vehicle,

commercial personal; the network is the arterial traffic network 𝒢𝒯 , which has pre-specified O-D

(Origin-Destination) pairs. These are trips that are expected to be made over the course of a day or

another time window. An O-D pair is a pair of nodes, trip = (𝑜, 𝑑), in the traffic network 𝒢𝒯 , such that

𝑜, 𝑑 ∈ 𝒱𝒯 , s.t. 𝑜 ≠ 𝑑. These trips are facilitated through links ℒ𝒯 and can go through a single link or be

a path along many links. Considering the interdependency of roads to building debris, the properties

of each link 𝑙 ∈ ℒ𝒯 are inherited from the set of road links 𝑃𝑎𝑡ℎ(𝑙) ⊆ ℰℛ. Specifically, the effective

post-earthquake capacity of link 𝑙 at time 𝑡 is 𝑢𝑙(𝑡), which is the minimum capacity 𝑢𝑟∀𝑟 ∈ 𝑃𝑎𝑡ℎ(𝑙),
and is measured in vehicles / hour. Along with capacity, these are the input variables used in traffic

assignment.

• Flow 𝑥𝑙 , measured in total number of vehicles wanting to use link 𝑙 during simulation [15]

• free-flow travel time 𝑡0
𝑙

which is the travel time with no congestion effects.

The goal of traffic assignment is to then assign paths to all routes from origins 𝑂 to destinations 𝐷,

𝑝𝑎𝑡ℎ𝑠𝒢𝒯 , and minimise the cost of the assignment, considering that congestion effects do not affect

route choice. Minimisation is done on the basis that each driver aims to minimise their individual cost

(User-Equilibrium, UE). This is in contrast to System-Optimal (SO) traffic assignment where all drivers

aim to choose trips such that the total sum of all costs is minimised. This is done as drivers are assumed

to be selfish rather than cooperative [15]. The cost of each link is the travel time of that link and the BPR

cost function is used. It was developed by the Beaurau of Public Roads and is defined as:

𝑡𝑙(𝑥𝑙) = 𝑡0𝑙

[
1 + 𝛼

(
𝑥𝑙
𝑢𝑙

)𝛽]
(3.10)

where:

• 𝑡𝑙(𝑥𝑙) is the travel time of link 𝑙 under flow 𝑥𝑙

• 𝑡0
𝑙

is the free-flow travel time of link 𝑙

• 𝛼 and 𝛽 are shape parameters which can be calibrated to different traffic data, 0.15 and 4 are used

respectively which are commonly used in literature.

The exact workings of the algorithms used for traffic assignment are not explained. However, as a brief

overview the path assignment used it all-or-nothing, where assuming that current travel times are fixed

(i.e not changing with congestion) drivers will choose the shortest path between an 𝑂 − 𝐷 pair, and all

of the demand for that pair will be mapped to that shortest path. The optimisation algorithm used to

minimise link travel time is the Franke-Wolfe algorithm which is one of the most competitive algorithms

in terms of accuracy, while not being slow. The only change in the traffic network at timestep 𝑡 after the

earthquake is the capacities of traffic links 𝑢𝑙∀𝑙 ∈ ℒ𝒯 .
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Figure 3.6: Effect of building debris to road capacity. The capacity reduction that any one building causes to its adjacent road is a

function of the effective width available for drivers to use.

There are several assumptions made in this method of traffic assignment. The assumed objective that

drivers have is to minimise their travel time, which is not always the case. Since assignment is static, it is

assumed that drivers have perfect knowledge of the links’ travel times before beginning to drive. More

specifically, in the context of this thesis traffic patterns are assumed to not change after an earthquake,

i.e the 𝑂 − 𝐷 pairs remain static across timesteps. This is done so that a cost can be computed fairly. If

𝑂 − 𝐷 pairs change between timesteps then the 𝑀𝑇𝑇 of the network between two timesteps cannot be

directly compared. However, it does not reflect realistic post-disaster traffic patterns, where drivers are

likely to commute much less for leisure, and much more for emergencies and healthcare trips.

Capacity is measured in vehicles / hour and is directly related to the effective width of the road, see Fig.

X. Travel time on link 𝑙 depends on the flow of 𝑥𝑙 . Flow is measured in the total number of vehicles

wanting to use link 𝑙 during simulation [15]. The cost of travelling on link

3.4. Fragility and Seismic Hazard Assessment
Damage and vulnerability functions for buildings and roads are derived using established tools and

datasets such as 𝐼𝑁 − 𝐶𝑂𝑅𝐸 and 𝐻𝐴𝑍𝑈𝑆. The simulation environment can be constructed either by

directly downloading data from sources compatible with 𝐼𝑁 − 𝐶𝑂𝑅𝐸 and 𝐻𝐴𝑍𝑈𝑆, or by generating

datasets that adhere to the required schema formats of these tools. While the framework developed in

this thesis supports integration with real-world datasets—such as the National Structures Inventory

(𝑁𝑆𝐼) [25] for buildings, OpenStreetMap (𝑂𝑆𝑀) for road networks, and the National Bridge Inventory

(𝑁𝐵𝐼) for bridge data, the results presented later are generated using two custom-designed test-bed

environments. These environments and their associated data is consistent with the ones one can

download from the sources listed above, but involve less components than an actual environment

from a metropolitan area in the US. The initial motivation for using real-world data stemmed from

attempts to solve an instance based on Anaheim, California, which includes thousands of buildings

and roads. However, due to the increasing computational complexity of such large-scale problems,

custom environments were developed to facilitate controlled and tractable experimentation while

maintaining schema compatibility with 𝐼𝑁 − 𝐶𝑂𝑅𝐸 and 𝐻𝐴𝑍𝑈𝑆. This allows for future extension

of the methodology to a larger environment, assuming either an improvement on computational
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Figure 3.7: Scenario-based earthquake generation, Author’s Own Work.

complexity or simulation using faster hardware.

Given a set of buildings and roads, 𝐼𝑁𝐶𝑂𝑅𝐸 is used to generate earthquakes ranging from 6.0 to 9.0

M with 0.5 M increments. 𝐼𝑀𝑠 are attenuated at the centres of all building and road geometries. For

buildings, 𝑃𝐺𝐴 is calculated and for Roads and Bridges 𝑃𝐺𝐷, 𝑆𝐴0.3𝑠 and 𝑆𝐴1.0𝑠 are used; these are

the specified 𝐼𝑀𝑠 in 𝐻𝐴𝑍𝑈𝑆, [35]. For each earthquake magnitude, 100 realisations of earthquake

scenarios are generated and stored in a 𝐽𝑠𝑜𝑛 file. Thus, at each 𝑅𝐿 realisation the seed is the earthquake

magnitude, from which one of a hundred earthquake realisations is chosen at random. The source

point of succeeding earthquakes is chosen as a random point between 1 and 100 𝑘𝑚 from the average

position of all components. This approach to seismic hazard assessment assumes that earthquakes

can be generated from any 2D coordinate at a distance away from the test-bed and does not consider

the specific fault locations or Magnitude-Frequency (𝑀𝐹𝐷) distributions of each earthquake source

(fault). However, it is chosen as it allows for relatively swift simulation times of under 0.2 seconds

considering that 𝐼𝑀𝑠 are saved locally and are only read once training has begun. Conversely, a 𝑃𝑆𝐻𝐴
methodology was tested using California’s𝑈𝐶𝐸𝑅𝐹3 fault 𝑀𝐹𝐷𝑠 by modelling the earthquake hazard

at each 𝐷𝑅𝐿 realisation as a 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 process of all the possible earthquake scenarios, considering each

fault can have a stochastic set of rupture scenarios, [8].

The specifics of this methodology are not discussed as it was not used for 𝐷𝑅𝐿 training. On average

𝑃𝑆𝐻𝐴 took around 4 to 5 minutes to compute hazard values for a given return period. The amount of

simulation time proved to be a bottleneck in using 𝑃𝑆𝐻𝐴 for 𝑀𝐴𝑅𝐿, thus the simpler methodology is

presented. Figure 3.7 illustrates the seismic hazard assessment methodology used.

In order to predict damage and subsequent recovery of buildings, HAZUS specifies the use of certain

building attributes which are used along with the IMs to derive a set of damage state distribution for

each building. Specifically, the structure type is used for fragility assessment of buildings. Structure

type naming follows the general format of material-area-height, where material is the principal mode of

construction, area is the size of the building’s footprint and height is the category of stories. Some of the

structure types specified in Hazus are [35]:

Each building type has a certain fragility curve associated with it, which is defined by a log-normal

mean and standard deviation, which are used to predict damage states given IMs. HAZUS specifies

three code design levels: Low- Moderate- and High-Code Seismic Design Levels [35], this thesis uses

low-code design level as it has the most filled data. This is described in Table 3.3. Damage States are

predicted using (2.2), followed by the random sampling of a damage state. Both the sampled damage

state and the distribution are used for recovery functions.

Roads follow an almost identical procedure to predicting damage, PGD is used instead of PGA and



3.4. Fragility and Seismic Hazard Assessment 61

Name Description Stories
W1 Wood, Light Frame (≤ 5,000 sq. ft.) 1 - 2

W2 Wood, Commercial & Industrial (> 5,000 sq. ft.) 2+

S1L Steel Moment Frame Low-Rise 1 - 3

S1M Steel Moment Frame Mid-Rise 4 - 7

S1H Steel Moment Frame High-Rise 8+

S2L Steel Braced Frame Low-Rise 1 - 3

S2M Steel Braced Frame Mid-Rise 4 - 7

S2H Steel Braced Frame High-Rise 8+

S3 Steel Light Frame All

C1L Concrete Moment Frame Low-Rise 1 - 3

1M Concrete Moment Frame Mid-Rise 4 - 7

C1H Concrete Moment Frame High-Rise 8+

C2L Concrete Shear Walls Low-Rise 1 - 3

PC2L Precast Concrete Frames with Concrete Shear Walls Low-Rise 1 - 3

PC2M Precast Concrete Frames with Concrete Shear Walls Mid-Rise 4 - 7

Table 3.2: Part of Building Structural Designation types from Table 5-1 Specific Building Types in FEMA [35].

Building Slight Moderate Extensive Complete
Type Median Disp. Median Disp. Median Disp. Median Disp.

W1 0.20 0.64 0.34 0.64 0.61 0.64 0.95 0.64

W2 0.14 0.64 0.23 0.64 0.48 0.64 0.75 0.64

S1L 0.12 0.64 0.17 0.64 0.30 0.64 0.48 0.64

S1M 0.12 0.64 0.18 0.64 0.29 0.64 0.49 0.64

S1H 0.10 0.64 0.15 0.64 0.28 0.64 0.48 0.64

S2L 0.13 0.64 0.17 0.64 0.30 0.64 0.50 0.64

S2M 0.12 0.64 0.18 0.64 0.35 0.64 0.58 0.64

S2H 0.11 0.64 0.17 0.64 0.36 0.64 0.63 0.64

S3 0.10 0.64 0.13 0.64 0.20 0.64 0.38 0.64

S4L 0.13 0.64 0.16 0.64 0.26 0.64 0.46 0.64

Table 3.3: Part of HAZUS Earthquake Model Technical Manual Table 5-39: Equivalent-PGA Structural Fragility - Low-Code

Seismic Design Level.

roads fall within two classes in HAZUS: "HRD1" and HRD2" which are two designations of highway

roads, the former being arterial, inter-state roads and the latter being intra-state narrower highway

roads. Bridges, on the other hand, have a more lengthy procedure for predicting damage. HAZUS

specifies a table of median 𝑆𝐴1.0𝑠 and 𝑃𝐺𝐷 values for each bridge type (HWB1-HWB28). Depending

on the bridge’s number of spans, skew angle, span width, bridge length and maximum span length,

several modification factors are applied to the appropriate median values to retrieve the ground shaking-

and ground failure-related damage state probabilities. The most severe of the two is taken as the

actual distribution as it governs design. This thesis only uses ground-shaking related damage state

probabilities for bridges as it was found that ground-failure was rarely producing more severe results

than ground-shaking related failure ( 𝑆𝐴 ). This was done as the computation for modifying the PGD

means (ground-failure) is a lot lengthier and made overall computation time unnecessarily long. This

calculation procedure i found in equations 7-1 to 7-7 and tables 7-6 to 7-8 in FEMA’s HAZUS Earthquake

Model Technical Manual [35].

Overall each infrastructure component has 6 key attributes after this analysis. These are the limit state

probabilities of each damage state (None, Slight, Moderate, Extensive and Complete) and the sampled

damage state as an integer value ranging from 0 to 4. These are used to predict losses and repair times.

During repair the damage state of each component is considered fully observable, thus the following

procedure is followed to change the damage state of components:

1. Sample Initial Damage State:
𝑃(𝐷𝑆𝑛|𝑏, 𝑟) = 𝑃(𝐷𝑆1), 𝑃(𝐷𝑆2), 𝑃(𝐷𝑆3), 𝑃(𝐷𝑆4), 𝑃(𝐷𝑆5)}∀𝑏 ∈ 𝒞ℬ , ∀𝑟 ∈ 𝒞ℛ is the probability distri-

bution over damage states for each component. It is sampled from a probability distribution of five
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limit state probabilities, which are themselves sampled from a log-normal cumulative distribution

function, given a realised 𝐼𝑀, log-normal mean 𝜎 and dispersion 𝛽. The damage state distribution

must always sum to 1 for all buildings and roads.

2. Initialize Damage State Distribution:
Define the initial damage state distribution as a one-hot vector 𝒅0(𝑐) for component 𝑐. This is

done so that HAZUS recovery functions usually depend ona distribution over damage states.

Furthermore, it allows for the future formulation of states not as one-hot vectors but as full

left-skewing distributions over timesteps. The one-hot damage state distribution is defined as:

𝑑0,𝑑𝑠(𝑐) =
{

1 if 𝑑𝑠 = 𝑑𝑠0

0 otherwise

(3.11)

3. Repair Progress and Damage State Reduction:
At each repair update step 𝑡, if the equivalent amount of repair time passed corresponds to a

reduction by one damage state level, update the distribution:

𝒅𝑡 = ShiftLeft(𝒅𝑡−1) (3.12)

where ShiftLeft moves the 1 in the vector one position to the left, modeling a stepped, linear

decrease in damage state. For example:

𝒅𝑡−1 = [0, 0, 0, 0, 1] ⇒ 𝒅𝑡 = [0, 0, 0, 1, 0] (3.13)

4. Stopping Condition:
The process continues until the damage state reaches the lowest possible level (𝑑𝑠 = 1), i.e.,

𝒅𝑡 = [1, 0, . . . , 0].

3.5. Markov Decision Process
As described in previous sections, an MDP is used in this thesis to describe the decision-making

environment. This MDP is defined as fully-observable, with nevertheless stochastic seed conditions.

This means that given an action 𝑎 in state 𝑠, then we know the next state 𝑠′ with a probability of 1;

however, the initial condition, or damage state of the community is stochastic. This is to say that the

income loss, repair times and other losses are stochastically sampled each time the environment is reset

to simulate a new earthquake.

• ℳ is the set of agents that take actions on the components.

• 𝒮 := ×𝑚∈ℳ𝒯 ℛ𝑚 , where each 𝒯 ℛ𝑚 ∈ [0, 500], is the joint state space representing the repair times

of all components, and thus for each agent 𝑚 ∈ ℳ. The upper bound of repair time is taken as

500 as most HAZUS recovery functions for buildings, roads and bridges do not go above 500 days

of repair.

• 𝒜 := 𝒜1 × 𝒜2 × · · · × 𝒜ℳ
is the joint action space, where each 𝒜𝑚

represents the individual

action space for agent 𝑚. There are two actions: do nothing and repair.

• 𝒯 (𝑠, 𝑎, 𝑠′) is the dynamics model of the environment, for any state 𝑠 and action 𝑎, the next state 𝑠′

is always known with a probability of 1

• ℛ(𝑠, 𝑎) is the reward model, which includes the costs considered in the recovery process after an

earthquake and which affect resilience loss.

• 𝒪 is the observation space and is identical to the state space 𝒮, which means that the agent has

full access to the state of the environment at each time step: 𝒪 = 𝒮. The environment is fully

observable.

• 𝑡𝐻 ∈ N0 is the finite time horizon at which the environment truncates.

The main assumptions made in this MDP is that it has a stochastic dynamics model and thus, it is fully

observable.
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Figure 3.8: Illustration of Community Functionality-time curve with markers on key times used in this methodology and their

associated loss areas

3.6. Objective Function and Reward
The reward function is defined as a function of the change in community functionality over time steps.

Community functionality is the objective function and is defined as an aggregate measure of sub-system

functionalities. Community functionality 𝑄com is defined as:

𝑄com(𝑡) = 𝑄econ +𝑄crit +𝑄health (3.11)

𝑄com(𝑡) = 𝑤econ · 𝑞econ + 𝑤crit · 𝑞crit + 𝑤health · 𝑞health , (3.11)

where 𝑞econ, 𝑞crit, and 𝑞health are the functionalities of the economic, critical infrastructure, and healthcare

subsystems respectively, and 𝑤econ, 𝑤crit, and 𝑤health are their corresponding weights reflecting relative

importance in the overall community functionality. Weights in the reward formulation, including the

ones mentioned here are seen as a hyper-parameters, which do not affect the learning performance, but

rather the nuance and adaptability of learning to different resilience objectives.

Economic functionality 𝑞𝑒𝑐𝑜𝑛(𝑡) is defined generally as:

𝑞
econ(𝑡) = 1 − 𝐸𝐿(𝑡) (3.14)

where 𝐸𝐿(𝑡) is the total economic loss at time 𝑡 and is defined as a weighted sum of economic component

losses:

𝐸𝐿(𝑡) =
∑

𝑤𝑖𝐿𝑖(𝑡) ∀𝑖 ∈ {𝐼𝑛𝑐, 𝑅𝑒𝑝, 𝑅𝑒𝑙𝑜𝑐, 𝑇𝑟𝑎 𝑓 𝑓 𝑖𝑐} (3.15)

where 𝑖 denotes an economic component, in this case income, repair, relocation and traffic costs. Thus,

economic functionality is formulated as:

𝑞econ(𝑡) = 1 −
[
𝑤inc ∗

𝐼𝐿𝐵(𝑡)
𝐼𝐵(𝑡𝑑)

+ 𝑤rep ∗
𝐶𝐵,rep(𝑡) + 𝐶𝑅,rep(𝑡)
𝐶𝐵,repl + 𝐶𝑅,repl

+ 𝑤reloc ∗
𝐶𝐵,𝑟𝑒𝑙𝑜𝑐(𝑡)
𝐶∗
𝐵,reloc

+ 𝑤traffic ∗
𝐶𝑇𝐷(𝑡)
𝐼𝐵(𝑡)

]
(3.16)

where:
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• 𝐼𝐿𝐵(𝑡) is the sum of all buildings’ income losses at time 𝑡 and 𝐼𝐵(𝑡𝑑) is the sum of all buildings’

income right at the time of the earthquake.

• 𝐶𝐵,rep(𝑡) and 𝐶𝑅,rep(𝑡) are the sums of building and road repair costs at time 𝑡 respectively.

• 𝐶𝐵,repl and 𝐶𝑅,repl are the sums of building and road replacement costs, which are stationary.

• 𝐶𝐵,reloc(𝑡) is the sum of all buildings’ relocation costs and 𝐶∗
𝐵,reloc

is the maximum sum of all

buildings’ relocation costs.

• 𝐶𝑇𝐷(𝑡) is the traffic delay cost at time 𝑡

Income is taken from 𝐻𝐴𝑍𝑈𝑆 Earthquake Model Inventory Technical Manual Table 6-16 [34] .The total

cost at time 𝑡, denoted 𝐻(𝑡), is given by:

Building repair costs in dollars, 𝐶𝐵,rep(𝑡) follow the formula from [35] eq. 11-1, (note that in the manual

its defined per occupancy class, whereas in this thesis its defined per building):

𝐶𝐵,rep(𝑡) =
4∑

𝑑𝑠=1

[
𝐵𝑅𝐶(𝑏|𝑜𝑐𝑐𝑏) ∗ 𝑃(𝑑𝑠𝑏) ∗ 𝑅𝐶𝑆(𝑏|𝑜𝑐𝑐𝑏)

]
, (3.17)

where:

• 𝐵𝑅𝐶(𝑏|𝑜𝑐𝑐𝑏) is the building replacement cost of building 𝑏 given occupancy type 𝑜𝑐𝑐𝑏 which is

found in Tables 6-2 and 6-3 of [34],

• 𝑃(𝑑𝑠𝑏) is the probability of building 𝑏 being in damage state 𝑑𝑠 which is stochastically predicted

as explained above when the environment is reset

• 𝑅𝐶𝑆(𝑏|𝑜𝑐𝑐𝑏) is the structural repair cost ratio, given as a percentage of building replacement cost,

which is found in Table 11-2 of [35].

Road repair costs include road and bridge repair costs. Specifically, roads use data from FHWA’s

Highway Investment Analysis Methodology [32]. The manual specifies costs for resurface and a cost for

reconstruction per unit area of a certain type of road. These are used to define the costs in dollars as

follows:

𝐶𝑅,rep(𝑡) = 𝑑𝑟 · 𝑤𝑟 ·
{
𝑐𝑜𝑠𝑡𝑅𝑆 if 0 < 𝑑𝑠𝑟 < 3

(𝑐𝑜𝑠𝑡𝑅𝑆 + 𝑐𝑜𝑠𝑡𝑅𝐶) otherwise

(3.18)

where:

• 𝑑𝑟 is the length of road 𝑟 in miles.

• 𝑤𝑟 is width of road 𝑟 in number of lanes. HAZUS HRD1 roads have 6 lanes and HAZUS 𝐻𝑅𝐷2

have 4 lanes [35],

• 𝑐𝑜𝑠𝑡𝑅𝑆 is the resurfacing cost,

• 𝑐𝑜𝑠𝑡𝑅𝐶 is the reconstruction cost,

• 𝑑𝑠𝑟 is the randomly rampled damage state of road 𝑟

For HAZUS’s HRD1 road designation, values from FHWA’s Freeway / Interstate : Major Urbanized road

designation are taken [32]. For HAZUS’s HRD2 road designation, values from FHWA’s Other Principal
Arterial : Large Urbanized road designation are taken [32]. Traffic delay costs are calculated using FHWA’s

"Work Zone Road User Costs - Concepts and Applications", Chapter 2 [3]. The cost calculation is

stochastic as it sampled a buisness-personal ratio every time it is called. The values used to sample

from range from 91% − 9% to 96% − 4%. While the differences made are not drastic it still allows for a

non-deterministic traffic delay cost, which can more realistically reflect real traffic conditions. Traffic

delay cost is calculated as a yearly delay cost. Considering 𝑀𝑇𝑇 is calculated in hours for a day’s traffic

pattern, traffic delay costs are defined as:
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𝐶𝑇𝐷,𝑏𝑎𝑠𝑒(𝑡) =
[
𝑀𝑇𝑇(𝑡) −𝑀𝑇𝑇(𝑡𝑑)

]
∗ 𝜏𝑑𝑟𝑖𝑣𝑒 ∗ 365, 𝑠.𝑡 𝑀𝑇𝑇(𝑡) ≥ 𝑀𝑇𝑇(𝑡𝑑) (3.19)

𝜏𝑑𝑟𝑖𝑣𝑒 =
[
𝑟𝑏𝑢𝑠𝑖𝑛𝑒𝑠𝑠 𝑟𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙

]
·
[
𝜏𝑏𝑢𝑠𝑖𝑛𝑒𝑠𝑠
𝜏𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙

]
, 𝑠.𝑡 𝑟𝑏𝑢𝑖𝑠𝑛𝑒𝑠𝑠 + 𝑟𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙 = 1.0 (3.20)

𝐶𝑇𝐷(𝑡) = min

[∑
𝑏∈𝒞ℬ

𝐼𝑏(𝑡𝑑), 𝐶𝑇𝐷,𝑏𝑎𝑠𝑒(𝑡)
]

(3.21)

where:

• 𝐶𝑇𝐷,𝑏𝑎𝑠𝑒(𝑡) is the base traffic delay.

• 𝑀𝑇𝑇(𝑡) −𝑀𝑇𝑇(𝑡𝑑) is the difference in mean travel time at time 𝑡 after the earthquake and before

the earthquake. 𝑀𝑇𝑇(𝑡) can only be bigger than 𝑀𝑇𝑇(𝑡𝑑),
• 𝜏𝑑𝑟𝑖𝑣𝑒 is the average time value of commuters travelling in the network in dollars per hour,

• 𝑟𝑏𝑢𝑖𝑠𝑛𝑒𝑠𝑠 and 𝑟𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙 are the randomly sampled buisness and personal travel ratios.

• 𝜏𝑏𝑢𝑖𝑠𝑛𝑒𝑠𝑠 and 𝜏𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙 are the time values of buisness and personal time travel which are calculated

following the methodology in [3]

• 𝐼𝑏(𝑡𝑑) is the income of building 𝑏 before the earthquake.

Traffic delay costs are capped in this study due to the potential for unrealistically large values when road

capacities approach zero. In such cases, traffic delays can grow exponentially, which may not accurately

reflect real-world traffic behaviour. Specifically, if a roadway becomes nearly or completely blocked, it

is assumed that drivers would forgo commuting altogether rather than experience indefinite delays.

Under this assumption, the complete obstruction of the transportation network results in a complete

loss of income due to the inability of individuals to reach their workplaces or carry out travel-related

economic activities.

This assumption implies that drivers after an earthquake continue to pursue the same travel patterns

as they did prior to the earthquake, irrespective of changes in the desired destinations of drivers after

an earthquake. As a result, when road capacities are significantly diminished, the model generates

disproportionately high delay costs due to unadjusted route choices and travel demand.

While this approach abstracts away the complex dynamics of adaptive driver behaviour, it provides

a computationally efficient baseline for estimating post-earthquake traffic. These simplifications also

highlight key areas for future research, such as incorporating dynamic traffic assignment or elastic

demand models to more realistically simulate post-earthquake driver responses.

Relocation costs for the residential population are calculated based on the methodology outlined in

𝐻𝐴𝑍𝑈𝑆 [35], specifically Equation 11-14. Although 𝐻𝐴𝑍𝑈𝑆 defines these costs by occupancy class,

this thesis adapts the calculation on a per-building basis.

𝐶𝐵,reloc(𝑡) =
∑
𝑏∈𝒞⌊

[
𝐴𝑏 ∗ (1 − %𝑂𝑂𝑜𝑐𝑐,𝑏) ∗

5∑
𝑑𝑠=3

[
𝑃(𝑑𝑠) ∗ (𝐷𝐶𝑜𝑐𝑐,𝑏 ∗ 𝑅𝐸𝑁𝑇𝑜𝑐𝑐,𝑏 ∗ 𝑅𝑇𝑑𝑠)

] ]
(3.22)

where:

• 𝐴𝑏 is the total floor area of building 𝑏,

• %𝑂𝑂𝑜𝑐𝑐,𝑏 is the percent owner-occupied of building 𝑏 given its occupancy class 𝑜𝑐𝑐𝑏 and is defined

in [34],

• 𝑃𝑏(𝑑𝑠) is the probability of building 𝑏 being damage state 𝑑𝑠,

• 𝐷𝐶𝑜𝑐𝑐,𝑏 is the disruption costs for building 𝑏 given its occupancy class 𝑜𝑐𝑐𝑏 and are defined in [34],

• 𝑅𝐸𝑁𝑇𝑜𝑐𝑐,𝑏 is the rental cost of building 𝑏 given occupancy 𝑜𝑐𝑐𝑏 and is defined is [34],
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• 𝑅𝑇𝑑𝑠,𝑜𝑐𝑐𝑏 is the recovery time for building 𝑏 given its damage state 𝑑𝑠 and its occupancy type 𝑜𝑐𝑐𝑏 ,
this is defined in [35] and includes both repair time and post-repair functional downtime.

Figure 3.9: Critical functionality is only applicable to essential buildings such as fire stations or hospitals. These have a

un-disrupted critical functionality of 1, with all other buildings having a value of 0. Likewise, only hospitals and medical facilities

have values for 𝐵 and 𝐷 which are the number of beds and doctors respectively.

Critical infrastructure functionality 𝑞crit(𝑡) is defined as:

𝑞crit(𝑡) =
∑
𝑐∈𝒞 𝑞crit(𝑡)∑

𝑐∈𝒞 𝑞crit(𝑡0 − 𝜀) (3.14)

where 𝑞crit(𝑡) is 1 if component 𝑐 is critical at time 𝑡, and 0 otherwise. The numerator sums over the

critical components’ functionality at time 𝑡, while the denominator is the sum of the functionalities of

critical components just before the event (at 𝑡0 − 𝜀).

Health functionality 𝑞health(𝑡) is defined as:

𝑞health(𝑡) = 𝑤bed · 𝑞bed(𝑡) + 𝑤doc · 𝑞doc(𝑡), (3.15)

where: - 𝑞bed(𝑡) is the functionality of the health subsystem’s beds, and is calculated as the ratio of

current available beds to the initial number of beds:

𝑞bed(𝑡) =
∑
𝑏∈𝒞⌊ 𝐵(𝑡)∑

𝑏∈𝒞⌊ 𝐵(𝑡0 − 𝜀) (3.16)

where 𝐵(𝑡) is the number of beds available at time 𝑡, and 𝐵0 is the initial number of beds before the

event.

- 𝑞doc(𝑡) is the functionality of the health subsystem’s doctors, and is calculated as the ratio of current

available doctors to the initial number of doctors:

𝑞doc(𝑡) =
∑
𝑑∈𝒞⌈ 𝐷(𝑡)∑

𝑑∈𝒞⌈ 𝐷(𝑡0 − 𝜀) , (3.17)

where 𝐷(𝑡) is the number of doctors available at time 𝑡, and 𝐷0 is the initial number of doctors before

the event. The weights 𝑤bed and 𝑤doc reflect the relative importance of beds and doctors in the overall
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healthcare functionality. Critical functionality is illustrated in figure 3.9, where the environment is in

a pre-disaster state of no damage. The only buildings that have a critical functionality of 1.0 are the

hospital and fire station, all other buildings are non-critical and have no doctors or hospital beds. This

follows 𝐻𝐴𝑍𝑈𝑆′𝑠 essential facility designation which includes other government offices too such as

police stations [35].

This formulation of community functionality is made so that it aligns with formulations of resilience

seen in the general literature, given the calculated losses presented in this methodology. The principal

aim is to use post-earthquake community functionality to compute its finite time-integral as the recovery

resilience. Furthermore, considering similar formulations from Yang et al. [96], the reward is formulated

as cost. In doing so, the reward is the negative instantaneous resilience loss at each time-step.

Figure 3.10: The reward at each time-step is the negative instantaneous loss of resilience −𝐿𝑜𝑠𝑠(𝑡) which is the tranche of

resilience loss associated with that time-step. The total resilience loss is then the sum of rewards, or the returns of a realisation

The cost at time 𝑡 is the resilience loss, 𝐿𝑜𝑠𝑠(𝑡) and 𝑅𝑒𝑠(𝑡) is the resilience at time 𝑡:

𝑅𝑒𝑠(𝑡) = 1

2

Δ𝑡 ∗ [𝑄𝑐𝑜𝑚(𝑡) +𝑄𝑐𝑜𝑚(𝑡 − 1] (3.23)

𝐿𝑜𝑠𝑠(𝑡) is calculated using the sum of the two:

𝑅𝑒𝑠(𝑡) + 𝐿𝑜𝑠𝑠(𝑡) = Δ𝑡 ∗ [𝑄𝑐𝑜𝑚(𝑡𝑑) −𝑄𝑐𝑜𝑚(𝑡0)] (3.24)

𝐿𝑜𝑠𝑠(𝑡) =
[
Δ𝑡 ∗

(
𝑄𝑐𝑜𝑚(𝑡𝑑) −𝑄𝑐𝑜𝑚(𝑡0)

) ]
−
[
1

2

Δ𝑡 ∗
(
𝑄𝑐𝑜𝑚(𝑡) +𝑄𝑐𝑜𝑚(𝑡 − 1)

) ]
(3.25)

Thus, reward 𝑅 is defined as the state-reward at each time-step:

𝑅(𝑡) = 𝑅(𝑠, 𝑡) (3.26)

𝑅(𝑠, 𝑡) = −𝐿𝑜𝑠𝑠(𝑡) (3.27)
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3.7. Environment Dyamics
While above sections describe the attributes of the environment that contribute to states actions and

rewards, this section predominantly focuses on how these aspects come together to define the dynamics

of the environment. Considering that the environment is defined as fully observable, the dynamics

describes the interaction of building and road agents taking actions and how their interaction affects

what action they take. Fig. X shows a high level overview of these interactions and how they lead to

agents receiving reward.

A rollout of the environment is a trajectory from an initial state to some termination or truncation state.

The environment is terminated if all components are repaired, and truncated if the finite time horizon is

reached. At each time step, a joint action A𝑡 ∈ {0, 1}ℳ is selected, where:

• |ℳ| = |𝒞ℬ | + |𝒞ℛ|, the number of agents is the same as the total number of components (buildings

and roads),

• 𝑎𝑐𝑡 = 1 indicates a repair action for component 𝑐, and 𝑎𝑐𝑡 = 0 indicates a do-nothing action.

The action vector is partitioned as:

a𝑡 = [a𝑏𝑡 , a𝑟𝑡 ] where a𝑏𝑡 ∈ {0, 1}𝑛𝑏 , a𝑟𝑡 ∈ {0, 1}𝑛𝑟 (3.28)

At each time step, a random ranking 𝐿𝑡 over the components is generated:

𝐿𝑡 : {1, 2, . . . , 𝑚} → {1, 2, . . . , 𝑚} (3.29)

Considering the number of crews as 𝑛crews as time 𝑡, the set of requested repair actions at time 𝑡 is as

follows:

𝑁𝐴𝑟𝑒𝑝(𝑡) =
{
𝑐 ∈ {1, . . . , 𝑚} | 𝑎𝑐𝑡 = 1

}
(3.30)

If |𝑁𝐴𝑟𝑒𝑝| ≤ 𝑛crews, all requested repairs are allowed. Otherwise, repairs are restricted to the top-ranked

𝑛crews components:

𝑎 𝑖𝑡 =

{
1 if 𝑐 ∈ 𝑁𝐴𝑟𝑒𝑝 and 𝐿𝑡(𝑐) ≤ 𝑘

0 otherwise

where 𝑘 = min(𝑛crews , |𝑁𝐴𝑟𝑒𝑝(𝑡)|) (3.31)

Ranking components is done at random as it is not the aim to influence 𝑀𝐴𝑅𝐿 agents directly by

heuristically guiding their actions. Rather the goal is for the agents to learn to navigate through this

noise by bounding their joint repair effort to satisfy the number of repair crews available. In doing so,

the random ranking should on average perform badly as the top n-crews components after randomly

ranking are expected to not be the components that should be repaired. Therefore, agents will try to

navigate around this by choosing actions such that this random ranking is not applied. This is a key

aspect of the dynamics of the environment as it allows for budgetary constraints in terms of repair-crew

availability, without giving explicit directions to agents.

Considering the formulation of reward, there are no explicit restrictions or penalties placed on agents for

going over-budget. Costs are only considered as total remaining costs and not instantaneous repair costs,

thus they are not seen as a budgetary constraint. Crew prioritisation is then seen to act as a budgetary

constraint; while not being directly measured as a monetary constraint, the number of available crews is

a proxy for the available repair funds.

Considering a building and a road at Complete damage states, figure 3.12 shows the profile of their

attributes as they get optimally repaired; that is, they are repaired at every time-step. The phases of

repair are illustrated as:

• Yellow: Removal of a building’s debris, only applies to the debris of a single building, not any

of its neighbours. This phase only affects the imposed capacity reduction a building has on its

adjacent road, it does not affect any of the associated losses.
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• Red: Repair of a building or a road. This phase reduces the repair time and costs. In the case of

buildings the relocation costs are also reduced but not the income losses. In the case of roads, the

capacity reduction is also reduced.

• Green: Recovery phase. This phase only applies to commercial buildings that can generate income.

It is the phase after repair has completed and is when the income losses are reduced, following a

quadratic increase.

The performance attributes shown are normalised relative to the initial damage state. This is done

purely for visualisation purposes. It is important to note that here income shown as 0 is not 0 income,

but is instead the immediate post-disaster income considering the maximum income loss. The three

buildings shown are a mid-rise residential building with 𝐻𝐴𝑍𝑈𝑆 occupancy designation RES3A, a

commercial centre with designation COM2 and an agriculture building such as a grain storage silo or

farmhouse with designation AGR1.Residential buildings are not considered to generate any income

in this thesis, which HAZUS’s general recommendations [35]. However, residential buildings along

with other lodging- or accommodation-related occupancies are the only occupancy types which have

relocation costs. Relocation costs follow the damage states with a lag, i.e when a building is in Slight
damage state the relocation cost drops to 0. Conversely, the commercial building’s repair profile shows

a zero relocation cost but a positive income. Income and repair costs decay and grow quadratically to

reflect a more realistic recovery scenario. In doing so, the assumption made is that most of the repair

costs are spent when beginning to repair and as repair progresses the instantaneous repair costs reduce.

Likewise, as companies and employees begin to occupy a freshly repaired commercial building it can be

expected that at first they generate little to no income, but as time progresses they are able to reach

pre-disaster income levels faster.

Furthermore, it can be seen that the agricultural building has a much longer debris clearing phase and a

shorter repair phase. This can be intuitively understood as farm structures are usually very large in

scale and thus might produce a lot of debris; however, they can often be simply constructed, having

less mechanical services than a commercial building. A non-optimal profile of repair for a building is

shown in figure 3.11, where usually the repair phase is longer than expected. The debris removal phase

is also usually a bit longer, but the recovery phase remains the same as it is not dependant on the type

of action chosen.

Figure 3.11: d) Repair and Recovery of Mid-Rise Commercial Building while taking random actions.
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a) Optimal Repair and Recovery of Mid Rise Residential Building

b) Optimal Repair and Recovery of Mid Rise Commercial Building

(Non-Essential)

c) Optimal Repair and Recovery of Agricultural building

d) Optimal Repair of arterial Highway Road

Figure 3.12: Optimal repair sequences of different road and building designations as per 𝐻𝐴𝑍𝑈𝑆, [35]
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3.8. Environment Solvers
This thesis uses three principal solvers. MARL, random and importance-based strategies. Importance-

based and random policy solvers are seen as baseline methods and MARL is seen as the benchmarked
method. Specifically VDN (Value Decomposition Network) is principally used for testing as it can be

robust and reliable method to test and debug [92]. 𝐷𝐶𝑀𝐴𝐶 and𝑄𝑀𝐼𝑋−𝑃𝑆 are also used. 𝑄𝑀𝐼𝑋−𝑃𝑆
is similar to𝑉𝐷𝑁 −𝑃𝑆 but includes a mixer network instead just a summation over individual Q-values.

𝐷𝐶𝑀𝐴𝐶 is a case of 𝐶𝑇𝐶𝐸 (Centralised Training with Centralised Execution), this means that both

actor and critic networks have input feature vectors that are the size of the joint state space instea of the

individual state spaces. 𝐶𝑇𝐶𝐸 methods tends to perform better than other 𝐷𝑅𝐿 algorithms but face

scaling challenges as the size of the features of the networks grows with the size of the joint state space,

even if the individual state space stays constant.

Random policy is self explanatory and involves the agents taking random actions at each time-steps

without using any observations or reward to guide their decisions. Importance-based repair scheduling

is a rudimentary ranking-based, custom solver including rule-based value, or rank computation. It

involves ranking roads and buildings in ascending order by considering an aggregate metric repair value;
doing so by repairing the top 𝑛𝑐𝑟𝑒𝑤𝑠 number of repair-value-sorted components. Fig 3.13 shows the flow

chart for importance-based repair scheduling.

Figure 3.13: Flow chart of the importance-based (𝐼𝑀𝑃𝐵) algorithm

The algorithm uses the value 𝑉 of components to rank them and keep the number of repair actions

below the number of repair crews available. Value for buildings 𝑉𝑏 is defined as:
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𝑉𝑏(𝑡) =
(
𝐼𝑏(𝑡)
𝐼nom

𝑏

)
·
(
𝑑𝑠𝑏(𝑡)
𝑑𝑠𝑚𝑎𝑥(𝑡)

)
·
(
𝐴𝑏
𝐴nom

𝑏

)
·
{

1, if 𝑞crit(𝑡𝑑) = 1

0.5, if 𝑞crit(𝑡𝑑) = 0

∀𝑏 ∈ 𝒞ℬ (3.32)

where:

• 𝐼𝑏(𝑡) is the income of building 𝑏 at time 𝑡,

• 𝐼𝑛𝑜𝑚
𝑏

is the nominal pre-disaster income, arg max𝑏∈𝒞⌊ [𝐼𝑏(𝑡0 − 𝜖)]
• 𝑑𝑠𝑏(𝑡) is the damage state of building 𝑏 at time 𝑡,

• 𝑑𝑠𝑚𝑎𝑥(𝑡) is the nominal building damage state at time 𝑡, arg max⌊∈𝒞ℬ (𝑑𝑠𝑏(𝑡))
Likewise, the value of each building at each timestep 𝑡 is defined as:

𝑉𝑟 =
𝑢𝑟(𝑡) · 𝑑𝑠𝑟(𝑡)

𝑢𝑛𝑜𝑚(𝑡) · 𝑑𝑠𝑛𝑜𝑚(𝑡)
∀𝑟 ∈ 𝒞ℛ (3.33)

where:

• 𝑢𝑟(𝑡) is the capacity of road 𝑟 at time 𝑡,

• 𝑑𝑠𝑟(𝑡) is the damage state of road 𝑟 at time 𝑡,

• 𝑢𝑛𝑜𝑚(𝑡) is the nominal capacity of the network at time 𝑡, 𝑢𝑛𝑜𝑚(𝑡) = arg max𝑟∈𝒞ℛ (𝑢𝑟(𝑡))
• 𝑑𝑠𝑛𝑜𝑚(𝑡) is the nominal damage state at time 𝑡

The two methods for assigning value to components are combined to get a joint sorting of values in

the network, which is then used to select a joint action. The importance based algorithm is shown in

figure 3.13. First, the algorithm receives updated building and road objects after a reset or step of the

environment. Then, buildings and roads are sorted, components are iterated, if the component is fully

repaired, "do nothing" action is selected, otherwise repair action is selected.

This key attributes of the solver lie in the value formulation of buildings and roads. Component value is

formulated as a product of normalised attribute functionalities, with time-dependant normalisation

constants.Along with the overlying assumptions of the environment, importance-based, post-earthquake

repair scheduling as defined here makes the principal assumption that the prioritisation of actions

depends only on the parameters included, e.g 𝐼𝑏(𝑡), 𝑑𝑠𝑟(𝑡). This method does not consider other factors

that might play a role in reducing resilience loss, such as the spatial qualities of the combined networks

or the cascading effects of debris on neighbouring buildings. It is nevertheless, an online algorithm that

uses the observations of agents during a realisation to rank components. Random policy selects a joint

action with probability
1

ℳ .

The principal MARL algorithm used in this thesis is VDN (Value Decomposition Network) with

parameter sharing and is highly reliable and robust. It was developed specifically for co-operative

MARL and can scale well as it involes only one shared agent network and sharing of parameters[92].

Furthermore, the q-value mixer used is simply a summation over agent q-values which makes it

computationally cheaper than other methods. Furthermore, experience replay is used during training,

that is the storage of previous trajectories and random sampling of mini batches during training to use

as input into the Q-Network NN. This is standard practice for MARL research. The reason for using

experience replay is to combat the problem of auto-correlation during training. Given the recurrent

nature of data flowing into the network, if experience replay is not used successive datapoints can be

simillar, and thus the data is said to be autocorrelated, this makes training difficult. In essence, this

makes the practice of training the network closer to supervised learning, which is preferrable as NNs,

all things considered, perform better when large amounts of highly-diverse data are used as input. The

architecture of the network involves 2 hidden layers of 64 neurons each, with a MSE loss function, adam

optimiser and relu activation function. The implimentation of the algorithm is developed by Prateek

Bhustali and includes a few small modifications that allow use in this thesis, [11].
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Figure 3.14: Simplified architecture of Value Decomposition Network with Parameter Sharing.



4
Case Studies and Results

4.1. Environment Setup
The proposed methodology involves developing a simulatation of a post-earthquake repair scheduling

decision process as an MDP; it then aims to use MARL algorithms for finding favourable repair schedules.

The developement of the simulation is made using two principal testebeds toy-city-4 and toy-city-30.

They have 4 and 30 components respectively with equal numbers of buildings and roads. The size of

the two environments is principally governed by the associated runtime of an MARL experiment. It is

noted that MARL experiments in similar research usually converge after completing 10
5

to 10
6

rollouts.

Thus, the computation of a single rollout is a key limiting factor and requires careful consideration.

While the developed tool allows for the development of environments using data from NSI, OSM and

NBI, it is not used in MARL as the computation time of larger cities or towns can take up to a minute.

The two test beds along with the rest of the experiment are simulated using Python 3.9.20 in a conda

environment [51]. A conda environment allows reliable and reproducible dependency management. The

testbeds are passed into the environment as GeoDataframes using the package pandas, [60]. While many

other packages are used in the implementation, only principal packages will be referenced in this thesis.

Snippets of important code segments are referenced in the Appendix; a repository of the working code

for the project is available as a GitHub repository at https://github.com/Antonios-M/qres_marl.

Conceptually, the two tested environments have two different aims. The smaller environment is aimed

at being a baseline environment which can be easy to validate and test, while not focusing too much on

making interesting spatial arrangements between components. Conversely, given the increase in the

number of components, the environment with 30 components is aimed at isolating the critical facilities

of the community from the commercial / residential zones by using two bridges. This is done so that

the recovery scenario introduces certain context-specific conditions that might produce interesting

recovery results. Some attribute metrics of toy-city-4 are listed below; full tables of attributes for both

environments can be found in the appendix. The two occtypes of the buildings correspond to a mid-rise

residential and hospital buildingd respectively. E-Facility is an essential facility boolean.

Index Occ. Type Dwell Units Struct. Typ. Appr. Value E-Facility Sq. Ft.
0 RES3E 74 S5M 55.2 Mill. FALSE 59417

1 COM6 0 PC2H 102.8 Mill TRUE 110683

Table 4.1: Attributes of buildings (excluding geometry)

An important nuance of making the testbeds is generating trip data for the associated traffic network.

Basline link data such as free-flow-speed and capacity are taken from Ben Stabler’s networks and

matched to the environment’s lengths. Trip generation is usually made using trip-generation data

and methods such as ITE’s trip generation handbook [93]. However, given the combined scope of

74
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(a) toy-city-4, an environment with 4 components, 2 roads and 2 buildings, made to provide the practically smallest environment

formulation for validation and testing.

(b) toy-city-30, an environment with 30 components, 15 roads and 15 buildings, with two bridges connecting the essential facilities to

the rest of the community.

Figure 4.1: Case Study testbeds used to test MARL for post-earthquake repair scheduling, Author’s Own Work..
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Index Length (mi) Length (km) Hazus R Unit Cost
0 0.11 0.17 HRD1 6992

1 0.056 0.09 HRD1 6992

Table 4.2: Road segment attributes: length, Hazus type, and costs

environment modelling and MARL this thesis instead proposes the generation of trips manually, using

reasonable assumptions about daily trips. Conceptually node 0 is the origin of trips of people leaving

the hospital, either patients or health workers. Trips originating from node 1 are people leaving their

apartment to go to the hospital or any other part of the network. That is, assuming traffic could be

originated in nodes which are not included in the environment. Thus the following daily trips are

defined:

Init Node Term Node Demand
0 1 600

0 2 400

1 2 200

1 0 400

Table 4.3: toy-city-4 O-D trip table

The interdependencies between buildings and roads are first found, following by the division of the two

networks in component-level objects; these are Python classes Building and Road. They are implemented

to run repair actions on single road or building components and then combine the resulting component

states and functionality metrics into joint states and rewards. The interdependency of roads to buildings

in toy-city-4 is matrix 𝐴𝑟,𝑏 :

𝐴𝑟,𝑏 =

[
0 1

1 0

]
(4.1)

The resulting environment consists of a set of road and building 𝑃𝑦𝑡ℎ𝑜𝑛 objects and 𝑐𝑠𝑣 files for the

traffic network and demand. They are all passed in as arguments to a custom Gymnasium environment,

which acts as the 𝑀𝐷𝑃. 𝐺𝑦𝑚𝑛𝑎𝑠𝑖𝑢𝑚 is an open-source library for Single- and Multi-Agent 𝐷𝑅𝐿 and is

standard for modelling 𝐷𝑅𝐿 environments. Each time the environments .reset() function is called, a new

earthquake is randomly chosen and all losses are initiated, e.g income loss, repair time etc.. Actions

are passed into the environment’s .step() method which checks if the total repair effort exceeds the

number of crews, in which case a random ranking assigns the top n-crews repair actions. These actions

are passed through individual Building and Road objects, where they are processed considering the

dynamics of the environment. For instance, if a repair actions is requested on a road which has debris

on it due to interdependent buildings, then a do-nothing action is taken instead. The environment’s

.step() function returns a tuple of states, reward, information, termination and truncation conditions.

Termination is True if all components are repaired and truncation is True if the time horizon is reached.

Considering the complex nature of the environment, many aspects of it were not acting as expected

when conducting 𝑀𝐴𝑅𝐿 training. Thus, toy-city-4 was iterated over 8 versions to debug and fix certain

environment aspects that hindered training. The table below shows the differences between environment

versions:
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Parameter v1 v2 v3 v4 v5 v6 v7 v8 v9
Number of Agents 4 4 4 4 4 4 4 4 30

Number of Crews 4 4 4 4 4 4 2 2 10

Time Horizon 20 20 20 20 20 20 20 50 100

Time-step Duration 20 20 20 20 20 20 20 40 30

Compute Debris false false false false true true true true true

Trucks per Bldg per day (debris) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Bldg Stochastic DS false false true true false true true true true

Bldg Stoch. RT false false false true false true true true true

Bldg Stoch. RC false true true true false true true true true

Bldg Stoch. Inc. Loss false true true true false true true true true

Bldg Stoch. LOF Time false true true true false true true true true

Bldg Stoch. Reloc Cost false true true true false true true true true

Compute Debris (Capacity Red.) false false false false false true true true true

Road Stoch. DS false false false false false true true true true

Road Stoch. RT false false false false false true true true true

Road Stoch. RC false true true true false true true true true

Table 4.4: Progressive changes in environment configuration from v1 to v9. All cells start light blue; darker cells indicate changes.

DS = damage state, RT = repair time, LOF = Loss of Function time, Reloc Cost = Relocation Cost, Stoch. = Stochastic

(a) Episodic returns during training for environment version 9,

logged every 100 training episodes

(b) Episodic mean returns over 500 inference steps for inference

during training for environment version 9

Figure 4.2: Training plots for environment version 9. Y-axis shows cumulative resilience losses (negative) per episode (episodic

returns). Training episodic returns show that learning was slow and that returns were only beginning to increase after training

time-step 90000, however returns during inference show a clear upwards trajectory. Given that this run took 35 hrs to complete, it

was exceedingly difficult to run training for more timesteps.

4.2. Results
Value Decomposition Network with Parameter Sharing (𝑉𝐷𝑁 − 𝑃𝑆) was tested on all environment

versions and Q-Mixer with Parameter sharing (𝑄𝑀𝐼𝑋 − 𝑃𝑆) as well as Deep Centralised Multi-Agent

Actor Critic (𝐷𝐶𝑀𝐴𝐶) were tested on version 8. Following this experiment on toy-city-4, 𝐷𝐶𝑀𝐴𝐶 was

tested on toy-city-30 as it yielded the best results for toy-city-4. While specific experiment attributes are

given in the results and the appendix, all the experiments were run for 100𝐾 training time-steps. The

experiments were run on a laptop with an available GPU. Training included parallel inference of 500

time-steps every 1000 training time-steps with a total of 5000 inference timesteps. The GPU used is

a NVIDIA GeForce RTX 4060 Laptop GPU with a boosted speed of 2300 MHz and 8GB of available

memory. Parallel inference was run using 2 workers as more workers caused MemomoryError exceptions.

While most MARL algorithms showed learning, none of them were able to converge within the given

configurations. This is because 100𝐾 time-steps were the highest number that was feasible to simulate

and took no less than 30 hours of run-time. In essence, this is to say that the algorithms did show

monotonic improvement but require more training time-steps to fully converge; given the available

hardware this was not possible.

The configurations of of the three tested algorithms was constant across both environments and is

described in the following table:

4.2.1. Environment I: 4 components
The resulting learning performance for 𝑉𝐷𝑁 − 𝑃𝑆, 𝑄𝑀𝐼𝑋 − 𝑃𝑆 and 𝐷𝐶𝑀𝐴𝐶 on toy-city-4 was tested

by running 1000 inference rollouts using the three algorithms and importance-based (𝐼𝑀𝑃𝐵) as well as
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Parameter VDN_PS QMIX_PS DCMAC
Num Episodes 100,000 100,000 100,000

Num Inf. Episodes 500 500 500

Inference Freq. 1000 1000 1000

Max Memory Size 10,000 1,000 500,000

Batch Size 64 64 64

Discount Factor (𝛾) 0.99 0.99 0.99

Network Hidden Layers [64, 64] [64, 64] Actor: [32, 32], Critic: [64, 64]

Optimizer Adam Adam Actor: Adam, Critic: Adam

Learning Rate 0.001 0.001 Actor: 0.0001, Critic: 0.005

LR Scheduler Linear Linear Linear

LR Scheduler Iters 10,000 10,000 20,000

Start Factor / End Factor 1 / 0.1 1 / 0.1 1 / 0.1

Exploration Strategy Epsilon-Greedy Epsilon-Greedy Epsilon-Greedy

Epsilon Max / Min 1 / 0.005 1 / 0.005 1 / 0.005

Epsilon Decay Episodes 10,000 10,000 20,000

Table 4.5: Hyperparameters for VDN_PS, QMIX_PS, and DCMAC Algorithms

random policies. The results are shown below:

Figure 4.3: Cumulative Losses to full recovery per policy for 1000 rollouts on toy-city-4 (lower is better)

The charts show histograms of cumulative losses on the x-axis and relative density on the y-axis for

the 1000 rollouts over the 5 tested policies. Density is chosen as the y-variable as it allows comparison

between policies. The results show expected relative results between 𝐷𝐶𝑀𝐴𝐶 and the other two

algorithms as 𝐷𝐶𝑀𝐴𝐶 performs better than the other two. Conversely, 𝑄𝑀𝐼𝑋 − 𝑃𝑆 performs slightly

worse than 𝑉𝐷𝑁 − 𝑃𝑆 which is not expected; however the difference is negligible and could just be due

to sampling frequency differences.

On average,𝐷𝐶𝑀𝐴𝐶 essentially matches the performance of importance-based scheduling. This doesn’t

say much on the specific recovery actions chosen, however it is a starting point to gauge the overall

performance of the policy. Additionally, 𝐷𝐶𝑀𝐴𝐶 tends to show higher frequency over the extremes, i.e

more high-performing instances but also more low-performing instances, and less average-performing
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instances. This is most likely due to the fact that learning did not fully converge. Interestingly,𝑉𝐷𝑁−𝑃𝑆
and 𝑄𝑀𝐼𝑋 − 𝑃𝑆 both perform worse than random policies, this is also unexpected. However, given

that there are only two possible actions and only 4 components, a random policy might in fact be quite

performative as the action-space is quite narrow. Additionally, there are no direct penalties for choosing

more repair actions than there are available repair crews. Considering that all components usually have

a positive repair time at initialisation due to the earthquakes being above 6.0 M , a random action is

then almost certainly going to result in at least one successful repair action as the only case it wouldn’t

is if all four actions chosen are do-nothing, which on average should happen only 6.25% of the time (0.54
).

Likewise, even if the random policy results in more repair actions than there are available repair crews,

the agents incur no penalties for doing so.

Looking closer into the two high-performing policies, certain conclusions about the optimality of𝐷𝑅𝐿 as

opposed to rule-based repair scheduling policies can be drawn. Firstly, 𝐼𝑀𝑃𝐵 is illustrated in figure 4.4,

showing a functionality-time curve for the whole network and loss-time curves for each component. For

illustration purposes the various losses shown in the component-level graphs are normalised to the

damage state extremes of that component. For instance, the residential building starts at a damage state

of 4 and so all its loss attributes begin at 4 as well and reduce to 0 as it is repaired.

Considering the environment has 2 available repair crews at each time-step, there is a clear prioritisation

of the highway road and the hospital to be repaired before the other two components, which is seen in

the repair actions taken up until time-step 15. This is primarily as a consequence of the interdependency

of the hospital to the road and the residential building to the bridge. In this case, both buildings are

at a damage state above 3, which is the threshold for which debris is generated. Thus, neither of the

roads can begin to be repaired until their interdependent buildings are clear of debris. Additionally,

the hospital is chosen to be repaired before the residential building because of its contribution to both

critical as well as healthcare functionalities. Once the hospital’s debris is cleared at time-step 4, repair of

the road begins. The road is repaired until time-step 15 when the bridge is instead chosen to be repaired

due to now having a higher damage state than the road. However, this results in do-nothing actions to be

taken on the road as the mid-rise residential building is not yet clear of debris. This is a limitation of

𝐼𝑀𝑃𝐵 as it does not consider the interdependencies as an explicit rule. Once the hospital is repaired,

the residential building and bridge are chosen to be repaired at time-step 27. The effect of the bridge

repair can be clearly seen in the traffic delay cost curve, which drops drastically from time-step 27 to

time-step 33. The bridge is then completely repaired at time step 40 and the residential building at

time-step 48, after which the hospital keep gaining its remaining income until time-step 65 when the

rollout terminates.

Some key takeaways from this policy can be drawn. First, the traffic seems to solely rely on the bridge

and not at all on the road. This is due to the 𝑂 − 𝐷 matrix used for traffic assignment:

init_node term_node demand
0 1 500

0 2 150

1 2 150

1 0 800

Table 4.6: Node demand table

Considering the roads and the traffic perofrmance, out of a total of 1600 trips, only 150 of them rely only

on traffic nodes 1 and 2. The trips going from nodes 0 and 2 also partially rely on the traffic link between

1 and 2; however, the vast majority of trips are from 0 to 1 and back, specifically 1300 trips. The decision

to model the traffic as such was made to weight the road connecting the hospital to the residential

building more heavily than the bridge. However, it can be said that this was perhaps exaggerated.

Nevertheless, while this is easy to point out in such a small network, the task of constructing a custom

𝑂 − 𝐷 matrix for a custom traffic network is exceedingly difficult.

Conversely, when considering the two buildings, there is a clear bias to repair the hospital first. This can

be intuitive considering the community functionality weights used in this simulation:

• Economic Functionality Weight, 𝑤𝑒𝑐𝑜𝑛 = 0.5
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Figure 4.4: One rollout of using 𝐼𝑀𝑃𝐵 on toy-city-4 with an earthquake of 8.5 M



4.2. Results 81

• Critical Functionality Weight, 𝑤𝑐𝑟𝑖𝑡 = 0.2

• Healthcare Functionality Weight, 𝑤ℎ𝑒𝑎𝑙𝑡ℎ = 0.3

The residential building only contributes to the economic functionality and not the other two, while the

hospital contributes to all sub-system functionalities. This makes the clear bias for the hospital clear to

understand. This bias is reasonable and also favourable as hospitals should generally be repaired before

residential buildings. However, this weighting is only appropriate as the share of critical to non-critical

facilities is 50 − 50, which is not the case for most metropolitan areas. For instance, a metropolitan area

in the US and other parts of the world might have non-essential to essential building ratios closer to

90% − 10%.

When comparing this policy to the one learnt by 𝐷𝐶𝑀𝐴𝐶, it is clear to see the discrepancies outlined

above. Figure 4.5 shows a rollout for an 8.5 M earthquake using 𝐷𝐶𝑀𝐴𝐶 as the solver. The resulting

losses are more than the ones yielded from 𝐼𝑀𝑃𝐵 for an initial residual community functionality of

around 0.21 after earthquake impact. This shows that 𝐼𝑀𝑃𝐵 does perform better in this case. However,

this is principally due to the fact that the 𝐷𝐶𝑀𝐴𝐶 policy does not attempt to repair the residential

building or the bridge at all. The reason for this behaviour is not easy to pin-point, however it is likely

a combination of not achieving full training convergence and incurring less significant rewards for

repairing the residential building and the bridge.
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Figure 4.5: One rollout of using 𝐷𝐶𝑀𝐴𝐶 on toy-city-4 with an earthquake of 8.5 M

Regardless of the convergence of training, 𝐷𝐶𝑀𝐴𝐶 is able to recover approximately 74% (0.21 → 0.81)
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of community functionality (CF), while not repairing half of the network components at all. This

prioritisation and lack of action on the residential building and bridge can be seen in the inability of

the algorithm to fully repair functionality, reaching 0.81, and flat-lining until truncation at time-step

100. Nevertheless, the profile of recovery is clearly steeper, as at around time-step 20, the 𝐷𝐶𝑀𝐴𝐶
policy has recovered from 0.21 to 0.75 CF, while 𝐼𝑀𝑃𝐵 has recovered from 0.21 to 0.5 for the same

time increment. It should be noted that when looking at the illustrated results, the repair times for the

hospital and the road might seem shorter in 𝐷𝐶𝑀𝐴𝐶; however, in both 𝐼𝑀𝑃𝐵 and 𝐷𝐶𝑀𝐴𝐶 the two

components are repaired within 20 to 25 time-steps, which is around 200 to 250 days. The apparent

skewness of the repair profile is due to the 𝐷𝐶𝑀𝐴𝐶 rollout continuing for 100 time-steps, while the

𝐼𝑀𝑃𝐵 rollout terminating at 65 time-steps.

Figure 4.6: Density-Loss histograms for toy-city-4 of the tested policies when considering all incurred losses (lower is better)

Figure 4.7: Density-Loss histograms for toy-city-4 of the tested policies when considering losses incurred until 70% recovery is

achieved (lower is better)
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One can see the general benefit of using 𝐷𝑅𝐿 by comparing the 𝑁 − % recovery when 𝐷𝑅𝐿 against

𝐼𝑀𝑃𝐵. Figures 4.6 and 4.7 show histograms of cumulative losses and 70% recovery losses respectively

for the tested policies. This confirms the observation that 𝐷𝐶𝑀𝐴𝐶 generates a steeper early recovery

curve. Interestingly, 𝑄𝑀𝐼𝑋 − 𝑃𝑆 is the best performing algorithm here; however, it should be noted

that 𝑄𝑀𝐼𝑋 − 𝑃𝑆 and 𝑉𝐷𝑁 − 𝑃𝑆 were trained for 100𝐾 time-steps, while this version of 𝐷𝐶𝑀𝐴𝐶 was

only trained for 40𝐾 due to time constraints. Furthermore, another interesting takeaway from both sets

of results is that both 𝐷𝐶𝑀𝐴𝐶 and 𝑄𝑀𝐼𝑋 − 𝑃𝑆 seem to show a lower density of average performing

recovery curves, with higher densities of both low and high performing results.

4.2.2. Environment II: 30 Components

Following the promising results on toy-city-4, only 𝐷𝐶𝑀𝐴𝐶 is tested on toy-city-30, the environment

with 30 components: 15 roads and 15 buildings. The decision to test 𝐷𝐶𝑀𝐴𝐶 over 𝑄𝑀𝐼𝑋 − 𝑃𝑆 is

made regardless of 𝑄𝑀𝐼𝑋 − 𝑃𝑆 having a seemingly higher performance to 𝐷𝐶𝑀𝐴𝐶. This is because

𝐷𝐶𝑀𝐴𝐶 should generally perform better as is seen across literature; the relatively low performance of

𝐷𝐶𝑀𝐴𝐶 to 𝑄𝑀𝐼𝑋 − 𝑃𝑆 in toy-city-4 could just be due to training 𝐷𝐶𝑀𝐴𝐶 for less time-steps.

Looking at the general performance of 𝐷𝐶𝑀𝐴𝐶,it falls short of 𝐼𝑀𝑃𝐵 when comparing cumulative

losses for full network recovery as can be seen in figure 4.8, where 𝐷𝐶𝑀𝐴𝐶 has a mean loss of recovery

of 359 and 𝐼𝑀𝑃𝐵 having a mean of 311. In that case, 𝐷𝐶𝑀𝐴𝐶 only performs slightly better than a

random policy when looking at full recovery. Conversely, when looking at 70% recovery in figure 4.9,

𝐷𝐶𝑀𝐴𝐶 shows a mean recovery loss of 187 with 𝐼𝑀𝑃𝐵 having a mean of 265, which is actually higher

than a random policy at 250. The KDE (Kernel Density Estimation) plot illustrates these discrepancies

clearly; 𝐼𝑀𝑃𝐵 shows a higher density of results around 180− 200 mean losses, but it also shows a higher

density of results above 500 losses when compared to a random policy. 𝐷𝐶𝑀𝐴𝐶 outperforms both of

them and the KDE plot shows a clear increse in density for losses below 300.

Figure 4.8: Density-Loss histograms for toy-city-30 of the tested policies when considering full recovery losses(lower is better)
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Figure 4.9: Density-Loss histograms for toy-city-30 of the tested policies when considering losses incurred until 70% recovery is

achieved (lower is better)

This confirms the ability of 𝐷𝐶𝑀𝐴𝐶 to prioritise early recovery as is seen from the equivalent results

from toy-city-4. It also points out that 𝐼𝑀𝑃𝐵 is exceedingly inadequate at effective early recovery as the

network increases in size and complexity. This behaviour is primarily due to 𝐼𝑀𝑃𝐵 not considering

the interdependencies of buildings to roads explicitly and attempting to repair roads that have debris

on them before clearing the debris itself. This can be illustrated by looking at a sample rollout when

using 𝐼𝑀𝑃𝐵. Figure 4.10 shows a rollout for an earthquake of 8.0 M and an initial CF impact at 0.32.

The recovery curve shows a very slow initial recovery until time-step 8 and then a swift trajectory until

full recovery at time-step 29. In this case 𝐼𝑀𝑃𝐵 only recovers the functionality from 0.32 → 0.59 in

10 time-steps. Conversely, when looking at 𝐷𝐶𝑀𝐴𝐶 in figure 4.11 for an identical initial impact at

𝐶𝐹 = 0.32, 𝐷𝐶𝑀𝐴𝐶 is able to recovery to 0.7 within 10 time-steps, showing a quicker early recovery.

𝐷𝐶𝑀𝐴𝐶 incurs total losses of 254 while 𝐼𝑀𝑃𝐵 incurs losses of 238; however, it is clear to see that the

majority of the losses when using 𝐷𝐶𝑀𝐴𝐶 are incurred after time-step 20.

In both cases, 10 repair crews were available at any one time-step. In the case of 𝐼𝑀𝑃𝐵, during

the first 10 time-steps the algorithm correctly repairs building 8, which is the fire-station (𝐺𝑂𝑉2_8).
However, it spends a lot of the repair effort on attempting to repair roads 0, 10, 11, 9; these roads

are all interdependent to buildings that have debris on them (𝐷𝑆 ≥ 3), namely buildings 6, 5, 13, 4.

Interestingly, the relocation costs of building 0 are constant for all damage states apart from 𝐷𝑆 = 0 as

defined in 𝐻𝐴𝑍𝑈𝑆. Building 5 is defined a college dorm residential building. 𝐼𝑀𝑃𝐵 is then seen to

have a clear inadequacy and leaves a lot of room for improvement in future work. Certain rules could

be incorporated to account for these interdependencies; however, it points to an interesting limitation

in rule-based decision making. The limitation lies in the fact that rules on how interdependencies

should be treated need to be explicitly defined; as the number of considered networks grows and the

interdependencies become more complex, this can quickly become a non-trivial problem to solve as the

exact cascading effects of one component are hard to predict using explicit rules.
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Figure 4.10: One realisation of 𝐼𝑀𝑃𝐵 on toy-city-30 with an earthquake of 9.0 M



4.2. Results 87

Figure 4.11: One realisation og 𝐷𝐶𝑀𝐴𝐶 on toy-city-30 with an earthquake of 8.0 M
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Contrasting 𝐼𝑀𝑃𝐵, 𝐷𝐶𝑀𝐴𝐶 chooses actions that result in more effective early recovery. Specifically,

buildings 7, 8 and 9: the police station, the fire station and the hospital are repaired first along with the

large commercial and office buildings: 9, 11 and 12. Interestingly, when considering the traffic network,

𝐷𝐶𝑀𝐴𝐶 makes an effort to clear the debris of the church: building 14 so that the capacity of road

8 increases from 0.0 to 0.9. Following that 𝐷𝐶𝑀𝐴𝐶 does not make an effort to repair the road itself.

Furthermore, the bulk of the traffic delay cost is recovered at time step 10. This is as a result from the

repair of roads 0, 1, 2, 4, 9, 11 and 12. These are the roads that contribute the most to the traffic delay

cost as after their full repair the cost drops from 1.0 → 0.1. The lack of convergence to full recovery

is then as a result of the dis-repair on buildings: 0, 1, 2, 3 and 4 as well as roads: 3, 5, 7, 8, 10. The 5

buildings are the smallest of the residential buildings and only contribute to the relocation costs of

economic functionality; therefore, their repair yields very little rewards. Considering the roads, road 5

is not involved in traffic assignment itself as it does not lie in any of the shortest paths between roads

that map to the traffic links seen in dashed red lines. Road 5 was modelled to gauge this behaviour

and whether 𝐷𝐶𝑀𝐴𝐶 would ignore it, which is the preferred policy and is what it seen in this rollout.

Roads 3, 7, 10 are central to the residential areas and if they are not repaired the trips between residential

and commercial as well as essential areas are hindered. All though these roads have 0.0 capacity, these

trips are facilitated through road 8, whose capacity is partially recovered early on by repairing the

debris of the church, which in itself does not generate enough income to be otherwise prioritised. The

alternative of this is aiming to repair the roads around the residential area by clearing the debris of

the small residential buildings. This is clearly not chosen by 𝐷𝐶𝑀𝐴𝐶 as these buildings remain in

dis-repair for the remainder of the rollout.

This points at the discrepancy of the action space. Only two actions are available to the agents: repair
or do-nothing, this makes the agents less able to differentiate between only clearing the debris of the

residential buildings and functionally repairing them. Furthermore, the reward for eradicating the

remainder of the traffic delay cost is not enough to incentivise the collective debris clearance of the small

residential buildings. While an addition of a debris clearance action would probably help the agents

differentiate between the two actions, the traffic delay cost curve also points at a poor 𝑂 − 𝐷 matrix.

That is to say that there is not enough traffic delay cost being generated when the roads around the

residential buildings are obstructed. For a detailed view on the 𝑂 − 𝐷 matrix, the defined trips can

be found in Appenix A, Table 7.4. More than 90% of the traffic delay cost is recovered when repairing

the roads around the offices, commercial buildings, hospitals and fire and police stations. While this

could be true for a real community, the ratio of traffic between the commercial / essential areas and the

residential area would probably not be that drastic.

Conclusively, several key takeaways can be drawn from the results shown for both toy-city-4 and

toy-city-30. The takeaways are related both to the comparison between 𝐼𝑀𝑃𝐵 and the three 𝐷𝑅𝐿 tested

algorithms, but also to the increase in network size between toy-city-4 and toy-city-30. The takeaways are

given below with a breakdown of the key result metrics given in ?? and illustrated in figure 4.12.

• 𝐷𝑅𝐿 is exceedingly hardware-hungry and requires prolonged training time for full convergence,

which is not reached in the trained agents tested in this thesis. However, partial training results in

interesting and performative results when compared to 𝐼𝑀𝑃𝐵.

• 𝐷𝑅𝐿 performs poorly in terms of achieving full community recovery when compared to 𝐼𝑀𝑃𝐵.

Additionally, certain algorithms such as 𝑉𝐷𝑁 − 𝑃𝑆 and 𝑄𝑀𝐼𝑋 − 𝑃𝑆 perform particularly poorly

at achieving full recovery and even rank lower than a random policy.

• 𝐷𝑅𝐿 performs better than 𝐼𝑀𝑃𝐵 when comparing partial recovery. This is tested by measuring

the recovery to 70% of initially impacted losses, where 𝐷𝑅𝐿 outperforms 𝐼𝑀𝑃𝐵 across the 2

environments and across 4 different algorithms: 𝐷𝐶𝑀𝐴𝐶, 𝑄𝑀𝐼𝑋 − 𝑃𝑆 and 𝑉𝐷𝑁 − 𝑃𝑆, with

𝐷𝐶𝑀𝐴𝐶 performing better than the other two.

• 𝐼𝑀𝑃𝐵 becomes increasingly worse at swift early recovery as the network size increases. Conversely,

𝐷𝑅𝐿 becomes increasingly better as the network size increases
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Num. Components Policy CL 𝜇 CL-70 𝜇 CL 𝜎 CL-70 𝜎 CL ± CI CL-70 ± CI
4 Random 275.34 197.30 144.18 122.72 ±8.94 ±7.61

4 IMPB 250.91 169.20 120.11 94.98 ±7.44 ±5.89

4 VDN-PS 281.41 169.70 132.12 90.84 ±8.19 ±5.63

4 QMIX-PS 287.33 152.56 129.28 85.49 ±8.01 ±5.30

4 DCMAC 249.65 168.45 123.75 91.05 ±7.67 ±5.65

30 Random 420.42 250.44 147.42 113.95 ±9.13 ±7.06

30 IMPB 311.93 264.99 167.76 146.63 ±10.39 ±9.09

30 DCMAC 359.60 187.12 126.22 81.50 ±7.83 ±5.05

Table 4.7: Performance metrics by policy and number of components, including mean, standard deviation, and 95% confidence

interval (𝑛 = 1000).

Figure 4.12: Conclusive results of VDN-PS (Value Decomposition Network with Parameter Sharing), QMIX-PS (Q-Mixer with

Parameter Sharing), DCMAC (Deep Centeralised Multi-Agent Actor Critic), IMPB (Importance Based) and Random policies.

Numbers above error bars are means and error bars are the 95
𝑡ℎ

% Confidence Interval. CL = Cumulative Losses to full recovey,

CL-70 = Cumulative Losses to 70 % recovery (lower is better)

4.3. Discussion of Results

The results reveal a trade-off in the performance of 𝐷𝑅𝐿, given the non-convergence of learning. The

agents consistently demonstrate high efficacy in prioritizing actions that lead to a rapid, early-stage

recovery of network functionality. However, this focus on immediate reward maximization comes at the

cost of achieving full, system-wide restoration, a goal more reliably met by heuristic baselines. The

primary significance of this research lies not in presenting 𝐷𝑅𝐿 as a superior solution, but in its utility as

a powerful tool for auditing and challenging the assumptions embedded in human-designed, rule-based

policies. Furthermore, while the issue of achieving full learning convergence can be mitigated using

better hardware, the long training times for small networks indicate the need for such frameworks to be

vectorised by using powerful numerical engines, like Google’s 𝐽𝐴𝑋.
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The results on the toy-city-4 network show that the Importance-Based (𝐼𝑀𝑃𝐵) heuristic, while effective

in consistently achieving full recovery, may not represent the most efficient recovery pathway. Through

𝐷𝑅𝐿 is is demonstrated that the majority of the early resilience loss can be minimised more swiftly by

focusing on a select few components. This behaviour is valuable because it can reveal biases in the way

we model environments as engineers and decision makers. While 𝐷𝑅𝐿 methods can have their own

biases, the approach in this thesis is designed to be minimally biased, as agents were given no explicit

instructions on repair prioritization beyond the constraints of the environment itself. They learned

to identify and exploit bottlenecks, such as the random ranking of components when multiple repair

actions are chosen, thereby developing intelligent scheduling policies.

This emergent 𝐷𝑅𝐿 behaviour can also be used as a diagnostic tool for the environment model. The

agents’ tendency to halt repairs after reaching approximately 70% recovery did not signify a failure to

learn; rather, it signified a successful exploitation of a modelling discrepancy where the incentive for

completing the final repairs was insufficient. Furthermore, the agents independently identified that

certain components—such as a specific hospital and a key road link—governed a disproportionate

amount of the network’s overall performance. While this is true in any real network, the model allowed

these components to be singled out almost exclusively. This highlights a fundamental challenge in

resilience engineering: the difficulty of appropriately weighting the functionality of diverse community

subsystems and ensuring that holistic resilience metrics do not inadvertently oversimplify complex

interdependencies.

In a practical sense, as was seen from the results of toy-city-30, the agents were able to recover the

majority of the traffic delay cost and other loss without repairing small single-family residential homes

and several roads. Firstly, this points to a poor trip generation methodology as some roads did not

contribute to overall traffic delay cost. Secondly, even though the small residential houses do not

contribute much to the aggregate of community functionality, in a real disaster scenario they need to

be repaired as well. Thus, the recommendation is to exploit the use of 𝐷𝑅𝐿 for early-stage recovery

because of the apparent effective prioritisation, but maintain a critical view of the recovery process by

comparing and contrasting repair scheduling policies against existing importance-based approaches.

4.4. Comparison to State of the Art

A direct comparison of the numerical results of this work with existing literature is challenging due to

two key areas of novelty. Firstly, the majority of research applying DRL to infrastructure management

focuses on gradual deterioration over time, with very little work addressing the specific problem of

post-earthquake repaier scheduling. Secondly, the work that does exist in the post-disaster context

often frames the objective function and agent rewards in direct monetary terms. In contrast, this

thesis introduces a dimensionless community resilience metric derived from several dimensioned,

non-monetary and monetary subsystem metrics (e.g., number of available hospital beds, traffic flow

capacity). However, some key points can be made; firstly, relating the work to Yang et al. which most

closely resembles this research, this thesis makes several improvements in modelling a stochastic seismic

hazard scenario, but also repair costs and losses, [96]. Conversely, the importance-based algorithm

presented in this thesis was heavily influenced by the specifics of the environment and is thus difficult

to directly compare it to literature. However, the general approach of 𝐼𝑀𝑃𝐵 aligns with general

ranking-based repair scheduling. Their results show a quicker early recovery and slower late recovery

when using 𝐷𝑅𝐿, which matches this thesis’s results. Interestingly, 𝐷𝑅𝐿 was able to make decisions

on repairing relatively non-economically important buildings such as the church just to increase the

capacity of its interdependent road. This shows that 𝐷𝑅𝐿 was able to, at least partially, perceive the

interdependency between roads and buildings without having explicit instructions to do so via a graph

or another relational state definition. In contrast, 𝐼𝑀𝑃𝐵 was seen to perform increasingly worse for the

larger environment as it attempted to make road repairs even if the debris of dependent buildings was

not cleared, effectively delaying the repair process unnecessarily. This is principally due to 𝐼𝑀𝑃𝐵 being

developed with few rules, the work of Sediek et al. employs such heuristic algorithms that include a far

deeper heuristic decision tree which, if implemented, could provide a stronger comparative baseline

against which 𝐷𝑅𝐿 could be tested, [82].
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When looking at the general research in infrastructure management using 𝐷𝑅𝐿, this thesis confirms

that 𝐶𝑇𝐶𝐸 approaches such as 𝐷𝐶𝑀𝐴𝐶 tend to perform better than 𝑄𝑀𝐼𝑋 − 𝑃𝑆 and 𝑉𝐷𝑁 − 𝑃𝑆
but are hard to scale to larger environments. A principal point of difference between this research

and existing literature is the observability of the 𝑀𝐷𝑃. In most work that looks at deteriorating

infrastructure environments, the agents hold a belief over possible states and the true state is hidden.

Conversely, this thesis uses a fully observable 𝑀𝐷𝑃. While this might be viewed as more appropriate for

post-disaster scheduling than for maintenance planning, the use of a 𝑃𝑂𝑀𝐷𝑃 can generally describe real

infrastructure management scenarios better. Furthermore, using a 𝑃𝑂𝑀𝐷𝑃 leverages the advantages

of 𝐷𝑅𝐿, as it can be expected to perform better with higher levels of uncertainty than rule-based

approaches.

4.5. Limitations and Future Work

The limitations of the presented research lie principally in seismic hazard modelling, environment

formulation, and the computational complexity of 𝐷𝑅𝐿. Specifically, considering that 𝐷𝑅𝐿 can handle

approximately 10
1

or 10
2

agents, it is exceedingly difficult to use it as a decision-making tool for real

communities. Thus, a custom environment has to be used. Additionally, considering that the objective

function is an aggregate of sub-system functionalities, several limitations arise in modelling a custom

community such that it represents a realistic community.

Considering the methodology for seismic hazard assessment,this thesis simulates a list of earthquake

magnitudes given a maximum and minimum range and uses to generate 𝐼𝑀 values at study sites.

Probabilistic Seismic Hazard Assessment (PSHA) was tested in the later stages of this thesis, but found

to be too computationally expensive. Given that overall simulation time was already hindered by 𝐷𝑅𝐿,

it was not possible to integrate it into the methodology.However, if careful consideration of the faults

around a community is made, then a methodology for modelling seismic hazard probabilistically as a

function of an annual probability of exceedance can be formed. This would allow for the seed of a given

rollout to be the annual probability of exceedance (APE) and not the earthquake magnitude, which,

in resilience loss terms, is more valuable. This would allow the analysis of different policies on how

they perform for certain APA values. This process has to be modelled as a Poisson process, which is

the commonly used statistical model for stochastically predicting seismic hazard curves. While this

requires the combined simulation of many rupture scenarios for the deduction of one hazard curve,

other approaches can be found that use single-fault events at each 𝐷𝑅𝐿 realisation. Given the large

number of simulation steps in a 𝐷𝑅𝐿 experiment, this could be adapted to approximate a Poisson

process, regardless of the single-realisation analysis being non Poissonian. Additionally, the spatial

correlation of 𝐼𝑀 levels should be considered, especially as the environment grows in size. This is

because the sampled mean for two study sites can vary if the sampling technique is not correlated.

Traffic assignment relies on trip data that is either generated or collected from field research. In

this thesis, trips were generated manually by using reasonable assumptions about driver behaviour.

However, this proved to induce the majority of the post-disaster delay costs on a handful of roads.

While this can be realistic for some communities, the limitation of this approach lies in realistically

representing driver behaviour. Thus, trip generation for a custom environment can be improved by

considering 𝑇𝐴𝑍𝑠 (Traffic Assignment Zones) that relate to the land use of specific clusters within

a community. For instance, existing data on trips to and from residential, commercial and essential

zones can be used to generate trips. This would make the resulting contribution of each traffic link to

overall traffic performance more realistic. Additionally, the use of a global traffic-related cost metric

could be changed to contribute to specific sub-systems. For instance, the delay of trips to and from the

hospital can be integrated into the healthcare functionality metrics. This will make the meaning of the

traffic delay more sub-system specific. Another aspect of traffic modelling that can be improved is in

post-disaster driver behaviour. Drivers and community users in general will tend to have different

driving patterns after an earthquake as many facilities might be closed and users will be distraught or

injured and might not be able to take any trips at all. For example, the trips from residential buildings to

a shopping mall are assumed to stay constant in pre- and post-disaster scenarios. This is most probably

not true after a disaster. At last, the algorithm and general methodology used to solve traffic assignment

can be strengthened by considering dynamic route choice. This thesis considers static assignment such
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that once drivers observe the reduction in capacity due to debris, they chose a route, which they take

until completion, regardless of the effect of dynamic congestion. In reality, a driver is very likely to

chose a non-congested road when being on a congested road.

Concerning the definition of community resilience, the thesis presents a basic approach in aggregating

economic, healthcare and critical functionalities. Future improvements on this approach can be made

by conducting a sensitivity analysis on the weighting of different sub-system functionalities. This would

allow researchers to gauge the role that each sub-system plays in overall community performance

and choose the weighting profile in a more informed way. Additionally, more indirect losses can be

incorporated to deal with different hazards and different communities. For instance, if this approach is

to be applied a multi-hazard setting that gauge the combined risk from many different disruption types,

the types of losses that apply to any one hazard are very different from the rest. For example, when

looking at the losses caused by a wildfire, indirect environmental losses are of high interest as vast areas

of woodland can be lost.



5
Conclusion

5.1. Summary
This thesis researches the use of MARL for post-earthquake repair scheduling of interdependent

infrastructure. It does so by collecting relevant fragility and vulnerability data on US-based infrastructure

systems and modelling two custom test beds with 4 and 30 components respectively. MARL is tested as

a solution concept by developing a Python environment for simulating the decision making scenario and

running MARL experiments. MARL is benchmarked against baseline importance-based and random

solvers. Scenario-based earthquake modelling is used to randomly sample an earthquake from a dataset

of 9 earthquake magnitude (6.0 to 9.0) with 100 per-magnitude instances at every initialisation of a rollout.

Intensity measure data for the earthquakes is retrieved from INCORE, and HAZUS fragility functions

are used to sample component damage state probability distributions. Post-earthquake community

functionality is formulated as a weighted sum of economic, healthcare and critical functionalities.

Economic functionality includes the community’s cumulative income against costs like building and

road repair costs, traffic delay cost and relocation costs. Healthcare functionality is a measure of

the number of beds and doctors available before and after the earthquake. Critical functionality is a

measure of the functioning essential facilities before and after the earthquake. The aggregate community

functionality metric is used to compute the instantaneous resilience of the community at each time-step

as the shared reward among agents. Constraints on the environment include a budgetary constraint

in the form of the number of available repair crews at each timestep. Agents are allowed to act on

the environment as long as there are available repair crews. The objective and research questions are

repeated below:

Problem Statement

• Natural Disasters are increasing in frequency and are causing exceeding economic and human

losses to communities around the world. Decision-makers have little access to tools that can help

them reduce their communities’ disaster risk before, during and after disastrous events.

Research Questions

1. Principal Research Question:

(a) How effective is Reinforcement Learning when used as a decision-making tool for post-

earthquake repair scheduling of interdependent infrastructures and when compared to

baseline methods?

2. Sub-Questions:

(a) How accurate is the computational modelling of earthquakes for different locations?

(b) What are the factors contributing to community functionality before and after an earthquake

disaster?

93
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(c) How can different community functionality metrics be distilled into an aggregate community

functionality metric?

(d) How can an aggregate community functionality metric be used to describe the resilience of a

community in terms of its ability to rebound after an earthquake?

MARL was tested using three algorithms, Value Decomposition Network with Parameter Sharing

(VDN-PS), Q-Learning with a Mixer Network and Parameter Sharing (QMIX-PS) and Deep Centralised

Mult-Agent Actor Critic (DCMAC). Through iteration and testing of eight environment versions,

DCMAC was found to be the most performative. However, training did not result in clear convergence

as the total number of training timesteps was kept at 100K. Given that these runs already took in excess

of ten hours to complete, it was difficult to conduct thorough testing for so many environment versions

with more timesteps. Nonetheless, inference of DCMAC showed that the specific advantage of using

𝐷𝑅𝐿 lies in the early recovery phase. 𝐷𝐶𝑀𝐴𝐶 performed better than the other two algorithms and only

matched 𝐼𝑀𝑃𝐵 when considering the recovery of all losses. In contrast, when looking at recovering

70% of the impact losses 𝐷𝐶𝑀𝐴𝐶 performed much better than 𝐼𝑀𝑃𝐵, which performed worse than a

random policy for the larger environment. From this, three key conclusions are drawn:

• 𝐷𝐶𝑀𝐴𝐶 can effectively prioritise early recovery better than importance-based scheduling,

𝑉𝐷𝑁 − 𝑃𝑆 and 𝑄𝑀𝐼𝑋 − 𝑃𝑆 by effectively learning which components contribute to aggregate

community functionality the most. It exhibits this performance while not being given any explicit

information about how important components are, even when put under budgetary constraints

that apply a random ranking if the joint actions exceeds the number of available repair crews at

each decision step. However, It fails to fully recover the community as it does not receive large

enough reward for doing so, especially later on in the recovery process, where the discount factor

is more effective.

• 𝐼𝑀𝑃𝐵, as defined this thesis, exhibits poor performance for larger environments as it cannot

effectively abstract the interdependencies of the network. This is due to the specific rules of the

algorithm, which were kept simplistic. All though not tested in this thesis, the behaviour of an

importance-based algorithm for larger, stochastic environments with more types of interdepen-

dences is expected to further deteriorate in relation to 𝐷𝑅𝐿.

• 𝐷𝑅𝐿 is exceedingly resource-hungry and requires expensive hardware for effective learning. Thus,

the computational implementation of 𝑀𝐷𝑃𝑠 should vectorised with numerical computation

libraries such as 𝐽𝐴𝑋 that can allow parallel training instances.

Overall, the principal research question was answered by testing multiple environment versions and

three MARL algorithm. MARL can then be effective and preferable in post-earthquake early-phase

repair scheduling when compared with baseline importance-based and random solvers. Answering

the sub-questions, earthquake modelling for different location is still a topic of ongoing research and

current approaches can be accurate if proper boundary conditions are used. Specifically, a simplified

scenario-based approach is used which can effectively attenuate ground motion, but does not say much

about the risk associated with all the ruptures that might affect a given location. Concerning resilience,

the factors contributing to community functionality as considered in this thesis are repair costs, income

and income loss, repair times and relocation costs. However, this thesis recognises that these metrics are

used given the formulation of the environment. It should be the common goal of resilience formulations

to include many different aspects of resilience and consider a holistic post-disaster recovery. Given

these conclusions, the goal is to then promote the use of 𝐷𝑅𝐿 for post-earthquake recovery to inform

existing heuristic approaches, such as importance-based scheduling. This can allow engineers and

decision makers to make smarter early-phase recovery decisions by combining expert judgment as well

as state-of-the-art 𝐷𝑅𝐿 and heuristic approaches.

5.2. Reflection

Having completed this thesis, I believe the main contribution to the field lies in the ability of intelligent

agentic systems to assist decision makers in strategising for post-disaster community recovery. The

urgency of the problem and the computational and technical complexity of the implementation made
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researching and compiling this thesis highly valuable. As someone with training in Architecture and 
little to no experience in infrastructure modelling or 𝐷𝑅𝐿, I found some of the topics incredibly difficult 
to understand, and even more so to implement in a tool. However, because of this, I think I learnt a lot 
that I otherwise wouldn’t have, if I had chosen a thesis topic that most well aligned with my previous 
skill set. I took the decision to undertake this research project as I saw the urgency in mitigating hazard 
exposure in the built environment and because I enjoyed the systems-level thinking associated with 
infrastructure management. I also maintained interest in the topic, even when my experiments were 
failing, which happened more time than not. Considering that the work is quite novel, there was few 
tools available that could fix parts of the experiment for me; in this way I had to debug most of the 
issues myself, which was frustrating but very rewarding. Conclusively, I think, personally, the thesis 
offered me a way to develop my technical and software skill set, but also allowed me to think differently 
about infrastructure and hazard risk. In the broader field of Building Technology, I think the research 
provides a starting point in using cutting edge tools for mitigating hazard risk by means of 𝐷𝑅𝐿.

However, I think certain parts of the research leave much to be desired. Considering the applied nature 
of the topic, I spent the majority of the time developing and testing code. This allowed me to develop 
a rich environment that describes the various indirect losses such as income, traffic, relocation etc. 
Reading and compiling literature was done sporadically, when I think I could have spent a little more 
time early on to learn from existing literature. This would have both saved me time in amending errors 
later on in the code, but also provided a richer literature review, which is the weakest, I believe, part of 
the thesis. Likewise, I think I could have begun 𝐷𝑅𝐿 testing earlier so that I cant test various reward 
functions, action spaces and different budgetary c onstraints. I was naive to think that the integration of 
𝐷𝑅𝐿 into the research would be manageable in the time-frame left between P3 and P5. However, even 
having a well documented and tested 𝐷𝑅𝐿 framework from Prateek Bhustaki, who also was very kind 
to meet with me regularly, I was faced with many errors that were extremely hard to spot, never mind 
solve. However, it is hard to say whether I would say the same if I had an environment that was less 
rich in engineering terms but had more a more thorough 𝐷𝑅𝐿 methodology. For me, this indicates 
the trade-offs one can expect in this type of research; considering that this research is done writhing 
engineering and architecture and not computer science, the principal goal is always to make a rich and 
realistic infrastructure environment over a complete 𝐷𝑅𝐿 methodology. Nevertheless, I think these 
challenges allowed me to stay constantly engaged with the topic, even though the execution of certain 
chapters could be improved. I hope the work inspires other researchers or future Building Technology 
students to look into infrastructure management.
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