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COMBINING THE AUGMENTED LAGRANGIAN
PRECONDITIONER WITH THE SIMPLE SCHUR COMPLEMENT
APPROXIMATION*

XIN HE', CORNELIS VUIK!, AND CHRISTIAAN M. KLAIJS

Abstract. The augmented Lagrangian (AL) preconditioner and its variants have been success-
fully applied to solve saddle point systems arising from the incompressible Navier-Stokes equations
discretized by the finite element method. Attractive features are the purely algebraic construction
and robustness with respect to the Reynolds number and mesh refinement. In this paper, we recon-
sider the application of the AL preconditioner in the context of the stabilized finite volume methods
and present the extension to the Reynolds-Averaged Navier-Stokes (RANS) equations, which are
used to model turbulent flows in industrial applications. Furthermore, we propose a new variant of
the AL preconditioner, obtained by substituting the approximation of the Schur complement from
the SIMPLE preconditioner into the inverse of the Schur complement for the AL preconditioner.
This new variant is applied to both Navier-Stokes and RANS equations to compute laminar and
turbulent boundary-layer flows on grids with large aspect ratios. Spectral analysis shows that the
new variant yields a more clustered spectrum of eigenvalues away from zero, which explains why it
outperforms the existing variants in terms of the number of the Krylov subspace iterations.

Key words. Reynolds-Averaged Navier-Stokes equations, finite volume method, Block struc-
tured preconditioner, augmented Lagrangian preconditioner, SIMPLE preconditioner.

AMS subject classifications. 65F10, 65F08

1. Introduction. The augmented Lagrangian (AL) preconditioner [2], belong-
ing to the class of block structured preconditioners [9,26,27], is originally proposed
to solve saddle point systems arising from the incompressible Navier-Stokes equations
discretized by the finite element method (FEM). The AL preconditioner features a
purely algebraic construction and robustness with respect to the Reynolds number
and mesh refinement. Because of these attractive features, recent research was de-
voted to the further development and extension of the AL preconditioner, notably the
modified variants [3-5] with reduced computational complexity and the extension [32]
to the context of stabilized finite volume methods (FVM), which are widely used in
industrial computational fluid dynamic (CFD) applications.

Although applying FEM and FVM to the incompressible Navier-Stokes equations
both leads to saddle point systems, the extension from FEM to FVM is nontrivial, see
[32] for a detailed discussion on the dimensionless parameter that is involved in the AL
preconditioner, its influence on the convergence of both nonlinear and linear iterations
and the proposed rule to choose the optimal value in practice. We observed that the
features of the AL preconditioner exhibited in the FEM context, e.g. the robustness
with respect to the Reynolds number and mesh refinement, are maintained in the
context of FVM, at least for academic benchmarks. This motivates us to consider the
application of the AL preconditioner in the broader context of Reynolds-Averaged
Navier-Stokes (RANS) equations, which are used to model turbulent flows in industrial
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2 X. HE, C. VUIK, AND C.M. KLAIJ

CFD applications. These equations are obtained by applying the Reynolds averaging
process to the Navier-Stokes equations and adding an eddy-viscosity turbulence model
to close the system, see [11,23,30]. Such models represent the effect of turbulence on
the averaged flow quantities through a locally increased viscosity.

Unfortunately, straightforward application of the AL preconditioner to the RANS
equations yields disappointing results as we will show in this paper. Therefore, we
reconsider the approximation of the Schur complement which is the key to the effi-
cient block structured preconditioners [1,24]. In [15], we compared the exact Schur
preconditioner with several cheaper approximations, including SIMPLE, for three test
cases from maritime engineering, characterized by the thin turbulent boundary layers
on grids with high aspect ratios. In this paper, we propose a new Schur complement
approximation which leads to a new variant of the AL preconditioner. The approach
is to substitute the approximation of the Schur complement from the SIMPLE precon-
ditioner [14,16] into the inverse of the Schur complement for the AL preconditioner.
This choice is motivated by the simplicity that in the utilised FVM the Schur comple-
ment approximation from the SIMPLE preconditioner reduces to a scaled Laplacian
matrix [14,16] and the efficiency of the SIMPLE preconditioner on the complicated
maritime applications [15,16]. As we will show, the new variant of the AL precondi-
tioner significantly speeds up the convergence rate of the Krylov subspace solvers for
both turbulent and laminar boundary-layer flows computed with a stabilized FVM.

The structure of this paper is as follows. The Reynolds-Averaged Navier-Stokes
equations and the discretization and solution methods are introduced in Section 2.
The new method to construct the approximation of the Schur complement in the AL
preconditioner is presented in Section 3, followed by a brief recall of the old approach.
A comparison with the SIMPLE preconditioner in Section 3.4 is based on a basic
cost model presented in Section 4. Section 5 includes the numerical experiments
carried out on the turbulent and laminar benchmarks. Conclusions and future work
are outlined in Section 6.

2. Governing equations and solution techniques. In this section, we in-
troduce the Reynolds-Averaged Navier-Stokes equations as well as the finite volume
discretization and solution methods.

2.1. Reynolds-Averaged Navier-Stokes equations. Incompressible, turbu-
lent flows often occur in the CFD applications of the maritime industry. Most com-
mercial and open-source CFD packages rely on the Reynolds-Averaged Navier-Stokes
(RANS) equations to model such flows [11,23,30] since more advanced models, such as
the Large-Eddy Simulation (LES), are still too expensive for industrial applications.
Besides, engineers are firstly interested in the averaged properties of a flow, such as
the average forces on a body, which is exactly what RANS models provide.

The RANS equations are obtained from the Navier-Stokes equations by an aver-
aging process referred to as the Reynolds averaging, where an instantaneous quantity
such as the velocity, is decomposed into its averaged and fluctuating part. If the flow
is statistically steady, time averaging is used and ensemble averaging is applied for
unsteady flows. The averaged part is solved for, while the fluctuating part is mod-
elled which requires additional equations, for instance for the turbulent kinetic energy
and turbulence dissipation, see [11,23,30] for a broader discussion. The Reynolds-
Averaged momentum and continuity equations are here presented in the conservative
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AL PRECONDITIONER WITH SIMPLE SCHUR APPROXIMATION 3

form using FVM for a control volume ) with surface S and outward normal vector n:

/puu«ndSJr/PndS—/,ueff(Vu+VuT)~ndS:/pbdQ,
S S S Q

/u~ndS:0
s

where u is the velocity, P = p+ % pk consists of the pressure p and the turbulent kinetic
energy k , p is the (constant) density, pog is the (variable) effective viscosity and b is a
given force field. On the boundaries we either impose the velocity (u = uyef on inflow
and u = 0 on walls) or the normal stress (peg 32 — Pn = 0 on outflow and farfield).
The effective viscosity peg is the sum of the constant dynamic viscosity p and the
variable turbulent eddy viscosity u¢ provided by the turbulence model as a function
of k and possibly of other turbulence quantities. Notice that for laminar flows, where
k and puy are zero, the RANS equations reduce to the Navier-Stokes equations.

In this paper, we will consider laminar flow of water over a finite flat plate at
Re = 10° and turbulent flow at Re = 107. The density and dynamic viscosity of
water at atmospheric pressure and 20 degrees Celsius are roughly p = 1000[kg/m3]
and p = 0.001[kg/m/s], see [31]. The inflow velocity ues in [m/s] is adjusted to
obtain the given Reynolds number Re = % based on the length Lo = 1[m]
of the plate. The flow is characterized by a very thin boundary layer on the plate
which is fully resolved by stretching the grid in the vertical direction. This inevitably
results in high aspect-ratio cells near the plate. At the higher Reynolds number, the
flow becomes turbulent in this thin boundary layer and in the wake of the plate.
Figure 1 illustrates how the effective viscosity (provided in this case by the k-w SST
model [20]) varies in the domain: the eddy viscosity in the wake of the plate is two
orders of magnitude larger than the dynamic viscosity. We will also consider turbulent
flow over a backward-facing step at Reynolds 5 - 10* based on the step height, which
has similar eddy-viscosity magnitude in the wake of the step.

Solvers for the RANS equations should be able to handle both challenges, i.e.
high-aspect ratio cells and significant variation in viscosity.

(1)

Fig. 1: For the turbulent flat plate problem, the ratio between the eddy viscosity and
dynamic viscosity, i.e., ut/p in the wake of the plate.

EddyViscosityRatio
0

:

flat plate

2.2. Linear saddle point system. As explained in [15], the nonlinear system
(1) is solved for u and P as a series of linear systems obtained by Picard linearization
[11], i.e. by assuming that the mass flux pu - n, the turbulent kinetic energy k and
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4 X. HE, C. VUIK, AND C.M. KLALJ

the effective viscosity peg are known from the previous iteration. The turbulence
equations are then solved for k and possibly other turbulence quantities, after which
the process is repeated until a convergence criterion is met.

After linearization and discretization of system (1) by the cell-centered and co-
located FVM [11], the linear system is in saddle point form as

o L el g

where () corresponds to the convection-diffusion operator and the matrices G and D
denote the gradient and divergence operators, respectively. The matrix C' comes from
the stabilization method. The details of these matrices are presented as follows.

The linearization and the explicit treatment of the second diffusion term ,ueffVuT~
n by using the velocity and effective viscosity from the previous iteration make the
matrix @ of a block diagonal form. Each diagonal part @Q;; is equal and contains
the contributions from the convective term pu;u-n and the remaining diffusion term

Heft Vs - 1.
In FEM the divergence matrix is the negative transpose of the gradient matrix,
ie. D = —G7. However, in FVM we have D; = G; on structured and unstructured

grids, where ¢ denotes the components therein. Only for structured grids we have
that D is skew-symmetric (D; = —D]) and therefore that D = —G* as in FEM. We
refer to [11] for the details of D and G in FVM.

To avoid pressure oscillations when the velocity and pressure are co-located in the
cell centers, the pressure-weighted interpolation (PWI) method [21] is applied here
and leads to the stabilization matrix C as

(3) C = Ddiag ' (Q)G — diag™*(Qii) Ly,

where L, is the Laplacian matrix. The details about the PWI method and its repre-
sentation by the discrete matrices as (3) are given in [14, 16].

2.3. Preconditioners for saddle point systems. Block structured precondi-
tioners are used to accelerate the convergence rate of the Krylov subspace solvers for
saddle point systems as (2). They are based on the block £LDU decomposition of the
coefficient matrix given by

(4) A=LDU = [g g} - [Dé_l ?] [g g} {é Q;G}’

where S = C — DQ~'G is the so-called Schur complement. To successfully design
block structured preconditioners, a combination of this block factorization with a suit-
able approximation of the Schur complement is utilized. It is not practical to explicitly
form the exact Schur complement due to the action of Q! typically when the size is
large. This implies that constructing the spectrally equivalent and numerically cheap
approximations of the Schur complement can be very challenging. There exist several
state-of-the-art approximations of the Schur complement, e.g. the least-square com-
mutator (LSC) [8], pressure convection-diffusion (PCD) operator [13,28], SIMPLE(R)
preconditioner [16,17,29], and augmented Lagrangian (AL) approach [2—4,32] etc.
These Schur complement approximations are originally designed in the context of
stable FEM where the (2, 2) block of A is zero. We refer for more details of the Schur
approximation to the surveys [1,24,26,27] and the books [9,22].
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AL PRECONDITIONER WITH SIMPLE SCHUR APPROXIMATION 5

This paper is meant to significantly improve the efficiency of the AL precondi-
tioner in the turbulent and laminar boundary-layer flows computed with a stabilized
FVM. To fulfil the objective of this paper, a new variant of the AL preconditioner
is proposed, which substitutes the approximation of the Schur complement from the
SIMPLE preconditioner into the inverse of the Schur complement for the AL precon-
ditioner. More details are presented in the next section.

3. Augmented Lagrangian preconditioner. In this section, we propose the
new method to construct the approximation of the Schur complement in the AL
preconditioner, followed by the comparison with the old approach.

3.1. Transformation of the linear system. It is observed in [2,3] that apply-
ing the AL preconditioner allows us to circumvent the challenging issue of constructing
the numerically cheap and spectrally equivalent approximation of the Schur comple-
ment S of the original system (2). To apply the AL preconditioner, the original system
(2) is transformed into an equivalent one with the same solution [3,32], which is of
the form

g 5 GBIl o -5
where Q, = Q —YGW™'D, G, = G—yGW~'C and £, = f — yGW ~!g. The scalar
v > 0 and the matrix W should be non-singular. This transformation is obtained by
multiplying —vGW ! on both sides of the second row of system (2) and adding the
resulting equation to the first one. Clearly, the transformed system (5) has the same
solution as system (2) for any value of v and any non-singular matrix W. The Schur
complement of A, is S, = C — DQ;IGW.

The equivalent system (5) is what we want to solve when applying the AL pre-
conditioner. Using the block DU decomposition of A, the ideal AL preconditioner
Prar is given by

(6) Prar = {QV Qq ;

o 3,

where §A, denotes the approximation of S.,.

The modified variant of the ideal AL preconditioner, i.e., the so-called modified
AL preconditioner, replaces ), by its block lower-triangular part, i.e. @, such that
the difficulty of solving sub-systems with @), is avoided [3]. To see it more clearly, we

take a 2D case as an example and give @), and (), as follows

Q= [%1 gj G = {gj ,D=[D1 D],

Q, = Q1 —1GiW D, —yGiW ™D,
K —yGo WDy Q1 —YGaW ™Dy’

QV _ Q1 — ’)/G1W_1D1 0]
7 —GoW™IDy Q1 —yGoW 1D, |”

Substituting QVW into Prar as (6), then we get the modified AL preconditioner Pasay:

@ G,
o S,

(7) Priar =
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6 X. HE, C. VUIK, AND C.M. KLAIJ

It appears that one needs to solve sub-systems with éw when applying Prrar.
This work is further reduced to solve systems with Q1 — ’yG1W’1D1 and Q1 —
yGoW ~tDy. These two sub-blocks do not contain the coupling between two com-
ponents of the velocity so that it is much easier to solve, compared to (), involved in
Prac.

3.2. New Schur complement approximation. The key of the ideal and mod-
ified AL preconditioners is to find a numerically cheap and spectrally equivalent Schur
complement approximation S,. The novel approximation proposed by this paper is
based on the following lemma.

LEMMA 3.1. Assuming that all the relevant matrices are invertible, then the in-
verse of Sy is given by

®) S71 =57 I —ACW ) 4w,

where S = C — DQ™'G denotes the Schur complement of the original system (2).

Proof. We refer to [3,32] for the proof. ]

This lemma was already published but its importance was not fully appreciated.
Since Lemma 3.1 gives the connection between the Schur complement S, and S, it
provides a framework to build the approxnnatlon of S,. Provided an approximation

of S denoted by S, it is natural to substitute S into expression (8) to construct an
approximation of S, in the inverse form as

(9) S hew =S I =4CW ) + AW,

where the notation new is used to differ from the old approach to approximate S,
discussed in the next section.

Actually it is not necessary to explicitly implement SlY new- Solving a sub-system
with S,Y new, 1.€., Sw new X = b, converts to multiply the vector b on both sides of
expression (9). Supposed that W is a diagonal matrix, e.g. the mass matrix M, with
density multiplied with cell volumes in FVM, the complexity of (S~(I — WCW_l) +
AW ~1)b is focused on solving the system with S. This means that the accelerating
techniques to optimize S can reduce the computational time of the new approach.

From expression (9) it is clear that the Schur complement approximation S pro-
posed for the original system (2) is used to construct §,Y new here. Among the known
LSC, PCD and SIMPLE methods, this paper chooses the Schur complement approx-
imation arising from the SIMPLE preconditioner. One motivation is that in the
context of the considered FVM the Schur complement approximation from the SIM-
PLE preconditioner reduces to a scaled Laplacian matrix. See more details in the next
paragraph. This choice is also motivated by the efficiency of the SIMPLE precondi-
tioner on the complicated maritime applications, see [15,16] for instance. We expect
that the choice of the Schur complement approximation arising from the SIMPLE
preconditioner helps to build a numerically cheap and efficient Sy new-

Regarding the Schur complement S = C' — DQ~'G of the original system (2), the
SIMPLE preconditioner approximates @) by its diagonal, diag(@), and obtains the
approximation of S as S; = C' — Ddiag™*(Q)G. Taking into account the stabilization
matrix ¢ = Ddiag™ Q)G — diag ' (Qii) L, as given in (3), we further reduce the
approximation to SsIMPLE = —diagfl(Qii)LP because the term Ddiagfl(Q)G in S
and C cancels. See, for instance, [14,16] for a detailed discussion of obtaining §SIMPLE

This manuscript is for review purposes only.
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AL PRECONDITIONER WITH SIMPLE SCHUR APPROXIMATION 7

in FVM. Substituting §SIMPLE and W = M,, into expression (9) we obtain
(10) S7tow = Soiipre(l — YOM, ") +yM, ", where SsivpLe = —diag ™ (Qis) Ly.

Y new

Based on the above approach, it is seen that there is no extra requirement on
the value of the parameter v so that S, new can be obtained. As pointed out in the
next section, the requirements in the old approximation of the Schur complement
are contradictory. This suggests that the convergence rate of the Krylov subspace
solvers preconditioned by the AL preconditioner with the new Schur complement
approximation is weakly depending on the value of . This advantage makes the new
AL variant less sensitive to the choice of . See the results regarding the influence of
~ on the convergence rate in the numerical experiment section.

3.3. 0Old Schur complement approximation. For a comparison reason, the
old approximation of the Schur complement in the AL preconditioner is recalled in
this section. The starting point to construct the old approximation of the Schur
complement in the AL preconditioner is also Lemma 3.1. However, the strategy is
totally different. Choosing W7 = vC' + M,, and substituting 77 into expression (8)
we have

S71 =871 — (7O + My — Mp)(vC + Mp) 1) +4(7C + M)~
= 5" M,(yC + My) ' +4(7C + M)
= (y7ISTIM,, + 1)(C + 7 M)

For large values of v such that | v"'S71M, |« 1, the term y~'S~'M, can be
neglected so that we have S, o1q4 as follows

(11) 57 old = C + ’y_lMp.

The choice of Wy = yC + M, is not practical since the action of W, ' is needed
in the transformed system (5). The ideal and modified AL preconditioners, used for
instance in [3,32], omit the term yC' in W; and choose W = M,,. The choice W = M),
only involves the mass matrix M,,, which is easily inverted especially in FVM where
M, is a diagonal matrix.

The contradictory requirements in the above method are presented as follows.
The approximation S o4 is obtained if and only if W; = vC + M,, and large values
of v are chosen. However, W = M, is close to W; = vC + M, only when v is
small. This means that it is contradictory to tune the value of vy so that W = M,
and 57 old could be simultaneously obtained. A simply balanced value of v is v =1
or O(1). This disadvantage reflects in the convergence rate of the Krylov subspace
solvers. This paper shows that for the laminar calculations the number of the Krylov
subspace iterations preconditioned by the AL preconditioner with S, g4 is about
fourteen times larger than the new Schur approximation §,Y new- An application of
the AL preconditioner with §7 old in the more challenging turbulent computations
with variable viscosity and more stretched grids shows a very slow convergence or
even stagnation. See numerical experiments in Section 5.

In summary, regarding the ideal and modified AL preconditioners applied to the
transformed system (5), there are two types of Schur complement approximations, i.e.
1. ST ew = Sevpre(d = YOM 1) + M1, Ssiwpre = —diag™' Qi) Ly

2. S’Y olda =C +’y_1Mp.
The choice of W = M, is fixed in the transformation to obtain the equivalent system
(5) and the construction of two Schur complement approximations.

This manuscript is for review purposes only.
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8 X. HE, C. VUIK, AND C.M. KLAIJ

3.4. SIMPLE preconditioner. Although the focus of this paper is on the
new Schur complement approximation and its advantage over the old one in the AL
preconditioner, we also present the SIMPLE preconditioner for a more comprehensive
comparison. Different from the ideal AL preconditioner and its modified variant, the
SIMPLE preconditioner is proposed for the original system (2), which is based on the
block LDU decomposition of the coefficient matrix A and given by

N
PsimpPLE = [g 'OSV} [(l) diag I(Q)G}y

where S denotes the approximation of the Schur complement of A, ie., S = C —
DQ~'G. With the stabilization matrix C' given by (3), the Schur complement ap-
proximation becomes S = §SIMPLE = fdiag_l(Qii)LP where L, is the Laplacian
matrix. Therefore, the scaled Laplacian matrix is used as the approximation of the
Schur complement in the SIMPLE preconditioner. In order to avoid repetition we
refer to Section 3.2 for the details of obtaining Ssivpre. We refer to [15,16] for the
performance of the SIMPLE preconditioner in the FVM context on both academic
and maritime applications.

4. Cost model for AL and SIMPLE preconditioners. To summarize the
linearized systems where the AL and SIMPLE preconditioners are applied individu-
ally, we give the schematic diagram as follows:

Use FVM and Picard method to solve the nonlinear problem (1).
Each Picard iteration:

.

e

conditioner and other preconditioners.

Use Krylov subspace method to solve
the adapted linearized system (5):

(5 €l-[-15 )

Each Krylov iteration: solve a system with the
ideal or modified AL preconditioner

> _ é’y G'y — Q7 g"/
Prar = 0 ~7 or Prar = o 8,
Wlth g’y = g’y new OF Eﬂ/ = NPY old

Use Krylov subspace method to
solve the linearized system (2):

5 ab-lA-Bd

|

reduced to solve the sub-systems with @,
(or Q) and S,.

Each Krylov iteration: solve a system
with the SIMPLE preconditioner
PsimpLe =

[Q 0 ] [I diag_l(Q)G}

D SsivpLe| O I

reduced to solve the sub-systems with

" @ and SsimpLE.

In [15], we presented a basic cost model to distinguish between the SIMPLE pre-

Here, we extend the model to include the

modified AL preconditioner with two Schur complement approximations. Firstly con-
sider the cost of using the SIMPLE preconditioner Ps;apre for a Krylov subspace
method that solves the system with A to a certain relative tolerance in ny iterations.
The preconditioner is applied at each Krylov iteration and the SIMPLE precondi-
tioner solves the momentum sub-system 'mom-u’ with ) and the pressure sub-system

This manuscript is for review purposes only.
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‘mass-p’ with SSIMPLE. Besides, at each Krylov iteration another cost is expressed in
the product of the coefficient matrix A with a Krylov residual vector b,..s. Thus, the
total cost is B

e Psravpre: N1 X (mom-u with @ 4+ mass-p with Sspypre + A X Dres).

Secondly consider the cost of applying the modified AL preconditioner Pysar
with the new Schur approximation S, new. If we neglect the multiplications in the
definition of §A/ new as given in (10), the cost of solving the pressure sub-system with
:S’v,y new 18 the same as §SIMPLE. Thus, the total cost is

e Prrarp with §A, new: Mo X (mom-u with va—i—mass—p with §SIMPLE+A7 XDbres).

Finally consider the cost of applying the modified AL preconditioner Pysaz, with
the old Schur approximation Sy o1q4. Similar to the analysis of Py 4z with S, new, We
obtain the total cost as _ B

o Pryar with Sy o1 ng x (mom-u with @, +mass-p with Sy o1a +.Ay X bres).

Clearly, the difference of cost by applying Pasar, with 57 new and ,’S’VﬂY old arises from
solving the pressure sub-systems with §SIMPLE and §,Y old, respectively. It is difficult
to analytically compare the complexity of solving the sub-systems with §SIMPLE and
Sy o1d- However, numerical experiments in the next section show ny < ng on all
considered problems, which makes the new Schur complement approximation more
efficient and attractive in terms of iterations and wall-clock time.

At each Krylov iteration, more nonzero fill-in introduced in the blocks @), and G
and more difficulty of iteratively solving the momentum sub-system with @7 than @
lead to a higher cost of applying Py ar, with gy new than Psraypre. We refer to [32]
for a detailed discussion. Therefore, this higher cost of Py a4 with 57 new only pays-
off if ng < ny. In this paper we observe na < m; on the turbulent and laminar tests
but the time advantage of Pyrar with S new over Psrarprr needs further assessment
which is included in the future research plan.

5. Numerical experiments. In this section, we compare the new AL variant
with the old one and with SIMPLE preconditioner, for incompressible, laminar flow
governed by the Navier-Stokes equations, as well as turbulent flow governed by the
Reynolds-Averaged Navier-Stokes equations.

5.1. Flow over a finite flat plate (FP). Flow over a finite flat plate is a
standard test case in maritime engineering, see [25] for a detailed study of various
turbulence models with MARIN’s CFD software package ReFRESCO [19].

We first consider the fully turbulent flow at Re = 107 on the block-structured
grids. The grids are refined near the leading and trailing edge of the plate and spread
out in the wake of the plate, see Figure 2(a), which leads to some eccentricity and
non-orthogonality. As can be seen, the grids are stretched in both the horizontal
and vertical direction and reach the maximal aspect ratio of order 1 : 10* near the
middle of the plate. The complete flow is computed, starting from uniform laminar
flow upstream of the plate.

Second, we reconsider laminar flow at Re = 10° on a straight single-block grid.
This case was already presented in [14-16,32] for other solvers and preconditioners.
We reconsider it here to show that the new Schur complement approximation also
improves the efficiency of the AL preconditioner in the calculations of laminar flow.
The stretched grids shown in Figure 2(b) are generated based on uniform Cartesian
grids by applying the stretching function from [16] in the vertical direction. Near the
plate the grids have a maximal aspect ratio of order 1 : 50, which is about two orders
smaller than the turbulent grids. Contrary to the turbulent case, the flow starts with
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the (semi-analytical) Blasius solution halfway the plate, so only the second half and
the wake are computed.

Fig. 2: Impression of the grids. Turbulent case with 80 x 40 cells and the max aspect
ratio of order 1: 10* and laminar case with 64 x 64 cells and the max aspect ratio of
order 1 : 50.

Farfield

MOINO

Uniform inflow

Symmetry \ No-slip wall \ Symmetry

(a) Turbulent case

Farfield

MOIINO

Blasius inflow

No-slip wall Symmetry

(b) Laminar case

5.2. Flow over a backward-facing step (BFS). We consider turbulent flow
over a backward-facing step in a channel, as measured by Driver and Seegmiller [6].
The chosen case corresponds to the C-30 case from the ERCOFTAC Classic Collec-
tion [10], with Reynolds number of 5 - 10* based on the inflow velocity and the step
height. The flow is more complicated than the flat-plate flows as it features sepa-
ration, a free shear-layer and reattachment. Detailed results with ReFRESCO for
various turbulence models are found in [7], including results for the k-w SST turbu-
lence model [20] used here. The grid is also more complicated: multiple blocks are
used to wrap the boundary layer around the step, see Figure 3.

In this paper all experiments are carried out based on the blocks @, G, D, C, M,
and L, and the right hand-side vector rhs, which are obtained at the 30th nonlinear
iteration. Numerical experiments in [32] show that the number of linear iterations
varies through the whole nonlinear procedure. The motivation of choosing the 30th
nonlinear iteration to export the blocks is that a representative number of linear
iteration can be obtained from the 30th nonlinear step, compared with the average
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Fig. 3: Impression of block-structured grid with 9600 cells for turbulent flow over
backward-facing step.

No-slip wall

Inflow

MOIINO

i

No-slip wall

number of linear iterations through the whole nonlinear procedure. We use a series
of structured grids with 80 x 40 and 160 x 80 cells for the turbulent FP case and the
structured grid with 9600 cells for the turbulent BFS case. Regarding the laminar
FP calculation, we use a structured grid with 64 x 64 cells. The matrices and right-
hand side vector are generated by ReFRESCO and available in Matlab’s binary .mat
format on the website [18]. The aim of the numerical experiments is to show the
variation in the eigenvalues and number of the Krylov subspace iterations, arising
from different Schur complement approximations in the AL preconditioner. To carry
out a comprehensive evaluation of the new Schur complement approximation in the
AL preconditioner, in this paper we solve the linear system preconditioned by the
AL preconditioner with the new Schur complement approximation to the machine
accuracy. For a fair comparison, the same stopping tolerance is used when employing
the old Schur complement approximation and the SIMPLE preconditioner. Since the
AL preconditioner with different Schur complement approximations and the SIMPLE
preconditioner involve various momentum or pressure sub-systems, all the sub-systems
are directly solved in this paper to avoid the sensitiveness of iterative solvers on the
varying solution complexities.

5.3. Numerical experiments on the turbulent FP case. To find out the
reason that the new Schur complement approximation S, new leads to a fast conver-
gence of the Krylov subspace solvers preconditioned by the AL preconditioner, we plot
ten extreme eigenvalues of the preconditioned matrices P;,;.A, and Py, .A, with
g.y new on the grid with 80 x 40 cells. The results which are shown in Figures 4 and
5 show that for the considered values of y the smallest eigenvalues are far away from
zero and the spectrum is clustered due to a small ratio between the largest and small-
est magnitude of the eigenvalues. Such a distribution of the eigenvalues is favorable
for the Krylov subspace solvers and a fast convergence rate can be expected.

Results in Figure 6 show the fast convergence rate of the Krylov subspace solver
preconditioned by the ideal AL preconditioner with the new Schur approximation
Sy new on the grids with 80 x 40 cells and 160 x 80 cells. The fast convergence rate
confirms the prediction that the new Schur approximation §’v new Produces a favorable
ideal AL preconditioner for the Krylov subspace solvers. In Figure 6 we observe that
larger values of « result in a faster convergence rate on both grids. This observation
is analogous to that when applying the old Schur complement approximation Sy o1a
in the ideal AL preconditioner with stable FEM, see [12] for instance. On the other
hand, an ill-conditioned @), can arise from larger values of v [32]. This indicates that
the value of v can not be taken too large otherwise solving the momentum sub-system

Thi: iseript s fi cVLeW PUTPOSE:
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12 X. HE, C. VUIK, AND C.M. KLAIJ

with @~ can be very difficult. Results in Figure 6 indicate that the balanced value of

~ involved in the ideal AL preconditioner with the new Schur approximation 57 new
isy=1or O(1).

Compared with the ideal AL preconditioner, the values of v exhibit a different
influence on the spectrum of the preconditioned matrix by using the modified AL
preconditioner. For example, with v = 100 the smallest eigenvalue of PA_/[lA LA, s
two orders of magnitude smaller than v = 0.01 and v = 1.0, as seen from the last
row of Figure 5. It appears that the optimal value of 7, which leads to the most
clustered eigenvalues of 73]\_4114 Ay 18 Yopt = 1. Based on this observation we predict
that the fastest convergence rate of the Krylov subspace solvers preconditioned by the
modified AL preconditioner with S, new can be obtained with vope = 1.

The convergence rate of the Krylov subspace solvers preconditioned by the mod-
ified AL preconditioner with Sy new on the grids with 80 x 40 cells and 160 x 80 cells
is presented in Figure 7. We find out that vy,,s = 1 results in the fastest convergence
rate on two grids and this confirms the prediction based on the spectrum analysis
from Figure 5. Compare two grids with 160 x 80 cells and 80 x 40 cells, it appears
that the optimal value vops = 1 is independent of mesh refinement. This property is
helpful in practice since one can carry out numerical experiments to determine ~yopt
on coarse grids and then re-use it on finer grids.

In Table 1 we summarise the number of the Krylov subspace iterations precon-
ditioned by the AL preconditioners with the new Schur complement approximation
Sy new and v = 1 on two grids. The value v = 1 is a balanced choice for the ideal AL
preconditioner and is the optimal choice for the modified AL preconditioner. As seen,
for this considered turbulent case the new Schur complement approximation Sy jew
does not make the AL preconditioners independent of mesh refinement. This moti-
vates a further study targeting at mesh independence, which is planned as a research
direction in future.

Table 1: Turbulent FP: the number of GMRES iterations (no restart) preconditioned
by the AL preconditioners with the new Schur approximation Sy new and v = 1 on
two grids.

Grid 80 x 40 cells 160 x 80 cells
Prar: 140 246
Prar: 132 245

_ On the other hand, the proposal of the new Schur complement approximation
Sy new is a big contribution to the development of AL preconditioners in the context
of turbulent calculations. This is clearly seen from Figure 8 where the Krylov subspace
solver converges very slowly when applying the old Schur complement approximation
S5 old in the modified AL preconditioner. To understand this slow convergence the
extreme eigenvalues of 77]\74114 Ay with §7 old on the grid with 80 x40 cells are presented
in Figure 9. We see that the smallest eigenvalues are quite close to zero for all tested
values of 7, which degrades the efficiency of the Krylov subspace solver considerably.
Among the tested values of v, Figure 9 shows that v = 1 results in a relatively clustered
spectrum. Based on this observation we expect that the optimal value v,y = 1 leads
to the fastest convergence when using the old Schur complement approximation 57 old
in the modified AL preconditioner. However, the number of the Krylov subspace
iterations preconditioned by Parar with S, g1q and vopy = 1 is over than 5000 as
seen from Figure 8. Compared with 140 Krylov subspace iterations preconditioned
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AL PRECONDITIONER WITH SIMPLE SCHUR APPROXIMATION 13

by Parar with 57 new and Yopt = 1, we clearly show that the new Schur complement
approximation §7 new Proposed in this paper significantly improves the performance
of the AL preconditioners on the turbulent FP case.

We also present the spectrum of the eigenvalues and convergence rate by using
the SIMPLE preconditioner. These results are compared with the modified AL pre-
conditioner with the new Schur complement approximation S, new and yopt = 1. The
comparison given in Figure 10 illustrates that on the grid with 80 x 40 cells the small-
est eigenvalues are nearly the same for both preconditioners. However, the SIMPLE
preconditioner leads to a larger ratio between the largest and smallest magnitude of
the eigenvalues, which means that the spectrum of the eigenvalues is less clustered
compared to the modified AL preconditioner. Therefore, a faster convergence rate of
the Krylov subspace solvers is expected by applying the modified AL preconditioner.
Table 2 presents the number of GMRES iterations preconditioned by the SIMPLE
preconditioner and the modified AL preconditioner with S, new and vopy = 1 on two
grids. Results in Table 2 illustrate that the number of the Krylov subspace itera-
tions increase by a factor 1.7 by using the modified AL preconditioner with Sy new
and Yopt = 1. The increasing factor is 2.2 when using the SIMPLE preconditioner.
The smaller increasing factor allows a more apparent advantage of the modified AL
preconditioner with Sy jew in terms of the reduced number of the Krylov subspace
iterations with mesh refinement, which foresees the overall advantage in terms of total
wall-clock time on fine enough grids.

Table 2: Turbulent FP: the number of GMRES iterations (no restart) preconditioned
by the modified AL preconditioner Pasar with the new Schur approximation Sy new
and Yopt = 1, and the SIMPLE preconditioner Psyy pre on two grids.

Grid 80 x 40 cells 160 x 80 cells
Purar: 140 246
PsimpLE: 180 382

5.4. Numerical experiments on the turbulent BFS case. On the calcula-
tions of turbulent BFS case, we further assess the new Schur complement approxima-
tion Sy new applied in the modified AL preconditioner and present the convergence
rate of the Krylov subspace solver in Figure 11 (a). As seen, the utilisation of g,y new
produces quite a fast convergence rate in the turbulent BFS case too. Among the
considered values of v, it appears that yopt = 0.1 results in the fastest convergence
rate on the turbulent BFS case. Consider yo,pt = 1 on the turbulent FP test, we find
out that the optimal value of v which results in the best performance of the modified
AL preconditioner with the new Schur complement approximation Sy new is weakly
problem dependent.

Comparable with the turbulent FP case, on the turbulent BFS test we also see the
faster convergence rate achieved by using the modified AL preconditioner with Sy jew
than the SIMPLE preconditioner. Comparison in Figure 11 (a) shows that the number
of the Krylov subspace iterations preconditioned by the modified AL preconditioner
with Sy new and vopt = 0.1 is nearly half of that by using the SIMPLE preconditioner.
Based on the result with mesh refinement on the turbulent FP case (see Table 2), it
is reasonable to expect that on turbulent BFS test less Krylov subspace iterations
preconditioned by the modified AL preconditioner with S, new Will convert to a time
advantage over the SIMPLE preconditioner on fine grids.

To illustrate the improvement arising from the utilisation of the new Schur com-
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14 X. HE, C. VUIK, AND C.M. KLALJ

plement approximation §7 new, 1 Figure 11 (b) we present the convergence rate
preconditioned by the modified AL preconditioner with the old Schur complement
approximation Sy o1a. The fastest convergence rate with S, o4 is obtained with
Yopt = 1 and other values of v can not make the solution procedure converged to
the desired tolerance within the maximal 1000 iterations. The fastest convergence
rate with Sy o1q and yopt = 1 is about eight times slower than S, new With yope = 0.1.
The turbulent BFS case is another example to illustrate the advantage of the new
Schur approximation Sy new over the old one Sy o4 in the turbulent context.

For a comprehensive comparison, in Table 3 we summarise the number of the
Krylov subspace iterations accelerated by different preconditioners. Since we have
observed the mesh dependence of the AL preconditioners with the new Schur approx-
imation Sy new on the turbulent FP case, we expect an analogous behaviour on the
turbulent BFS case. The planned future research includes the improvement which
allows the robustness with respect to mesh refinement on turbulent calculations.

Table 3: Turbulent BFS: the number of GMRES iterations (no restart) precondi-
tioned by the AL preconditioners with different Schur complement approximations
and different values of v, and the SIMPLE preconditioner. The grid with 9600 cells
is used.

5 0.01 0.1 1

Prar with Sy new: 133 103 96

Puar with S pew: 134 104 111

Parar with S, ga: > 1000 > 1000 791
PsivprLE: 199

5.5. Numerical experiments on the laminar FP case. The modified AL
preconditioner is often utilised due to the reduced complexity of solving the sub-
system with ()., compared to () involved in the ideal AL preconditioner. The extreme
eigenvalues of PJ\_/IlA 1A, with the new Schur approximation gﬂ, new are shown in Figure
13. There are two observations to be made. Firstly, for moderate values of 7, e.g., v €
[0.01, 0.1], the smallest eigenvalues are far away from zero. Secondly, v = 0.1 results
in the smallest ratio between the largest and smallest magnitude of the eigenvalues.
Thus, we expect that the optimal value of v is yopt = 0.1 for the laminar FP case.
The prediction is confirmed by Figure 12 which illustrates that y,p = 0.1 results in
the fastest convergence rate among other tested values of ~.

In [32] we find out that for the laminar FP case the optimal value of v for the
old Schur approximation gy old 15 Yopt = 400. Seen from Table 4, on the laminar
FP case the modified AL preconditioner with the new Schur approximation :Si, new
and 7Yopt = 0.1 reduces the number of the Krylov subspace iterations by factors 14.6
and 2.2, compared to the old Schur approximation §7 old With v, = 400 and the
SIMPLE preconditioner, respectively. The above numerical results clearly show that
the new Schur complement approximation S, new proposed in this paper significantly
improves the performance of the AL preconditioner for laminar flows too.
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Table 4: Laminar FP: the number of GMRES iterations (no restart) preconditioned
the modified AL preconditioner with two Schur complement approximations and their
corresponding optimal values of v, and the SIMPLE preconditioner. The grid with
64 x 64 cells is used.

Pumar with Sy new and vyopt = 0.1 Parar with Sy c1a and vopt = 400 PsimpLE
83 1200 183

In the previous work [32] we set the stopping tolerance for the linear system to be
103 on the laminar FP case and compare the modified AL preconditioner with the
old Schur complement approximation and the SIMPLE preconditioner in terms of the
number of the Krylov subspace iterations. This comparison is executed based on the
chosen stopping tolerance which balances the linear and nonlinear solvers. Since the
nonlinear solver is not the focus of this paper, it is reasonable to solve the linear system
to the machine accuracy so that a comprehensive evaluation of the proposed new Schur
complement approximation in the AL preconditioner and a complete comparison with
the old Schur complement approximation and the SIMPLE preconditioner can be
obtained. In this sense, the results in Table 4, regarding the number of the Krylov
subspace iterations preconditioned by the modified AL preconditioner with the old
Schur complement approximation and the SIMPLE preconditioner, supplement the
previous work [32].

5.6. Comparisons between the turbulent and laminar calculations. Fi-
nally we put the turbulent and laminar results together in Table 5 for a comparison.
Consider the modified AL preconditioner with the new Schur approximation Sy new
and the optimal value y,pt , we see that the number of the Krylov subspace iterations
is quite acceptable for all tested cases. This means that the new Schur complement
approximation proposed in this paper makes the AL preconditioner robust with re-
spect to the mesh anisotropy and physical parameter variation, e.g. the variation of
the viscosity. Regarding the optimal value of ~, it lies in the interval [0.1, 1] for all
tests when applying the new Schur complement approximation in the modified AL
preconditioner. This interval is much more clustered than that when using the old
Schur complement approximation. This means that the optimal value oy is easier
to determine and weakly problem dependent for the new variant. Regarding the in-
fluence of v on the convergence, we observe that by using the new Schur complement
approximation the variation of the convergence rate arising from different values of ~
is much less than that with the old approximation. See Figure 11 on the turbulent
BFS case for instance. This illustrates that the new AL variant is less sensitive to the
values of v. Besides, the advantage of the new Schur approximation over the old one is
clearly exhibited in terms of the significantly reduced number of the Krylov subspace
iterations on all cases. This means that new Schur approximation can considerably
improve the efficiency of the AL preconditioner for both turbulent and laminar cal-
culations. Although the number of the Krylov subspace iterations by applying the
modified AL preconditioner with new Schur approximation and the optimal value of
7 is less than the SIMPLE preconditioner, the benefit in terms of the total wall-clock
time needs the further assessment due to the heavier cost of the AL preconditioner
presented in Section 4. This is included in the future research plan.
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Table 5: The number of GMRES iterations (no restart) accelerated by different pre-
conditioners on different tests. The grids with 80 x 40 cells, 9600 cells and 64 x 64
cells are used for the turbulent FP, turbulent BFS and laminar FP cases respectively.

turbulent FP  turbulent BFS laminar FP
pMAL with S’y new

Yopt: 1 0.1 0.1
iterations: 140 104 83
Prrar with Sy o1a
Yopt- 1 1 400
iterations: > 5000 791 1200
PsivpPLE
iterations: 180 199 183

6. Conclusion and future work. In this paper, we have considered the exten-
sion of the AL preconditioner in the context of the stabilized finite volume methods
to both laminar flow governed by the Navier-Stokes equations and turbulent flow gov-
erned by the Reynolds-Averaged Navier-Stokes (RANS) equations with eddy-viscosity
turbulence model.

We find out that the straightforward application of the AL preconditioner to
the RANS equations yields disappointing results and therefore proposed a new Schur
complement approximation which leads to a variant of the AL preconditioner. The ap-
proach is to substitute the approximation of the Schur complement from the SIMPLE
preconditioner into the inverse of the Schur complement for the AL preconditioner.
Without the contradictory requirements in the old approximation, the new Schur
complement approximation makes the new AL variant less sensitive to the choice of
~ and weakly problem dependent.

To evaluate the new variant of the AL preconditioner, we consider the solution
of the linear system obtained at the 30th nonlinear iteration for three cases: laminar
and turbulent boundary-layer flow over a flat plate on grids with large aspect ratios,
and turbulent flow over a backward-facing step in a channel. The backward-facing
step flow is more complicated than the flat-plate flow as it features separation, a free
shear-layer and reattachment. The new variant of the AL preconditioner significantly
speeds up the convergence rate of the Krylov subspace solvers for both turbulent and
laminar cases. Spectral analysis of the preconditioned systems explains the observed
difference. Like the SIMPLE preconditioner, the new AL variant avoids the clustering
of the smallest eigenvalues near zero. At the same time, the largest eigenvalues by
applying the the new AL variant are significantly smaller than the SIMPLE precondi-
tioner. As a consequence, the new variant of the AL preconditioner outperforms the
considered preconditioners in terms of the number of the Krylov subspace iterations.
The matrices and right-hand side vectors used in this paper are publicly available
on the website [18]. This makes the research reproducable and the comparison with
other preconditioning techniques easier.

We present a basic cost model to compare the new variant with others, including
the SIMPLE preconditioner which is well established for the RANS equations. The
heavier cost of the new AL variant can be payed off with less Krylov subspace iter-
ations which is seen in this paper. However, our test cases so far have been carried
out on the modest grid sizes that allow the matrices to be exported and analyzed in
Matlab. Future work is planned on the assessment of the new AL variant on larger
grid sizes to show the benefit in terms of the reduced total wall-clock time. In this
paper we observe that the new AL variant is not mesh independent. Another planned
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600 future research is on the improvement which allows the robustness with respect to
601 mesh refinement.

This manuscript is for review purposes only.



18 X. HE, C. VUIK, AND C.M. KLAIJ

Fig. 4: Turbulent FP: the ten smallest (left) and largest (right) eigenvalues of P; {; A,

with the new Schur approximation S, new and different values of . The grid with
80 x 40 cells is used.
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Fig. 5: Turbulent FP: the ten smallest (left) and largest (right) eigenvalues of Py,Y A,

with the new Schur approximation S, new and different values of . The grid with
80 x 40 cells is used.
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Fig. 6: Turbulent FP: the convergence of GMRES (no restart) preconditioned by the
ideal AL preconditioner Praz, with the new Schur approximation Sy new on the grids
with 80 x 40 cells (left) and 160 x 80 cells (right).
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Fig. 7: Turbulent FP: the convergence of GMRES (no restart) preconditioned by the
modified AL preconditioner Pyar with the new Schur approximation Sy new on the
grids with 80 x 40 cells (left) and 160 x 80 cells (right).
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Fig. 8: Turbulent FP: the convergence of GMRES (no restart) preconditioned by
the modified AL preconditioner Ppsar, with the old Schur approximation S, 44 and
Yopt = 1. The grid with 80 x 40 cells is used.

Residuals

4 . . . . .
0 1000 2000 3000 4000 5000 6000
Iterations

This manuscript is for review purposes only.



AL PRECONDITIONER WITH SIMPLE SCHUR APPROXIMATION 21

Fig. 9: Turbulent FP: the ten smallest (left) and largest (right) eigenvalues of Py,Y A,

with the old Schur approximation S, o1q and different values of v. The grid with 80x40

cells is used.
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Fig. 10: Turbulent FP: the ten smallest (left) and largest (right) eigenvalues of

’P]\j[lA 1Ay with the new Schur approximation Sy new and yopt = 1, and of Pg IlM preA.
The grid with 80 x 40 cells is used.
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Fig. 11: Turbulent BFS: the convergence of GMRES (no restart) preconditioned by

the modified AL preconditioner Paraz with the new Schur approximation Sy new and
the SIMPLE preconditioner (left), and the modified AL preconditioner Py with
the old Schur approximation S, 14 (right). The grid with 9600 cells is used.
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Fig. 12: Laminar FP: the convergence of GMRES (no restart) preconditioned by the
modified AL preconditioner with the new Schur complement approximation Sy jew
and different values of 7. The grid with 64 x 64 cells is used.
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Fig. 13: Laminar FP: the ten smallest (left) and largest (right) eigenvalues of Py,'; A,

with the new Schur approximation S, new and different values of . The grid with
64 x 64 cells is used.

0.1
0.08
0.06
0.04
0.02

0
-0.02
-0.04
-0.06
-0.08

(o}

o

-0.1 .
0.7514  0.7516

0.3

0.2

0.1

-0.1

-0.2

0.7518  0.752

(a) vy =10.01

0.7522  0.7524  0.7526  0.7528

[e]

0.62

0.64 0.66 0.68

(¢) y=0.1

07

0.72

0.74

.3
0.1

0.12

0.14 0.16 0.18

(e)v=1

This manuscript is for review purposes only.

02

0.22

N o w oo

75




[17]

AL PRECONDITIONER WITH SIMPLE SCHUR APPROXIMATION 25

REFERENCES

M. BENzI, G. GOLUB, AND J. LIESEN, Numerical solution of saddle point problems, Acta
numerica, 14 (2005), pp. 1-137.

M. BENzI AND M. OLSHANSKII, An augmented Lagrangian-based approach to the Oseen
problem, SIAM Journal on Scientific Computing, 28 (2006), pp. 2095-2113.

M. BENzI, M. OLSHANSKII, AND Z. WANG, Modified augmented Lagrangian preconditioners for
the incompressible Navier-Stokes equations, International Journal for Numerical Methods
in Fluids, 66 (2011), pp. 486-508.

M. BENZI AND Z. WANG, Analysis of augmented Lagrangian-based preconditioners for the
steady incompressible Navier-Stokes equations, STAM Journal on Scientific Computing, 33
(2011), pp. 2761 2784.

M. BENZI AND Z. WANG, A parallel implementation of the modified augmented Lagrangian
preconditioner for the incompressible Navier-Stokes equations, Numerical Algorithms, 64
(2013), pp. 73-84.

D. DRIVER AND H. SEEGMILLER, Features of a reattaching turbulent shear layer in divergent
channel flow, ATAA Journal, 23 (1985), pp. 163-171.

L. Ec¢A, G. VAz, AND M. HOEKSTRA, A verification and validation exercise for the flow over a
backward facing step, in Proceedings of the Fifth European Conference on Computational
Fluid Dynamics ECCOMAS CFD 2010, J. Pereira and A. Sequeria, eds., 2010. June 14 —
17, Lisbon, Portugal.

H. ELmaN, V. HowiLg, J. SHADID, R. SHUTTLEWORTH, AND R. TUMINARO, Block
preconditioners based on approximate commutators, SIAM Journal on Scientific Com-
puting, 27 (2006), pp. 1651-1668.

H. ELMAN, D. SILVESTER, AND A. WATHEN, Finite elements and fast iterative solvers: with
applications in incompressible fluid dynamics, Oxford University Press, 2014.

ERCOFTAC, Classic Collection Database, http://www.ercoftac.org/products_and_services/
classic_collection_database/.

J. FERZIGER AND M. PERIC, Computational methods for fluid dynamics, Springer Science &
Business Media, 2012.

X. HE, M. NEYTCHEVA, AND C. VUIK, On an augmented lagrangian-based preconditioning of
Oseen type problems, BIT Numerical Mathematics, 51 (2011), pp. 865-888.

D. KAy, D. LoGHIN, AND A. WATHEN, A preconditioner for the steady-state Navier-Stokes

C

C

equations, SIAM Journal on Scientific Computing, 24 (2002), pp. 237-256.
Kra, On the stabilization of finite volume methods with co-located variables for
incompressible flow, Journal of Computational Physics, 297 (2015), pp. 84-89.

. Kraw, X. HE, AND C. VUIK, On the design of block preconditioners for maritime engineering,
in Proceedings of the Seventh International Conference on Computational Methods in
Marine Engineering MARINE, M. Visonneau, P. Queutey, and D. L. Touzé, eds., 2017.
May 15 — 17, Nantes, France.

C. Kraw AND C. Vuik, SIMPLE-type preconditioners for cell-centered, colocated finite volume
discretization of incompressible Reynolds-averaged Navier-Stokes equations, International
Journal for Numerical Methods in Fluids, 71 (2013), pp. 830-349.

C. L1 aND C. VUK, Eigenvalue analysis of the SIMPLE preconditioning for incompressible
flow, Numerical Linear Algebra with Applications, 11 (2004), pp. 511-523.

MARITIME RESEARCH INSTITUTE NETHERLANDS, ReFRESCO linear systems, http://www.
refresco.org/publications/data-sharing/linear-systems/.

MARITIME RESEARCH INSTITUTE NETHERLANDS, ReFRESCO Web page, http://www.refresco.
org.

F. MENTER, Two-equation eddy-viscosity turbulence models for engineering applications, ATAA
Journal, 32 (1994), pp. 1598-1605.

T. MILLER AND F. ScHMIDT, Use of a pressure-weighted interpolation method for the solution
of the incompressible Navier-Stokes equations on a nonstaggered grid system, Numerical
Heat Transfer, Part A: Applications, 14 (1988), pp. 213-233.

M. OLSHANSKII AND E. TYRTYSHNIKOV, Iterative methods for linear systems: theory and
applications, STAM, 2014.

P. PATANKAR, Numerical heat transfer and fluid flow, McGraw-Hill, New York, 1980.

J. PESTANA AND A. WATHEN, Natural preconditioning and iterative methods for saddle point
systems, SIAM Review, 57 (2015), pp. 71-91.

D. RIJPKEMA, Flat plate in turbulent flow, Tech. Report 23279-1-RD, Maritime Research In-
stitute Netherlands, 2009.

Y. SAAD, V. DER VORST, AND A. HENK, Iterative solution of linear systems in the 20th century,

This manuscript is for review purposes only.


http://www.ercoftac.org/products_and_services/classic_collection_database/
http://www.ercoftac.org/products_and_services/classic_collection_database/
http://www.ercoftac.org/products_and_services/classic_collection_database/
http://www.refresco.org/publications/data-sharing/linear-systems/
http://www.refresco.org/publications/data-sharing/linear-systems/
http://www.refresco.org/publications/data-sharing/linear-systems/
http://www.refresco.org
http://www.refresco.org
http://www.refresco.org

663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678

26

(28]

29]

30]

31]
32]

X. HE, C. VUIK, AND C.M. KLAIJ

Journal of Computational and Applied Mathematics, 123 (2000), pp. 1-33.

A. SEGAL, M. UR REHMAN, AND C. VUIK, Preconditioners for incompressible Navier-Stokes
solvers, Numerical Mathematics: Theory, Methods and Applications, 3 (2010), pp. 245—
275.

D. SILVESTER, H. ELMAN, D. KAy, AND A. WATHEN, Efficient preconditioning of the linearized
Navier-Stokes equations for incompressible flow, Journal of Computational and Applied
Mathematics, 128 (2001), pp. 261-279.

C. VUIK, A. SAGHIR, AND G. BOERSTOEL, The Krylov accelerated SIMPLE(R) method for flow
problems in industrial furnaces, International Journal for Numerical methods in fluids, 33
(2000), pp. 1027-1040.

P. WESSELING, Principles of computational fluid dynamics, Springer Science & Business Media,
2009.

F. WHITE, Fluid mechanics, McGraw-Hill, 1994.

X.HE, C.VuikK, aAND C.M.KLA1J, Block-preconditioners for the incompressible Navier-Stokes
equations discretized by a finite volume method, Journal of Numerical Mathematics, 25
(2017), pp. 89-105.

This manuscript is for review purposes only.



	Introduction
	Governing equations and solution techniques
	Reynolds-Averaged Navier-Stokes equations
	Linear saddle point system
	Preconditioners for saddle point systems

	Augmented Lagrangian preconditioner
	Transformation of the linear system
	New Schur complement approximation
	Old Schur complement approximation
	SIMPLE preconditioner

	Cost model for AL and SIMPLE preconditioners
	Numerical experiments
	Flow over a finite flat plate (FP)
	Flow over a backward-facing step (BFS)
	Numerical experiments on the turbulent FP case
	Numerical experiments on the turbulent BFS case
	Numerical experiments on the laminar FP case
	Comparisons between the turbulent and laminar calculations

	Conclusion and future work
	References

