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COMBINING THE AUGMENTED LAGRANGIAN1

PRECONDITIONER WITH THE SIMPLE SCHUR COMPLEMENT2

APPROXIMATION∗3

XIN HE† , CORNELIS VUIK‡ , AND CHRISTIAAN M. KLAIJ§4

Abstract. The augmented Lagrangian (AL) preconditioner and its variants have been success-5
fully applied to solve saddle point systems arising from the incompressible Navier-Stokes equations6
discretized by the finite element method. Attractive features are the purely algebraic construction7
and robustness with respect to the Reynolds number and mesh refinement. In this paper, we recon-8
sider the application of the AL preconditioner in the context of the stabilized finite volume methods9
and present the extension to the Reynolds-Averaged Navier-Stokes (RANS) equations, which are10
used to model turbulent flows in industrial applications. Furthermore, we propose a new variant of11
the AL preconditioner, obtained by substituting the approximation of the Schur complement from12
the SIMPLE preconditioner into the inverse of the Schur complement for the AL preconditioner.13
This new variant is applied to both Navier-Stokes and RANS equations to compute laminar and14
turbulent boundary-layer flows on grids with large aspect ratios. Spectral analysis shows that the15
new variant yields a more clustered spectrum of eigenvalues away from zero, which explains why it16
outperforms the existing variants in terms of the number of the Krylov subspace iterations.17

Key words. Reynolds-Averaged Navier-Stokes equations, finite volume method, Block struc-18
tured preconditioner, augmented Lagrangian preconditioner, SIMPLE preconditioner.19

AMS subject classifications. 65F10, 65F0820

1. Introduction. The augmented Lagrangian (AL) preconditioner [2], belong-21

ing to the class of block structured preconditioners [9, 26, 27], is originally proposed22

to solve saddle point systems arising from the incompressible Navier-Stokes equations23

discretized by the finite element method (FEM). The AL preconditioner features a24

purely algebraic construction and robustness with respect to the Reynolds number25

and mesh refinement. Because of these attractive features, recent research was de-26

voted to the further development and extension of the AL preconditioner, notably the27

modified variants [3–5] with reduced computational complexity and the extension [32]28

to the context of stabilized finite volume methods (FVM), which are widely used in29

industrial computational fluid dynamic (CFD) applications.30

Although applying FEM and FVM to the incompressible Navier-Stokes equations31

both leads to saddle point systems, the extension from FEM to FVM is nontrivial, see32

[32] for a detailed discussion on the dimensionless parameter that is involved in the AL33

preconditioner, its influence on the convergence of both nonlinear and linear iterations34

and the proposed rule to choose the optimal value in practice. We observed that the35

features of the AL preconditioner exhibited in the FEM context, e.g. the robustness36

with respect to the Reynolds number and mesh refinement, are maintained in the37

context of FVM, at least for academic benchmarks. This motivates us to consider the38

application of the AL preconditioner in the broader context of Reynolds-Averaged39

Navier-Stokes (RANS) equations, which are used to model turbulent flows in industrial40
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2 X. HE, C. VUIK, AND C.M. KLAIJ

CFD applications. These equations are obtained by applying the Reynolds averaging41

process to the Navier-Stokes equations and adding an eddy-viscosity turbulence model42

to close the system, see [11,23,30]. Such models represent the effect of turbulence on43

the averaged flow quantities through a locally increased viscosity.44

Unfortunately, straightforward application of the AL preconditioner to the RANS45

equations yields disappointing results as we will show in this paper. Therefore, we46

reconsider the approximation of the Schur complement which is the key to the effi-47

cient block structured preconditioners [1, 24]. In [15], we compared the exact Schur48

preconditioner with several cheaper approximations, including SIMPLE, for three test49

cases from maritime engineering, characterized by the thin turbulent boundary layers50

on grids with high aspect ratios. In this paper, we propose a new Schur complement51

approximation which leads to a new variant of the AL preconditioner. The approach52

is to substitute the approximation of the Schur complement from the SIMPLE precon-53

ditioner [14, 16] into the inverse of the Schur complement for the AL preconditioner.54

This choice is motivated by the simplicity that in the utilised FVM the Schur comple-55

ment approximation from the SIMPLE preconditioner reduces to a scaled Laplacian56

matrix [14, 16] and the efficiency of the SIMPLE preconditioner on the complicated57

maritime applications [15, 16]. As we will show, the new variant of the AL precondi-58

tioner significantly speeds up the convergence rate of the Krylov subspace solvers for59

both turbulent and laminar boundary-layer flows computed with a stabilized FVM.60

The structure of this paper is as follows. The Reynolds-Averaged Navier-Stokes61

equations and the discretization and solution methods are introduced in Section 2.62

The new method to construct the approximation of the Schur complement in the AL63

preconditioner is presented in Section 3, followed by a brief recall of the old approach.64

A comparison with the SIMPLE preconditioner in Section 3.4 is based on a basic65

cost model presented in Section 4. Section 5 includes the numerical experiments66

carried out on the turbulent and laminar benchmarks. Conclusions and future work67

are outlined in Section 6.68

2. Governing equations and solution techniques. In this section, we in-69

troduce the Reynolds-Averaged Navier-Stokes equations as well as the finite volume70

discretization and solution methods.71

2.1. Reynolds-Averaged Navier-Stokes equations. Incompressible, turbu-72

lent flows often occur in the CFD applications of the maritime industry. Most com-73

mercial and open-source CFD packages rely on the Reynolds-Averaged Navier-Stokes74

(RANS) equations to model such flows [11,23,30] since more advanced models, such as75

the Large-Eddy Simulation (LES), are still too expensive for industrial applications.76

Besides, engineers are firstly interested in the averaged properties of a flow, such as77

the average forces on a body, which is exactly what RANS models provide.78

The RANS equations are obtained from the Navier-Stokes equations by an aver-79

aging process referred to as the Reynolds averaging, where an instantaneous quantity80

such as the velocity, is decomposed into its averaged and fluctuating part. If the flow81

is statistically steady, time averaging is used and ensemble averaging is applied for82

unsteady flows. The averaged part is solved for, while the fluctuating part is mod-83

elled which requires additional equations, for instance for the turbulent kinetic energy84

and turbulence dissipation, see [11, 23, 30] for a broader discussion. The Reynolds-85

Averaged momentum and continuity equations are here presented in the conservative86
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AL PRECONDITIONER WITH SIMPLE SCHUR APPROXIMATION 3

form using FVM for a control volume Ω with surface S and outward normal vector n:87 ∫
S

ρuu · n dS +

∫
S

Pn dS −
∫
S

µeff(∇u +∇uT ) · n dS =

∫
Ω

ρb dΩ,∫
S

u · n dS = 0

(1)88

where u is the velocity, P = p+ 2
3ρk consists of the pressure p and the turbulent kinetic89

energy k , ρ is the (constant) density, µeff is the (variable) effective viscosity and b is a90

given force field. On the boundaries we either impose the velocity (u = uref on inflow91

and u = 0 on walls) or the normal stress (µeff
∂u
∂n − Pn = 0 on outflow and farfield).92

The effective viscosity µeff is the sum of the constant dynamic viscosity µ and the93

variable turbulent eddy viscosity µt provided by the turbulence model as a function94

of k and possibly of other turbulence quantities. Notice that for laminar flows, where95

k and µt are zero, the RANS equations reduce to the Navier-Stokes equations.96

In this paper, we will consider laminar flow of water over a finite flat plate at97

Re = 105 and turbulent flow at Re = 107. The density and dynamic viscosity of98

water at atmospheric pressure and 20 degrees Celsius are roughly ρ = 1000[kg/m3]99

and µ = 0.001[kg/m/s], see [31]. The inflow velocity uref in [m/s] is adjusted to100

obtain the given Reynolds number Re = ρ‖uref‖Lref

µ based on the length Lref = 1[m]101

of the plate. The flow is characterized by a very thin boundary layer on the plate102

which is fully resolved by stretching the grid in the vertical direction. This inevitably103

results in high aspect-ratio cells near the plate. At the higher Reynolds number, the104

flow becomes turbulent in this thin boundary layer and in the wake of the plate.105

Figure 1 illustrates how the effective viscosity (provided in this case by the k-ω SST106

model [20]) varies in the domain: the eddy viscosity in the wake of the plate is two107

orders of magnitude larger than the dynamic viscosity. We will also consider turbulent108

flow over a backward-facing step at Reynolds 5 · 104 based on the step height, which109

has similar eddy-viscosity magnitude in the wake of the step.110

Solvers for the RANS equations should be able to handle both challenges, i.e.111

high-aspect ratio cells and significant variation in viscosity.112

Fig. 1: For the turbulent flat plate problem, the ratio between the eddy viscosity and
dynamic viscosity, i.e., µt/µ in the wake of the plate.

2.2. Linear saddle point system. As explained in [15], the nonlinear system113

(1) is solved for u and P as a series of linear systems obtained by Picard linearization114

[11], i.e. by assuming that the mass flux ρu · n, the turbulent kinetic energy k and115
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4 X. HE, C. VUIK, AND C.M. KLAIJ

the effective viscosity µeff are known from the previous iteration. The turbulence116

equations are then solved for k and possibly other turbulence quantities, after which117

the process is repeated until a convergence criterion is met.118

After linearization and discretization of system (1) by the cell-centered and co-119

located FVM [11], the linear system is in saddle point form as120

(2)

[
Q G
D C

] [
u
p

]
=

[
f
g

]
with A :=

[
Q G
D C

]
,121

where Q corresponds to the convection-diffusion operator and the matrices G and D122

denote the gradient and divergence operators, respectively. The matrix C comes from123

the stabilization method. The details of these matrices are presented as follows.124

The linearization and the explicit treatment of the second diffusion term µeff∇uT ·125

n by using the velocity and effective viscosity from the previous iteration make the126

matrix Q of a block diagonal form. Each diagonal part Qii is equal and contains127

the contributions from the convective term ρuiu ·n and the remaining diffusion term128

µeff∇ui · n.129

In FEM the divergence matrix is the negative transpose of the gradient matrix,130

i.e. D = −GT . However, in FVM we have Di = Gi on structured and unstructured131

grids, where i denotes the components therein. Only for structured grids we have132

that D is skew-symmetric (Di = −DT
i ) and therefore that D = −GT as in FEM. We133

refer to [11] for the details of D and G in FVM.134

To avoid pressure oscillations when the velocity and pressure are co-located in the135

cell centers, the pressure-weighted interpolation (PWI) method [21] is applied here136

and leads to the stabilization matrix C as137

(3) C = Ddiag−1(Q)G− diag−1(Qii)Lp,138

where Lp is the Laplacian matrix. The details about the PWI method and its repre-139

sentation by the discrete matrices as (3) are given in [14,16].140

2.3. Preconditioners for saddle point systems. Block structured precondi-141

tioners are used to accelerate the convergence rate of the Krylov subspace solvers for142

saddle point systems as (2). They are based on the block LDU decomposition of the143

coefficient matrix given by144

(4) A = LDU =

[
Q G
D C

]
=

[
I O

DQ−1 I

] [
Q O
O S

] [
I Q−1G
O I

]
,145

where S = C − DQ−1G is the so-called Schur complement. To successfully design146

block structured preconditioners, a combination of this block factorization with a suit-147

able approximation of the Schur complement is utilized. It is not practical to explicitly148

form the exact Schur complement due to the action of Q−1 typically when the size is149

large. This implies that constructing the spectrally equivalent and numerically cheap150

approximations of the Schur complement can be very challenging. There exist several151

state-of-the-art approximations of the Schur complement, e.g. the least-square com-152

mutator (LSC) [8], pressure convection-diffusion (PCD) operator [13,28], SIMPLE(R)153

preconditioner [16, 17, 29], and augmented Lagrangian (AL) approach [2–4, 32] etc.154

These Schur complement approximations are originally designed in the context of155

stable FEM where the (2, 2) block of A is zero. We refer for more details of the Schur156

approximation to the surveys [1, 24,26,27] and the books [9, 22].157
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AL PRECONDITIONER WITH SIMPLE SCHUR APPROXIMATION 5

This paper is meant to significantly improve the efficiency of the AL precondi-158

tioner in the turbulent and laminar boundary-layer flows computed with a stabilized159

FVM. To fulfil the objective of this paper, a new variant of the AL preconditioner160

is proposed, which substitutes the approximation of the Schur complement from the161

SIMPLE preconditioner into the inverse of the Schur complement for the AL precon-162

ditioner. More details are presented in the next section.163

3. Augmented Lagrangian preconditioner. In this section, we propose the164

new method to construct the approximation of the Schur complement in the AL165

preconditioner, followed by the comparison with the old approach.166

3.1. Transformation of the linear system. It is observed in [2,3] that apply-167

ing the AL preconditioner allows us to circumvent the challenging issue of constructing168

the numerically cheap and spectrally equivalent approximation of the Schur comple-169

ment S of the original system (2). To apply the AL preconditioner, the original system170

(2) is transformed into an equivalent one with the same solution [3, 32], which is of171

the form172

(5)

[
Qγ Gγ
D C

] [
u
p

]
=

[
fγ
g

]
with Aγ :=

[
Qγ Gγ
D C

]
,173

where Qγ = Q− γGW−1D, Gγ = G− γGW−1C and fγ = f− γGW−1g. The scalar174

γ > 0 and the matrix W should be non-singular. This transformation is obtained by175

multiplying −γGW−1 on both sides of the second row of system (2) and adding the176

resulting equation to the first one. Clearly, the transformed system (5) has the same177

solution as system (2) for any value of γ and any non-singular matrix W . The Schur178

complement of Aγ is Sγ = C −DQ−1
γ Gγ .179

The equivalent system (5) is what we want to solve when applying the AL pre-180

conditioner. Using the block DU decomposition of Aγ , the ideal AL preconditioner181

PIAL is given by182

(6) PIAL =

[
Qγ Gγ
O S̃γ

]
,183

where S̃γ denotes the approximation of Sγ .184

The modified variant of the ideal AL preconditioner, i.e., the so-called modified185

AL preconditioner, replaces Qγ by its block lower-triangular part, i.e. Q̃γ , such that186

the difficulty of solving sub-systems with Qγ is avoided [3]. To see it more clearly, we187

take a 2D case as an example and give Qγ and Q̃γ as follows188

Q =

[
Q1 O
O Q1

]
, G =

[
G1

G2

]
, D =

[
D1 D2

]
,189

190

Qγ =

[
Q1 − γG1W

−1D1 −γG1W
−1D2

−γG2W
−1D1 Q1 − γG2W

−1D2

]
,191

192

Q̃γ =

[
Q1 − γG1W

−1D1 O
−γG2W

−1D1 Q1 − γG2W
−1D2

]
.193

Substituting Q̃γ into PIAL as (6), then we get the modified AL preconditioner PMAL:194

(7) PMAL =

[
Q̃γ Gγ
O S̃γ

]
.195
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6 X. HE, C. VUIK, AND C.M. KLAIJ

It appears that one needs to solve sub-systems with Q̃γ when applying PMAL.196

This work is further reduced to solve systems with Q1 − γG1W
−1D1 and Q1 −197

γG2W
−1D2. These two sub-blocks do not contain the coupling between two com-198

ponents of the velocity so that it is much easier to solve, compared to Qγ involved in199

PIAL.200

3.2. New Schur complement approximation. The key of the ideal and mod-201

ified AL preconditioners is to find a numerically cheap and spectrally equivalent Schur202

complement approximation S̃γ . The novel approximation proposed by this paper is203

based on the following lemma.204

Lemma 3.1. Assuming that all the relevant matrices are invertible, then the in-205

verse of Sγ is given by206

(8) S−1
γ = S−1(I − γCW−1) + γW−1,207

where S = C −DQ−1G denotes the Schur complement of the original system (2).208

Proof. We refer to [3, 32] for the proof.209

This lemma was already published but its importance was not fully appreciated.210

Since Lemma 3.1 gives the connection between the Schur complement Sγ and S, it211

provides a framework to build the approximation of Sγ . Provided an approximation212

of S denoted by S̃, it is natural to substitute S̃ into expression (8) to construct an213

approximation of Sγ in the inverse form as214

(9) S̃−1
γ new = S̃−1(I − γCW−1) + γW−1,215

where the notation new is used to differ from the old approach to approximate Sγ ,216

discussed in the next section.217

Actually it is not necessary to explicitly implement S̃γ new. Solving a sub-system218

with S̃γ new, i.e., S̃γ new x = b, converts to multiply the vector b on both sides of219

expression (9). Supposed that W is a diagonal matrix, e.g. the mass matrix Mp with220

density multiplied with cell volumes in FVM, the complexity of (S̃−1(I − γCW−1) +221

γW−1)b is focused on solving the system with S̃. This means that the accelerating222

techniques to optimize S̃ can reduce the computational time of the new approach.223

From expression (9) it is clear that the Schur complement approximation S̃ pro-224

posed for the original system (2) is used to construct S̃γ new here. Among the known225

LSC, PCD and SIMPLE methods, this paper chooses the Schur complement approx-226

imation arising from the SIMPLE preconditioner. One motivation is that in the227

context of the considered FVM the Schur complement approximation from the SIM-228

PLE preconditioner reduces to a scaled Laplacian matrix. See more details in the next229

paragraph. This choice is also motivated by the efficiency of the SIMPLE precondi-230

tioner on the complicated maritime applications, see [15, 16] for instance. We expect231

that the choice of the Schur complement approximation arising from the SIMPLE232

preconditioner helps to build a numerically cheap and efficient S̃γ new.233

Regarding the Schur complement S = C−DQ−1G of the original system (2), the234

SIMPLE preconditioner approximates Q by its diagonal, diag(Q), and obtains the235

approximation of S as S̃1 = C −Ddiag−1(Q)G. Taking into account the stabilization236

matrix C = Ddiag−1(Q)G − diag−1(Qii)Lp as given in (3), we further reduce the237

approximation to S̃SIMPLE = −diag−1(Qii)Lp because the term Ddiag−1(Q)G in S̃1238

and C cancels. See, for instance, [14,16] for a detailed discussion of obtaining S̃SIMPLE239
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AL PRECONDITIONER WITH SIMPLE SCHUR APPROXIMATION 7

in FVM. Substituting S̃SIMPLE and W = Mp into expression (9) we obtain240

(10) S̃−1
γ new = S̃−1

SIMPLE(I − γCM−1
p ) + γM−1

p , where S̃SIMPLE = −diag−1(Qii)Lp.241

Based on the above approach, it is seen that there is no extra requirement on242

the value of the parameter γ so that S̃γ new can be obtained. As pointed out in the243

next section, the requirements in the old approximation of the Schur complement244

are contradictory. This suggests that the convergence rate of the Krylov subspace245

solvers preconditioned by the AL preconditioner with the new Schur complement246

approximation is weakly depending on the value of γ. This advantage makes the new247

AL variant less sensitive to the choice of γ. See the results regarding the influence of248

γ on the convergence rate in the numerical experiment section.249

3.3. Old Schur complement approximation. For a comparison reason, the250

old approximation of the Schur complement in the AL preconditioner is recalled in251

this section. The starting point to construct the old approximation of the Schur252

complement in the AL preconditioner is also Lemma 3.1. However, the strategy is253

totally different. Choosing W1 = γC + Mp and substituting W1 into expression (8)254

we have255

S−1
γ = S−1(I − (γC +Mp −Mp)(γC +Mp)

−1) + γ(γC +Mp)
−1

= S−1Mp(γC +Mp)
−1 + γ(γC +Mp)

−1

= (γ−1S−1Mp + I)(C + γ−1Mp)
−1.

256

For large values of γ such that ‖ γ−1S−1Mp ‖� 1, the term γ−1S−1Mp can be257

neglected so that we have S̃γ old as follows258

(11) S̃γ old = C + γ−1Mp.259

The choice of W1 = γC + Mp is not practical since the action of W−1
1 is needed260

in the transformed system (5). The ideal and modified AL preconditioners, used for261

instance in [3,32], omit the term γC in W1 and choose W = Mp. The choice W = Mp262

only involves the mass matrix Mp, which is easily inverted especially in FVM where263

Mp is a diagonal matrix.264

The contradictory requirements in the above method are presented as follows.265

The approximation S̃γ old is obtained if and only if W1 = γC + Mp and large values266

of γ are chosen. However, W = Mp is close to W1 = γC + Mp only when γ is267

small. This means that it is contradictory to tune the value of γ so that W = Mp268

and S̃γ old could be simultaneously obtained. A simply balanced value of γ is γ = 1269

or O(1). This disadvantage reflects in the convergence rate of the Krylov subspace270

solvers. This paper shows that for the laminar calculations the number of the Krylov271

subspace iterations preconditioned by the AL preconditioner with S̃γ old is about272

fourteen times larger than the new Schur approximation S̃γ new. An application of273

the AL preconditioner with S̃γ old in the more challenging turbulent computations274

with variable viscosity and more stretched grids shows a very slow convergence or275

even stagnation. See numerical experiments in Section 5.276

In summary, regarding the ideal and modified AL preconditioners applied to the277

transformed system (5), there are two types of Schur complement approximations, i.e.278

1. S̃−1
γ new = S̃−1

SIMPLE(I − γCM−1
p ) + γM−1

p , S̃SIMPLE = −diag−1(Qii)Lp.279

2. S̃γ old = C + γ−1Mp.280

The choice of W = Mp is fixed in the transformation to obtain the equivalent system281

(5) and the construction of two Schur complement approximations.282
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8 X. HE, C. VUIK, AND C.M. KLAIJ

3.4. SIMPLE preconditioner. Although the focus of this paper is on the283

new Schur complement approximation and its advantage over the old one in the AL284

preconditioner, we also present the SIMPLE preconditioner for a more comprehensive285

comparison. Different from the ideal AL preconditioner and its modified variant, the286

SIMPLE preconditioner is proposed for the original system (2), which is based on the287

block LDU decomposition of the coefficient matrix A and given by288

PSIMPLE =

[
Q O

D S̃

] [
I diag−1(Q)G
O I

]
,289

where S̃ denotes the approximation of the Schur complement of A, i.e., S = C −290

DQ−1G. With the stabilization matrix C given by (3), the Schur complement ap-291

proximation becomes S̃ = S̃SIMPLE = −diag−1(Qii)Lp where Lp is the Laplacian292

matrix. Therefore, the scaled Laplacian matrix is used as the approximation of the293

Schur complement in the SIMPLE preconditioner. In order to avoid repetition we294

refer to Section 3.2 for the details of obtaining S̃SIMPLE. We refer to [15, 16] for the295

performance of the SIMPLE preconditioner in the FVM context on both academic296

and maritime applications.297

4. Cost model for AL and SIMPLE preconditioners. To summarize the298

linearized systems where the AL and SIMPLE preconditioners are applied individu-299

ally, we give the schematic diagram as follows:300

301

Use FVM and Picard method to solve the nonlinear problem (1).
Each Picard iteration:

Use Krylov subspace method to solve
the adapted linearized system (5):[

Qγ Gγ
D C

] [
u
p

]
=

[
fγ
g

]
,Aγ =

[
Qγ Gγ
D C

]
.

Use Krylov subspace method to
solve the linearized system (2):[
Q G
D C

] [
u
p

]
=

[
f
g

]
,A =

[
Q G
D C

]
.

Each Krylov iteration: solve a system with the
ideal or modified AL preconditioner

PMAL =

[
Q̃γ Gγ
O S̃γ

]
or PIAL =

[
Qγ Gγ
O S̃γ

]
with S̃γ = S̃γ new or S̃γ = S̃γ old

Each Krylov iteration: solve a system
with the SIMPLE preconditioner
PSIMPLE =[
Q O

D S̃SIMPLE

] [
I diag−1(Q)G
O I

]

reduced to solve the sub-systems with Qγ
(or Q̃γ) and S̃γ .

reduced to solve the sub-systems with
Q and S̃SIMPLE.

302

In [15], we presented a basic cost model to distinguish between the SIMPLE pre-303

conditioner and other preconditioners. Here, we extend the model to include the304

modified AL preconditioner with two Schur complement approximations. Firstly con-305

sider the cost of using the SIMPLE preconditioner PSIMPLE for a Krylov subspace306

method that solves the system with A to a certain relative tolerance in n1 iterations.307

The preconditioner is applied at each Krylov iteration and the SIMPLE precondi-308

tioner solves the momentum sub-system ’mom-u’ with Q and the pressure sub-system309
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’mass-p’ with S̃SIMPLE. Besides, at each Krylov iteration another cost is expressed in310

the product of the coefficient matrix A with a Krylov residual vector bres. Thus, the311

total cost is312

• PSIMPLE : n1 × (mom-u with Q+ mass-p with S̃SIMPLE +A× bres).313

Secondly consider the cost of applying the modified AL preconditioner PMAL314

with the new Schur approximation S̃γ new. If we neglect the multiplications in the315

definition of S̃γ new as given in (10), the cost of solving the pressure sub-system with316

S̃γ new is the same as S̃SIMPLE. Thus, the total cost is317

• PMAL with S̃γ new: n2×(mom-u with Q̃γ+mass-p with S̃SIMPLE+Aγ×bres).318

Finally consider the cost of applying the modified AL preconditioner PMAL with319

the old Schur approximation S̃γ old. Similar to the analysis of PMAL with S̃γ new, we320

obtain the total cost as321

• PMAL with S̃γ old: n3× (mom-u with Q̃γ + mass-p with S̃γ old +Aγ ×bres).322

Clearly, the difference of cost by applying PMAL with S̃γ new and S̃γ old arises from323

solving the pressure sub-systems with S̃SIMPLE and S̃γ old, respectively. It is difficult324

to analytically compare the complexity of solving the sub-systems with S̃SIMPLE and325

S̃γ old. However, numerical experiments in the next section show n2 � n3 on all326

considered problems, which makes the new Schur complement approximation more327

efficient and attractive in terms of iterations and wall-clock time.328

At each Krylov iteration, more nonzero fill-in introduced in the blocks Qγ and Gγ329

and more difficulty of iteratively solving the momentum sub-system with Q̃γ than Q330

lead to a higher cost of applying PMAL with S̃γ new than PSIMPLE . We refer to [32]331

for a detailed discussion. Therefore, this higher cost of PMAL with S̃γ new only pays-332

off if n2 < n1. In this paper we observe n2 < n1 on the turbulent and laminar tests333

but the time advantage of PMAL with S̃γ new over PSIMPLE needs further assessment334

which is included in the future research plan.335

5. Numerical experiments. In this section, we compare the new AL variant336

with the old one and with SIMPLE preconditioner, for incompressible, laminar flow337

governed by the Navier-Stokes equations, as well as turbulent flow governed by the338

Reynolds-Averaged Navier-Stokes equations.339

5.1. Flow over a finite flat plate (FP). Flow over a finite flat plate is a340

standard test case in maritime engineering, see [25] for a detailed study of various341

turbulence models with MARIN’s CFD software package ReFRESCO [19].342

We first consider the fully turbulent flow at Re = 107 on the block-structured343

grids. The grids are refined near the leading and trailing edge of the plate and spread344

out in the wake of the plate, see Figure 2(a), which leads to some eccentricity and345

non-orthogonality. As can be seen, the grids are stretched in both the horizontal346

and vertical direction and reach the maximal aspect ratio of order 1 : 104 near the347

middle of the plate. The complete flow is computed, starting from uniform laminar348

flow upstream of the plate.349

Second, we reconsider laminar flow at Re = 105 on a straight single-block grid.350

This case was already presented in [14–16, 32] for other solvers and preconditioners.351

We reconsider it here to show that the new Schur complement approximation also352

improves the efficiency of the AL preconditioner in the calculations of laminar flow.353

The stretched grids shown in Figure 2(b) are generated based on uniform Cartesian354

grids by applying the stretching function from [16] in the vertical direction. Near the355

plate the grids have a maximal aspect ratio of order 1 : 50, which is about two orders356

smaller than the turbulent grids. Contrary to the turbulent case, the flow starts with357
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the (semi-analytical) Blasius solution halfway the plate, so only the second half and358

the wake are computed.359

Fig. 2: Impression of the grids. Turbulent case with 80× 40 cells and the max aspect
ratio of order 1 : 104 and laminar case with 64× 64 cells and the max aspect ratio of
order 1 : 50.

(a) Turbulent case

(b) Laminar case

5.2. Flow over a backward-facing step (BFS). We consider turbulent flow360

over a backward-facing step in a channel, as measured by Driver and Seegmiller [6].361

The chosen case corresponds to the C-30 case from the ERCOFTAC Classic Collec-362

tion [10], with Reynolds number of 5 · 104 based on the inflow velocity and the step363

height. The flow is more complicated than the flat-plate flows as it features sepa-364

ration, a free shear-layer and reattachment. Detailed results with ReFRESCO for365

various turbulence models are found in [7], including results for the k-ω SST turbu-366

lence model [20] used here. The grid is also more complicated: multiple blocks are367

used to wrap the boundary layer around the step, see Figure 3.368

In this paper all experiments are carried out based on the blocks Q, G, D, C, Mp369

and Lp and the right hand-side vector rhs, which are obtained at the 30th nonlinear370

iteration. Numerical experiments in [32] show that the number of linear iterations371

varies through the whole nonlinear procedure. The motivation of choosing the 30th372

nonlinear iteration to export the blocks is that a representative number of linear373

iteration can be obtained from the 30th nonlinear step, compared with the average374
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Fig. 3: Impression of block-structured grid with 9600 cells for turbulent flow over
backward-facing step.

number of linear iterations through the whole nonlinear procedure. We use a series375

of structured grids with 80× 40 and 160× 80 cells for the turbulent FP case and the376

structured grid with 9600 cells for the turbulent BFS case. Regarding the laminar377

FP calculation, we use a structured grid with 64 × 64 cells. The matrices and right-378

hand side vector are generated by ReFRESCO and available in Matlab’s binary .mat379

format on the website [18]. The aim of the numerical experiments is to show the380

variation in the eigenvalues and number of the Krylov subspace iterations, arising381

from different Schur complement approximations in the AL preconditioner. To carry382

out a comprehensive evaluation of the new Schur complement approximation in the383

AL preconditioner, in this paper we solve the linear system preconditioned by the384

AL preconditioner with the new Schur complement approximation to the machine385

accuracy. For a fair comparison, the same stopping tolerance is used when employing386

the old Schur complement approximation and the SIMPLE preconditioner. Since the387

AL preconditioner with different Schur complement approximations and the SIMPLE388

preconditioner involve various momentum or pressure sub-systems, all the sub-systems389

are directly solved in this paper to avoid the sensitiveness of iterative solvers on the390

varying solution complexities.391

5.3. Numerical experiments on the turbulent FP case. To find out the392

reason that the new Schur complement approximation S̃γ new leads to a fast conver-393

gence of the Krylov subspace solvers preconditioned by the AL preconditioner, we plot394

ten extreme eigenvalues of the preconditioned matrices P−1
IALAγ and P−1

MALAγ with395

S̃γ new on the grid with 80 × 40 cells. The results which are shown in Figures 4 and396

5 show that for the considered values of γ the smallest eigenvalues are far away from397

zero and the spectrum is clustered due to a small ratio between the largest and small-398

est magnitude of the eigenvalues. Such a distribution of the eigenvalues is favorable399

for the Krylov subspace solvers and a fast convergence rate can be expected.400

Results in Figure 6 show the fast convergence rate of the Krylov subspace solver401

preconditioned by the ideal AL preconditioner with the new Schur approximation402

S̃γ new on the grids with 80 × 40 cells and 160 × 80 cells. The fast convergence rate403

confirms the prediction that the new Schur approximation S̃γ new produces a favorable404

ideal AL preconditioner for the Krylov subspace solvers. In Figure 6 we observe that405

larger values of γ result in a faster convergence rate on both grids. This observation406

is analogous to that when applying the old Schur complement approximation S̃γ old407

in the ideal AL preconditioner with stable FEM, see [12] for instance. On the other408

hand, an ill-conditioned Qγ can arise from larger values of γ [32]. This indicates that409

the value of γ can not be taken too large otherwise solving the momentum sub-system410
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with Qγ can be very difficult. Results in Figure 6 indicate that the balanced value of411

γ involved in the ideal AL preconditioner with the new Schur approximation S̃γ new412

is γ = 1 or O(1).413

Compared with the ideal AL preconditioner, the values of γ exhibit a different414

influence on the spectrum of the preconditioned matrix by using the modified AL415

preconditioner. For example, with γ = 100 the smallest eigenvalue of P−1
MALAγ is416

two orders of magnitude smaller than γ = 0.01 and γ = 1.0, as seen from the last417

row of Figure 5. It appears that the optimal value of γ, which leads to the most418

clustered eigenvalues of P−1
MALAγ , is γopt = 1. Based on this observation we predict419

that the fastest convergence rate of the Krylov subspace solvers preconditioned by the420

modified AL preconditioner with S̃γ new can be obtained with γopt = 1.421

The convergence rate of the Krylov subspace solvers preconditioned by the mod-422

ified AL preconditioner with S̃γ new on the grids with 80× 40 cells and 160× 80 cells423

is presented in Figure 7. We find out that γopt = 1 results in the fastest convergence424

rate on two grids and this confirms the prediction based on the spectrum analysis425

from Figure 5. Compare two grids with 160 × 80 cells and 80 × 40 cells, it appears426

that the optimal value γopt = 1 is independent of mesh refinement. This property is427

helpful in practice since one can carry out numerical experiments to determine γopt428

on coarse grids and then re-use it on finer grids.429

In Table 1 we summarise the number of the Krylov subspace iterations precon-430

ditioned by the AL preconditioners with the new Schur complement approximation431

S̃γ new and γ = 1 on two grids. The value γ = 1 is a balanced choice for the ideal AL432

preconditioner and is the optimal choice for the modified AL preconditioner. As seen,433

for this considered turbulent case the new Schur complement approximation S̃γ new434

does not make the AL preconditioners independent of mesh refinement. This moti-435

vates a further study targeting at mesh independence, which is planned as a research436

direction in future.437

Table 1: Turbulent FP: the number of GMRES iterations (no restart) preconditioned

by the AL preconditioners with the new Schur approximation S̃γ new and γ = 1 on
two grids.

Grid 80× 40 cells 160× 80 cells
PMAL: 140 246
PIAL: 132 245

On the other hand, the proposal of the new Schur complement approximation438

S̃γ new is a big contribution to the development of AL preconditioners in the context439

of turbulent calculations. This is clearly seen from Figure 8 where the Krylov subspace440

solver converges very slowly when applying the old Schur complement approximation441

S̃γ old in the modified AL preconditioner. To understand this slow convergence the442

extreme eigenvalues of P−1
MALAγ with S̃γ old on the grid with 80×40 cells are presented443

in Figure 9. We see that the smallest eigenvalues are quite close to zero for all tested444

values of γ, which degrades the efficiency of the Krylov subspace solver considerably.445

Among the tested values of γ, Figure 9 shows that γ = 1 results in a relatively clustered446

spectrum. Based on this observation we expect that the optimal value γopt = 1 leads447

to the fastest convergence when using the old Schur complement approximation S̃γ old448

in the modified AL preconditioner. However, the number of the Krylov subspace449

iterations preconditioned by PMAL with S̃γ old and γopt = 1 is over than 5000 as450

seen from Figure 8. Compared with 140 Krylov subspace iterations preconditioned451
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by PMAL with S̃γ new and γopt = 1, we clearly show that the new Schur complement452

approximation S̃γ new proposed in this paper significantly improves the performance453

of the AL preconditioners on the turbulent FP case.454

We also present the spectrum of the eigenvalues and convergence rate by using455

the SIMPLE preconditioner. These results are compared with the modified AL pre-456

conditioner with the new Schur complement approximation S̃γ new and γopt = 1. The457

comparison given in Figure 10 illustrates that on the grid with 80×40 cells the small-458

est eigenvalues are nearly the same for both preconditioners. However, the SIMPLE459

preconditioner leads to a larger ratio between the largest and smallest magnitude of460

the eigenvalues, which means that the spectrum of the eigenvalues is less clustered461

compared to the modified AL preconditioner. Therefore, a faster convergence rate of462

the Krylov subspace solvers is expected by applying the modified AL preconditioner.463

Table 2 presents the number of GMRES iterations preconditioned by the SIMPLE464

preconditioner and the modified AL preconditioner with S̃γ new and γopt = 1 on two465

grids. Results in Table 2 illustrate that the number of the Krylov subspace itera-466

tions increase by a factor 1.7 by using the modified AL preconditioner with S̃γ new467

and γopt = 1. The increasing factor is 2.2 when using the SIMPLE preconditioner.468

The smaller increasing factor allows a more apparent advantage of the modified AL469

preconditioner with S̃γ new in terms of the reduced number of the Krylov subspace470

iterations with mesh refinement, which foresees the overall advantage in terms of total471

wall-clock time on fine enough grids.472

Table 2: Turbulent FP: the number of GMRES iterations (no restart) preconditioned

by the modified AL preconditioner PMAL with the new Schur approximation S̃γ new

and γopt = 1, and the SIMPLE preconditioner PSIMPLE on two grids.

Grid 80× 40 cells 160× 80 cells
PMAL: 140 246
PSIMPLE : 180 382

5.4. Numerical experiments on the turbulent BFS case. On the calcula-473

tions of turbulent BFS case, we further assess the new Schur complement approxima-474

tion S̃γ new applied in the modified AL preconditioner and present the convergence475

rate of the Krylov subspace solver in Figure 11 (a). As seen, the utilisation of S̃γ new476

produces quite a fast convergence rate in the turbulent BFS case too. Among the477

considered values of γ, it appears that γopt = 0.1 results in the fastest convergence478

rate on the turbulent BFS case. Consider γopt = 1 on the turbulent FP test, we find479

out that the optimal value of γ which results in the best performance of the modified480

AL preconditioner with the new Schur complement approximation S̃γ new is weakly481

problem dependent.482

Comparable with the turbulent FP case, on the turbulent BFS test we also see the483

faster convergence rate achieved by using the modified AL preconditioner with S̃γ new484

than the SIMPLE preconditioner. Comparison in Figure 11 (a) shows that the number485

of the Krylov subspace iterations preconditioned by the modified AL preconditioner486

with S̃γ new and γopt = 0.1 is nearly half of that by using the SIMPLE preconditioner.487

Based on the result with mesh refinement on the turbulent FP case (see Table 2), it488

is reasonable to expect that on turbulent BFS test less Krylov subspace iterations489

preconditioned by the modified AL preconditioner with S̃γ new will convert to a time490

advantage over the SIMPLE preconditioner on fine grids.491

To illustrate the improvement arising from the utilisation of the new Schur com-492
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plement approximation S̃γ new, in Figure 11 (b) we present the convergence rate493

preconditioned by the modified AL preconditioner with the old Schur complement494

approximation S̃γ old. The fastest convergence rate with S̃γ old is obtained with495

γopt = 1 and other values of γ can not make the solution procedure converged to496

the desired tolerance within the maximal 1000 iterations. The fastest convergence497

rate with S̃γ old and γopt = 1 is about eight times slower than S̃γ new with γopt = 0.1.498

The turbulent BFS case is another example to illustrate the advantage of the new499

Schur approximation S̃γ new over the old one S̃γ old in the turbulent context.500

For a comprehensive comparison, in Table 3 we summarise the number of the501

Krylov subspace iterations accelerated by different preconditioners. Since we have502

observed the mesh dependence of the AL preconditioners with the new Schur approx-503

imation S̃γ new on the turbulent FP case, we expect an analogous behaviour on the504

turbulent BFS case. The planned future research includes the improvement which505

allows the robustness with respect to mesh refinement on turbulent calculations.506

Table 3: Turbulent BFS: the number of GMRES iterations (no restart) precondi-
tioned by the AL preconditioners with different Schur complement approximations
and different values of γ, and the SIMPLE preconditioner. The grid with 9600 cells
is used.

γ 0.01 0.1 1

PIAL with S̃γ new: 133 103 96

PMAL with S̃γ new: 134 104 111

PMAL with S̃γ old: > 1000 > 1000 791

PSIMPLE : 199

5.5. Numerical experiments on the laminar FP case. The modified AL507

preconditioner is often utilised due to the reduced complexity of solving the sub-508

system with Q̃γ , compared toQγ involved in the ideal AL preconditioner. The extreme509

eigenvalues of P−1
MALAγ with the new Schur approximation S̃γ new are shown in Figure510

13. There are two observations to be made. Firstly, for moderate values of γ, e.g., γ ∈511

[0.01, 0.1], the smallest eigenvalues are far away from zero. Secondly, γ = 0.1 results512

in the smallest ratio between the largest and smallest magnitude of the eigenvalues.513

Thus, we expect that the optimal value of γ is γopt = 0.1 for the laminar FP case.514

The prediction is confirmed by Figure 12 which illustrates that γopt = 0.1 results in515

the fastest convergence rate among other tested values of γ.516

In [32] we find out that for the laminar FP case the optimal value of γ for the517

old Schur approximation S̃γ old is γopt = 400. Seen from Table 4, on the laminar518

FP case the modified AL preconditioner with the new Schur approximation S̃γ new519

and γopt = 0.1 reduces the number of the Krylov subspace iterations by factors 14.6520

and 2.2, compared to the old Schur approximation S̃γ old with γopt = 400 and the521

SIMPLE preconditioner, respectively. The above numerical results clearly show that522

the new Schur complement approximation S̃γ new proposed in this paper significantly523

improves the performance of the AL preconditioner for laminar flows too.524
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Table 4: Laminar FP: the number of GMRES iterations (no restart) preconditioned
the modified AL preconditioner with two Schur complement approximations and their
corresponding optimal values of γ, and the SIMPLE preconditioner. The grid with
64× 64 cells is used.

PMAL with S̃γ new and γopt = 0.1 PMAL with S̃γ old and γopt = 400 PSIMPLE

83 1200 183

In the previous work [32] we set the stopping tolerance for the linear system to be525

10−3 on the laminar FP case and compare the modified AL preconditioner with the526

old Schur complement approximation and the SIMPLE preconditioner in terms of the527

number of the Krylov subspace iterations. This comparison is executed based on the528

chosen stopping tolerance which balances the linear and nonlinear solvers. Since the529

nonlinear solver is not the focus of this paper, it is reasonable to solve the linear system530

to the machine accuracy so that a comprehensive evaluation of the proposed new Schur531

complement approximation in the AL preconditioner and a complete comparison with532

the old Schur complement approximation and the SIMPLE preconditioner can be533

obtained. In this sense, the results in Table 4, regarding the number of the Krylov534

subspace iterations preconditioned by the modified AL preconditioner with the old535

Schur complement approximation and the SIMPLE preconditioner, supplement the536

previous work [32].537

5.6. Comparisons between the turbulent and laminar calculations. Fi-538

nally we put the turbulent and laminar results together in Table 5 for a comparison.539

Consider the modified AL preconditioner with the new Schur approximation S̃γ new540

and the optimal value γopt , we see that the number of the Krylov subspace iterations541

is quite acceptable for all tested cases. This means that the new Schur complement542

approximation proposed in this paper makes the AL preconditioner robust with re-543

spect to the mesh anisotropy and physical parameter variation, e.g. the variation of544

the viscosity. Regarding the optimal value of γ, it lies in the interval [0.1, 1] for all545

tests when applying the new Schur complement approximation in the modified AL546

preconditioner. This interval is much more clustered than that when using the old547

Schur complement approximation. This means that the optimal value γopt is easier548

to determine and weakly problem dependent for the new variant. Regarding the in-549

fluence of γ on the convergence, we observe that by using the new Schur complement550

approximation the variation of the convergence rate arising from different values of γ551

is much less than that with the old approximation. See Figure 11 on the turbulent552

BFS case for instance. This illustrates that the new AL variant is less sensitive to the553

values of γ. Besides, the advantage of the new Schur approximation over the old one is554

clearly exhibited in terms of the significantly reduced number of the Krylov subspace555

iterations on all cases. This means that new Schur approximation can considerably556

improve the efficiency of the AL preconditioner for both turbulent and laminar cal-557

culations. Although the number of the Krylov subspace iterations by applying the558

modified AL preconditioner with new Schur approximation and the optimal value of559

γ is less than the SIMPLE preconditioner, the benefit in terms of the total wall-clock560

time needs the further assessment due to the heavier cost of the AL preconditioner561

presented in Section 4. This is included in the future research plan.562

This manuscript is for review purposes only.



16 X. HE, C. VUIK, AND C.M. KLAIJ

Table 5: The number of GMRES iterations (no restart) accelerated by different pre-
conditioners on different tests. The grids with 80 × 40 cells, 9600 cells and 64 × 64
cells are used for the turbulent FP, turbulent BFS and laminar FP cases respectively.

turbulent FP turbulent BFS laminar FP

PMAL with S̃γ new

γopt: 1 0.1 0.1
iterations: 140 104 83

PMAL with S̃γ old

γopt: 1 1 400
iterations: > 5000 791 1200

PSIMPLE

iterations: 180 199 183

6. Conclusion and future work. In this paper, we have considered the exten-563

sion of the AL preconditioner in the context of the stabilized finite volume methods564

to both laminar flow governed by the Navier-Stokes equations and turbulent flow gov-565

erned by the Reynolds-Averaged Navier-Stokes (RANS) equations with eddy-viscosity566

turbulence model.567

We find out that the straightforward application of the AL preconditioner to568

the RANS equations yields disappointing results and therefore proposed a new Schur569

complement approximation which leads to a variant of the AL preconditioner. The ap-570

proach is to substitute the approximation of the Schur complement from the SIMPLE571

preconditioner into the inverse of the Schur complement for the AL preconditioner.572

Without the contradictory requirements in the old approximation, the new Schur573

complement approximation makes the new AL variant less sensitive to the choice of574

γ and weakly problem dependent.575

To evaluate the new variant of the AL preconditioner, we consider the solution576

of the linear system obtained at the 30th nonlinear iteration for three cases: laminar577

and turbulent boundary-layer flow over a flat plate on grids with large aspect ratios,578

and turbulent flow over a backward-facing step in a channel. The backward-facing579

step flow is more complicated than the flat-plate flow as it features separation, a free580

shear-layer and reattachment. The new variant of the AL preconditioner significantly581

speeds up the convergence rate of the Krylov subspace solvers for both turbulent and582

laminar cases. Spectral analysis of the preconditioned systems explains the observed583

difference. Like the SIMPLE preconditioner, the new AL variant avoids the clustering584

of the smallest eigenvalues near zero. At the same time, the largest eigenvalues by585

applying the the new AL variant are significantly smaller than the SIMPLE precondi-586

tioner. As a consequence, the new variant of the AL preconditioner outperforms the587

considered preconditioners in terms of the number of the Krylov subspace iterations.588

The matrices and right-hand side vectors used in this paper are publicly available589

on the website [18]. This makes the research reproducable and the comparison with590

other preconditioning techniques easier.591

We present a basic cost model to compare the new variant with others, including592

the SIMPLE preconditioner which is well established for the RANS equations. The593

heavier cost of the new AL variant can be payed off with less Krylov subspace iter-594

ations which is seen in this paper. However, our test cases so far have been carried595

out on the modest grid sizes that allow the matrices to be exported and analyzed in596

Matlab. Future work is planned on the assessment of the new AL variant on larger597

grid sizes to show the benefit in terms of the reduced total wall-clock time. In this598

paper we observe that the new AL variant is not mesh independent. Another planned599
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future research is on the improvement which allows the robustness with respect to600

mesh refinement.601
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Fig. 4: Turbulent FP: the ten smallest (left) and largest (right) eigenvalues of P−1
IALAγ

with the new Schur approximation S̃γ new and different values of γ. The grid with
80× 40 cells is used.
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Fig. 5: Turbulent FP: the ten smallest (left) and largest (right) eigenvalues of P−1
MALAγ

with the new Schur approximation S̃γ new and different values of γ. The grid with
80× 40 cells is used.
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Fig. 6: Turbulent FP: the convergence of GMRES (no restart) preconditioned by the

ideal AL preconditioner PIAL with the new Schur approximation S̃γ new on the grids
with 80× 40 cells (left) and 160× 80 cells (right).

iterations
0 20 40 60 80 100 120 140 160

R
es

id
ua

ls

10-14

10-12

10
-10

10-8

10-6

10
-4

10
-2

1

γ=1

γ=0.01

γ=100

(a) grid with 80× 40 cells

0 50 100 150 200 250 300
Iterations

10-2

1

R
es

id
ua

ls

 = 1
 = 0.01
 = 100

10-4

10-6

10-8

10-10

10
-12

10-14

(b) grid with 160× 80 cells

Fig. 7: Turbulent FP: the convergence of GMRES (no restart) preconditioned by the

modified AL preconditioner PMAL with the new Schur approximation S̃γ new on the
grids with 80× 40 cells (left) and 160× 80 cells (right).
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Fig. 8: Turbulent FP: the convergence of GMRES (no restart) preconditioned by

the modified AL preconditioner PMAL with the old Schur approximation S̃γ old and
γopt = 1. The grid with 80× 40 cells is used.
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Fig. 9: Turbulent FP: the ten smallest (left) and largest (right) eigenvalues of P−1
MALAγ

with the old Schur approximation S̃γ old and different values of γ. The grid with 80×40
cells is used.
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Fig. 10: Turbulent FP: the ten smallest (left) and largest (right) eigenvalues of

P−1
MALAγ with the new Schur approximation S̃γ new and γopt = 1, and of P−1

SIMPLEA.
The grid with 80× 40 cells is used.
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Fig. 11: Turbulent BFS: the convergence of GMRES (no restart) preconditioned by

the modified AL preconditioner PMAL with the new Schur approximation S̃γ new and
the SIMPLE preconditioner (left), and the modified AL preconditioner PMAL with

the old Schur approximation S̃γ old (right). The grid with 9600 cells is used.
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Fig. 12: Laminar FP: the convergence of GMRES (no restart) preconditioned by the

modified AL preconditioner with the new Schur complement approximation S̃γ new

and different values of γ. The grid with 64× 64 cells is used.
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Fig. 13: Laminar FP: the ten smallest (left) and largest (right) eigenvalues of P−1
MALAγ

with the new Schur approximation S̃γ new and different values of γ. The grid with
64× 64 cells is used.

0.7514 0.7516 0.7518 0.752 0.7522 0.7524 0.7526 0.7528
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

(a) γ = 0.01

6.5 7 7.5 8 8.5 9 9.5 10
-5

-4

-3

-2

-1

0

1

2

3

4

5

(b) γ = 0.01

0.6 0.62 0.64 0.66 0.68 0.7 0.72 0.74
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

(c) γ = 0.1

2 3 4 5 6 7
-5

-4

-3

-2

-1

0

1

2

3

4

5

(d) γ = 0.1

0.1 0.12 0.14 0.16 0.18 0.2 0.22
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

(e) γ = 1

2 3 4 5 6 7 8
-5

-4

-3

-2

-1

0

1

2

3

4

5

(f) γ = 1

This manuscript is for review purposes only.



AL PRECONDITIONER WITH SIMPLE SCHUR APPROXIMATION 25

REFERENCES602

[1] M. Benzi, G. Golub, and J. Liesen, Numerical solution of saddle point problems, Acta603
numerica, 14 (2005), pp. 1–137.604

[2] M. Benzi and M. Olshanskii, An augmented Lagrangian-based approach to the Oseen605
problem, SIAM Journal on Scientific Computing, 28 (2006), pp. 2095–2113.606

[3] M. Benzi, M. Olshanskii, and Z. Wang, Modified augmented Lagrangian preconditioners for607
the incompressible Navier-Stokes equations, International Journal for Numerical Methods608
in Fluids, 66 (2011), pp. 486–508.609

[4] M. Benzi and Z. Wang, Analysis of augmented Lagrangian-based preconditioners for the610
steady incompressible Navier-Stokes equations, SIAM Journal on Scientific Computing, 33611
(2011), pp. 2761–2784.612

[5] M. Benzi and Z. Wang, A parallel implementation of the modified augmented Lagrangian613
preconditioner for the incompressible Navier-Stokes equations, Numerical Algorithms, 64614
(2013), pp. 73–84.615

[6] D. Driver and H. Seegmiller, Features of a reattaching turbulent shear layer in divergent616
channel flow, AIAA Journal, 23 (1985), pp. 163–171.617

[7] L. Eça, G. Vaz, and M. Hoekstra, A verification and validation exercise for the flow over a618
backward facing step, in Proceedings of the Fifth European Conference on Computational619
Fluid Dynamics ECCOMAS CFD 2010, J. Pereira and A. Sequeria, eds., 2010. June 14 –620
17, Lisbon, Portugal.621

[8] H. Elman, V. Howle, J. Shadid, R. Shuttleworth, and R. Tuminaro, Block622
preconditioners based on approximate commutators, SIAM Journal on Scientific Com-623
puting, 27 (2006), pp. 1651–1668.624

[9] H. Elman, D. Silvester, and A. Wathen, Finite elements and fast iterative solvers: with625
applications in incompressible fluid dynamics, Oxford University Press, 2014.626

[10] ERCOFTAC, Classic Collection Database, http://www.ercoftac.org/products and services/627
classic collection database/.628

[11] J. Ferziger and M. Peric, Computational methods for fluid dynamics, Springer Science &629
Business Media, 2012.630

[12] X. He, M. Neytcheva, and C. Vuik, On an augmented lagrangian-based preconditioning of631
Oseen type problems, BIT Numerical Mathematics, 51 (2011), pp. 865–888.632

[13] D. Kay, D. Loghin, and A. Wathen, A preconditioner for the steady-state Navier-Stokes633
equations, SIAM Journal on Scientific Computing, 24 (2002), pp. 237–256.634

[14] C. Klaij, On the stabilization of finite volume methods with co-located variables for635
incompressible flow, Journal of Computational Physics, 297 (2015), pp. 84–89.636

[15] C. Klaij, X. He, and C. Vuik, On the design of block preconditioners for maritime engineering,637
in Proceedings of the Seventh International Conference on Computational Methods in638
Marine Engineering MARINE, M. Visonneau, P. Queutey, and D. L. Touzé, eds., 2017.639
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