

Femke Groot | 4550862 Tutors: A. Snijders, J. de Krieger & G. Warries Delegate Examiner: A. Mulder TU Delft, MSc Architecture

URBAN STRATEGY

URBAN STRATEGY

URBAN STRATEGY

URBAN STRATEGY

URBAN STRATEGY

URBAN STRATEGY

URBAN STRATE**GY**

1.

1700

the relationship of city and port over time

large cities depend on a city-supporting industry close by

a cleaner industry is reason to reconsider their relationship

DESIGN GOAL 1

city and port working in symbiosis, instead of moving the port away

2 RESEARCH

of the energy in datacentres goes to the cooling system, after which it is lost to the outside air.

of the energy in datacentres goes to the cooling system, after which it is lost to the outside air.

in my research I found it is possible to recover 60% of the total energy consumption in the form of wasteheat.

partly by physically connecting a heat demanding building to the datacentre

2 RESEARCH

with this heat, 65% of the households in Amsterdam in 2040 can be heated 'for free'.

...but there is still the issue of space..

this 500MW datacentre would require 128.205m² of white space.

2 RESEARCH

Decentralized datacentre microgrids heating the city

DESIGN GOAL 2

use datacentre waste heat to heat a public building

1 1 1 2

È

11 F.J

έΓ

P

112

11 6.1

. DESIGN GOALS

3 DESIGN GOALS

URBAN STRATEGY

4 URBAN STRATEGY

HEMBRUG

WESTERGAS

connecting the hubs

DE PRAEL HOUTHAVENS

a new public space in the city

Citt Citt

120

8

E

17-

FF

5.0

00

harbour water filtering

Citt Citt

120

4

17-

F

1

Ľ

....

4 URBAN STRATEGY

INLET ZONE

Removes coarse sediment witg gravel. Regulates flow into macrophyte zone.

MACROPHYTE ZONE

Significant coverage of aquatic planting 80% from various species.

Water treatmet through sedimentation, filtratrion, absorption, biological ad chemical translocatin. Habitat for small animals and insects.

5 FORM AND MATERIAL

the form and scale relate to the existing context and industrial typology

5 FORM AND MATERIAL

the form and scale relate to the existing context and industrial typology

5 FORM AND MATERIAL

by choosing fiendly soft and biobased materials, the building becomes more approachable and sustainable

AROUND 100.932 ton CO₂ SAVED BY USING BIOBASED MATERIALS

5 FORM AND MATERIAL

the repetition of the form and facade also relate to the existing industrial heritage

the building consists of 4 segments of timber trusses with large spans

the courtyard as central space

cloister typology as circulation

program

open/closed

functioning of program

underground datacentre and spectator room

AIR

1 Fresh warm air from below (prevent condensation)

- 2 Fresh dry warm air from above
- 3 Exhaust air below
- 4 Dry air pushes humid air down to pool
- 5 Air handeling unit preheated by servers

WATER

- 6 Rainwater reservoir
- 7 Rainwater used for toilet flushing
- 8 Helophyte filter filters port water
- (9) Filtering and storage of biologically filtered

HEAT

Liquid cooled datacentre used to heat air and water
 Pool filter with heat exchange from servers

12)

- 12 Aquifier thermal storage
- 13 High Rc value

5

ENERGY

15 Flexible sun shading

2

(10)

2000GJ in energy can be saved per year, equal to the erergy demand of 97 households

13

6

92.400mm roof edge aluminium coated case insulated ventilation shaft - rainwater drainage 👿 86.800mm roof edge FACADE Rc = 8,6 • 150 mm cross laminated timber

- vapor proof film
- horizontal wooden batten 70 x 146mm
- Nonzontal wooden batten 70 x 146mm
 Nonzontal wooden batten 70 x 146mm
 vertical wooden batten 70 x 146mm
 vapor permeable film

- U-profile
- bio-coposite corrugated sheet

5.000.000L of water is collected on the roof per year
8 CLIMATE

