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Introduction

1.1 Drawing a picture of what cannot be seen

‘La Clairvoyance’, by René Magritte (Figure 1.1a), portrays an austere man in
the act of painting: a bird is being drawn on the canvas. It is suggested that
the man is using an egg as a model, being able to foresee beyond the current
state of the object and display its future potential. What it is interesting,
here, is the parallel between the scene represented in ‘La Clairvoyance’ and
the subject of this thesis, which goes with the name of Imaging.

In Imaging, we make a picture out of some observations. For example, we
can display the womb of a pregnant woman from ultrasonic measurements,
and yet this is precluded to direct vision. It is possible because of the clear
understanding of the physical phenomena that lead this type of measurements.
In order to create an image of an object, or the interior thereof, we exploit
the physics of waves. A notable example is offered by nature itself with the
echo-location system of bats, used to navigate and forage in the dark. The
sound waves transmitted by the bat get reflected back when they meet an
obstacle, giving a clue about the position of the target.

In this thesis we are particularly interested in the application of seismic
imaging, even though the principles of the methodology discussed in the next
chapters are general and applicable to different settings (e.g., electromagnet-
ics). The resolution and penetration provided by elastic waves is useful for
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(a) La Clairvoyance, René Magritte (b) Ultrasound image of a fetus'
Figure 1.1: Artistic and scientific rendition of imaging

detecting details of the object at large range of scales. For acoustical imaging,
sundry applications are listed in Table 1.1.

Frequency Notable applications Depth (max)
10 MHz Material inspection 0.5cm
1 MHz Welding inspection 5cm
100 kHz Medical diagnostics 20cm
Sand exploration, wreck detection 20m
10kHz
Ground-water, heat, waste 500 m
1kHz
Under-water acoustics (sonar)
100 Hz } Oil and 1 i 5k
il and gas exploration m
10 Hz §
L Tectonics and major faults 25 km
Z
Earthquakes, earth crust > 50 km
0.1Hz .
Infra-sound, atmosphere 30km (altitude)

Table 1.1: A list of traditional acoustical imaging applications, ordered by the fre-
quency range and depth of penetration

fCourtesy of W. Moroder / CC BY-SA 3.0
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1.2 Seismic imaging

In this thesis, we will be focusing on the specific settings of seismic imaging,
of which the goal is to infer a model of the subsurface from the data collected
at the surface in a certain set of experiments. In each of these experiments,
seismic waves are generated at the surface and travel into the earth where
they are scattered, due to the heterogeneities of the earth’s interior. These
scattering data, recorded at the surface, provide the information to recon-
struct the earth’s model. Here, in particular, we are interested in the type of
experimental setup and data useful for hydrocarbon detection for the oil and
gas industry (see Table 1.1).

A canonical seismic acquisition setup is depicted in Figure 1.2, with sources
and receivers positioned at the surface. In the marine case, the source is an
airgun, while the receivers (hydrophones) are towed by a vessel or lie on the
ocean bottom. On land, the waves are excited by a vibrator truck and the
receivers are geophones stuck into the ground.

Marine environment Land environment

Figure 1.2: Typical acquisition setting for marine and land data. Seismic sources
and receivers are denoted by red stars and green triangles, respectively.

In Figure 1.3, we show a typical result of these measurements.

1.3 Traditional seismic imaging

Seismic data (as in Figure 1.3) have been traditionally exploited to obtain a
qualitative or structural image of the subsurface. A typical product of struc-
tural imaging is exemplified by the ‘black and white’ picture in Figure 1.4.
Apparently, the only information provided by this process is the discontinuity



4 Introduction

lateral location (km)
19 20 21 2 23 24 25 26 27 28 29 30

Figure 1.3: Seismic data organized in common shot records

distribution of the subsurface, but the relation with physical properties such
as P- and S-wave propagation velocities and density is not immediately evi-
dent. The knowledge of these properties is of capital importance to determine
whether hydrocarbons are present or not.

The kind of output shown in Figure 1.4 is the result of a technique called
migration, based on the creation of a virtual dataset in each point of the
subsurface (through the so-called back-propagation of sources and receivers)
and the application of an imaging condition, which somehow measures whether
scattering has occurred or not [Claerbout, 1985].

In geophysics, there is a tradition of dealing with reflectivity coefficients,
rather than the properties themselves. With reflectivities, we refer to the
relative amplitude of the reflected plane waves generated by material disconti-
nuities, for a horizontally homogeneous model. The image amplitudes of Fig-
ure 1.4 can be linearly related to reflectivity. Reflectivity, in turn, is linked to
the material properties by the so-called Zoeppritz equations, whose linearized
version is generally (though unnecessarily) adopted [Aki and Richards, 2002;
Gisolf and Verschuur, 2010], so that, in principle, a structural image can be
converted to velocities and density.
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depth (km)

Figure 1.4: Typical output of structural imaging

There are multiple issues within this work-flow. To begin with, the pre-
vious definition of reflectivity is based on the horizontal stratification of the
medium, which is seldom met in practice. This will result, for example, in a
troublesome recovery of near vertical reflectors. Note, however, that there are
alternative notions of ‘reflectivity’ not vitiated by the horizontal homogeneity
assumption (see, for example, Mulder and Plessix [2004b]). Another problem
is the underlying assumption concerning the linear relationship of data and
properties which affects the back-propagation step and the linearized Zoep-
pritz relations. This simplification entails the negligence of transmission ef-
fects, elastic mode conversion and multiple reflections. The scattering effects
in the data due to pronounced non-linearity — and not properly addressed by
linear imaging — will likely affect the final result.

1.4 Full-waveform seismic inversion

A seemingly straightforward method of obtaining subsurface properties from
seismic data is based on the direct comparison of recorded and simulated
waveforms, the latter obtained through the theoretical knowledge of the wave
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propagation and an assumed set of subsurface properties. The mismatch can
be measured by the least-squares norm and the problem set up in the numerical
optimization framework. This route has been popularized in geophysics by the
pioneering works of Lailly [1983] and Tarantola [1984].

We denote by d the measurements taken at the surface and by m the
model parameters, which can be represented by the P- and S-wave velocities
and density (for every grid point of the discretized objective volume), in the
elastic case. With u = u(m), we indicate the solution of the wave equation
relative to m:

Hmju="f, (1.1)
Here, H [m] is the linear system associated with the wave equation (in time or
frequency domain) and the source term is denoted by f. Note that we high-
lighted the dependency of this system with respect to the model parameters
m: H = H [m]. Finally, an operator R is introduced that restricts the values
of the wave solution u (m) to the specified receiver locations x,. In short-hand
we denote by F = F (m) the modeling function defined by F (m) = R (u (m)).
We then seek to minimize the following objective functional:

J (m) = ||d - F (m)|?, (1.2)

where || -|| is the least-squares norm (which implicitly includes a summation
over receivers, sources and time-steps/frequencies). This approach is widely
known in the geophysical community as full-waveform inversion. A compre-
hensive account on this subject can be found in Virieux and Operto [2009].

The terminology ‘full-waveform inversion’ can be explained in the sense
that every type of wave ‘mode’ included in the data can be exploited to re-
fine the output model (see also Fichtner [2010] for a brief discussion on this
name). Here, we are referring to the common classification of the features
typically recognized in a seismic dataset: primary reflections, diving waves,
internal multiple scattering, surface waves and so on. We should point out
that, although this classification is deeply rooted in the geophysical parlance
and culture, its definition is rather ambiguous. The notion of a primary event,
for example, as a singly reflected wave, is undermined by the negligence of
transmission losses and multiple reflection ‘peg legs’ which will contribute to
distort the original source pulse as observed in correctly modeled synthetic
seismograms or field data (see O’Doherty and Anstey [1971] for an interesting
discussion on this ‘stratigraphic filtering’ effect). Since we resolved to work
with the wave equation, which naturally accounts for the — generally inextri-
cable — scattering effects of wave propagation, we do not particularly bother
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with such distinctions. Occasionally, we might resort to the above terminology
as a mean to distinguish applications where certain type of events are predom-
inant in the data, e.g. surface-wave inversion which refers to those problems
where the only apparent phenomenon in the data is the dispersive interference
pattern often observed in the presence of a free surface.

The physics of waves can be reasonably approximated by adopting an
elastic wave propagation scheme, including anisotropy, eventually.

1.4.1 Main advantages over traditional imaging techniques

An important feature of full-waveform inversion is the higher achievable res-
olution for the reconstructed model, compared to linear imaging. It can be
shown that, e.g. under the Born approximation and typical circumstances,
the shortest spatial wavelength for the reconstructed model is A/2, where A is
the propagation wavelength [Sirgue and Pratt, 2004].

Note that, in spite of this analysis, super-resolution (achieved when wave-
length shorter than \/2 are reconstructed), under linear approximation, might
be achieved by exploiting the evanescent field, when the object to image is close
to the source-receiver apparatus [Simonetti, 2006] (generally not the case in
the seismic world), or by analytic continuation of the spectrum of the recon-
structed model outside the bandwidth [Bertero and Boccacci, 2003] (although
it is an unstable process, and sensitive to noise). In the context of migration,
it is clear that beyond-Nyquist wavenumbers can be recovered if, given a cer-
tain time sampling rate, the aliased frequency components are not removed
prior to digitization of the analog data. Indeed, merging normal moveout cor-
rected traces, instead of stacking, will effectively enhance the sampling rate
(as justified in Stark [2013]).

Whatever resolution can be achieved by linear imaging, non-linearity has
the potential to improve on it [Simonetti, 2006; Guo et al., 2016].

Another fundamental aspect of this technique, especially regarding the
applications we have in mind in this thesis (Section 1.6), is the direct link
between elastic properties and seismic recordings, provided by the wave equa-
tion. Therefore, the output can be directly processed in order to determine the
presence of oil and gas in the subsurface. The relationship between properties
and data is not tempered by linear assumption of sort, contrary to traditional
imaging.
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1.4.2 Challenges: ill-posedness, non-linearity, and computational com-
plexity

A successful implementation of full-waveform inversion is, however, not as
straightforward as it would seem from the simple form of equation (1.2).

The first issue is shared with any other imaging technique and is related to
the incompleteness of the acquired data in terms of temporal bandwidth and
acquisition geometry. Then, there is the issue of inaccuracy, in the form of
corruption by measurement errors and noise, in particular coherent noise. Fi-
nally, there is the issue of modeling errors, such as an inadequate description
of the physics. Incompleteness, in particular, will result in non-uniqueness of
the solution to the problem (1.2). The arising non-trivial set of the minimizers
of the objective functional should then be dealt with by proper regularization
techniques to restore well-posedness. This is traditionally achieved by adding
to equation (1.2) an extra penalty term which measures the least-squares norm
of the model parameters [Tikhonov and Arsenin, 1977] or their derivatives, as
in the total variation regularization (see, for example, Esser et al. [2016]), in
order to penalize ‘unphysical’ models. These techniques also enforces robust-
ness against data noise.

Another important issue is the non-linearity of the functional (1.2) and,
in particular, the existence of local minima which would prevent the algo-
rithm to converge to the global minimum when local search optimization is
employed [Mulder and Plessix, 2008]. A simple way to characterize local min-
ima is by looking at ‘loop-skipping’. Seismic data is band-limited, due to the
difficulty of recording low and high frequencies, and will consist of ‘oscillatory’
waveforms (as in Figure 1.3). Loop-skipping occurs when the wavefield prop-
agating through a certain medium results in a modeled time trace which is
shifted by more than half a period with respect to the given data. In this case,
local optimization may stagnate in local minima (Figure 1.5). To mitigate this
problem, a sufficiently accurate starting model should be provided and/or a
functional less sensitive to local minima should be adopted.

Full-waveform inversion is a computationally-heavy technique, which may
have to handle hundreds of millions of variables for large 3D problems. The
evaluation of the objective functional (1.2) requires the solution of the wave
equation for each source position. Furthermore, when a local search scheme is
employed, the calculation of the gradient and the Hessian necessitates many
other ‘adjoint’ wave equation solutions. The increase in computing power in
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(a) Data comparison (b) Least-squares objective functional

Figure 1.5: Simplistic depiction of loop-skipping: (a) data (in blue) and example of
a shifted waveform (in red), (b) objective functional measuring the least-squares norm
of the difference between the two traces, as a function of the shift. The functional has
many local minima.

the last 30 years, however, has made it a feasible technique for single parameter
3D acoustic imaging problems.

The extension of full-waveform inversion to the multi-parameter case (e.g.
elastic) still remains challenging due to the larger model space. In the elastic
case, wave equation results in a bigger linear system to solve, and slow S-wave
regions require a finer discretization. Furthermore, multiple parameters have
different imprints on data which can hamper the inversion with crosstalk arti-
facts. To resolve coupling, a Hessian-based approach seems necessary [Operto
et al., 2013].

1.5 Mitigating non-linearity by search space extension

As already pointed out, gradient-based optimization applied to the func-
tional (1.2) suffers from local minima. Consequently, a great deal of research
has been devoted to tackle this problem. This includes mitigation of non-
linearity by:

e hierarchical strategies such as multiscale methods, where data of increas-
ingly frequency content is being inverted [Bunks et al., 1995], or layer
stripping, which consists of imaging shallow-to-deep portions of the sub-
surface [Shipp and Singh, 2002];

e choice of proper transform domain for the data, e.g. Laplace(—Fourier)
transforms [Shin and Cha, 2008, 2009] or Hilbert transforms [Bozdag et
al., 2011];
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e alternative objective functionals, opposed to the conventional least-squares
formulation [Shin and Min, 2006; Warner and Guasch, 2014; Bharadwaj
et al., 2016; Métivier et al., 2016, and many others...].

Obviously, these ideas often overlap. In this section, however, we will focus on
a alternative route which will be the basis for the inversion method proposed
in Chapter 2.

1.5.1 The extended modeling principle

Many recent works share a viewpoint which can be, perhaps, better understood
from the abstract mathematical framework of extended modeling, introduced
by Symes [2008]. The basic idea consists of an extension of the original model
space to include unphysical models in the optimization process. The clear
intent of this procedure is to relax, somehow, the non-linearity of the original
objective functional. Therefore, we include a further item to the previous list:
search space extension.

Formally, if we denote the model space by 9 > m and the data space as
D > d, a model extension 91 is introduced via a map ¢ : 9T — 91 such that
the following diagram is ‘commutative’:

m-—L 5D

zj j (1.3)

Commutative means, in this context, that the following property holds: F =
Fo 1, where o denotes composition of maps. The injective inclusion map i is
possibly non-linear, and allows the identification of 9 with its image — the set
of physical models. The forward map F is then extended to F , with domain
M, in a consistent way. This consistency is translated, in mathematical terms,
by the commutative property. Now, a new objective on the space M can be
defined as: . 3

J () = ||d — F () || 24+-A (). (1.4)

The additional term A is designed to deal with the large solution space of
the first addend of J , arising from the extension (the so-called ‘annihilator’
in Symes [2008]). The obvious goal of this apparatus is to obtain an objective
functional j more amenable to local-search optimization.
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1.5.2 Treating properties and wavefields independently

In this thesis, we will focus on a particular model extension allowing for the si-
multaneous solution of properties m and wavefields u as independent variables.
This is the route followed in the contrast-source inversion method of van den
Berg and Kleinman [1997] and the wavefield reconstruction method of van
Leeuwen and Herrmann [2013]. Note that, in the classical least-squares for-
mulation of full-waveform inversion, these two types of variable are linked by
the wave equation (1.1). If we denote the model space by 2t and the wave-
field space by 4, we then are looking for a generalized solution (m,u) in the
product space 9t = M x L.

A qualitative argument to understand why such an extension can be ben-
eficial in mitigating non-linearity is given as follows. The objective functional
J in equation (1.2) can be rewritten as

J(m) =7 (u(m)), J(u)=][d-Rul’

(R is the restriction operator to the receiver positions). Note that J is a
quadratic functional of u and does not have isolated local minima (although
it does suffer from a large zero set). The problematic source of non-linearity
for J was introduced by the wave equation, which implicitly defines a sub-
set in the space 9 of admissible states. This constraint can be thought as
a parameterized manifold m +— (m,u(m)), which is actually the inclusion
map i : M < M described in diagram (1.3). It is the restriction of J to this
manifold that will produce the local minimum issue. A pictorial description
of this argument (suggested by van Leeuwen, oral presentation) is given in
Figure 1.6.

1.5.3 Brief review of the literature on extended search space methods

In the following, we briefly review some methods based on the extended mod-
eling principle. We give a more technical treatise for the contrast-source and
wavefield reconstruction methods, since they are more similar to the proposed
inversion algorithm in Chapter 2.

The contrast-source inversion method

The main inspiration for the inversion algorithm discussed in this thesis (Chap-
ter 2) comes from the contrast-source inversion method of van den Berg and
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Bl Functional J(z, y)
- - Parameter curve (z(t), y(t))
—J(x(t), y(1)

—J(=(t), y(1)

(a) J(z,y) =y? (b) J(z,sin x)

Figure 1.6: Qualitative depiction of non-linearity for classical full-waveform in-
version. The wave equation (1.1) imposes a constraint on the space of models X
wavefields, here abstractly represented by the (x,y) plane in (a). The constraint can
be visualized as a parameterized curve t — (x(t),y(t)) (the dashed blue curve in (a)).
Note that the functional J(x,y) = y? is quadratical and does not present isolated sin-
gular points (although it has a large solution space corresponding to y = 0). However,
the restriction of J on the parameterized curve in (b) does show many local minima,
corresponding to the points whose curve tangent is orthogonal to the gradient of J.

Kleinman [1997]. Here, instead of the differential wave equation (1.1), an in-
tegral reformulation is considered. For simplicity, we will restrict ourselves to
the acoustic constant-density case. In this setting, we need to consider the

Helmholtz equation:
2
w
——5P-AP=7, (1.5)

where P is the time-harmonic pressure wavefield related to the angular fre-
quency w. The term f represents a source. The parameter ¢ represents the
spatially varying propagation velocity. An integral representation of equa-
tion (1.5) is given by:

(I —GaW)P =P (1.6)
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where the operators G and W are defined, for any function w and p, by:
Gaw) ) = [ Gxx)u)dx,  (Wp) ) = xx)p (),

The Green function G is relative to a known background medium cy, and P ¢
is the incident wavefield propagating through the known background. The
contrast x is defined by x = c2b /c? — 1 and is assumed to vanish outside the
domain of interest ). This integral equation states that the total wavefield P
can be decomposed as the sum of the incident field and a field which propagates
through the background medium and is generated by ‘contrast sources’ W =
x P.

The contrast-source inversion is characterized by the inclusion of both
properties y and wavefields W as independent optimization variables, not
forcibly constrained by the wave equation. An objective functional is then set
up as follows:

T OGW)=[|Ad—GrW ||2+n || x P™ =W + xGo W ||2. (1.7)

Here,

(Gr W) (x,) = /QG<xr,x’>W<x'> ax’

is the domain-to-receiver Green function, where x, indicates the receiver po-
sition, and 7 is a trade-off parameter. The known term Ad = d — d ' is the
difference between the given data d and d'™°, which is the restriction of the
incident field to the receiver positions.

The inversion algorithm for the contrast-source method consists in a alter-
nating update of contrasts and wavefields. Starting from a given estimate x5
and W,,, an update for W is given by partial local optimization of (1.7) (using
for instance the steepest-descent direction or a conjugate gradient scheme),
while x ,, is kept fixed. If we denote this update by W11, the next step con-
sists in the estimation of x via global optimization of (1.7) with respect to x:
Xni1 = Re{Ppi1 Wni1}/|Pny1]? (‘Re’ denoting the real part of a complex
number), where P, = P 4 Gq W41. Note that, in van den Berg and
Kleinman [1997], the weight 7 is adapted at every iteration.

The interesting aspect of the contrast-source inversion is the fact that,
unlike equation (1.2), the degree of non-linearity of the functional (1.7) is
only polynomial of degree 4, as one might infer from a simple analysis of
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Pla,B) =T (xo+ aAx,Wo+ BAW). Also, the method is computationally
advantageous over classical full-waveform inversion, because it does not require
the explicit solution of the wave equation for the current model estimate, but
only the evaluation of the Green function pertaining to a fixed background
(which can be sped up considerably as shown in Abubakar et al. [2009]).

The wavefield reconstruction method

In van Leeuwen and Herrmann [2013], the problem is set up similarly to van den
Berg and Kleinman [1997]. The following objective is considered:

J (m,u) = [|d — Ru|*+[[f — H [m]u||?, (1.8)

where R is the restriction operator to the receiver positions. The inversion
algorithm proceeds by projecting out the wavefield variable u by computing
the minimizer of J(m, -) for a fixed m. This corresponds to the solution of
an ‘augmented’ wave equation, represented by the rectangular linear system:

R [ a4
2] N\t

This system, to be solved in a least-squares sense, has a well-defined solu-
tion. The property model m is then updated by a gradient-based optimiza-
tion of (1.8), while keeping the variable u fixed. Note how the contrast-source
method is based on a projection of the model variable m, contrary to the
wavefield reconstruction scheme where u is the projected variable.

A distinctive advantage of this method over the contrast-source inversion
is the fact that the wavefields do not need to be kept in memory all at the
same time. The gradient computation of J with respect to m results in a
summation of different terms indexed by sources and frequencies. Each of
these term only involves the previously computed wavefield specified by the
source and frequency index. Therefore, for each term, the wavefields can be
calculated independently and discarded immediately. The drawback of this
method lies in the need for solutions of the (augmented) wave equation at
every iteration which will result in a higher time complexity when compared
to the contrast-source method.
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1.6 Application of seismic inversion

In this section, we outline the main current applications of full-waveform in-
version in the oil and gas industry and we present some ideas which, in our
opinion, exploit its true potential. It is interesting to start with highlight-
ing some of the procedural steps taken in a particular segment of the work
flow adopted by the oil and gas industry: the exploration phase for detecting
potential hydrocarbon reservoirs.

1.6.1 From the surface to the reservoir

We assume that an interesting lead has been identified and that seismic data
has been acquired. The first step, after the data acquisition process, is a pre-
liminary assessment of the geological scenario of this particular portion of the
subsurface. This is achieved with the help of structural imaging of which the
output is a characteristic picture like Figure 1.4, as previously discussed. The
imaging method routinely applied to this purpose is migration, and is based on
the simulation of virtual sources and receivers placed deep in the subsurface.
Then, an imaging condition is applied to the simulated measurements, which
detects whether scattering has occurred in that specific location [Gisolf and
Verschuur, 2010].

From the result of migration, a potential reservoir can been identified, and
now it is time to obtain more specific information regarding this subset of the
subsurface. At this stage, a picture like Figure 1.4 is only useful to determine
the structure of the reservoir, but it cannot provide pore pressure and rock
properties, which are sensitive indicators for the presence of oil or gas. In
order to obtain these properties we want to apply more specialized methods.
Some preliminary processing can be applied to create ‘localized’ data right
on top of the target zone, to relieve the data from unnecessary information
pertaining to locations far from the target. This can be achieved, for example,
by redatuming, with the back-propagation of sources and receivers (physically
located at the surface) to the area of interest (virtually located near the tar-
get) [Berryhill, 1979; Gisolf et al., 2015], with a process similar to migration.

At this point, we want to estimate the properties of the reservoir from
the localized data. An industry-standard solution to this question is based
on the linearization of the relation between data and properties, and is gen-
erally termed amplitude vs slowness/offset/angle analysis (see the previous
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Section 1.3). Full-waveform inversion is another, better, option, because it
does not rely on linearization of any sort. As previously noted, the wave equa-
tion links physical properties to data and the inversion output directly consists
of the estimated properties. In the elastic case, these properties are the bulk
modulus, shear modulus and the density, which can be related more natu-
rally to rock and pore properties than the image amplitudes obtained from
migration.

1.6.2 The role of seismic inversion: present and future

Despite the potential of seismic inversion to deliver high resolution physical
properties, its main industrial application, to date, seems confined to obtain a
global model for the subsurface consisting of a slowly varying function, com-
pared to the actual property variability. This result can be exploited by struc-
tural imaging, because the method relies on the accuracy of the background
model to focus the data. The resolution of the output model obtained by
full-waveform inversion is, in principle, superior to current traveltime-based
tomography methods [Nolet, 1987]. However, if too much detail is imposed
in the background model, it could violate the linearity requirement of the mi-
gration process and the model has to be smoothed before it can be used by
migration.

Since its main purpose is to provide a velocity model for migration, long-
offset data (and, in particular, the ones capturing diving waves) are mainly
used. This seems to mitigate the loop-skipping limitation described in Sec-
tion 1.4, as the analysis of Sirgue and Pratt [2004] on the relation between
model wavenumber coverage and acquisition setting suggests. The same anal-
ysis also clarifies why reflection data pose a challenge for full-waveform inver-
sion. Full-waveform inversion could greatly benefit from low-frequency data,
but this kind of information is not available in conventional recordings yet.

The full-waveform inversion described above does not seem be fit for the
quantitative analysis needed for reservoir characterization, where actual physi-
cal properties are sought but only reflection data are available. However, if the
non-linearity of the problem is correctly handled, the additional illumination
produced by multiple scattering can help in resolving the low wavenumbers
of the model. Non-linearity is then seen as an opportunity rather than a nui-
sance. The ‘local 1.5-D’ version of the inversion algorithm presented in this
thesis, based on the assumption of locally stratified media, is being routinely
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applied for reservoir characterization [Gisolf et al., 2014; Beller et al., 2015].

1.6.3 Other applications

Besides reservoir characterization, there are numerous possible applications of
seismic inversion. For example, in the presence of a complex near-surface, or
near ocean-bottom, the data from a deeper target zone (e.g. the reservoir) is
likely to be affected by the multiple scattering occurring in the near-surface.
This phenomenon might affect the back-propagation step needed for data lo-
calization at the reservoir level. This imprint is a well-known issue in the land
environment, due to the unconsolidated nature of the shallow geology, but it
can also be problematic for the marine case due, for example, to the presence
of gas pockets in the near-surface. To be able to remove these effects from
the deeper data, the near-surface must first be imaged to a certain degree.
Imaging of the near ocean-bottom might also be important to avoid drilling
hazards.

1.7 Scope of this thesis and outline

The objective of this thesis is to discuss an algorithm for elastic full-waveform
inversion. As anticipated, the method is based on the same research flavor
of the extended modeling principle outlined in Section 1.5. In particular,
it employs the decoupling of property and wavefield variables. Its essential
mechanism hinges on the alternating update of these two types of unknowns
by using distinct objective functionals: (i) a measure of the adherence to
the recorded data for the update of properties, and (ii) an error function to
steer the wavefield towards the physical solution of the wave equation, without
imposing it as a hard constraint at each iteration. The alternating inversion
method is thoroughly analyzed in Chapter 2.

A great deal of the research involved in the design of the inversion algorithm
has been about the numerical discretization of the wave equation. The need for
flexibility of a-priori property distributions (‘background’ models) and the ge-
ometry of the computational domain (mostly dictated by near-surface applica-
tions) has driven our investigations towards finite-difference and finite-element
methods. An example of a finite-difference scheme is presented in Appendix A.
Originally, this work started out with semi-analytical discretizations, which are
characterized by integral representations of the wave equation, as in (1.6), and
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the analytical knowledge of the related Green’s function. This change of per-
spective (which is, in turn, the mainstream choice for traditional full-waveform
inversion) raised the important question on how to solve the linear system aris-
ing from such a discretization of the wave equation. For 2-D, classical direct
methods are readily available [George and Liu, 1981]. For 3-D, however, this
issue is highly non-trivial. This stimulated efforts towards iterative methods
for the elastic wave equation. Here, we employ the successful idea of the
shifted-Laplacian preconditioning by multigrid [Erlangga et al., 2006], devel-
oped for the Helmholtz equation, and adapt it to the elastic case. Details can
be found in Chapter 3.

Our research represents the natural evolution of the local 1.5-D elastic
waveform inversion proposed in Gisolf et al. [2012] and the 2-D acoustic version
described in Haffinger et al. [2013]. In this thesis, we will discuss the 2-D elastic
version. The real-world applications for a 2-D inversion are limited compared
to 3-D, or even the local 1.5-D case. However, ultrasound imaging for material
inspection (e.g. crack detection in steel pipes) seem to be reasonably fit for
the 2-D assumption. Obviously, it also represents a stepping stone for the 3-D
case as a ‘proof of concept’.

This thesis is organized as follows.

Chapter 2 1In this chapter, we discuss the alternating algorithm for elastic
waveform inversion in full details. Here, we develop its theoretical ground
with emphasis on the point of view of the extended search space method.
A complexity analysis is also carried out with a direct comparison with the
contrast-source inversion method of van den Berg and Kleinman [1997]. Differ-
ent numerical examples show that this method is rather successful for synthetic
examples. This chapter is adapted after the publication referenced by Rizzuti
and Gisolf [2017].

Chapter 3 The numerical machinery involved in the algorithm presented in
Chapter 2 greatly benefits from an efficient solution of the wave equation linear
system, when methods like finite-differences or finite-elements are employed.
Here, we analyze an iterative method to solve the elastic wave equation which
is based on the preconditioning technique by Laplacian-shifting [Erlangga et
al., 2006]. This chapter reproduces the paper of Rizzuti and Mulder [2016].
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Chapter 4 This chapter is dedicated to a particular real-world application
of elastic imaging, which slightly departs from the main theme of this thesis
— seismic imaging — but is identical in its underlying physical principles:
ultrasound imaging. We discuss, in particular, the non-destructive inspection
of stress-corrosion cracks in steel pipes, which is a valuable tool to ensure the
integrity of oil and gas pipe lines.

Chapter 5 In the final chapter, we summarize the main findings of our re-
search and lay out some ideas for future work.






An iterative method for

2-D inverse scattering problems
by alternating reconstruction of
medium properties and wavefields:
theory and application to the
inversion of elastic waveforms'

Abstract

We study a reconstruction algorithm for the general inverse scattering problem
based on the estimate of not only medium properties, as in more conventional
approaches, but also wavefields propagating inside the computational domain.
This extended set of unknowns is justified as a way to prevent local minimum
stagnation, which is a common issue for standard methods. At each iteration
of the algorithm, (i) the model parameters are obtained by solution of a con-
vex problem, formulated from a special bilinear relationship of the data with
respect to properties and wavefields (where the wavefield is kept fized), and (ii)
a better estimate of the wavefield is calculated, based on the previously recon-

T This chapter is the reproduction of the paper Rizzuti and Gisolf [2017], published in
Inverse Problems, 2017
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structed properties. The resulting scheme is computationally convenient since
step (i) can greatly benefit from parallelization and the wavefield update (ii)
requires modeling only in the known background model, which can be sped up
considerably by factorization-based direct methods. The inversion method is
successfully tested on synthetic elastic datasets.

2.1 Introduction

The problem of reconstructing the medium parameters from the measurement
of electromagnetic, acoustic or elastic waves is a central subject of many fields
of research including medical imaging, non-destructive testing and seismic
exploration (for geological studies or oil and gas prospecting). The principal
motivation for the present work comes from seismic imaging, and in the follow-
ing discussion we will frequently refer to the specific settings of this problem.
However, the principles here described are applicable to more general imaging
scenarios.

A controlled seismic experiment is generally set up as follows: the Earth is
artificially excited near or at the surface by seismic sources (symbolized by red
stars in Fig. 2.1) — typically an airgun for marine environment or vibrator
for land — and the waves are recorded by detectors located at the surface
(green triangles in Fig. 2.1) or the ocean-bottom. The recorders measure
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Figure 2.1: Scattering object inside a domain  and typical acquisition setting
(sources and receivers respectively denoted by red stars and green triangles). Out-
side the domain, the contrasts vanish.
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the displacement of the ground caused by a seismic wave. The solution of
the inverse scattering problem is then represented by the physical parameters
governing the wave propagation that lead to the measured data. These data
consist of the waves scattered by the heterogeneity of the subsurface.

Throughout this paper, we will assume the prior knowledge of a back-
ground model. This model is often obtained directly from well-logs or, indi-
rectly, by traveltime-based methods. We should remark, however, that under
many circumstances the application of these techniques is not so straight-
forward, and obtaining a background model is, in general, a difficult matter.
The background typically comprises the ‘non-reflective’ component of the true
model and is a slowly modulated function, relatively to the spatial wavelength
of propagation. The original problem is then reduced to the retrieval of the
scattering perturbation of the model with respect to the a-priori background.

2.1.1 Full-waveform inversion

In geophysics, a popular approach to the inverse scattering problem is based
on least-squares optimization, originally proposed in Tarantola and Valette
[1982a], that generally requires gradient-based methods due to the consider-
able amount of unknowns (hundreds of millions of variables, for 3-D problems).
Full-waveform inversion, as this technique is widely known in the geophysical
community, has been given significant attention due to the high resolution of
the output model (theoretically even higher than A/2, where A is the prop-
agation wavelength). A general account on this subject can be found in,
e.g., Virieux and Operto [2009] or Fichtner [2010].

Full-waveform inversion is set up as follows: if we denote the recorded
data by d, we look for a model m, representing the elastic parameters of the
medium, that minimizes the misfit functional:

J (m) =[|d — F (m)|*. (2.1)

Here, F is the modeling operator, which typically selects the values of the
wavefield u = u (m) at the receiver locations. The relationship between the
wavefield u and the model m is given by the wave equation:

H[mju="f, (2.2)

where f is a known source term. For convenience, we assume that a specific
choice of model parameters has been made such that the wave operator H [m)]
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depends linearly on m, or, in other words, that H [m; + ms| = H [m;] + H [ms]
for any m; and my. We note that the functional (2.1) is non-linear due to the
matrix inversion of the wave equation: u(m) = (% [m]) ~! f.

The problem (2.1) is notoriously ill-posed and non-uniqueness, in particu-
lar, is a fundamental issue [Tarantola and Valette, 1982b]. In this paper, how-
ever, we are exclusively interested in the problem of finding a model which opti-
mizes (2.1), making use of regularization techniques to restore well-posedness.

Computational aspects

When a local-search scheme is employed, the gradient of J may be computed
by the adjoint-state method (see Plessix [2006], for example), stemming from
optimal control theory, which requires the numerical simulation of a ‘forward’
and ‘backward’ wave equation. With ‘forward’, we mean solving the causal
wave equation where the source term is prescribed by the specifics of the seis-
mic experiment, while with ‘backward’ we refer to the wave equation solved
back in time where the source is given by the residual defined in the cost
functional (2.1). The gradient of J is then obtained from the forward and
backward solution and can be utilized by any gradient-based iterative mini-
mization scheme (as the non-linear conjugate gradient method).

Information about the Hessian of J might also be included in the opti-
mization, leading to Newton-like methods. Among this class of algorithms, it
is worth mentioning the Gauss—Newton (using only the diagonal of the Hes-
sian), quasi-Newton (based on a iterative approximation of the inverse of the
Hessian, as in the Broyden-Fletcher-Goldfarb-Shanno algorithm or low-storage
version thereof [Nocedal and Wright, 2006]) and full-Newton methods (which
utilizes the exact Hessian, as in Haber et al. [2000]). For a general overview,
see Nocedal and Wright [2006].

All these optimization techniques, which must be combined with line-search
algorithms, require many solutions of the wave equation. In summary, full-
waveform inversion is a computationally intensive method whose performance
heavily depends on the efficiency of the wave equation solver.
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Non-linearity

Besides the computational issues, local optimization methods applied to a
non-linear functional like (2.1) are likely hindered by local minima. This is a
notorious problem and considerable efforts have been devoted to the mitigation
of this problem. Interestingly, many recent developments share a common trait
that can be discussed from the abstract point of view of extended modeling, a
principle of which the main idea has been formalized in Symes [2008]. This
will also serve as the starting point of the reconstruction algorithm proposed
in this work. It basically consists of a mathematical procedure which involves
the inclusion of unphysical models in the optimization process, with the goal to
relax of the non-linearity issues of the original objective functional. Formally,
this means that the search space 9 5 m is replaced by an extended model set
M D M. Typically, the objective functional (2.1) is adjusted to 9 in order to
be more amenable to local-search optimization.

Without going into the details, we deemed the following works significant,
with respect to the extended modeling principle: in van den Berg and Klein-
man [1997], the extended search space is represented by properties m and
wavefields u, which are not strictly constrained by the wave equation (2.2);
in Biondi and Almomin [2014], the property models are extended along an
extra ‘time’ dimension and a modified wave equation is introduced, in order
to facilitate the fitting of large time shifts between acquired data and modeled
data generated by inaccurate starting models (which is generally recognized as
the main culprit for the failure of full-waveform inversion); in van Leeuwen and
Herrmann [2013], the problem is set up similarly to van den Berg and Klein-
man [1997], but the wavefield variables are eliminated from the optimization
by solving a ‘data-weighted’ wave equation (achieved by a variable projection
scheme [Golub and Pereyra, 2003]).

2.1.2 An alternating inversion method

In this paper, we will adopt the view proposed by the contrast-source inver-
sion method of van den Berg and Kleinman [1997], for which the search space
M consists of property models m and wavefields u, treated as independent
variables. The method here proposed is, however, based on distinct updat-
ing schemes for these two variable sets. In very general terms, the medium
update is governed by a data-misfit optimization, similarly to (2.1), where a
linear version of the modeling operator is used instead, and the wavefield is up-
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dated using the wave equation. The inversion, therefore, produces a sequence
(my,u,) arising from the alternation of these two processes.

From the computational point of view, the two phases of the alternating
inversion are designed to benefit from parallelization and efficient numerical
routines. The model update step (i) is based on the solution of a linear
system by least-squares optimization, and its evaluation is particularly suited
for parallelization. Furthermore, the wave modeling step (i) will only need
the solution of the wave equation relative to the known background model my,.
Since my, is ideally kept fixed throughout the inversion, the LU decomposition
of a given discretization of H [my] can be effectively employed to speed up
this step. The same idea was exploited in Abubakar et al. [2009]. From the
analysis of synthetic and field data, we experienced that only a limited number
of wavefield updates are actually necessary for a satisfactory result and there
might be benefits from concentrating the computational work on the model
update corresponding to step (i). For this reason, we believe the method
can be competitive with the contrast-source inversion Abubakar et al. [2009],
which requires the solution of the wave equation at each iteration. It should be
noted that the memory requirements suffer from the need for the factorization
of the wave operator to be stored (as it was the case for Abubakar et al.
[2009]). Nonetheless, this approach might be even suited for 3-D problems, as
argued in Abubakar et al. [2011], when a single-frequency inversion strategy
is employed.

The effectiveness of this scheme will be demonstrated with many synthetic
experiments, focusing on the inversion of elastic wave data. The adoption of a
(isotropically) elastic modeling scheme is, by itself, another interesting aspect
of our approach, whereas an acoustic model of the Earth is usually assumed
in seismic imaging.

2.1.3 Summary of this paper

This work is organized as follows.

Section 2.2 We start by presenting a classical integral-based reformulation of
the wave equation. This alternative point of view provides a useful hint on how
to treat model parameters and wavefield variables as independent quantities
for the inversion.
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Section 2.3 Based on the insights developed in the previous section, we
propose an alternating inversion routine. This is achieved by the introduction
of a data-misfit functional and an equation-error functional, used to update
model parameters and the wavefield, independently.

Section 2.4 In this section, we discuss the actual numerical treatment of
the alternating inversion algorithm. The underlying finite-difference scheme
is detailed in A. We will discuss the computational advantage of the scheme
given by parallelization of the data-misfit optimization and wave modeling by
standard factorization methods.

Section 2.5 A variety of numerical examples is presented to display the fea-
tures of the alternating inversion scheme. We focus on 2-D synthetic elastic
datasets.

2.2 The scattering integral equation

In this section, we briefly discuss and present the notation of the classical
scattering integral reformulation of the wave equation. The scattering integral
equation provides the basis of our inversion method and allows us to explore
its main features, as it will be seen in Section 2.3. The treatise contained in
this section and the following will be on a very abstract level. The exposition
will be formal, in that we implicitly assume that the relevant variables belong
to appropriate Hilbert spaces (or subsets) without rigorous specification.

2.2.1 The elastic differential system

We start from the second-order differential equation where the wavefield quan-
tities are represented by the particle displacement u = (u®,u?). For later con-
venience, we assume that u = u(x) is a function of the unbounded domain
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R?2 > x. The differential system reads:

—pwu’® — 9z [(K + %N) Iz u” + (K — %N) 9 u’]
—0, (0 u” +pdyu®) = f*

—pwiu® —0,(nd. u” + pdyu?)
—0 (K —2p)0pu”™+ (K +3p)0.u”] = f?,

(2.3)

where w is the angular frequency and f = (f %, f#) the source term — typically

a function with compact support (as a delta function or derivatives). We adopt

a frequency domain approach due to computational efficiency (as it will be

discussed later on). The system (2.3) is parameterized by the following elastic

properties:

bulk modulus K, shear modulus u, density p.

The elastic models will be summarized by the variable m = (K, u, p). As
anticipated, we assume that a reference medium my, = (K, iy, pp) is known.
Typically, but not necessarily, it represents a smooth background, relatively to
the propagation wavelength and is, therefore, ‘non-scattering’. The medium
perturbation can then be formulated in terms of contrasts:

K=Kyp(1+xk), p=pn (L+xp), p=pp(1+4+x,) (2.4)

Similarly to m, we will use the short-hand x = (X &, X 4, X ) to denote the
contrast model. As a general requirement, the contrast functions vanish out-
side a bounded domain of interest Q C R2. This geometric setting is sketched
in Fig. 2.1.

2.2.2 The elastic wave equation in the integral form

In order to present the integral equation we introduce the wave operator un-
derlying equation (2.3):
H=—-pw?Z-D,
0,(K — %u)8x+8xu82 8xu8x+8Z(K—|—%,u)32

D=
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being 7 the identity. We will explicitly highlight the linear dependency of the
wave operator on the model parameter m by % = #H [m]. Indeed, it can be
easily seen that H [m + mo| = H [m] + H [m3], for any m 1, mo. The total
and incident wavefield are defined to solve the wave equations in the respective
medium:

H[mju="f, H[mp]u™ = f, (2.6)

The incident field is a known quantity when the source term f is given. We
will always assume that this is the case but, in practice, it has to be deter-
mined beforehand or treated as an additional variable of the problem. We
can now consider the following identity, arising from an elementary algebraic
manipulation:

H[mp] Au = —H [Am] u, Au=u-u", Am=m—-my. (2.7)

This identity has been obtained from the discrete differentiation of (2.6) with
respect to m. From a physical point of view, this equation states that the
scattered wavefield Au is generated by a ‘distributed’ source which depends on
the material contrast. Indeed, the right-hand side of equation (2.7) is sometime
called ‘contrast source’ (as in the contrast-source inversion method of van den
Berg and Kleinman [1997]). Once we introduce the Green’s operator:

G=(H[mp) ", (2.8)
we might rewrite (2.7) as:
u=u"+gGWx]u, (2.9)
where
Wix] = -H[my - x] (2.10)

is the contrast-source operator. The operation my,-y is intended as a component-
wise multiplication. W[ x] acts linearly on the wavefield u and depends on the
contrast properties x. We stress the fact that this dependency is also linear.
This will be exploited by the inversion procedure as discussed in the following
sections.

2.2.3 The domain equation

Equation (2.9) is the so-called scattering integral equation (also known as
Lippman—Schwinger equation in quantum mechanics), and is an equivalent
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reformulation of the differential equation (2.3). Note that (2.9) is based on a
second-order formulation of the wave equation, but a formally identical treat-
ment is possible for the first-order equation (as in de Hoop [1995]). This
equation can be further refined by noticing that, since the contrast properties
vanish outside the scattering domain 2, the wavefield u is entirely determined
by its values on  (see (2.9)). We then introduce the restriction operator Z,,
defined by
Tov:Q—C? (Zqv) (x) =v(x),

for any complex-valued function v defined on R2. We will use Q as a sub-
script to indicate transformed fields and operators through Z, e.g. v =Zg v
and T =ZoT L™ (where T is a generic linear operator). Here, the adjoint
operation (denoted by an asterisk) is relative to the conventional least-squares
scalar products on R? and Q:

(u,v) :Z/R2 uq (x)v; (x)dx, (u,v)Q:Z/Q i (x)v; (x)dx,

(2.11)
where complex conjugation is denoted by a bar. The adjoint operator Z,*
extends a function defined on Q by setting its value to 0 outside 2. The
restriction of (2.9) to © produces the domain equation:

ug=ud+GoWqlxlug (domain equation). (2.12)
Equation (2.12) expresses u, as the sum of the incident field and the interac-
tion of the total wavefield itself with the heterogeneity of the medium, governed
by the scattering operator K, [x] = G4 Wq [x]. The equation (2.12) can be
finally restated in terms of a linear system as:

Lqolx]ug=ug’, Lolx]=T-Kqlx], Kqlx]=GaWqlx]. (2.13)

When the background is simple enough (e.g., homogeneous or horizon-
tally invariant) the structure of the Green’s operator (2.8) is advantageous for
numerical computation and its evaluation can be carried out efficiently, mak-
ing (2.12) a viable tool for both modeling (see, for example, Kleinman et al.
[1990Db,a]; Kleinman and van den Berg [1991], Yang et al. [2008], Abubakar and
Habashy [2013]) and some specific applications of inverse scattering [van den
Berg and Kleinman, 1997]. When m}, does not display any particular symme-
try, however, we are forced to revert to the implicit definition given by (2.8)
and solve the associated linear system (arising from a given discretization),
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when the evaluation of the operators involved in (2.12) is needed. Since in
many cases, the discretization of the differential equation leads to a sparse
system, the action of the Green’s operator can be sped up by employing fac-
torization algorithms (as exploited in Abubakar et al. [2009]). In Section 2.4
we will discuss different options for the numerical discretization of (2.12).

2.2.4 The data equation

An important relationship between recorded data and medium properties can
be derived when equation (2.9) is specified at the receiver locations, in a similar
way to the restriction process that led to the domain equation (2.12). We
indicate the set of receiver locations by R, and the restricted Green’s operator
by:

Gr=TIrGIy" (2.14)

At the receiver locations, the recorded data d consists of the wavefield values
assumed on R, that is d = 7 u. Likewise, the restriction of the incident field
on R is indicated by d'°. The scattering equation (2.9) then reads:

Ad=GrWq[xlug, Ad=d-d™. (2.15)

The backbone of the inversion method that will be presented in detail in the
next section relies on a generalization of the relation (2.15). If the solution
wavefield u, is a known quantity, then an estimate of x can be obtained by
inverting (2.15): this would be tantamount to the inversion of a rectangular
linear system (when no other non-linear effects are introduced, as it is the
case for certain types of regularization). More generally, we might replace
u, with only an estimate of the solution and proceed likewise to obtain an
approximation of y. By doing so, we are treating the wavefield independently
from x. Evidently, the biggest advantage of this generalization is the fact
that the inversion for medium properties boils down to a more tractable linear
problem than (2.15), where the wave equation enforces the constraint ug, =

ug (x)-

The generalized identity (2.15) expresses a linear relationship between con-
trasts and data. In order to make this more apparent, we introduce the fol-
lowing auxiliary operator, by a commutative procedure:

Waq lug] x = Wgq[x]ug (2.16)
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with a slight abuse of notation). We remind that the contrast-source operator
( g P

Wq [x] depends linearly on x. Equation (2.15) can then be conveniently
rewritten as:

Ad =Kpgug] x, Krlugl =GrWqlug] (data equation), (2.17)

where I, [u ] is the data kernel.

2.3 An alternating update scheme for the inverse scattering prob-
lem

Now that we introduced the domain equation (2.12) and data equation (2.17),
we are ready to outline a simple alternating inversion scheme for the inverse
scattering problem.

Using the notation of Section 2.1, we are looking for a contrast model x
that minimizes the objective functional:

J(x)=11Ad=F(0)ll*,  F(x)=Kgrlug()]x. (2.18)

where ug, (x) is the solution of the wave equation (2.13). The inversion al-
gorithm is based on the linear relationship (2.17) between data and contrasts
when the wavefield is considered as an independent variable from the contrasts.
This fact will be fully exploited by designing an inversion algorithm which aims
for reconstruction of not only medium properties but also wavefields.

2.3.1 The alternating inversion algorithm

The inversion algorithm will perform a leap-frog reconstruction of contrast
properties x and wavefields u, where we alternate the

(i) update of the contrast model x by using the data equation (2.17), and

(7) update of the wavefield u, using the domain equation (2.12),

as schematically shown in Fig. 2.2. Steps (i) and (4i) are described more in
detail in the following Sections 2.3.1 and 2.3.1.
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X
Data equation optimization: Wavefield update:
find x such that Ad =~ K g [ud] x, find uq such that Lo [x°Jug ~ ulte,
by fixing the wavefield estimate u, by fixing the contrast estimate x°
(Section 2.3.1) (Section 2.3.1)
uq

Figure 2.2: Simple inversion algorithm based on the alternating update of contrast
properties X and wavefields u (see Section 2.3).

Update of contrasts by means of data equation optimization

To obtain an updating scheme for the contrasts we can reformulate the relation
given by the data equation (2.17) as a least-squares optimization problem. For
this, we will assume the knowledge of a suitable estimate of the wavefield u,.
Therefore, we set the objective functional:

Taar (X) = || Ad = K g [ug] x|I%, (2.19)

employing the data kernel K ; defined in (2.17).

It is well established that the problem of finding a minimum of (2.19)
is an ill-posed problem (see, for example, Devaney [1978] and Devaney and
Sherman [1982]). Due to this and the presence of noise in the recorded data
Ad, regularization techniques must be used. A typical adjustment is obtained
by adding a regularization term N to the objective (2.19):

jdrzg(X) = jdat (X) +aregN(X)'

Often, NV (x) measures the least-squares norm of x or derivatives. The deter-
mination of the weighting parameter o/ ,¢g is a non-trivial issue and it is often
found through extensive numerical experiments. In this paper, we will adopt
the multiplicative regularization technique developed in van den Berg et al.
[2003]. Its main feature consists in the regularization of the functional (2.19)
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by multiplication:

T (X Xn-1) = Taar XN (X5 Xn—1)- (2.20)

Here, the regularization factor N (-; x,,_;) depends on a given contrast model
Xn—1- The minimization strategy of (2.20) explored in van den Berg et
al. [2003] employs an iterative scheme for which the functional to minimize
J (ﬁfa (+; Xn_1) changes at every iteration based on a previously computed
model x,_;. In van den Berg et al. [2003], a non-linear conjugate-gradient
method is considered, and verified that it is capable of taking into account
this variability. This setup aims to enforce N (X ,,; X n—1) — 1 as the method
converges, that is x,, — X,—; — 0. The regularization (2.20) only depends
on tuning parameters that do not require lengthy experimentation, as op-
posed to additive regularizations. It is important to note that, when some
weak assumptions on these parameters are fulfilled, the regularized functional
T8 (-5 x,_1) remains convex. For a thorough explanation of the method we

dat
refer to van den Berg et al. [2003].

Update of the wavefield by adding a order of scattering

As in the previous section, we discuss an updating scheme for the wavefield by
fixing a known contrast model x". Analogously to (2.19), we aim to minimize
the wave equation error functional:
i 0 2
jwav(uQ):HulSrllc_[’Q[X ]uQH ) (221)
defined by the norm of the residual of the scattering integral operator (2.13).

In the following, we will discuss a specific class of Krylov subspace methods
for (2.21) (see Saad [2003] for a general introduction).

We start with the classical forward scattering series:
__ .. inc K 0 inc K 0712 ., inc K 0713 .. inc 2.99
ug =ug‘+o[xJug + Ko [x 1" ug®+Kol[x[7ug®+.... (2.22)

This expansion can be restated in the following terms: if we denote the es-
timates of the solution by ugfl, ug72, ugf?’, e ugfn computed in the
previous n iterations, the addition of a term in (2.22) corresponds to the up-
date scheme:

e LT CEES



2.3 An alternating update scheme for the inverse scattering problem 35

where r g ~1 is the residual of the corresponding iteration. Note that u g -2

e ug ™ are not utilized. The convergence of this sequence, however, is
guaranteed only if the spectral radius of the operator K, [ x "] is smaller than 1.
Typically, for large contrasts, this condition does not hold. Convergence can
be achieved for a practical range of contrast size by employing a more general

Krylov subspace scheme

n
ug:ug_l—i-z aYPrl (2.23b)
i=1
determined by how the coefficients o', ..., a) are calculated, by a choice

for the preconditioner P (typically the identity operator or the adjoint of
L [x°]) and the number n of stored iterations. In the numerical experiments
of Section 2.5 we will make use of the formula

k3

n
(@l,....ad) = argminfl t5 7 = > o Lo [xrd |I2
& =1

The scheme is convergent whenever a certain & exists for which the spectral ra-
dius of Z — & L, [x "] is smaller than 1 [Kleinman and van den Berg, 1991] (see
also Pratapa et al. [2016] for a comparison of this method with other Krylov
subspace schemes). This condition is less stringent than the requirement for
the convergence of the forward scattering series. For computational reasons,
we will consider the case n = 1. Obviously, any other choice for the Krylov
method could be employed to minimize (2.21) (e.g., conjugate gradient).

In general, the wavefield update can be obtained in many different ways. In
the extreme case, one could fully solve the wave system (2.13) for the current
contrast estimate. However, when the starting model is not close to the correct
model, committing to such an erroneous model can be detrimental for the
convergence of the inversion. This behavior has been observed experimentally.
Notably, in van den Berg and Kleinman [1997] and van Leeuwen and Herrmann
[2013], the wavefield update is designed to optimize a ‘data-weighted’ wave
equation, where the data misfit plays the role of a regularization term and
automatically prevents a close solution of the wave equation.

Starting point: Born approximation

The starting point of the algorithm relies on the so-called Born approximation.
It essentially consists of a linearization of the inverse scattering problem (2.18)
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with respect to the known background model. In other words, we consider the
linearized relationship:

ug (m) ~ ui{zlc +dm, ug [Am)],

where the linear operator d ,, ug, is the differential of the map ug = uq (m).
A simple analysis of the differential yields the approximation

Ad ~ K g [ul] x. (2.24)

The corresponding estimate of the contrast is obtained following the instruc-
tions contained in Section 2.3.1.

2.4 Numerical implementation of the inversion scheme

In the previous section, we developed an alternating inversion algorithm for
inverse scattering problems. So far, however, we avoided an explicit numerical
treatise of wavefield and model unknowns and subsequent discretization of the
linear operators involved in the data and domain equations.

In this section, we begin by investigating different alternatives for the dis-
cretization of the differential wave equation (2.3), and its solution by numerical
methods. It is clear that a specific choice for the discretization also determines
the corresponding integral equation (2.9) and the operators involved in the do-
main equation (2.12) and data equation (2.17) (to be discussed, respectively,
in Sections 2.4.1 and 2.4.2). Therefore, the numerical scheme underlying the
wave equation prescribes every other detail needed for the implementation of
the alternating inversion of Section 2.3.

This section is integrated with a brief review of the complexity of the al-
gorithm (Section 2.4.3). For the optimization of the data equation, we outline
some general strategies that take advantage from parallelization. For the so-
lution of the wave equation, we must distinguish the 2-D and 3-D case. For
2-D, factorization-based direct methods, such as LU [George and Liu, 1981],
are readily available. For large 3-D problems, however, the storage of the LU
decomposition is highly impractical when each of the frequencies contained in
the data is needed simultaneously. In Section 2.4.4, therefore, we present a
simple strategy to overcome this issue, by selecting a sequence of limited fre-
quency sets and applying a sequential inversion which also involves the update
of the background model. In this case, when only few frequencies are needed
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at the same time, we might still resort to direct methods [Abubakar et al.,
2011].

2.4.1 Discretization of the scattering integral equation

The scattering integral domain equation (2.12) has been used as a basis for the
wavefield update phase of the alternating inversion algorithm. Clearly, once
this equation is specified by a discretization method, the Krylov subspace
update described in Section 2.3.1 can be applied in a straightforward manner.

As anticipated, equation (2.12) is determined by the choice for the dis-
cretization of the differential system H , [m], for a generic model m. This, in
turn, defines the contrast-source operator W, [x] and the Green’s operator
G, following the definitions (2.10) and (2.8). We assume that the computa-
tional domain (2 is a subset of the 2-D orthogonal grid G = {(i h,j h) : i,j € Z}
(Z being the set of integers), where h is the grid spacing. Wavefield and
medium unknowns will be represented by grid functions u; j, m;; approxi-
mating the continuous quantities on the grid points, e.g., u;; =~ u(ih,jh),
m;;~m(ih,jh). For ease of exposition, we will indicate discretized and
continuous quantities with the same notation used in the earlier sections.

A number of different options can be considered for the discretization of
H o [m], among which we will primarily focus on two broad classes: analytical
and stencil-based methods. The first class refers to those methods which make
use, in some form or another, of the (semi-)analytical expression of the Green’s
functions for the background model my. The latter class comprises those
schemes for which the evaluation of the discretized operator H, [m] can be
represented by compact stencils (cf. A). Notable examples are finite-differences
and finite-elements. Relative merits of one class of discretization over another
is determined by the regularity of my,.

Here, we give a general overview of analytical and stencil-based methods.
The method of choice for this paper will be a finite-difference scheme based
on the numerical dispersion optimization of the well-known staggered-grid
method [Virieux, 1986], and is described in great detail in A.
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Analytical methods

When the background model my, displays some form of symmetry, the related
Green’s functions might admit a convenient analytical representation. In the
extreme case of an homogeneous model, for example, the Green’s operator
possesses a convolutional structure that can be exploited via fast Fourier trans-
form [Yang et al., 2008]. Another interesting situation is when the medium
is 1-D — that is, constant along the horizontal direction z. In this case, the
Green’s operator retains a 1-D convolutional structure. When we also assume
that the 1-D background is smoothly varying with respect to the propagation
wavelength, a WKBJ approximation [Griffiths, 2004] can be used to obtain a
semi-analytical estimate of the Green’s functions. The 1-D case is particularly
useful because, in some cases, the true medium m is well approximated by
a locally-varying 1-D model. The inverse problem can then be parallelized
over horizontal locations, after a proper selection and rearrangement of the
data. Furthermore, these subproblems are more easily analyzed in the hori-
zontal wavenumber-frequency domain, since the wave equation can be solved
independently for any given horizontal wavenumber k, and frequency w.

Under the above circumstances, the linear operator underlying the do-
main equation (2.12) is evaluated efficiently, and (2.12) can be solved it-
eratively by Krylov subspace methods. Notably, when the model m} is
close to m, the integral reformulation (2.12) of the wave equation is more
suited for iterative methods than a direct discretization of the differential sys-
tem #H [m]. This is due to the implicit preconditioning highlighted by the
identity £q[x] = (Hq [myp]) 71 H, [m]. When the contrast is high, however,
the system L, [x] should be preconditioned (see, for example, the renormal-
ization technique in Abubakar and Habashy [2013]).

The analytical implementation of the scattering integral equation has been
the basis for the contrast-source inversion method [van den Berg and Klein-
man, 1997]. A version of the alternating inversion scheme of Section 2.3 based
on analytical methods has already been worked out under the 2-D acoustic
assumption [Haffinger et al., 2013] and for the locally 1-D elastic case (Gisolf
et al. [2012], e.g.).
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Stencil-based methods

If my, does not exhibit any particular symmetry, analytical methods are not
available. The evaluation of the scattering integral operator (2.12) can still be
computed indirectly, by solving the differential system:

Gow=vV = Homyplv=w.

Since the storage of the full matrix (H, [myp]) ~! is impractical, one needs to

solve the linear system every time the evaluation of the Green’s operator is
needed, for which an efficient discretization and solver of H (, [m},] is essential.
Under these conditions, stencil-based methods are an interesting choice.

Many finite-difference or finite-element schemes have been developed for
the time-harmonic elastic wave equation. Classical 9-point finite-difference
schemes are by Kelly et al. [1976] and the staggered-grid scheme by Virieux
[1986]. These methods often provided the basis for more accurate compact
schemes, based on the minimization of the numerical dispersion (e.g., the 9-
point scheme of Stekl and Pratt [1998] and the 25-point finite-difference and
finite-element schemes of Min et al. [2000, 2003, 2004]). For this paper, we
developed a 9-point finite-difference method based on the optimization of the
staggered-grid scheme. The group velocity relative error is essentially indepen-
dent of the P-to-S velocity ratio and is smaller than 1% for a discretization
corresponding to more than 5 samples per wavelength. The method is dis-
cussed in A.

Any discretization of the wave equation by stencil-based schemes leads
to a large, but sparse, linear system #, [my,]. For sizable problems, direct
solution methods as the classical LU factorization can be computationally
intensive. This is the reason why time-domain and explicit time-marching
solvers are generally preferred. On the other hand, the frequency domain
offers many advantages: only a limited number of frequencies — far fewer than
what is prescribed by the Nyquist criterion — are actually required to obtain
a satisfactory imaging result [Sirgue and Pratt, 2004; Mulder and Plessix,
2004a]. Also, a further level of parallelization is available (over sources and
frequencies) with respect to time-domain imaging. An obvious alternative to
the direct solution of a linear system is offered by iterative methods: recent
developments make this a competitive route [Knibbe et al., 2014; Rizzuti and
Mulder, 2016].
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2.4.2 Treatment of the data equation

The different discretization schemes described in the previous section also
defines the data kernel operator (2.17), K  [ug]. We base the data optimiza-
tion phase (detailed in Section 2.3.1) on the non-linear conjugate-gradient
scheme. This requires the evaluation of the data kernel and its adjoint to
compute the search direction. Due to computational reasons, we wish to ex-
ploit the decomposition K  [ug] =G W, [ug], using the definitions (2.14)
for the receiver-to-domain Green’s operator G and (2.10), (2.16) for the
contrast-source operator W, [ug]. In the following, we describe how to com-
pute these two operators.

Contrast-source operator

By definition (2.16), W, [ug] is an operator acting on contrast variables
x- This notation explicitly highlights the linear dependency with respect
to the wavefield variable u,. In other words, the operator W, (x,ug) =
Wq [ug] x, acting on both x and ug,, is bilinear. When a stencil-based dis-
cretization is set, it is clear, from (2.10), that the operator ug — Wq, (x,uq)
is represented by a sparse linear system (showing the same sparsity pattern as
H o [m], for a generic model m). Likewise, the operator x — Wq (x,uq) =
Wq [ug] x, acting now on x, can be conveniently represented by a sparse
linear system (and consequently, also its adjoint). Eventually, the action of
the contrast-source operator can be implemented in a matrix-free fashion.

Receiver-to-domain Green’s operator

The operator G 5, defined by (2.14), can be readily evaluated by storing the
Green’s functions generated by source pulses located at each point of the do-
main €2 and recorded in R. Given a grid point x € (G, we consider a discretized
version of the delta pulse function defined by:

<5x; u> =u (X),

for any scalar grid function u. In 2-D, the type of source appearing in the
wave equation (2.3) will be denoted by the vectors e; = (1,0), e2 = (0,1).
Now, we introduce the Green’s functions:

911 (x,X) = (Gower,dxer), (2.25)
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for generic grid points x, x’. Clearly:

(gRW Z ng’l Xr,X l(X)7 VXT‘GRa

x €

(Gr"d Z Zglk X, X)d; (x,), VX €Q,

xXrER

(2.26)

for any contrast-source function w defined on 2 and data vector d.

Equation (2.26) provides a practical way to compute the action of G,
and G * when the functions gy (x,, -) are pre-computed and stored, for
each of the receiver position x,. It is tempting to compute g, (x,, -) by
applying the classical reciprocity relation gj; (x,x,) = g1k (xr,x). This, in-
deed, would just require the solution of the wave equation where the source
term is a delta pulse located at the receiver position. This equivalence holds
true in the continuous case because the differential system #[ml] is real sym-
metric. However, the discretization of the wave equation does not neces-
sarily lead to a symmetric system. In this case, a pseudo-reciprocity prin-
ciple can still be exploited by considering the ‘transposed’ Green’s functions
g,gfl (x,x') = (G' 5 e;,0x ey) (where real transposition is indicated by the su-
perscript t). The following identity holds: gj; (x/,x) = glt’rk (x,x’). Therefore,
in general, one should compute the Green’s functions g ; (x,, -) by solving
the transposed of the wave linear system. In any case, the numerical scheme
of A used in this paper leads to a real-symmetric system for which G! = G,

hence g (%, %) = g1 (X, %) = g1k (Xr, ).

2.4.3 Complexity analysis

The goal of this section is to analyze the complexity of the alternating inver-
sion algorithm for each of its components: data equation optimization and
wavefield update. We assume that the discretization method of choice is a
stencil-based scheme. For simplicity, the analysis is carried out for a sin-
gle frequency and a comparison is made with the contrast-source inversion
method [Abubakar et al., 2009], which shares many similarities with the cur-
rent algorithm. In the following, N will indicate the number of grid points of
Q. N, and N are, respectively, the number of receiver and source locations.

For the data equation optimization (Section 2.3.1), the complexity is de-
termined by the calculation of the data kernel K, [ug] and the total num-
ber N ét:tr of iterations required by the conjugate-gradient scheme. Following
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the strategy contained in Section 2.4.2, the evaluation of the operator re-
quires O (IN) operations, for each receiver and source. This leads to an overall
O (¢n, N, N) complexity per iteration, where the factor ¢y, y, depends on
N, and N,. With a serial implementation of the matrix-vector product for the
data kernel, this factor is equal to cn, n, = N, N. Clearly, in an abundance
of compute cores, this step can be well parallelized leading to a small ¢y, v,
(ideally, ¢ N, v, =1). A further improvement can be obtained, in principle,
with stochastic gradient descent techniques, for which only a limited number
of randomly chosen sources and receivers are needed at each iteration to com-
pute the gradient for the local search optimization. Another approach has
been followed by [Krebs et al., 2009], where the optimization is driven by data
generated with a linear combination of all the source terms, whose coeflicients
change randomly at each iteration. The computational gain would amount
to cn,.n, = N, + N, per iteration, with a direct serial implementation. In
the numerical experiments of this paper, however, we will not resort to these
strategies.

For the wavefield update (Section 2.3.1), the application of the integral op-
erator L, in (2.13) requires the solution of the wave equation by the LU solver.
In 2-D, the LU decomposition with nested dissection reordering [George and
Liu, 1981] is computed in O (N 3/2) operations and the LU-based solver re-
quires O (Nlog N) operations per source. In 3-D, the factorization takes
O (N 2) operations while the solution has a cost of O (N 4/3).

With a proper parallelization, the data kernel evaluation is a relatively
cheap computation with respect to the wavefield update. Hence, it might
be beneficial to focus the computational effort on this particular stage of the
alternating scheme. Indeed, as it will be shown in the numerical experiments
of Section 2.5, the number of wavefield update iterations NI%r needed for a
satisfactory result is relatively small.

In terms of memory complexity, the requirements are determined by the
storage of the LU factorization and the Green’s functions (2.26) and wave-
fields. Thus, the memory amounts to O (Nlog N + (N, + Ng) N) in 2-D, and
O (N*3log N 4 (N, + N4) N) in 3-D.

In Table 2.1 we summarized the analysis carried out in this section. A
comparison is drawn with the contrast-source inversion method, which shows
that the alternating update scheme can be competitive when adequately par-
allelized, at the cost of slightly higher memory demands.
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Factorization Alternating update
Data optimization Wavefield update
2-D N3/2 cnyN, NYrN 4+ NI N Nlog N
3-D N?2 cN N, NITN NIt N N431log N

Factorization Contrast-source inversion

2-D N3/2 Niter N . Nlog N

Cs1

3-D N2 Niter NN 4/3]og N

Cs1

(a) Time complexity for a single frequency (big O notation)

Factorization Alternating update Contrast-source inversion

2D NlogN (N, +Ns) N Ny N
3D N*3log N (N, + NN N,N

(b) Memory complexity for a single frequency (big O notation)

Table 2.1: Complezity analysis of the alternating update scheme and comparison
with the contrast-source inversion method: (a) time complexity, (b) memory complex-
ity. N 1is the size of the problem, N, and N4 are the number of receivers and sources.
For this analysis, we considered a single frequency. For the alternating scheme, Nét:tr
is the number of iterations required for the data equation optimization and N ' is the
number of wavefield updates, while NI is the number of iterations employed by the
contrast-source inversion. The data optimization stage can greatly benefit from paral-
lelization for which the factor ¢y, N, becomes small. The alternating update scheme
can be quite advantageous since, as it is experimentally observed, N ' < N1t Note
that the time complexity for the factorization in (a) refers to the number of opera-
tions used to compute such decomposition, while the memory complexity is the storage
needed to keep it in memory. The complexity of the factorization is shown only once
since it is the same for both the alternating update and contrast-source inversion

methods.

2.4.4 Inversion strategy: all-frequencies-at-once vs frequency-by-frequency

From the analysis of the previous section, it is clear that the LU decomposition
plays an important role in the memory complexity of the method. When
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Ny frequencies are considered simultaneously, we are forced to store Ny LU
factorizations. This makes an all-at-once inversion approach impractical for
large problems or when many frequencies are needed.

Alternatively, we can consider the frequency-by-frequency strategy pro-
posed for the contrast-source inversion method in Abubakar et al. [2009] (see
also He et al. [2016]) which requires the storage of LU factorizations only
for a limited number of frequencies at the same time (down to a single fre-
quency). Note that, in what follows, we will always choose an equally sampled
frequency set. However, one might consider the more convenient approach
described by [Sirgue and Pratt, 2004] (or Mulder and Plessix [2004a]). The
strategy adopted in [Abubakar et al., 2009] can be summarized as follows.
We start by picking a small subset of the lowest frequencies contained in the
data and we compute the corresponding LU factorizations of the wave opera-
tor relative to the current background model. We then apply the alternating
inversion scheme as described in Section 2.3. The next phase consists in the
update of the background model, based on the previous result, a choice of a
new higher frequency set and the corresponding LU computation. This will
result in another inversion run. The same logic is carried on, until the full
spectrum of the data is covered. A simple sketch of the inversion algorithm
endowed with a frequency-by-frequency approach is depicted in Figure 2.3.

The frequency-by-frequency inversion strategy might be suited even for
3-D, as argued in Abubakar et al. [2011]. This idea has been explored for
the contrast-source inversion method in Abubakar et al. [2011]. In the fol-
lowing section, we will include a comparison between the all-at-once and
frequency-by-frequency approaches for 2-D synthetic problems.

2.5 Numerical experiments

We present some 2-D synthetic numerical experiments to demonstrate the ca-
pabilities of the alternating inversion algorithm. The first example aims at
giving a practical understanding of how the inversion result improves by using
increasingly accurate estimates of the wavefield. The model considered in this
attempt is the so-called Delphi temple, designed after the logo of the DELPHI
consortium’. The second example depicts a more geologically plausible sce-
nario and is structurally similar to the synthetic model studied in Gray and

T delphi-consortium.com
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X
Fixed frequency set F'* and background my Frequency set update:

( y F'+ F™!
Contrast update: Wavefield update: Background update:
Ad=~K ,[ul] x Lo[x%u,~uine

g Q Q JQ Q my, « mp (1+ x)

Factorization of H g [my]
Alternating update scheme (Section 2.3) (for current F'*)

T

Figure 2.3:  Frequency-by-frequency inversion strategy (to be compared with
the all-at-once approach in Figure 2.2). First, a frequency strategy is chosen:
F' - F2 5 F2%2— ... where F* = {fi fi ...} are sets of frequencies, possibly con-
sisting of a single element. This choice is made in such a way that F* contains in-
creasingly higher frequencies. Starting from F'' and the given background model, the
alternating update inversion described in Section 2.3 produces a new contrast model.
This model is used now as a replacement for the background and the next frequency
set F'? is considered for another inversion run, after the LU factorization of Hq [my]
is computed.

F* my, factorized H g [my]

Marfurt [1995]. In this case we will test the frequency-by-frequency inversion
strategy against the all-at-once approach (Section 2.4.4). For each of the ex-
periments, the synthetic data are generated using the same forward modeling
scheme used in the inversion and 5% Gaussian white noise is added to ease
the ‘inverse crime’ [Wirgin, 2008].

2.5.1 The Delphi temple

The Delphi model and the source-receiver configuration of the experiment are
depicted in Figure 2.4. The model size is 300m by 600m. As for physical
properties, the homogeneous background corresponds to Ky, = 5.33 x 10° Pa,
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Figure 2.4: Delphi temple model and source-receiver configuration. The computa-
tional domain Q is delimited by black borders. The mon-vanishing contrast of the
model (with respect to the homogeneous background) is highlighted in black.

pp =2 x 10 Pa and pp, = 2000kgm =3 (in other words, the P-wave velocity
is cp = 2000ms~! and the S-wave velocity is cs = 1000ms~!). For the het-
erogeneity, we have K = 6.93 x 10° Pa, u = 2.6 x 10° Pa and p = 2200kgm~3
(cp=2174ms™ !, cg=1087ms1). This corresponds to the contrast values
XK =03, x,=03and x,=0.1.

We employ 21 sources and 21 receivers evenly distributed along the top of
the model. The source type considered is that of a vertical force delta pulse
(see eq. (2.3)). The inversion is carried out by considering all the frequen-
cies at once, and inverting both the components of the particle displacement:
u®, u?. We invert for the frequency spectrum 10-40 Hz, which corresponds,
for the current model discretization, to a sampling of 5 points per minimum
S-wavelength. At the lowest frequency 10 Hz, the model dimension is 3 Ag by
6 Ag, where \g is the corresponding S-wavelength.

Results The output models are depicted in Figures 2.5-2.8. We show the
result after every data equation optimization step, starting from the Born
approximation. Note that each data optimization step consists of an inner
loop where the maximum number of iterations is set to 300. The final result
in Figure 2.8 is obtained after 10 wavefield updates. While for the very first
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iteration in Figure 2.5 the pillars of the model are not recovered yet, due to
a lack of illumination, the estimation of a more accurate wavefield provides
the necessary information to gradually reconstruct this part of the model, as
it can be seen in Figures 2.6-2.8.

It is interesting to remark that the recovered p displays a better spatial
resolution than K, as it can be qualitatively assessed from Figure 2.8. This
can be observed, even more clearly, in the experiments of the next section 2.5.2
(see Figures 2.14-2.15). This is evident, given the fact that the term of the
data due to the propagation of S-waves shows much lower sensitivity to K
than p. For a fixed temporal frequency, the S-wave propagation wavelength
is shorter than the P-wave and this will translate into better resolution for
1 when such data is actually available. Furthermore, we observe that the
inverted p in Figure 2.8 is affected by long wavelength artifacts, a well-known
physical limitation of seismic inversion.

2.5.2 The curly model

For a comparison of the different inversion strategies in Section 2.4.4, we con-
sider the model depicted in Figure 2.9. The size of the computational domain
is 310m by 520m. The P-wave velocity ranges from 1800ms~! (top of the
model) to 3000ms~! (bottom), while the S-wave velocity from 1200ms~! to
2100ms~.

We place 27 sources and 26 receivers above the model, similarly to the
previous example, at the relative depth of z = —25m (cf. Figure 2.9). As
in the Delphi temple, we invert multi-component data generated by known
vertical force sources. The frequency spectrum considered is 10-50 Hz, which
corresponds to a minimal discretization rate of 5 points per S-wavelength, for
the chosen grid spacing.

This experiment aims to compare the result after the two inversion strate-
gies discussed in Section 2.4.4: all-at-once inversion vs frequency-by-frequency
inversion. The starting point for both strategies is the simple layered model
in Figure 2.10, which will be used as an (initial) background for the inversion.
We remark that this model is relatively far from the truth not only in terms
of short wavelengths, but also for long components (compare, for example,
the vertical sections in Figures 2.14 and 2.15). An example of synthetic shot
gather in the frequency-receiver domain can be seen in Figure 2.13a.
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Figure 2.5: Inversion results for the Delphi temple: 15 iteration (Born inversion,).
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Figure 2.6: Inversion results for the Delphi temple: 2°4 iteration.
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Figure 2.7: Inversion results for the Delphi temple: 3*4 iteration.



2.5 Numerical experiments

51

S 250\

300

Figure 2.8: Inversion results for the Delphi temple: 10" iteration.
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Figure 2.9: Curly model for the elastic parameters: bulk modulus K, shear modulus p
and density p (absolute values).
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Figure 2.10: Curly background model for the elastic parameters: bulk modulus K,
shear modulus p1 and density p (absolute values).
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Results The reconstructed models are collected in Figure 2.11 and Figure 2.12.
In Figure 2.11 we show the results obtained from the simultaneous frequency
inversion after 10 wavefield updates. We set a maximum number of 300 itera-
tions for the data optimization loop. The results for the frequency-by-frequency
approach are depicted in Figure 2.12. For this particular experiment we con-
sidered frequency sets of only 3 elements, starting from the lowest available
frequencies. For each of these sets, we run the inversion with 10 wavefield
update iterations and a maximum number of 300 iterations for the data opti-
mization loop.

In general, the observations made for the Delphi temple also applies in this
case: the recovered shear modulus is relatively sharper than the bulk modulus,
and the density reconstruction suffers from low frequency instability. From a
qualitative point of view, the results of the two inversion strategies compare
well with the true model and with respect to each other. In Figure 2.13, the
estimated data for both strategies show a good match with the synthetics.
In Figures 2.14 and 2.15 we made a more quantitative comparison by con-
sidering some selected vertical sections of Figures 2.11 and 2.12, located at,
respectively, z = 210m and x = 300m. The section z = 210 m shows a very
good agreement between the two strategies, especially for the parameters K
and u. However, the all-at-once approach for the section z = 300 m delivers
a superior inversion. This is especially true for the low wavenumbers of the
bulk modulus. As expected, the simultaneous inversion of all the frequencies
leads to a more stable approach. This is evident for the density result and it
should be considered the true difference between the two results. Indeed, the
comparison of P- and S-wave velocities, for both the sections x = 210m and
x = 300 m, is more favorable than K and u, and indicates that the two results
describe the same kinematic model.

2.6 Summary and conclusions

In this paper, we introduced an inversion algorithm for inverse scattering prob-
lems. The main characteristic of this scheme is that both properties and wave-
field are estimated inside a target object. This is achieved by an alternating
procedure for which: (i) the properties are obtained from the optimization of
data mismatch and (i) the wavefields are updated by minimizing the wave
equation residual. Each of these steps corresponds to a convex optimization
problem.
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Figure 2.11: Inversion result for the strategy described in Section 2.4.4: all the data
frequencies are inverted simultaneously.
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Figure 2.12: [Inversion result for the strategy described in Section 2.4.4: few fre-
quencies inverted at the time followed by background update (maximum number of

simultaneously inverted frequencies: 3).
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Figure 2.13: Comparison of synthetic and estimated data by the inversion: (a) real
part of u® generated by the shot located at x =0m, z = —25m (the data values
shown here are normalized), (b) comparison of synthetic data and inverted data for
the all-at-once approach, (c) comparison of synthetic data and inverted data for the
frequency-by-frequency approach.
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Figure 2.14: Comparison of the results using the: (a) all-at-once and
(b) frequency-by-frequency approaches for the vertical section of the curly model lo-
cated at x = 210m.
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From a computational point of view, the scheme can be quite advantageous.
Indeed the data optimization step can be efficiently parallelized and the field
update exploits direct methods as LU. The complexity analysis highlights a fa-
vorable comparison with the similar contrast-source method [Abubakar et al.,
2009], which is also based on the alternating update of properties and wave-
fields and benefits from the LU factorization to boost the field update step.
Contrary to the contrast-source inversion, however, the alternating scheme
focus the computational work on the property optimization step and the re-
sulting scheme requires few field update iterations.

We tested the alternating inversion for the 2-D elastic inverse scattering
problem, with successful results. We compare two inversion strategies based
on an all-frequencies-at-once and frequency-by-frequency approaches, with ex-
cellent agreement between the two results. Motivated by the study of van den
Berg and Abubakar [2001], we argue that the algorithm might be feasible for
3-D problems, when a frequency-by-frequency strategy is also incorporated.
This motivates a future extension of the method to 3-D.






Multigrid-based

‘shifted-Laplacian’ preconditioning
for the time-harmonic elastic wave
equation'

Abstract

We investigate the numerical performance of an iterative solver for a frequency-
domain finite-difference discretization of the isotropic elastic wave equation.
The solver is based on the ‘shifted-Laplacian’ preconditioner, originally de-
signed for the acoustic wave equation. This preconditioner represents a dis-
cretization of a heavily damped wave equation and can be efficiently inverted
by a multigrid iteration. Howewver, the application of multigrid to the elastic
case is not straightforward because standard methods, such as point-Jacobi, fail
to smooth the S-wave wavenumber components of the error when high P-to-S
velocity ratios are present. We consider line smoothers as an alternative and
apply local-mode analysis to evaluate the performance of the various compo-
nents of the multigrid preconditioner. Numerical examples in 2-D demonstrate
the efficacy of our method.

" This chapter is the reproduction of the paper Rizzuti and Mulder [2016], published in
Computational Physics, 2016
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3.1 Introduction

The numerical solution of the wave equation is an important problem in several
disciplines. The main motivation for the present work is given by geophysical
applications concerning the imaging of the Earth’s interior. Seismic waves,
excited artificially at the surface or naturally in the subsurface, are recorded
to infer its properties. Since the Earth is an elastic object, the elastic wave
equation is of particular interest.

Imaging typically requires many wave simulations: for 3-D problems, where
one could possibly deal with hundreds of millions of variables, efficient solvers
are essential. Time- or frequency-domain methods can be considered. An at-
tractive feature of the frequency domain is the fact that only a limited number
of frequencies — well below what is prescribed by the Nyquist criterion — are
actually required to obtain a satisfactory imaging result [Pratt, 1990; Mulder
and Plessix, 2004a]. Moreover, a further level of parallelization is available
since the computation of different sources and frequencies can be carried out
independently. Due to the size of the problem, however, factorization meth-
ods such as LU decomposition with nested-dissection reordering [George and
Liu, 1981], which are quite efficient in 2-D, become prohibitive in terms of
required storage. For this reason, explicit time-marching methods are gener-
ally preferred, since it is not necessary to solve a large linear problem. For
the frequency domain, iterative methods are an obvious alternative but are
seriously hindered by the severe indefiniteness of the wave equation, especially
for high frequencies. Therefore, a good preconditioner must be provided in
order to obtain a reasonable convergence behaviour. In that case, iterative
frequency-domain solvers can actually be competitive or even outperform the
time-domain counterparts when a large number of compute cores is available,
as advocated in recent work [Knibbe et al., 2014].

Several alternatives to iterative methods have been investigated. For ex-
ample, approximate direct methods can be an efficient option, as shown by
parallel multifrontal solver developments [Xia et al., 2009; Wang et al., 2011,
2012] for both the acoustic and elastic equation. One could also consider
domain-decomposition methods as worked out for the acoustic case in Stolk
[2013] or Zepeda-Nunez and Demanet [2016]. An assessment of the relative
merits of these methods is, however, beyond the scope of this paper.

Because of the difficulties mentioned above, the study of iterative solvers
for the wave equation in the frequency domain is an active field of research.
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The present paper is based on the work of Erlangga et al. [2006, 2004], who
proposed preconditioning by a shifted Laplacian, solved by a multigrid iter-
ation. This generalizes the work of Bayliss et al. [1983] and Laird and Giles
[2002]. The Helmholtz equation

Hp:f7 H:_k2_A7

where k is the wavenumber and p the pressure wavefield, is replaced by a
preconditioned system based on the complex shift of the Laplacian:

HH;'p=f, Hg=-k>(1-p1)-A, (3.1)

for some choice of the damping parameter 5 > 0. The key aspect of this pre-
conditioning procedure relies on the inversion of the damped wave operator
H 5 by multigrid, whose attractive feature is its linear complexity. A standard
multigrid method will generally fail when applied to the undamped case be-
cause of the large near-null space of the Helmholtz operator, which cannot be
approximated very well on the coarser levels [Elman et al., 2001; Tsuji and
Tuminaro, 2015]. When strong damping is introduced, however, the computa-
tion of Hgl p can be accomplished by the multigrid method. Standard Krylov
subspace methods such as GMRES [Saad, 2003], Bi-CGSTAB [van der Vorst,
1992] or IDR(s) [Sonneveld and van Gijzen, 2008] can then be successfully
applied to (3.1).

In this paper, we generalize the techniques presented by Erlangga et al.
[2004, 2006] to the elastic wave equation. Multigrid inversion of the damped
elastic operator is, as one might expect, a harder problem than Helmholtz
because of the different P- and S-wave modes. As P- and S-waves propagate
with different velocities and, therefore, have different wavenumbers at a given
frequency, smoothing should be tuned to perform well for both. On top of
this, the near-null kernel comprises P- and S-waves and is more problematic
than in the acoustic case. The value of 8 should be adjusted accordingly.

We organized this paper as follows: in Section 3.2 we discuss the numeri-
cal finite-difference discretization of the elastic wave equation. We will adopt
two classical schemes, by Kelly et al. [1976] and by Virieux [1986]. It will be
shown that these schemes, besides having different numerical dispersion qual-
ity, exhibit distinct multigrid performance. Motivated by the success of the
shifted-Laplacian preconditioning for the Helmholtz equation, we introduce an
elastic version in Section 3.3 and study how it affects the spectral properties of
the elastic wave equation. Similarly to the acoustic case, the preconditioned



64 A multigrid method for the elastic wave equation

P- and S-wave eigenvalues are positioned along a circle in the positive real
part of the complex plane, leading to a favourable setting for iterative meth-
ods. In Section 3.4, we will discuss the application of the multigrid technique
to approximate the evaluation of this preconditioner. The performance of the
various multigrid components will be analysed by local-mode analysis, briefly
outlined for systems of equations. As it turns out, point-Jacobi smoother
does not adequately smooth both the P- and S-wave modes of the error. We
therefore introduce a suitable line smoother. This choice will be validated in
combination with a multi-level multigrid analysis. Finally, in Section 3.5, we
present numerical results for the homogeneous case as well as an elastic ver-
sion of a highly heterogeneous example, the Marmousi model, showing good
convergence properties.

3.2 Problem formulation and numerical discretization

We start this section with a brief discussion on the numerical discretization of
the second-order formulation of the 2-D isotropic elastic wave equation. The
unknowns will be represented by the particle displacement u = (u”, u?). In
the frequency domain, the wave equation reads:

—pw2u® — 0, [N+ 2u)0,u® + N0 ,u?] — 0, (ud,u® + pdu)=f=%,

—pw?u® — 0y (U0, u® + pdu?) — 9, [N pu® + (A + 2u)0 u]=f7,
(3.2)
where w is the angular frequency, A and p are the Lamé parameters, p is the
density and f = (f*, f?) a source term. This form will be used for the numer-
ical experiments in Section 3.5. For the smoothing and multi-level multigrid
analysis, we consider the homogeneous case. Then, the system (3.2) simplifies
to:

—kgux—rzamu’”—azzugﬁ—(r2—1)8mzuz = g%,
(3.3)
—k%uz—8muz—r2azzuz—(rz—l)f)muw = g~%,
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where kg = w/cg is the wavenumber for the S-waves and r = c¢p/cg > 1 the
P-to-S velocity ratio. The system (3.3) can be restated in matrix form as

r28xa:+8zz (7’2—1)83;3
Hu=g, H=-k(1-D, D= ,
(7"2—1)(9352 a:m:"‘TQazz
(3.4)
to represent the elastic Helmholtz operator. Since in the 2-D elastic case we
deal with a system of equations, H is a 2 x 2-block operator and we specify
its scalar blocks by

For the smoothing and multi-level multigrid analysis treated in the fol-
lowing sections, it is convenient to consider an explicit formulation, analogous
0 (3.4), for the acoustic case with p = 0. Equation (3.4) should be adjusted
by introducing the wavenumber for the P-waves kg = r kp, where kp = w/cp,
and taking the limit 7 — +o0 in (3.4). The resulting elastic operator reads:

a:m: axz
H=-k3I-D, D= . (3.5)
azz azz

Both the forms (3.4) and (3.5) have to be considered when dealing with elastic
media where acoustic regions with g = 0 are present.

Several finite-difference schemes are available to discretize the system (3.2).
We will represent the unknown functions by the values assumed on the colloca-
tion grid G = hZ? (Z being the set of integers), where h is the discretization
step-length or spacing, and denote a discretized quantity by wy; ~ u(kh,lh).
For simplicity, we will only consider isotropic grids with equal horizontal and
vertical spacings. For the treatment of these numerical methods, the stencil
notation is particularly convenient. For example, we will indicate a 9-point
compact scheme by



66 A multigrid method for the elastic wave equation

meaning that the action of the operator s on a grid function is defined by the
discrete cross-correlation:

(s*u),; ;= Zs(m,n)ui+m7j+n. (3.6)

m,n

Note that the stencil is expressed with z downwards, following the geophysical
rather than the numerical convention. The discretization H” of the operator
H, in the homogeneous case, may be represented by the four stencils:

H’;;z S _kg_TQagx_ah ng £ _(rz_l)agz;zv

zz)

(3.7)
H,’zlw £ _(T2_1)agz;x7 H}zlz =S _kg_azlp‘bx_TQa,}zlzv

and is determined by the particular choices for the second-order differential
operators 0/, 8£Z;z, agz;z, d".. A classical 9-point finite-difference scheme

by Kelly et al. [1976] is summarized by

[0 o0 o0 ] 1 0 —1 ]
gh o L 1 -2 1 gh a1 0 0 0
T h2 ’ xzr 4 h? )

0 0 0 | -1 0 1 |

1 0 -1 ] [0 1 0 ]
gh & 1 0 0 0 gh o L 0 -2 0
TZ3Z T 4h2 ’ zz T L2 -

-1 0 1 | 0 1 0 |

(3.8)
The discretized system reads

212, x 2/, T T T T T
_kSh Umpn—T (um+1,n_2um,n—i_umfl,n)_(um,nJrl_2um,n+um,nfl)
1 x

2 z z z z 12
_Z(r - 1)(um+1,n+1_um+1,n—1_um—l,n+1+um—1,n—1) =h gm,n

212, 2 z z z 2(, 2z z z
_kSh um,n_(uerl,n_Qum,n—i_umfl,n)_r (um,n+1_2um,n+um,n71)

2 T x x x _ 12 z
L _Z(T _1)(um+1,n+1_um—l-l,n—l_um—l,n+1+um—1,n—1)_h Immn:

(3.9)

Another popular discretization scheme is based on a staggered-grid formu-
lation, originally developed for the first-order wave equation by Virieux [1986].
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(m,n) (m+1,n)
= 3

W 7 7
¢ T
> u®
Viou® O F

(m,n+1) (m+1,n+1) (m,n+1) (m+%,n+1) (m+1,n+1)
(a) Legend (b) Regular grid (c) Staggered grid

Figure 3.1: Discretization grid according to (b) Kelly’s and (¢) Virieux’s formu-
lation. For the staggered-grid scheme, the elastic wavefields are defined on different
grids. The grid points where these wavefield are defined, are denoted by different
symbols according to (a). Note that z points downwards.

According to this scheme, the particle displacement components and the stress

fields
Tab — Z Cab,cd acud’
cd

C %¢d being the stiffness tensor, are discretized on different grids that are
shifted with respect to G". More specifically, the vertical component u? is
defined on the grid G" 4 (0,h/2), whereas the horizontal component u® is
positioned on G" + (h/2,0). The stress components 7** and 7% are defined
on the regular grid G", while 7% is on G" + (h/2,h/2). This configuration,
pictured in Fig. 3.1, leads to the finite-difference scheme:

_k%h%iwr%,n — r2(ufn+%7n — 2uﬁl+%’n + “:Z—%n)
_(urmn+%,n+1 _2ufn+%,n + u?fwr%,nfl)
—(7’2 - 1)(ufn+1,n+% - U;Jrl,nf% B u;,nJr% + u;v"*%)
- h2gfn+%,n

(3.10)
*kghQufn, +% (ufn-i-l,n—&-% B 2“2@,7@—1-% + UTZVL—L”'F%)
_r2(u;7n+% — 2ufn,n+% + u;mf%)
—(r? - 1)(“:1+%,n+1 - ufnf%,nJrl ufnJr%,n + ufnf%,n)
= hZQ;,n+%'
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If we define the shifted particle displacement by uy, ,, = and uj, , =

u£1+1/2,n
u;mH/Q, the stencil representation (3.7) acting on 4® and @?* can then be

summarized by

| 0 0 | 0 0 0
ok é? 1 -2 1|, oh.,* S 1 -0
0 0 0 -1 1 0
. 0 1 —1 . 0 1 0
8;;2%? 0o -1 1 |, o, é? 0 -2 0
0 0 1 0
(3.11)

The difference between the mixed-derivative stencils 8!}2;1, and 8§Z;Z arises
from the definition of the particle components on different grids. In the fol-
lowing sections, we will drop the notation @ and use u instead, to indicate the

shifted discretized wavefield when dealing with the staggered-grid scheme.

The numerical dispersion properties of the staggered-grid scheme are sig-
nificantly better than Kelly’s and the S-wave phase and group velocities are
independent of the velocity ratio. Indeed, the accuracy of Kelly’s scheme gets
worse for increasing values of r (Fig. 3.2). These numerical properties are de-
termined by how the scheme realizes, in its discrete version, the decoupling of
P- and S-wave modes in a homogeneous medium. The staggered-grid scheme
does this ‘consistently’, meaning that the second-order stencils (3.11) can be
derived from forward and backward first-order difference operators, e.g.,

1 0O 0 0 1 0O 0 0
a;qég 0o -1 1 |, 8;},%% -1 1 0 |, (312
0 0 0 0O 0 0
and
a;;lac = 82—1— * ag—? aziclz,a: = 8:};— * 6?—}—’ agz,z = 82—&- * 6?—? agz = 8?—}— * 8?—?
(3.13)
where ‘¥’ is the convolution operation. As a consequence, the P- and S-wave

potentials satisfy a discretized version of the Helmholtz equation, defined by
the same stencil in (3.11), and the S-wave phase velocity is therefore indepen-
dent of r. Kelly’s scheme does not have this property.
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Figure 3.2: Numerical S-wave phase velocity ratios c§' /cs for (a) Virieuz’s

and (b) Kelly’s scheme as a function of the inverse of G's (number of points per
S-wave wavelength) and propagation angles ¥. The numerical dispersion proper-
ties of Kelly’s scheme become worse for increasing velocity ratios r, while for the
staggered-grid scheme, they remain independent of r.

In principle, better options than the one presented here are available in
terms of numerical accuracy. In Stekl and Pratt [1998], 9-point compact sten-
cils are specifically designed to minimize numerical dispersion by averaging the
differential operator with its rotation, along with lumped mass matrix tech-
niques. A similar rationale has been applied by Min et al. [2000, 2003, 2004] to
obtain very accurate 25-point finite-difference and finite-element schemes. The
compactness of these stencils is intended to reduce the fill-in of factorization
methods such as LU decomposition. It should be noted that this is not neces-
sary when employing iterative methods and one can easily adopt higher-order
versions of Kelly’s and Virieux’s schemes with wider stencils. This will, how-
ever, affect the behaviour of the multigrid solver.

In this paper, we will discuss multigrid with the staggered-grid scheme
(3.10) in mind. Even though the ‘unphysical’ coupling of Kelly’s scheme is
more advantageous for multigrid applications, as we will see later, its use is
questionable due to the inaccuracy of the scheme. If there are no acoustic
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regions (x4 = 0) in the medium, multigrid performs comparably for the two
schemes. Generally speaking, the theory and methods developed in the fol-
lowing sections can be straightforwardly applied to any finite-difference or
finite-element discretization of the wave equation on structured meshes.

3.3 A ‘shifted-Laplacian’ preconditioner for the elastic wave equa-
tion

Given a certain discretization of the wave equation system (3.4),
H'u"=gh H"=-ki1-D" (3.14)
we introduce the following preconditioning
H"(H}) 'a"=g" H}=-ki1-5.)1-D" (3.15)

based on the very same ideas presented by Erlangga et al. [2006, 2004]. From a
physical point of view, the linear system HZ corresponds to a damped version
of the elastic wave equation. We begin a preliminary analysis of this precondi-
tioning by testing the spectral properties of the system (3.15), which, ideally,
requires the inverse of the damped system. A few iterations of multigrid will
achieve only an approximation of this inverse, thus, the following analysis as-
sumes idealized circumstances. We make use of local-mode analysis [Brandt
and Livne, 2011; Trottenberg et al., 2001; Briggs et al., 2000], which will be
discussed in more detail in Section 3.4.2. Essentially, it consists in a diagonal
decomposition of the discrete system (3.14) by the Fourier transform and the
canonical P-wave and S-wave decomposition. One can easily find that, for the
staggered-grid scheme, the P- and S-wave eigenvalues of the damped system
Hg are

4
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and, therefore, the preconditioning transforms the eigenvalues into

0. > 0.\°
k§h2—47“2 sin () + sin ()
Mo 2 >

b 2 27
o k3h2(1—B1)—4r2 [Sin(%c) +sin<€22> ]

0.\ 6.\ >
212 (Y [ Yz
)\go kgh 4 [sm<2> —I—sm<2> ]
N 2 27"
S, 8 kZh2(1—pB1)—4 [sin(é?;) —i—sin(%) ]

Note that the second ratio matches the first in the limit for r | 1. These
eigenvalue ratios are distributed on the complex plane along a circle with
centre 1/2 and radius 1/2, exactly as in the acoustic case (Fig. 3.3). The same
configuration arises with the Kelly’s scheme.

Similarly to the acoustic case, as [ gets smaller, the eigenvalues move
away from 0 and cluster around 1, as can be seen in Fig. 3.3. A clustered
spectrum is a favourable setting for Krylov subspace methods. However, as
it will be shown later, finding the approximate inverse of Hg by multigrid is
more efficient when  is large. Thus, the choice of § is a trade-off between the
convergence rate of the multigrid solution of the damped system Hg and the
desired spectral properties of the preconditioned system (3.15). In the elastic
case, the multigrid efficiency will be also be affected by the velocity ratio r.
We should point out that ‘complex shifting” or added damping for the elastic
system of equations has a similar effect on the corresponding spectra as with
the acoustic equation. This fact provides a case for a successful application of
multigrid preconditioning to the elastic wave equation and will be validated
experimentally in Section 3.5. There, we will also consider the effect of the in-
exact multigrid approximation of the preconditioner. Note that our approach
is mainly empirical. To the best of our knowledge, a rigorous theory for the
convergence of shifted-Laplacian methods is presently lacking.

Recently, some research has been devoted to combining multigrid with
deflation-based preconditioning [Nicolaides, 1987; Frank and Vuik, 2001]. The
basic idea is to design a further preconditioner which clusters the eigenvalues
in Fig. 3.3 towards 1. We refer to Erlangga and Nabben [2008] and Sheik et
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Figure 3.3: Eigenvalue distribution A\ o/Ap 5, A& o/A& 5 of the preconditioned
system (3.15) for different values of wave damping 8 and velocity ratio: (a) r = 3,
(b) r = 4. The quantity kg h is fized to the value w/5 which corresponds to a sampling
of 10 points per wavelength. The plots here displayed correspond to the staggered-grid
scheme, but an analogous behaviour can be observed for the Kelly’s scheme. Note that
for the stagered-grid scheme, the S-wave eigenvalues are independent of r.

al. [2013] for a discussion on this matter. We expect that the same idea can be
applied successfully to the elastic case, but in this paper we will focus solely
on the multigrid preconditioning (3.15).

3.4 Analysis of multigrid applied to the damped elastic wave equa-
tion

In the previous section, we studied preconditioning by the damped wave equa-
tion and assumed that the associated linear system could be solved exactly.
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Since we intend to obtain only an approximation of its solution by multigrid it-
erations, the previous analysis should be adapted accordingly. In this section,
we will focus on the application of multigrid to the damped wave equation.
The starting point is the previous work of Erlangga et al. [2004, 2006], valid
for the acoustic case. In order to assess the performance of multigrid, the clas-
sical tool of local-mode analysis was considered in Erlangga et al. [2004, 2006].
For the elastic case, we will have to apply this method to a linear system, for
which the theory can be found in, e.g., Trottenberg et al. [2001]. To validate
the predictions of the following local-mode analysis, we will compare them to
numerical experiments.

Multigrid is a well-known numerical technique for solving certain classes
of partial differential equations [e.g Briggs et al., 2000; Trottenberg et al.,
2001]. It exploits the multiscale behaviour of classical solvers by considering
a hierarchy of discretization grids. Multigrid relies on two fundamental ingre-
dients: smoothing and a coarse-grid correction. Given a linear system H”",
which might arise from the discretization of a partial differential equation
on the grid G, and starting from an approximation ug of the solution u”,
smoothing consists in reducing the high-frequency or short-wavelength com-
ponents of the error eg =uh— ug. This is a typical trait of many elementary
iterative methods, such as Jacobi and Gauss-Seidel, that can easily remove
high-frequency solution errors but have difficulty with the low-frequency com-

ponents. However, once a new approximation ﬁg is computed for which the

error &7 is smooth and satisfies the error equation H" &} = ¥} (where T
is the corresponding residual), the fine-grid problem can be approximated on
a coarser grid: H2hé%h = f%h. The solution of the coarse-grid problem is
projected or prolongated back to the fine grid to give the so-called coarse-grid
correction. Since ‘low frequencies’ on the fine grid become ‘high frequencies’
on the coarse grid after restriction, the same idea can be exploited recursively

to solve for the coarse-grid problem.

3.4.1 Multigrid for the acoustic wave equation

Multigrid is typically effective for positive definite linear systems, for example
those arising from the discretization of elliptic partial differential equations,
and it is known to behave poorly for the undamped wave equation. The rea-
sons are discussed in some detail in Elman et al. [2001] and Erlangga et al.
[2006] and the same conclusions hold for the elastic case. Basically, classical
smoothers like point-Jacobi will severely amplify the long wavelength com-
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ponents of the error on ‘intermediate’ grid levels, effectively hampering the
performance of multigrid. Another issue concerns the coarse-grid correction:
some eigenvalues corresponding to a certain discretization level h might un-
dergo a change of sign on the coarser grid G2". It can be shown, as in Elman
et al. [2001], that the coarse-grid correction corresponding to this particular
component will be updated in the ‘wrong’ direction. Multigrid is thus unable
to solve for the space associated with these eigenvalues. When damping with
B is introduced, the eigenvalues of Hg are shifted into the complex plane and
multigrid can be effectively applied [Erlangga et al., 2006].

3.4.2 Multigrid for the elastic wave equation

In this section, we will show that multigrid can as well be applied to the
damped elastic wave equation. We start with a brief introduction on local-mode
analysis — the main quantitative tool we will use to assess the numerical be-
haviour of multigrid. We then proceed by discussing the performance of point-
and line-Jacobi smoothers and finally by comparing estimated convergence fac-
tors from m-grid analysis to the values obtained by numerical experiments.

Introduction on local-mode analysis for the elastic wave equation

Local-mode analysis is a predictive tool that can be used to effectively measure
multigrid performance. In essence, it is the spectral decomposition of the linear

operators involved on the space of scalar Fourier grid functions ¢ (@) defined
by

0 @) mn=exp[e(@ym+0.n)], 0= 0,0, c |-, x> (3.17)

For simplicity, we will only treat the 2-D case. This decomposition is useful
in estimating how the various Fourier components of the error of a particu-
lar estimate of the solution are reduced after each operation that is part of
a multigrid cycle. Since linear operators like Hg are defined by a spatially
compact stencil, and its action involves ‘local’ operations, the mode analysis
is arguably still valid by setting homogeneous physical parameters in the defi-
nition of the discretized linear operators and considering unbounded grids G "
or periodic boundary conditions. The discussion that follows is made under
these assumptions. We refer to Trottenberg et al. [2001] for a more exten-
sive introduction on local-mode analysis of linear systems. In this section,
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we provide a succinct and formal definition of smoothing and n-grid analysis
[Wienands and Oosterlee, 2001] with emphasis on the wave equation and its
discretization by the staggered-grid scheme (3.11).

We start with a formal Fourier analysis of the elastic wave equation oper-
ator Hg acting on the space of grid function pairs .2 (G") x L2 (G"), where
L2 (G") is the set of square-summable functions. Given a vector ug € C?2,
we define the Fourier symbol I:IZ as:

HY [2(8) uol = HJ (6) uo, (3.18)

which, in other words, is the ‘eigenvalue matrix’ of the Fourier grid function.
Since Hg is a 2 x 2-block matrix, Hg (@) is a 2 x 2 matrix. The eigenvalues

of ﬂg can be found by a standard P- and S-wave diagonal decomposition:

~

H (0) = M" (8) Al (6) M"(6)", (3.19)

where the asterisk denotes conjugate transposition. The matrix Mh(e) =
[G}(6), ©2(6)] collects the P- and S-wave eigenvectors, while A g (@) is the
eigenvalue diagonal matrix diag([)\l}éﬂ 9), )\}S" 5(0)]). As already noted in
Section 3.2, the wave potentials of the staggered-grid scheme are defined by
a discretization of the P- and S-wave Helmholtz equation, which is consistent
with the stencils (3.11). Their Fourier transforms are

h2
. 4 2
ol (9) = 3 sin (922)

It is easily found that the eigenvectors associated with the eigenvalues )\’1% 8
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)\}S’ 5 in (3.16), apart from scaling factors, are

h _2v | e o (Ve 0.2 . (0=
p(0) = wole sin - |, e sin | o) |
21 2] 0

h — 20| _pf:/2 g Z 104/2 T
JOEES { e 51n<2>,e sm<2>],

In the expressions of ﬁlg and ﬁb@, one may recognize the Fourier symbols of
the gradient and curl operators, discretized by the centred schemes (3.12)
underlying the stencils (3.11):

o>

(3.20)

i

(3.21)

The Fourier analysis of the operator H g allows us to analyse the properties
of many smoothing schemes. A simple form of smoothing, which proved to
be effective for the damped acoustic wave equation, is given by the classical
Jacobi scheme. Given a certain initial guess ug of the solution of Hg ul =f"
the Jacobi iteration consists of the update

ui‘:ug—i—n(Dg)_l rh, rg:fh—Hg ul, (3.22)
where Dg is the diagonal of Hg and 7 a relaxation parameter that needs

to be adjusted for effective smoothing. To understand how the initial error

e’(} = ug — u” is reduced, we write

el =S"ef, Sh=1"—y(D}) ! HJ, (3.23)

where S” is the point-Jacobi iteration matrix. The local-mode analysis of S
provides a theoretical estimate of how the different wavelength components of
the error are damped by the smoothing. Since smoothing is designed to solve
for the short-wavelength components, corresponding to

T T
|9$’>§ or |02|> 5,
we define the smoothing factor as:

,ug‘:max{M]: A eigenvalue of S” (8), ]03;\>g or |9Z|>g}. (3.24)
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Clearly, besides smoothing, a comprehensive analysis of multigrid requires
the study of the coarse-grid correction over many grid levels. Any number
n of grid levels could be considered, but usually, n < 3 suffices to analyze
multigrid schemes. For the elastic wave equation, we will consider n = 4. For
ease of exposition, we will summarize the theory of n-grid analysis for the
simple two-level case, n = 2. We refer to Wienands and Oosterlee [2001] for a
more general treatment.

The operations of two-level multigrid are

uiL = ug +n (DZ ) -1 I‘g (pre-smoothing, e.g., Jacobi),

I‘%h = R2};L I'}ll (restriction of the residual to the coarse grid),
H%h e%h = I'%h (solution of the coarse-grid error equation),
~h __ P h . 2h . . .
e;] =Py, e] (interpolation of the error onto the fine grid),
ug = u}f + é}f (coarse-grid correction),

ug = ug +7n (DZ ) -1 I‘g (post-smoothing, e.g., Jacobi).

The grid transfer of the functions of .2 (G") and .2 (G 2") is managed by the

restriction operator RQ’;L and prolongation operator PQ}’;. A natural choice
would be

R2» 0 P, 0
h 2h
R = o | P, = e (3.25)
0 R 0 Py

where RQ’;l and PQllj correspond to scalar restriction and prolongation oper-
ators. We assumed standard coarsening. The coarse-grid linear system H%h
can be obtained from a direct discretization of the wave equation on the grid
G 2" or from the Galerkin condition

H' =R*" H} P, (3.26)

When the restriction and prolongation operators are chosen as in (3.25), it
corresponds to a coarse-grid block operator where each block satisfies the

scalar Galerkin condition, e.g., H?;B = RQ}}LL ng,ﬂ PQ,’LL for the first block

of H%h. Through the two-level multigrid algorithm, the error is transformed
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according to
e]g:Th,Qh eg’ Th,2h:(sh>112 Kh,?h(sh)l/1’
Kh,?h:Ih_PQ}l;L(H%h)flRQ]}Ll Hh,

where 1 and vo are, respectively, the number of pre and post-smoothing
iterations. In the smoothing analysis, we exploit the diagonalization of the
operator S” over the Fourier grid functions. The complication of the two-level
analysis stems from the fact that the coarse-grid operator K"2" mixes wave-
length components and, therefore, does not diagonalize over the same basis.
However, it admits a block diagonal decomposition over the direct sum of the
following 8-dimensional subspaces

F2[00] =span{¢ (@) up: =0, mod , uOGCQ}, (3.27)

parametrized by the m modulo classes [0 ], where 8¢ € [~7/2, 7/2]%. For a
2-D analysis, these classes consist of four elements:

00) = {06 =6, 65, 63, 93}.

It can be easily proven that F'y [@¢] is an invariant subspace for the two-grid
operator T/+2" and the spectral analysis of two-grid multigrid boils down to
the matrix representation:

3
T"2" @5 uo= ) T (85, 85) ¢ (85) uo. (3.28)
k=0

The 4x4 2 x 2-block matrix T 2" [0¢] ., = T™2" (8§, 1) is obviously equiv-
alent to an 8 x 8 matrix. Not only different wavelength components are inter-
mixed by the two-grid operator, as in the acoustic (scalar) case, but also P-
and S-wave modes. The two-grid convergence factor is then defined by

b = max { |A]: A eigenvalue of T™2"[8,], 8¢ € [~7/2, 7/2]? } (3.29)

By induction, the same kind of analysis can be generalized to define n-grid
convergence factors u” [Wienands and Oosterlee, 2001].
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Point- and line-relaxation schemes

In the previous section, we discussed smoothing analysis by considering the
elementary point-Jacobi smoothing. As already mentioned, this is an effec-
tive choice in the context of shifted-Laplacian multigrid for the acoustic case.
However, the simple numerical example in Fig. 3.4 shows that point-Jacobi
is an anisotropic smoother for the elastic case. This observation can be con-
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(a) Initial guess u® = u? (b) Smoothing result for u”(c) Smoothing result for u?

Figure 3.4: Effect of point-Jacobi smoothing applied to the elastic case for the ho-
mogeneous problem Hg uh =0 for B=2, ksh =m/10 (corresponding to 20 points
per wavelength) and v = 3. The damping factor is n = 0.5. The initial guess ul,
pictured in (a), consists of a unit function whose support is a square set, for both
components. The results after 100 iterations show that point-Jacobi is not effectively
smoothing in the vertical and horizontal direction, respectively, for the (b) horizontal
and (c) vertical particle displacement components.

firmed theoretically by applying the techniques of the previous section. First,
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we denote the diagonal operator Dg = diag Hg, in stencil notation, by

0 0 0 0 0 0
Di, g2 | 0 HI ;00 0 |,DEs2| 0 HEL (00 0],
0 0 0 0 0 0
(3.30)
and D7 ; =D" 5 £ 0, where H], 5(0,0) =H%, ;(0,0) = —k3(1—82)+

2(r24+1)/h 2; We then apply the P- and S-wave decomposition to the smooth-
ing operator S” in (3.23). Its eigenvalues are

2 2
k%hQ(l—Bz)—zlﬂ [sin<9;> +Sin<92z> ]

K2hZ(1—B1)—2(r2+1) ’

2 2
kZh?(1—p1)—4 [sin(%) +Sin<02'z> ]

kZh2(1—B1)—2(r2+1)

Apls0) = 1-1

Agh@) = 1-9

(3.31)
In Fig. 3.5, we depict these factors as a function of the Fourier component
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Figure 3.5: Smoothing factors of point-Jacobi for the elastic wave equation as a
function of the Fourier component relative to @ for 8 =2, ksh = 7/10 (corresponding
to 20 points per wavelength), r = 2 and n = 0.5.
relative to 0. From (3.31), it is easily found that
0.\ > 6.\
)\153”]}3 @) ~1—2n sin<2x> + sin<2z> , )\g’; @)~1, asr— +oo.
(3.32)
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As evident from (3.32), for large values of the velocity ratio, n can be tuned to
only smooth P-wave modes, but the S-wave eigenvalue remains equal to 1 re-
gardless of @ and the relaxation factor 1. Recalling the identity (3.21) and con-
sidering an initial error decomposed over the P- and S-wave eigenbasis (3.20)

as el (0) = au’ (9) + bl (9), point-Jacobi transforms the error into

el (6)=[S"(0)]" & (6)

for a sufficiently large number of smoothing steps v. Because of the inade-
quate smoothing of the S-wave components for high velocity ratios displayed
by equation (3.32), only the S-wave mode component of &% (8) survives. From
the expression of @l () in (3.20), we readily observe that the horizontal com-
ponent of &7 (8) is effectively damped for 6, =~ 0, and the vertical component
for 6, ~ 0. Thus, the horizontal and vertical components of &7 (@) will show
a rough profile along, respectively, the vertical and horizontal directions (as
in Fig. 3.4).

We showed that point-Jacobi fails to solve for the short-wavelength compo-
nents of the S-wave mode of the error, and this results in smoothing anisotropy.
This is a well-known issue when, for example, dealing with regular grids de-
fined by different horizontal and vertical step-lengths: G = "= = h Z x h,Z.
Operators like anisotropic Helmholtz, (e.g., each of the blocks along the diag-
onal of Hg in (3.4)) are equivalent to the Helmholtz equation defined on an
anisotropic grid, and therefore display the same behaviour. In the literature,
the standard solutions for this type of shortcomings are: (i) semi-coarsening,
(ii) line smoothing. Semi-coarsening, for example along the horizontal di-
rection x, consists of the discretization hierarchy: Gh# "= — G2hahs
G*heh= 5 Semi-coarsening can also be applied simultaneously in mul-
tiple directions [Mulder, 1989]. Even though this is, in principle, a valid ap-
proach, in this paper we stick to the second option of line smoothing.

A line smoother for the elastic wave equation Line smoothing is based on
the idea of treating the unknowns of the problem as a set of ‘block variables’,
each block corresponding to the grid points positioned along a row or column
of the grid G". The operators involved are then reinterpreted as acting on
these variable sets as a block, rather than on individual grid points. This
point of view concerns the way the inverse of an operator is approximated.
For example, when the interaction between variables is completely neglected,
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namely when each blocks corresponds to a single grid-point, it leads to the
approximation of the inverse of a linear system Hg by its diagonal inverse
(Dg)*l, as in point-Jacobi smoothing (3.23). Based on the observations
made about the anisotropy of point-Jacobi, we treat the wavefield variables u
in the following way: the horizontal component u” is considered as a collection
of columns, while the vertical component ©* as a set of rows. The resulting
block-diagonal operator of H’é can then be expressed in stencil notation as

[ 0 0 o |
h
Dy, 5 2 | HE, 5(=1,0)  HE 5(0,00 HE 5(1,0) |,
0 0 0
] - (3.33)
0 H” 5(0,-1) 0
DZZ:/B = 0 H,]zlz, (07 O) 0 )
I 0 H? 50, 1) 0 ]

and D ZZ g = D};x 3 £ 0. Line-Jacobi smoothing is then defined exactly
as in (3.22), by replacing the point-wise diagonal operator with its line-wise
counterpart (3.33). For the staggered-grid scheme, its Fourier symbol reads

2 2

DZL 0) = —k3(1—pB2)+ % sin <92z> + %,

(3.34)

Sh g ) 472 . [0,\* 2

D7, 5(0) = —ks(l—ﬁz)+ﬁ sin (2> +ﬁ'

We should observe that the line-smoothing operator does not diagonalize over
the same basis of gradient and curl operators (3.20), as in the case of the point
smoother, meaning that the P- and S-wave components of the error are mixed.
The components relative to this new eigenbasis are damped according to the
eigenvalues A1 g, A2 g shown in Fig. 3.6. The expressions for these eigenval-
ues and eigenvectors are lengthy and therefore omitted. A comparison of the
smoothing factors in Fig. 3.5¢ and Fig. 3.6¢c demonstrates the effectiveness of
this scheme: indeed, the smoothing factors of point-Jacobi take values close
to 1 on the short wavelength region {|0,|> n/2 or |6,|> n/2} (Fig. 3.5¢),
while it is reasonably below 1 for line-Jacobi (Fig. 3.6¢). For simplicity, we
only have analyzed the behaviour of smoothing by direct discretization of the
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Figure 3.6: Smoothing factors of line-Jacobi for the elastic wave equation as a
function of the Fourier component relative to @ for 8 = 2, ks h = /10 (corresponding
to 20 points per wavelength), r = 2 and n = 0.8.

elastic wave equation on a certain grid level G”. In Table 3.1, we report the
results of our smoothing analysis for point and line-Jacobi and we observe that
line smoothing is also a good choice for the Galerkin coarse-grid discretiza-
tion (3.26).

From a computational point of view, line-Jacobi requires the solution of
the linear system:

Dh 0
h oh_ ¢h ho_ zz, 8
DBV —f, DB_ h )
0 Dzz”g

following the definition (3.33). This system can be decomposed in a series
of independent tri-diagonal 1-D problems — horizontal-wise for D;‘L g or
vertical-wise for D }ZLZ7 g that can be solved efficiently with linear complexity
(see Thomas algorithm in Press et al. [2007]), resulting in a well-suited scheme
for parallel implementation.

Analysis of line-Jacobi for the limit case r — +00  Even though we demon-
strated the effectiveness of line smoothing over the point-wise counterpart for
the staggered-grid scheme, its smoothing quality deteriorates when r — +oo,
showing a behaviour similar to equation (3.32). Indeed, it can be proven that

ATE@) ~1—-2n, AYR@)~1,  forr— +oo. (3.35)

The same analysis, however, shows more favourable properties for Kelly’ finite-
difference scheme (3.9). The eigenvalues related to point-Jacobi, in this case,
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Smoothing factors

Direct Galerkin
r=2 r=3 r=4 r=>5 r=2 r=3 r=4 r=5
h 0.90 0.95 0.97 0.98 h 0.90 0.95 0.97 0.98
2h 0.91 0.96 0.97 0.98 2h 0.82 0.91 0.95 0.97
4h 0.93 0.98 0.99 0.99 4h 0.87 0.94 0.97 0.98
8h 1.00 1.00 1.00 1.00 8h 1.00 1.00 1.00 1.00
16h 0.71 0.77 0.83 0.84 16h 0.93 0.91 0.83 0.94

(a) Point-Jacobi

r=2 r=3 r=4 r=5 r=2 r=3 r=4 r=5
h 084 0.84 0.90 0.93 h 084 0.84 0.90 0.93
2h  0.92 0.92 0.92 0.94 2h  0.76 0.76 0.80 0.83
4h  0.75 0.87 0.93 0.95 4h  0.81 0.81 0.82 0.84
8h  0.80 0.94 0.98 1.00 8h  0.70 0.71 0.79 0.82
16h  0.58 0.66 0.86 0.97 16h  0.56 0.56 0.61 0.74

(b) Line-Jacobi

Table 3.1: Smoothing factors p”, as defined in equation (3.24), for: (a) point-
and (b) line-Jacobi smoothing with a staggered-grid discretization. The comparison
is made for different grid levels, velocity ratios and direct discretization as well as
Galerkin coarse-grid operators (defined by full weighting as restriction and bilinear
interpolation as prolongation operator). For this numerical comparison, we let the
damping factor 8 = 2 and S-wave wavenumber ksh = w/10 (corresponding to 20
points per wavelength on the finest grid). For each of the four experiments, the re-
lazation parameters n were tuned to minimize the smoothing factors for the range of
velocity ratios r € [1, 5] on each grid level h, 2h, 4h, 8h, 16h.
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for r — 400, with eigenvectors
N 0 0\ . (0
0) ~ [sm <2> Cos (2> , COS <2> sin <2> } ,
0) ~ [—cos <91> sin (9'Z> , sin <91> cos <9Z> } .
2 2 2 2

So far, we experience the same difficulties seen for point-Jacobi applied to
the Virieux’s scheme, namely the inefficient smoothing of the S-wave error
modes (this is true whenever 6, or 6, are close to zero). For the same reasons
discussed for the staggered-grid scheme, this produces anisotropic smoothing
that can be eased by a line solver. A computation analogous to (3.35) shows
that, for the line smoother, we have

s, h ~1 _ HJ 9773
Ag(0)~1—n [1icos<2>cos<2>},

meaning that 1 —n < )\‘ig @) <1-n(1-+2/2) and 1 — n(1 + Vv2/2) <
)\S% (@) < 1 — n for short-wavelength components and 1 > 0. Therefore, the
relaxation parameter 77 can be chosen such that the smoothing factor is strictly
less than 1, contrary to what is the case with the staggered-grid scheme. Now,
the smoothing properties of the line relaxation scheme are acceptable, as will
appear in the numerical experiments of Section 3.5.

o>
avisy

o>
wn>

Line relaxation for acoustic regions (x = 0) As a final remark, we analyse
line-Jacobi for the acoustic case p = 0. Here, we will specifically consider
the elastic formulation (3.5), adapted to the acoustic case. We point out that
the smoothing schemes just presented for the staggered-grid finite-difference
scheme cannot effectively handle acoustic regions inside the medium. Indeed,
similarly to (3.35), the eigenvalues of the line-wise iteration operator for the
acoustic case are

AR (0) =1—nt

4

“(%)(%)
[k:l%hQ (1—B2) —4sin (‘929”) 2] !kl%hQ (1—B2) — 4sin (92) 2]

)
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which, for small P-wave wavenumbers kp, reduces to the limit case for S-
waves (3.35). The expression for Kelly’s scheme is fairly similar, where, in the
numerator of the fraction, the arguments 6,/2, 6./2 of the sine function are
replaced by 0., 0 .. Therefore, the line smoother is able to properly reduce the
short-wavelength components of the error. In this paper, we avoid the issue
altogether by considering only strictly elastic media with cs > 0.

Comparison of n-grid and numerical convergence factors

We conclude the section on elastic multigrid by testing the theoretical findings
on the line smoother in combination with a complete multigrid cycle. We
refer to Briggs et al. [2000] for an overview on the different types of multigrid
scheduling strategies. In our numerical study, we will consider the traditional
V- and W-cycles.

As pointed out in Section 3.4.2, it is possible to analytically determine the
convergence factors of multigrid under the simplifications discussed earlier.
The analysis describes the error reduction by multigrid over a limited number
of grid levels on a problem with constant coefficients. On the coarsest grid, the
problem is assumed to be solved exactly. In the literature, usually two or three
levels are considered. In general, the smaller the number of coarse-grid levels,
the more optimistic the estimate. Here, we needed n = 4 levels to address the
complications of the elastic wave equation.

The comparison is made with numerically computed convergence factors.
This requires the spectral radius of

I-M'"HE  M'~(HE) T

where M " is the approximate inverse of H g after a multigrid cycle. This com-
putation can be carried out by simply using the power method. In Table 3.2,
we list the results of the n-grid analysis for the staggered-grid scheme using
a multigrid W-cycle, for different values of the velocity ratio, damping factor
and S-wave wavenumber. We observe that we need damping values g that
are larger than the one used in Erlangga et al. [2006, 2004] for the acoustic
case to obtain a convergent scheme, highlighting a more problematic near-null
subspace of modes, caused by the coarse-grid discretization.

As an example, Table 3.2 compares the results of the n-grid analysis to
the numerically computed convergence factors using a W-cycle. The numerical
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W(1, 1)-cycle convergence factors

B=15 B=15
r=2 r=3 r=4 r=5 r=2 r=3 r=4 r=25
piitr2 051 072 082  0.88 p1tY2 047 068 0.80  0.86
B2 0.50 0.71  0.82  0.88 Lo 046 068 0.80 0.86
B3 050 072 0.82  0.88 w3 046 068 0.80 0.86
B4 050 0.72 091  1.37 La 046 068 0.80 0.86
M num 0.50 0.72 0.84 1.26 M num 0.46 0.68 0.80 0.86
B=2 B=2
r=2 r=3 r=4 r=5 r=2 r=3 r=4 r=5
ptitvz 050 071 0.82 088 pSttY2 047 068 080 0.86
wa 0.50 071 0.82  0.88 pa 046 068 0.80 0.86
w3 0.50 071 0.82  0.88 w3 046 068 0.80 0.86
Ha 0.50 071 0.82  0.88 pa 046 068 0.80  0.86
M num 049 070 082  0.88 Hnum 046 067 080  0.86
(a) ksh=m/5 (b) ksh=m/10

Table 3.2: Comparison of the convergence factors, p,, computed analytically by
n-grid analysis for n=2, n=3, and n =4 as in (3.29) to the numerical con-
vergence factors, [inum, determined by the power method, using the staggered-grid
finite-difference scheme. Here we considered a W-cycle with a single pre-smoothing
and post-smoothing step. The coarse-grid discretization is obtained by Galerkin coars-
ening, with full weighting as restriction and bilinear interpolation as prolongation op-
erator. The relaxation parameters are optimized to minimize the smoothing factors.
The comparison is made for different values of the velocity ratio r, damping factor 3
and wavenumber: (a) ksh =mw/5, (b) ks h = m/10.

results are in good agreement with the theoretical estimates, demonstrating
that local-mode analysis can be used as a guiding tool to choose and optimize
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the different components of multigrid.

Extension of the smoothing scheme to 3-D

The generalization of the proposed line-smoother to 3-D is of paramount im-
portance for seismic imaging applications. As previously noted for the 2-D
case, line solvers can benefit from parallelization. The most obvious general-
ization of line-smoothing to 3-D corresponds to plane-wise smoothing, which
amounts to the solution of many 2-D problems. For large problems, however,
this might result in a very expensive scheme. To ease the computation in
3-D, we foresee the following alternatives: alternating line-smoothing (z, y
and z directions), semi-coarsening, or a combination of both. We might ex-
pect better smoothing factors with plane-smoothing than with 3-D alternating
line-smoothing. These alternatives can be assessed by local-mode analysis,
similar to the 2-D case presented here, and will be the subject of future study.

3.5 Numerical examples

So far, we discussed the performance of different smoothers and their com-
bination with multigrid for the damped elastic wave equation. We validated
our theoretical understanding by local-mode analysis and found that these
results agree with the actual numerical behavior of the scheme. Now that
we have addressed the accuracy and effectiveness of the preconditioner in the
system (3.15), estimated by multigrid, we are ready to study the numerical
performance of the iterative solver applied to (3.15).

In Section 3.3, we studied the effect of preconditioning with the complex-
shifted operator assuming its exact inversion. Clearly, the actual numerical
behaviour of a chosen iterative scheme should account for the inexact inversion
of the complex-shifted wave operator by multigrid. Consequently, the spec-
trum configuration as seen in Figure 3.3 and the convergence of the iterative
scheme will be affected. The purpose of this section is to perform a series of
numerical tests of the preconditioning scheme (3.15) using the actual multigrid
implementation described in Section 3.4.

We start with a brief comment on the specific numerical implementation
of the various multigrid ingredients introduced in Section 3.4.2 as well as the
discrete representation of the problem at hand. We perform two types of
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experiments: one to test the numerical scheme for the homogeneous case and
the other for an arbitrarily heterogeneous model, based on the well-known
benchmark acoustic Marmousi model: the Marmousi2 model [Martin et al.,
2006]. Each experiment is accompanied by a discussion of the results, which
will show a behaviour — including shortcomings — similar to the acoustic
shifted-Laplacian multigrid preconditioning.

3.5.1 Additional settings and multigrid implementation

In the following numerical experiments, we run the tests for the finite-difference
schemes of Kelly and Virieux, discussed in Section 3.2. The choice of the dis-
cretization of the computational model is made such that the quantity kg h,
where k§** is the maximum wavenumber, is kept constant. This condition is
equivalent to a discretization that keeps the number of points per minimum
wavelength constant. This means that for a given frequency, the size of the
computational grid is adjusted accordingly.

As for boundary conditions, we set up sponge layers to mimic absorption
at the edges of the model. Of course, perfectly matched layers can be also
considered [Berenger, 1994]. Theoretical and numerical studies on the effect
of this type of boundary conditions for acoustic multigrid can be found in Reps
and Vanroose [2012] and Pan and Abubakar [2013].

For the multigrid implementation, we stick to traditional choices for the
various components. For the coarse-grid operator we can consider: (i) direct
discretization of the wave operator on the corresponding grid level, or (ii)
Galerkin condition (3.26). Local-mode analysis suggests that (i) is a more
robust approach. For restriction and prolongation operators, we use, respec-
tively, full weighting and bilinear interpolation. In stencil notation,

a 1

1
R 5 1|4 1
1

1 1
P h

2 ) 2h 4 2

1 1

[I>

h 16

N = DN
DN o~ DN
[

which symbolize the action
(RQ};L uh)2z‘,2j = (Rz},ll * u) 904,
defined in (3.6), and

h . 2h h h. 2h
(Pop u™ )ij = (Pop' * Iy u™") iy,
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where [ 2}? 12" is the injection of u?" on the grid G", determined by the values
of u?" on G 2" C G and vanishing on every other grid point. Operator depen-
dent grid transfer restrictions and prolongations, as studied by de Zeeuw [1990]
and extended by Erlangga et al. [2006] to complex matrices, are also an option.
As of multigrid grid-level scheduling cycles, we will consider V(v 1, v2)-cycles,
for computational efficiency. The number of pre and post-smoothing steps
will be set to v1 = v =2. The relaxation parameters n in (3.22), for the
line-Jacobi smoother, are optimized for the range of velocity ratios displayed
by the medium, and for all the wavenumbers up to the maximum value of the
model. We should point out that the chosen amount of damping, 3, is based
on numerical investigations rather than rigorous theoretical analysis. As dis-
cussed in Section 3.3, large values of § lead to better multigrid convergence
of the preconditioner while small values generate a more favourable spectrum
for the preconditioned system if that system could be solved exactly.

Lastly, a number of options is available for the outer iterative method.
For non-symmetric problems, we could consider any Krylov subspace method
such as GMRES, Bi-CGSTAB or IDR(s). In our experience, Bi-CGSTAB
performs the best for the problem at hand and will be the choice for the
following numerical study.

3.5.2 The homogenous case

We start with testing how the preconditioning scheme of Section 3.3 be-
haves in the homogeneous case. The computational domain is the 2-D square
[—1/2,1/2]? and we solve for the wavefield generated by a point source located
at the centre (0,0) of the domain. The type of source considered is a vertical
force. We study how the number of iteration increases as a function of the
frequency. For each of the experiments, the quantity kg h will be kept fixed at
a value of /5 and we vary the wavenumber kg. Therefore, the grid spacing h
is adjusted accordingly, as mentioned before. Also, different velocity ratios r
and damping factors 3 are considered in the analysis.

Results

Table 3.3 lists the results, which highlight a reasonable convergence rate for
the considered frequency range. As was the case with the scalar Helmholtz
equation, we found experimentally that the required number of iterations in-
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creases linearly with the wavenumber kg. Since the multigrid convergence
factors get worse for increasing velocity ratio r, as discussed in Section 3.4,
the iterative method will perform worse for high values of r.

3.5.3 A highly heterogeneous problem: the elastic Marmousi model

Now that we have validated the scheme for the homogeneous problem, we
test its behaviour for the heterogeneous case. We will adopt an elastic model
based on the well-known Marmousi model, originally designed by the Institut
Francais du Pétrole. This acoustic version has been extended to the elastic case
by Martin et al. [2006]. Here, we will only consider the top-central portion
of the full model. We discard the water layer to avoid the complications
discussed in Section 3.4.2 that will affect the performance of multigrid for the
staggered-grid scheme. The corresponding elastic parameters are depicted in
Fig. 3.7.For this model, the maximum value of the velocity ratio r is about 5.2.
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Figure 3.7: Subset of the elastic Marmousi2 model: (a) P-wave velocity cp, (b)
S-wave velocity cs and (c) density p, used in the numerical experiments in Section 8.5.
The water column on the top of the model has been replaced by an elastic layer.

In the numerical experiments, we are going to model the frequencies 1.45 Hz,
2.9Hz, 5.8 Hz and 11.6 Hz with different grid spacings. Figure 3.8 shows the
real part of the vertical particle displacement generated by a point source.
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Results for the homogeneous problem: iteration count

r=2

ks =100.5 kg=181.0 kg=2614 kg=2341.8 kg=4222 kg=>502.7

B=15 106 159 214 268 324 382
B=2 139 226 312 402 443 501

r=23

ks =1005 kg=181.0 kg=2614 kg=23418 kg=4222 kg=>502.7

B=15 121 203 286 391 467 562
Bs=2 140 212 285 352 446 522

(a) Virieuz’s scheme

r=2

ks =100.5 kg=181.0 kg=261.4 kg=2341.8 kg=4222 kg=>5027

B=15 108 150 204 256 327 375
B=2 135 208 289 325 430 486

r=3

kg =100.5 kg=181.0 kg=2614 kg=2341.8 kg=4222 kg=>5027

B=15 108 174 240 299 392 467
B=2 124 188 245 320 391 480

(b) Kelly’s scheme

Table 3.3: Numerical experiment for a homogeneous model (square computational
domain, vertical delta source located at the center). We fized ksh = w/5. We list
the iterations required to decrease the residual norm by 6 decades. The selected values
of ks increase linearly and h varies along. We employ a V(2,2) cycle, where each
of the components are optimized according to r. The experiments consistently show
a linear growth of the iterations with respect to kg. As the convergence factors decay
for increasing r, more iterations are required. A comparison is made between the
performance of the (a) Virieuz’s and (b) Kelly’s scheme.

Results

We tested the convergence behaviour of the iterative solver for different fre-
quencies and values of kg'®h. The numerical experiments performed show
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Figure 3.8: Real part of the vertical component of the wavefield propagating through
the Marmousi2 model (Fig. 3.7), for the frequencies (a) 1.45Hz, (b) 2.9Hz, (¢) 5.8 Hz
and (d) 11.6 Hz, generated by a point source.

good convergence properties. The convergence history of Bi-CGSTAB for the
staggered-grid scheme is reported in Fig. 3.9. However, the number of itera-
tions grows linearly with increasing frequency, as was the case for the acoustic
wave equation.

Table 3.4 summarizes the numerical experiments. A comparison between
the performance of Virieux’s and Kelly’s scheme is included. As highlighted
by the local-mode analysis in Section 3.4.2, the multigrid performance for
Kelly’s scheme are better than for Virieux’s. However, this comes at the cost
of inferior accuracy (Fig. 3.2).

3.6 Conclusions

This paper comprises a first assessment of the applicability of the precon-
ditioning technique by Laplacian shifting, using multigrid, applied to the
time-harmonic elastic wave equation. In order to substantiate this analysis,
we made use of the classical theoretical tool of local-mode analysis.
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Figure 3.9: Convergence history of the iterative solver applied to the Marmousi2
problem for a number of frequencies and wavenumbers. Here, the wave equation is
discretized by the staggered-grid scheme. The discretization for the various frequen-
cies is chosen in such a way that the quantities (a) k§** h = w/10 (equivalent to a
discretization of 20 points per minimum wavelength) and (b) k§** h = /5 (10 points
per minimum wavelength) remain constant. In other words, the size of the model is
adjusted to the relative frequency as in Table 3.4. The coarse-grid operator is obtained
by Galerkin coarsening. We use the damping factor § = 2 in each experiment. The
multigrid cycle is V(2, 2).

By means of local-mode analysis, we were able to point out the shortcom-
ings of the natural choice of point-Jacobi as a smoother, otherwise effective
in the acoustic case. This is due to a defective solution of the S-wave modes
in the case of large P-to-S velocity ratios. In terms of particle displacement
wavefield, this results in smoothing anisotropy. We therefore introduced and
validated a suitable line-wise variant of the Jacobi scheme.

In the present experience, different numerical discretization schemes of the
wave equation might lead to a different multigrid performance, as it was the
case with Kelly’s and Virieux’s scheme. For Virieux’s scheme, in particular,
handling acoustic subsets of the model is problematic and should be dealt with
in a special way. This leaves the question on how to find the optimal trade-off
between accuracy and efficiency.

The results obtained on highly heterogeneous models suggest that the
method provides reasonable convergence, in line with what was obtained for
the acoustic case. With the elementary multigrid component used in this pa-
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Results for the Marmousi2 model: iteration count

f (Hz) kga*h =m/10 kZ**h=m/5
Size Virieux  Kelly Size Virieux  Kelly
1.45 385 x 593 118 102 193 x 297 137 98
2.9 577 x 993 214 165 289 x 497 226 160
5.8 961 x 1793 362 291 481 x 897 426 297
11.6 1665 x 3329 814 694 833 x 1665 948 647

Table 3.4: Summary of the results of the numerical experiments on the Marmousi2
model. We compare Virieur’s and Kelly’s finite-difference schemes. For the rea-
sons discussed in Section 3.4.2, Kelly’s discretization leads to a slightly better perfor-
mance, even though the accuracy of the scheme is worse than the staggered-grid’s (see
Fig. 3.2). For each of the finite-difference schemes, we choose the Galerkin coarse-grid
operator, 8 =2 as damping factor, and a V(2, 2) multigrid cycle.

per, we observed that the damping factors should have higher values than in
the acoustic case, highlighting a more problematic near-null kernel. The de-
flation techniques discussed by Erlangga and Nabben [2008] and Sheik et al.
[2013] might be especially helpful in the elastic case.

The elastic case suffers from the same shortcomings as the acoustic shifted-
Laplacian multigrid, namely the linear growth of the number of iterations for
increasing frequency at fixed number of points per wavelength. As noted in
the introduction, this means that frequency-domain imaging methods can only
obtain the same computational complexity as their time-domain counterparts,
from a theoretical point of view. In practice, the constants involved in the
complexity analysis play an important role for the actual performance and
the iterative solver here discussed might be a efficient alternative to the time
domain, as motivated by Knibbe et al. [2014] for acoustic imaging. While in
2-D a direct LU decomposition with nested dissection will be the preferred
choice, if many shots have to be computed in the same model, in 3-D this
is no longer the case, and the present study provides guidelines as to how to
proceed.






A non-linear full-wavefield inversion
method for ultrasound imaging
in non-destructive testing’

Abstract

Many of the imaging techniques for non-destructive inspection of oil and gas
pipe lines are based on a linearized relationship between material properties
and the wavefield that propagates inside the medium. This simplification does
not take into account multiple scattering nor mode-conversion, and makes the
imaging of eventual defects a challenging task. This is especially true for verti-
cally aligned defects, such as stress-corrosion cracks. Here, we treat imaging as
a non-linear inverse problem, which honors the correct physics of the problem,
by adopting a data-fitting approach. This, in turn, enhances the resolution of
the inverted image compared to the linearized approach. Its classic implemen-
tation, however, results in a non-linear optimization problem with many local
minima that hamper convergence to the correct inversion result. Here, we
present an alternating updating scheme where properties and wavefields are
both considered independent unknowns of the problem. This enlargement of
the model parameter space eases the problem of local minima. We validate the
inwversion algorithm on synthetic data and show that multiple reflections are

This chapter is the reproduction of a paper submitted for publication (2017)
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fundamental for the recovery of vertical cracks. We also present some results
on measured data, demonstrating the capability of the method in a realistic
setting.

4.1 Linear vs non-linear imaging in non-destructive testing

Ultrasound non-destructive inspection is a well-established procedure to assess
the integrity of oil and gas pipe lines. For example, tensile stress as well as the
chemical environment may create cracks in steel pipes that ultimately cause
mechanical failure. During inspection, a transducer positioned at the external
surface of the pipe generates ultrasound elastic waves and their scattered field
is measured. The objective is to locate the spatial distribution of material
defects from their particular signature recorded in the data.

Current industry-standard imaging methodologies are based on the lin-
earization of the relationship between the excited wavefield and the underlying
medium properties. Notable examples are the total focusing method [Felice
et al., 2015], the inverse wavefield extrapolation [Portzgen et al., 2007, 2008],
which employs the same principles as the well-known migration method in seis-
mic imaging, and the classic Born inversion (see, e.g., Ozmen et al. [2015]).

To illustrate the limitations of the linear assumption, we follow the simpli-
fied ray-based analysis of wave propagation, which allows a description of the
ray-paths in terms of ‘orders of scattering’, each order referring to the number
of times the ray has been reflected within the medium. Linearization then
entails that only single reflection events in the data can be predicted by this
class of methods. Multiple scattering—consisting in the interaction between
different scatterers as well as between different parts of the same scatterer—
has to be treated as noise. Furthermore, the P- and S-wave mode conversion
is not correctly handled. This makes the imaging of vertical cracks, whose
effect is mainly visible in data from multiple reflections, a challenging problem
(see Fig. 4.1).

The goal of this paper is to present an inversion scheme capable of ac-
counting for all the non-linear scattering effects of wave propagation. For this
purpose, we will adopt a method originally presented in Rizzuti and Gisolf
[2017] for seismic imaging applications. We will demonstrate the advantages
of non-linear imaging on a synthetic model with vertical cracks and confirm
its capability on data measured in the laboratory.
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Figure 4.1: Schematic representation of non-destructive testing. We consider the
cross-section D of a test sample, delimited by exterior and interior surfaces 0 Deyy and
0Dy, with some defects (e.g. cracks). On the external surface ODeyxt, a transducer
(denoted by a red star) excites elastic waves. Here, the data is also measured (re-
cetvers denoted by green triangles). In red, we highlight different scattering effects, as
reflections due to the walls and the multiple bounces between cracks. When the wave-
front hits the tips of a crack, we observe diffraction effects (represented by concentric
circles).

4.2 Assumptions

Ultrasound imaging for crack detection has several advantages over, for in-
stance, seismic imaging. For one, there are no difficulties in determining a
kinematically accurate model for the incident wavefield (background model),
as it consists in homogeneous steel. The cracks can be represented as thin void
regions inside the computational domain. Because they are usually sparsely
distributed, a sparsity-enhancing regularization can help. Furthermore, we
can limit the degrees of freedom down to a single-parameter inversion per grid
point instead of the three elastic properties: bulk modulus K, shear modu-
lus p and density p. The source wavelet can be estimated with a separate
experiment conducted in a section of the pipe devoid of defects. Lastly, the
multiple reflections between the pipe walls provide abundant illumination of
the scatterers.

Contrary to seismic imaging, we must deal with the additional challenge of
simulating two boundaries—to be treated as air-solid or fluid-solid interfaces.
Throughout the paper, we will assume the shape of the walls to be known.
The problem of determining the geometry of the domain is left for future work.
Also, given the fact that cracks behave as void regions inside the medium, the
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inversion has to deal with scatterers with extreme contrasts.

4.3 Full-waveform inversion

We have adapted a technique known as ‘full-waveform’ inversion, introduced
in the seismic community by Tarantola and Valette [1982a] and Lailly [1983],
which attempts to the model parameters by fitting the measured to the mod-
eled data in a least-squares sense. Imaging then becomes an optimization
problem on a data-fitting cost functional constrained by the wave equation.

In the following, we will indicate by m a pre-defined subset of the elastic
properties K, u, and p, as spatially-dependent functions defined on a domain
D with known geometry. For example, for each of the points corresponding
to a crack, we have the values K =0, y =0, and p = 0. We are looking for a
model m that minimizes the least-squares misfit functional

J(m) = ||d — Mg u(m) |, (4.1)

where d is the acquired data and u is the modeled elastic wavefield, typically
described by the particle velocity, as a function of the known and unknown
medium parameters (the latter denoted by m). The operator Il samples
the values of u (or a linearly related quantity) at the receiver locations R.
The functional (4.1) should be complemented by a regularization procedure
to avoid unreasonable solutions, for example by adding to (4.1) a term that
measures the least-squares norm of m or its derivatives.

In equation (4.1), we made explicit the non-linear dependence of the wave-
field with respect to the underlying model. This link is provided by the
isotropic elastic wave equation,

H[m]u =f, (4.2)

equipped with suitable boundary conditions. We denote the source term by f.
The linear system of equations is summarized by H[m], highlighting the fact
that the operator itself depends on the medium properties m.

The operator, H[m], might represent the wave equation in the time or in
the frequency domain. For 2-D inversion work, as considered in this paper,
the frequency domain is particularly attractive because of the availability of
efficient direct solvers for (4.2) and only a few frequency data points are needed
to obtain a satisfactory result [Plessix, 2017].
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A review of full-waveform inversion and the role it plays in seismic imaging
can be found in Virieux and Operto [2009]. This method has received con-
siderable attention over the last 30-40 years for various reasons. For starters,
any feature present in the input data is treated as a genuine effect governed by
the wave equation and can contribute to refine the output model. Conversely,
when a linearized modeling is adopted, a great deal of effort must be devoted
to remove secondary non-linear scattering from the data to avoid false images
and artifacts. In addition, the method can handle an arbitrary acquisition
configuration of sources and receivers. Another advantage is the high resolu-
tion that can in principle be achieved for the final image if local minima can
be avoided during the optimization [Simonetti, 2006]. In general, this requires
a starting model that is kinematically correct within half a wavelength. Oth-
erwise, manual intervention and more advanced methods are required. For
our current problem, this so-called background model is already known.

The minimization of (4.1) is generally handled by local search techniques,
due to the large number of unknowns involved in the optimization, especially
for 3-D problems. The methods of choice are therefore gradient-based and
may be accelerated by the use of the Hessian. The iterations involve the com-
putation of the modeled data and the gradient and require numerous solutions
of the wave equation for different parameters, resulting in a computationally
heavy scheme. Apart from the computational aspect, the local minima caused
by the non-linearity of the functional (4.1) are a serious problem in seismic
imaging, where a large part of the data are generated by reflections. The is-
sue with local minima is less severe for transmission data, but even then, the
starting model needs to be correct within half a wavelength. In general, these
limitations carry over to applications for ultrasound imaging, although there,
it may be less difficult to find a good starting model.

Different ideas have been proposed to address the issues resulting from the
non-linearity of the functional (4.1). This includes continuation techniques,
consisting for example in the inversion of increasing the frequency content data
from lower to higher [Bunks et al., 1995] or layer stripping and data window-
ing by inverting short-to-long offset data [Shipp and Singh, 2002]. Other at-
tempts consider alternative data domains [Shin and Cha, 2008, 2009; Bozdag et
al., 2011] and/or alternative objective functionals [Warner and Guasch, 2014;
Métivier et al., 2016; Bharadwaj et al., 2016] that are less prone to spurious
local minima.

In this paper, we explore yet another route. In Rizzuti and Gisolf [2017],
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we describe a 2-D inversion method based on a model space extension. More
precisely, the set of unknowns not only consists of the elastic parameters m
but also the wavefields u. This means that the constraint given by the wave
equation (4.2) is not enforced explicitly. The philosophy behind this procedure
is to ease the non-linearity by adding extra dimensions to the problem and
circumvent any local minima. A similar idea has been followed in van den
Berg and Kleinman [1997] and van Leeuwen and Herrmann [2013]. Due to
this characteristic, we often refer to our method as full-‘wavefield’ inversion.
It will be discussed in depth in the next section.

4.4 Alternating inversion scheme

In this section, we summarize the full-wavefield inversion algorithm recently
studied in Rizzuti and Gisolf [2017]. A 1.5-D version of the algorithm, based
on the assumption of a locally layered medium, is routinely applied on field
data [Gisolf et al., 2014; Beller et al., 2015]. The extension to 2-D has been
explored in Haffinger et al. [2013] for the acoustic case. In Rizzuti and Gisolf
[2017], we addressed the 2-D elastic case, object of this paper.

Section 4.4.1 starts with the scattering integral equation that represents the
foundation of the alternating update inversion strategy. The actual algorithm
is described in Section 4.4.2. The first step of the inversion is represented
by the Born approximation, the details of which are found in Section 4.4.3.
Note that this approximation differs from the traditional ‘single-scattering’
linearization. In Section 4.4.4, we discuss the regularization strategies and
constraints. Finally, in Section 4.4.5, we examine aspects of the numerical
implementation pertaining to ultrasound imaging.

4.4.1 Scattering integral equation

The method hinges on a Lippman-Schwinger integral reformulation of the
wave equation (4.2). We consider a domain D C R? delimited by two air-
solid or fluid-solid interfaces ODext, ODint, as in Fig. 4.1. We first fix the
(homogeneous) background

my, = (K4, i, pb),

corresponding to the properties of steel. The wave propagation in the back-
ground medium includes the reflections on the interfaces, encoded as boundary



4.4 Alternating inversion scheme 103

conditions. Indeed, Green’s operator
Gy = (Hmp)) ™, (4.3)

which represents the impulse response of the background model, accounts for
the multiple bounces between the external and internal boundaries 0Dyt and
ODin;. Likewise, the incident field u'™ is the wavefield excited by the same
source f as u, propagating and reflecting through D. These quantities are
determined by the a priori knowledge of D and its geometry.

The integral equation reads
u— G, W[x]u = u™, vx € D. (4.4)

Note that, since we favor an operator-based description of this equation, the
spatial dependence u = u(x) is implicit in (4.4). The contrast operator W|x]
is defined by W[x|] = —H[my, - x|, where the variable x collects the individ-
ual contrasts with respect to the elastic parameters: x = (XK, Xu: Xp)- Its
components are defined by

K—Kb M — Hb P — Pb
= —— X,u = ) Xp = . (45)

XK
Ky, s Pb

In the following, we will assume that x vanishes outside a bounded domain
Diny € D. The ultimate goal of the inversion is to determine the contrast
functions x on Djy,y.

4.4.2 Algorithm

The scattering integral in equation (4.4) is defined for every point x € D. We
specify two kinds of domains to which this equation can be restricted:

(i) the data domain R C 0Deyt, containing the position of the receivers,
and
(ii) the contrast domain Dj,,, where the inversion unknowns will be esti-

mated.

The restriction or sampling of the wavefield to R enables the comparison with
the recorded data and leads to the data equation

Ad = Gr Wx]u, (4.47)
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where

Gr=1IRr Gy (4.6)
is the ‘domain-to-receiver’ Green’s operator Gr = Gr(x,,x) defined for each
X, € R and x € D. The scattering data is given by Ad = d — IIgu™®,
with the recorded data d and the incident field ITz u'™, measured through the
data restriction operator IIgz. The restriction to Dj,y, instead, generates the
domain equation

u— Gy Wixju= ui"e, Vx € Dipy. (4.4ii)

The inversion algorithm proposed here consists in a sequence (x,,, u,) of
estimated contrasts and wavefields. At every iteration n, given the previously
estimated pairs (xg, o), - (Xy, Un), We produce:

(i) an update X, .1, by setting u = u, in (4.4i) and optimizing the fit
between the left- and right-hand side of the data equation (4.4¢). This
is achieved through minimization of the functional

Tr(x) = | Ad = Gr Wix] u, |°. (4.14)

To deal with the ill-posedness of this functional and the presence of noise
in the data, we modify Jr by adding or multiplying a regularization
term as in (4.1¢") or (4.1i"”) (see the next Section 4.4.4). Typically, we
will employ a non-linear conjugate gradient scheme for the minimization
of (4.14);

(%) an update u,1, by setting x = x,,,1 in (4.47) and minimizing
Ip(a) = || 0™ —u+ G, Wix,41]ull. (4.147)

We will resort to a Krylov subspace method for this step [Kleinman and
van den Berg, 1991].

We remark that each of these two steps corresponds to convex problems, and
are amenable to gradient-type minimization.

It is convenient to focus the computational effort on the optimization of
the data equation (4.17), rather than (4.173). The reason lies in the need for
the evaluation of G, when the gradient of the functional (4.14) is computed,
which is achieved by solving the wave equation in the background medium and
requires the relatively costly inversion of the linear system obtained after the
discretization of equation (4.3). The optimization of (4.17), instead, is cheaper
and relatively easy to parallelize. We will discuss this further in Section 4.4.5.
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Figure 4.2: A selection of ray-paths undergoing reflections due to the presence of
walls and/or an internal scatterer. The linearized modeling associated with Green’s
operator (4.3) includes the reflections at the boundaries of the domain but only single
scattering due to internal scatterers. In this picture, the blue ray-path is the only
admissible in the Born approzimation. The violet and green paths interacts at least
two times with the scatterer. Note that the blue path is not modeled under the more
classical ‘single scattering’ Born approximation.

4.4.3 The Born approximation

When the inversion sequence is started with x, = 0 and ug = u'™®, as will be
the case, problem (4.17) corresponds to a linearized inversion. In a more clas-
sic setting, the Born inversion is associated with single-scattering inversion,
meaning that a match is sought between the measured data and the synthetics
produced by a single reflection against the scatterer. With the term ‘scatterer’,
we include the front-wall and the back-wall. In this paper, however, multi-
ple reflections between the walls 0Deyt and dDj,; are automatically encoded,
by definition, in Green’s operator (4.3). In terms of ray-paths, the Born ap-
proximation will account for any event consisting of: a finite number of wall
bounces, a single reflection due to an internal scatterer, and the remaining
coda of wall bounces. In Fig. 4.2, we display some of the ray-paths admitted
in this specific linear assumption.

4.4.4 Regularization and constraints

As previously stated, we need regularization to resolve the ill-posedness of
the inversion problem. Instead of the well-known additive schemes that adds
a penalty term to the functional (4.1¢), we make use of the multiplicative
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regularization originally proposed by van den Berg et al. [2003].

We seek to multiply the data functional (4.14) by the following factor:

2., 52

Bex) = o [ INXE
b Jp IVX[*+d

where ¥ is a given contrast, which ideally represents a certain estimate of the
solution contrasts (to be determined throughout the inversion). The operator
V provides the gradient of x, while § is the so-called steering parameter.
Vp is the measure of the set D. The function (|Vx|>+d2)~!, which appears
n (4.7), acts as a regularization weight that promotes the same structure of
x on x: the cost (4.7) will favor models that are flat in the neighborhood
of the points where x is flat (Vx ~ 0), and irregular wherever x is not flat.
This mechanism will enforce ‘blockiness’ whenever ¥ is a blocky model. This
behavior is modulated by the steering parameter: smaller values of § will
enhance the blockiness of the retrieved model.

(4.7)

The optimization problem corresponding to the data functional (4.17) will
be now adjusted by minimizing an adaptive functional. This means that, given
an estimate x,, obtained at the previous iterative step n, the update x,, | will
be based on the functional

Tk 2 Xn) = Tr(X) - BOGXn)- (4.14)

The functional (4.1:") retains convexity for a judicious choice of ¢ (it should
not be too small, see van den Berg et al. [2003]). Note that, for a converg-
ing sequence X, B(Xni1:Xn) — 1, so that a decrease of the value of J5*
corresponds to a decrease for the original data functional Jg.

A multiplicative scheme such as (4.17) has the advantage over classic meth-
ods that it avoids the non-trivial choice of the weight required for additive
regularizations. Conversely, the role of the steering parameter § is only to
convey some a priori knowledge about the regularity of the solution.

The same concept expressed by the blocky regularization can be exploited
to design a quadratic functional that promotes sparse models. The sparsity-
enhancing factor reads:

[x[*+?
VD D IXPP+e?
Analogously to (4.7), the weight function (|x|?+¢%)~! will promote models x

whose values are close to zero where ¥ = 0. If the inversion process leads to a
sparse solution, the factor (4.8) will help in enforcing the sparseness of x.

S x) = (4.8)
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Finally, both schemes B and & may be combined into a functional

TRE0GXn) = Tr(X) - (wB B(X: Xn) + ws S(X: Xn)): (4.14")

where the weights wg and wg satisfy wg + wg = 1.

Regularization can be thought as a ‘soft’ constraint for the inverse prob-
lem, in that it effectively reduces the size of the search space by steering the
iterative process towards a smaller set of desirable solutions. At the same
time, we might also exploit the a priori assumptions described in Section 4.2
to reduce the number of elastic parameters to be inverted, which also reduces
the computational burden of the method. Since we assume that cracks are
the only scatterers present inside the medium, the contrast values are either
X. = 0 or x. = —1 for any elastic parameter (however, we will not force the
contrast values to be either 0 or —1.). We therefore impose the following
equality constraints:

Xp = XKs Xp = XK-

The inequality —1 < xx < 0 can also complement the set of constraints.

4.4.5 Numerical implementation and efficiency

For the actual implementation of the method, we must first select a suitable
discretization scheme of the wave equation (4.2). All the operators defined
in (4.1¢) and (4.1%) are subject to this choice. After that, the application of
algorithm of Section 4.4.2 is straightforward.

A convenient choice for the discretization of the wave equation is the finite-
element method (see, for example, Min et al. [2003]). The elements of the
discretized domain are squared cells where the physical properties are set to
be constant. The wavefields are represented by Q; polynomials [Quarteroni,
2010] within each square and are uniquely determined by the value assumed
on the corners of the element (Fig. 4.3). To improve the accuracy of the
method, we replace the consistent mass term of the resulting linear operator
with a linear combination of the lump and consistent mass matrices. The
linear weights are then chosen to minimize the numerical dispersion of the
method.

As argued in Min et al. [2003], free-surface boundary conditions are auto-
matically imposed on the boundary of each region where the elastic parame-
ters K, u, and p are set to zero. This feature is convenient in that not only
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Figure 4.3: Schematic representation of a single finite element of the discretized
domain, represented by a squared cell. The elastic properties K, u, p (bulk modulus,
shear modulus and density, respectively) are defined to be constant inside the cell.
The two components of the particle displacement u = (ug,u,) (denoted by triangle
pointing, respectively, right and down) are both defined on the corners of the cell.

front-wall 0Deyt and back-wall 0Dj,y can be implemented by simply setting
proper values for the parameters, but also cracks (whose boundaries are then
effectively treated as free surfaces).

Classical direct methods based on factorization, such as the LU decom-
position with nested dissection ordering [George and Liu, 1981], are readily
available for 2-D problems. A key aspect of our methodology is the fact that
the background does not change throughout the inversion and the LU factor-
ization is only computed once. This is the implicit form of Green’s operator
Gp. In contrast, traditional full-waveform inversion requires the solution of the
wave equation with respect to a changing medium and the factorization must
be recomputed each time. The method also requires the pre-computation of
the domain-to-receiver Green’s operator (4.6) and the incident fields, as well
as the storage of the estimated wavefields u.

4.5 Results

In this section, we demonstrate the capabilities of the alternating inversion
algorithm. We set up a synthetic experiment to illustrate the difficulties with
the linear imaging of vertical cracks as well as the capability of the non-linear
method. We also present an application to measured data and perform imaging
of a steel plate with three drill holes. This result represents a preliminary but
promising study on the imaging of more complex scatterers (as cracks).
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Figure 4.4: Synthetic model for the experiment described in Section 4.5.1. This
picture represents the contrast model for the bulk modulus xx. The internal grid
points where xx = 0 correspond to the steel background, while xx = —1 corresponds
to the crack position, or a void region.

4.5.1 Synthetic crack experiment

This experiment tests the method on a synthetic crack model, shown in
Fig. 4.4. The computational domain measures 1cm by 4 cm and consists of
two vertical cracks embedded in a steel plate with a flat front-wall 9Dgy; and
a sinusoidal back-wall 0Dj,;. The shapes of these interfaces are known. The
shape of the back-wall is not representative of a realistic pipe, but it intends
to illustrate the flexibility of the modeling engine. The background model
and its boundaries are given and correspond to homogeneous steel properties:
Ky, = 1.66 x 10! Pa, py, = 8.29 x 10'° Pa, p, = 7850kg m~3 (equivalently, the
P- and S-wave velocities are cpj, = 5940 ms~ csp = 3250msf1). The cracks
are simulated by setting a void region in the cells that correspond to the crack
positions (K =0, u =0, p=0).

We model the synthetics according to 20 line sources evenly distributed
along the front-wall. Each source is applied as a normal stress boundary con-
dition exerted on 0Dext. The receiver configuration consists of 40 stations on
0Deyt that record the vertical particle velocity. We invert a total of 25 fre-
quencies, equally sampled between 1 MHz and 3 MHz. Note that the shortest
propagation wavelength roughly equals 1 mm, while the crack width is 0.2 mm.
We also add some artificial Gaussian white noise to ease our inverse crime.

Figure 4.5 depicts the inversion results. We draw an interesting comparison
between different stages of the alternating inversion method, corresponding to
the Born approximation (Fig. 4.5a), and the results after 1 and 29 wavefield
updates (respectively Fig. 4.5b and Fig. 4.5¢). The linear assumption underly-
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(c) Inverted xi after 29 wavefield updates

Figure 4.5: Results of the experiment presented in Section 4.5.1 at different stages
of the alternating inversion algorithm. Fig. 4.5a corresponds to the Born approxi-
mation, for which only the tips of the cracks are faintly recovered. After 1 wavefield
update, the inverted contrast model of Fig. 4.5a already improves significantly, both in
amplitude and shape. The final result in Fig. 4.5¢, after 29 wavefield updates, displays
a satisfactory inversion of the two cracks.
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ing the result of Fig. 4.5a allows only for a faint identification of the tips of the
two cracks, since we lack enough illumination for the sides of these scatterers.
Once the interplay between the two cracks and the walls are gradually taken
into consideration, the inversion starts to build up the correct amplitude and
shape of the cracks.

4.5.2 Imaging from laboratory measurements

This experiment consists in the inversion of data measured in the laboratory.
The equipment and the test sample are shown in Fig. 4.6. The sample is
a 10.2mm thick steel block in which three holes have been drilled side-wise
each with a diameter of approximately 0.5 mm. The relative distance between
the first and second hole, and the second and the third hole is, respectively,
1mm and 1.5 mm.

The linear array probe consists of 64 transducer elements. Fig. 4.7 dis-
plays a raw shot gather. As shown in the spectral analysis of Fig. 4.8, the
effective frequency bandwidth ranges from 1.5 MHz to 3.5 MHz. The nominal
peak frequency of the probe is 2 MHz. At the highest frequency, the shortest
propagation wavelength is around 1mm (to be compared with the drill hole
size). We assume that the transducers act as normal stress at the front wall
and record the vertical particle velocities. For the inversion, we pick a small
subset of the data pertaining to just 6 frequencies, equally sampled within the
bandwidth 1-3 MHz.

We remark that, in principle, data with higher frequency content are rou-
tinely recorded and utilized by many linear imaging algorithms. However,
full-waveform inversion is a computer-intensive procedure, and the time and
memory complexity increases with frequency (since the discretization of the
computational domain is determined by sampling heuristics for the minimum
propagating wavelength). This is partially compensated by the higher reso-
lution for the final output. The choice of the highest frequency is therefore
limited by the available computational resources.

Some pre-processing steps are necessary to correct for the idealized assump-
tions behind the acquired data. In doing so, we adopt an approach which is
pragmatic in nature, yet effective:

e in our initial comparison with synthetic data, we observed a large mis-
match for the S-wave direct arrivals, probably due to the gel coupling
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(a) Linear array probe leaning on a steel block (view from the top)

(b) Steel block used for the experiment (view from the side)

Figure 4.6: Laboratory setup for the experiment in Section 4.5.2. In Fig. 4.6a, we
show how the measurements are taken with a linear probe array. Note that some
coupling gel has been applied on top of the piece. The red arrow indicates the actual
test sample in examination. In Fig. 4.6b, the block is viewed from the side, revealing
three drill holes of 0.5 mm diameter. The distance between the first and second hole
is 1 mm, while the distance between the second and third hole is 1.5 mm.

(a thin film of gel is applied to the block before taking the recordings).
We resolve this issue by selectively removing the direct arrivals from
the modeled data. This can be easily achieved with a modeling exercise
where the back-wall is replaced by an absorbing boundary;

e another complication is given by the 2-D assumption underlying the
modeled data, which assumes infinite line sources. In practice, each ele-
ment of the probe has a finite length (and a finite width!), requiring some
form of correction to the data. By modeling finite-length line sources, we
observed a transition from cilindrical spreading at early times to geomet-
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Figure 4.7: FEzample of the raw measurements taken for the experiment in Sec-
tion 4.5.2. Surface waves and the multiple reflections are clearly discernible in the
picture. We highlight the reflection event due to the three-hole scatterer with a red
arrow, and the first reflection against the back-wall with a blue arrow.

rical spreading later on. The transition time is determined experimen-
tally, after which a classical cilindrical /geometric time conversion can be
applied. Note that this approach is somehow vitiated by an underlying
acoustic assumption.

Another pre-processing adjustment is needed to determine the wavelet for
the calibration of the synthetics. This can be easily done with a separate
experiment where data is acquired over an homogeneous region of the steel
block. The source wavelet is then the only unknown, and can be estimated
by determining the best fit between measured and modeled data. This is the
approach adopted here. Alternatively, the wavelet can be jointly estimated
with the material properties, as in Li et al. [2013].
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Figure 4.8: Spectrum of the data shown in Fig. 4.7, averaged over the receiver
position

We display the result of the inversion in Fig. 4.9, with a comparison with
the inverse wavefield extrapolation method [Portzgen et al., 2007], of which
the output is the structural image displayed in Fig. 4.9a (properly normalized
for a better juxtaposition with the contrast values). In Fig. 4.9b, we show
the inverted contrasts after the Born inversion (first stage of the alternating
algorithm), and in Fig. 4.9c we show the final result after 4 wavefield updates.
In Fig. 4.10, we also provide a comparison between the measured and modeled
data, obtained for the final inversion result. We observe that the three drill
holes are adequately recovered already under the Born approximation, but
the inversion is spoiled by some artifacts. The final result is successful in
removing these artifacts and in recovering the scatterers with a much improved
amplitude and resolution. Note that, due to the simple nature of the defects,
the linear inversion delivers a much better result compared to the synthetic
example in Section 4.5.1.

4.6 Summary and conclusion

We have advocated imaging methods that exploit the non-linear character of
the relationship between ultrasound measurements and material properties.
This is especially important for flaws that are difficult to detect by using
only single-scattered data. This may be caused by the orientation of the
shape/constellation of these flaws in the sample under investigation. In these
cases, taking multiple scattering into account is vital for resolving the required
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level of detail for accurate characterization and sizing of defects.

The synthetic experiment presented in this paper confirms that the recov-
ery of vertical defects, while being poor under the linear assumption, can be
improved by estimating increasingly higher orders of scattering in the data.
Preliminary results on actual measured data suggest that the method should
be suited for real-world applications.
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(a)  Structural image obtained from the inverse wavefield extrapolation
method [Pértzgen et al., 2007] (normalized for comparison), and horizontal
section of the absolute value of the amplitudes (z = 0.7cm)
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(b) Inverted xk from linear inversion, and horizontal section of the absolute value of
the amplitudes (z = 0.7 cm)
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(c) Inverted xx from non-linear inversion, and horizontal section of the absolute
value of the amplitudes (z = 0.7 cm)

Figure 4.9: Results obtained from the laboratory data (Section 4.5.2). The true
position and size of the drill holes is indicated by the red squares. In Fig. 4.9a, we
show the processed output of the inverse wavefield extrapolation method [Portzgen et
al., 2007], which represents a structural image of the scatterer. Fig. 4.9b displays the
result from the Born inversion, which is the same as the first step of the alternating
inversion. Note how the position of the drill holes is essentially recovered, but the
image is affected by artifacts and the amplitude xx = —1 is not quite correct. Also,
compare the scales of the colorbars in Fig. 4.9b and Fig. 4.9c. In Fig. }.9¢ we show
the final result of the inversion after 4 wavefield updates. Compared to Fig. 4.9b, the
resolution of the drill holes is improved and most of the artifacts have been removed.
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Figure 4.10: Comparison of the measured and modeled data for the final inversion
result of the experiment in Section 4.5.2. Note that in Fig. 4.10a, the direct arrivals
have been removed and some time damping has been applied. The modeled data in
Fig. 4.10b shows a good match with Fig. 4.10a, which is further demonstrated by the
difference between the two panels in Fig. 4.10c.






Conclusions and recommendations
for further research

5.1 Summary

The main topic of this thesis is the elastic inverse scattering problem. For its
solution, we proposed and discussed a novel inversion algorithm. The pecu-
liarity of the method resides in the setup of an optimization process where the
search space comprises not only model parameters but also wavefields, whereas
traditional full-waveform inversion is based on a cost function depending only
on the model’s material property variables, and the wave equation is treated as
a constraint. Wavefields become, therefore, independent on elastic properties
and the wave equation is not directly enforced at each iteration. This point
of view leads to an alternating inversion algorithm, which consists of distinct
updating procedures for both model properties and wavefield variables.

This method complies with some of the ideas enunciated by the extended
modeling principle [Symes, 2008]. Theoretically, this class of methods achieves
a relaxation of the non-linearity of the problem by looking for a solution in
a extended optimization space. Noteworthy methods akin to this philosophy
are the contrast-source inversion of van den Berg and Kleinman [1997] and the
wavefield reconstruction method of van Leeuwen and Herrmann [2013]. These
works share many similarities with the proposed alternating scheme.

The uncoupling of properties and wavefields also has important implica-
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tions from a computational point of view. On the one hand, a linear relation-
ship between properties and data is exploited for the property update step,
which greatly benefits from straightforward parallelization. On the other, it
has been shown that the algorithm does not require the wave equation to be
fully solved for each model estimated during the inversion. This is clearly
different for basic full-waveform inversion, whose computational work must
leverage on efficient methods to solve the wave equation. The alternating
method employs an updating scheme for the wavefield which only involves the
solution of the wave equation relative to a known background model. Since the
background model does not change (frequently) during the computation, we
can employ factorization-based direct methods to speed up the computation.
Alternatively, we could employ iterative methods with proper preconditioning
(as the multigrid-based method investigated in Chapter 3).

The inversion algorithm has been successfully tested on real-world appli-
cations. In particular, we dealt with the realm of ultrasound imaging for the
detection of stress-corrosion cracks in oil and gas pipe lines. The method has
been able to correctly image size and position of drill holes in a steel block,
as shown in Chapter 4, and is a promising tool to predict vertical defects (as
stress-corrosion cracks), for which the treatment of non-linear effects of the
wave propagation is a fundamental requisite.

5.2 Future directions

In this section, we sketch some of the goals we have in mind to follow up on
the research presented in this thesis.

It is clear that 2-D inversion is limited to only a few applications, hence it
is crucial to gauge the feasibility of a 3-D extension. As explained in Chap-
ter 2, the main challenge is the need for storage of the matrix factorization
and wavefields, for each source and frequency. An alternative to factorization
methods is, for example, the iterative solution method presented in Chapter 3
(along with many other attempts, see for instance Gordon and Gordon [2010]
or Baumann et al. [2016]), but the storage of the wavefields would remain prob-
lematic. A different proposal has been introduced in Abubakar et al. [2009],
based on a hierarchical low-to-high single frequency inversion strategy. This
in principle requires the storage of the factorized matrix and wavefields only
for the current frequency. We preliminarily tested this idea in Section 2.4.4,
under the 2-D assumption. Another suggestion is to divide the computational
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domain into manageable portions through data localization (e.g., via redatum-
ing over the target subdomain) in order to setup independent local inversion
problems [Haffinger et al., 2013; Willemsen et al., 2016].

The alternating inversion scheme has delivered convincing results on syn-
thetic data and the next logical step is the study of field data.

Examples of elastic inversion applications

A first important application is the so-called near-surface problem. Due
to its unconsolidated nature, the near-surface is a highly heterogeneous por-
tion of the subsurface that has a strong impact on seismic data. Therefore,
the removal of these effects is a prerequisite for most of the exploration seis-
mic applications that focus on deep targets. Moreover, it can be a valuable
tool to avoid drilling hazards. In order to do so, a detailed knowledge of the
near-surface is required. The effect of the surface on wave propagation, which
leads to surface waves, must be taken into account. The more apparent dif-
ference with the work presented in Chapter 2 is the need to employ proper
boundary conditions in the wave equation. Some preliminary synthetic data
studies have been carried out. One example is shown in Figures 5.1 and 5.2.

The second application, discussed in Chapter 4, is the non-destructive
inspection for stress-corrosion cracking in steel pipes. As previously argued,
it is an essential tool to ensure the integrity of pipe lines in the oil and gas
industry. This application strays away from the typical seismic scale, but the
principles of elastic wave inversion remain exactly the same. We obtained
encouraging results for laboratory measurements on a drill hole test sample,
and the next step will consist in the imaging of stress-corrosion cracks, for
which the account of non-linear effects of the wave propagation will be key.
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Figure 5.1: Synthetic data inversion exercise for a near-surface model: (a) true
model, (b) background model. Sources and receivers are placed along the interface
z =0, which corresponds to a free surface.
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Figure 5.2: Synthetic data inversion exercise for a near-surface model: (a) true
model, (b) inverted model. Sources and receivers are placed along the interface z =0,
which corresponds to a free surface.






Appendix:
An optimized staggered-grid
finite-difference method

In this Appendix, we describe the modeling scheme underlying the inversion
method illustrated in the body of the paper. We choose a finite-difference
method based on the staggered-grid formulation proposed by Virieux [1986],
characterized by the discretization of the wavefield components on different
grids.

From a numerical point of view, the most interesting aspect of the staggered-
grid scheme is the independence of the numerical dispersion properties with
respect to the P-to-S velocity ratio c¢p/cg, contrary to ‘single-grid’ formula-
tions, for which the different components of the wavefield are represented on
the same grid. Moreover, its dispersion properties can be sensibly ameliorated
if the finite differences representing the partial derivatives in (2.3) are properly
optimized. Indeed, we will present a 9-point scheme with a phase and group
velocity relative error of less than 1%, when the propagation wavelength is
sampled by a minimum number of 5 points and for a wide range of velocity
ratios. This method is quite amenable for standard factorization techniques
as the LU decomposition [George and Liu, 1981].
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Figure A.1: Discretization for the (b) single-grid and (c) staggered-grid formula-
tions. According to the staggered-grid scheme, the elastic wavefield components (com-
prising particle displacement (u,u.) and stress field o =3 ., C 49 u?, where
Cabed s the stiffness tensor) are defined on different grids. The grid points where
each of these wavefield are defined are denoted by different symbols (a). Note that the
z-axis points downwards.

A.1 The standard staggered-grid scheme

A key aspect of the staggered-grid scheme is in the approximation of the
horizontal and vertical components of the solution of the wave equation (2.5)
on shifted computational grids (see Fig. 3.1). To better illustrate this idea, we
introduce the shift operators:

T%u(x) =u(x+(1/2,0) h), 7%u(x) =u(x+(0,1/2) h), (A.1)

acting on scalar functions u. For vectorial functions u = (u®,u?), we define
the shift operator Tu = (7% u®, 7% u?). T entails the following transformation
on the wave equation (2.2):

Ha=f  H=THT ' (A.2)

where 1 = 7 uand f = 7 f. Note that, throughout this section, we will not de-
note explicitly the dependency of the linear operator from the model parame-
ters, as it was done, for example, in equation (2.2). We look for an approximate
solution u (x) of (A.2) on the set of collocation points G = {(i h,j h) : i,j € Z},
determined by the grid spacing h. In what follows, we will use the bar notation
to indicate transformed quantities through 7.

For simplicity, we start with the homogeneous case. The wave equa-
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tion (2.3) then simplifies to:
H=—pw?T—-D,

D .

(K"i_%ﬂ)éxz Méxx+(K+%N)5zz

A finite-difference scheme is determined by a specific choice for the discretiza-
tion of the second-order derivatives 0., 9., and 3,,. We denote the dis-
cretized version of (A.3) by:

H=—pw?I-D,

(w]l
Il

(K"i_%luf)a:vz;z Maxw+(K+%M)azz

Note that we explicitly made a distinction between the cross derivatives am;x
and d ... To give a neat expression of d z;, d ., and d ... we will employ the
stencil notation:

$_1,-1 S0,—-1 S1,-1

A
S =151 0 So 0 S1, 0| Su..|ij= E :Si/,j/uiﬂ’,jﬂ/- (A.5)

i/7j,
$—-1, 1 So, 1 S1, 1

which summarizes the action of a linear operator S on a generic grid func-
tion u... Note that, following the geophysical convention, the z-axis points
downwards. With this in mind, the stencils of the staggered-grid scheme are:

0 0 0
Il o 1 o0 |,
0 0 0
1'0 0 0 | . 0 0 0
d o S| 12 1 ,dm,zé? 1 -1 0 |,
) | 0 0 0 | -1 1 0
D: ) _
) 0 1 -1 . 0 1 0
dxwéﬁ 0 -1 1 |, d é? 0 -2 0
0 0 0 | 0 1 0
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With a slight abuse of notation, we only indicated one stencil for the 2 x 2
block identity I, meaning that the same stencil is used for both the diagonal
scalar blocks. The resulting numerical dispersion is depicted in Fig. A.2.

A.2 Optimization of the staggered-grid method

To obtain a more accurate scheme, we use (A.6) as a starting point. We observe
that, in the stencils (A.6), many entries correspond to zero. As a general rule
of thumb, exploiting all the neighboring grid points of the stencils leads to
more accurate schemes. To do so, we borrow some of the ideas presented
in Min et al. [2000, 2004], developed for a single-grid formulation:

e treatment of the mass term: a new mass term can be obtained by averag-
ing the neighboring points (i, ), (i £ 1/2,5), (i,7 £1/2), (i £1/2,5 £1/2),

Jopt ~a | . . _
1 U-,-‘m—

Oé()'afi]"_

(@ gty H UG o U o)+

(U g5 10T Ui /950172 U 512 5-1/2F U1 /2,541/2)
(A7)

with weights a g, a1, as. The superscripts denote the different compo-
nents of the particle displacement: a = x, a = z;

e averaging of the double derivatives: the double derivative with respect
to x, for instance, might be obtained by averaging over the grid points
(i,7) and (4,7 £ 1/2),

dopt—a ‘1]* /Bld;m:u |1] 1/2+/80dmcu ’zy""ﬁldxmu |z,]+1/2
(A.8)
Each term of this combination is computed by using the standard stencil
d . defined in (A.6) (the treatise of 22" follows similarly);

e cross derivatives: these are directly obtained from a special 3-point dis-

cretization (_iol.j.t aOP.t of the first-order derivatives. For example:

opt opt 7opt
dxz:r; - d x;T dz:r:?

dgfea’ lig=[—vai; — (=27 ag; — (y=Dagpl/h  (A9)

dgpxt w? ij=[(v =D uiy; + (1 =2y)ai; +yui,1/h,
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and analogously for agg;tz, by antisymmetry. Note that v =1 corre-
sponds to the cross-derivatives in (A.6).

Whenever the value of @ is needed between some grid points where @ ?, is
defined, a bilinear mterpolatlon is used. The resulting finite-difference scheme
can be readily stated in stencil notation:

a2 a1+a as
4 2 4
Topt £ a142—042 apg+2a1+ s 041—;—@2 )
as a1t az as
L 4 2 4
B B1
E) P E)
goet 2 1 Bo+B1 —2(Bo+pB1) Bo+ b
xx 52 >
Dopt. - -
Yy=1) (1-29)(y-1) (y—1)2
- 1
A 2 ——5 | v(-29)  (-29®  (-DE-29) |,
72 (1-279)y (v=1)~

(A.10)
and similarly for agg;tz and a;’l;t. We observe that the scheme is consistent for
h — 0 when the following constraints are set:

a2:(1—00—4a1)/4, Bgz(l—ﬁo)/z (All)

Non-homogeneous case If the elastic properties K, u and p are varying
functions, the proposed scheme has to be adapted accordingly. The medium
properties will be now discretized by grid functions. In the following, we are
adopting the notation m 2% to represent any of the above gridded properties,
shifted correspondingly to the superscripts. For instance, similarly to the
shifted particle displacement notation: m% = 7%7%m (ih,jh). The scheme

0]
is then put in place by the following modifications:
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e mass term: the continuous quantity 7% (pu®) is discretized by I°P* (5% a.%),
following the definition (A.7) for 1°PY;

e double derivatives: to approximate the operator 9, md, we resort to
the same idea of averaging employed in (A.8) for the homogeneous case.
It suffices, then, to define:

T (8mmamua) (Z h,j h) ~ = m?fl/Z,j (_a?—lyj + a;{j)—i_

—a —a —a
Mi1yey (ZU; + 0 ),
and, in a similar way, 7% (9, m 9, u®);

e cross derivatives: the approximation of 9, mad, and 9, m d, are deter-
mined directly by the first-order operators (A.9):

T (0em0zu”) (ih,jh) = dghy (M7 A2 al) iy,

oy

T (0:m0pu”) (ih,jh) = d®; (m . -dghal) i,

where the dot product indicates standard multiplication of grid func-
tions. The quantities 7% (0, md,u?) and 7% (0, md,u?) are deter-
mined very similarly.

Once again, the value of fn“bc is interpolated between grid points whenever
needed.

We remark that, by design, the linear system arising from the discretization
is real-symmetric.

A.3 Numerical accuracy

In the finite-difference scheme (A.10), the free parameters ag, a1, a2, 8o, B1
and « can be adjusted in order to optimize the dispersion properties. Hence,
an objective functional which measures the relative error between analytic and
numerical P- and S-wave phase velocities can be set up. It is found that the
values

o =0.2597, a1 =0.1859, Bo=0.5789, ~ = 0.8804,

along with (A.11), produce a relative error of phase and group velocities of
less than 1%, for a minimal discretization rate of 5 points per wavelength



A.3 Numerical accuracy 131

and a wide range of velocity ratios r (Fig. A.2). We also tested the scheme
with a heterogeneous problem by comparison with the finite-element method
of Min et al. [2003]. The numerical experiment shows excellent agreement
with accurately computed solutions (Fig. A.3).

Optimized 1.04
— — —Standard

Figure A.2: Numerical dispersion analysis of the optimized staggered-grid
finite-difference method and comparison with the standard staggered-grid scheme. We
report the P- and S-wave phase and group wvelocity ratios for different propagation
angles 0, and number of samples per S-wavelength Ng. Here, we considered a velocity
ratio cp/cs of 2, but the analysis is similarly favorable for much higher values (e.g.,
r =100). The figures display a mazimum error of the S-wave group velocity ratio of
less than 1% up to 5 points per S-wavelength.
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Figure A.3: Comparison of the optimized staggered-grid finite-difference scheme and
the finite-element method of Min et al. [2003] for a heterogenous problem. The com-
putational domain is summarized in Fig. (a). The background model is homogeneous,
corresponding to the values K = 5.33 x 10° Pa, u = 2 x 10° Pa and p = 2000kgm 3.
The black region in (a) represents the heterogeneity, defined by K = 7.27 x 10° Pa,
pw=2.73 x 10° Pa and p = 2218kgm—3. The source-receiver setting is also depicted
in Fig. (a). For this numerical experiment, we considered a vertical force source.
In Fig. (b), a comparison of the real part of u* (scattered wavefield) is made for the
frequencies f = 20Hz and f = 40 Hz (which corresponds to a discretization of, respec-
tively, 10 and 5 points per minimum S-wavelength). The solution by finite-elements
is obtained for a grid spacing of h/4, where h is the step-length corresponding to the
grid used for the finite-difference computation.
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Summary

Full-waveform inversion is a promising tool for a wide range of imaging sce-
nario, in that it has the potential to harness the non-linear relationship be-
tween model parameters and data (as opposed to traditional methodologies),
in order to produce truly quantitative results. Non-linearity represents an op-
portunity, in this sense, but it also begets local minimum issues when gradient-
based optimization is employed.

In this thesis, we are particularly interested in the quantitative estimation
of the elastic parameters of the earth, such as compressibility, shear modulus,
and density. If successful, this procedure brings geophysical imaging closer to
the ultimate step of seismic exploration: the retrieval of pore pressure and rock
properties. This would be of direct use for, say, the oil and gas industry. Other
interesting applications are the description of the near surface/near ocean
bottom, as a way to reduce drilling hazards, or non-destructive inspection of
defects in oil and gas pipes, when ultrasounds are employed.

The scope of the thesis is to devise a reconstruction algorithm which can ef-
fectively cope with the non-linearity of the problem, with the aim of providing
reliable elastic properties for quantitative studies. We also target a real-world
application as a proof-of-concept for the principles enunciated above.

The inversion algorithm is based on the introduction of a slack variable, in
addition to the elastic model parameters. This new variable is represented by
the elastic wavefields, and is not strictly required to solve the wave equation



relative to the current estimated model. An alternating reconstruction scheme
is introduced, where properties and wavefields are updated in a leap-frog man-
ner by optimizing quadratic objective functionals: one related to the data fit,
and one related to the wave equation consistency. The success of the scheme,
as well as the computational feasibility of a 2-D implementation, is proven
with multiple synthetic examples.

A 3-D extension of this work is non-trivial, the most glaring issue being,
perhaps, the need for keeping the wavefields in memory for each source and
frequency. In this thesis, we investigated yet another aspect of this gener-
alization. In 2-D, given a certain discretization of the wave equation (e.g.
by finite-differences or finite-elements), the tool of choice for its solution are
factorization-based methods. In 3-D, however, this is not feasible anymore.
An alternative, practical solution—although not optimal, computationally-
wise—is offered by multigrid-based iterative methods, originally proposed for
the Helmholtz equation and here extended to the elastic case.

We conclude this thesis with a practical application to ultrasound imaging
of defects in steel pipes. This imaging setting is an excellent benchmark to test
the advantages of linear vs non-linear imaging, as it is common to encounter
defects, such as stress-corrosion cracks, that are orthogonally aligned with
respect to the measurement plane. Non-linear methods, which greatly benefits
from multiple illumination, seem to be the natural solution for this scenario.
We show that it is possible to image borehole-type defects with great accuracy.
This study is the first step towards vertical crack imaging.



Samenvatting

Full-waveform inversie is een veelbelovend hulpmiddel bij het oplossen van
een breed scala aan imaging problemen. Om echter kwantitatieve resultaten
te produceren, in tegenstelling tot traditionele methodologieen, dient de niet-
lineaire relatie tussen modelparameters en gegevens benut te worden. Hoewel
de niet-lineariteit ons de kans geeft om kwantitatieve resultaten te verkrijgen,
brengt het ook problemen met zich mee wanneer gradient gebaseerde optimal-
isatie wordt toegepast.

In dit proefschrift zijn we vooral geinteresseerd in de kwantitatieve schat-
ting van de elastische parameters van de aarde: compressibility, shear modulus
en dichtheid. Indien succesvol, dan brengt deze procedure geofysische imaging
dichter bij het ultime doel van seismische exploratie, namelijk, het bepalen van
de pore pressure en rotseigenschappen. Deze informatie zou van grote waarde
zijn voor de olie- en gasindustrie. Andere interessante toepassing is het karak-
teriseren van de near surface/near ocean bottom om de risico’s te beperken
tijdens het boren. Maar de methode kan ook gebruikt worden tijdens niet-
destructieve inspectie om defecten op te sporen in olie- en gasleidingen met
behulp van ultrasone geluidsgolven.

Het doel van het proefschrift is om een reconstructie-algoritme te ontwikke-
len dat de niet-lineariteit van het probleem effectief kan beschrijven, met het
doel om betrouwbare elastische eigenschappen te schatten voor kwantitatieve
studies. We richten ons ook op een toepassing uit de praktijk als een proof-
of-concept voor de hierboven genoemde principes.



Het inversie-algoritme is gebaseerd op een extra slack-variabele, naast de
elastische modelparameters. Deze nieuwe variabele wordt beschreven door de
elastische golfvelden en is niet strikt vereist om de golfvergelijking ten opzichte
van het huidige geschatte model op te lossen. Een alternerend reconstructi-
eschema wordt geintroduceerd waarbij eigenschappen en golfvelden op een
leap-frog manier worden bijgewerkt door het optimaliseren van kwadratische
objective functions. De eerste objective function is gerelateerd aan de data
fit en de andere is gerelateerd aan de golfvergelijking. Het succes van het
voorgestelde schema is bewezen met meerdere 2-D synthetische voorbeelden.

Een 3-D uitbreiding van dit werk is niet-triviaal, het meest in het oog
springende probleem is misschien de noodzaak om golfvelden in het geheugen
op te slaan voor elke bron en frequentie. In dit proefschrift hebben we nog
een ander aspect van deze generalisatie onderzocht. In 2-D, gegeven een
zekere discretisatie van de golfvergelijking (bijvoorbeeld door finite-differences
or finite-elements), zijn factorisatie gebaseerde methoden de oplossing. In 3-D
is dit echter niet meer mogelijk. Een alternatieve praktische oplossing, hoewel
rekenkundig niet optimaal, is het gebruik van multigrid gebaseerde iteratieve
methoden. Deze methoden waren oorspronkelijk gebruikt om de Helmholtz-
vergelijking op te lossen en zijn in dit proefschrift uitgebreid voor het elastische
geval.

We sluiten dit proefschrift af met een praktische toepassing in het veld van
ultrasone imaging om defecten in stalen buizen te detecteren. Deze toepassing
is een uitstekende benchmark om de voordelen van lineaire versus niet-lineaire
imaging te testen. De reden hiervoor is omdat het gebruikelijk is om de-
fecten tegen te komen, zoals stress-corrosion cracks, die orthogonaal zijn ten
opzichte van het meetvlak. Niet-lineaire methoden, die veel baat hebben bij
meervoudige belichting, lijken de natuurlijke oplossing te zijn voor dit sce-
nario. In dit proefschrift laten we zien dat het mogelijk is om borehole-type
defecten af te beelden met grote nauwkeurigheid. Deze studie vormt de eerste
stap richting de verticale crack-imaging.
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