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Transfer Learning-Based Outdoor Position
Recovery With Cellular Data

Yige Zhang , Aaron Yi Ding , J€org Ott , Mingxuan Yuan, Jia Zeng, Senior Member, IEEE,

Kun Zhang, and Weixiong Rao ,Member, IEEE

Abstract—Telecommunication (Telco) outdoor position recovery aims to localize outdoormobile devices by leveragingmeasurement

report (MR) data. Unfortunately, Telco position recovery requires sufficient amount of MR samples across different areas and suffers from

high data collection cost. For an areawith scarceMR samples, it is hard to achieve good accuracy. In this paper, by leveraging the recently

developed transfer learning techniques, we design a novel Telco position recovery framework, called TLoc, to transfer goodmodels in the

carefully selected source domains (those fine-grained small subareas) to a target onewhich originally suffers frompoor localization accuracy.

Specifically, TLoc introduces three dedicated components: 1) a newcoordinate space to divide an area of interest into smaller domains,

2) a similaritymeasurement to select best source domains, and 3) an adaptation of an existing transfer learning approach. To the best of our

knowledge, TLoc is the first framework that demonstrates the efficacy of applying transfer learning in the Telco outdoor position recovery.

To exemplify, on the 2GGSMand 4G LTEMRdatasets in Shanghai, TLoc outperforms a non-transfer approach by 27.58 and 26.12 percent

lessmedian errors, and further leads to 47.77 and 49.22 percent lessmedian errors than a recent fingerprinting approachNBL.

Index Terms—Cellular data, outdoor position, transfer learning, data driven approach

Ç

1 INTRODUCTION

RECENT years we have witnessed the ever-growing size
and complexity of telecommunication (Telco) networks to

process 1000-fold growth in the amount of traffic and 100-fold
increase in the number of users [20]. Telco operators have
to manage heterogeneous networks (including 2G-4G and
upcoming 5Gnetworks), composed ofmacro cells, small cells,
and distributed antenna systems. The growing demands and
heterogeneous networks require an automated approach
to network control and management, instead of error-prone
manual network management and parameter configuration.
To enable the automated network control and management,
the outdoor locations of mobile devices are important for Telco
operators to 1) pinpoint location hotspots for capacity plan-
ning, 2) identify gaps in radio frequency spatial coverage, and
3) locate users in emergency situations (E911) [20]. Moreover,
the locations of mobile devices are widely used to understand
mobility patterns [36] and optimizemany third-party applica-
tions such as urban planning and traffic forecasting [6].

Outdoor locations ofmobile devices can be recovered from
cellular Measurement record (MR) data [9]. MR samples are

generated when mobile devices make phone calls and access
data services. MR samples contain connection states (e.g., sig-
nal strength) between mobile devices and connected base
stations. After the locations of mobile devices are recovered,
we tag theMR samples by the associated geo-locations, gener-
ating the so-called geo-taggedMR samples.

In literature, various position recovery algorithms via cellu-
lar MR samples have been developed. Google MyLocation [2]
approximates outdoor locations by the positions of cellular
towers connected with mobile devices. This method suffers
from median errors of hundreds and even thousands of
meters. More recently, data-driven approaches have attracted
intensive research interests in both academia and Telco indus-
try [4], [14], [17], [29], [34], [40]. These approaches leverage
geo-tagged MR samples to build the mapping from MR
samples to associated locations, and the mapping is then used
to localize the mobile devices in non-geo-tagged samples. For
example, the fingerprinting approach [14] builds a histogram
of MR signal strength (i.e., fingerprint database) for each
divided grid cell in the areas of interest, and theRandomForest
(RaF)-based approach [40] maintains the mapping function
between MR features (i.e., MR signal strength) and position
labels. When enough amount of training geo-tagged MR
samples are used, the data-driven algorithms achieve the
median error of 20 � 80meters [13], [40].

A key concern of the data-driven methods mentioned
above is requiring sufficient geo-tagged MR samples to
build the accurate mapping from MR samples to associated
locations. Nevertheless, collecting sufficient geo-tagged MR
samples across the distributed areas of an urban city incurs
rather high cost. It is not rare that an area of interest suffers
from insufficient geo-tagged MR samples. If we have scarce
geo-tagged MR samples for such an area, the position recov-
ery precision in that area could be very low. For example in
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a recent work NBL [20], though over 100 TB GPS-tagged
cellular signal data in an American city are collected
by 4 million users from Jan 2016 to July 2016, the median
localization errors in rural areas are still as high as around
750 meters due to insufficient samples.

In this paper, targeting Telco operators, we design a
transfer learning-based cellular position recovery approach,
called TLoc, to accurately localize mobile devices in those
areas with scarce data samples. The general idea of TLoc is
as follows. First, we divide an entire area into fine-grained
small subareas, namely domains. For each domain, we then
maintain the mapping fromMR samples within this domain
to their associated positions. Next for the target domains
suffering from low precision, we transfer good mappings
from appropriately selected source domains to target ones
via transfer learning. In this way, we greatly improve the
localization accuracy in target domains. Though transfer
learning has been used for indoor WiFi-based localization
[22], [37], [38], we believe that indoor WiFi and outdoor cel-
lular localization differs significantly. Thus, those indoor
localization approaches are not expected to perform well in
our case (they will be evaluated in our experiment) due to
the following challenges. First, given the cellular outdoor
localization, designing a proper position coordinate space is
the prerequisite to enable knowledge transfer across two
domains. This, unfortunately, cannot be achieved by using
outdoor GPS longitude and latitude coordinates: the differ-
ent GPS position (i.e., position label) for every area makes
it impossible to share position labels across distributed
domains, and hence hard to perform knowledge transfer.
Second, given a large number of domains, it is challenging to
select the best source domains for a target one. In contrast,
due to the small area and rather limited domains in an
indoor environment, it is straightforward for indoor locali-
zation to select source domains. Thus, trivial effort on
source domain selection is employed for indoor WiFi-based
localization [22], [37], [38].

To tackle the challenges above, TLoc builds the following
components. First, unlike absolute GPS coordinates, we use a
relative coordinate space for position recovery. Under this coor-
dinate space, the mobile devices even in two distributed
domains can still share the same relative positions, facilitating
the transfer across two domains. Second, based on the relative
position space, we design an effective distance metric to mea-
sure the similarity between domains. The metric incorporates
the distribution of the signal strength of MR samples, relative
position information, and non-serving base station deploy-
ment information. Finally, by adapting an existing structured
transfer learning (STL) method [26], we build a Random
Forest (RaF)-based position recovery model for each domain
and then perform model transfer from appropriately chosen
source domains to target ones. As a summary, this paper
makes the following contributions.

� To the best of our knowledge, TLoc is the first
method to plausibly leverage transfer learning for
cellular outdoor localization. Unlike the fingerprint-
ing-based and machine learning-based approaches
[13], [17], [40], TLoc mitigates high efforts to collect a
large quantity of training samples across an entire
area. Moreover, our evaluation empirically verifies

that the idea of TLoc can generally benefit other
approaches (e.g., fingerprinting-based approaches)
to achieve better precision by re-using MR samples
from source domains to target ones.

� We design a novel approach to divide an entire urban
area into small domains by the proposed relative coor-
dinate space. Based on the divided domains,we define
a distance metric for measuring domain similarity to
select appropriate source domains effectively for a tar-
get one. By adapting a recent structured transfer learn-
ing (STL) scheme [26] for a RaF regression model [40],
TLoc leads to much better position recovery precision
than those non-transfermodels.

� Our extensive evaluation validates that TLoc greatly
outperforms both state-of-the-arts and the variants of
TLoc. For example, on two 2G GSM and 4G LTE MR
datasets, TLoc outperforms the recent fingerprinting
approach NBL [20] by 47.77 and 49.22 percent less
median errors, respectively, and leads to 27.58 and
26.12 percent less median error when compared with
the non-transfer RaF algorithm [40], respectively.

The rest of this paper is organized as follows. Section 2
reviews the background and related work. Section 3 gives
the general idea of TLoc and the proposed relative coordi-
nate space. After that, Section 4 defines the distance metric
to measure domain similarity, and Section 5 adapts the STL
model [26] for TLoc. Section 6 evaluates TLoc and Section 7
finally concludes the paper. Table 1 summarizes the main
acronyms and notations used in the paper.

2 BACKGROUND AND RELATED WORK

In this section, first we give the background of Measure-
ment Report (MR), Random Forests (RaF), and transfer
learning, and second review the literature in terms of out-
door position recovery and selection of source domains.

Measurement Report (MR) Data. MR samples are used to
record the connection states between mobile devices and
nearby base stations in a cellular network. Table 2 gives an

TABLE 1
Mainly Used Short Names/Symbols and Notations

Notation/Symbol Meaning

Telco Telecommunication
MR Measurement Report
TL Transfer Learning
STL Structure Transfer Learning
SVR Supported Vector Regression
RSSI Received Signal Strength Indicator
RaF Random Forest

D, s Domain (divided small areas),MR Sample
ST and SS Target and Source Data Set
FdðÞ, FiðÞ MR Features dependent (resp.

independent) upon locations
LðÞ Recovered Location
disrssimr , dis

sig
mr Weighted Histogram Distance of RSSI

(resp. SignalLevel)
dismr Overall MR Feature Distance
dispos Relative Position Distance
distðD;D0Þ Domain Distance between two domains

D andD0
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example of 2G GSM MR samples collected by an Android
device. It contains a unique number (IMSI: International
Mobile Subscriber Identity), connection time stamp (MRTime),
up to 7 nearby base stations (identified by RNCID and CellID)
[25], signal measurements such as AsuLevel and SignalLevel,
and a radio signal strength indicator (RSSI). SignalLevel indi-
cates the power ratio (typically logarithm value) of the output
signal of the device and the input signal. AsuLevel, i.e., Arbi-
trary Strength Unit (ASU), is an integer value proportional to
the received signal strength measured by the mobile phone.
Among the up-to 7 base stations, one of them is selected as the
primary serving base station to provide communication and
data transmission services for the mobile device. Previous
work on cellular localization [13], [40] might ignore the use of
serving base station. Unlike these works, we will carefully
exploit serving base stations as the base ofTLoc.

Besides 2G GSMMR samples, we also collect 4G LTE MR
samples by frontend Android devices. They both follow the
same data format. Nevertheless, due to the limitation of
Android API, frontend Android devices cannot acquire the
identifiers (RNCID_2 � 7 and CellID_2 � 7) of non-serving
base stations from 4G LTE networks. Nevertheless, the sig-
nal measurements associated with the missed base stations
can be still collected.

Finally, Telco operators can collect MR samples via back-
end base stations except the frontend MR samples above by
Android mobile phones. Nevertheless, their data formats are
different [13]. First, besides RSSI, the backend 4GMR samples
provided by Telco operators contain RSRP and RSRQ which
do not appear in the frontend 4G MR samples. Second, back-
end 2G MR samples contain RxLev, the received signal
strength on Absolute Radio Frequency Channel Number
(ARFCN) [13]. The previous work [12] shows that RxLev is
exactly equal to the RSSI value, and we thus treat RxLev
equally as RSSI. Now, to make sure that we have proper
knowledge transfer between frontend and backend MR data-
sets, we perform knowledge transfer only for those MR fea-
ture items (e.g., RSSI) that appear within all datasets. For
example, we transfer the knowledge from the RSSI (or RxLev)
items in backend 2GMR samples to the RSSI items in frontend
2G samples. Yet, we do not transfer knowledge for such MR
features as RSRP andRSRQ.

Random Forest (RaF) is an ensemble method for classifica-
tion, regression, and other learning tasks. It constructs a
multitude of decision trees (DTs) [1] during the training
phase and outputs either the class that is the mode of the
classes (classification) or mean prediction (regression) of the
individual trees. RaF avoids the overfitting of DTs to their
training set. Specifically, DTs that are grown very deep tend

to learn highly irregular patterns: they overfit their training
sets, i.e., low bias but very high variance. RaFs are a way of
averaging multiple deep DTs, trained on different parts of
the same training set, with the goal of reducing the variance.
This greatly boosts the performance in the final model,
at the expense of a small increase in the bias and loss of
interpretability.

Transfer learning aims at improving the learning in a new
task through proper transfer of knowledge from a related task
that has already been learned. Those machine learning algo-
rithms such as RaFs are designed to address a single task. In
contrast, transfer learning attempts to leverage individual
tasks by developing methods to transfer knowledge learned
in one or more source tasks to a related target task. Transfer
learning is frequently used due to expensive cost or impossi-
bility to re-collect the needed training data and rebuild the
models. Transfer learning approaches include Model Transfer,
Instance Transfer (or data sample transfer), Features Transfer,
and Relational knowledge-Transfer. We refer interested readers
to the detailed survey of transfer learning [23].

TLoc mainly utilizes a recent model transfer scheme, i.e.,
the structure transfer learning (STL) [26] in decision tree
(DT)-based model to transfer knowledge from multiple
source domains to the target one. Specifically, DTs for simi-
lar problems (in various domains) exhibit a certain extent of
structural similarity. However, the scale of the features
used to construct RaF and their associated decision thresh-
olds are likely to differ from various problems. Thus, the
DTs trained on source domains are adapted to the target
one by discarding all numeric threshold values in the origi-
nal DTs and working top-down, and then selecting a new
threshold for a node with a numeric feature using the subset
of target examples that reach this node.

Recall that general transfer learning frameworks (such as
instance transfer) require training examples from source
domains for domain adaptation. Instead, the STL scheme
can directly adapt the already trained models from source
domains to target ones. This unique property is particularly
useful for the scenario that cannot directly leverages source
examples for domain adaption, for whatever reason, e.g.,
storage capacity or data privacy. Thus, TLoc can comfort-
ably adapt a given source model to a target domain relying
on a relatively small training set from the target. The experi-
mental results show that multi-source transfer in STL has
the better precision than the single-source transfer.

Outdoor Position Recovery. In the literature, cellular outdoor
position recovery techniques are broadly classified into two
categories: 1) measurement-based methods [18], 2) data-
driven methods. Measurement-based methods frequently

TABLE 2
A 2G GSMMR Sample Collected by an Android Device

MRTime xxx IMSI xxx RNCID 6188 BestCellID 26050 NumOfBS 7

RNCID1 6188 CellID1 26050 AsuLevel1 18 SignalLevel1 4 RSSI1 -77
RNCID2 6188 CellID2 27394 AsuLevel2 16 SignalLevel2 4 RSSI2 -81
RNCID3 6188 CellID3 27377 AsuLevel3 15 SignalLevel3 4 RSSI3 -83
RNCID4 6188 CellID4 27378 AsuLevel4 15 SignalLevel4 4 RSSI4 -83
RNCID5 6182 CellID5 41139 AsuLevel5 16 SignalLevel5 4 RSSI5 -89
RNCID6 6188 CellID6 27393 AsuLevel6 9 SignalLevel6 3 RSSI6 -95
RNCID7 6182 CellID7 26051 AsuLevel7 9 SignalLevel7 3 RSSI7 -95
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adopt absolute point-to-point distance estimation or angle
estimation from cellular signals to calculate mobile device
locations. Examples of measurement-based techniques
include Angle of arrival (AOA), Time of Arrival (TOA) [8],
and Received signal strength (RSS)-based single source
localization [30]. Nevertheless, information related to AOA
and TOA is highly error prone in cellular systems, and mea-
surement-based techniques suffer from high localization
errors, typically with the median error of hundreds of meters
[8], [24]. In addition, as shown in previous work [24], 4G LTE
MR samples typically have signal strength from at most two
cells, namely, the serving cell and the strongest neighboring
cell. Triangulation-based localization approaches thus do not
perform well because they require signal strength from at
least three cells.

Fingerprinting-based and machine learning-based algo-
rithms generally belong to the data-driven methods. They
both leverage collected historical data samples for outdoor
position recovery. Fingerprinting methods [14], [17] have
been reported to have better performance than measure-
ment-based approaches. For example, in the offline survey
phase, the classic work, CellSense [14], first divides the area
of interest into smaller cells and constructs a fingerprint
database, e.g., a vector histogram of RSSI on each cell. When
given a query (i.e., an input RSSI feature), the online predic-
tion phase then searches the fingerprint database to find the
location that has the maximum probability given the
received signal strength vector in the query. An average of
the k most probable fingerprint cells, weighted by the prob-
ability of each location, can be used to obtain a better esti-
mate of locations. In addition, a better CellSense-hybrid
technique consists of two phases: the rough estimation
phase first uses the standard probabilistic fingerprinting
technique to obtain the most probable cell in which a user
may be located, and the estimation refinement phase then
uses a k-nearest neighbor approach to estimate the closest
fingerprint point, in the signal strength space, to the current
user location inside the cell estimated in phase one.

AT&T researchers recently studied the fingerprinting-
based outdoor localization problems [20], [24]. In particular,
the authors in NBL [20] extended CellSense [14] similarly
using two stages. In an offline stage,NBLdeveloped radio fre-
quency coverage maps based on a large-scale crowdsourced
channel measurement campaign. Then, in an online stage, a
localization algorithm quickly matches the input radio fre-
quency measurements to coverage maps. By assuming a
Gaussian distribution of signal strength within each divided
grid, NBL maintains the mean value and standard deviation
of signal strength of each neighboring cell tower for the sam-
ples in the grid. The online stage computes the predicted loca-
tion by using either Maximum Likelihood Estimation (MLE)
orWeighted Average (WA). The median errors in the 4G LTE
network reported by NBL are around 80 and 750 meters in
urban and rural areas, respectively.

Machine learning approaches leverage machine learning
models such as Random Forests, Support Vector Regression
(SVR), Gradient Boosting Decision Tree (GBDT), and artifi-
cial neural network (ANN) to build the mapping from MR
features (which are extracted from MR samples and engi-
neering parameter data of connected base stations) to device
positions [13], [40]. When given an MR record without

position information, machine learning models then predict
the associated location. As shown in [40], the authors
proposed a context-aware coarse-to-fine regression (CCR)
model (implemented by a two-layer RaFs). The CCR model
takes as input 258 dimensional coarse features and 34 dimen-
sional fine-grained contextual feature vectors. Thus, beyond
strength indicators frequently used by fingerprinting app-
roaches, those context-aware and coarse-to-fine features
such as moving speed enable CCR to outperform the classic
fingerprinting approaches with slightly 14 percent lower
median errors. In a very recent deep learning-based outdoor
cellular localization system, namely DeepLoc [27], a data
augmentor is used to handle data noise issue and to provide
more training samples. With help of the samples, a deep
learningmodel is trained for better localization result.

Source Domain Selection. Given a number of diverse source
domains, to successfully perform knowledge transfer, one
may need to select a certain number of source domains that
bear essential similarity to the considered target domain.
Some previous works in transfer learning studied the general
source domain selection problem. For example, an informa-
tion theoretic framework was developed [3] to rank source
convolution neural networks (CNNs) and select the top-k
CNNs for the target learning task by understanding the
source-target relationship. A restricted boltzman machine
(RBM) was also used [5] to select source domains in the con-
text of reinforcement learning. Some works instead did not
take domain selection into account and focused on instance
selection from available source domains [19]. In addition,
many existing transfer learning methods suppose that source
domains are provided in advance by default.

Compared to the above methods, TLoc gives a meaning-
ful distance metric to determine the domain similarities for
cellular position recovery task. Unlike TLoc, the previous
work [3] focuses on the selection of pre-trained CNN mod-
els which can be intuitively treated as learning tasks, and
[19] selects source instances.

3 SYSTEM DESIGN

3.1 General Idea

We first give the general idea of TLoc to perform model
transfer across different domains. In Fig. 1, we consider that
two mobile devices m and m0 in two distributed domains D
and D0 (with D 6¼ D0) generate the MR samples s and s0,
respectively. Suppose that we are using a RaF regression
model to recover the outdoor locations LðsÞ and Lðs0Þ for
the samples s and s0, respectively. The outdoor locations are
frequently represented by GPS coordinates [13], [20], [24],

Fig. 1. General idea of TLoc.
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[40]. Given the two distributed domains D 6¼ D0, the MR
samples s and s0 within the two domains indicate that the
corresponding RNC/CellID and GPS positions are different,
indicating s 6¼ s0 and LðsÞ 6¼ Lðs0Þ.

Inside MR samples, we note that there exist two types of
features: 1) those ID-alike features FdðÞ dependent upon
located domains such as RNCID and CellID, and 2) those
numeric features FiðÞ independent upon located domains
such as AsuLevel, SignalLevel and RSSI. Due to the distrib-
uted domains D and D0, FdðsÞ 6¼ Fdðs0Þ holds. Nevertheless,
when the two samples s and s0 contain very similar cellular
signal strength (including AsuLevel, SignalLevel and RSSI), it
is highly possible to have FiðsÞ ’ Fiðs0Þ. The similar cellular
signal strength gives us a hint: we would like to modify the
representation of the features FdðÞ and locations LðÞ to
ensure that FdðsÞ ’ Fdðs0Þ and LðsÞ ’ Lðs0Þ hold. When both
FiðsÞ ’ Fiðs0Þ and FdðsÞ ’ Fdðs0Þ hold, we then could have
the similar MR samples s ’ s0 and the roughly equal posi-
tions LðsÞ ’ Lðs0Þ. Based on this representation, we next
perform knowledge transfer across two similar MR samples
s 2 D ’ s0 2 D0 as follows: if s ’ s0 holds, we estimate the
position LðsÞ  Lðs0Þ via the position Lðs0Þ. In general, we
extend the idea of TLoc from similar samples to similar
domains. Gvien the two similar domains D ’ D0, we infer
s 2 D ’ s0 2 D0, and then estimate LðsÞ  Lðs0Þ via the
available position Lðs0Þ.

3.2 Relative Coordinate Space

To perform the knowledge transfer above, we introduce a
relative coordinate space to represent LðÞ and FdðÞ, such
that FiðsÞ ’ Fiðs0Þ and FdðsÞ ’ Fdðs0Þ hold for two samples s
and s0 within two distributed domainsD andD0.

1) Representation of LðÞ: We first represent LðÞ by trans-
forming original GPS coordinates to relative coordinates as
follows. For the MR samples having a certain base station as
their serving stations, the mobile devices generating such
MR samples are highly possible to be located around the
serving base station. Thus, based on serving base stations,
we divide a large urban area of interest (e.g., either a univer-
sity campus or an entire city) into fine-grained small subareas
(or equivalently we use the term domains D that are fre-
quently used in the transfer learning community). That is,
based on serving base stations in MR samples, the MR sam-
ples having the same serving base stations belong to the
same domains. For every domain, we design a relative coor-
dinate space for all MR samples within the domain. We use
Fig. 2 as an example to represent the relative coordinates. In
this figure, we assume that those MR samples belonging to
the same domain D (a.k.a having the same serving base sta-
tion BS) are all within a circle and BS is the center. The
radius R of this circle is equal to the maximal distance
between the positions of BS and MR samples. Given this
center BS in the coordination space, we convert the original
GPS coordinate ðx0; y0Þ of BS into a relative one ð0; 0Þ. For a
MR sample s 2 D with the GPS coordinate ðxþ x0; yþ y0Þ,
its relative coordinate becomes ðx; yÞ. In this way, we can
compute the relative coordinates of all MR samples by refer-
ring BS as the center of this coordination space.

Until now, we show the key point of the relative coordi-
nation space as follows. Let us consider another domain D0,
where the GPS position of the serving base station (i.e., the

center) belonging to D0 is ðx1; y1Þ. For one MR sample
s0 2 D0 with the GPS coordinate ðxþ x1; yþ y1Þ, its relative
coordinate becomes ðx; yÞ. Here, though the two samples
s 2 D and s0 2 D0 are originally with different GPS coordi-
nates ðxþ x0; yþ y0Þ and ðxþ x1; yþ y1Þ, they now share
the exactly same relative coordinates ðx; yÞ under their own
domains. In this way, we can perform the transfer from D
toD0. That is, when both cellular signal strength in MR sam-
ples (a.k.a MR features) and relative position (labels) refer
to serving base stations, the transfer across domains
becomes possible. Moreover, for a large amount of MR sam-
ples across an entire area, we can group the MR samples by
their serving base stations to build the associated domains
and relative coordination space. After the big area is
divided into small domains, for each domain (and the asso-
ciated serving base station), we can learn an individual
mapping from MR samples within this domain to their rela-
tive positions. The key is that the mapping is adaptively
learned by the data-driven fashion, even if the transmitting
power, cellular signal coverage, and bandwidth of serving
base stations are unavailable. Thus, even for two base sta-
tions (with various transmitting power, cellular signal cov-
erage, and bandwidth) located at the exactly same locations,
we could establish two corresponding mappings from the
MR samples generated by an individual base station to the
associated MR positions.

Note that the relative coordinate space above requires the
GPS coordinate of serving base stations. Telco operators can
easily obtain the GPS coordinates of base stations because
base stations are deployed by Telco operators themselves.

2) Representation of FdðÞ: For a certain MR sample s, we
convert MR features FdðsÞ, such as RNCID and CellID of a
neighboring base station, into meaningful IDs which are
independent upon the associated domains. Specifically,
depending upon all the neighbouring base stations appear-
ing inside the MR samples within a domain, we determine
a rectangle area covered by these neighboring base stations.
As shown in Fig. 2, the width (resp. height) of the rectangu-
lar is equal to 2�maxðjxbsi jÞ (resp. 2�maxðjybsi jÞ), where
we have maxðjxbsi jÞ ¼ xbs1 and maxðjybsi jÞ ¼ ybs5 . Then, we
evenly divide the rectangle into g� g small grids (we have
g ¼ 10 in this figure). In this way, each neighboring base sta-
tion is located within a certain grid and we replace its
RNCID and CellID by the associated grid IDs Grid_IDx and
Grid_IDy. For example, we represent the two base stations
bs1 and bs5 by the grid IDs ð1; 9Þ and ð8; 1Þ, respectively. The
representation of FdðsÞ above offers the following

Fig. 2. Relative coordinate space.
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advantage: the grid IDs are now independent upon domains
and FdðsÞ ’ Fdðs0Þ holds for two MR samples s 2 D and
s0 2 D0.

3.3 System Overview

Following the general idea above, we introduce three follow-
ing components of TLoc (see Fig. 3): a traditional position
recovery model (e.g., a Random Forest-based regression
model), a matrix to maintain the pairwise domain similarity,
and the transfer learning component for those target domains
suffering from inaccurate position accuracy (caused by insuf-
ficient position labels forMR training samples).

Let us consider the following scenario in a big area,
where the geo-tagged MR samples are distributed unevenly
across this area. To this end, we follow Section 3.2 to divide
the entire big area into multiple smaller areas (a.k.a domains)
and represent MR samples and associated positions under
the associated relative coordinate space. Among the divided
domains, due to the uneven distribution of geo-tagged MR
samples, some of the domains could be with sufficient sam-
ples, and a regression-based position recovery model thus
works very well. Yet other domains may contain scarce geo-
tagged MR samples, the trained position recovery model
usually suffers from poor localization accuracy [13].

To this end, TLoc adapts the recent transfer learning
scheme STL [26] to improve the localization accuracy in the
domains suffering from poor prediction precision, e.g., with
a median error higher than a given threshold. We treat such
domains as target domains. Based on the developed distance
metric (Section 4), we choose those top-k domains that 1)
are most similar to a target domain and 2) are with low
localization errors. Such top-k domains are called the source
domains of the target one. Finally, we transfer the recovery
models from the top-k source domains to the target one
using an adapted STL technique (Section 5).

4 DOMAIN DISTANCE

Since the position recovery model essentially maintains the
mapping from MR features, e.g., FiðsÞ and FdðsÞ, to MR
positions LðsÞ, we thus define the domain distance by two
parts: 1) the distance in terms of MR features and 2) the
distance in terms of MR positions LðsÞ. In this section,
we first give the detail for each of the two parts and next
give the domain distance by integrating the two parts.

4.1 MR Feature Distance

To measure the similarity of MR features between two
domains, the distancemetric takes into account three following

aspects: 1) the general approach to compute the distance of
those MR features FiðsÞ involving cellular signal strength, 2)
the distance by introducing the weight of up to seven base sta-
tions, and 3) the overall distance involving the refinement of
three specific signal strengths (RSSI,AsuLevel and SignalLevel).

4.1.1 Distance of Cellular Signal Strength

First, to compute the distance of cellular signal strength
between two domains, we exploit a histogram structure to
capture the overall distribution of cellular signal strength in a
certain domain, and next compute the histogram distance.
Fig. 4 plots the histograms of two example domains to capture
the distribution of RSSI from serving base stations. The x-axis
is the RSSI value and y-axis indicates the ratio of the MR sam-
ples having RSSI values falling inside a RSSI interval against
total MR samples in the domain. To compute the histogram
distance, we choose three frequently usedmetrics: probabilis-
tic likelihood [14], [33], Kullback-Leibler Divergence [21], and
p-norm distance [31]. Among the three metrics, we empiri-
cally find that the p-norm distance with p ¼ 3 leads to the best
result. Formally, for a domainD (resp.D0), we denote by hD;j

(resp. hD0;j) theMR sample rate in y-axis for the jth RSSI inter-
val in x-axis. When each histogram contains r RSSI intervals,
we compute the histogramdistance betweenD andD0 by

dishistðD;D0Þ ¼
Xr
j¼1
ðjhD;j � hD0;jjÞp

 !1
p

: (1)

4.1.2 Weighted Distance of Cellular Signal Strength

We note that each MR sample contains up to seven base sta-
tions sorted by descending order of cellular signal strength.
These stations contribute differently to the distance in Equa-
tion (1), due to various signal strength caused by these
stations.

Specifically, each domain D contains a set of MR samples.
For all (neighboring) base stations appearing in these MR
samples, we group such stations by their order index in MR
samples: the 1st group contains only one serving base station
with the strongest signal strength, the 2nd group contains the
neighboring base stations of 2nd order index (i.e., RNCID_2,
CellID_2) in each MR sample. In this way, we have up to
seven groups of base stations. Each group contains a list of
base stations, denoted by li with i ¼ 1; . . . ; 7. In this way, we
improve Equation (1) by introducing aweightwi for each li

dismrðD;D0Þ¼
X7
i¼1

wi�disihistðD;D0Þ: (2)

Fig. 3. System overview.

Fig. 4. Histograms of two domains in terms of RSSI from serving base
station (where 5198 indicates RNC ID and 16058/42507 indicates cell ID).
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In Equation (2), disihistðD;D0Þ, computed by Equation (1),
is the histogram distance for the MR signal associated with
the ith lists liðDÞ and liðD0Þ in two domains D and D0, and
wi is the weight of the ith group.

We give the general idea of computing the weight wi

as follows. Recall that Section 3.2 transforms the neigh-
boring base stations (identified by RNCID and CellID)
into grid IDs. Such grid IDs approximate the positions of
neighboring stations within each domain: the nearest
(resp. farthest) base stations contribute to the strongest
(resp. weakest) cellular signal strength. We leverage these
grid IDs to compute the weight wi. As shown in Fig. 5,
we have the 2nd base station lists in two domains D and
D0, denoted by l2ðDÞ and l2ðD0Þ, which contain 4 member
stations bs2;1 . . . bs2;4 and 3 stations bs02;1 . . . bs

0
2;3, res-

pectively. Based on the distance disi¼2bs ðD;D0Þ of the two
lists l2ðDÞ and l2ðD0Þ, , we define the normalized weight
wi as follows:

wi ¼ edis
i
bsP7

j¼1 e
dis

j
bs

: (3)

To compute the item disibs above, as shown in Fig. 5c, we
exploit the average position of the 4 stations in l2ðDÞ, denoted
by ðxbsi ; ybsiÞ, and one of the 3 stations in l2ðD0Þ, denoted by
ðxbs0

i
; ybs0

i
Þ. After that, we compute the euclidean distance

between the two average positions

disibsðD;D0Þ ¼ ½ðxbsi � xbs0
i
Þ2 þ ðybsi � ybs0

i
Þ2�12: (4)

Nevertheless, the average positions above might lose the
geographical characteristics of base stations. Thus, as an
improvement to compute the item disibs, as shown in Fig. 5d,
we first calculate the pairwise distance between the base sta-
tions in liðDÞ and liðD0Þ, and then compute the average of the
pairwise distance

disibsðD;D0Þ ¼
PjliðD0Þj

n¼1
PjliðDÞj

m¼1 edðbsi;m; bs0i;nÞ
jliðDÞjjliðD0Þj : (5)

In Equation (5), edð�Þ indicates the euclidean Distance of
two base stations bsi;m and bs0i;n, whose positions are rep-
resented by grid IDs under the relative coordinate space.

Note that the 4G LTE MR samples collected by Android
APImaymiss the IDs of neighbour base stations (see Section 2),
andwe cannot leverage the positions of base stations, required
by Equation (5), to compute the weight wi. To overcome this
issue, we could approximate wi ¼ 1=iP7

j¼1 1=j
, such that wi is

inverse to the index number i. This approximation makes
sense: the index number i essentially indicates the signal
strength of base stations, and the weight w1 regarding to the
1st index (i.e., the serving base station) consequently contrib-
utesmost to the overall distance.

4.1.3 Overall Distance of MR Features

Third, recall thatMR samples in Table 2 contain three types of
signal strength:RSSI,AsuLevel and SignalLevel. For such signal
strength, we might first follow Equation (2) to compute three
associated histogram distance such as disrssimr ðD;D0Þ and next
sum the threeweighted distance as the overall distance. How-
ever, the sum may not provide a sensible overall measure if
the three types of cellular signal strength are heavily depen-
dent. In fact this is the case becauseAsuLevel is a scaling value
of RSSI, i.e., in 2G GSM data set, AsuLevel ¼ ðRSSI þ 113Þ=2
[25], and disasumr can be treated as a linear transformation of
disrssimr . Among the three types of signal strength, we thus take
into account the independent contribution of RSSI and Signal-
Level to compute the overall distance ofMR features.

In terms of SignalLevel, we follow Equation (2) to compute
its histogram distance dissigmrðD;D0Þ. As shown in Fig. 6, the

distribution of dissigmrðD;D0Þ in our datasets significantly dif-

fers from the one of disrssimr ðD;D0Þ: around 40 percent Signal-
Level distance values are 0.0 and more than 85 percent (resp.
95 percent) are smaller than 0.1 (resp. 0.3). The numbers
indicate that the majority of SignalLevel feature values in the
datasets are zeros and the output and input signals are equal
(see Section 2 for the meaning of SignalLevel). Thus, we could
assign a small weight for SignalLevel and among the overall
distance, the distance of SignalLevel contributes less than the
one ofRSSI. Since RSSI distance plays a key role in the overall
distance, we use the average Pearson coefficient c between RSSI
and SignalLevel as theweight of SignalLevel.

Based on the intuition above, we compute the overall dis-
tance of MR features as follows:

dismrðD;D0Þ ¼ 1� disrssimr ðD;D0Þ þ c� dissigmrðD;D0Þ
1þ c

disrssimr ¼
X7
i¼1

wi� disihist rssiðD;D0Þ

dissigmr ¼
X7
i¼1

wi� disihist sigðD;D0Þ:

(6)

Fig. 5. Distance of BS locations between domains.

Fig. 6. Distribution of RSSI (left) and SignalLevel (right) histogram
distance between pairwise domains.
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In the equation above, disrssimr ðD;D0Þ (resp. dissigmrðD;D0Þ) is
the weighted histogram distance betweenD andD0 for RSSI
(resp. SignalLevel) using Equation (2), and c is the average
Pearson coefficient between RSSI and SignalLevel.

4.2 Relative Position Distance

Besides MR features, we also compute the distance of MR
positions (labels) between two domains. Since we have
represented MR positions by relative ones, we compute the
distance by relative positions. In addition, instead of using
discrete MR positions, we connect such positions into mov-
ing trajectories.

For one mobile device (identified by IMSI), we have
a series of relative positions corresponding to the neigh-
bouring MR samples sorted by the MR time stamp. In the
case where the timestamp gap between any two neigh-
bouring MR samples exceeds a threshold (e.g., 60 minutes),
we divide the MR series into multiple short ones. A short
MR series then becomes an associated moving trajectory.
The trajectories are useful for understanding the overall
spatio-temporal mobility patterns of mobile devices. Thus,
we compute the distance of the trajectories, instead of MR
positions, between two domains.

Given two trajectories T and T 0, we compute the Frechet
distance [10]: disðT; T 0Þ ¼ min½maxt2T;t02T 0disðt; t0Þ�, where t
and t0 indicate the sample points in trajectories T and T 0,
respectively. If an euclidean distance is used to compute
disðt; t0Þ, then the sub-item maxt2T;t02T 0dis½t; t0� computes the
maximum distance, and the item min½maxt2T;t02T 0disðt; t0Þ�
finds the minimal one among the maximum distance.

In addition, each domain may contain multiple trajecto-
ries. Thus, we compute the average of the sum of pairwise
trajectory distance

disposðD;D0Þ ¼
P

T2D;T 02D0 disðT; T 0Þ
jDj � jD0j ; (7)

where jDj and jD0j indicate the trajectory count in domains
D and D0, respectively. disposðD;D0Þ indicates the average
distance between any two trajectories in D and D0. As
shown in Fig. 7, the trajectory distance between two
domains (6188, 27394) and (6188, 27377) is smaller than the
one between two domain (6188, 27394) and (6188, 26051).

4.3 Source Domain Selection by Domain Distance

We now integrate the two distance of MR features and posi-
tions above to define the overall domain distance

distðD;D0Þ ¼ wmr � dismr þ wpos � dispos: (8)

In the equation above, the weights wmr and wpos with
0 � wmr;wpos � 1:0 and wmr þ wpos ¼ 1:0 measure the impor-
tance of dismr and dispos, respectively. By default we set
wmr ¼ wpos ¼ 0:5. Our evaluation will show that such param-
eters can be effectively tuned according to the amount of
labelled samples in source and target domains.

Given the defined metric above, we are interested in how
the similar domains are also physically close. To this end, for
our Jiading 2G GSM data set, we plot Fig. 8 (left) to give the
average domain distance under various physical distance
between domains. The x�axis indicates the interval of the
physical distance, and the y-axis is the average domain dis-
tance within the interval. This figure indicates that two physi-
cally closer domains, e.g., the physical distance is smaller than
2.5 km, are more similar. Moreover, two domains, though
rather far away, still have chance to be similar.

Next, Fig. 8 (right) plots the physical distance between
top k ¼ 3 source domains and a target one, where x�axis is
the interval of physical distance between source and target
domains, and y�axis is the rate of source domains. We find
that the distance between most source and target domains
is smaller than 2.5 km, consistent with Fig. 8.

From Fig. 8, we find that the needed source domains for a
target one are physically close. In addition, some far-away
domains are useful for a target one (In Section 6, we select
source domains across different areas which leads to the best
transferring results). Thus, we compute the pairwise domain
distance for the top-kmost similar source domains for the tar-
get ones. Nevertheless, when the count of divided domains is
a large number, the pairwise domain distance involves non-
trivial computing overhead. Thus, for higher efficiency, we
apply the locality sensitive hash (LSH) technique [15] to
approximately find the top-k source domains for a target one.
Our experimentwill investigate the trade-off between approx-
imation precision and computation efficiency.

5 STRUCTURE TRANSFER IN RANDOM FORESTS

In this section, we give the detail of the proposed transfer
learning framework on a Random Forest (RaF) regression
model. We consider the labelledMR samples (denoted by ST )
in a target domain and those (denoted by SS) in the top-k
source domains. A simply way is to mix the data samples
from ST and SS , and then apply a classic RaF algorithm [7].
However, this approach cannot differentiate source domains
from the target one, and thus does notwork verywell.

To solve the issue above, we adapt the recent structure
transfer learning (STL) [26] (its general idea refers to Section 2)
to solve a regression model that differs from the classification
problem in the original STL work [26]. Fig. 9 gives the work

Fig. 7. Trajectory distance of the left figure is smaller than the right one,
where 6188 is RNCID and 27394 is CellID.

Fig. 8. Domain selection (Jiading 2G). Left: Domain distance; Right:
Top-k source domains.
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flow of STL. The input of STL is the labelledMR samples in ST
(target domain) andSS (multi-source domains), and the output
is a transferred random forest model which is adaptive to the
target domain. Specifically, we first use the data samples from
SS (i.e., those k selected source domains) to determine the fea-
ture f which can perform the split at each node v in a certain
decision tree (DT). Next, we re-calculate the node split thresh-
olds ff by using only the data from ST . For example, still in
Fig. 9, the original threshold of feature v at node v is -65 com-
puted by source samples SS only. Then the threshold is opti-
mized to -70 by the target samples ST . In this way, STL works
top-down to select a new threshold for each node, and finally
generates a random forestwith transferredDTs.

Ideally, a desirable threshold yields high similarity
between the distributions transferred from source domains
to the target one. The purpose is that the threshold is adap-
tive to the target domain. Meanwhile, this similarity is
restricted to “informative” thresholds where, for any suffi-
ciently small � > 0, the information gain (IG) of threshold x
is larger than the IG of any other x0 2 ðx� �; xþ �Þ in the
�-neighbourhood of x. It means that the thresholds are local
maximums of IG. We thus formulate the threshold selection
as an optimization problem

MaxxDG Qt
v; f; x; Pv;leftðfÞ; Pv;rightðfÞ

� �
s:t: x2R; 8x0 2ðx� �; xþ �Þ :

� hðxÞ �meanðyÞ½ �2� � hðx0Þ �meanðyÞ½ �2:
(9)

In the equation above, Qt
v denotes the samples of target task

t at node v, hðxÞ (resp. hðx0Þ) is the prediction of x (resp. x0),
meanðyÞ is the mean of label y, and DG is the Jensen-
Shannon divergence gain defined on Kullback-Leibler
divergence and mean distribution. In addition, Pv;leftðfÞ and
Pv;rightðfÞ indicate that label distribution of two subsets (left
and right) split on the feature f at node v. The optimization
problem in Equation (9) uses DG to quantify distributional
similarity and information gain criterion computed by
� hðxÞ �meanðyÞ½ �2 to measure a threshold’s informative
value. Thus, the solution of this optimization problem
maximizes the defined similarity DG to make sure that the
optimal decision threshold ff is adaptive enough to the
target domain, thus leading to a better decision threshold ff.

6 EVALUATION

6.1 Datasets and Counterparts

Datasets. In Table 3, wemainly use seven data sets collected at
two cities in China: Shanghai and Urumqi. The data sets in

Shanghai are sampled from three areas: 1) a university cam-
pus in the sub-urban area Jiading, 2) another university cam-
pus in the urban area Siping, and 3) several main roads in the
core urban area Xuhui. The average physical distance of the
three areas is around 15-37 km. In each of the three areas in
Shanghai, we have two data sets containing MR records col-
lected from 2G GSM and 4G LTE networks. The data sets in
Xuhui were sampled from backend cellular towers, and the
data sets in Jiading and Siping campus were collected by our
developed Android mobile app via frontend Android API. In
addition, to generally validate the performance ofTLoc in var-
ious cities, we collect a 2G GSM MR data set by our app in
Urumqi, where only 2G GSM cellular network is available.
Since the Urumqi dataset contains a relatively small quantity
of MR samples, we by default evaluate TLoc on the Shanghai
data setswithout special mention.

For the mobile phones installed with our app, mobile
users holding these mobile phones moved around the road
network inside the campus. The app then collected MR sam-
ples and GPS coordinates. Specifically, when collecting MR
samples from a cellular network, the mobile app switches on
GPS receivers and records the current GPS coordinates. The
collected GPS coordinates are used as the location ground
truth. Note that the GPS coordinates collected by mobile
phonesmay contain noise.We thus employ the data cleaning
techniques including map-matching to mitigate the effect of
noise [39].

Counterparts. We compare TLoc against four previous
works and two variants of TLoc (see Table 4).

1) We first implement the classic fingerprinting-based
approach CellSense [14] and a very recent improve-
ment work NBL [20]. NBL assumes a prior Gaussian
probability of signal strength in divided cell grids. We
note that the reasonable size of cell grids in NBL
involves the following trade-off: each cell grid should
be great enough to contain sufficient MR samples, and
yet an excessive size of the grid could alternatively

Fig. 9. Details of structure transfer in random forest.

TABLE 3
Statistics of Used Data Sets (BSs: Base Stations)

Jiading: 2/4G Siping: 2/4G Xuhui: 2/4G Urumqi: 2G

# of samples 15954/10372 6723/4953 13404/7755 7645
Route Len: km 94.1/52.1 24.6/15.5 26.4/12.7 17.3
# of samples/sec 2�3 2�3 1 2�3
BS density 25.85/29.43 27.16/34.67 28.18/37.12 18.31
# of serving BSs 61/44 51/42 21/16 39

TABLE 4
Counterparts

Counterpart Description Source Selection

NBL [20] Recent fingerprinting method No transfer

CellSense [14] Classical fingerprinting method No transfer

DeepLoc [27] Recent deep neural network method No transfer

Non-Transfer [40] Random Forest regression No transfer

MTL [28] Multi-task learning in Random Forest No src selection

SVR-Transfer [37] Transfer Learning in SVR No src selection

TLoc Our approach Auto-selection
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lead to higher localization error (because the center of
a greater grid, which is used to approximate the posi-
tions of all samples within the grid, leads to a higher
error).

2) The previous work CCR [40] implements a pure RaF-
based regression model and has demonstrated better
localization accuracy than other existingworks includ-
ing the classic work CellSense. Since CCR does not
perform knowledge transfer and TLoc performs
knowledge transfer on top of RaF-based regressor, we
thus name it Non-Transfer in Table 4. In addition, we
also implement a recent deep neural network-based
localization approach, namelyDeepLoc [27]) as one of
the non-transfer learning approaches.

3) We are interested in how the adapted STL model is
comparable with other transfer learning techniques.
Consider that multi-task learning (MTL) is widely
used in the transfer learning community [28], and
Supported Vector Regression (SVR) has been used for
indoor WiFi localization [37]. We thus develop two
variants of TLoc by usingMTL andSVR as the alterna-
tive transfer learning techniques. For the three transfer
learning-based approaches (STL, MTL, and SVR), we
follow TLoc to divide a big area of interest (where each
MR data set was sampled) into smaller domains and
perform knowledge transfer from source domains to
target ones.

We tune the key parameters of the aforementioned coun-
terparts as follows. First, according to CellSense [14] and
DeepLoc [27], we carefully tune the grid size of 50� 50m2

for the best localization precision. In addition, following
[37], we use the radial basis function (RBF) kernel in
SVR-Transfer. Since Non-Transfer, MTL, and TLoc are all
RaF-based approaches, we follow the previous works
including a benchmark [13] and Non-transferr [40] to care-
fully tune the following parameters of RaFs: 1) the number
of trees is set to 200 (to achieve a good trade-off between
accuracy and time cost), 2) the number of used features
when looking for the best split is set to

ffiffiffiffiffi
nf
p

(e.g., nf ¼ 44 is
the number of total features in 2G GSM MR datasets), and
3) nodes are expanded until all leaves are pure.

Following the work [13], we adopt the following criteria
to empirically determine whether or not a certain domain
is treated as a target one. A domain is considered as a tar-
get domain, if 1) the median error of this domain is greater
than 30 meters for 4G LTE data or 40 meters for 2G GSM
data, and 2) the number of training samples within this
domain is smaller than a threshold, t ¼ 50. From the locali-
zation result of non-transfer CCR in each domain (we use
Jiading datasets for illustration), we find that 1) the number
of training samples in each domain is between the interval

from 22 to 864 and 2) the localization median error is
between 8.3 to 86.3 meters. Moreover, we find a strong cor-
relation between the localization error and the quantity of
training samples. That is, among those domains with
median errors greater than the aforementioned thresholds
(i.e., the so-called target domains with low accuracy),
85 percent of them contain 50 or even fewer (labelled) MR
samples. Fig. 10 plots the distribution of the number of
training samples in the domains of low accuracy. Thus, we
empirically set t ¼ 50 for target domains, such that the
majority of available domains have improved localization
performance by TLoc.

During the evaluation, we adopt 10 times 5-fold cross
validation to choose 80 percent training and 20 percent test-
ing data from each data set [16], and compare the prediction
result of the testing data against ground truth. We compute
the prediction error by the euclidean distance between pre-
diction result and ground truth.

Table 5 lists the values of the key parameters in our experi-
ments.Weuse the default values for the baseline experiments,
and vary their values in some appropriate range for sensitivity
study. Given the experimental settings above,wemainly eval-
uate TLoc to study 1) how TLoc performs against the counter-
parts (Section 6.2), 2) how TLoc is generally beneficial to
various transfer learning approaches and other localization
schemes (Section 6.3), 3) how to meaningfully select source
domains (Section 6.4), 4) how to design an effective measure-
ment of domain distance (Section 6.5), and finally 5) how
TLoc is sensitive to some key parameters such as the number
of source/target MR samples (Section 6.6). After that, we
visualize the localization result (Section 6.7) and give the
discussion (Section 6.8).

6.2 Baseline Study

We first report the position recovery errors of seven position
recovery approaches. In Table 6. We show the median,
mean and 90 percent errors (denoted by 50 percent, Me, and
90 percent) in cases of using 2G and 4G network data,
respectively. From Table 6, we have the following findings.

First, TLoc achieves the least errors among the seven
approaches on all data sets. For example, in Siping 2G GSM
dataset, the median error of NBL, CellSense, DeepLoc,
Non-Transfer, MTL, SVR-Transfer, and TLoc algorithms is
42.8, 44.9, 35.5, 37.5, 34.3, 78.4 and 28.8 meters, respectively.
Such result indicates that TLoc outperforms the
Non-Transfer approach by 23.2 percent. Similar situation
occurs on other data sets. Among the seven algorithms, the
three RaF-based algorithms, including TLoc, MTL, and
Non-Transfer, lead to better accuracy than SVR-based
and fingerprint-based algorithms. Moreover, Non-Transfer,

Fig. 10. Number of training samples in those domains with low-accuracy.

TABLE 5
Key Parameters

Parameter Default Values

Transfer techniques in RaF Structure transfer
Top k source domains k ¼ 3
Localization threshold of a target domain (meters) 40 (2G)/ 30 (4G)
t: Num. of MR samples of a target domain 50
% of used MR samples in target/source domains 80/100
Domain distance weights wmr ¼ wpos ¼ 0:5
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i.e., the RaF-based localization approach, indicates the com-
parable localization accuracy to DeepLoc.

Second, the 4G LTE data sets exhibit lower errors than
the 2G GSM data sets. For example, in Siping 4G LTE data
set, TLoc has the median error of 23.20 meters, 16.88 percent
lower localization error when compared to Siping 2G GSM
dataset. By carefully checking the database of base stations,
we find that the 4G LTE base stations are deployed more
densely than the 2G GSM stations. In addition, Siping cam-
pus is located at the urban areas in Shanghai with denser
deployment of base stations than Jiading campus in sub-
urban areas in Shanghai. Thus, the localization errors on
Siping data sets, including 2G GSM and 4G LTE, are smaller
than those on Jiading data sets.

Third, in terms of the localization performance of TLoc
against the two fingerprint-based methods CellSense and
NBL, TLoc consistently outperforms the two fingerprint-
based methods on all data sets. In addition, NBL and
CellSense exhibit very similar curves on all data sets,
though NBL leads to slightly lower errors than CellSense.
This result is consistent with the one reported by the evalua-
tion of NBL. Note that due to the similar curves between
CellSense and NBL, in the rest of this section, we mainly
choose NBL as the representative implementation of a
fingerprint-based method.

Fourth, although TLoc is used to overcome the data scar-
city issue, In Table 6, it is interesting to see howTLoc generally
performs in diverse domains, e.g., those with sufficient MR
samples (e.g., Xuhui dataset) and those located in a city such
as Urumqi, which has a rather different distribution of base
stations from the large urban city Shanghai. From the results
of Xuhui and Urumqi data sets, we have two findings. First
for the domains in Xuhui, TLoc again consistently outper-
forms Non-Transfer, although relatively small improvement
when compared with the results in Jiading and Siping data
sets. Second, for the domains in Urumqi, it is not surprising
that the localization error for the Urumqi data set is much
higher than that for the Xuhui data set, mainly due to the
rather sparse deployment of base stations in Urumqi. Never-
theless, in the Urumqi data set, TLoc still leads to a significant
reduction of localization errors overNon-Transfer.

Finally, in terms of the accuracy of the RaF-based transfer
learning approaches, we find that TLoc outperforms MTL in
all data sets. It is mainly becauseMTL learns the tasks for both
source and target domains, and yet TLoc adaptively tunes the
split thresholds on RaF nodes by the MR samples in target
domains. In addition, those three RaF-based algorithms,
including TLoc, MTL, and even Non-Transfer, all achieve

much better accuracy than SVR-based and fingerprint-based
algorithms, consistent with the benchmark [13]. Themain rea-
son is that it is hard for SVR to select an appropriate kernel
function for the nonlinear feature space ofMR samples.Mean-
while the hierarchical tree in RaF works very well to model
the spatial structure: from a big area [40] to divided small
domains.

6.3 Benefits of TLoc

Benefit to Instance-Based Transfer Learning. Beyond the model-
based STL used by TLoc, we believe that the top-k source
domains can offer benefits to other transfer learning techni-
ques, e.g., instance-based transfer. To this end, based on the
selected source domains, we mix the MR samples from both
source and target domains to train a RaF regression model
for the target domains. This approach can be intuitively
treated as instance-based transfer, namely Ins-Transfer.
Fig. 11a plots the results of Non-Transfer, Ins-Transfer and
TLoc. Both Ins-Transfer and TLoc lead to lower errors than
Non-Transfer. These results verify the benefits of using the
top-k similar source domains.

Benefit to Fingerprinting-Based Localization. In this experi-
ment, we explore the potential of applying the techniques
developed for TLoc to fingerprinting-based methods, e.g.,
NBL [20]. Similar to TLoc, we divide the area of interest into
multiple domains and perform the representation of MR fea-
tures and position labels as before. Next, for the MR features
and positions within each domain, we follow NBL to perform
the fingerprinting-based position recovery. We name the NBL
method in relative coordinate space as reNBL. Based on the
reNBL, we implement the instance-based transfer, namely
Tran-reNBL, by first mixing the training samples from source
and target domains and then performing position recovery by
reNBL. We compare NBL and the two variants reNBL and
Tran-reNBL in Fig. 11b. As shown in this figure, the instance
transfer in Tran-reNBL does lead to the lowest localization
error among the threemethods as expected.

TABLE 6
Baseline Experiment

Dataset
Jiading(2G) Jiading(4G) Siping(2G) Siping(4G) Xuhui(2G) Xuhui(4G) Urumqi(2G)

50% Mean 90% 50% Mean 90% 50% Mean 90% 50% Mean 90% 50% Mean 90% 50% Mean 90% 50% Mean 90%

NBL [20] 53.8 67.4 188.8 51.8 69.3 179.5 42.8 63.0 298.3 43.2 64.9 256.7 45.9 59.0 216.8 32.2 52.4 191.6 58.3 70.2 213.6
CellCense [14] 55.4 68.7 181.1 55.6 70.6 176.4 44.9 65.7 275.4 45.8 66.3 262.6 44.7 60.2 221.3 34.9 55.5 184.3 59.7 71.4 198.7
DeepLoc [27] 37.8 47.3 175.3 37.2 48.9 184.5 35.5 44.7 219.9 38.7 49.6 267.5 31.2 40.3 210.5 27.4 39.8 180.1 44.2 62.9 175.6
No-Transfer [40] 38.8 47.6 109.8 35.6 46.5 100.9 37.5 42.8 119.5 35.8 41.4 113.7 30.0 40.2 113.4 20.0 34.1 98.3 45.2 64.3 132.3
MTL [28] 34.3 44.4 80.2 32.1 42.7 79.4 34.3 40.6 89.4 32.2 40.1 77.9 28.8 38.9 80.3 19.5 33.7 96.6 38.3 60.5 99.7
SVR-Transfer [37] 78.4 90.3 79.8 91.8 47.2 167.4 78.4 88.2 145.3 74.5 85.7 159.7 59.3 70.3 152.2 44.8 60.2 149.7 68.9 81.4 150.7
TLoc 28.1 40.2 72.3 26.3 39.6 69.8 28.8 39.7 69.2 23.2 37.4 67.4 27.7 37.5 72.5 18.9 32.4 69.5 35.4 49.1 92.8

Fig. 11. Benefits of TLoc (from left to right). (a) Instance-based Transfer.
(b) Fingerprinting-based localization.
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6.4 Source Domain Selection

Domain Selection. First we compare the proposed approach of
selecting the top-k most similar source domains against two
alternative approaches: 1) STL min selects the top-k domains
with the least prediction error (achieved by Non-Transfer),
and 2) STL random randomly selects k source domains. After
these source domains are selected, we adopt STL to transfer
knowledge from source domains to target ones. As shown in
Fig. 12a, both STL min and STL random even lead to higher
errors than Non-Transfer. The result verifies the necessity of
carefully selecting the most similar source domains. Other-
wise, those dissimilar source domains, e.g., those selected by
STL min and STL random even harm the localization accu-
racy of target domains.

Domain Distance. Motivated by the result above, we are
further interested in the effect of selected source domains
by various domain distance. In Table 7, the target domains
of Jiading 2G data set are divided into 5 groups according to
the average domain distance of Top-k (= 3) source domains.
For each group, we compute the average median errors on
target domains before transfer and after transfer. From this
table, we have the following findings. 1) A source domain
with lower distance (a.k.a higher similarity) to a target
domain leads to a more positive transfer effect with lower
localization errors. It means that using similar source
domains does improve the localization accuracy of target
domains. 2) When the domain distance is greater than 0.95
(though the proportion of such target domains is trivially
1.7 percent), it indicates the selected source domains are
rather dissimilar to the target domain. Such source domains
result in a negative transfer effect and higher localization
errors, consistent with the result in Fig. 12a. Thus, we can
empirically set a pre-defined threshold of domain distance,
e.g., 0.95, to prune such dissimilar source domains. In this
way, we can ensure that the selected source domains are
truly similar to target ones and thus avoid the negative
transfer effect of dissimilar source domains.

Areas of Source Domains. Third, we are interested in the
areas where selected source domains are located. To this
end, we purposely select source domains from 1) all three

areas in Shanghai (all), 2) Jiading alone, and 3) Siping alone.
In Fig. 12b, the source domains from all areas lead to the
least errors, and Non-Transfer suffers from the highest
errors. Specifically, for the target domains in Jiading 2G data
set, if we select source domains from all three areas in
Shanghai, we can find that 11.1 percent selected source
domains are from Xuhui, 28.4 percent source domains are
from Siping, and 60.5 percent source domains are from Jiad-
ing. These numbers indicate that most of source domains
and the corresponding target domains are within the same
area, but still a small number of source domains are from
the two other areas. If we only select the source domains
from the same area where the target ones are located, those
source domains from other areas could be missed. In addi-
tion, as shown in Fig. 12b, the source and target domains
within the same area Jiading can achieve less errors than
those across areas, i.e., the target domains in Jiading but the
source domains in Siping. It is because among those similar
source domains for a certain target domain, most of them
are within the same area, and a small number of them are
from other areas, consistent with Table 7.

Source-Target Domains Within the Same Area. Differing
from the experiment in Fig. 12b above, we now evaluate
TLoc on the source-target domains within partially overlap-
ping areas. Fig. 13 illustrates an example scenario for two
specially chosen domains in our Jiading 2G dataset: the MR
samples (blue dots) in a certain source domain and those
(red dots) in a target domain are partially co-located within
the same road segments. Given this scenario, we purposely
study various approaches to select MR samples from the
source domain, and evaluate the performance of TLoc.
From Table 8, we find that simply selecting the source sam-
ples only from the overlapping road segments incurs the
highest errors. It is mainly because the source and target
samples even within the same road segments could exhibit
very different signal features and relative position coordi-
nates (because MR samples within the same road segments
could be connected to various serving base stations).
Instead, via the STL scheme, TLoc adapts the RaF regression
model built from the source domain to the target one,

Fig. 12. Source domain selection (from left to right). (a) Four
approaches. (b) Areas of source domains.

TABLE 7
Source Domain Effects of Varying Domain Distances Between

Source and Target Domains: Jiading 2G GSM Data Set

Median Error on Target
Domain (meters)

Avg. Domain Distance of Source Domains

< 0.4 0.4-0.6 0.6-0.8 0.8-0.95 > 0.95

Before Transfer 49.3 51.3 48.9 51.9 50.4
After Transfer 34.1 35.7 37.7 46.2 51.2
% of Target Domains 15.3 25.6 42.8 14.6 1.7

Fig. 13. From left to right: (a) Domain intersection. (b) Weight tuning.

TABLE 8
Effect of Intersection Between Two Different Domains

Types of Source Samples Median Mean 90%

All samples in source 40.6 51.4 108.7
Samples in intersection area 42.4 52.5 110.4
Samples in non-intersection area 41.6 52.9 112.3
Non-Transfer 42.5 53.7 105.2
TLoc with Source Selection 33.8 45.3 94.4
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leading to the least error. This experiment clearly indicates
the advantages of TLoc over the approach that simply
selects those source domains located at the same road seg-
ments as the target ones.

Trade-off Between Localization Errors and Time Cost. First,
by varying the number k, we study the effect of the number
k on the median error and running time of TLoc (due to
space limit, this figure is not shown). The experimental
result indicates that a greater number k in general leads to
decreased errors, but the curve remains rather stable for
k > 3. The errors even become slightly higher when k
reaches 5. It is mainly because a greater number k indicates
less similarity between source and target domains. A dis-
similar source domain may lead to negative transfer effect.
In terms of the time efficiency of TLoc measured by the
training and prediction time, as the number k grows, more
training samples are used by the model, leading to more
running time. Thus, to balance the trade-off between time
efficiency and model accuracy, we by default set k ¼ 3.

Next, consider that TLoc requires pairwise domain
distance, incurring non-trivial computing overhead. To
overcome this issue, we apply the technique of Locality Sen-
sitive Hash (LSH) [15] to efficiently approximate the domain
distance. As shown in Table 9, though LSH is only an
approximation approach, it can still achieve acceptable
localization errors (e.g., 11.1 percent higher median error)
while the time cost is greatly reduced by 4.58�.

6.5 Domain Distance

Ablation Study of Domain Distance. Recall that the domain
distance is computed by integrating MR feature distance
dismr and relative position distance dispos, and the MR fea-
ture distance dismr is further computed by the weighted
items disrssimr and dissigmr. Thus, to study the effect of each

item, Table 10 first uses disrssimr , dis
sig
mr, dismr, dispos alone, and

then various combinations of these items to compute
domain distance for source domain selection. First, using
disrssimr alone leads to lower errors than using dissigmr alone,
indicating that disrssimr makes a major contribution to dismr.

Second, dismr leads to slightly lower errors than dispos.

Finally, it is not surprising that source selection by the dis-
tance integrating the weighted dismr and dispos leads to the
best result.

In terms of the weights wmr and wpos (See Equation (8) in
Section 4), we study the effect of weight setting on the errors
of TLoc. As shown in Table 10, using either dismr or dispos
alone, i.e., wmr ¼ 1:0 or wpos ¼ 1:0, cannot lead to the least
error. Instead, the equal weights wmr ¼ wpos ¼ 0:5 lead to
the best result. It makes sense because the position recovery
model maps MR features to associated positions. Thus, in
general, dismr and dispos leads to roughly equal importance
for domain distance distðD;D0Þ.

We note that the weight setting should be adaptive to the
ratio of MR samples between target domains and source
ones. To this end, for a given ratio of MR samples between a
target domain and source domains, we empirically tune the
weights wmr and wpos which lead to the least prediction
error, and plot the weight against the MR sample ratio in
Fig. 13b. When the ratio is close to 0.0 (indicating that the
target domain has very few labelled MR samples), wmr val-
ues are typically greater than wpos. It is because the domain
distance mainly depends upon MR features instead of MR
positions (due to the ratio equal to 0.0, i.e., very few MR
position labels in target domains). As the ratio becomes
greater, i.e., more target labelled samples, wmr remains
stabilize equal around 0.5, consistent with Table 10.

Number of Trajectories. Recall that relative position dis-
tance is dependent on the number of trajectories in domains.
Thus, to study the effect of the number of trajectories on
localization errors, in Table 11, we divide all target domains
into three groups according to the number of trajectories.
For each target domain in a group, we compute the distance
between this target domain and a certain source domain,
then use the distance as the criterion for source domain
selection, and finally compute the average median error for
all target domains in this group. From this table, the group
with more trajectories corresponds to lower localization
errors. It is mainly because in our datasets, the group with
more trajectories indicates a higher spatial coverage rate of
MR samples in target domains. Moreover, more trajectories
in target domains indicate more significant contribution of
the weight wpos and lead to low errors, which is consistent
with the result in Fig. 14a.

6.6 Sensitivity Study

In this section, we vary the values of several key parameters
and study the performance of TLoc.

Transfer Learning Techniques in Random Forests. Recall that
we adapt the Structure Transfer (STL) technique for model
transfer. Besides STL, the previous work [26] proposed two

TABLE 9
Trade-off Between Localization Errors and Time Cost

Source Selection
Criterion

Localization Error
(meters) Avg. time per Target

domain (ms)
Median Mean 90%

Domain Distance 28.1 40.3 72.3 1657
LSH Approximation 32.4 47.7 90.6 362

TABLE 10
Ablation Study of Domain Distance: Jiading 2G GSM Data Set

Domain Distance Medain Mean 90%

disrssimr 33.6 50.9 82.7
dissigmr 39.4 58.2 99.3
dismr 32.5 46.4 78.7
dispos 34.3 49.2 82.5
0:5 	 dismr þ 0:5 	 dispos 28.1 40.2 72.3
0:67 	 dismr þ 0:33 	 dispos 31.5 44.4 76.2
0:33 	 dismr þ 0:67 	 dispos 33.4 48.6 79.6

TABLE 11
Effect of Number of Trajectories in Domain Distance:

Jiading 2G GSM Data Set

No. of Traj in Target Median Error on Target (meters)

Source Selection
by distðD;D0Þ

Source Selection
by dispos

Non-Transfer

1-4 42.2 50.1 62.6
5-8 34.2 39.3 55.3
8+ 27.8 32.7 45.2
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othermodel transfer algorithms: Structure Expansion/Reduc-
tion (SER) and MIX. Here, SER searches greedily for locally
optimal modifications of each tree structure by trying to
locally expand or reduce the tree around individual nodes,
and MIX utilizes a majority vote on the decision trees trans-
ferred by either STL or SER. As shown in Table 12, we evalu-
ate the effectiveness of these three model transfer techniques.
STL leads to the lowest localization errors and SER suffers
from the highest errors. It is mainly because the selected
source domains are with the highest similarity with the target
domain, and STL does not significantly update the DTs
trained from source domains. These results are consistent
with the previous work [26], where source and target
images do share the similar geometric shapes though
with various inverted colors and other features. In addi-
tion, the running time of STL is much faster than STL
and MIX due to the trivial update of the node thresholds
in the decision trees of STL. Therefore, we implement
our model transfer by STL.

Proportions of Target Samples. First, by varying the propor-
tions of data samples in target domains from 0 � 80%, we
train TLoc and plot themean, median and 90 percent errors in
Fig. 14a. When no data samples are used in target domains,
TLoc has to fully leverage the trained models from source
domains, leading to the highest errors. When more samples
are used in target domains, the errors become gradually
smaller. It is mainly because TLoc adapts the models origi-
nally trained on source domains towards target domains.

Proportions of Source Samples. Besides the samples in tar-
get domains, we also vary the proportion of source data
samples from 0 to 100 percent in Fig. 14b. The proportion
equal to 0, i.e., the No-Transfer approach, suffers from the
highest error. More source samples lead to lower errors.
Nevertheless, when comparing the sub-Figs. 14a and 14b,
we find that TLoc is more sensitive to the data samples in
target domains. It makes sense because TLoc performs
the position recovery on target domains, and the data
samples in target domains thus directly determine the
errors of TLoc.

Base Stations Density. From Table 3, we find that the base
stations in Jiading datasets (both 2G GSM and 4G LTE) are
much sparser than those in Siping. Thus, the localization
errors in Jiading datasets are slightly higher than those in
Siping dataset. Moreover, we note that TLoc builds the posi-
tion recovery model by referring to serving base stations as
domain centers. Thus, we randomly choose some non-serv-
ing base stations in each MR sample, and reset such base
stations and associated cellular signal strength values to be
empty. In this way, we drop these base stations from MR
samples and vary the density of base stations in MR data-
sets. In Fig. 14c, the x-axis shows the percentage of dropped
base stations and the y-axis gives the median error. A larger
dropping rate leads to higher localization error. However,
when the total number of dropped base stations rises, the
prediction error does not rise sharply. This experimental
result indicates that the localization precision of TLoc
mainly depends upon serving base stations.

Count g of Divided Grids.Recall that in Section 3.2, we repre-
sent the MR features FdðÞ by grid IDs which require the divi-
sion of each domain into g 	 g smaller girds. In Fig. 14d, when
the number g of divided grids grows (i.e., smaller gridwidth/
height), the error of TLoc first increases and then remains sta-
ble when g > 20. The reason is as follows. A smaller g (i.e.,
larger grid width/height) leads tomore neighboring base sta-
tions within each divided grid cell, and consequently incurs
the coarser-grained representation of FdðÞ. It results in higher
errors. Instead, a greater g divides a domain into more cells
with smaller grid width/height, and thus leads to lower
errors. The tuning of g involves the aforementioned trade-off
andwe empirically set g ¼ 20 by default.

6.7 Localization Visualization

Finally we visualize the positions recovered by three RaF-
based algorithms (non-Transfer, MTL, and TLoc) on a ran-
domly selected domain in Jiading 2G GSM data set. We
choose these approaches is mainly because they lead to the
top-3 best results. As shown in Fig. 15, the blue dots repre-
sent the GPS position labels (as ground truth) and orange
ones represent the prediction result of each algorithm.
For each algorithm, we connect the recovered positions into

Fig. 14. Sensitivity Study (from left to right): (a-b-c) Proportion of target samples, source samples, and dropped base stations. (d) Effect of grid size g.

TABLE 12
Effect of Different Transfer Learning Techniques in Random

Forest: Jiading 2G GSM Data Set

Transfer Learning
Techniques

Localization Error
(meters)

Avg. Training Time per
Target domain (s)

Median Mean 90%

STL 28.1 40.2 72.3 14.2
SER 33.4 48.7 80.4 25.9
MIX 31.1 43.3 77.9 53.4

(STL: Structure Transfer, SER: Structure Expansion/Reduction)
Fig. 15. Visualization result. Blue: Ground truth; Orange: Predicted
position.

ZHANG ET AL.: TRANSFER LEARNING-BASED OUTDOOR POSITION RECOVERYWITH CELLULAR DATA 2107

Authorized licensed use limited to: TU Delft Library. Downloaded on April 20,2021 at 06:23:33 UTC from IEEE Xplore.  Restrictions apply. 



a moving trajectory. By observing the two moving direc-
tions which are parallel and vertical to road segments, we
find that the non-Transfer algorithm leads to the largest sig-
nificant shift in both horizontal and vertical directions.
Instead, TLoc can achieve the least shift and the trajectory
recovered by TLoc roughly matches the road segments.

6.8 Discussion

Changes in Base Stations. Recall that the relative coordination
space of TLoc takes a serving base station as the center of a
domain. Though the changes of base stations are not fre-
quent, it is not rare that the software and/or hardware of
base stations are updated. We show that how TLoc is adap-
tive to the update. First, we consider the case that a base sta-
tion is moved to a new location. We then have two sets of
MR samples, denoted by S and S0, generated by the base
station in the previous and new positions, respectively.
To make sure that TLoc works, one simply way is to lever-
age the new MR samples S0 to train a new RaF regression
model. Nevertheless, if the number of new MR samples S0

is trivial, the new model does not work very well. This is
exactly the same challenge that we expect to address in this
paper. To this end, we could re-use the RaF regression
model which was trained by the previous MR samples S,
and transfer this previously trained model from S to S0.
Specifically, given the model trained from S, we can follow
the general idea of structured transfer learning (STL) in
Section 5, and re-select node thresholds in decision trees
(DTs) by these new MR samples S0. In this way, the pre-
vious model is transferred to the new dataset S0. Second,
due to hardware upgrade (e.g., the update from 2G base
stations to 4G ones), the signal transmission power of the
station might become significantly different. Given such a
scenario, the new MR samples generated by the updated
station do not follow the original mapping from MR
features to relative positions, and TLoc treats the station as
a completely new one and has to re-train the location model
based on newMR samples S0.

Upcoming 5G Network. With the coming of 5G communi-
cation, it is highly expected that 5G base stations are much
densely deployed than 2G GSM and 4G LTE stations. Nev-
ertheless, we believe that TLoc can still bring benefits to
Telco operators due to the following observations. 1) Nowa-
days a Telco operator typically maintains heterogeneous
cellular networks mixed by 4G LTE, 3G WCDMA, and/or
2G GSM technologies. With the deployment of 5G network
in near future, it is expected that Telco operators could
still maintain heterogeneous networks. Thus, TLoc can still
work to recover the positions of mobile devices using non-
5G cellular networks. 2) Even for a 5G network, it is highly
possible that 5G base stations deployed in rural areas could
be much sparse than those in urban areas. TLoc still has
chance to work well in rural areas.

7 CONCLUSION AND FUTURE WORK

In this paper, we study the problem of cellular outdoor posi-
tion recovery in the areas with insufficient geo-tagged MR
samples, and design a transfer learning-based position
recovery framework, namely TLoc. The contributions of our
work include 1) the proposed relative coordinate space to

represent MR features and positions, 2) the distance metric
to measure the similarity of domains, and 3) a transfer
learning-based position recovery framework by adapting
the STL approach. Our extensive evaluation validates that
TLoc outperforms two state-of-the-art methods (CCR and
NBL) and the variants of TLoc. As TLoc is a first stepping
stone to explore transfer-learning for Telco outdoor position
recovery, the promising results motivate the following
future work, e.g., deep neural network (DNN)-based posi-
tion recovery [35] empowered by transfer learning tech-
niques [11], [32].
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