
 
 

Delft University of Technology

Multi-fidelity probabilistic design framework for early-stage design of novel vessels

Charisi, N.D.

DOI
10.4233/uuid:00b26d93-4a62-446a-8ba4-c7820a914342
Publication date
2025
Document Version
Final published version
Citation (APA)
Charisi, N. D. (2025). Multi-fidelity probabilistic design framework for early-stage design of novel vessels.
[Dissertation (TU Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:00b26d93-4a62-446a-
8ba4-c7820a914342

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:00b26d93-4a62-446a-8ba4-c7820a914342
https://doi.org/10.4233/uuid:00b26d93-4a62-446a-8ba4-c7820a914342
https://doi.org/10.4233/uuid:00b26d93-4a62-446a-8ba4-c7820a914342


MULTI-FIDELITY 
PROBABILISTIC DESIGN FRAMEWORK 

FOR EARLY-STAGE DESIGN 
OF NOVEL VESSELS

M
U
LT
I-F
ID
E
L
IT
Y
 P
R
O
B
A
B
IL
IS
T
IC
 D
E
S
IG
N
 F
R
A
M
E
W
O
R
K
 F
O
R
 E
A
R
LY
-S
TA
G
E
 D
E
S
IG
N
 O
F
 N
O
V
E
L
 V
E
S
S
E
L
S

NIKOLETA DIMITRA CHARISI

N
.D
.C
H
A
R
ISI

Summary

Early-stage vessel design is crucial, as key decisions are made during this Early-stage vessel design is crucial, as key decisions are made during this 
phase. Existing frameworks, designed for conventional vessels, prioritize 
exploring a broad design space but rely on low-fidelity tools, sacrificing 
accuracy for efficiency. However, low-fidelity methods fall short for novel 
vessels, as they fail to capture complex physics associated with the 
performance of such vessels. While high-fidelity analysis improves accuracy, 
its high computational cost limits design exploration. Multi-fidelity models, 
combining low- and high-fidelity methods, offer a promising solution for combining low- and high-fidelity methods, offer a promising solution for 
enabling higher-fidelity assessments earlier in the design process. This 
dissertation builds the architecture of a multi-fidelity probabilistic design 
architectural framework for early-stage design of novel vessels.
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S U M M A RY

Early-stage design is the most critical phase in a vessel’s development, as this is
when many of the major decisions are made and locked in for the remainder of the
design process. Most early-stage design frameworks are tailored to conventional
vessels, aiming to explore a broad design space—essentially assessing numerous
design variations. However, to evaluate such a wide range of design solutions,
these frameworks often sacrifice accuracy in their analysis methods to allow for
more design evaluations. Consequently, low-fidelity tools are typically used for
early-stage design exploration.

For novel vessel designs, low-fidelity analysis methods are insufficient for accur-
ately assessing performance, as they often fail to capture the new and sometimes
complex physics involved. While increasing the fidelity of analysis methods leads to
more accurate performance assessment, it also raises computational costs, making it
impractical to evaluate a large number of design variations. Multi-fidelity models,
which combine lower-fidelity methods with a high-fidelity analysis method, offer
a promising solution for enabling higher-fidelity assessments earlier in the design
process. Thus, this dissertation builds the architecture of a multi-fidelity probabilistic
design architectural framework for early-stage design of novel vessels.

Chapter 1 discusses the research problem formulation. Chapter 2 explores the
structure of the design architectural framework, which is composed of three main
components: a generative engine, an analysis engine, and an optimization engine.
The generative engine constructs various design variations, while the analysis
engine evaluates these designs and approximates the objective landscape. Lastly,
the optimization engine efficiently identifies the optimal design.

This dissertation primarily focuses on developing the analysis engine. Chapter 3

examines how additional information from the analysis data can improve a multi-
fidelity approximation of the objective landscape. To achieve this, the integration of
compositional kernels within a framework based on the autoregressive scheme of
multi-fidelity Gaussian Processes is proposed. The core idea is that understanding
the underlying structure of the objective landscape, as captured by compositional
kernels, can lead to a more accurate approximation. This approach aims to reduce
the need for high-fidelity evaluations, thus lowering computational costs, while
maintaining accuracy. The proposed method is applied to analytical benchmark
problems and a cantilever beam design problem, marking an initial step toward
application in early-stage design of complex engineering systems.

Chapter 4 investigates the scalability of the proposed method for addressing real-
world ship design challenges. The case study focuses on the early-stage exploration
of AXE frigates, which are frigates equipped with an AXE bow. Multi-fidelity
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analysis data were generated using both frequency- and time-domain methods to
evaluate the wave-induced vertical bending moments on the hull. The performance
of four models, including the proposed one, is compared across various case study
scenarios.

Traditionally, multi-fidelity models combine models of different fidelities. In
Chapter 5, however, multi-fidelity techniques are applied to integrate analysis data
from various design concepts, moving beyond the conventional approach. This
leads to the development of a ‘multi-variations’ design framework based on the
mathematical formulation of multi-fidelity Gaussian Processes to support early-
stage concept exploration. The framework is tested on case studies, including a
modified version of the cantilever beam problem presented in Chapter 3 and the
AXE frigates design problem presented in Chapter 4.

Chapter 6 explores the development of the optimization engine of the design
framework. Information-theoretic entropy is used to quantify the uncertainty tied
to predictions in the objective landscape. This dissertation suggests leveraging this
uncertainty metric both to decide whether additional designs should be sampled
to build a reliable approximation of the objective landscape and also to determine
the appropriate optimization step for optimizing the compositional kernel function
for the multi-fidelity Gaussian Processes. The proposed approach is tested against
benchmark analytical functions and applied to a ship design problem involving
an AXE frigate, similar to the engineering problem presented in Chapter 4. Finally,
Chapter 7 discusses the conclusions and recommendations for further work.

In summary, this dissertation presents a comprehensive design architectural frame-
work specifically designed for the early-stage design of novel vessels. It introduces a
novel approach that integrates compositional kernels into the autoregressive scheme
of multi-fidelity Gaussian Processes, which was tested across various case studies,
from analytical functions to the early-stage design of AXE frigates. The strengths
and limitations of the approach were identified. Overall, the method was designed
to effectively identify distinct features within the objective landscape, leading to
a significant improvement in prediction accuracy in most of the tested case stud-
ies. Additionally, a new perspective on constructing a design framework based on
multiple design variations was developed and tested. The findings demonstrated
that the proposed ‘multi-variations’ design framework is a powerful approach in
low-data scenarios for design cases where the design spaces of different variations
display similar trends. Finally, the dissertation established metrics grounded in
information entropy to enhance the optimization engine of the design framework.
Overall, the case studies provide evidence that the components of the framework
serve as powerful tools for supporting the early-stage design of novel vessels.



S A M E N VAT T I N G

Het vroege ontwerpstadium is de meest kritieke fase in de ontwikkeling van een
schip, omdat in dit stadium veel van de belangrijkste beslissingen worden genomen
en vastgelegd voor de rest van het ontwerpproces. De meeste ontwerp methodes
zijn afgestemd op conventionele schepen, met als doel een breed ontwerpgebied te
verkennen en verschillende ontwerpvarianten te beoordelen. Om zo’n breed scala
aan ontwerpen te evalueren, wordt in deze methodes vaak de nauwkeurigheid op-
geofferd ten gunste van een hoger aantal ontwerpbeoordelingen. Hierdoor worden
meestal lage-resolutietools gebruikt in de eerste fasen in het ontwerpproces.

Voor nieuwe scheepsontwerpen zijn analysemethoden met lage nauwkeurigheid
echter onvoldoende om prestaties nauwkeurig te beoordelen, omdat ze vaak niet
in staat zijn de complexe natuurkundige principes te omvatten. Hoewel het ver-
hogen van de resolutie van analysemethoden leidt tot nauwkeurigere prestatie
beoordelingen, verhoogt het ook de rekentijd, wat het onpraktisch maakt om veel
ontwerpvarianten te evalueren. Multi-resolutie modellen, die methoden met lagere
en hogere nauwkeurigheid combineren, bieden een veelbelovende oplossing om
hogere-resolutie beoordelingen mogelijk te maken in een vroeg stadium van het
ontwerpproces. Deze dissertatie presenteert de architectuur van een multi-resolutie
probabilistisch methode voor de eerste ontwerpfase van nieuwe schepen.

In Hoofstuk 1 wordt de onderzoeksdoelstelling geformuleerd. Hoofdstuk 2 on-
derzoekt de structuur van de ontwerp methode, dat bestaat uit drie hoofdcom-
ponenten: een generatiemodule, een analysemodule en een optimalisatiemodule.
De generatiemodule construeert verschillende ontwerpvarianten, terwijl de ana-
lysemodule deze ontwerpen evalueert en het ontwerpgebied benadert. Ten slotte
identificeert de optimalisatiemodule op een efficiënte manier het optimale ontwerp.

Deze dissertatie richt zich voornamelijk op het ontwikkelen van de analyse
module. In Hoofdstuk 3 wordt onderzocht hoe aanvullende informatie uit de
analysegegevens kan bijdragen aan een multi-resolutie benadering van de ont-
werpruimte. Hier wordt voorgesteld om compositionele kernels te integreren
binnen een kader gebaseerd op het autoregressieve schema van multi-resolutie
Gaussissche processen . Het idee is dat een nauwkeurigere benadering van het
ontwerpgebied kan worden bereikt door gebruik te maken van kennis over de
onderliggende structuur van het ontwerpgebied, onthuld door de compositionele
kernen. Deze benadering beoogt het aantal hoge nauwkeurigheids evaluaties te
verminderen, waardoor de rekentijd afneemt zonder dat de nauwkeurigheid in het
gedrang komt. De voorgestelde methode wordt toegepast op analytische bench-
markproblemen en een ontwerpvraagstuk voor een cantilever balk, wat een eerste
stap markeert richting toepassing in de eerste ontwerpfase van complexe technische
systemen.
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Hoofdstuk 4 onderzoekt de schaalbaarheid van de voorgestelde methode naar
praktische scheepsontwerp uitdagingen. De casus richt zich op de eerste ontwerpfase
van AXE frigates, fregatten met een AXE-boeg. Multi-resolutie analysegegevens
werden gegenereerd met zowel frequentie- als tijdsdomeinmethoden om de door
golven veroorzaakte buigmomenten op de romp te beoordelen. De prestaties van vier
modellen, waaronder het voorgestelde model, worden vergeleken in verschillende
scenario’s van de casestudie.

Multi-resolutie modellen combineren in het algemeen modellen van verschillende
nauwkeurigheden. In Hoofdstuk 5 worden echter multi-resolutie technieken toege-
past om analysegegevens van verschillende ontwerpconcepten te integreren, waarbij
wordt afgeweken van de conventionele aanpak. Dit leidt tot de ontwikkeling van een
"multi-variaties" ontwerpmethode gebaseerd op de wiskundige formulering van
multi-resolutie Gaussische processen ter ondersteuning van de eerste ontwerpfase.
Het raamwerk wordt getest in de cantilever balk en AXE-fregat casussen.

Ten slotte onderzoekt Hoofdstuk 6 de ontwikkeling van de optimalisatiemodule
van het ontwerpproces. Informatie-theoretische entropie wordt gebruikt om de
onzekerheid in voorspellingen binnen het ontwerpgebied te kwantificeren. Deze
dissertatie stelt voor deze onzekerheidsmaatstaf te gebruiken om te bepalen of er
aanvullende ontwerpen moeten worden toegevoegd om een betrouwbare benader-
ing van het ontwerpgebied te maken en om de juiste optimalisatiestap te bepalen
voor het optimaliseren van de compositionele kernelfunctie voor de multi-resolutie
Gaussische processen. De voorgestelde aanpak wordt vergeleken met de benchmark
functies en getest op een AXE-fregat.

Samenvattend presenteert deze dissertatie een uitgebreid proces dat specifiek is
ontworpen voor de eerste fase van scheepsontwerp. Het introduceert een nieuwe
aanpak die compositionele kernen integreert in het autoregressieve schema van
multi-resolutie Gaussische processen, getest in verschillende casestudies, van analyt-
ische functies tot het vroege ontwerp van AXE-fregatten. De voordelen en beperkin-
gen van de aanpak werden geïdentificeerd. Over het algemeen was de methode
ontworpen om effectief kenmerken binnen het ontwerpgebied te identificeren, wat
leidde tot een significante verbetering van de voorspelnauwkeurigheid in de meeste
geteste casestudies. Bovendien werd een nieuwe benadering voor het opzetten van
een ontwerpproces op basis van meerdere ontwerpvarianten ontwikkeld en getest.
De bevindingen toonden aan dat het voorgestelde ’multi-variaties’ ontwerpproces
een krachtige aanpak is in situaties met weinig data voor ontwerpproblemen waar-
bij de ontwerpgebieden van verschillende varianten vergelijkbare trends vertonen.
Tot slot werden maatstaven gebaseerd op informatie-entropie om de optimalisa-
tiemodule van het ontwerpproces te verbeteren. Over het algemeen bieden de
casestudies bewijs dat de modules van het proces krachtige hulpmiddelen zijn ter
ondersteuning van eerste fase ontwerp van nieuwe schepen.
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1
I N T R O D U C T I O N

Imagination is more important than
knowledge. Knowledge is limited.
Imagination encircles the world.

— Albert Einstein

The challenging task of designing complex vessels at early design phases demands
a delicate blend of applying both artistic skills and scientific principles (Andrews,
2012). Designing a complex vessel involves combining imaginative concepts with the
practical application of sophisticated engineering methods and tools. For example,
designers have experimented with altering the angles of hull shapes to enhance
stealth capabilities in naval vessels, such as the Sea Shadow and the USS Zumwalt
(DDG1000) (see Fig. 1.1). Early-stage ship design (ESSD) can be viewed as a creative
pursuit, akin to the work of an artist (Andrews, 2012), where novel ideas take
shape and come to life. Conversely, the scientific aspect emerges as naval architects
employ scientific methods to calculate engineering quantities of interest such as the
vessel’s resistance, seakeeping, or strength. These methods ensure that the vessel’s
design transforms into a technically feasible solution that meets the customer’s
requirements. These analyses aim to thoroughly evaluate the vessel’s performance
and mitigate risks, enabling further progress in subsequent stages of development. In
essence, the early-stage design of complex ships calls for the harmonious coexistence
of both art and science.

Presently, naval architects encounter various technological challenges, such as
the integration of unmanned or autonomous marine systems (Martin et al., 2019),
the creation of zero-emission ships (Lu et al., 2023), the implementation of new
technologies on board both commercial vessels (Tadros et al., 2023) and military
vessels (Bottero & Gualeni, 2024), the design of large and stationary marine systems
such as wind turbines (Roach et al., 2023), or the development of complex sea-going
structures such as the Sea Shadow or DDG1000. These technological challenges drive
designers to design and ultimately construct vessels with capabilities that exceed

1



2 introduction

(a) Sea Shadow (‘Sea Shadow (IX-529)’, 2024) (b) DDG1000 (Wolf, 2020)

Figure 1.1: Examples of complex vessels

those of conventional ships. Creativity manifested through novel technical ideas
becomes essential in the design of novel systems (Cropley et al., 2017).

‘When the Unimaginable Becomes the Self-Evident...’

On December 21, 1941, a mere two weeks following the events at Pearl Harbor,
President Franklin Roosevelt recognized the urgent need to initiate bombing
operations against Japan. However, executing such a plan proved unattainable
at the time, as no existing bomber possessed the requisite range to reach Japan.
Sometime later, the idea was resurrected when submarine captain Francis
Low revisited Roosevelt’s challenge. Drawing inspiration from observing
bombers during practice runs at a naval airfield in Virginia, Low conceived
the notion of launching bombers from the deck of an aircraft carrier. This
idea was considered an out-of-the-box solution at that time. However, several
challenges needed to be addressed to make it feasible, including: aircraft
carriers were intended to transport lightweight fighters, not bombers, which
were too heavy for the limited runway space on the carriers, and also that
bombers were not easy to maneuver, making them easy targets that needed
to be escorted by fighters. Additionally, the aircraft carriers did not have the
capacity to carry both types of aircraft. Finally, the design of bombers did not
allow for the installation of a landing hook, making it impossible for returning
bombers to land on the aircraft carrier. Initially, the idea appeared infeasible,
but all obstacles were eventually overcome. The designs of the bombers were
modified to reduce weight and extend their range. Pilots received training to
take off from the limited runway of an aircraft carrier and to fly low to avoid
radar detection. Lastly, the strategy was adjusted so that after completing
their mission, the bombers would land on either Chinese or Soviet territory.
The military historian John Keegan called the event "the most stunning
and decisive blow in the history of naval warfare". This historical episode
highlights the human ability to develop novel and innovative solutions that
can effectively tackle complex challenges and sometimes even alter the course
of history. This is a story is adopted from (Mlodinow, 2018).

Creativity is crucial for generating new ideas. The advent of new ideas is often
accompanied by the challenge of addressing technological hurdles and their associ-
ated costs. The story of launching bombers from an aircraft carrier during WWII
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(see Example ‘When the Unimaginable Becomes the Self-Evident...’) highlights this
idea by showing the following pattern: the novel idea of launching bombers from
an aircraft carrier emerged through associations in Francis Low’s mind, however, to
ensure its feasibility several technical challenges had to be addressed. In the context
of ship design, the concept of hydrofoil vessels is an example of a novel design that
emerged from the creative associations in engineers’ minds, drawing on knowledge
from aerospace engineering. In 1861, Thomas Moy experimented with three foils
suspended under a boat in a London canal, successfully lifting the hull out of the
water to study foil behavior more easily than in air (Yun & Bliault, 2012).

This dissertation focuses on the technical feasibility of novel concepts. In the realm
of ship design, ensuring technical feasibility involves engineers employing a range
of methods and associated tools to predict the vessel’s motions, loads, or resistance,
among others. These methods vary from low-fidelity (LF) methods used during early-
stage design, such as empirical formulas, to high-fidelity (HF) methods employed
later in the design process, such as numerical analysis, model tests, or building
prototypes. Recent advancements, including enhanced computational power and the
integration of new machine learning (ML) methods, empower engineers to conduct
analyses with greater accuracy and efficiency. Based on these advancements, this
PhD research builds a Design Architectural Framework (DAF) to facilitate the early-
stage design of novel vessels. The proposed DAF leverages analysis data from
HF tools to support design analysis and optimization, by incorporating multi-
fidelity (MF) - Gaussian Processes (GPs), a well-established tool within the field of
ML.

1.1 early-stage ship design concept exploration

The early-stage design of complex vessels problem is not static; rather, it evolves
dynamically in response to the mathematical tools available (Shields & Singer, 2017).
Andrews (2018) argues that:

Prior to the introduction of computers into Early Stage Ship Design of
complex vessels, such as naval ships, the approach to synthesising a new
design had been via weight equations. When it was realised that modern
naval vessels (and some sophisticated service vessels) were essentially
space driven, initial (numerical) sizing was needed to balance weight
and space, together with simple checks on resistance & powering, plus
sufficient intact stability (i.e., simple metacentric height assurance).

Recent advancements in engineering have enabled the early integration of sophist-
icated HF analysis methods and tools into the design process. These tools provide
more accurate insights into a vessel’s performance, delivering valuable information
to support concept exploration and design optimization. Integrating HF analysis
early in the design process of ships and other complex systems, such as aircraft (e.g.,
Parsonage and Maddock, 2023), is sometimes crucial.

Early-stage design of complex engineering systems is critical since most of the
major design decisions are being made at this stage while engineers have minimal
knowledge about the design (Mavris et al., 1998). Amongst other factors, design
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decisions are pivotal in defining requirements, generating concepts, and shaping
the final configuration and physical form of the system (Mohd Saad et al., 2013).
The importance of early design stages has been recognized in various engineering
fields, including ship (Andrews, 2018) and aircraft design (Mavris et al., 1998). More
specifically, design decisions that dictate the vessel’s overall configuration reduce
design freedom and commit a significant portion of the overall cost. The progression
of design freedom, committed costs, and knowledge across the various stages of
design is depicted in Fig. 1.2. As emphasized by Mavris et al. (1998), early-stage
design poses a challenge as engineers must make these pivotal decisions with
limited knowledge. To facilitate decision-making, it is, thus, important to introduce
the ‘right’ information early in the design process (Willcox, 2018).

Figure 1.2: Progression of design freedom, knowledge, and committed cost throughout the
design process (Mavris et al., 1998)

Knowledge pertinent to the initial design phases of complex systems like naval
vessels can be obtained from a variety of sources, such as data from reference
vessels (e.g., Horvath and Wells, 2018), empirical and semi-empirical methods (e.g.,
Papanikolaou, 2014), experimental data (e.g., Kim, 2021), simplified physics models
(e.g., Jiao et al., 2018) or experts’ opinion (e.g., DeNucci, 2012; Le Poole, 2024). The
evolution of analysis fidelity and design space size throughout the design process is
illustrated in Fig. 1.3. Conventionally, early-stage design knowledge originates from
LF models, which refer to computationally inexpensive and less precise models. This
approach is dictated by the constraint of limited time and (computational) budget.
Contrarily, HF methods are adopted gradually throughout the design process. Two
key terms closely related to early-stage design, which will be revisited throughout
this thesis, are design space and objective landscape. The design space refers to
the full range of possible design solutions. The objective landscape describes the
relationship between design variables and the objective function (Laborie, 2018).
By narrowing down the design space to encompass the most promising candidate
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solutions, higher-fidelity analyses become feasible. This practice is successful when
the performance analysis of a vessel based on LF models is sufficiently accurate for
early-stage design exploration and optimization. This approach is applicable, for
instance, in the design of various commercial vessel types. Yet, relying on LF tools
for early-stage design exploration poses tangible limitations when addressing the
early-stage design of novel vessels.

Figure 1.3: The evolution of analysis fidelity and design space size throughout the design
process

For novel vessels, there is very little, if any previous knowledge by the sheer nature
of them being ‘novel’. An example related to the vertical bending moment (VBM)
induced on the tumblehome hull is discussed in Section 1.2, highlighting the
problem that LF models and tools that designers have developed based on experience
may not be able to adequately capture the complex physics associated with their
performance. Therefore, designers need to perform HF analysis to generate insights
into the performance of these vessels. For example, the naval architect may need to
perform accurate Computational Fluid Dynamics (CFD) analysis or model testing to
assess the hydro-structural performance of novel hull shapes. This creates a scenario
where the number of designs explored may not be sufficient before down-selecting
candidate design concepts. A promising compromise to such engineering problems
can be given by adopting MF models. MF models are defined as models combining
LF models with a HF model. An extensive discussion on MF models is provided in
Section 2.3.

1.2 motivation derived from the design of the tumblehome hull

Examining the design scenario of the DDG1000 (Fig. 1.4), distinguished by its dis-
tinctive wave-piercing tumblehome hull, a senior naval officer articulated concerns,
stating that:

In conventional hulls, we have done more with model testing and design
work. We have correlation with ships we’ve built and sent to sea. There’s
a lot of confidence in designing a conventional hull. We have not had
tumblehome wave-piercing hulls at sea. So how would the real ship
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motions track with the ways we have traditionally modeled ships? How
accurate is it? (Cavas, 2015)

This quote underscores the challenges inherent in designing novel concepts. These
challenges encompass both the uncertainty stemming from the lack of knowledge
about the design itself and the uncertainty introduced by analyzing novel designs
using existing methods and tools. In naval ship design, new technologies and
innovative solutions are typically introduced through separate research projects,
either before or in parallel with their first application in a new design.

(a) DDG1000 (LaGrone, 2021)
(b) DDG1000 during testing in sea state 6

(Hernandez, 2021)

Figure 1.4: DDG1000

Studies have demonstrated that novel hull forms often exhibit significant non-
linearities in their response to loads (e.g., Li et al., 2020; Tang et al., 2020). Com-
monly used approximations tend to oversimplify their physical behavior, failing
to capture the complexities involved. For example, Sapsis (2021) computed the
Probability Density Function (PDF) for pitch and roll motions of the Office of Naval
Research (ONR) tumblehome hull. His findings showed that the tail of the roll PDF is
heavier than Gaussian for roll angles around 10 deg. For larger angles, this heavy tail
disappears, decaying faster than a normal distribution. The VBM is more complex,
showing asymmetry due to hull shape and a heavy tail for positive moments. This
highlights the possible disprepancy between LF models typically used during early
stage design and HF models used to more accurately capture the correct physics.

(a) PDF roll (b) PDF VBM

Figure 1.5: ONR tumblehome hull response (Sapsis, 2021)

ESSD of novel vessels can, thus, be particularly challenging due in part to the
limited knowledge. As demonstrated in the example, the available analysis tools
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are often capable of capturing complex nonlinear ship motions and loads. How-
ever, these analyses are often (computationally) expensive and thus infeasible for
early-stage design exploration. This PhD research aim to address this challenge
by developing a DAF tailored to early-stage design of novel vessels leveraging MF

models. In the context of this dissertation, a DAF is defined as a foundational struc-
ture used to generate and evaluate a variety of architectures. Further details on the
composition of the DAF are provided in Section 2.2.

This PhD research is part of the Dutch Research Council (NWO)-funded project
"Multi-fidelity Probabilistic Design Framework for Complex Marine Structures".
The project’s goal is to integrate extreme wave loading analysis early in the design
process. Aligned with this objective, this PhD research focuses specifically on the
novel design of hull forms.

1.3 research gaps

This dissertation aims to address the following research gaps:

• During early stage design there is typically insufficient HF data to achieve
accurate predictions, especially for complex and higher-dimensional problems.
Expanding the HF dataset is difficult due to the (computationally) expensive
analyses required for each data point, which is further constrained by limited
available budgets. The aim is to develop methods that can provide accurate
predictions while using less HF data. RQ1 and RQ2 look into extending
existing methods to improve the accuracy of the predictions by using less HF

data.

• To advance design frameworks, it is essential to incorporate various informa-
tion sources, beyond traditional analysis methods, to improve decision-making.
This research gap is explored in RQ3.

• There is a gap in exploring alternative formulations to leverage quantified
uncertainty via information entropy to enhance an MF design framework for
the early-stage design of complex vessels. This research gap is addressed by
RQ4.

1.4 research objectives

The main research objective is:

The formulation of a probabilistic multi-fidelity design architectural framework
to facilitate early-stage exploration of novel vessels.

To achieve this research objective, the following research questions have been
defined:

• [RQ1] How can additional information from the analysis data be utilized to
enhance the developed MF approximation of the objective landscape?
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• [RQ2] How scalable is the proposed method of integrating compositional
kernels into a MF DAF based on the AR1 scheme of GPs for addressing real ship
design problems?

• [RQ3] How can information from past designs be systematically leveraged to
support and enhance the early-stage design exploration of novel vessels?

• [RQ4] How can the uncertainty of the predicted objective landscape be em-
ployed to facilitate the design optimization of novel vessels?

1.5 proposed contributions

To address the research objectives, a MF DAF tailored to early-stage design of novel
vessels has been developed in this dissertation. The framework is based on MF-
GPs, specifically using the AR1 scheme. Compositional kernels, formed as linear
combinations of basis kernels, were integrated to capture the shape of the underlying
objective landscape, thereby improving predictions. The justification and technical
details of the aforementioned methods are given in Chapter 3. This proposed
framework was scaled up to address the early-stage design of AXE frigates, which
are frigates featuring an AXE bow (Fig. 1.6). The performance of the frigates was
analyzed based on wave-induced VBM. In addition, the development of a multi-
variation DAF has been proposed where the analysis data of various fidelities is
replaced by analysis data from different design concepts. Such approach could
facilitate early-stage design exploration. Finally, information-theoretic entropy was
integrated to the DAF to facilitate optimization.

Figure 1.6: AXE Bow prototype at trials (Keuning & van Walree, 2006b)

To summarize, the proposed contributions are the following:

1. [C1] The development of an early-stage design framework based on the
integration of compositional kernels to the AR1 scheme to facilitate design
exploration by revealing the structure of the underlying objective landscape.
The originality lies in how these mathematical methods are leveraged to
support early-stage design.

2. [C2] Scaling up the established framework for the early-stage exploration of
the AXE frigate design, with a focus on assessing the wave-induced vertical
bending moment, incorporating weak non-linearities.
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3. [C3] The approach of constructing an MF DAF with its building blocks derived
from analysis data of past design variations, as opposed to relying on models
of various fidelities.

4. [C4] Utilize information entropy to quantify uncertainty in predicting the
objective landscape. This uncertainty metric will serve two purposes: first,
as a criterion to decide whether additional designs should be sampled for
constructing a reliable approximation of the objective landscape; and second,
as a criterion for determining the appropriate stage in the optimization process
to optimize the compositional kernel function.

1.6 overview of the dissertation

An overview of the thesis structure can be seen in Fig. 1.7.
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Figure 1.7: Structure of the dissertation



2
P R O B L E M F O R M U L AT I O N 1

The imagination of nature is far, far
greater than the imagination of man.

— Richard Feynman

This chapter aims to provide the background for the research and review relevant
literature. Section 2.1 discusses the challenges associated with the early-stage design
of novel vessels. The structure of the proposed DAF is analysed in Section 2.2. Section
2.3 examines the anticipated benefits and limitations of employing MF models to
address early-stage design problems, and highlights the most promising methods
to be further employed in ESSD. Finally, Section 2.4 summarizes the findings.

2.1 early-stage design of novel vessels

2.1.1 Overview

Naval architects today face numerous technological challenges, such as the develop-
ment of unmanned and autonomous marine systems, designing zero-emission ships,
integrating new technologies onboard, creating large stationary marine systems,
and crafting complex sea-going structures. These challenges demand the design
of vessels that go beyond the capabilities of conventional ones. Beyond addressing
these technological challenges, innovation serves as a key business driver, enabling
the maritime industry to maintain its competitiveness (Hopman, 2008).

There are several commonly proposed definitions of complex vessels (e.g., An-
drews, 1998; Gaspar et al., 2012; Kana et al., 2016). Key aspects from these definitions
relevant to this research include: (1) the early-stage design of complex vessels is a
wicked problem (Andrews, 1998), meaning the main challenge lies in identifying
the nature of the problem itself, and (2) the overall performance of the vessel is
difficult to predict, even when all design components are well understood (Kana,
2024). This PhD research focuses on novel vessels, which are similar, yet slightly
different than complex vessels. Complex vessels represent a broad category that

1 Parts of the chapter are reproduced from Charisi et al. (2022a)
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encompasses novel vessels. In the context of this research, a novel vessel is defined
as one that incorporates one or more unique design features which significantly
influence its performance. Some examples of such vessels can be seen in Fig. 2.1.
Regarding these examples of novel vessels,

• The Ramform Titan (Fig. 2.1a) - aims to collect seismic data from the ocean, its
novel feature is its sinusoidal waterline aiming to increase the vessel’s stability
(PGS, n.d.-b).

• The Baltika Icebreaker (Fig. 2.1b) - features an asymmetrical hull to cut through
the ice at oblique angles of up to 45 degrees (Navis Engineering, n.d.).

• The Pioneering Spirit (Fig. 2.1c) - is the largest construction vessel, designed for
the single-lift installation and removal of oil and gas platforms, with a lifting
capability of platform topsides up to 48,000 t and jackets up to 20,000 t, its
twin hull design allows it to straddle and lift large offshore platforms and
structures as a single piece (Allseas, n.d.).

• The Bottsand Vessel (Fig. 2.1d) - features a unique hull that can split into two
parts along its length to effectively support oil recovery missions in oceans.

(a) Ramform Titan (PGS, n.d.-a) (b) Baltika (CruiseMapper, n.d.)

(c) Pioneering Spirit (Allseas, n.d.) (d) Bottsand oil recovery ship (Kriegsschiffe,
n.d.)

Figure 2.1: Examples of novel vessels

These unique designs exemplify revolutionary ideas aimed at creating vessels
with enhanced capabilities. However, the trend of introducing novel designs extends
to the broader field of advanced vehicle design. An example of a unique design in
the aerospace field is the Flying-V concept (e.g., Oosterom and Vos, 2022). As shown
in Fig. 2.2, the aircraft features a unique design that integrates the fuselage into
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the wing structure, enhancing the aircraft’s performance. To effectively tackle the
early-stage design of novel vessels, this dissertation suggests that the first step in
developing a DAF is to identify key parameters, specifically the Design Drivers (DDs)
and Key Performance Indicators (KPIs), which are crucial for guiding the design
process. The next section further examines the roles of both DDs and KPIs within the
context of the DAF.

Figure 2.2: The ‘Flying-V’ design (Trend Hunter, 2024)

2.1.2 Design drivers and key performance indicators for novel vessels

This PhD research aims to build an early-stage DAF for novel vessels. To achieve this,
it is important to understand the distinct DDs and KPIs that drive their performance.
DDs are defined as the design elements that directly impact technical feasibility,
performance, and cost, which are crucial for decision-making (Duchateau, 2016).
Furthermore, according to the Systems Based Design (SBD) methodology proposed
by Levander (1991), KPIs focus on the vessel’s performance metrics, such as struc-
tural integrity and seakeeping capabilities, as well as economic factors, including
construction and operational costs. In summary, the DDs are linked to critical design
features examined during the early design phases, while the KPIs pertain to the key
quantities that determine the performance of each design. To better clarify the role
of DDs and KPIs in the design of novel vessels, a bottom-up approach is followed by
analyzing two design cases: the DDG1000 and the LCS (Independence variant). These
cases have been analyzed based on publicly available information sources.

USS Zumwalt

The DDG1000 (Fig. 1.4) was developed under the DD(X) destroyer program and is
the lead ship in the next-generation multi-mission surface combatant series. It is one
of three Zumwalt-class vessels, originally designed to replace the large-caliber naval
gun capability lost by the US Navy with the retirement of its Iowa-class battleships
(O’Rourke, 2021).

According to O’Rourke (2021), the main mission-related design requirements
were:

1. Capability of naval surface fire support

2. Operations in littoral waters
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3. Introduction of several technologies, such as integrated electric-drive propul-
sion system and automation technologies, for future naval vessels

4. Operation with a reduced crew size

5. Reduced detectability

By grouping the design requirements, the DDs for the DDG1000 are the following:
(1) Concept of Operations (CONOPS), (2) introduction of new technologies, (3) auto-
mation to enable operations with fewer crew members, and (4) improved stealth
capabilities. These DDs connect to the design variables which together make up the
design space. The design choice for the wave-piercing tumblehome hull connects
to the stealth performance of the vessel, as this hull shape offers a smaller radar
cross-section compared to conventional hulls (Zaw Htet et al., 2019). The hydro-
dynamic performance of the tumblehome hull has been researched in the literature.
Some examples include investigating parametric roll in head waves by using an
unsteady Reynolds-averaged Navier-Stokes (URANS) CFD code (Liu et al., 2021),
sway and yaw moment in stern quartering waves (Zaw Htet et al., 2019), extreme
event analysis based on the critical wave groups and fully nonlinear CFD (Silva &
Maki, 2021). The large body of literature shows that extensive research effort is
required to understand the hydrodynamic performance of such a novel hull shape.
This design paradigm formed the research motivation for this study. As discussed
in Section 1.2, this highlights the crucial role of uncertainty when designing a truly
unique vessel for which engineers have little to no prior experience.

Littoral Combat Ship (Independence variant)

The LCS vessels were designed to be cost-effective surface combatants with modular
mission packages (Kana et al., 2016; O’Rourke, 2019). The LCS class consists of two
variants: the Freedom variant (Fig. 2.3a) and the Independence variant (Fig. 2.3b).
The Freedom-variant features a steel semi-planing monohull, while the Independ-
ence variant has an aluminum trimaran hull. For this analysis, the Independence
variant is considered due to its novel hull shape.

(a) LCS Freedom variant (Mongilio, 2022) (b) LCS Independence variant (‘Independence
class Littoral Combat Ship - LCS’, n.d.)

Figure 2.3: LCS frigates

The main design requirements for the vessel, as presented in O’Rourke (2019) and
Preliminary Design Interim Requirements Document for Littoral Combat Ship (LCS) (2003)
are the following:
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1. Main capabilities: antisubmarine warfare, mine countermeasures, and surface
warfare against small boats

2. Additional capabilities: partnership-building operations, intelligence, surveil-
lance, and reconnaissance operations, maritime security and intercept opera-
tions, support of Marines and special operations forces, and homeland defense
operations

3. Operations in littoral waters

4. Modular mission packages

5. High speed to support operations (50 knots in sea state 3).

By examining and grouping the design requirements, the DDs for the LCS are: (1)
CONOPS, (2) modularity, and (3) high speed. The driver of high speed is linked to the
design decision of using a trimaran hull shape. Recently, researchers have focused
on understanding the behavior of trimaran hull designs (e.g., Jia and Zong, 2022;
Weidle et al., 2019). The trimaran hull shape offers several advantages compared
to a conventional monohull, namely: (1) improved seakeeping (Yun et al., 2018),
(2) low resistance at high speed (Hamed, 2022), and (3) increased deck area for
operations (Hamed, 2022). The selected hull material was aluminum, chosen for
its high strength-to-weight ratio and ease of manufacture (Benson et al., 2011).
However, aluminum is more susceptible to fatigue, whipping, corrosion, and heat
than steel, making it less suitable for vessels designed for longer service life and
combat situations (Weidle et al., 2019). Overall, aluminum was a new material for
naval applications, introducing uncertainty regarding its use for the LCS.

This uncertainty was expressed by the defense analyst, Shalal-Esa (2010), who
stated:

It is hard to understand how the Navy could consider selecting a design
that it says it does not understand very well.

It is surprising that they would say at this point in the evolution of the
program that they do not understand how aluminum might operate
under certain difficult conditions.

These statements highlight the uncertainty introduced due to the selection of
an aluminum hull, as its performance is not well-understood for the intended
application. The LCS program has been controversial due to cost growth, design
and construction problems of the first LCS vessels, and ongoing concerns regarding
the vessel’s technical performance and the effectiveness of its modular packages
(O’Rourke, 2019).

Identification of the DDs and KPIs for novel vessels

The findings from these design cases are used to extract conclusions for the DDs and
KPIs of novel vessels by following a bottom-up approach. In the design case of the
DDG1000, the requirement for improved stealth led to the novel design decision of
adopting a tumblehome hull. Similarly, the driver for high speed led to the novel
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design decision of using an aluminum trimaran hull for the LCS. To generalize these
findings, a search of relevant literature was conducted to identify a framework
applicable for characterizing the DDs of novel vessels. The S5 scheme proposed by
Brown and Andrews (1980) aims to identify important design characteristics by
considering Speed, Stability, Strength, Seakeeping, and Style. Nowadays, sustainability
also plays a crucial role in shaping the design of future vessels. Therefore, incor-
porating Sustainability into the S5 scheme would evolve it into the S6 scheme. The
original S5 scheme is applicable to the discussed design cases. For the DDG1000, the
design driver focused on enhanced stealth capabilities aligns with the Style aspect of
the S5 scheme. On the other hand, for the LCS, the primary design driver was Speed.

Regarding the KPIs, assessing the technical performance of the designs has been
the most important aspect in every design case. In real-world applications, cost
assessment is also crucial. Additionally, the design cases of the DDG1000 and the LCS

highlighted the importance of accounting for safety performance. For the DDG1000,
the challenge was to ensure that the vessel’s motions in rough seas would not
exceed acceptable limits. Conversely, for the LCS, the challenge was to confirm that
aluminum was a suitable material for constructing a naval vessel. Assessing the
designs based on technical performance, cost, and safety aligns with the risk-based
design approach proposed by Vassalos (2009).

This section focused on examining the DDs and KPIs, while outlining the early-
stage design process for new vessels. A bottom-up approach was employed to
identify the DDs and KPIs. By integrating the insights from two specific design cases
with established frameworks from the literature, the key conclusion emerged: the
DDs and KPIs for new vessels are similar to those for traditional vessels. However,
the novelty aspect is linked to the design associated with the new feature being
introduced, rather than to the DDs or the KPIs. Furthermore, the introduction of the
new feature resulted in greater uncertainty concerning both the design itself and the
analysis methods required for assessing the vessel’s performance. This represents a
significant distinction between the design of traditional vessels and that of novel
vessels. Moreover, the design cases demonstrated that it is essential to consider
safety performance early in the design process, alongside technical feasibility and
cost assessment. These findings are summarized in a high-level sketch of the ESSD

process of novel vessels given in Fig. 2.4.

2.2 design architectural framework for novel vessels

In this section, a high-level description of an early-stage design framework for novel
vessels is proposed. The first step is to give a definition of a DAF. An architectural
framework is defined as by the The Open Group Architecture Framework (TOGAF):

a foundational structure, or a set of structures, which can be used for
developing a broad range of different architectures. It should describe a
method for designing a target state of the enterprise in terms of a set of
building blocks, and for showing how the building blocks fit together.
It should contain a set of tools and provide a common vocabulary. It
should also include a list of recommended standards and compliant
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Figure 2.4: High-level sketch of the ESSD process for novel vessels (adapted from Charisi
et al., 2022a)
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Figure 2.5: Flowchart of the DAF (adapted from Charisi et al., 2022a)

products that can be used to implement the building blocks (The Open
Group, 2011).

The aforementioned definition of an architectural framework will be applied to the
DAF, with the distinction that the ’target state of the enterprise’ should be replaced
by the ’physical architecture of the complex vessel’.

Several DAF structures have been proposed in the literature, many of which share
commonalities. The structure of the proposed DAF was inspired by the Design
and Engineering Engine (DEE) model introduced by La Rocca (2012). The DEE was
developed specifically to support the early-stage design process of aircraft. However,
the main components of the two frameworks differ, as they were designed to address
distinct problems. The DAF in this research aims to address the problem of ESSD of
novel and reliable vessels. A high-level representation of the DAF can be seen in Fig.
2.5.

The DAF comprises three main components: the Generative Engine (GE), the
Analysis Engine (AE), and the Optimization Engine (OE). The GE is responsible for
generating the parametric model of the vessel, which is subsequently analyzed
by the AE. The AE constructs an approximation of the objective landscape using
the collected data from various designs. Finally, the OE explores the objective
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landscape to identify the optimal solution. These building blocks were specifically
tailored to effectively address the research problem at hand. Specifically, the GE was
developed to create novel geometries, such as those used in the AXE frigate case
study (Chapter 4). In addition, the AE is tailored to integrate MF analysis methods
(Chapter 3). Finally, the OE was constructed to effectively use the uncertainty in the
predictions of the objective landscape to navigate to the optimal design (Chapter 6).

2.2.1 Uncertainty Quantification within the DAF

The analysis of the DDs and KPIs revealed that the uncertainty associated with novel
concepts must be considered during early-stage design exploration. The identi-
fication and quantification of uncertainty is a current state-of-the-art practice in
early-stage design applications (Hulse et al., 2020). While uncertainty is closely
related to risk, the key difference is that risk can be quantified and assigned a
cost, whereas uncertainty involves risks that are difficult to measure (Silver, 2013).
Traditionally, uncertainty has been categorized into two types: aleatory and epi-
stemic uncertainty (Ghanem et al., 2017). Aleatory uncertainty connects to random
variability and it is irreducible, whereas epistemic uncertainty relates to the lack
of knowledge and it is reducible when more knowledge is available. The part of
uncertainty related to the lack of knowledge is hard to measure due to its subjected
nature, summarized by Ghanem et al. (2017) as follows:

How well can we predict what we do not know yet? The answer lies in
the realm of mental processing - in the brain of the predictor, who use
their state of knowledge to make the prediction. Uncertainty is a lack of
knowledge - in the human brain, and not some sort of objective reality.
Probability, as a measure of uncertainty, reflects one’s state of mind and
not a state of things.

A typical example of aleatory uncertainty in this context of hydrodynamic analysis
is the probabilistic formulation of ocean waves. Due to the inherent randomness and
variability of wave conditions, a probabilistic approach is essential to adequately
address the associated uncertainties in the hydrodynamic analysis. On the other
hand, Mavris et al. (1998) discusses several examples of epistemic uncertainties
that are pertinent to early-stage design, including the treatment of assumptions,
ambiguous requirements, the fidelity of different codes, economic uncertainties,
and technological risks. Epistemic uncertainty is inherently higher during the early
design phases (Fig. 2.6). Furthermore, according to Collette (2017), the key epistemic
uncertainties for ship structures involve operational profiles and behavior, model
uncertainty, and the influence of the human engineer. Hence, within the domain
of early-stage design for complex engineering systems, engineers confront both
aleatory and epistemic uncertainties. In certain instances, as highlighted by Collette
(2017) in the context of ship structures, numerous studies tend to simplify or
overlook epistemic uncertainties.

The identification and quantification of uncertainty is relevant to early-stage
design applications because it "creates value only to the extent that it holds the
possibility of changing a decision that would otherwise be made differently" (Bickel
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Figure 2.6: Uncertainty evolution throughout the design process (Mavris et al., 1998)

& Bratvold, 2008). Thus, Uncertainty Quantification (UQ) can be used to improve
early-stage design exploration of novel and complex systems. Firstly, UQ can be used
to make more informed and optimal design decisions (Aughenbaugh & Paredis,
2005; Hulse et al., 2020). Secondly, when dealing with innovative concepts, there
is an inherent introduction of additional uncertainty into the design exploration
problem. The additional uncertainty arises due to the inherent lack of knowledge
concerning the performance of such systems. A real-world example in industries
like automotive and aerospace involves the use of prototyping to acquire addi-
tional insights into the performance of new engineering systems. It is noteworthy
to emphasize that, particularly in the domain of ship design, the large physical
dimensions, the complexity, and the fact that ships are not being built in large
series render the construction of full-scale prototypes unfeasible (Andrews, 2018).
Therefore, it becomes important to consider and account for this uncertainty in order
to effectively navigate the objective landscape and make reliable design decisions.

Therefore, various sources of uncertainty are present in early-stage design applic-
ations. As identified in Section 2.1, naval architects need to account for the increased
uncertainty associated with the design of novel vessels. This is the first type of
uncertainty that this research addresses. To mitigate this type of uncertainty, HF ana-
lysis will be incorporated early in the design process by developing MF models for
the analysis and optimization engines of the DAF. The second source of uncertainty
addressed in this study is related to predicting the objective landscape. This type of
uncertainty can be mitigated by increasing the number of design points. To quantify
this uncertainty, GPs are used; the mathematical formulation is discussed in Section
3.3.2. Both sources of uncertainty in this study are categorized as epistemic.



2.2 design architectural framework for novel vessels 21

2.2.2 Reliability assessment within the DAF

During the early design stages, various designs are developed to explore the design
space and objective landscape. Each design must be analyzed and evaluated to assess
its performance. Assessing the reliability performance of different designs, especially
considering prolonged exposure to potentially harsh environmental conditions, is
a crucial factor in design decision-making (Seyffert et al., 2019). Seyffert (2018)
argues that it is desirable to consider a design’s performance over its intended
lifetime earlier in the design cycle, taking into account increasingly harsh ocean
environments and the push to extend the service life of marine systems. Another
argument for considering reliability early in the design process is related to budget.
Specifically, incorporating reliability early helps avoid costly design iterations in the
later stages of development (Chaudhuri et al., 2022).

For well-established designs, formulas provided by classification societies are
used to calculate wave forces and the vessel’s response. This process is explained by
Bai and Jin (2015), in the following steps:

1. Determining the design load

2. Defining the acceptance criteria

3. Making the strength assessment.

Defining the design loads can be a challenging task as the ship may be exposed to
various sea and wave conditions during its lifetime (e.g., for structural loads; Paik,
2020). One example is that classification societies use the Design Wave Method to
determine the design loads. The method determines a linear regular wave based on a
specified linear response transfer function and a corresponding response value (van
Essen & Seyffert, 2022). The acceptable risk is specified by the approval authority
(flag state administration and/or classification society), taking into account aspects
of human life and environmental protection (Sames, 2009). However, there are
design cases where these established rules are insufficient, and thus direct analysis
design assessment is required (Hirdaris et al., 2014).

The rules and methods developed by classification societies tend to be insufficient
when analyzing novel hull forms (Parunov et al., 2022; Seyffert & Kana, 2019;
Shigunov et al., 2015). For example, when considering extreme wave loading on
novel hull forms, classification societies define simultaneous load combination cases
using the Design Wave Method, which are then applied in a finite element model.
Seyffert and Kana (2019) examined whether this approach defines realistic lifetime
combined loading scenarios, especially for novel hulls. The research concluded that
the simplicity of the Design Wave Method method may not justify the potential
losses in accuracy when considering lifetime combined loading scenarios for a novel
hull, such as a trimaran. Therefore, this established method may not be sufficiently
accurate for the assessment of complex marine systems. Furthermore, the rules
set by classification societies tend to be overconservative (e.g., Jensen et al., 2009).
Based on this argument, Vassalos (2009) argues that the optimal design solution may
lie outside the regulatory envelope, as shown in Fig. 2.7. In conclusion, a broader
exploration of the objective landscape through direct analysis in the early stages is
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Figure 2.7: Design envelope illustrating the conservatism of classification societies’ rules.
(Vassalos, 2009)

more effective for evaluating novel hull forms and conducting early-stage design
exploration.

2.3 multi-fidelity models

2.3.1 Overview

As discussed, incorporating HF analysis early in the design process can be made
feasible through the use of MF models. MF models were developed in the field of ML,
and are based on the combination of HF models and LF models to achieve accuracy
at a reasonable computational cost (Fernández-Godino, 2023; Peherstorfer et al.,
2018b). Beran et al. (2020) assert that “analysis or design of a system is considered
MF when there is synergistic use of different mathematical descriptions . . . in the
analysis or design procedure”. A high-level description of an MF model can be seen
in Fig. 2.8a. MF methods can accelerate the solution of outer-loop applications such
as optimization and UQ, where several model evaluations are required. Peherstorfer
et al. (2018b) distinguish two key components of the MF models: (1) the LF models,
which are useful approximations of the HF model, and (2) the model management
strategy, which distributes the analysis amongst the different models. Examples
of different model management methods can be found in Fig. 2.8b. For a detailed
review of the various MF mathematical schemes, the reader is referred to Fernández-
Godino (2023) and Peherstorfer et al. (2018b). This section aims to provide a targeted
review of MF models and investigate their applicability in an early-stage design
framework for novel vessels.

2.3.2 Pedagogical example

In the following pedagogical example, the potential of applying MF models in
early-stage ship design is illustrated. During the early design stages, the naval
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(a) High-level sketch of an MF model (Peherstorfer et al., 2018b).

(b) Examples of model management strategies (Peherstorfer et al., 2018b).

Figure 2.8: Main elements of an MF model
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(a) Design exploration based on the LF model (b) Design exploration based on the MF model

Figure 2.9: Design exploration of the pedagogical example

architect aims to identify the relationship between the DDs, connected with the
design variables, and the KPI to guide the exploration toward identifying the ‘optimal
design’.

Let’s assume that the design problem is constrained to a single design driver,
described by the design variable A, and is related to a single KPI, also designated
as A, via the Forrester function. The mathematical formulation of the Forrester
function is provided in Section 3.4.1. It is not included here, as this example focuses
solely on illustrating the relevance of MF models in early-stage design. In reality, this
assumption simplifies the design problem, as designers typically have to navigate
multi-dimensional spaces in actual design scenarios (Duchateau, 2016).

In this example, the objective landscape is shown in Fig. 2.9. The HF objective
function is shown by the red dashed curve, which connects to the ‘true’ underlying
objective landscape designers aim to explore. The LF objective function, representing
the computationally cheaper approximation, is depicted by the blue curve. In
practice, the true shape of the HF objective function cannot be computed due to
limitations in computational power, time, and budget. Consequently, LF models and
data are traditionally used in the early design stages to identify design trends. Let’s
assume that the presented KPI A represents a quantity that needs to be minimized to
achieve optimal performance. As it can be seen in Fig. 2.9a, design point B represents
the point that minimizes the HF function, whereas design point A represents the
point that minimizes the LF function. As a result, the relationship between the design
variable A and KPI A is misinterpreted, leading to incorrect conclusions about the
range of values for the design variable A that minimizes KPI A.

Figure 2.9b illustrates a MF model constructed using both LF and HF observations.
The model is represented by the black dashed curve. The updated predicted min-
imum, design point B, lies significantly closer to the ‘true’ minimum, design point A.
Thus, the MF model is a better approximation of the HF model and provides meaning-
ful results for identifying the design trends. This simplified example demonstrates
the potential benefits of integrating MF models into early-stage design.
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2.3.3 Relevant work

MF models are currently state-of-the-art in engineering applications (e.g., Di Fiore
et al., 2023), and applied mathematics (e.g., Meng and Karniadakis, 2020a). MF

models have been built based on various methods such as GPs (e.g., Damianou
and Lawrence, 2013; Kennedy and O’Hagan, 2000; Le Gratiet and Garnier, 2014;
Perdikaris et al., 2017), Monte Carlo (MC) methods (e.g., Ng and Willcox, 2016;
Peherstorfer et al., 2018b; Zanoni et al., 2024), and Neural Networks (NNs) (e.g.,
Meng et al., 2021; Meng and Karniadakis, 2020b). These methods have been widely
applied to various engineering problems, including design analysis and optimization
in the aerospace (e.g., Chaudhuri et al., 2022; Di Fiore et al., 2021; Perron et al.,
2021), and maritime field (e.g., Bonfiglio et al., 2018c; Gaggero et al., 2022; Serani
et al., 2022), bioengineering applications (e.g., Raissi et al., 2020), and solving Partial
Differential Equations (PDEs) (e.g., Penwarden et al., 2022; Raissi and Karniadakis,
2016; Sajjadinia et al., 2022).

GPs, a subset of Bayesian methods, have been effectively used in engineering prob-
lems, especially when the analysis involves computationally expensive functions.
In general, a GP is a collection of random variables such that any subset of these
variables is jointly Gaussian (Rasmussen & Williams, 2005). The MF schemes of GPs

incorporate data obtained from various fidelities. One of the schemes is the linear
autoregressive scheme AR1 proposed by Kennedy and O’Hagan (2000). A recursive
formulation of the AR1 scheme was proposed by Le Gratiet and Garnier (2014). This
approach reduces the computational complexity of the original model. In addition
to this, two nonlinear schemes have been introduced: the NARGP proposed by Per-
dikaris et al. (2017), and the deep GPs proposed by Damianou and Lawrence (2013).
The various schemes have been successfully implemented in different engineering
applications. A detailed review of the applicability of MF GPs in aerospace systems
can be found in Brevault et al. (2020).

GPs and MF GPs have demonstrated their effectiveness in addressing design op-
timization problems across different engineering fields such as aircraft design (e.g.,
Feldstein et al., 2020), ship design (e.g., Scholcz and Klinkenberg, 2022) and ma-
terials design (e.g., Bessa et al., 2019). Their popularity widely comes from the
fact that they are well suited for small data regimes (Nitzler et al., 2022) which
aligns them with the problem of early-stage exploration of novel systems where
there is inherently limited data available. In contrast to AR1, which assumes a linear
dependency between the fidelities, NARGP and deep GPs are capable of capturing
more complex nonlinear dependencies among the fidelities. A general trend, based
on aerospace-related engineering problems, is that linear schemes exhibit superior
performance in scenarios with limited data compared to nonlinear schemes, which
require a larger amount of data for effective training (Brevault et al., 2020).

As mentioned, GPs offer the advantage of providing accurate predictions for
small training datasets. Another strength of these models is that they quantify the
uncertainty associated with the prediction (Rasmussen & Williams, 2005). On the
other hand, a primary limitation of GPs is their scalability; their basic complexity
is O(n3), due to the inversion of the covariance matrix (Rasmussen & Williams,
2005). Additionally, there are numerical stability issues in calculating the inverse
covariance matrix, especially when the data points are very close to each other (Lim
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et al., 2017). Based on their applicability to engineering problems, one important
limitation of MF GPs is their reduced effectiveness when there is a low correlation
between the fidelity levels (Gaggero et al., 2022; Raven & Scholcz, 2019).

GPs have been applied to solve ship design-related problems. Gaggero et al. (2022)
proposed a two-fidelity framework for marine propeller design optimization. The
integrated methods were a Boundary Element Method (BEM) as the LF method, and
a Reynolds-averaged Navier–Stokes (RANS) solver as the HF method. These were
combined by the linear co-Kriging model. The co-Kriging model, mathematically
detailed in Goovaerts (1997), is a general linear model used for MF modeling with
GPs across s fidelity levels. A key limitation of this model is its symmetrical approach,
which does not allow for weighting of the outputs (Brevault et al., 2020). In addition,
Bonfiglio et al. (2018a) suggested a MF framework based on MF GPs and Bayesian
optimization to effectively exploit data from multi-resolution simulations. The
framework was applied to the shape optimization of 3D super-cavitating hydrofoils.
A similar approach was followed by Bonfiglio et al. (2018c) to build probabilistic
surrogate models, efficiently exploring a 35-dimensional design space to optimize
SWATH hull shapes that minimize wave-induced motions and accelerations. The
integrated analysis methods used were strip theory and a BEM based on potential
flow.

The MC method can be seen as a methodological way to perform what-if ana-
lysis based on repeated sampling and statistical analysis to calculate the results
(Raychaudhuri, 2008). MF MC have been applied in various engineering applications
(e.g., Jung et al., 2024; Ng and Willcox, 2016; Peherstorfer et al., 2018a). The MF MC

method is robust, flexible, and simple to implement (Zhang, 2021). A significant
advantage of MF MC methods is their suitability for analysis in high-dimensional
spaces (Peherstorfer et al., 2018b; Zhang, 2021). In addition, these methods are able
to capture nonlinearities (Zhang, 2021). An important limitation, of the crude MC

approach, is that many realizations are required to achieve accurate results. For
problems requiring the estimation of the probability of failure, the MF MC import-
ance sampling method is applied (e.g., Chaudhuri et al., 2020; Peherstorfer et al.,
2016). For design optimization applications, the MF MC control variates method has
been applied (e.g., Ng and Willcox, 2014). An application of the method to address
conceptual design optimization under uncertainty of aircraft can be found in Ng
and Willcox (2016). Both the importance sampling and control variate methods
result in computational savings compared to the crude MC method.

A NN is an interconnected assembly of processing elements, the neurons, whose
processing ability of the network is expressed by the interunit connection strengths,
the weights, and obtained by the process of learning from a set of training patterns
(Gurney, 1997). NNs are capable of identifying complex nonlinear relationships
(Guenther, 2001); however, this requires a sufficiently large training set of data
(Gurney, 1997). NNs have been successfully employed to solve complex physical
problems across various scientific domains. Some examples of scientific research
related to fluid dynamics are the prediction of the nonlinear motions of vessels
in irregular long-crested and oblique seas (del Águila Ferrandis et al., 2021), and
the estimation of pressure and velocity fields from images (Raissi et al., 2020).
An example of an MF application of NNs can be found in He et al. (2020). The
researchers proposed a deep NN to combine LF and HF aerodynamic data tested
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in predicting the lift and drag coefficient of a typical airfoil. Regarding design
optimization applications, some methods based on MF NNs can be found in Zhang
et al. (2021), addressing aerodynamic shape optimization, and in Yoo et al. (2021),
targeting the design optimization of composite structures. It is worth highlighting
that quantifying uncertainty in NNs is complicated and it is a current field of research
and debate. For further information, the reader is referred to Psaros et al. (2023).

To summarize, MF GPs are strong and well-understood mathematical methods that
offer reliable predictions while accounting for the underlying uncertainty associated
with these predictions. For the early-stage design of novel vessels, these methods
offer a significant advantage as they are effective in scenarios with limited available
data. On the other hand, a drawback of these methods is the increased computa-
tional cost required for solving high-dimensional problems. MF MC methods are
flexible and suitable for problems characterized by high-dimensional spaces. How-
ever, a large amount of analysis data is required for successful predictions. Most of
the applications focus on the control variate method for design optimization and
importance sampling for failure estimation. MF NNs seem to be very promising meth-
ods for solving highly complex problems. However, the uncertainty quantification
in MF NNs is still an open question. Another significant limitation of MF NNs is that,
due to their highly parametrized construction, they often require a high amount
of simulation data as training data (De et al., 2020). For the reasons discussed, this
dissertation will use MF GPs as the foundation for the design framework.

2.4 discussion

In summary, this chapter highlighted the necessity of incorporating HF analysis
methods earlier in the design process to assess the performance of novel designs.
However, this task is challenging due to budget and time constraints. A bottom-
up approach was used to identify the DDs and KPIs associated with the design of
novel vessels by analyzing the designs of the DDG1000 and the LCS-Independence.
The findings showed that the DDs for novel vessels are not necessarily different
from those for traditional vessels. However, the novel design features introduce
uncertainty stemming from both the design itself and the analysis methods. This
introduced uncertainty must be considered for decision-making during the early
stages of design. Additionally, for traditional vessels, the KPIs are typically related to
technical feasibility and cost assessment, whereas for novel vessels, it is also crucial
to account for safety performance earlier on in the design process. Additionally, this
research explored the potential of incorporating MF models into an early-stage DAF

for novel vessels. MF models have already proven to be powerful tools in addressing
design problems across various fields. This chapter identified and discussed the
most suitable methods for application in early-stage ship design. The following
chapter will dive into the analysis engine of the DAF.
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3
A N A LY S I S E N G I N E : T H E I N T E G R AT I O N O F C O M P O S I T I O N A L
K E R N E L S T O FA C I L I TAT E E A R LY- S TA G E D E S I G N
E X P L O R AT I O N 1

If people do not believe that
mathematics is simple, it is only
because they do not realize how
complicated life is.

— John von Neumann

This chapter addresses RQ.1, exploring how additional information from the
analysis data can be used to improve the developed MF approximation of the
objective landscape. It primarily focuses on the technical formulation of the AE

of the DAF. Section 3.1 provides a brief background and connects to the research
gap previously discussed in Section 1.3. Section 3.2 covers the related work. The
mathematical formulation of the proposed method is detailed in Section 3.3. The
method is tested using 5 benchmark problems and a simplified design problem of a
cantilever beam, with results and discussions presented in Section 3.4. Finally, the
conclusions and recommendations for future research are presented in Section 3.5

3.1 introduction

Despite the ongoing developments in MF models, there are still significant areas
in design applications that remain unexplored. For example, for multidisciplinary
design problems, Mainini et al. (2022) argue that there is no mathematical framework
that is capable of determining (1) which design disciplines, (2) the degree of coupling
for analysis tools, (3) the level of accuracy necessary to capture the crucial physics of
a specific design, (4) where the data is best collected, and (5) how to make optimal
design decisions with limited computational resources. Furthermore, Peherstorfer
et al. (2018b) emphasizes that for design frameworks, it is crucial to construct
frameworks that do not solely focus on models but include additional information
sources, so that decision-makers can effectively utilize a wider range of available
information.

1 This chapter is based on work previously published in Charisi et al. (2024c, 2022b)

29
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In design applications, a primary challenge lies in the necessity for a larger HF data-
set to attain precise predictions, particularly for complex and higher-dimensional
problems. More specifically, as the dimensionality of the data increases, the volume
of the space grows exponentially, necessitating significantly more data points to
maintain the same level of accuracy in predictions (Bellman, 1957; Keogh & Mueen,
2010). Expanding the HF dataset poses difficulties since each data point is a product
of computationally expensive analyses or, in some cases, physical experiments. Con-
sequently, the acquisition of a substantial HF dataset is constrained by the limited
(computational) budget available. To address this challenge, the dissertation pro-
poses the integration of compositional kernels in a DAF based on the autoregressive
scheme of MF GPs. The main idea is that a more accurate approximation of the
objective landscape can be attained by utilizing knowledge about the underlying
structure of the objective landscape revealed by the compositional kernels. The
goal is to build a framework where fewer HF evaluations are necessary to create an
accurate MF model, resulting in a reduction in computational cost. The proposed
method has been applied to five benchmark problems, as well as to a cantilever
beam design problem as a first step towards its application to early-stage design of
complex engineering systems such as naval vessels.

3.2 relevant work

Early-stage design of complex systems deals with multi-dimensional design spaces,
and this forms a significant challenge. In practical applications, the design space
often involves a large number of design variables. Therefore, the scalability of
the modeling methods becomes a crucial consideration. For instance, the design
variables can range from a few dozen, as seen in the hydrostructural optimization of
hydrofoils with a 17-dimensional design space (Bonfiglio et al., 2018b), to thousands
of variables in the case of an aerostructural optimization benchmark problem for
commercial transport aircraft (Brooks et al., 2017). Another important challenge to
address during this design stage is UQ.

Recent literature has examined numerous approaches aimed at facilitating design
exploration. For example, Di Fiore et al. (2021) proposed incorporating both in-
formation extracted from data and domain knowledge to facilitate the conceptual
design of re-entry vehicles. Furthermore, Singh and Willcox (2021) developed a
framework grounded in Bayesian statistics and decision theory. This framework
integrates information from different stages of a product’s lifecycle to enhance
decision-making in the design process. The method proposed in this dissertation is
founded on the premise that the objective landscape under investigation possesses
a specific structure, which can be uncovered and leveraged to enhance the efficiency
and effectiveness of design exploration.

The idea of uncovering the patterns within the objective landscape has been
studied by Melati et al. (2019). The researchers proposed a machine learning-based
approach rooted in pattern recognition to effectively map and characterize the
multi-dimensional design space of nanophotonic components. Through pattern
recognition techniques, the authors successfully unveiled relationships among an
initial sparse set of optimized designs, thereby reducing the number of characterized
variables.
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In the context of GPs, the covariance matrix via the kernel function can be used to
define patterns in the objective landscape. The efficacy of employing an appropriate
kernel function for Bayesian optimization was demonstrated by Moss et al. (2020).
In their work, the authors introduced a Bayesian optimization method for raw
strings that seamlessly incorporates a string kernel, showcasing the power and
effectiveness of this approach. In addition, the study conducted by Satria Palar et al.
(2020) explores the potential of composite kernel learning and model selection in
enhancing the accuracy of bi-fidelity GPs.

While the main focus of this dissertation aligns with the research paper of Satria
Palar et al. (2020), the approach of defining the kernel functions differs. The approach
of Satria Palar et al., 2020 is to build the compositional kernels as a weighted sum
of basis kernels, and the weights are treated as hyperparameters. In contrast, this
dissertation proposes an optimization routine where the kernel functions of the
different fidelities are sequentially built. Thus, the kernel function for the ith fidelity
is built based on the kernel function of the lower fidelity model i− 1. The proposed
method can be extended to an sth fidelity problem setup.

3.3 methods

This section contains the technical details of the proposed method in Section 3.3.1
which is composed of two primary components, (1) the MF GPs and (2) the com-
positional kernels. The mathematical formulation of GPs and MF GPs is provided
in Section 3.3.2, while the optimization process for the compositional kernels is
described in Section 3.3.3.

3.3.1 Proposed method

This dissertation proposes integrating compositional kernels to the linear autore-
gressive scheme AR1 to facilitate design exploration. The integration of the compos-
itional kernels aims to capture the shape of the underlying HF approximation of
the objective landscape with the goal of making improved predictions with less HF

analysis data. The core concept revolves around seeking the optimal compositional
kernel, comprising kernels that effectively capture distinct characteristics of the
objective landscape, such as linear or periodic patterns. Constructing these composi-
tional kernels involves solving a discrete optimization problem. The optimization of
the compositional kernel is guided by the analysis data used as the training set for
the MF GP.

Let us assume that the design problem involves models with fidelities ranging
from 1 to s, where fidelity 1 represents the lowest model and fidelity s represents the
highest fidelity model. The first step is to build a compositional kernel for the data
of the lowest fidelity (fidelity 1) based on a single fidelity GP model (technical details
in Section 3.3.2). For each fidelity i ranging from 2 to s, a compositional kernel
is built based on the bi-fidelity Gaussian Process (GP) model (technical details in
Section 3.3.2) using fidelity i data and fidelity i + 1 data. The process is summarized
in Algorithm 1 and Fig. 3.1.
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input : [X(j)
i , Y(j)

i ], Vf , k ; /* training data: i ∈ [1, Nj], j ∈ [0, s],
vector of fidelities, number of basis kernels */

output :V opt
k ; /* vector of optimal compositional kernels */

1 S ← {k1, k2, ..., kn} ; /* where ki are the basis kernel functions */

2 So ← {addition, multiplication};
3 for l:=1 to k do
4 V1 ← AllCombinations(S, l);
5 V2 ← AllCombinations(So, l − 1);
6 for i := 1 to length(V1) do
7 for j := 1 to length(V2) do
8 Apply the operations described in V2j to functions in V1i to

build kcompij ;
9 Vk ← Vk ∪ {kcompij}

10 end
11 end
12 end
13 for f to Vf do
14 if f = min(Vf ) then
15 for kcompij

in Vk do

16 Build a SF GP model using [X( f )
i=1,...,N f

, Y( f )
i=1,...,N f

];

17 Calculate BIC from Eqn. (3.19);
18 end
19 end
20 else
21 for kcompij in Vk do
22 Build a MF GP model using

[X( f )
i=1,..,N f

, Y( f )
i=1,..,N f

] ∪ [X( f−1)
i=1,..,N f−1

, Y( f−1)
i=1,..,N f−1

];

23 Calculate BIC from Eqn. (3.19);
24 end
25 end
26 Find the optimal kernel kopt

comp with the minimum BIC value;
27 V

opt
k ← V

opt
k ∪ {kopt

comp};
28 end
Algorithmus 1 : Compositional Kernel Optimization for MF-GPs
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Figure 3.1: Flowchart of the proposed method

3.3.2 Gaussian Processes: from the single fidelity to the multi-fidelity scheme

The mathematical formulation for the GPs is taken from Rasmussen and Williams
(2005). A GP is defined as “a collection of random variables, any finite number of
which have a joint Gaussian distribution, and it is fully characterized by its mean
and covariance function (Rasmussen & Williams, 2005)”. GPs are used to build
approximations of real-world processes f (x), which can be fully defined by a mean,
µ(x), and a covariance function, k(x, x′), according to Eqn. 3.1, 3.2, and 3.3:

f (x) ∼ GP(m(x), k(x, x′)) (3.1)

m(x) = E[ f (x)] (3.2)

k(x, x′) = E[ f (x)−m(x)][ f (x′)−m(x′)] (3.3)

The available analysis or experimental data can be described according to Eqn.
3.4:

y = f (x) + ϵ, ϵ ∼ N (0, σ2
nI) (3.4)

where f represents the function to be approximated and ϵ represents the error
term. GPs belong to the family of Bayesian methods. For Bayesian methods, a critical
element of the analysis is the prior distribution. The prior distribution encodes
our prior knowledge or assumptions regarding the unknown function f . The prior
distribution of the observed data X and the test data X∗ is determined according
to Eqn. 3.5: [

y

f∗

]
∼ N

([
0

0

]
,

[
K(X ,X) + σ2

n I K(X ,X∗)

K(X∗,X) K(X∗,X∗)

])
(3.5)

where f∗ are the function values evaluated at the test locations X∗. A common
practice is to assign the prior a zero mean (Rasmussen & Williams, 2005), since
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data can be normalized to have a zero mean, and a kernel function Kij = k(xi, xj; θ).
In Bayesian learning, the prior distribution is revised by incorporating the ob-
served data, resulting in the formation of the posterior distribution. Mathematically,
the prior distribution is conditioned on the observed data to form the posterior
distribution according to Eqn. 3.6, 3.7, and 3.8:

f∗|X ,X∗,y ∼ N (f̄∗, cov(f∗)) (3.6)

f̄∗ = kT
∗ [K + σ2

n I]−1y (3.7)

cov(f∗) = k(x∗, x∗)− kT
∗ [K + σ2

n I]−1k∗ (3.8)

where K = K(X ,X), and k∗ = k(x∗). There are various methods to optimize
the kernel hyperparameters such as cross-validation and maximum likelihood
estimation (e.g. Bachoc, 2013). In this dissertation, the marginal log-likelihood
was maximized, as it is a well-established approach for this task. The marginal
log-likelihood is defined according to Eqn. 3.9.

log p(y|X) = −1
2

log|K + σ2
n I| − 1

2
yT[K + σ2

n I]−1y − n
2

log 2π (3.9)

The autoregressive scheme proposed by Kennedy and O’Hagan (2000) assumes a
linear dependency of the various fidelity models. It is assumed that there are s levels
of code fidelity ( ft(x))s=1,...,s modelled by GPs (Ft(x))s=1,...,s, where x ∈ U ⊂ Rd.
The code fidelity increases from 1 to s, thus fs is the most accurate model. The
mathematical formulation follows the description in (Le Gratiet & Garnier, 2014).
The model is based on the Markov property, described in Eqn. 3.10, which states
that given the nearest point Ft−1(x) we can learn no more for Ft(x) from any other
Ft−1(x′) for x ̸= x′. This assumption leads to the autoregressive model.

ρt−1(x) =
cov(Ft(x), Ft−1(x′))

var(Ft−1(x))
, ∀x ̸= x′ (3.10)

The sub-models are connected according to Eqn. 3.11. The higher fidelity function
connects to the lower fidelity function via a scaling function ρt (Eqn. 3.13) and an
additive function δt (Eqn. 3.14). The scaling function ρt determines the scale factor
and the correlation degree between two successive levels of code. The function δt is
a GP independent of Ft−1(x) (Eqn. 3.12). The lowest fidelity function F1 is described
by Eqn. 3.15.

Ft(x) = ρt−1(x)Ft−1(x) + δt(x) (3.11)

Ft−1(x) ⊥ δt(x) (3.12)

ρt−1 = gT
t−1(x)βρt−1 (3.13)

δt(x) ∼ GP(µT
t (x)βt, σ2

t rt(x, x′)) (3.14)

F1(x) ∼ GP(µT
1 (x)β1, σ2

1 r1(x, x′)) (3.15)
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where gt−1(x) is a vector of qt−1 regression functions, rt(x, x′) is a correlation func-
tion, µt(x) is a vector of pt regression functions, βt is a pt-dimensional vector, βt−1

is a qt−1-dimensional vector, and σ2
t is a positive real number. The trend parameters

are denoted as β = (βT
1 , . . . , βT

S)
T, the adjustment parameters are represented as

βρ = (βT
ρ1

, . . . , βT
ρS
)T, and the variance parameters are expressed as σ = (σ1, . . . , σS).

The predictive model of the highest fidelity response fs is calculated according to
Eqn. 3.16, 3.17 and 3.18.

[Fs(x)|F(s) = f (s), β, βρ, σ2] ∼ N (mFs(x), s2
Fs
(x)) (3.16)

mFs(x) = h(s)(x)T β + ts(x)T(V(s))−1( f (s) − H(s)β) (3.17)

sFs(x) = υ2
Fs
(x)− ts(x)T(V(s))−1ts(x) (3.18)

V(s) represents the covariance matrix of F(s), ts(x) denotes the vector of covariances
between Fs(x) and F(s), H(s)β stands for the mean of F(s), h(s)(x)T β is the mean of
Fs(x), and υ2

Fs
(x) expresses the variance of Fs(x). For further details regarding the

mathematical formulations, the reader is referred to the original papers (Kennedy &
O’Hagan, 2000; Le Gratiet & Garnier, 2014). The method of optimizing the hyper-
parameters is similar to the one explained for single fidelity GPs by maximizing the
marginal log-likelihood (Eqn. 3.9).

3.3.3 Compositional kernels

The kernel, a measure of similarity between data points (Rasmussen & Williams,
2005), incorporates the prior beliefs and knowledge about the function f . Kernel
validity demands symmetry and positive semi-definiteness. Previous studies have
produced basis functions for constructing valid covariance matrices, such as the
periodic kernel for modeling repeating functions (Duvenaud, 2014). Duvenaud et al.
(2013) introduced compositional kernels, which are formed by combining a limited
number of basis kernels through addition or multiplication. The idea of the method
was to decompose the function to be learned into interpretable components. Some
examples of compositional kernels can be seen in Fig. 3.2.

For constructing the compositional kernels, a set of basis kernel functions was
determined. The set included the exponential and squared exponential kernels, the
linear kernel, the Brownian kernel, the white noise kernel, the Matérn 3/2 and
Matérn 5/2 kernels, the constant kernel, and the periodic kernel. When selecting
a limited number of basis functions to compose the compositional kernel, an ex-
haustive search method was employed. Exhaustive search was chosen because, with
a small number of basis kernels, all possible combinations can be tested. More,
specifically, Vector V1 contains all possible combinations of k basis kernels out of
9 possible functions. Vector V2 contains all possible combinations of operations
(addition, multiplication) for the k basis kernels. Each combination of operations
described in V2 is applied to every element of V1. This process yields a final vector
V3. Each element of V3 is assessed based on the Bayesian Information Criterion
(BIC) as proposed in the original paper (Duvenaud et al., 2013). BIC is defined
according to Eqn. 3.19.
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BIC = khyp ln N − 2 lnL∗ (3.19)

where N is the number of training data, khyp is the number of hyperparameters, and
L∗ is the maximized likelihood value. BIC consists of two components, a penalty
term based on the number of model parameters and a term based on the likelihood
function. The benefit of using BIC over maximizing the marginal log-likelihood lies
in its consideration of the kernel function’s complexity. By favoring functions with
fewer hyperparameters, BIC helps prevent overfitting (Trujillo-Barreto, 2015). The
main idea of building the compositional kernel was shown in Algorithm 1.

Figure 3.2: Examples of various compositional kernels (Duvenaud et al., 2013)

3.4 case studies

This section presents the initial proof of concept case studies and the results. The case
studies considered encompass a range of analytical benchmark problems proposed
by Mainini et al. (2022), as well as an engineering problem involving a cantilever
beam. The analytical functions employed in the case studies include:

• the Forrester function (used for conceptualization)

• the Jump Forrester function

• the ND Rosenbrock function

• the Heterogeneous function

• the 2D shifted-rotated Rastrigin function
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Following a notation similar to that of the previous sections, the models are
numbered as follows: the HF model is labeled as s, while the LF models are se-
quentially numbered from 1 to s− 1, where 1 represents the lowest fidelity among
the LF models. The Python packages used included GPy (2012) and Paleyes et al.
(2023, 2019). In this dissertation, the ground truth is defined as the HF data. The
dataset is initially divided into training and testing sets. The training set is used
to train the GP-based models, while the testing set evaluates the accuracy of the
predicted values using error metrics. Latin Hypercube Sampling (LHS) (M. D. McKay
& Conover, 1979) was employed for the selection of analysis points, and a total of 20

different DoE were used to calculate statistics pertaining to prediction errors. LHS

ensures the sample set accurately represents the underlying distribution of the data
(Li & Yang, 2023). Throughout the case studies, the reference model refers to the
AR1 model with the squared exponential kernel, whereas the proposed model refers
to the AR1 model with compositional kernels. The prediction error was evaluated
using two measures, namely the R2 and the normalized RMSE which are expressed
as follows according to Eqn. (3.20) and (3.21):

R2 = 1− ∑N
i=1 (yi − ŷi)

2

∑S
i=1 (yi − y)2

(3.20)

RMSE =
1

ymax − ymin

√√√√ 1
N

N

∑
i=1

(yi − ŷi)2 (3.21)

where yi refers to the observed value of each data point i, ŷi refers to the predicted
value of each data point i, y refers to the mean of the observed values for all the data
points, and N refers to the total number of the samples. Both errors are used to give a
more thorough understanding of the quality of the predictions. More specifically, R2

measures the proportion of variability in a dependent variable which can be captured
by using the independent variable (James et al., 2014). In the context of linear models,
this measure provides a good intuitive understanding as its value ranges from 0 to 1

(Spiess & Neumeyer, 2010). For nonlinear models, such as GPs, R2 is defined, but it
is not confined to the range [0, 1] (Colin Cameron & Windmeijer, 1997). A negative
value would suggest that the model’s performance is poorer than the average of
the predicted values. The metric R2 alone is inadequate for fully assessing the
specific models’ performance; therefore, it was used in conjunction with RMSE.
The latter metric assesses the accuracy of the model in terms of the residual error.
Although various other metrics could have been considered, the combination of
these two provides a sufficient understanding of the model’s performance. R2

offers insight into the model’s explanatory capabilities, while RMSE captures the
magnitude of prediction errors. The combination of these two metrics measures
both interpretability and precision.

3.4.1 Baseline example: the Forrester function

The primary objective of this particular case study, as opposed to the others, is to
facilitate comprehension and visualization of the concept of exploring the shape of
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(a) Reference model: RBF kernel (b) Proposed model: Optimized kernel

Figure 3.3: Forrester function using 5 HF and 25 LF data

the objective landscape. For this investigation, the Forrester function is adopted as
described in Eqn. (3.22) and (3.23) to represent the objective landscape.

f1(x) = 0.5 f2(x) + 10(x− 0.5)− 5 (3.22)

f2(x) = (6x− 2)2 sin(12x− 4) (3.23)

This case discusses and demonstrates the benefit of compositional kernels in
early design exploration. For this analysis, 5 HF and 25 LF analysis data were
used. Figure 3.3 shows the LF approximation represented by the blue line, the
HF approximation depicted in orange, and the prediction illustrated by the black
dashed line. As shown in Fig. 3.3a, the prediction using the AR1 scheme with the
squared exponential kernel and the given observational data does not effectively
model the HF function. On the other hand, as shown in Fig. 3.3b, the prediction
using the AR1 scheme and the given observational data gives an accurate prediction
of the HF function, which represents the objective landscape. In this instance, the
kernel for the LF data was represented as a product of a linear kernel and a white
noise kernel, while the squared exponential kernel was employed for the HF data.
This specific case visually demonstrates that the additional information provided
by the compositional kernel about the structure of the HF function can improve
the performance of the framework. Thus, it is possible to make more accurate
predictions with less HF data, thereby reducing the required computational cost.
It is clear that the proposed approach incurs additional computational costs for
developing the compositional kernels, however, the computational time and costs
of running the MF analysis are less than obtaining additional HF computational or
physical experimental data.

3.4.2 Addressing discontinuities: the Jump Forrester function

The Jump Forrester is a variation of the Forrester aimed at introducing discontinuit-
ies. The Jump- Forrester is described by Eqn. (3.24) and (3.25).
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f1(x) =

0.5 f2(x) + 10(x− 0.5)− 5, 0 ≤ x < 0.5

0.5 f2(x) + 10(x− 0.5)− 2, 0.5 ≤ x ≤ 1
(3.24)

f2(x) =

(6x− 2)2 sin(12x− 4), 0 ≤ x < 0.5

(6x− 2)2 sin(12x− 4) + 10, 0.5 ≤ x ≤ 1
(3.25)

In this particular bi-fidelity case study, a total of 25 LF points were used while
the number of HF points was varied in the range of 5 to 15. LHS was employed to
generate 20 different datasets to determine the statistics of the error measures. The
results are presented in Tab. 3.1 and 3.2.

The results demonstrate that both the proposed and reference models exhibit
similar performance in the cases of 5 and 8 HF points. However, it outperforms
the reference model when using 10 and 15 HF points. The improvement ranges
from 1 to 22% depending on the number of HF points, but it is negative (-3%) in
the case of 8 HF points. This suggests that while the proposed model shows the
potential for significant advancements in scenarios with limited data, where both the
single-fidelity (SF) model and the reference model struggle to accurately represent
the underlying objective landscape, the amount of HF data needs to be adequate
to properly capture the function’s structure. The most substantial improvement is
observed when using 15 HF points. A representative case is illustrated in Fig. 3.4.
The training dataset includes 10 HF and 25 LF data points. The SF model in Fig. 3.4a
fails to capture the function. The reference model (Fig. 3.4b) is better but not entirely
accurate. In contrast, the proposed model (Fig. 3.4c) demonstrates superior accuracy
in predicting the function. In this case, the kernel function for the LF data was a
multiplication of a linear and a Brownian kernel, while for the HF data, the Matérn
5/2 kernel was chosen. Based on these findings, it can be concluded that neither
model adequately captures the discontinuity; however, the proposed model exhibits
enhanced capability in capturing the function within the remaining domain.

Table 3.1: Error measures calculated for the Jump Forrester function varying number of HF
points

DoE
GP HF

R2(std)

GP HF

RMSE(std)

Ref. model

R2(std)

Ref. model

RMSE(std)

Prop. model

R2(std)

Prop. model

RMSE(std)

(5,25)
0.1894

(0.3832)

0.2409

(0.0569)

0.6953

(0.4458)

0.1297

(0.0787)

0.7435

(0.2294)

0.1280

(0.0547)

(8,25)
0.5451

(0.2742)

0.1772

(0.0544)

0.8704

(0.0545)

0.0971

(0.0191)

0.8554

(0.0968)

0.0996

(0.0316)

(10,25)
0.5052

(0.3329)

0.1805

(0.0695)

0.8085

(0.2703)

0.1058

(0.0574)

0.8732

(0.1296)

0.0892

(0.0403)

(15,25)
0.7322

(0.2826)

0.1235

(0.0706)

0.9095

(0.0490)

0.0798

(0.0217)

0.9384

(0.0682)

0.0626

(0.0271)
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Table 3.2: Assessment of the various models for the Jump Forrester function

DoE
Improvement ref. model

compared to the GP HF

Improvement prop. model

compared to the GP HF

Improvement prop. model

compared to the ref. model

(5,25) 46% 47% 1%

(8,25) 45% 44% -3%

(10,25) 41% 51% 15%

(15,25) 35% 49% 22%

(a) GP HF model (b) Reference model (c) Proposed model

Figure 3.4: Jump Forrester using 10 HF and 25 LF points

3.4.3 Scalability: the ND Rosenbrock fuction

As previously mentioned, in practical applications, the design space often involves
a large number of design variables. Therefore, the scalability of modeling methods
becomes a crucial consideration. To illustrate the performance of the proposed
model in such design problems, the ND Rosenbrock function was employed as a
representative test case. The Rosenbrock function was evaluated in various dimen-
sions, ranging from 4D to 20D. Equations (3.26), (3.27) were used to describe the
Rosenbrock function.

f1(x) =
f2(x)− 4−∑D

i=1 0.5xi

∑D
i=1 0.5x1

(3.26)

f2(x) =
D−1

∑
i=1

100(xi+1 − x2
i )

2 + (1− xi)
2 (3.27)

where xiϵ[−2, 2].
In this specific bi-fidelity case study, the volume of HF and LF data was system-

atically increased in alignment with the number of dimensions. The quantity of
HF data ranged from 45 to 125, while LF data varied from 140 to 300 data points.
Importantly, this approach has no impact on the relative performance of the models,
as all three models were trained with identical data volumes. To assess the statistics
of error measures, LHS was employed to generate 20 distinct datasets. The resulting
outcomes are presented in Tab. 3.3 and 3.4. In the case of all three models, the
results reveal a decline in their performance with the increasing dimensionality. This
outcome aligns with our expectations, as higher dimensionality brings about greater
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complexity, necessitating a larger volume of training data to achieve the same level
of accuracy. Despite augmenting the training data as the problem scaled, the extent
of this increase did not compensate for the heightened complexity. The proposed
model outperforms the reference model in all the examined cases, and showed a
significant improvement. It’s noteworthy that in the context of 20 dimensions, the
reference model proves ineffective in predicting the function (R2 = −0.1913), while
the proposed model maintains a satisfactory level of accuracy (R2 = 0.6381).

Table 3.3: Error measures calculated for the ND Rosenbrock function varying number of
HF points

Dimensions

DoE

GP HF

R2(std)

GP HF

RMSE(std)

Ref. model

R2(std)

Ref. model

RMSE(std)

Prop. model

R2(std)

Prop. model

RMSE(std)

4

(45,140)

0.2143

(0.2886)

0.1127

(0.0243)

0.9685

(0.0108)

0.0228

(0.0037)

0.9955

(0.0020)

0.0085

(0.0018)

6

(55,160)

-0.0092

(0.0368)

0.1449

(0.0027)

0.8188

(0.1065)

0.0594

(0.0155)

0.9824

(0.0078)

0.0187

(0.0040)

8

(65,180)

0.0065

(0.0404)

0.1247

(0.0026)

0.6489

(0.1421)

0.0725

(0.0157)

0.9399

(0.0315)

0.0301

(0.0059)

10

(75,180)

-0.01198

(0.0153)

0.1203

(0.0009)

0.5530

(0.1844)

0.0783

(0.0163)

0.8574

(0.0495)

0.0447

(0.0067)

15

(100,250)

-0.00224

(0.0186)

0.1232

(0.0012)

0.1173

(0.2470)

0.1143

(0.0176)

0.7037

(0.1341)

0.0660

(0.0115)

20

(125,300)

-0.0032

(0.0216)

0.1402

(0.0015)

-0.1913

(0.1690)

0.1523

(0.0122)

0.6381

(0.0751)

0.0838

(0.0083)

Table 3.4: Assessment of the various models for the ND Rosenbrock function

Dimensions DoE
Improvement ref. model

compared to the GP HF

Improvement prop. model

compared to the GP HF

Improvement prop. model

compared to the ref. model

4 (45,140) 80% 92% 63%

6 (55,160) 59% 87% 68%

8 (65,180) 42% 76% 58%

10 (75,200) 35% 63% 43%

15 (100,250) 7% 46% 42%

20 (125,300) -8% 40% 45%

One of the well-known challenges to address when using GPs is that the computa-
tional complexity of training a GP model is known to be O(n3), where n represents
the number of data points (Liu et al., 2019). This cubic complexity poses challenges
when dealing with large datasets or high-dimensional design spaces. This signi-
ficantly impacts the procedure of constructing compositional kernels, making it
computationally expensive for high-dimensional input spaces. Figure 3.5 displays
the escalating computational costs plotted against the dimensions of the function. To
provide an indication of this increase, the average time of building the compositional
kernels for the 4D Rosenbrock function is 4,728 seconds, which was 13 times lower
than the time required for the 20D Rosenbrock function, which was 64,557 seconds.
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Figure 3.5: Computational cost comparison across various dimensions of the ND Rosen-
brock function

3.4.4 Discovering complex patterns: the Heterogenous function

Complex design problems are often characterized by intricate structures. To evaluate
the performance of models in solving such design problems, a commonly employed
analytical function is the Heterogeneous function, known for its localized and multi-
modal behavior (Mainini et al., 2022). The 1D Heterogeneous function is described
by the Eqn. (3.28) and (3.29).

f1(x) = ( f2(x)− 1.0 + x)/(1.0 + 0.25x) (3.28)

f2(x) = sin 30(x− 0.9)4 cos 2(x− 0.9) + (x− 0.9)/2 (3.29)

where 0 ≤ x ≤ 1. In the analysis, similar to the Jump Forrester function, the number
of HF points varied from 5 to 15, while the number of LF points remained constant
at 25. The results are summarized in Tab. 3.5 and 3.6.

Notably, the MF approach demonstrates a significant advantage over the SF ap-
proach, particularly across the range of tested HF points. Moreover, the proposed
model exhibits improved prediction accuracy across all the tested DoE. The improve-
ment in the predictions of the proposed model compared to the reference model
ranges from 26% to 32%. Insights into the performance of the models can be gained
from Fig. 3.6, which specifically focuses on the case where a dataset of 5 HF points
and 25 LF points is shown. In Fig. 3.6a and 3.6b, it is evident that both the SF model
and the reference model struggle to accurately predict the shape of the function.
The proposed model employed a kernel function comprising the multiplication
of the linear and Brownian kernels for the LF data, while a squared exponential
kernel was used for the HF data. Notably, the proposed model achieves a more
precise representation of the function throughout the entire domain. However, one
drawback of the method is that the uncertainty bounds are reduced even in the area
close to x = 0, where the model fails to capture the structure of the function.
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Table 3.5: Error measures calculated for the Heterogeneous function varying the number of
HF points

DoE
GP HF

R2(std)

GP HF

RMSE(std)

Ref. model

R2(std)

Ref. model

RMSE(std)

Prop. model

R2(std)

Prop. model

RMSE(std)

(5,25)
-0.3939

(1.6100)

0.4476

(0.2197)

0.1387

(1.5754)

0.3081

(0.2423)

0.6144

(0.7309)

0.2115

(0.1550)

(8,25)
0.5476

(0.3719)

0.2599

(0.1145)

0.9114

(0.0785)

0.1189

(0.0409)

0.9569

(0.0022)

0.0876

(0.0022)

(10,25)
0.6941

(0.2431)

0.2160

(0.0888)

0.9127

(0.0639)

0.1193

(0.0367)

0.9576

(0.0017)

0.0869

(0.0018)

(15,25)
0.8813

(0.1401)

0.1323

(0.0606)

0.9066

(0.0291)

0.1271

(0.0220)

0.9576

(0.0021)

0.0869

(0.0022)

Table 3.6: Assessment of the various models for the Heterogeneous function

DoE
Improvement ref. model

compared to the GP HF

Improvement prop. model

compared to the GP HF

Improvement prop. model

compared to the ref. model

(5,25) 31% 53% 31%

(8,25) 54% 66% 26%

(10,25) 45% 60% 27%

(15,25) 4% 34% 32%

3.4.5 Noisy observations: the 2D shifted-rotated Rastrigin function

In this case study, the 2D shifted-rotated Rastrigin function was employed. This
function is characterized by multi-modal behavior. In practical applications, the
analysis data and experimental data used for design optimization often contain
noise. Therefore, it is important to investigate the performance of the model while
dealing with noisy training data. To investigate this, a noise term edata was added to
the 2D shifted-rotated Rastrigin function, taken from (Mainini et al., 2022). Thus,
for this analysis, Eqn. (3.30) and (3.31) were used. The function can be visualized in
Fig. 3.7.

f1(z, ϕi) = f2(z) + er(z, ϕi) + edata (3.30)

where the resolution error er is defined according to Eqn. (3.35).

f2(z) =
D=2

∑
i=1

(z2
i + 1− cos (10πzi)) (3.31)

where
z = R(θ)(x− x∗) (3.32)

R(θ) =

[
cos θ − sin θ

sin θ cos θ

]
(3.33)

edata ∼ N (0, 0.072) (3.34)
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(a) GP HF model (b) Reference model (c) Proposed model

Figure 3.6: Heterogeneous function using 5 HF and 25 LF points

where xiϵ[−0.1, 0.2] for i = 1, .., D, R is the rotation matrix, θ = 0.2, and x∗ is the
location of the global optimum at [0.1, ...0.1]T.

er(z, ϕi) =
D=2

∑
i=1

α(ϕ) cos2(w(ϕ)zi + βϕ + π) (3.35)

with α(ϕ) = Θ(ϕ), w(ϕ) = 10πΘ, β(ϕ) = 0.5πΘ(ϕ), Θ(ϕ) = 1− 0.0001ϕ. For the
present case study, ϕ ϕ was set to 2500.

Figure 3.7: Visualization of the Rastrigin function

The outcomes are displayed in Tab. 3.7 and 3.8. It’s evident that the GP HF model
falls short in capturing the underlying function. In contrast, both the proposed
and the reference model demonstrated substantial enhancements. The reference
model shows improvements ranging from 21% to 34%, while the proposed model
delivers enhancements between 61% and 75%. In terms of statistical error analysis,
RMSE plots were generated for the three models over 20 iterations to assess error
convergence. As illustrated in Fig. 3.8a, 3.8b, and 3.8c, it’s clear that the error
values reach a plateau around iteration 16. The case study was extended to a
three-fidelity scenario, and the outcomes are presented in Tab. 3.9 and 3.10. These
results exhibit analogous trends to the bifidelity case, with the distinction that both
the proposed and reference models show greater improvements in predictions,
ranging from 32% to 63% and from 72% to 79%, respectively. Emphasizing the
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Table 3.7: Error measures calculated for the 2D Rastrigin function varying number of HF
points (bifidelity case)

DoE
GP HF

R2(std)

GP HF

RMSE(std)

Ref model

R2(std)

Ref model

RMSE(std)

Prop model

R2(std)

Prop model

RMSE(std)

(5,100)
-0.5539

(0.7471)

0.3023

(0.0628)

0.1910

(0.4308)

0.2114

(0.0704)

0.7925

(0.0604)

0.1118

(0.0153)

(10,100)
-0.2398

(0.3482)

0.2735

(0.0355)

0.2130

(0.5096)

0.2039

(0.0820)

0.8311

(0.0371)

0.1013

(0.0102)

(15,100)
-0.0627

(0.1489)

0.2547

(0.0186)

0.2727

(0.3860)

0.2002

(0.0671)

0.8543

(0.0248)

0.0942

(0.0082)

(20,100)
0.1169

(0.3703)

0.2260

(0.0558)

0.4944

(0.4170)

0.1586

(0.0761)

0.8692

(0.0599)

0.0878

(0.0179)

(25,100)
0.0332

(0.2743)

0.2384

(0.0497)

0.3945

(0.4485)

0.1531

(0.0847)

0.9028

(0.0325)

0.0762

(0.0127)

(30,100)
0.1018

(0.3339)

0.2267

(0.0610)

0.5224

(0.4562)

0.1489

(0.0845)

0.9458

(0.0323)

0.0559

(0.0142)

Table 3.8: Assessment of the various models for the 2D Rastrigin function (bifidelity case)

DoE
Improvement ref. model

compared to the GP HF

Improvement prop. model

compared to the GP HF

Improvement prop. model

compared to the ref. model

(5,100) 30% 63% 47%

(10,100) 25% 62% 50%

(15,100) 21% 63% 52%

(20,100) 30% 61% 45%

(25,100) 27% 68% 55%

(30,100) 34% 75% 62%

impact of incorporating additional models, it is worth noting that this results in
escalating computational costs. Figure 3.9 illustrates the computational cost for both
the bifidelity and trifidelity scenarios.

3.4.6 Simplified design problem: the cantilever beam

The proposed framework was tested on a structural design problem involving a
cantilever beam. This particular problem was chosen because it serves as a simplified
representation of real-world, complex engineering problem, such as estimating
lifetime loads on intricate structures like aircraft or ships. The formulation of the
problem was taken from (Brevault et al., 2020) and modified.

The cantilever beam is shown in Fig. 3.10a. The square-section beam is fixed to
the wall on one end, while a concentrated load is applied to the opposite end. In
addition, there is a hole on the side that is anchored to the wall. The aim is the
calculation of the developed von Mises (VM) stress. The problem is set up as a
bi-fidelity problem, where the LF method is the analytical estimation of the maximal
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Table 3.9: Assessment of the various models for the 2D Rastrigin function (three fidelity
case)

DoE
GP HF

R2(std)

GP HF

RMSE(std)

Ref model

R2(std)

Ref model

RMSE(std)

Prop model

R2(std)

Prop model

RMSE(std)

(5,50,100)
-0.9417

(2.7959)

0.3131

(0.1454)

0.4089

(0.4451)

0.1730

(0.0797)

0.8663

(0.0622)

0.0884

(0.0200)

(10,50,100)
-0.2253

(0.4342)

0.2710

(0.0414)

0.3428

(0.4362)

0.1842

(0.0800)

0.9145

(0.0267)

0.0717

(0.0101)

(15,50,100)
0.0385

(0.3127)

0.2385

(0.0461)

0.6996

(0.3448)

0.1206

(0.0623)

0.9234

(0.0319)

0.0673

(0.0130)

(20,50,100)
-0.0154

(0.2139)

0.2472

(0.0348)

0.5554

(0.4671)

0.1412

(0.0856)

0.9440

(0.0189)

0.0577

(0.0102)

(25,50,100)
0.0394

(0.2688)

0.2381

(0.0474)

0.7627

(0.3339)

0.1025

(0.0636)

0.9527

(0.0217)

0.0525

(0.0121)

(30,50,100)
0.1826

(0.3981)

0.2115

(0.0736)

0.8700

(0.2054)

0.0773

(0.0446)

0.9655

(0.0137)

0.0452

(0.0089)

Table 3.10: Assessment of the various models for the 2D Rastrigin function (three fidelity
case)

DoE
Improvement ref. model

compared to the GP HF

Improvement prop. model

compared to the GP HF

Improvement prop. model

compared to the ref. model

(5,50,100) 44% 72% 49%

(10,50,100) 32% 74% 61%

(15,50,100) 49% 72% 44%

(20,50,100) 43% 77% 49%

(25,50,100) 57% 78% 49%

(30,50,100) 63% 79% 42%

VM stress and the HF method is the numerical estimation of the maximal VM stress.
Furthermore, the problem was modeled as a 2D problem, with the independent
variables being the beam’s length (Lb), and diameter (db). The problem domain was
defined within the ranges of Lbϵ[2.0, 3.0] m, and dbϵ[0.25, 0.4] m. The applied force
Fb was established as a constant value of 950 kN.

The equations can be found in (Öchsner, 2021). To accurately calculate the VM

stress through analytical means, both the shear force and the bending moment,
exerted along the beam’s length when it is subjected to a transverse force, need
to be accounted for. The internal bending moment and shear force are calculated
according to Eqns. 3.36 and 3.37, respectively. The internal bending moment and
shear force are used to determine the resulting bending and shear stresses, as given
in Eqns. 3.38 and 3.39. The bending and shear stresses are combined to determine
the VM stress, as given in Eqn. 3.40. For a square cross-section beam, the moment of
inertia the moment of inertia Iy is given by Iy = d4

b/12 , and the cross-sectional area
is Ab = d2

b. The maximum VM stress is calculated at x = 0.

My(x) = Fb(x− Lb) (3.36)
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(a) GP HF model (b) Reference model (c) Proposed model

Figure 3.8: Convergence of the RMSE based on the Rastrigin bifidelity case study

Figure 3.9: Computational cost comparison based on the Rastrigin function case

Qz(x) = −Fb (3.37)

σx(x, z) =
My(x)

Iy
z (3.38)

τ(x, z) =
3Qz(x)

2Ab

[
1−

(
z

db/2

)2
]

(3.39)

σVM(x, z) =
√

σ(x, z)2 + 3τ(x, z)2 (3.40)

where zϵ[0, d/2] and xϵ[0, L]. Equation 3.40 indicates that shear stress becomes more
significant relative to bending stress as the beam length decreases. However, for the
examined case study, the maximum VM stress will occur at the top or bottom of the
beam.

In the numerical model, a hole was incorporated into the cantilever beam design.
The main dimensions of the hole, Li

hole and di
hole, were determined based on the

beam’s main dimensions according to Eqn. (3.41), (3.42), (3.43). The scaling coef-
ficient for the hole size, denoted as αi

hole , determines the proportional size of the
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(a) Schematic representation
(b) Equivalent von Mises stresses calculated

by Ansys

Figure 3.10: Cantilever beam case study

hole in the i-th case. The beam length in a specific case is represented by Li
b, while

Lmax
b denotes the maximum beam length considered in the study. Similarly, the

beam diameter for for the i-th case is given by di
b. The material properties of the

beam were specified as follows: steel with a Young’s modulus (E) of 2E11 Pa and a
Poisson’s ratio (ν) of 0.30. The model was developed using ‘ANSYS Software’ (2023).

αi
hole =

Li
b

Lmax
b

(3.41)

Li
hole = αi

hole · Li
b (3.42)

di
hole = αi

hole · di
b (3.43)

Table 3.11: Error measures calculated for the cantilever beam varying the number of HF
points

DoE
GP HF

R2(std)

GP HF

RMSE (std)

Ref model

R2(std)

Ref model

RMSE(std)

Prop model

R2(std)

Prop model

RMSE(std)

(10,50)
0.0073

(0.2631)

0.1834

(0.0303)

-0.0963

(0.3296)

0.1923

(0.0338)

-0.0035

(0.2887)

0.1840

(0.0339)

(15,50)
0.6553

(0.0978)

0.1108

(0.0182)

0.6533

(0.0854)

0.1116

(0.0172)

0.7664

(0.1127)

0.0896

(0.0278)

(20,50)
0.6789

(0.0891)

0.1056

(0.0162)

0.6732

(0.0800)

0.1068

(0.0146)

0.7875

(0.1402)

0.0825

(0.0347)

(25,50)
0.7581

(0.1549)

0.0912

(0.0268)

0.7473

(0.1117)

0.0946

(0.0217)

0.8344

(0.0944)

0.0752

(0.0287)

(30,50)
0.7901

(0.0729)

0.0844

(0.0186)

0.7780

(0.0824)

0.0870

(0.0188)

0.8927

(0.0846)

0.0581

(0.0279)

(35,50)
0.7868

(0.1255)

0.0838

(0.0227)

0.7725

(0.1172)

0.0872

(0.0236)

0.8744

(0.0797)

0.0649

(0.0276)

The outcomes are presented in Tab. 3.11 and 3.12. These results indicate that
the reference model yields results that are on par with the SF model. This can
primarily be attributed to the considerable disparity between the LF fidelity model
and the HF model, which is attributed to the presence of the hole. In contrast, the
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Table 3.12: Assessment of the various models for the cantilever beam

DoE
Improvement ref. model

compared to the GP HF

Improvement prop. model

compared to the GP HF

Improvement prop. model

compared to the ref. model

(10,50) -5% 0% 4%

(15,50) 0% 19% 20%

(20,50) -1% 22% 23%

(25,50) -3% 18% 20%

(30,50) -3% 31% 33%

(35,50) -4% 23% 25%

predictions of the proposed model are closer to the HF surface. Based on Tab. 3.12,
the improvement compared to the SF model reached up to 31%. An example of the
problem can be visualized in Fig. 3.11.

(a) Objective landscape for the
cantilever beam (b) Reference model (c) Proposed model

Figure 3.11: 2D structural problem of a cantilever beam using 20 HF data and 50 HF data

3.5 discussion

Discussion on the presented case studies

In summary, the findings demonstrated that the incorporation of compositional ker-
nels significantly enhanced the predictive capabilities of the AR1. Various analytical
benchmark problems were simulated to thoroughly test the proposed model.

The 1D Jump Forrester function, representing a discontinuous space, was treated
as a bi-fidelity problem. The number of HF points ranged from 5 to 15, while LF

points remained constant at 25. The proposed model yielded an improvement
in predictions, reaching up to 22% in the case of 15 HF points. Similarly, the 1D
Heterogeneous function case study followed a modeling approach akin to the
1D Jump Forrester scenario. The proposed model exhibited improvement, with
predictions reaching up to 32% in the case of 15 HF points. The 2D shifted-rotated
Rastrigin function, employed to assess multi-modal behavior, was modeled both
as a bi-fidelity and tri-fidelity problem. In the bi-fidelity scenario, the HF points
ranged from 5 to 30, while LF points remained constant at 100. An improvement of
62% was observed with 30 HF points. In the tri-fidelity case, HF points ranged from
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5 to 30, medium-fidelity points were held constant at 50, and LF points remained
constant at 100. In this case, the improvement was measured at 49% for the majority
of the cases. For the cantilever beam problem, the reference model produced results
comparable to the SF GP. However, the proposed model achieved improved results,
with improvements reaching up to 33%. Overall, these results hold promise for
the application of the model in addressing complex design problems within multi-
dimensional spaces.

Critical reflection on scaling-up the method to address early-ship design of complex vessels

The objective of the proposed method is to facilitate early-stage design exploration
of complex vessels. While the presented case studies involved a lower complexity
level, it is crucial to critically reflect on the scalability of the method. The chosen
case studies demonstrate good alignment with benchmark problems that hold wide
acceptance within the research design community. An important consideration when
applying the suggested method to high-dimensional realistic design problems is the
increased computational costs associated with the development of the compositional
kernels. The associated computational cost depends on the dimensionality of the
problem, the size of the training set, and the number of analysis methods used in
the MF model. The latter is not of interest because inherently these design problems
deal with small data regimes. The impact of problem dimensionality was explored
in the ND Rosenbrock case study. Additionally, the effect of integrating additional
fidelity models was examined in the case of the 2D Rastrigin function. Overall, the
integration of compositional kernels introduces a trade-off between the computa-
tional benefits arising from reduced training dataset sizes and the supplementary
computational expenses stemming from kernel optimization. The determining factor
in this trade-off is contingent upon the nature of the design problem. Particularly
in scenarios characterized by design exploration tasks featuring KPIs that are ex-
pensive to evaluate, the integration of compositional kernels is asserted to present a
promising avenue.

The expansion of the method to tackle high-dimensional problems will inevitably
result in increased computational expenses, presenting a notable challenge. However,
it is important to note that HF analysis techniques in ship design problems, such
as CFD analysis and model tests, can be significantly (computationally) expensive.
Therefore, the author believe that the application of the proposed method and
the subsequent reduction in the required number of HF simulations will yield
computational benefits for design space exploration problems.

Recommendations for further research

The proposed method demonstrates its potential through both analytical case
studies and the engineering application of a cantilever beam. To further assess
its applicability, the method should be further scaled and tested on a realistic
early-stage design problem. Additionally, it is important to assess whether the
computational benefits stemming from the reduced necessity for HF simulations are
offset by the computational costs associated with optimizing the kernel function. The
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next chapter will address the aforementioned points, focusing on the optimization
of the AXE frigates.
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4
A N A LY S I S E N G I N E : T H E V E RT I C A L B E N D I N G M O M E N T C A S E
O F T H E A X E F R I G AT E S 1

Nonlinearity means that the act of
playing the game has a way of
changing the rules.

— James Gleick

This chapter examines RQ.2, investigating the scalability of the proposed method
of integrating compositional kernels into a MF DAF based on the AR1 scheme of
MF-GPs to address real ship design problems. Early-stage design assessment of loads
such as VBM can be a critical quantity of interest for design exploration. Traditionally,
classification societies’ rules are used to calculate such loads. However, relying solely
on these rules for designing new vessels may be insufficient, and conducting direct
analyses of multiple designs to support design exploration is computationally
infeasible. Currently, key factors such as wave-induced loads are typically evaluated
only in later design stages, where a limited number of promising designs are under
consideration. This dissertation explores the potential of harnessing MF models
for early-stage predictions of wave-induced loads, with a specific focus on wave-
induced VBM. The evaluated models consist of a SF model that uses GPs and three MF

models. The MF models include an AR1-based model, an AR1-based model enhanced
with compositional kernels (as described in Chapter 3), and a nonlinear model
based on NARGP. The case study focuses on the early-stage exploration of the AXE
frigates. MF analysis datasets were constructed using both frequency- and time-
domain methods to evaluate the wave-induced VBM experienced by the hull. Finally,
a critical reflection is provided on how traditional early-stage design processes can
be enhanced by integrating such MF models.

4.1 introduction

Accurately predicting wave-induced loads, such as bending moments and shear
forces, is important for the comprehensive evaluation of various design alternatives,

1 This chapter is based on work previously published in Charisi et al. (2024a)
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facilitating informed decision-making. For example, VBM is important for structural
stability and fatigue lifetimes (Guth et al., 2022). Traditionally, engineers rely on
established rules and guidelines prescribed by classification societies to guide their
design practices (Hirdaris et al., 2014). However, when dealing with novel ships
featuring unconventional shapes and sizes, blindly following the class society for-
mulations proves insufficient (Parunov et al., 2022; Seyffert & Kana, 2019; Shigunov
et al., 2015). The coupling of unique hull shapes with high service speed can lead to
significantly higher bending moments than those determined through classification
rules (Shigunov et al., 2015). Thus, it is necessary to adopt direct analysis techniques
using HF methods for more accurate predictions.

The VBM emerges as a significant load with substantial implications for ship
structural design. It results from the uneven distribution of water pressure and
gravity, resulting in the bending of the elastic hull structure (Molland, 2008). Notably,
instances of marine accidents, such as the MOL Comfort incident in 2013, have been
attributed to extreme bending moments (Jiang, 2015). The vessel broke in two after
encountering adverse weather in the Indian Ocean. The severity of such incidents
highlights the criticality of comprehending and effectively addressing the challenges
associated with the VBM to ensure the safety and structural integrity of vessels.

Despite extensive research on predicting VBM, a gap exists in integrating these
methods into early-stage design. This dissertation focuses on design exploration by
considering short-term responses, rather than relying on wave statistics for a single
design variation, as is common in most of the relevant literature. This dissertation
addresses this challenge. To introduce HF analysis earlier in the design process for
predicting wave-induced VBM in AXE frigates, three different models based on MF

GPs were built and compared. The models are based on the linear AR1 scheme, the
linear AR1 scheme with the integration of compositional kernel, and the nonlinear
NARGP scheme. The case study involves the assessment of wave-induced VBM for
early-stage design exploration of the AXE frigates.

4.2 relevant work

This section provides additional information on wave-induced VBM prediction, the
applicability of MF models for such predictions, and the AXE frigate concept.

4.2.1 Prediction of wave-induced vertical bending moments

The estimation of wave-induced motions and loads is crucial in the design of
marine structures (Hirdaris et al., 2016). From the designer’s perspective, it is
essential to ensure that the global structural strength can withstand operational
and environmental loads over the ship’s lifetime while considering economic and
environmental constraints that drive the development of lighter and more efficient
ship structures (Temarel et al., 2016).

In traditional practice, the estimation of global loads in the initial design stages
relies on adhering to the regulations of classification societies. This approach is ef-
fective for conventional designs, where nonlinear effects arising from hull geometry
and wave interactions are better understood and supported by experience; however,
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these effects must be carefully considered when dealing with unconventional hull
forms. Time domain (TD) simulations conducted on a tumblehome hull, accounting
for nonlinearities in the Froude Krylov force, and hydrostatic restoring pressure
forces revealed a complex VBM curve characterized by asymmetry, attributed to the
inherent hull asymmetry (Sapsis, 2021). In addition, Seyffert and Kana (2019) argue
that the Equivalent Design Wave method proposed by classification societies is not
suitable for novel hull forms like the trimaran when defining lifetime combined
loading scenarios.

Numerous methods are available for predicting VBM loads. LF methods encompass
classification rules and empirical formulations, such as the method proposed in
Murray (1947). A more precise approach involves employing linear potential flow
analysis, which takes into account the hull’s geometry (e.g., Rajendran et al., 2016).
However, in terms of accuracy, the most advanced methods include fully nonlinear
URANS models (e.g., Ley and el Moctar, 2021), model tests (e.g., Bouscasse et al.,
2022), or onboard measurements during real-world operations (e.g., Waskito et al.,
2020). These advanced approaches, while highly accurate, are often impractical
for early-stage design processes that may require evaluating a broad design space
spanning possibly thousands of design concepts or more.

In general, the analysis methods relevant to predicting VBM loads can be classified
into linear and nonlinear methods. Linear methods can yield reliable results for
certain problems, but when dealing with a ship operating in stochastic weather
conditions, various nonlinearities come into play, as noted in ITTC (2014). These
nonlinearities, as outlined by Hirdaris et al. (2016), include those associated with the
wetted surface of the body, the free surface, the seabed, and the remaining surfaces
bounding the fluid domain. Linear theories inherently suggest that sagging and
hogging moments are equal. However, empirical evidence from experiments and full-
scale measurements, e.g., Fonseca and Soares (2002), has demonstrated that sagging
exceeds hogging. The transition from straightforward methods like class rules to
more sophisticated and computationally costly techniques is primarily propelled by
shifts in ship types, sizes, complexities, the availability of additional data regarding
real ship responses in waves, and enhanced computational capabilities (Temarel
et al., 2016).

Numerous recent studies aim to develop MF models that facilitate the analysis
of a specific design under various loading conditions the vessel may encounter
throughout its lifetime. These predictions, encompassing various loading scenarios,
undergo statistical treatment to establish a design load. For example, Guth et al.
(2022) introduced an MF active search method applied to a ship-wavegroup problem
using the ONR Topside series flared variant with constant velocity through long-
crested head seas. The research demonstrated that, in specific cases, incorporating
LF data enhances the prediction of the PDF of the responses. Another study by
Drummen et al. (2022) proposed an MF approach, integrating model tests with results
from linear potential flow, to predict design loads linked to the extreme VBM. The
findings underscored the significance of considering nonlinearities in such problems,
revealing substantial corrections to the linear results. For instance, a 40% increase in
the linear long-term sagging occurred due to weak nonlinearities. To the best of the
author’s knowledge, there is a current gap in research concerning the assessment
of wave-induced VBM from a design exploration perspective. Traditionally, such
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(a) AXE 4100 lines plan developed by
Keuning et al. (2015) (b) Aqua Helix (Allen, 2021)

Figure 4.1: AXE bow

analyses occur later in the design process, once the primary design variables are
already defined. However, the author argues that VBM is a crucial quantity of interest
that should be considered earlier in the design process.

To determine the design load associated with VBM, the vessel must be analyzed
across various sea states. Additionally, the vessel’s operational profile should be
incorporated to calculate long-term responses over the vessel’s lifetime. This process
is computationally intensive and can only be performed for a very limited number
of design variations. This research focuses on early-stage design, where the goal
is to explore a broad design space. As an initial step toward incorporating VBM

analysis in this phase, the analysis is simplified to a single regular sea state, with
the vessel’s length matching the wavelength. This decision was made to: (1) enhance
the interpretability of load prediction results for different design variations and (2)
shift the research focus toward developing MF models for assessing the design space
rather than refining analysis methods for load prediction.

4.2.2 AXE frigate concept

As previously noted, the primary objective of this PhD research is to facilitate
early-stage design of novel vessels. The implementation of the AXE bow (Fig. 4.1) to
large vessels such as frigates represents an innovative concept. The AXE bow was
originally developed by Keuning et al. (2015). The AXE bow has the potential to
enhance the vessel’s performance in terms of seakeeping capabilities, making it an
attractive choice for frigates, as they need to execute their missions effectively even
in adverse weather conditions. The AXE bow has been implemented in high-speed
and relatively small vessels like yachts and offshore patrol vessels, such as the Aqua
Helix (Fig. 4.1b). However, its application has not extended to larger vessels like
frigates as of now.

Recent studies have demonstrated the hydrodynamic advantages of incorporating
the AXE bow design on a frigate. One of the initial studies conducted by Eefsen
et al. (2004) explored seven alternatives for hull forms and concepts derived from
the parent hull of a 120 m frigate. The evaluation of these alternatives involved an
assessment of their seakeeping performance, operability, and resistance, relying on
experimental data. A key finding from the study is that the incorporation of the AXE
bow does not compromise dynamic stability or course-keeping capabilities. Keuning
and van Walree (2006a) conducted a comparative analysis of the hydrodynamic
characteristics of three offshore patrol vessel concepts: the enlarged ship concept,
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the AXE bow concept, and the Wave Piercer concept. These concepts were evaluated
as part of the conceptual design process for a 55m fast monohull patrol vessel
capable of reaching speeds of 50 knots. The findings revealed that the AXE bow
concept outperformed the other vessels. The results were derived from model tests
assessing calm water resistance, as well as the vessels’ behavior in both head and
following waves. In the recent study by Rijkens and Mikelic (2022), a hydrodynamic
comparison was conducted between two frigate designs: a conventional frigate and
an AXE frigate. Model tests were carried out in calm water, regular waves, and
irregular waves to discern differences in seakeeping performance. The experimental
findings indicate that the calm water resistance of the AXE frigate is approximately
9% lower at the design speed, primarily attributed to the longer waterline length
of the AXE frigate. For fast vessels like frigates, residual resistance makes up a
significant portion of the total resistance, and it decreases as the ship’s length
increases (Papanikolaou, 2014). Tests in regular and irregular head waves reveal
reduced heave and pitch motions for the AXE frigate. Additionally, in large waves,
the AXE frigate exhibits reduced deck wetness due to its higher freeboard height in
the bow area.

Hence, the AXE bow concept holds promise for its integration into a frigate
design. This study will further investigate its impact on wave-induced VBM from
the perspective of design exploration.

4.3 methods

This section provides the mathematical formulation of the methods used in this
chapter. Section 4.3.1 offers a comprehensive overview of the design framework
discussed in Section 2.2, specifically as it applies to the particular ship design
problem of this chapter. Section 4.3.2 provides the mathematical formulation of the
bi-fidelity MF-GPs, both the linear AR1 scheme and the nonlinear NARGP scheme.
Section 4.3.3 discusses the technical details of the tools used for predicting the
wave-induced VBM.

4.3.1 Overview of the design framework

As outlined in Section 2.2 and illustrated in Fig. 2.5, the design framework is
structured around three primary components: the GE, AE, and OE. In the context of
the GE, a parametric model of the AXE frigates was set up to facilitate the exploration
of the key design variables. These include the length, beam, depth, deadrise, and
flare angles, along with three variables linked to bow design: bow length, depth,
and height. In addition, this component should produce a mesh of the hull, which
will be further analyzed using the dedicated solvers. Further technical details are
given in Section 4.4.1.

The AE includes both analysis tools for assessing wave-induced VBM and methods
for constructing the surrogate model of the objective landscape. The included
analysis tools consist of two solvers with distinct fidelities: the frequency domain (FD)
solver PRECAL, used as the LF tool, and the TD solver PRETTI_R, used as the HF

tool. One of the most notable differences is that the time domain solver is capable of
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capturing the nonlinearities introduced by the hull shape. For creating the surrogate
model of the objective landscape, four different methods will be employed and
compared. The first model involves a SF model based on GPs. The second model is
based on the AR1 scheme of MF-GPs, introduced by Kennedy and O’Hagan (2000)
using the squared exponential kernel. The third model consists of the AR1 scheme of
MF-GPs with compositional kernels, as introduced by the author in Chapter 3. The
fourth model is the nonlinear scheme of the MF-GPs, NARGP, proposed by Perdikaris
et al. (2017). The mathematical formulation of the aforementioned methods is given
in the following sections.

The final component is the OE. The OE uses the surrogate model generated by
the AE and employs a search strategy to find the optimum solution. The technical
details of the OE implementation are discussed in Chapter 6; instead, the focus of
this chapter is on how effectively the different methods approximate the objective
landscape. An overview of how all the individual blocks of the design framework
fit together is shown in the flowchart in Fig. 4.2.

Figure 4.2: Flowchart framework for the early-stage design assessment of the wave-induced
VBM of AXE frigates

4.3.2 Gaussian Processes, multi-fidelity Gaussian Processes, and compositional kernels

The mathematical formulation of the SF GPs, the AR1 scheme, and the implementa-
tion of compositional kernels were previously discussed in Section 3.3. Given the
bifidelity nature of this case study, the mathematical formulation of the bifidelity
AR1 scheme is presented here as a specific instance of the general s-fidelity model in-
troduced earlier. This formulation follows the description in Le Gratiet and Garnier
(2014). The AR1 illustrated in Fig. 4.3, as introduced by Kennedy and O’Hagan (2000),
assumes a linear dependency among various fidelity models. The interconnection
of sub-models is governed by Eqn. 4.1 and 4.2. Specifically, the HF function connects
to the LF function through a scaling function ρ and an additive function γ2. It is
assumed that f2 corresponds to the HF function, while f1 corresponds to the LF

function. The function γ2 is a GP independent of f1 as shown in Eqn. 4.2.
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Figure 4.3: Schematic representation AR1 (Brevault et al., 2020)

f2(x) = ρ1(x) f1(x) + γ2(x) (4.1)

f1(x) ⊥ γ2(x) (4.2)

The predictive model is a multivariate normal distribution described by Eqn. 4.3,
with a mean function according to Eqn. 4.4 and a variance according to Eqn. 4.5.

f2∗|(β1,β2, ρ), (σ2
1 , σ2

2 ), (θ1,θ2) ∼ N (f̄2∗, cov(f2∗)) (4.3)

f̄2∗ = h(x)Tβ+ kT
∗V
−1(f −Hβ) (4.4)

cov(f2∗) = ρ2σ2
1 + σ2

2 − kT
∗V
−1k∗ (4.5)

where the trend parameters β =

(
β1

β2

)
, and f =

(
f1

f2

)
. The variance parameters

σ2
1 , σ2

2 and the parameters θ1,θ2 are the model’s hyperparameters.

H =



f ′1(x(1)1 ) 0
...

...

f ′1(x(1)n1 ) 0

ρf ′1(x(2)1 ) f ′
2(x(2)1 )

...
...

ρf ′1(x(2)n2 ) f ′
2(x(2)n2 )


(4.6)

h(x)T = (ρf ′1(x),f ′2(x)) (4.7)

The covariance matrix is calculated as described in Eqn. 4.8,

V =

(
σ2

1 R1(D1) ρσ2
1 R1(D1,D2)

ρσ2
1 R1(D2,D1) ρ2σ2

1 R1(D2) + σ2
2 R2(D2)

)
(4.8)

where D1 = {x(1)1 . . . x(1)n1 }, D2 = {x(2)1 . . . x(2)n2 } and Ri denotes the correlation
matrix.

The nonlinear scheme for GPs, NARGP, as shown in Fig. 4.4, was proposed by
Perdikaris et al. (2017). The authors state that the scheme ‘enables the construction
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of flexible and inherently nonlinear and non-Gaussian multi-fidelity information
fusion algorithms’. The mathematical formulation allows for a nonlinear mapping
between the fidelities, as described in Eqn. 4.9.

f2(x) = z1( f1(x)) + δ(x) (4.9)

where z(·) is a function that maps the low fidelity data to the higher fidelity data.
A GP prior distribution is assigned to both terms z1 and f1, thereby classifying
the term z1( f1(x)) as a deep GP. Therefore, the posterior distribution f2(x) is not
gaussian. The GP prior f1 is being replaced by the GP posterior f∗1. Thus, the scheme
can be written as shown in Eqn. 4.10. The function g2 follows a GP as shown in Eqn.
4.11.

f2(x) = g2(x, f∗1(x)) (4.10)

g2 ∼ GP( f2|0, k2((x, f∗1(x)), (x′, f∗1(x′))) (4.11)

Since the posterior distribution of f2 is not Gaussian, it should be computed
according to Eqn. 4.12.

p( f∗2(x)) =
∫

p( f∗2(x, f∗1(x)))p( f∗1(x)) dx (4.12)

where p( f∗1(x)) is the posterior distribution of the lower fidelity level. Monte Carlo
techniques are employed to approximate the posterior predictive mean and variance.

Figure 4.4: Schematic representation NARGP (Brevault et al., 2020)

The mathematical formulation for the compositional kernels and its implementa-
tion in the AR1 scheme is given in Section 3.3.3.

4.3.3 Vertical bending Moment analysis during early design stages

As mentioned, the VBM arises from the disparity in load distribution between the
weight and wave pressure along the ship’s length. The physical mechanism can
be explained as follows: the distribution of load, denoted as q(x), induces the
generation of shear force Qq(x) (Eqn. 4.13), which subsequently results in bending
moments Mq(x) (Eqn. 4.14), where x defines the position along the length of the
vessel.
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Qq(x) = −
∫

q(x) dx (4.13)

Mq(x) = −
∫

q(x) · x dx (4.14)

To predict the wave-induced VBM, a frequency domain method is used as the LF

model, and a time domain method is used as the HF model.

Frequency domain analysis

To compute the VBM in the frequency domain, PRECAL software was used. The
software was developed by MARIN (MARIN, 2019). PRECAL is a specialized
tool designed for predicting linear responses through potential flow calculations.
The tool functions in the following manner: (1) it divides the wetted hull into
multiple quadrilateral panels, (2) it calculates hydrodynamic coefficients by solving
the linearized boundary value problem, and (3) it determines ship motions and
loads using linearized potential flow theory, incorporating adjustments for viscous
damping through empirical corrections.

Time domain analysis

For time domain, PRETTI_R (Lloyd’s Register, 2019) was used, which is a 3D time-
domain nonlinear seakeeping and hydroelasticity tool. Unlike PRECAL, PRETTI_R is
specifically designed to predict motions in high sea states, encompassing rigid-body
motion, and hydrodynamic loads. Additionally, it can take into account slamming
and whipping loads. This software was developed as part of the Cooperative
Research Ships (CRS) initiative.

The Froude Krylov force is determined by integrating incident wave hydrodynam-
ics and hydrostatic pressure across the vessel’s hull surface. The diffraction force is
estimated by scaling the frequency domain diffraction force Response Amplitude
Operator (RAO) with the incident wave amplitude. The radiation force is computed
through a convolution integral involving an impulse function. PRETTI_R leverages
frequency domain results to derive the necessary impulse functions.

4.4 case study

To showcase the results, three real-world design case studies were employed, along
with an additional synthetic case. The initial case study focused on exploring a
two-dimensional design space, encompassing the hull’s length L and beam B. This
study serves as a proof of concept as it enables the visualization of the objective
landscape and the identification of design trends. The second case study focuses
on the design of the AXE bow. In this case, a 3D problem is tackled, addressing
the length Lfore, height Haxe, and depth Daxe of the AXE bow. The third case study
focuses on a larger-scale problem and involves eight design variables. The design
variables and their corresponding value ranges can be found in Tab. 4.1. The ranges
were determined based on industrial experience with realistic frigate design. The
primary design parameter is the vessel’s displacement, which remains constant at
6000 tons across all design scenarios.
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Sensitivity analysis, which is particularly useful when dealing with a large number
of design variables, was not performed to identify which variables most significantly
influence the wave-induced VBM. In this study, the design exploration problem
was limited to a few key variables related to the vessel’s main dimensions and the
shape of the AXE bow, keeping the number of design variables relatively small.
Additionally, the objective was to increase the dimensionality of the design problem
to assess the accuracy of various MF models as the problem’s dimensionality grows.

Table 4.1: Design variables ranges

Design parameters Value Units

Length (L) 98-120 m

Beam (B) 13-16 m

Depth (D) 12-16 m

Coefficient length

forehull (Lfore)
0.4-0.8 -

Coefficient height

AXE bow (Haxe)
0.0-0.5 -

Coefficient depth

AXE bow (Daxe)
0.0-0.5 -

Deadrise angle

(ϕdeadrise)
5-45 deg

Flare angle

(ϕflare)
0-25 deg

The MF models were assessed using the same approach as in Chapter 3. For the
development of the MF models, the Python packages used included GPy (GPy,
2012) and Emukit (Paleyes et al., 2023, 2019). The accuracy of the four MF models
was assessed based on two statistical measures, namely the R2 and the normalized
RMSE, which are expressed as follows according to Eqn. (3.20) and (3.21). The
comparison aimed to evaluate the MF models’ accuracy relative to one another
rather than benchmarking them against other MF approaches in the literature. As
previously mentioned, the analysis was simplified to a single regular wave train
instead of multiple irregular sea states, which were examined across different design
variations. As a result, there is no direct comparison to existing studies that evaluate
the accuracy of MF models in predicting VBM response across multiple sea states
for a single design. The LHS was used to select analysis points, and a total of 20

different DoE were employed to compute statistics related to prediction errors.

4.4.1 Generative Engine: Parametric models

The parametric model for the AXE frigates was created to capture the primary
design variables that hold significance for exploration during the early design stages.
These variables, summarized in Tab. 4.1, include the main particulars of the vessel,
the deadrise and flare angle of the hull, and the design variables of the AXE bow.
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The parametric model was developed using Rhino (Robert McNeel & Associates,
2023b) and Grasshopper (Robert McNeel & Associates, 2023a). The initial step in
constructing the parametric model is to determine the values of the design variables
that guide the formation of the hull sections. The primary midhull cross sections
were shaped following the mathematical formulation adapted from Sanches (2016).
For a visual representation, refer to the examples of the cross sections in Fig. 4.5a
(forehull), Fig. 4.5b (midhull), and Fig. 4.5c (afthull). After defining the design
variables, the control points are established. The cross-sections are built by fitting a
Non-Uniform Rational B-Splines (NURBS) curves through them. Each cross section
is characterized by 8 control points. Subsequently, the hull surfaces are generated
based on the NURBS curves. The final step involves properly meshing the hull (Fig.
4.6b) for further analysis by numerical solvers.

(a) Forehull cross sections (b) Midhull cross sections (c) Afthull cross sections

Figure 4.5: Hull cross sections

(a) Visualizing the hull surfaces (b) Visualizing the hull’s mesh

Figure 4.6: Parametric model example

4.4.2 Wave loading conditions

The wave loading conditions are determined separately for each design variation.
The aim is to analyze each vessel in a sea state that induces maximum wave-induced
VBM, occurring when the wavelength is equal to the ship’s length. Thus, a regular
sea state is selected and described by Eqn. 4.15 and 4.16 (Tupper, 2004).

λw = L (4.15)

Hw = 0.607
√

L (4.16)

Here, λw is the wavelength, Hw is the wave height, and L is the length between
perpendicular of the vessel. In addition, the analysis assumes head seas, thus
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µs = 180o. Regarding the vessel’s speed, the scenario of sailing at 15 knots was
examined.

Load assessment

This section seeks to provide an overview of the analysis results obtained from both
frequency- and time-domain tools. To achieve this, a hull will undergo analysis
under various wave-loading conditions. The outcomes will be compared to evaluate
the significance of nonlinearities captured by the time-domain tool.

To compare the outcomes obtained from the frequency- and time-domain methods,
three cases are examined. For the first scenario, the forward speed vtest was set to
zero, and the wave height Hw was set to 1 meter, both the linear and non-linear
tools were expected to yield similar results. This expectation was confirmed by the
data presented in Fig. 4.7a. The second scenario involved a loading case where
the forward speed vtest is set to zero and the wave height Hw is set to 6.65 meters
(based on Eqn. 4.16). In this case, it was expected that nonlinearities will be more
pronounced, resulting in different predicted loads from the linear and nonlinear
codes. This expectation was confirmed by the results shown in Fig. 4.7b. For the
third scenario, the forward speed vtest was set to 15 knots, and the wave height Hw

was set to 6.65 meters (based on Eqn. 4.16). As shown in Fig. 4.7c, the influence of
nonlinearities becomes even more pronounced when forward speed is included.
This loading case will be used for the design exploration case studies.

(a) v=0 knots, Hw=1m (b) v=0 knots, Hw=6.65m (c) v=15 knots, Hw=6.65m

Figure 4.7: Loading cases

4.5 results

In this section, the design scenarios are presented and discussed. The analysis covers
three scenarios with increasing problem dimensionality: a 2D, a 3D, and an 8D
problem. The 2D case acts as a simplified version of the realistic design problem,
but it serves the purpose of understanding and visualizing the design surfaces. In
addition, the 3D case aims to identify the design trends stemming from the AXE
bow. The 8D case study includes the full set of design variables as described in
Section 4.4.1. Finally, the influence of speed is discussed across the different design
scenarios.



4.5 results 65

4.5.1 Design scenario A (DS.A)

In this 2D design scenario, the length L and the beam B of the vessel are taken as
the independent variables. The design parameters are detailed in Tab. 4.2. To better
understand the design problem for v=0 knots, the correlation between the low- and
high-fidelity data is depicted in Fig. 4.8a, while the bifidelity objective landscape is
illustrated in Fig. 4.8b. The objective landscape (Fig. 4.8b) shows that vessels with
greater L are subject to higher loads. Additionally, the loads decrease as the vessel’s
B increases. As a general trend, as discussed in Section 4.4.2, the HF TD data predict
higher values for the wave-induced sagging compared to the LF FD data. Finally,
similar trends are discerned in the LF and HF surfaces. The complete dataset consists
of 64 designs.

(a) Correlation between fidelities (b) Visualization of the objective landscape

Figure 4.8: 2D design case, v=0 knots

Table 4.2: Parameters for DS.A

Design parameters Value Units

Haxe 0.3 -

Daxe 0.3 -

Lfore 0.6 -

vtest [0,15] knots

For the zero-speed case, the results are presented in Tab. 4.3, and the evolution of
RMSE with an increasing number of HF points is shown in Fig. 4.12a. The methods
exhibit larger discrepancies in data regimes with fewer than 12 HF points. Overall,
AR1 performs best in low data regimes, particularly with up to 4 HF points. The
performance of the SF and NARGP models is similar, and they converge more quickly
than both the AR1 and AR1 with compositional kernels. The AR1 with compositional
kernels is outperformed by all other models in this case. An example of a case with
6 HF points is shown in Fig. 4.9. As demonstrated, the AR1 model’s predictions align
more closely with the high-fidelity surface.
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(a) SF model (b) AR1

(c) NARGP (d) AR1 model with comp. kernels

Figure 4.9: Visualization of the objective landscape for the zero-speed 2D case with 6 HF

points
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Notably, sailing speed has a significant impact on the wave-induced VBM acting
on the hull. The key effect of interest is the altered correlation between the LF

and HF analysis data compared to the zero-speed condition, as illustrated in Fig.
4.10a. Additionally, the design trends shift, as shown in Fig. 4.10b. The clear trend
observed at zero speed, where longer vessels experience higher loads (Fig. 4.8), no
longer holds true in this scenario. The complete dataset consists of 60 designs.

(a) Correlation between fidelities (b) 2D design case

Figure 4.10: 2D design case, v=15 knots

For the 15-knot case, the results are summarized in Tab. 4.4 and the evolution of
the RMSE is illustrated in Fig. 4.12b. It is important to highlight that the SF model,
the GP HF, consistently outperforms the others in most of the tested cases. The most
likely explanation for this is that, in this case, the LF and HF models do not capture
the same trends, as previously mentioned. An example where the SF model more
accurately captures the objective landscape compared to other models is shown in
Fig. 4.11. Similar to the zero-knot case shown in Fig. 4.9, 6 HF points were used to
train the different models. However, in this case, the predictions deviate further
from the HF surface compared to the zero-knot case. This underscores the fact that
altering a design parameter can significantly increase the complexity of the problem,
thereby affecting the predictive accuracy of the models.

4.5.2 Design scenario B (DS.B)

This design scenario examines the variation of three independent variables related
to the design of the AXE bow, Lfore, Daxe, and Haxe. The design parameters are
listed in in Tab. 4.5. This scenario aims to investigate how the bow design affects the
wave-induced VBM experienced by the vessel. The correlation between the HF and
the LF data can be seen in Fig. 4.13 for both the 0 and 15 knots cases. It is evident
that the correlation is not strong, unlike in design scenario D.S.A. However, similar
to D.S.A, the 15-knot case shows greater complexity compared to the zero-speed
scenario.

For the zero-speed case, the results are summarized in Tab. 4.6 and visualized
in Fig. 4.14a. In the case of 5 HF points, the AR1 model with compositional kernels
performs the best. For the range of 10 to 35 HF points, the SF model delivers the
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(a) SF model (b) AR1

(c) NARGP (d) AR1 model with comp. kernels

Figure 4.11: Visualization of the objective landscape for the 15-knot speed 2D case with 6

HF points
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(a) v=0 knots (b) v=15 knots

Figure 4.12: Evolution of the RMSE as the number of HF points increases in the 2D design
case

best results, while the AR1 and AR1 with compositional kernels perform similarly,
with AR1 slightly outperforming the other. The NARGP model shows the weakest
performance. For HF points exceeding 35, all models converge to a similarly low
error value.

For the 15-knot case, the results are summarized in Tab. 4.7 and illustrated in Fig.
4.14b. Similarly to the previous cases, no single model consistently outperforms
the others across all scenarios. The NARGP model performs best with 5 HF points.
Unlike the zero-speed case, the SF model has the weakest overall performance. Both
the AR1 and AR1 with compositional kernels converge to similar low error values
when the number of HF points exceeds 30. However, when the HF points are fewer
than 30, the AR1 model demonstrates superior performance.

(a) v=0 knots (b) v=15 knots

Figure 4.13: Correlation between fidelities 3D design case

4.5.3 Design scenario C (DS.C)

This design scenario explores the variation of eight independent variables related to
the hull design (length L, beam B, depth D, deadrise angle ϕdeadrise, and flare angle
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Table 4.3: Error metrics for the 2D design case, u = 0 knots

DoE
GP HF

R2 (std)

GP HF

RMSE (std)

AR1

R2 (std)

AR1

RMSE (std)

NARGP

R2 (std)

NARGP

RMSE (std)

AR1 with

comp kernels

R2 (std)

AR1 with

comp kernels

RMSE (std)

(2,40)
-0.6944

(0.8290)

0.3226

(0.0735)

-0.4070

(3.7136)

0.2299

(0.1942)

-0.6225

(0.8528)

0.3142

(0.0780)

-13.2166

(59.2206)

0.3953

(0.8682)

(4,40)
0.6240

(0.4989)

0.1246

(0.0976)

0.7653

(0.3089)

0.0960

(0.0767)

0.7087

(0.3573)

0.1105

(0.0850)

0.5969

(0.2471)

0.1516

(0.0560)

(6,40)
0.9869

(0.0140)

0.0259

(0.0143)

0.9602

(0.0018)

0.0339

(0.0387)

0.9905

(0.0070)

0.0229

(0.0101)

0.8006

(0.3600)

0.0837

(0.0786)

(8,40)
0.9962

(0.0059)

0.0128

(0.0094)

0.9946

(0.0094)

0.0147

(0.0119)

0.9966

(0.0030)

0.0135

(0.0065)

0.9829

(0.0245)

0.0265

(0.0213)

(10,40)
0.9944

(0.0146)

0.0130

(0.0135)

0.9978

(0.0025)

0.0103

(0.0065)

0.9966

(0.0035)

0.0131

(0.0076)

0.9826

(0.0642)

0.0175

(0.0288)

(12,40)
0.9956

(0.0165)

0.0088

(0.0138)

0.9945

(0.0208)

0.0098

(0.0155)

0.9988

(0.0015)

0.0078

(0.0041)

0.9987

(0.0020)

0.0079

(0.0048)

(14,40)
0.9993

(0.0010)

0.0059

(0.0034)

0.9993

(0.0008)

0.0064

(0.0032)

0.9991

(0.0007)

0.0073

(0.0030)

0.9992

(0.0010)

0.0066

(0.0036)

(16,40)
0.9997

(0.0002)

0.0042

(0.0012)

0.9996

(0.0004)

0.0045

(0.0021)

0.9997

(0.0002)

0.0046

(0.0012)

0.9996

(0.0003)

0.0050

(0.0018)

(18,40)
0.9997

(0.0001)

0.0040

(0.0011)

0.9998

(0.0002)

0.0038

(0.0012)

0.9997

(0.0003)

0.0042

(0.0018)

0.9997

(0.0002)

0.0041

(0.0015)

(20,40)
0.9998

(0.0001)

0.0040

(0.0011)

0.9998

(0.0001)

0.0038

(0.0011)

0.9997

(0.0002)

0.0043

(0.0013)

0.9997

(0.0002)

0.0044

(0.0014)

ϕflare), as well as the AXE bow design parameters (Lfore, Daxe, and Haxe). The only
design parameter considered is the speed, u ∈ [0, 15] knots. This scenario aims to
assess the scalability and predictive accuracy of the evaluated methods in a realistic
early-stage ship design problem. The correlation between the HF and the LF data
can be seen in Fig. 4.15 for both the 0 and 15 knots cases.

For the zero-speed case, the results are summarized in Tab. 4.8 and illustrated
in Fig. 4.16a. It is worth noting that the SF model consistently exhibits the weakest
performance across all tested cases. In the range of 20 to 60 HF points, the AR1 model
shows the best performance, while beyond 60 HF points, the NARGP model delivers
more accurate predictions. The performance of the AR1 model with compositional
kernels is comparable to that of the NARGP model.

For the 15-knot, the results are summarized in Tab. 4.9 and visualized in Fig.
4.16b. In this case, similar to the zero-speed case, the GP HF model is consistently
outperformed by all three MF models across all tested cases. It is noteworthy that
the predictions from the GP HF model exhibit significantly larger errors compared
to those from the MF models. The NARGP model demonstrates superior accuracy
across most of the tested cases. The AR1 model and the AR1 with compositional
kernels perform similarly, with AR1 slightly outperforming the latter.

4.6 reflection on the performance of the proposed model

In the case studies presented in this chapter, the proposed model (introduced in
Chapter 3) —referred to here as AR1 with compositional kernels—did not yield
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Table 4.4: Error metrics for the 2D design case, u = 15 knots

DoE
GP HF

R2 (std)

GP HF

RMSE (std)

AR1

R2 (std)

AR1

RMSE (std)

NARGP

R2 (std)

NARGP

RMSE (std)

AR1 with

comp kernels

R2 (std)

AR1 with

comp kernels

RMSE (std)

(2,40)
-0.6100

(1.1858)

0.2796

(0.0959)

-3.0363

(7.4229)

0.3620

(0.3240)

-0.5796

(1.1556)

0.2776

(0.0943)

-2,5180

(6.7976)

0.3380

(0.3009)

(4,40)
0.8009

(0.1091)

0.1013

(0.0257)

0.4485

(0.3003)

0.1675

(0.0481)

0.7010

(0.1951)

0.1222

(0.0377)

0.4626

(0.2441)

0.1678

(0.0349)

(6,40)
0.8089

(1.1219)

0.1003

(0.0335)

0.6488

(0.2268)

0.1338

(0.0455)

0.7688

(0.1385)

0.1099

(0.0355)

0.4506

(0.2935)

0.1701

(0.0486)

(8,40)
0.7754

(0.2432)

0.1044

(0.0454)

0.7875

(0.1389)

0.1044

(0.0333)

0.7276

(0.2990)

0.1118

(0.0577)

0.5070

(0.4847)

0.1539

(0.0698)

(10,40)
0.8315

(0.1152)

0.0937

(0.0251)

0.7800

(0.1205)

0.1080

(0.0290)

0.8007

(0.1317)

0.1016

(0.0326)

0.6265

(0.1793)

0.1410

(0.0350)

(12,40)
0.8220

(0.1129)

0.0980

(0.0283)

0.7327

(0.2407)

0.1149

(0.0456)

0.8241

(0.0975)

0.0979

(0.0278)

0.6341

(0.3125)

0.1347

(0.0577)

(14,40)
0.8461

(0.0936)

0.0933

(0.0278)

0.8417

(0.0782)

0.0951

(0.0262)

0.8341

(0.1047)

0.0967

(0.0317)

0.7159

(0.2082)

0.1235

(0.0534)

(16,40)
0.8832

(0.0403)

0.0812

(0.0152)

0.8705

(0.0568)

0.0847

(0.0192)

0.8815

(0.0600)

0.0812

(0.0225)

0.7627

(0.2950)

0.1044

(0.0570)

(18,40)
0.8771

(0.0480)

0.0836

(0.0178)

0.8335

(0.1153)

0.0951

(0.0342)

0.8760

(0.0465)

0.0844

(0.0186)

0.8021

(0.0811)

0.1061

(0.0246)

(20,40)
0.8693

(0.0490)

0.0845

(0.0178)

0.8523

(0.0703)

0.0893

(0.0201)

0.8872

(0.0382)

0.0790

(0.0162)

0.8326

(0.1161)

0.0932

(0.0274)

improved predictions compared to its base model, AR1. In contrast, the case studies
from Chapter 3 demonstrated that the proposed model can significantly enhance
predictions over AR1. This section will further analyze and provide insights into the
performance of the proposed model.

The primary motivation for integrating compositional kernels was to identify and
leverage the underlying patterns governing the objective landscape. The analytical
case studies presented in Section 3.4 were designed to model distinct patterns
tied to specific attributes of the objective landscape, such as multi-modality. Thus,
such case studies are ideal to showcase the performance of the proposed model.
Therefore, these case studies serve as the perfect testing ground for demonstrating
the effectiveness of the proposed model. A similar behavior was observed in the
cantilever beam case introduced in Section 3.4.6. However, this observation does not
hold true for the case studies of this chapter.

Thus, a synthetic case study has been introduced to test the hypothesis that the
proposed model can improve predictions in a design problem featuring an objective
landscape with distinct features. In this case, a discontinuity was intentionally
added to the 2D design scenario of the previously examined AXE frigates. More
specifically, the original VBM datasets were modified according to Eqns. 4.17 and
4.18. Figure 4.17a, illustrates the correlation between the fidelities, while Fig. 4.17b
shows the resulting discontinuous objective landscape.

M̃LF
q =

MLF
q , 98 ≤ L < 110

MLF
q + 15000, 110 ≤ L < 120

(4.17)
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Table 4.5: Parameters for DS.B

Design parameters Value Units

L 120.0 m

B 16.0 m

D 17.0 m

ϕdeadrise 45.0 deg

ϕflare 5.0 deg

vtest [0,15] knots

(a) v=0 knots (b) v=15 knots

Figure 4.14: Evolution of the RMSEas the number of HF points increases in the 3D design
case

M̃HF
q =

MHF
q , 98 ≤ L < 110

MHF
q + 25000, 110 ≤ L < 120

(4.18)

The results of the synthetic case study are summarized in Tab. 4.10, and Fig.
4.18 illustrates the evolution of the RMSE with the number of HF points. The
proposed model consistently outperforms the other models in nearly all tested
cases, converging to a lower RMSE value. In Fig. 4.19, shows an example where
the training set consists of 10 HF and 40 LF points. The proposed model effectively
captures the discontinuity, unlike the other models. Regarding the performance of
the other models, the MF models, including AR1 and NARGP, generally outperform
the SF model.

4.7 discussion

Conclusions

This chapter explored the potential of harnessing MF models for early-stage predic-
tions of wave-induced loads. The case study focused on the early design assessment
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Table 4.6: Error metrics for the 3D design case, u = 0 knots

DoE
GP HF

R2 (std)

GP HF

RMSE (std)

AR1

R2 (std)

AR1

RMSE (std)

NARGP

R2 (std)

NARGP

RMSE (std)

AR1 with

comp kernels

R2 (std)

AR1 with

comp kernels

RMSE (std)

(5,60)
-0.1153

(0.4519)

0.2673

(0.0517)

0.3040

(0.3525)

0.2072

(0.0507)

-0.1034

(0.7689)

0.2585

(0.0817)

0.4977

(0.4637)

0.1701

(0.0600)

(10,60)
0.4493

(0.2762)

0.1857

(0.0510)

0.6038

(0.2893)

0.1536

(0.0506)

0.5427

(0.3009)

0.1656

(0.0569)

0.4979

(0.5403)

0.1687

(0.0704)

(15,60)
0.8458

(0.2246)

0.0878

(0.0551)

0.8539

(0.0793)

0.0944

(0.0267)

0.76210

(0.2337)

0.1155

(0.0538)

0.8064

(0.2046)

0.1028

(0.0441)

(20,60)
0.9549

(0.0373)

0.0501

(0.0212)

0.9255

(0.0851)

0.0620

(0.0275)

0.8800

(0.1024)

0.0794

(0.0356)

0.9125

(0.0854)

0.0685

(0.0273)

(25,60)
0.9824

(0.0121)

0.0315

(0.0091)

0.9708

(0.0234)

0.0401

(0.0136)

0.9536

(0.0398)

0.0498

(0.0218)

0.9610

(0.0401)

0.0437

(0.0215)

(30,60)
0.9899

(0.0049)

0.0248

(0.0063)

0.9875

(0.0051)

0.0276

(0.0063)

0.9760

(0.0335)

0.0342

(0.0198)

0.9829

(0.0272)

0.0281

(0.0155)

(35,60)
0.9932

(0.0033)

0.0202

(0.0044)

0.9911

(0.0046)

0.02302

(0.0049)

0.9944

(0.0040)

0.0178

(0.0055)

0.9900

(0.0151)

0.0209

(0.0097)

(40,60)
0.9951

(0.0020)

0.0180

(0.0042)

0.9938

(0.0030)

0.0200

(0.0051)

0.9934

(0.0077)

0.0196

(0.0105)

0.9957

(0.0031)

0.0162

(0.0066)

(45,60)
0.9961

(0.0026)

0.0154

(0.0047)

0.9959

(0.0026)

0.0159

(0.0047)

0.9960

(0.0036)

0.0155

(0.0076)

0.9969

(0.0025)

0.0134

(0.0048)

(50,60)
0.9970

(0.0016)

0.0135

(0.0033)

0.9969

(0.0017)

0.0139

(0.0035)

0.9973

(0.0016)

0.0131

(0.0039)

0.9943

(0.0136)

0.0154

(0.0116)

of wave-induced VBM for the AXE frigates. The bi-fidelity setup was developed
by combining frequency- and time-domain analysis data. The predictive accuracy
of four models was evaluated: a model based on SF-GPs, the AR1 scheme with the
squared exponential kernel, the AR1 with the integration of compositional kernels
and NARGP. Three design scenarios were tested, involving a 2D variation of length
and beam, a 3D variation of AXE parameters, and an 8D variation of the main hull
parameters.

An important observation is that, in most cases, the MF models demonstrated
superior accuracy compared to the SF model, which was based solely on HF data.
Based on the evidence from the case study, MF models have indeed proven capable
of enabling the early incorporation of HF analysis into the design process. There
was only one instance where the SF model outperformed the MF models, specifically
in scenario DS.A at a speed of 15 knots. In this case, the HF and LF models captured
slightly different trends, which likely explains why the SF model proved to be more
accurate.

Another key observation is that changes in design parameters, such as speed vtest,
can significantly impact the shape of the objective landscape, the complexity of the
problem, and the correlation between LF and HF analysis data, ultimately affecting
the predictive accuracy of the models. As observed across all the presented cases,
the zero-speed variation consistently converged to lower predictive error values
with fewer HF analysis data compared to the 15-knot variation.

Even within the same design problem of assessing the wave-induced VBM for
the AXE frigates, different models outperformed others depending on the specific
variations. In scenario DS.A (vtest = 0 knots), the AR1 model tends to outperform the
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Table 4.7: Error metrics for the 3D design case, u = 15 knots

DoE
GP HF

R2 (std)

GP HF

RMSE (std)

AR1

R2 (std)

AR1

RMSE (std)

NARGP

R2 (std)

NARGP

RMSE (std)

AR1 with

comp kernels

R2 (std)

AR1 with

comp kernels

RMSE (std)

(5,60)
-0.2111

(0.4843)

0.2533

(0.0448)

-0.4961

(1.2012)

0.2681

(0.1010)

-0.1168

(0.4547)

0.2431

(0.0457)

-1.4526

(2.0622)

0.3431

(0.1313)

(10,60)
0.0517

(0.4125)

0.2265

(0.0403)

0.5057

(0.1412)

0.1649

(0.0222)

0.2894

(0.2274)

0.1969

(0.0330)

-0.1438

(1.3436)

0.2256

(0.1096)

(15,60)
0.1782

(0.1427)

0.2160

(0.0191)

0.5124

(0.2380)

0.1625

(0.0389)

0.4771

(0.1887)

0.1703

(0.0311)

0.3493

(0.4976)

0.1821

(0.0646)

(20,60)
0.2841

(0.2879)

0.1997

(0.0377)

0.6606

(0.1000)

0.1382

(0.0210)

0.5880

(0.1711)

0.1511

(0.0302)

0.6394

(0.1197)

0.1423

(0.0237)

(25,60)
0.3294

(0.1713)

0.1957

(0.0277)

0.6804

(0.0749)

0.1352

(0.0168)

0.6295

(0.1216)

0.1450

(0.0241)

0.5766

(0.3698)

0.1498

(0.0578)

(30,60)
0.4286

(0.2308)

0.1806

(0.0361)

0.7415

(0.0735)

0.1224

(0.0170)

0.6900

(0.0959)

0.1340

(0.0210)

0.7261

(0.0823)

0.1259

(0.0189)

(35,60)
0.6014

(0.1357)

0.1544

(0.0228)

0.7375

(0.0570)

0.1265

(0.0144)

0.6922

(0.0841)

0.1367

(0.0219)

0.7361

(0.0612)

0.1267

(0.0155)

(40,60)
0.5769

(0.1217)

0.1547

(0.0230)

0.7359

(0.0810)

0.1221

(0.0204)

0.7202

(0.0833)

0.1261

(0.0223)

0.7293

(0.1030)

0.1232

(0.0251)

(45,60)
0.6985

(0.0817)

0.1342

(0.0190)

0.7897

(0.0742)

0.1111

(0.0183)

0.7658

(0.0949)

0.1169

(0.0243)

0.7732

(0.0912)

0.1150

(0.0227)

(50,60)
0.7057

(0.0769)

0.1379

(0.0268)

0.7895

(0.0640)

0.1166

(0.0261)

0.7752

(0.0778)

0.1200

(0.0266)

0.8002

(0.0620)

0.1135

(0.0249)

other MF models, providing a better representation of the smooth objective landscape.
Additionally, as the dimensionality and complexity of the problem increase, the SF

models begin to perform significantly worse compared to the MF models, particularly
in scenarios such as DS.B (vtest = 15 knots) and DS.C. Additionally, the linear AR1

scheme outperforms the nonlinear NARGP scheme in the lower data regime; however,
NARGP ultimately converges to a lower error value in the 8D problem. Finally, the
integration of compositional kernels does not enhance the predictive accuracy of the
AR1 scheme. Instead, for the examined case study, the squared exponential kernel
appears to be more effective in encoding the covariance matrix of the design space
data in most cases.

One of the key objectives of this chapter was to assess the scalability of the
proposed model introduced in Chapter 3. Its scalability was demonstrated through
its successful application to a realistic ship design problem. Further analysis of
the AR1 model with compositional kernels, also referred to as the proposed model,
was conducted to investigate the contradictory results observed in Chapter 3 and 4.
The proposed model was designed to identify distinct features within the objective
landscape. However, the case study presented did not exhibit such characteristics. To
test this hypothesis, a discontinuity was intentionally introduced, similar to the Jump
Forrester analytical benchmark problem explored in Chapter 3. The proposed model
successfully captured this distinct feature and outperformed the other models.

Regarding the scalability of the presented MF models, GP-based schemes face
increased computational costs as dimensionality grows; however, the tested range
in this study remains relatively small. Therefore, the increase in dimensionality is
not a limitation in this specific problem for the multi-fidelity schemes. However, as
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(a) v=0 knots (b) v=15 knots

Figure 4.15: Correlation between fidelities 8D design case

(a) v=0 knots (b) v=15 knots

Figure 4.16: Evolution of the RMSE as the number of HF points increases in the 8D design
case

dimensionality increases, the amount of required training data also inevitably grows.
Each training point represents one design variation. In this case study, computational
time for the VBM analysis remained reasonable since only a single wave condition
was tested. However, if multiple irregular sea states were assessed for each design
variation, the increase in training data would become a significant limitation.

Reflection on the ship design problem

Overall, the integration of MF models into an early-stage design framework can be
highly effective for certain design cases. As demonstrated in the case studies, the
MF models outperformed the SF model in most design scenarios. However, the main
challenge lies in the fact that the effectiveness of different MF models depends heavily
on the characteristics of the design problem. As demonstrated in the presented
case study, even within the same physical problem, altering design parameters or
varying the amount of HF data can significantly impact the performance of the
various MF models. Some general trends can be extracted from the current research
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Table 4.8: Error metrics for the 8D design case, u = 0 knots

DoE
GP HF

R2 (std)

GP HF

RMSE (std)

AR1

R2 (std)

AR1

RMSE (std)

NARGP

R2 (std)

NARGP

RMSE (std)

AR1 with

comp kernels

R2 (std)

AR1 with

comp kernels

RMSE (std)

(20,100)
0.6896

(0.0642)

0.1026

(0.0121)

0.7849

(0.0611)

0.0851

(0.0123)

0.7383

(0.0973)

0.0934

(0.0168)

0.7527

(0.0686)

0.0912

(0.0135)

(30,100)
0.7839

(0.0386)

0.0878

(0.0106)

0.8193

(0.0606)

0.0795

(0.0135)

0.7932

(0.0760)

0.0851

(0.0171)

0.7933

(0.0853)

0.0844

(0.0171)

(40,100)
0.8085

(0.0475)

0.0818

(0.0094)

0.8470

(0.0332)

0.0733

(0.0080)

0.8338

(0.0393)

0.0764

(0.0085)

0.8352

(0.0315)

0.0762

(0.0075)

(50,100)
0.8386

(0.0353)

0.0773

(0.0099)

0.8662

(0.0186)

0.0705

(0.0058)

0.8648

(0.0260)

0.0708

(0.0075)

0.8569

(0.0286)

0.0728

(0.0086)

(60,100)
0.8585

(0.0263)

0.0718

(0.0070)

0.8753

(0.0308)

0.0672

(0.0075)

0.8697

(0.0357)

0.0686

(0.0095)

0.8707

(0.0343)

0.0683

(0.0081)

(70,100)
0.8728

(0.0173)

0.0682

(0.0060)

0.8836

(0.0159)

0.0652

(0.0064)

0.8836

(0.0171)

0.0652

(0.0070)

0.8768

(0.0207)

0.0664

(0.0070)

(80,100)
0.8796

(0.0217)

0.0671

(0.0073)

0.8894

(0.0172)

0.0644

(0.0067)

0.8943

(0.0224)

0.0628

(0.0077)

0.8885

(0.0203)

0.0645

(0.0069)

(a) Correlation between fidelities (b) Visualization of the objective landscape

Figure 4.17: 2D synthetic design case, v=0 knots

findings (including the case study results of this chapter); however, the primary
challenge lies in the fact that, in practical applications, the features of the objective
landscape are often unknown, making the selection of an appropriate MF model
particularly challenging.

Recommendations for further research

From an industrial perspective, MF techniques are already being used in design
applications. However, further research is needed to refine these frameworks and
better align them with industry needs. In particular, exploring how the proposed
design framework could be integrated into various existing naval architecture
software would be highly beneficial.
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Table 4.9: Error metrics for the 8D design case, u = 15 knots

DoE
GP HF

R2 (std)

GP HF

RMSE (std)

AR1

R2(std)

AR1

RMSE(std)

NARGP

R2(std)

NARGP

RMSE (std)

ARl with

comp kernels

R2 (std)

AR1 with

comp kernels

RMSE (std)

(20,100)
0.3265

(0.0986)

0.1372

(0.0101)

0.6583

(0.0604)

0.0977

(0.0088)

0.5891

(0.1529)

0.1058

(0.0189)

0.6423

(0.0950)

0.0997

(0.0143)

(30,100)
0.4260

(0.1585)

0.1288

(0.0169)

0.6813

(0.0273)

0.0966

(0.0052)

0.6967

(0.0627)

0.0938

(0.0095)

0.6760

(0.0504)

0.0971

(0.0070)

(40,100)
0.4918

(0.0857)

0.1232

(0.0141)

0.6788

(0.0322)

0.0980

(0.0069)

0.7142

(0.0510)

0.0922

(0.0082)

0.6724

(0.0470)

0.0988

(0.0085)

(50,100)
0.5028

(0.0805)

0.1231

(0.0139)

0.7028

(0.0482)

0.0951

(0.0099)

0.7360

(0.0495)

0.0895

(0.0106)

0.7195

(0.0410)

0.0923

(0.0088)

(60,100)
0.5762

(0.0485)

0.1141

(0.0085)

0.7352

(0.0346)

0.0902

(0.0080)

0.7341

(0.0345)

0.0905

(0.0088)

0.7276

(0.0384)

0.0914

(0.0071)

(70,100)
0.5796

(0.0390)

0.1158

(0.0076)

0.7340

(0.0351)

0.0921

(0.0083)

0.7348

(0.0466)

0.0919

(0.0108)

0.7323

(0.0367)

0.0922

(0.0073)

(80,100)
0.5651

(0.1330)

0.1158

(0.0214)

0.7044

(0.0775)

0.0956

(0.0169)

0.7282

(0.0717)

0.0917

(0.0165)

0.7151

(0.0694)

0.0939

(0.0162)

From an academic perspective, Chapter 5 expands the proposed DAF to incor-
porate analysis data from various design variations. This approach reflects the
reality that early-stage design in practice relies on multiple information sources
beyond just analysis models. In addition, to further advance the development of
the DAF, it would be beneficial to integrate a Bayesian optimization approach. This
would enable the assessment of active search techniques in the development of the
surrogate models for the objective landscape by the various MF models. Chapter 6

will explore the development of the OE component of the DAF based on Bayesian
optimization. Subsequently, the AXE frigate design case study will be revisited.
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Table 4.10: Error metrics for the 2D synthetic case study

DoE
GP HF

R2 (std)

GP HF

RMSE (std)

AR1

R2 (std)

AR1

RMSE (std)

NARGP

R2 (std)

NARGP

RMSE (std)

AR1 with

comp. kernels

R2(std)

AR1 with

comp. kernels

RMSE (std)

(2,40)
-0.5220

(0.7963)

0.3665

(0.0937)

0.1216

(2.3334)

0.2136

(0.1893)

-0,4172

(0.8640)

0.3493

(0.1059)

-1.9599

(11.6172)

0.2636

(0.4501)

(4,40)
0.5762

(0.3356)

0.1874

(0.0697)

0.7306

(0.1786)

0.1516

(0.0507)

0.4863

(0.3809)

0.2037

(0.0852)

0.7840

(0.1416)

0.1365

(0.0433)

(6,40)
0.7731

(0.1582)

0.1381

(0.0476)

0.8532

(0.1435)

0.1080

(0.0465)

0.7879

(0.1631)

0.1312

(0.0520)

0.8462

(0.1528)

0.1073

(0.0538)

(8,40)
0.7940

(0.1631)

0.1317

(0.0494)

0.8551

(0.0855)

0.1123

(0.0345)

0.8878

(0.0628)

0.0999

(0.0264)

0.9328

(0.0601)

0.0724

(0.0346)

(10,40)
0.8247

(0.1154)

0.1225

(0.0392)

0.8983

(0.0637)

0.0939

(0.0287)

0.8803

(0.0945)

0.0996

(0.0381)

0.9683

(0.0462)

0.0476

(0.0270)

(12,40)
0.8674

(0.1118)

0.1060

(0.0413)

0.9065

(0.0646)

0.0908

(0.0286)

0.9175

(0.0646)

0.0831

(0.0336)

0.9789

(0.0163)

0.0426

(0.0157)

(14,40)
0.9026

(0.0617)

0.0920

(0.0271)

0.9322

(0.0412)

0.0769

(0.0215)

0.9467

(0.0285)

0.0686

(0.0180)

0.9770

(0.0305)

0.0414

(0.0198)

(16,40)
0.9324

(0.0158)

0.0808

(0.0087)

0.9484

(0.0191)

0.0701

(0.0115)

0.9490

(0.0291)

0.0675

(0.0202)

0.9738

(0.0354)

0.0430

(0.0265)

(18,40)
0.9336

(0.0257)

0.0790

(0.0128)

0.9465

(0.0185)

0.0710

(0.0120)

0.9581

(0.0250)

0.0603

(0.0181)

0.9841

(0.0145)

0.0361

(0.0153)

(20,40)
0.9312

(0.0202)

0.0807

(0.0118)

0.9531

(0.0159)

0.0665

(0.0098)

0.9532

(0.0221)

0.0653

(0.0157)

0.9875

(0.0103)

0.0321

(0.0135)

Figure 4.18: Evolution of the RMSE as the number of HF points increases in the 2D synthetic
design case
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(a) GP HF (b) AR1

(c) NARGP (d) AR1 with comp. kernels

Figure 4.19: Visualization of the objective landscape for a DoE with (10,40) analysis data in
the synthetic 2D case
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5
A M U LT I - F I D E L I T Y D E S I G N F R A M E W O R K B A S E D O N
M U LT I P L E D E S I G N VA R I AT I O N S 1

The main fuel to speed the world’s
progress is our stock of knowledge,
and the brake is our lack of
imagination.

— Julian Simon

This chapter addresses RQ.3, focusing on how information from past designs
can be systematically leveraged to support and enhance the early-stage design
exploration of novel vessels. To facilitate early-stage design exploration, this chapter
proposes a new method to develop MF models by using available data from past
design variations. This is an independent research concept, separate from the
integration of compositional kernels discussed in previous chapters. Therefore,
the developed framework was limited to incorporating the AR1 scheme without
integrating compositional kernels. This approach ensures that the results specifically
reflect the effectiveness of the multi-variations design framework without being
influenced by compositional kernels, leading to more focused findings. The case
studies encompass a simplified cantilever beam problem, adapted from Chapter
3, evaluated based on von Mises stresses, as well as the ship design problem of
AXE frigates, adapted from Chapter 4, analyzed in both 2D and 5D with respect to
wave-induced VBM. To conclude, a critical reflection on how the traditional design
process can be improved by using such MF design frameworks is provided.

5.1 introduction

Early-stage ship design (ESSD) of complex vessels can be divided into two main
phases: concept exploration and concept definition (Kossiakoff et al., 2011; van Oers
et al., 2018). During concept exploration, the objective is to investigate a diverse
range of concepts, identify tradeoffs, and de-risk before selecting the most favorable
one. Conversely, during concept definition, the selected concept undergoes derisking

1 This chapter is based on work previously published in Charisi et al. (2025)

81



82 a multi-fidelity design framework based on multiple design variations

in the subsequent stages of the design process. While Chapter 4 focused on the
concept definition phase, this chapter shifts attention to the challenges associated
with concept exploration.

As previously mentioned in Chapter 1, ESSD has been characterized as a ‘wicked
problem’ where the formulation of a ‘wicked’ problem is the problem (Andrews,
2018; Rittel & Webber, 1973). These authors argue that selecting and exploring the
most promising concepts is an integral part of the ‘wicked problem’. These ideas
have been developed within the context of large-scale architecture (Rittel & Webber,
1973) and ship design (Andrews, 2018); nevertheless, they can be extrapolated to
analogous domains such as early-stage design of aircrafts (e.g., Mavris et al., 1998)
and other complex systems.

Analyzing and comparing various concepts is crucial for narrowing the design
space and making well-informed decisions that support later stages of the design
process. Considering real-world design scenarios, it has been demonstrated that
choosing the concept that aligns most effectively with design requirements poses
a challenge for naval architects (Duchateau, 2016). For example, in the realm of
military ships, two notable examples of the LCS and DDG1000 stand out, as previously
discussed in Chapter 2. These real-world examples demonstrate that determining
the optimal concept in real design challenges is not a straightforward task.

Moreover, as previously discussed in this dissertation, certain design problems
require the early incorporation of HF tools to guide decision-making in the initial
stages. However, generating and evaluating sufficient design concepts for concept
exploration using HF tools is not feasible due to limitations in cost, time, or compu-
tational budget.

To address this challenge and facilitate early-stage design concept exploration, this
chapter proposes the development of a MF framework that integrates analysis data
from various design concepts as opposed to various model fidelities. Traditionally,
MF models have been developed as models combining analysis data of varying
fidelities. In this chapter, MF techniques are leveraged to combine analysis data
from different design concepts, thereby deviating from the traditional definition.
Consequently, a ‘multi-variations’ design framework is developed, based on the
mathematical formulation of MF-GPs to facilitate early-stage concept exploration.
The technical details are provided in Section 5.3. The framework is applied to a
cantilever beam and a frigate case study.

5.2 relevant work

The relevant literature has explored various methods for facilitating design concept
exploration. First, Knowledge Based Engineering (KBE), originally developed within
the aerospace design community, is designed to capture and systematically reuse
engineering knowledge related to products and processes, thereby reducing the
time and cost involved in product development (La Rocca, 2012). The methodo-
logy is comprehensive and encompasses various aspects. Notably, from a geometry
generation perspective, it is interesting that several radically different aircraft config-
urations can be generated by reshaping and recombining a limited set of building
blocks, or what is referred to as high-level primitives (Rocca & van Tooren, 2010).
Another approach, also based on building blocks, was developed by Andrews (2006).
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The Design Building Block methodology enables ship designers to easily derive and
explore various design options to inform decision-making. Additionally, Gaspar
(2018) introduced Vessel.js, an open-source JavaScript library for data-driven design
that integrates conceptual ship design with a web-based, object-oriented approach.

More recent approaches leverage generative Artificial Intelligence (AI) techniques
to build geometry generators. Khan et al. (2023) introduced a parametric modeling
technique based on deep convolutional generative adversarial networks. The method
demonstrated the ability to generate a wide variety of hull forms, as it was trained
on an extensive dataset comprising 52,591 physically validated ship designs across
a broad spectrum of existing ship types. In a related approach, Bagazinski and
Ahmed (2024) proposed a conditional diffusion model that generates hull designs
under specific constraints, using gradients from a total resistance regression model
to produce designs optimized for low resistance. The aforementioned methods
primarily focus on developing generative engines capable of producing a wide
variety of diverse designs. However, the challenge of incorporating HF analysis to
accurately evaluate these early-stage designs remains unaddressed.

The introduction of MF models has the potential to effectively address these
challenge. As discussed in Section 2.3.3, different MF schemes have been effectively
applied to design optimization problems, using a limited number of computationally
expensive simulations, such as CFD. However, to the best of the author’s knowledge,
existing literature primarily focuses on combining data from different levels of
fidelity. While this approach is effective for design optimization problems, it does
not adequately support design exploration. Design exploration differs from design
optimization in that optimization focuses on identifying the optimal values of
specific variables, while exploration aims to uncover design trends by examining a
range of design concepts. The proposed framework, thus, aims to facilitate design
exploration.

5.3 methods

Section 5.3.1 further elaborates on the high-level structure of the proposed ‘multi-
variations’ DAF. The necessary mathematical tools, the GPs and the AR1 scheme of
MF-GPs, for its technical implementation were introduced in Section 3.3.2. It is worth
noting that for the analysis in this chapter, the MF scheme used was the AR1 model
without the integration of compositional kernels. The primary motivation was to test
the performance of the ‘multi-variations’ design framework. The AR1 model with a
squared exponential kernel is less complex than the AR1 model with compositional
kernels, making it more suitable for this purpose.

5.3.1 Proposed framework

The proposed framework builds upon the main structure introduced in Section
2.2. As discussed, the DAF is made up of three main components. First, the GE is
responsible for generating different designs. Second, the AE analyzes these designs
and uses the resulting data to approximate the objective landscape. Finally, the OE

focuses on identifying the current optimum, selecting the next design to evaluate,
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and determining when to end the optimization process. This chapter focuses on
the AE, constructing a training set based on analysis data from previous design
variations, treated as LF data, rather than analysis data obtained from lower fidelity
tools. The proposed framework is summarized in Fig. 5.1.

Figure 5.1: Flowchart of the proposed multi-variational DAF

The proposed approach seeks to accelerate and improve the process of design
concept exploration. The goal during design concept exploration is to identify
trends across various concepts, A, . . . , N. To identify these trends, a design subspace
approximation needs to be constructed for each concept I. Let’s assume that concept
A serves as the ‘parent’ design, representing the most fundamental design variation.
The design subspace approximation for concept A is established as the posterior
distribution, as described by Eqn. 3.6, 3.7, and 3.8, of a SF-GP using the analysis data
of concept A as training data. In addition, let’s assume that concept I, I ∈ {B . . . N},
serves as a design modification of the ‘parent’ design (concept A). The design
subspace approximation for concept I is established as the posterior distribution, as
described by Eqn. 3.16, 3.17 and 3.18, of a MF-GP.

The multi-fidelity training set can be constructed in two ways: (1) a bifidelity
training set, consisting of analysis data from concept I as the HF data and from
concept A as the LF data; or (2) an sth-fidelity training set, consisting of analysis data
from concept S as the HF data and from concepts A, . . . , S− 1 as the LF data. The
most suitable way to construct the training set is determined by the design problem.
A high-level overview of the proposed approach is illustrated in Fig. 5.2. In this
general case, the objective landscape for Design Concept A is approximated using
a SF model that is trained exclusively on HF analysis data from design variations
within this concept. In contrast, Design Concept B is approximated with a MF model
that incorporates HF analysis data from its own design variations, along with LF

analysis data from design variations associated with Design Concept A. Lastly, Design
Concept N is approximated by an MF model that uses HF analysis data from its own
variations and multiple LF analysis data from design variations belonging to all
other design concepts.
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Figure 5.2: Early-stage design exploration based on the proposed approach

5.4 case studies

The case studies include a simplified analysis of a cantilever beam and a realistic
design scenario involving a frigate. Consistent with previous analyses, 20 different
DoE were employed to evaluate the performance of the SF and MF models and to
calculate statistics related to prediction errors. The LHS method was chosen as the
sampling strategy to generate the various DoE. Similar to the previous chapters,
prediction errors were assessed using two metrics: the R2, as defined in Eqn. 3.20,
and the RMSE, as described in Eqn. 3.21.

5.4.1 The cantilever beam case study

This case study is a variation of the one presented in Section 3.4.6. The primary focus
of this case study is to examine the prediction of von Mises stresses occurring in a
cantilever beam. In the earlier version of the case study, the MF model was created
by using a LF analytical calculation of the von Mises stresses and a HF numerical
calculation for the same quantity, with the difference that a hole was included in
the beam’s design in the HF model. In this section, the goal is to examine two
design variations: one with a circular cross-section and the other with a rectangular
cross-section (Fig. 5.3). The stresses for both designs were numerically calculated
using ANSYS. The beam with the rectangular cross-section is considered the ‘new’
design variant and is thus treated as the HF model, while the beam with the circular
cross-section is regarded as the LF model.

The objective landscape for the two design variations of the cantilever beam can
be seen in Fig. 5.4a. As depicted, the design trends identified in both spaces are
similar, although the numerical values vary significantly. The predictions cover
various cases, including 30 LF points and a range of HF points, from 5 to 30. The
results are summarized in Tab.5.1 and the evolution of the RMSE can be visualized
in Fig. 5.4b. The results clearly demonstrate that the MF approach outperforms
the SF approach in all cases. Notably, the improvement is most pronounced in the
low-data regime. For example, with 5 HF points, the MF model achieves an RMSE of
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Figure 5.3: Two design scenarios for the cantilever beam with

0.0696, compared to 0.1044 for the SF model, representing a 33% improvement. This
is where the MF approach shows its greatest advantage.

Table 5.1: Error metrics for the 2D cantilever beam case

DoE
SF model MF model

R2 (std) RMSE (std) R2 (std) RMSE (std)

(5,30)
0.7822

(0.1885)

0.1044

(0.0410)

0.9087

(0.0610)

0.0696

(0.0213)

(10,30)
0.9833

(0.0148)

0.0290

(0.0114)

0.9878

(0.0154)

0.0240

(0.0118)

(15,30)
0.9931

(0.0196)

0.0141

(0.0145)

0.9943

(0.0159)

0.0129

(0.0131)

(20,30)
0.9984

(0.0026)

0.0083

(0.0051)

0.9987

(0.0019)

0.0077

(0.0043)

(25,30)
0.9994

(0.0003)

0.0058

(0.0013)

0.9994

(0.0003)

0.0056

(0.0013)

(30,30)
0.9993

(0.0006)

0.0059

(0.0022)

0.9995

(0.0004)

0.0054

(0.0017)

5.4.2 The frigates case study

This case study is a variation of the one presented in Section 4.4. The main focus
of this case study is to examine the prediction of the wave-induced VBM developed
on the hull. In the earlier version of the case study, the MF model was constructed
by employing a LF calculation in the FD and a HF calculation in the TD for the VBM,
specifically sagging. This section aims to explore two design variations: an AXE
frigate and a conventional frigate design (Fig. 5.5). Both design variations were
evaluated for wave-induced VBM using the TD solver PRETTI_R. Additional details
on the calculation of wave-induced VBM and PRETTI_R are provided in Section
4.3.3. Let us assume that the objective is to design a new design, the AXE frigate.
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(a) Visualization of the objective landscape
(b) Evolution of the RMSE as the number of

HF points for the cantilever beam case

Figure 5.4: 2D cantilever beam design problem leveraging 2 design variations

In this case, the analysis data from the AXE frigates will be treated as the HF data,
while the data from the conventional frigate will be considered as the LF data.

Figure 5.5: Two design concepts for the frigate – D.C.A linked to conventional frigates and
D.C.B linked to AXE frigates

2D design case

This case study follows a similar setup to that described in Section 4.5.1. In brief,
the vessel’s length L and beam B are considered design variables, while the design
parameters are listed in Tab. 4.2. In this case, both hogging and sagging will be
examined. As discussed in Section 4.4.2, these two quantities differ, with sagging
exhibiting larger absolute values. The two objective landscapes for hogging and
sagging can be visualized and compared in Fig. 5.6. It is worth noting that the
trends observed in the objective landscape for hogging and sagging differ signific-
antly. Additionally, a notable observation is that AXE frigates generally experience
higher bending moments during hogging, while conventional frigates exhibit higher
bending moments during sagging.

For the hogging case, the results are summarized in Tab. 5.2, and the progression
of RMSE as more HF points are acquired is illustrated in Fig. 5.7a. The results
identify three distinct regions. In the low-data regime, ranging from 2 to 6 HF points,
the MF model outperforms the SF model, with a notably higher accuracy when
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using just 2 HF points. In the medium-data regime, covering 6 to 14 HF points,
the performance of both models is similar, with the SF model being slightly more
accurate. Finally, in the high-data regime, from 14 to 20 HF points, both models
converge to a similarly low error value.

For the sagging case, the results are summarized in Tab. 5.3, and the progression
of RMSE as more HF points are acquired is shown in Fig. 5.7b. The analysis reveals
two distinct regions. In the low-data regime, with 2 to 4 HF points, the MF model
significantly outperforms the SF model. In the region with 4 to 20 HF points, both
models converge to a similarly low error value. Therefore, the two KPIs, hogging and
sagging, lead to a similar conclusion. The MF model shows promise in the low-data
region by significantly reducing the error of the SF model.

(a) Hogging case (b) Sagging case

Figure 5.6: 2D multi-variations design case for the frigates

(a) Hogging case (b) Sagging case

Figure 5.7: Evolution of the RMSE as the number of HF points increases in the 2D multi-
variations frigate case
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Table 5.2: Error metrics for the 2D hogging frigate case

DoE SF model MF model

R2 (std) RMSE (std) R2 (std) RMSE (std)

(2,40)
-0.3279

(1.0785)

0.2787

(0.1065)

0.9710

(0.0308)

0.0396

(0.0196)

(4,40)
0.9183

(0.2391)

0.0468

(0.0600)

0.9890

(0.0062)

0.0257

(0.0082)

(6,40)
0.9894

(0.0112)

0.0236

(0.0122)

0.9722

(0.0678)

0.0291

(0.0315)

(8,40)
0.9934

(0.0108)

0.0164

(0.0134)

0.9778

(0.0460)

0.0257

(0.0291)

(10,40)
0.9965

(0.0049)

0.1295

(0.0086)

0.9832

(0.0456)

0.0195

(0.0280)

(12,40)
0.9988

(0.0015)

0.0080

(0.0045)

0.9950

(0.0176)

0.0113

(0.0151)

(14,40)
0.9995

(0.0003)

0.0058

(0.0022)

0.99473

(0.0209)

0.0098

(0.0164)

(16,40)
0.9996

(0.0004)

0.0048

(0.0021)

0.9996

(0.0003)

0.0049

(0.0016)

(18,40)
0.9996

(0.0003)

0.0046

(0.0021)

0.9992

(0.0015)

0.0059

(0.0048)

(20,40)
0.9996

(0.0005)

0.0044

(0.0024)

0.9997

(0.0005)

0.0044

(0.0023)

5D design case

The 5D variation of the frigate case study examines the following design variables:
the vessel’s length L, beam B, depth D, deadrise angle ϕdeadrise, and flare angle ϕflare.
The range of these design variables can be found in Tab. 4.1. Similarly, to the 2D
variation, both hogging and sagging will be examined.

Regarding the hogging case, the results are summarized in Tab. 5.4 and the
progression of RMSE with an increasing number of HF points is shown in Fig. 5.8a.
The results are promising, as the MF model outperforms the SF model in all cases
examined, except for the one with the maximum number of HF points, 40. For the
sagging case, the results are summarized in Tab. 5.5, and the progression of RMSE
with an increasing number of HF points is illustrated in Fig. 5.8b. The MF model
consistently outperforms the SF model, demonstrating significant improvements
across all examined cases.

Notably, the results of the 2D and 5D variations of the case study are in agreement
with each other. In the 2D scenario, the MF model provides significantly more
accurate predictions in a low-data regime. However, as the number of HF points
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Table 5.3: Error metrics for the 2D sagging frigate case

DoE SF model MF model

R2 (std) RMSE (std) R2 (std) RMSE (std)

(2,40)
-0.3349

(0.8815)

0.2795

(0.0945)

0.8049

(0.1017)

0.1095

(0.0254)

(4,40)
0.9366

(0.0867)

0.0566

(0.0321)

0.9399

(0.0555)

0.0561

(0.0291)

(6,40)
0.9874

(0.0120)

0.0257

(0.0134)

0.9868

(0.0173)

0.0262

(0.0146)

(8,40)
0.9891

(0.0263)

0.0185

(0.0198)

0.9943

(0.0094)

0.0164

(0.0104)

(10,40)
0.9985

(0.0023)

0.0085

(0.0055)

0.9970

(0.0037)

0.0122

(0.0074)

(12,40)
0.9993

(0.0009)

0.0058

(0.0034)

0.9992

(0.0013)

0.0065

(0.0037)

(14,40)
0.9997

(0.0002)

0.0045

(0.0013)

0.9996

(0.0003)

0.0052

(0.0017)

(16,40)
0.9994

(0.0008)

0.0056

(0.0033)

0.9990

(0.0013)

0.0071

(0.0048)

(18,40)
0.9997

(0.0002)

0.0040

(0.0012)

0.9997

(0.0002)

0.0042

(0.0013)

(20,40)
0.9998

(0.0000)

0.0038

(0.0083)

0.9998

(0.0001)

0.0038

(0.0009)

increases, both models exhibit similar performance. This underscores the potential
of the proposed approach for early-stage design exploration, where the amount
of analysis data available for each design concept is limited. Similarly, in the 5D
scenario, the MF model significantly outperforms the SF model in all examined
cases. The notable improvement in accuracy highlights the potential of the proposed
approach for tackling higher dimensional and more complex design problems.

5.5 discussion

This chapter proposes the development of a ‘multi-variations’ design framework
to enhance early-stage concept exploration. The technical implementation of this
framework relies on a multi-fidelity formulation, where the various fidelity analysis
data come not from codes of different fidelities but from different design variations.
Ultimately, this framework could facilitate concept exploration, allowing for a more
efficient investigation of design trends across different concepts by utilizing analysis
data derived from alternative concepts. The proposed framework was tested in two
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(a) Hogging case (b) Sagging case

Figure 5.8: Evolution of the RMSE as the number of HF points increases in the 5D multi-
variations frigate case

design cases: a cantilever beam problem and a frigate case study featuring two
variations, specifically a 2D and a 5D variation.

The results from the cantilever beam study indicated that the MF approach holds
significant promise in low-data regimes. In the frigate case, designs were assessed
based on two KPIs: hogging and sagging. As observed with the cantilever beam
results, the MF model outperformed the SF model in low-data regions for the
2D scenario. Similarly, for the 5D scenario, the MF model demonstrated superior
performance across all tested cases. Thus, the findings suggest that the proposed
‘multi-variations’ design framework can be a powerful approach for certain design
problems.

It is crucial to critically evaluate the scalability of the ‘multi-variations’ framework
to real-world applications to determine its practical value and effectiveness. As
discussed, frameworks based on MF models have already demonstrated significant
advantages in addressing various design challenges. This chapter introduces a
‘multi-variations’ design framework, which the author envisions as a powerful and
effective tool for tackling real-world design problems. The framework offers some
key benefits. First, it leverages the availability of analysis data from past design
variations, which is often available in industrial settings. By incorporating this
existing data, the proposed framework can effectively support the design exploration
of new concepts, reducing the need for extensive new analyses. Secondly, in realistic
design scenarios, it is often necessary to explore and evaluate a range of different
concepts to identify the optimal solution. In early-stage design, the focus tends to
shift from design optimization to design concept exploration. In such cases, the
proposed framework can be proved beneficial.

However, there are some limitations to consider. The most significant is that
this approach cannot be universally applied to all design problems, as it relies
on a degree of correlation between the performance of the various concepts. A
multi-variations design framework does not have to be based on the mathematical
formulation of the AR1 scheme; it can be implemented using any MF scheme. The
choice of MF scheme should be tailored to the specific design problem. The selected
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Table 5.4: Error metrics for the 5D hogging frigate case

DoE SF model MF model

R2 (std) RMSE (std) R2 (std) RMSE (std)

(5,60)
0.3732

(0.2434)

0.1597

(0.0321)

0.7112

(0.0965)

0.1089

(0.0167)

(10,60)
0.6610

(0.1753)

0.1167

(0.0319)

0.7474

(0.1389)

0.1010

(0.0285)

(15,60)
0.7947

(0.0755)

0.0946

(0.0164)

0.8157

(0.0470)

0.0903

(0.0139)

(20,60)
0.8072

(0.0740)

0.0939

(0.0191)

0.84344

(0.0559)

0.0848

(0.0161)

(25,60)
0.8454

(0.0540)

0.0877

(0.0172)

0.8581

(0.0431)

0.0843

(0.0157)

(30,60)
0.8582

(0.0645)

0.0819

(0.0178)

0.8709

(0.0409)

0.0789

(0.0136)

(35,60)
0.8805

(0.0318)

0.0766

(0.0140)

0.8861

(0.0244)

0.0749

(0.0116)

(40,60)
0.8928

(0.0350)

0.0740

(0.0114)

0.8930

(0.0305)

0.0741

(0.0109)

MF scheme dictates how data from different design variations should correlate. In
this dissertation, the AR1 scheme was chosen, meaning that the analysis data from
different design variations must meet the criteria outlined in Section 3.3.2. However,
intuitively, some aspects of a new design’s performance should already be captured
by an earlier design variation. If two designs are radically different, none of the
MF schemes would be suitable, making the multi-variations design framework not
applicable. Another limitation is that the current framework does not accommodate
cases where different concepts involve slightly different sets of design variables,
which may restrict its applicability in certain problems.
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Table 5.5: Error metrics for the 5D sagging frigate case

DoE SF model MF model

R2 (std) RMSE (std) R2 (std) RMSE (std)

(5,60)
0.1187

(0.4305)

0.1934

(0.0475)

0.7057

(0.2208)

0.1095

(0.0340)

(10,60)
0.6308

(0.1933)

0.1246

(0.0307)

0.7798

(0.0968)

0.0973

(0.0185)

(15,60)
0.7114

(0.1047)

0.1120

(0.0188)

0.8289

(0.0453)

0.0868

(0.0112)

(20,60)
0.7938

(0.0492)

0.0977

(0.0144)

0.8346

(0.0508)

0.0872

(0.0148)

(25,60)
0.8107

(0.0680)

0.0923

(0.0151)

0.8485

(0.0378)

0.0829

(0.0106)

(30,60)
0.8184

(0.0331)

0.0935

(0.0130)

0.8562

(0.0272)

0.0831

(0.0106)

(35,60)
0.8144

(0.0289)

0.0956

(0.0081)

0.8564

(0.0325)

0.0841

(0.0113)

(40,60)
0.8494

(0.0350)

0.0900

(0.0134)

0.8653

(0.0401)

0.0854

(0.0178)
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6
O P T I M I Z AT I O N E N G I N E : L E V E R A G I N G T H E C O N C E P T O F
I N F O R M AT I O N - T H E O R E T I C E N T R O P Y T O I M P R O V E A
M U LT I - F I D E L I T Y D E S I G N F R A M E W O R K F O R E A R LY- S TA G E
D E S I G N E X P L O R AT I O N O F N O V E L V E S S E L S 1

We know the past but cannot control
it. We control the future but cannot
know it.

— Claude Shannon

This chapter examines RQ.4, exploring how the uncertainty in the predicted
objective landscape can be used to support the design optimization of novel vessels.
It explores the adoption of information-theoretic entropy to improve the proposed
MF-DAF. Entropy quantifies the uncertainty associated with the prediction of the
objective landscape. This dissertation proposes using this uncertainty metric both as
a criterion to determine whether further designs should be sampled to construct a
reliable approximation of the objective landscape, and as a criterion to establish in
which optimization step the optimization of the compositional kernel function for
the MF-GPs should be performed. The approach was validated at a proof-of-concept
level, with case studies centered on analytical benchmark functions and the 2D AXE
frigate problem (presented in Chapter 4). The approach holds potential in practical
applications, as it aids in the determination of whether additional resources should
be allocated for HF analysis to support early-stage exploration.

6.1 introduction

In the context of information theory, entropy serves as a metric for quantifying the
amount of information inherent in a message (Shannon, 1948). This concept can be
extended to compute the information associated with an event, a random variable,
or a probability distribution (Murphy, 2012). In the context of design applications,
entropy can function as a metric for assessing the uncertainty associated with
predicting the objective landscape. Consequently, entropy can be used to enhance
design exploration by quantifying and exploiting such uncertainty.

1 This chapter is based on work previously published in Charisi et al., 2024b
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Different entropy metrics have been employed to support engineering applications,
such as information entropy (e.g., Domerçant, 2019), Kullback-Leibler Divergence
(e.g., Impraimakis, 2024), and mutual information (e.g., Taverniers et al., 2021).
Nevertheless, a research gap exists in using entropy to facilitate the early-stage
design of novel vessels. Therefore, this chapter explores the role of entropy in the
proposed MF-DAF. More specifically, the utilization of entropy is proposed to de-
termine the necessary number of HF simulations for MF design optimization. As
noted by Mainini et al. (2022), a mathematical formulation to determine the required
number of HF simulations for MF analysis is currently lacking. This dissertation pro-
poses entropy as a suitable mathematical formulation for this purpose. In addition,
Chapter 3 examined the development of the AE component of the DAF by integrating
compositional kernels into the AR1 scheme of MF-GPs. However, constructing the
compositional kernel function is a computationally expensive process, making it
impractical to perform at every optimization step. One potential solution would be
to perform the compositional kernel function optimization at the last optimization
step. However, as evidenced in Chapters 3 and 4, integrating compositional kernels
can enhance predictions by capturing the structure of the objective landscape. This
approach could be effectively utilized within a Bayesian optimization framework,
helping the optimization process converge more efficiently to the optimum solution.
Therefore, this dissertation proposes using entropy as a metric to determine at
which optimization steps the compositional kernel function should be optimized
throughout the optimization process.

6.2 relevant work

According to Martignon (2015), information theory "is the mathematical treatment of
the concepts, parameters and rules governing the transmission of messages through
communication systems". Shannon (1948) laid the foundation for information theory.
The concepts and principles of information theory have expanded far beyond their
original application. Nowadays, they find application in various domains, including
cryptography (e.g., Zolfaghari et al., 2022), machine learning (e.g., Meni et al.,
2024), economics (e.g., Harré, 2022), and neuroscience (e.g., Borst and Theunissen,
1999). In the context of early-stage design, there is a direct link between design
exploration and information theory via uncertainty quantification. Krus (2013) states
that "design theory should really be a theory of design information".

Entropy, a foundational concept in information theory, can be understood as
either the measure of information content or the degree of randomness associated
with a discrete random variable (Duplantier & Rivasseau, 2018). Various mathem-
atical formulations exist for entropy, with some of the most commonly used ones
encompassing relative entropy (commonly known as Kullback-Leibler Divergence),
and mutual information.

Entropy has found application in research problems related to design optimiza-
tion. Saad and Xue (2023) proposed using entropy as a means to identify design
configurations with a high likelihood of attaining optimal solutions. In this con-
text, entropy was used to evaluate partial configuration candidates represented as
branches in the AND-OR tree—a graphical model with AND and OR nodes that
depict partial design solutions, such as components or assemblies with design para-
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meters. This approach helps eliminate improbable branches, guiding the process
toward the optimal outcome. In addition, Krus (2013) suggested that the entropy rate,
which is based on Shannon’s information entropy, can be a performance criterion to
characterize the difficulty of different optimization problems. Farhang-Mehr and
Azarm (2002) proposed an entropy-based metric to assess the quality of solution sets
obtained during design optimization. The assessment is based on the distribution
of the solution set over the pareto optimal frontier. Goodrum (2020) developed
three entropy-based temporal metrics (topological entropy, target value entropy,
and data status entropy) to evaluate the multi-layer networks, which represent how
information sources are transformed into knowledge structures throughout the
design process. Finally, Chaudhuri et al. (2020) proposed a MF design framework
for risk-averse design optimization. The method is based on importance sampling
and cross-entropy.

In the context of this research, entropy serves as a metric to quantify the uncer-
tainty within the early-stage objective landscape. Entropy is employed to serve as a
termination criterion for concluding the design exploration process. The rationale
behind this formulation lies in the observation that design optimization problems
typically operate under a predetermined budget. Entropy can thus form a criterion
to make an informed decision regarding the termination of the optimization process.
Furthermore, entropy is employed as an indicator for optimizing the covariance
matrix via the optimization of the compositional kernel function, as an extension of
the method proposed in Chapter 3.

6.3 methods

This section offers a comprehensive overview of the framework itself and presents
the mathematical formulation of information entropy. Regarding the mathematical
formulation of MF-GPs, compositional kernels, the reader is referred to Sections 3.3.2,
and 3.3.3.

6.3.1 Proposed Framework

The flowchart illustrating the DAF is depicted in Fig. 6.1. The main structure and
components of the DAF were explained in Section 2.2. In this chapter, the DAF is
expanded to incorporate the information entropy metrics, as highlighted in Fig.
6.1. As discussed, entropy can be incorporated as a criterion for determining the
optimization step where compositional kernel function optimization is most benefi-
cial. This metric was added to the AE of the framework. Additionally, entropy was
incorporated into the OE of the DAF as a criterion for terminating the optimization
process.

6.3.2 Information Entropy

Entropy measures the uncertainty that observers have about the state of a random
variable x (Varley et al., 2023). The entropy H[p(x)] of a distribution p(x) quantifies
the uncertainty in the distribution (Rasmussen & Williams, 2005). The integral can
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Figure 6.1: Flowchart of the DAF with the integrated information entropy metrics

be replaced by a sum of discrete variables. The differential entropy for a continuous
variable x with density f (x) is calculated according to Eqn. 6.1 (Cover & Thomas,
2005).

H(x) = −
∫

s
f (x) log f (x) dx (6.1)

where s is the support of the probability density function. Regarding the multivariate
Gaussian distribution, the entropy is defined according to Eqn. 6.2 (Rasmussen &
Williams, 2005).

H[N (µ, Σ)] =
1
2

log |Σ|+ D
2

log 2πe (6.2)

where D is the number of dimensions. Unlike entropy for discrete random vari-
ables, differential entropy can take negative values (Michalowicz et al., 2013). The
covariance matrix is guaranteed to be symmetric positive semi-definite. However, in
instances where the covariance matrix becomes singular, the entropy value tends
toward negative infinity (log |Σ| → −∞). To mitigate this issue for singular matrices,
the eigenvalues are computed. Any zero eigenvalues are replaced with a value
of 10−6, and the covariance matrix is then reconstructed based on the adjusted
eigenvalues using Eqn. 6.3 (Strang, 2014).

A = UΛU−1 (6.3)

where A represents an n× n matrix, U is an n× n matrix containing the eigenvectors
of A, with each column of U representing an eigenvector of A, and Λ is an n× n
diagonal matrix containing the eigenvalues of A along its diagonal elements.

The termination of the optimization loop occurs when the quantified uncertainty
of the objective landscape prediction, assessed through entropy, reaches a predeter-
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mined threshold ∆Hcritical. To ensure robustness, the criterion includes the condition
that the value of entropy should not increase by more than a predetermined mar-
gin ∆Hmargin for nrcritical

iter iterations. The formulation of the termination criterion is
summarized in Algorithm 2.

A comparable concept was applied to the optimization criterion for compositional
kernels. Entropy serves as an indicator to decide whether compositional kernel
optimization should be conducted. The rationale behind this approach is that a
notable change in entropy signifies a significant change in the predictive distribution.
Thus, the kernel function should be re-designed when such changes in the predictive
distribution are identified to facilitate the exploration of the design space and
objective landscape. The formulation of the kernel optimization criterion is detailed
in Algorithm 3.

6.3.3 Bayesian optimization

Bayesian optimization has found extensive application in addressing optimization
problems characterized by objective functions that are costly to evaluate. It comprises
three fundamental components: establishing the prior distribution, refining the prior
distribution to derive the posterior distribution, and determining the subsequent
sampling point (Brochu et al., 2009). The initial two components are associated
with shaping the surrogate model, while the last one is linked to the acquisition
function. The MF surrogate model in the proposed framework was built via MF-GPs

as described in the previous sections. The acquisition function establishes a strategy
for assessing the utility of evaluating the objective function at specific points within
the search space (Di Fiore & Mainini, 2024). The objective of the acquisition function
is to strike a balance between exploring new areas and exploiting known areas
within the search space. For this research, Expected Improvement, αEI, was employed
as the acquisition function, as defined in Eqn. 6.4 from Liu (2023).

αEI(x) = (µ(x)− f (x∗))Φ
(

µ(x)− f (x∗)
σ(x)

)
+ σ(x)ϕ

(
µ(x)− f (x∗)

σ(x)

)
(6.4)

where f (x∗) represents the current optimum, while µ(x) and σ(x) denote the mean
and standard deviation of the posterior at location x, respectively. The functions ϕ

and Φ refer to the PDF, and the cumulative distribution function, respectively.

6.3.4 Error metrics

Various error metrics were employed to evaluate the effectiveness of the information
entropy metrics. The RMSE, as defined in Equation 3.21, was used to quantify the
accuracy of the models in predicting the objective landscape. Furthermore, following
Mainini et al. (2022), the adopted error metrics ϵx, ϵf, ϵt represent within the design
space, the objective function, and the Euclidean distance in the normalized x- f
hyperspace, respectively. Detailed descriptions of these metrics are provided in
Eqns. 6.5, 6.6, and 6.7.

ϵx =
∥x̂∗ − x∗∥√

D
(6.5)
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input : ∆Hcritical, ∆Hmargin, nrcritical
iter , nrmax

iter ; /* critical value of

entropy change, acceptable margin of entropy change,

critical number of optimization iterations, maximum

number of optimization iterations */

output : ϵx, ϵf, ϵt, RMSE, nrterminate
iter ; /* performance, metrics, step

to terminate the optimization loop */

1 nri
iter ← 1 ;

2 counter← 0 ;
3 while nri

iter ≤ nrmax
iter do

4 Compute µ, σ from Eqns. 3.17, 3.18 ; /* MF surrogate */

5 Compute entropy Hiteri from Eqn. 6.2;
6 if nri

iter = 1 then
7 H0 ← Hiteri ; /* Reference entropy value */

8 end
9 else
10 if Hiteri > H0 then
11 H0 ← Hiteri

12 end
13 end
14 Compute ϵx, ϵf, ϵt, RMSE from Eqns. 6.5, 6.6, 6.7, 3.21

15 if H0 − Hiteri ≥ ∆Hcritical then
16 counter← counter + 1; /* Counting optimization steps */

17 if counter = nrcritical
iter then

18 nrterminate
iter = nri

iter;
19 break;
20 end
21 end
22 if Hiteri − Hiteri−1 ≥ ∆Hmargin then
23 counter← 0
24 end
25 nri

iter ← nri
iter + 1 ;

26 end
Algorithmus 2 : Design optimization termination criterion based on
information entropy
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input : ∆Hcritical, ∆Hmargin, nrmax
iter , nrcritical

iter ; /* critical value of

entropy change, acceptable margin of entropy change,

maximum number of optimization iterations, critical

number of optimization iterations */

output : ϵx, ϵf, ϵt, RMSE; /* performance, metrics */

1 nri
iter ← 1 ;

2 boolker_opt ← False ;
3 counter← 0 ;
4 while nri

iter ≤ nrmax
iter do

5 Compute µ, σ from Eqns. 3.17, 3.18 ; /* MF surrogate */

6 Compute entropy Hiteri from Eqn. 6.2;
7 if nri

iter = 1 then
8 H0 ← Hiteri ; /* Reference entropy value */

9 end
10 Compute ϵx, ϵ f , ϵt, RMSE from Eqns. 6.5,6.6,6.7,3.21

11 if |H0 − Hiteri | ≥ ∆Hcriticaland(H0 − Hiteri)(H0 − Hiteri−1) > 0 then
12 counter← counter + 1; /* Counting optimization steps */

13 if counter = nrcritical
iter then

14 Perform compositional kernels optimization as described in
Section 3.3;

15 H0 ← Hiteri ;
16 end
17 end
18 if |Hiteri − Hiteri−1| ≥ ∆Hmarginand(Hiteri − H0)(Hiteri − Hiteri−1) < 0

then
19 counter← 0
20 end
21 nri

iter ← nri
iter + 1 ;

22 end
Algorithmus 3 : Compositional kernel optimization criterion based on
information entropy
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ϵf =
f (x̂∗)− fmin

fmax − fmin
(6.6)

ϵt =

√
ϵ2

x + ϵ2
f

2
(6.7)

Here, fmin and fmax denote the minimum and maximum observed values of the
objective function, respectively. The term x̂∗ represents the predicted optimal design
point, while x∗ denotes the true optimal design point. Additionally, f (x̂∗) is the
objective function value at the predicted optimum, and D is the dimensionality of
the design space.

6.4 case studies

The case studies encompass a simplified example, using the Jump Forrester function,
to illustrate the rationale behind integrating information entropy into the early-stage
design framework. Subsequently, two analytical problems will the addressed: the
1D Heterogeneous function and the 2D shifted-rotated Rastrigin function. Finally,
a realistic ship design is showcased, addressing the 2D design of the AXE frigates
focused on optimizing the wave-induced VBM. The case studies were selected to
align with those in the previous chapters.

6.4.1 Baseline example: the Jump Forrester function

This analytical problem is designed to enhance understanding of how and why
entropy is integrated into the design framework. The baseline case study assumes
a 1D design space characterized by the Jump Forrester function as described pre-
viously in Eqn. 3.24 and Eqn. 3.25. The initial dataset comprises 6 HF and 25 LF

observations.
Figure 6.2 illustrates the evolution of error metrics and entropy throughout the

optimization process. Evidently, an augmented dataset correlates with heightened
accuracy in the obtained results. This is a general trend which can be observed in
both the evolution of H and ϵ throughout the optimization. Figure 6.2a illustrates
a notable decrease in entropy between the optimization step corresponding to 8

and 9 HF points. The decrease in entropy is correlated with a reduction in the error
metrics, as depicted in Fig. 6.2b. The criteria developed in this chapter are designed
to identify and effectively leverage changes in entropy to support the optimization
process of the DAF. While the variations in entropy do not perfectly correspond
with changes in the error metrics, they can still serve as a valuable indicator of error
trends.

Three snapshots of the objective landscape are visualized in Fig. 6.3. Specifically,
Fig. 6.3a displaying the prediction of the objective landscape corresponding to a
dataset of 8 HF points, reveals that the prediction is inaccurate across the domain
and the variance is high. After adding an additional HF point and observing the
significant entropy drop, the predicted objective landscape shifts to what is shown
in Fig. 6.3b. The reduction in entropy captured a significant decrease in uncertainty,
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(a) Tracking H throughout the optimiza-
tion process

(b) Tracking ϵ throughout the optimiza-
tion process

Figure 6.2: Comparing H with ϵ error metrics for the Jump Forrester

(a) 8 HF points (b) 9 HF points (c) 12 HF points

Figure 6.3: Visualizations of the objective landscape for the Jump Forrester function at differ-
ent optimization stages, illustrating the progression of predictions as additional
HF points are incorporated.

which in turn resulted in a much more accurate representation of the objective
landscape. An additional drop in entropy is observed during the optimization
step with 12 HF points. This objective landscape can be visualized in Fig. 6.3c.
This additional reduction of entropy does not link to a further reduction of the
error metrics. The reason is that, while the overall uncertainty in the objective
landscape prediction decreases slightly, the area around the optimum has already
been thoroughly explored in previous iterations, resulting in no new insights
regarding the optimum.

6.4.2 Analytical function 1D: the Heterogeneous function

A commonly employed analytical function is the Heterogeneous function, known for
its localized and multi-modal behavior (Mainini et al., 2022). The 1D Heterogeneous
function, previously discussed in Chapter 3, is described by the Eqn. 3.28 and Eqn.
3.29. The Heterogeneous function can be visualized in Fig. 3.6.

In this case study, the initial training set included 10 HF data fused with 35 LF

data. The base case underwent 15 optimization steps. The parameters of this case



104 optimization engine : leveraging the concept of information-theoretic entropy

study remained consistent when evaluating both the entropy-driven termination
criterion and entropy-driven kernel optimization. Furthermore, acknowledging the
significant influence of the training set on model performance, statistical insights
were obtained by using 20 different training sets in both scenarios, consistent with
previous analyses.

Regarding the entropy-driven termination criterion, relevant statistics can be
found in Tab. 6.1 and 6.2 for the proposed and the base model, respectively. Six
scenarios were examined, involving the increase of noise σn in the training data
from 0.00 to 0.05. The comparison of mean error metric values is presented and
visualized in Fig. 6.4. The main observation is that, as anticipated, the error gen-
erally rises with an increase in noise level. In most instances, the proposed model
demonstrates comparable or slightly elevated errors compared to the base model,
while concurrently achieving significant computational savings. For instance, when
σn = 0.04, the average number of iterations is 10.5, resulting in a 30% improvement
compared to the 15 iterations in the base scenario.

Table 6.1: Base model performance (entropy-driven termination criterion, Heterogeneous
function)

σn ϵx (std) ϵf (std) ϵt (std) RMSE (std)
optimization

steps

0
0.0025

(0.0044)

0.0037

(0.0062)

0.0032

(0.0053)

0.0542

(0.0516)
15

0.01
0.0298

(0.0811)

0.0035

(0.0024)

0.0232

(0.0566)

0.0723

(0.0230)
15

0.02
0.0318

(0.0804)

0.0093

(0.0130)

0.0273

(0.0559)

0.0716

(0.0126)
15

0.03
0.0182

(0.0586)

0.0165

(0.0217)

0.02

(0.0431)

0.0925

(0.0223)
15

0.04
0.0308

(0.0776)

0.0273

(0.0410)

0.0319

(0.0606)

0.1288

(0.0512)
15

0.05
0.0535

(0.0991)

0.03273

(0.0376)

0.05

(0.0713)

0.1299

(0.0486)
15

Regarding the entropy-driven kernel optimization, the results can be found in Tab.
6.3 and 6.4 for the proposed and the base models, respectively. The visualization of
mean error metrics is presented in Fig. 6.5. As visualized in Fig. 6.5, the proposed
model demonstrates a comparable performance to the base model, and their results
are closely aligned, thus the performance of the two models is similar.

6.4.3 Analytical function 2D: the Shifted-Rotated Rastrigin function

In this case study, the 2D shifted-rotated Rastrigin function was employed. This
function is characterized by multi-modal behavior. The Rastrigin function, previously
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(a) Graph depicting the relationship
between ϵx and σn

(b) Graph depicting the relationship
between ϵ f and σn

(c) Graph depicting the relationship
between ϵt and σn

(d) Graph depicting the relationship
between RMSE and σn

Figure 6.4: Heterogeneous function: Entropy-driven termination criterion, while varying the
noise σn
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(a) Graph depicting the relationship
between ϵx and σn

(b) Graph depicting the relationship
between ϵ f and σn

(c) Graph depicting the relationship
between ϵt and σn

(d) Graph depicting the relationship
between RMSE and σn

Figure 6.5: Heterogeneous function: Entropy-driven kernel optimization, while varying the
noise σn
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Table 6.2: Proposed model performance (entropy-driven termination criterion, Heterogen-
eous function)

σn ϵx (std) ϵf (std) ϵt (std) RMSE (std)
optimization

steps (std)

0
0.0045

(0.0050)

0.0092

(0.0104)

0.0075

(0.0079)

0.0530

(0.0387)

10.45

(4.00)

0.01
0.0298

(0.0811)

0.0048

(0.0062)

0.0241

(0.0564)

0.0716

(0.0231)

14.5

(2.18)

0.02
0.0323

(0.0803)

0.0086

(0.0131)

0.0273

(0.0559)

0.0715

(0.0126)

12.75

(4.11)

0.03
0.0187

(0.0585)

0.0177

(0.0223)

0.0211

(0.0430)

0.0925

(0.0222)

11.6

(5.31)

0.04
0.0318

(0.0772)

0.0306

(0.0408)

0.0345

(0.06)

0.1306

(0.0528)

10.5

(5.62)

0.05
0.0535

(0.0991)

0.0354

(0.0362)

0.0518

(0.0703)

0.1298

(0.0485)

13.2

(4.29)

studied in Chapter 3, is defined by Eqn. 3.30 and Eqn. 3.31, and is illustrated in Fig.
3.7.

In this case study, the initial training set consisted of 10 HF data combined
with 50 LF data. The base case underwent 15 optimization steps. Consistent with
other studies, parameters were maintained constant during the assessment of both
the entropy-driven termination criterion and entropy-driven compositional kernel
optimization.

Regarding the entropy-driven optimization criterion, relevant statistics can be
found in Tab. 6.5 and 6.6. The visualization of mean error metrics is presented in
Fig. 6.6. A notable observation is that, similar trends to the previous case study are
observed, where the suggested model displays errors that are comparable or slightly
higher than those of the base model, yet it concurrently realizes computational
savings. The discrepancy between the models is more apparent, possibly due to the
increased complexity of this problem. Notably, in this instance, the error does not
escalate with the noise level.

Regarding the entropy-driven compositional kernel optimization, the results can
be found in Tab. 6.7 and 6.8 for the proposed and the base models, respectively. The
visualization of mean error metrics is presented in Fig. 6.7. The findings indicate
a substantial enhancement in error metrics of the proposed model compared to
the base case across various scenarios. These results are noteworthy, with a more
pronounced improvement compared to the previous case study. This heightened
improvement could be attributed to the increased complexity of the problem or the
ability of compositional kernels to better capture the structure of the function.
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Table 6.3: Proposed model performance (entropy-driven kernel optimization, Heterogeneous
function)

σn ϵx (std) ϵf (std) ϵt (std) RMSE (std)

0
0.0

(0.0)

0.0015

(0.0030)

0.0010

(0.0021)

0.0235

(0.0279)

0.01
0.0162

(0.0590)

0.0047

(0.0047)

0.01396

(0.0412)

0.0610

(0.0218)

0.02
0.0434

(0.0964)

0.0063

(0.0059)

0.0342

(0.0668)

0.0939

(0.0618)

0.03
0.0040

(0.0049)

0.0160

(0.0131)

0.0124

(0.0091)

0.1154

(0.0633)

0.04
0.0576

(0.1077)

0.0116

(0.0081)

0.0452

(0.0743)

0.1215

(0.0468)

0.05
0.0702

(0.1114)

0.0385

(0.0562)

0.0618

(0.0847)

0.1278

(0.0529)

6.4.4 Ship design problem 2D: the AXE frigates

The concept of the AXE frigates was described in Section 4.2.2. This chapter builds
on the previous ones by further analyzing the case study introduced in Section 4.4.
In summary, each design is assessed based on the wave-induced VBM generated by a
regular wave train, as defined by Eqns. 4.15 and 4.16. Thus, wave loading conditions
are assessed independently for each design variation, by selecting a sea state that
maximizes wave-induced VBM (wavelength matches the ship’s length). The vessel’s
speed was set to 0 knots. The problem is simplified into a 2D case, where only the
vessel’s length (L) and breadth (B) are varied. The LF analysis data are generated by
the FD solver PRECAL, a specialized tool designed to predict linear responses using
potential flow calculations. The HF analysis data come from the TD solver PRETTI_R,
a 3D time-domain nonlinear seakeeping solver. For further information regarding
the case study, the reader is referred to Section 4.4.

The initial training set consists of 2 HF PRETTI_R simulations (TD data) and
20 PRECAL simulations (LF data). The LF and the HF surfaces can be visualized
in Fig. 4.8b. The optimization steps were configured to be 10. The outcomes are
presented in Tab. 6.9 and Tab. 6.10 for the entropy-driven termination criterion and
kernel optimization, respectively. In general, the results exhibit similar trends to
previous case studies. The performance metrics of the proposed model slightly
surpass those of the base model, with an associated reduction in computational
steps to an average of 8.55 from the set 10 steps. Concerning the kernel optimization
scenario, the performance metrics of the proposed model are improved compared
to the base model.
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Table 6.4: Base model performance (entropy-driven kernel optimization, Heterogeneous
function)

σn ϵx (std) ϵf (std) ϵt (std) RMSE (std)

0
0.0010

(0.0030)

0.0032

(0.0052)

0.0025

(0.0042)

0.0367

(0.0359)

0.01
0.01616

(0.0590)

0.0044

(0.0050)

0.0137

(0.0413)

0.0681

(0.0172)

0.02
0.0439

(0.0962)

0.0067

(0.0059)

0.0348

(0.0665)

0.1017

(0.0665)

0.03
0.0040

(0.0049)

0.0174

(0.0141)

0.01334

(0.0097)

0.1105

(0.0557)

0.04
0.0576

(0.1077)

0.0130

(0.0086)

0.0461

(0.0738)

0.1209

(0.0451)

0.05
0.0571

(0.1018)

0.0396

(0.0558)

0.0534

(0.0794)

0.1293

(0.0522)

6.5 discussion

Conclusions

In summary, the chapter discusses the integration of entropy, a mathematical concept
from information theory, to improve an MF design framework for early-stage design
exploration. Two concepts, namely the entropy-driven termination criterion and
entropy-driven kernel optimization, were formulated and illustrated. The case stud-
ies encompassed analytical benchmark problems, including the 1D Jump Forrester
and the 2D shifted-rotated Rastrigin function, along with a 2D physical problem
involving AXE frigate design where variations in L and B were considered.

Similar patterns were observed across the different case studies. Concerning
the termination criterion, the performance metrics slightly exceeded those of the
base model while concurrently achieving computational savings. This suggests
that the proposed criteria based on information entropy are promising for design
exploration, particularly when the goal is to discern design trends. Furthermore, the
outcomes related to kernel optimization exhibited enhancements in most cases and
comparable results in others. This underscores the concept’s potential in integrating
compositional kernels within a design optimization loop using the compositional
kernel optimization criterion.

Recommendations for further research

The inclusion of entropy in design exploration is rooted in the concept that entropy
can serve as an indicator of how comprehensively the objective landscape has been
investigated. It is crucial to emphasize that entropy is not presumed to be an absolute
performance measure akin to error metrics. Instead, its significance lies in the fact
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(a) Graph depicting the relationship
between ϵx and σn

(b) Graph depicting the relationship
between ϵ f and σn

(c) Graph depicting the relationship
between ϵt and σn

(d) Graph depicting the relationship
between RMSE and σn

Figure 6.6: Rastrigin function: Entropy-driven termination criterion, while varying the noise
σn

that in practical design exploration problems, calculating error metrics is not always
feasible. To advance this concept, exploring its scalability to higher-dimensional
problems is an area that needs further research. Additionally, determining the
critical parameters for the method is a case-dependent and challenging aspect in
real-world applications.



6.5 discussion 111

Table 6.5: Proposed model performance (entropy-driven termination criterion, Rastrigin
function)

σn ϵx (std) ϵf (std) ϵt (std) RMSE (std)
optimization

steps (std)

0
0.1192

(0.2064)

0.0068

(0.0103)

0.0875

(0.1443)

0.1110

(0.0386)

14.15

(1.53)

0.01
0.2007

(0.2475)

0.0151

(0.0207)

0.1464

(0.1722)

0.1212

(0.0570)

14.15

(1.74)

0.02
0.0239

(0.1042)

0.0035

(0.0082)

0.0192

(0.0733)

0.1094

(0.0348)

14

(2.17)

0.03
0.1044

(0.2121)

0.0097

(0.0196)

0.0775

(0.1489)

0.1538

(0.0718)

13.9

(2.45)

0.04
0.0717

(0.1706)

0.0049

(0.0093)

0.0528

(0.1199)

0.0997

(0.0351)

14.15

(1.68)

0.05
0.1924

(0.2658)

0.0121

(0.0298)

0.1367

(0.1889)

0.1312

(0.0658)

13.8

(1.91)

Table 6.6: Base model performance (entropy-driven termination criterion, Rastrigin function)

σn ϵx (std) ϵf (std) ϵt (std) RMSE (std)
optimization

steps (std)

0
0.1259

(0.2200)

0.0076

(0.0104)

0.0926

(0.1536)

0.1025

(0.0324)

15

(0.0)

0.01
0.1700

(0.2320)

0.0127

(0.0209)

0.1237

(0.1623)

0.1258

(0.0557)

15

(0.0)

0.02
0.0239

(0.1042)

0.0035

(0.0082)

0.0192

(0.0733)

0.1084

(0.0344)

15

(0.0)

0.03
0.0876

(0.2109)

0.0099

(0.0196)

0.0657

(0.1483)

0.1485

(0.0718)

15

(0.0)

0.04
0.0478

(0.1434)

0.0035

(0.0082)

0.0351

(0.1011)

0.0978

(0.0326)

15

(0.0)

0.05
0.1685

(0.2606)

0.0114

(0.0299)

0.1198

(0.1852)

0.1323

(0.0643)

15

(0.0)
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(a) Graph depicting the relationship
between ϵx and σn

(b) Graph depicting the relationship
between ϵ f and σn

(c) Graph depicting the relationship
between ϵt and σn

(d) Graph depicting the relationship
between RMSE and σn

Figure 6.7: Rastrigin function: Entropy-driven termination criterion, while varying the noise
σn

Table 6.7: Proposed model performance (entropy-driven kernel optimization, Rastrigin
function)

σn ϵx (std) ϵf (std) ϵt (std) RMSE (std)

0
0.0902

(0.2177)

0.0076

(0.0183)

0.0663

(0.1536)

0.1070

(0.0597)

0.01
0.7382

(0.2700)

0.0150

(0.0288)

0.1245

(0.1912)

0.1349

(0.0691)

0.02
0.1115

(0.2262)

0.0096

(0.0254)

0.0796

(0.1607)

0.1175

(0.0437)

0.03
0.0543

(0.1643)

0.0015

(0.0039)

0.0389

(0.1160)

0.0961

(0.0189)

0.04
0.0756

(0.1699)

0.0035

(0.0069)

0.0540

(0.1200)

0.1043

(0.0529)

0.05
0.1050

(0.2132)

0.0069

(0.0138)

0.0759

(0.1503)

0.1012

(0.0494)
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Table 6.8: Base model performance (entropy-driven kernel optimization, Rastrigin function)

σn ϵx (std) ϵf (std) ϵt (std) RMSE (std)

0
0.1377

(0.2432)

0.0087

(0.0181)

0.1001

(0.1709)

0.1178

(0.0571)

0.01
0.1966

(0.2743)

0.0217

(0.0364)

0.1424

(0.1938)

0.1615

(0.0710)

0.02
0.1932

(0.2682)

0.0135

(0.0273)

0.1382

(0.1897)

0.1396

(0.0570)

0.03
0.1260

(0.2223)

0.0096

(0.0212)

0.0912

(0.1570)

0.1086

(0.0494)

0.04
0.1036

(0.2117)

0.0140

(0.0765)

0.0765

(0.1468)

0.1468

(0.0703)

0.05
0.1528

(0.2366)

0.0081

(0.0141)

0,1098

(0.1666)

0.1131

(0.0524)

Table 6.9: Models’ performance (entropy-driven termination criterion, AXE frigates)

model ϵx (std) ϵf (std) ϵt (std) RMSE (std)
optimization

steps (std)

base
0.0

(0.0)

0.0436

(0.0285)

0.0308

(0.0202)

0.1300

(0.0405)

10

(0)

proposed
0.0068

(0.0172)

0.0513

(0.0304)

0.0376

(0.0232)

0.1388

(0.0416)

8.55

(2.5)

Table 6.10: Models’ performance (entropy-driven kernel optimization, AXE frigates)

model ϵx (std) ϵf (std) ϵt (std) RMSE (std)

base
0.0

(0.0)

0.0349

(0.0298)

0.0247

(0.0210)

0.1295

(0.0523)

proposed
0.0

(0.0)

0.0180

(0.0301)

0.0127

(0.0213)

0.1133

(0.0303)
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7
C O N C L U S I O N S A N D R E C O M M E N D AT I O N S

Somewhere, something incredible is
waiting to be known.

— C. Sagan

This chapter presents the conclusions and offers recommendations for future
research stemming from this dissertation. In Section 7.1, the research objectives
and questions are revisited, bringing together and synthesizing the conclusions
and findings of the individual chapters as a cohesive whole. Section 7.2 reviews
and highlights the key research contributions of the dissertation. Section 7.3 offers
recommendations for future research. Lastly, Section 7.4 provides information on
the availability of the data used in this study, along with relevant references.

7.1 conclusions

This dissertation proposed a new architecture and mathematical formulation of an
early-stage Design Architectural Framework (DAF) of novel vessels. As stated in
Section 1.4, the main research objective was:

The formulation of a probabilistic multi-fidelity design architectural framework
to facilitate early-stage exploration of novel vessels.

The research objective arises from the limitation that traditional early-stage design
frameworks are inadequate for addressing the early-stage design needs of novel
vessels. This limitation arises because traditional design frameworks rely on assess-
ing design solutions using low-fidelity (LF) analysis methods and tools to evaluate
a broad design space. However, assessing novel designs requires incorporating
higher-fidelity methods earlier in the design process. Evaluating the broad early-
stage design space solely with high-fidelity (HF) analysis is infeasible; therefore,
integrating analysis data from both LF and HF through multi-fidelity (MF) models
offers a promising approach.

This dissertation proposed the architecture of a DAF to support the early-stage
design of novel vessels. The key components of the DAF, the Generative Engine (GE),
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Analysis Engine (AE), and Optimization Engine (OE) were developed and analyzed
across the different chapters of the dissertation. The dissertation primarily focused
on the development and testing of the AE. Chapters 3 and 4 explored the technical
formulation of the AE and its application to various problems, from analytical
functions to a ship design case. Chapter 5 presents an alternative perspective on the
development of the AE, proposing that various fidelity levels be substituted with
analysis data from different variations with the goal of supporting design concept
exploration. Finally, Chapter 6 concentrated on the technical formulation of the OE

and established the connection between the AE and OE.
The research questions are revisited here and briefly answered based on a reflec-

tion of the entire dissertation.

• [RQ1] How can additional information from the analysis data be utilized to
enhance the developed MF approximation of the objective landscape?

This dissertation examined the integration of compositional kernels into the
AutoRegressive model (AR1) scheme of MF-Gaussian Processes (GPs) in order
to uncover and leverage the structure of the objective landscape, enabling
more efficient and effective early-stage design exploration for complex vessels.
In Chapter 3, the proposed method was applied to analytical benchmark prob-
lems, and to a cantilever beam problem. The analytical benchmark problems
included the 1D Jump Forrester function, the 1D Heterogeneous function, the
2D shifted-rotated Rastrigin function, and the ND Rosenbrock function. These
problems were chosen to evaluate the proposed model across various scenarios,
including multi-modal behavior, discontinuities, and scalability with increas-
ing dimensionality and fidelity levels. The proposed model demonstrated
improved predictions across all the tested problems.

The 1D Jump Forrester function, representing a discontinuous space, was
approached as a bi-fidelity problem, with the proposed model showing predic-
tion improvements of up to 22%. The 1D Heterogeneous function was used to
explore a complex objective landscape, where the model achieved up to a 32%
improvement. The 2D shifted-rotated Rastrigin function, employed to evalu-
ate multi-modal behavior, was modeled as both a bi-fidelity and tri-fidelity
problem, resulting in a 62% improvement for the bi-fidelity case and 49% for
the tri-fidelity case. For the cantilever beam problem, the model delivered
enhanced results, with improvements ranging from 4% to 33%. Overall, these
results suggest the model’s potential for effectively tackling complex design
challenges in multi-dimensional spaces.

• [RQ2] How scalable is the proposed method of integrating compositional
kernels into a MF DAF based on the AR1 scheme of GPs for addressing real ship
design problems?

In Chapter 4, a real-world design case study was developed, focusing on the
early design assessment of wave-induced vertical bending moment (VBM) for
AXE frigates, to investigate the scalability of the proposed method. The case
study was structured as a bi-fidelity problem, incorporating both frequency-
and time-domain analysis data. It was divided into three scenarios with
increasing dimensionality: 2D, 3D, and 8D. The proposed model successfully
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scaled across all design scenarios. In addition to evaluating the scalability of the
proposed method, referred to in Chapter 4 as AR1 with compositional kernels,
its accuracy was also compared to three other models: a single-fidelity (SF)-
GP-based model, the AR1 approach using a squared exponential kernel, and
Nonlinear AutoRegressive Gaussian Process (NARGP).

A key observation is that the MF models generally exhibited greater accuracy
than the SF model, which relied solely on HF data. Evidence from the case
study indicates that MF models effectively facilitate the early integration of HF

analysis into the design process. Another important observation is that, even
within the same design problem of evaluating the wave-induced VBM for the
AXE frigates, different models outperformed others based on specific para-
meter variations, such as speed and the problem’s dimensionality. Regarding
the proposed method, the integration of compositional kernels generally did
not improve the predictive accuracy of the AR1 scheme. For the examined case
study, the squared exponential kernel proved more effective in capturing the
covariance matrix of the design space data in most cases. The proposed model
aimed to detect distinct features within the objective landscape, but the case
study did not reveal any such traits. To investigate this further, an artificial
discontinuity was deliberately added to the objective landscape. The model
effectively identified this distinct feature and demonstrated superior perform-
ance compared to the other models. This suggests that for design problems
characterized by distinct features and patterns, the proposed method shows
promise for constructing objective landscape approximations.

• [RQ3] How can information from past designs be systematically leveraged to
support and enhance the early-stage design exploration of novel vessels?

This dissertation introduced a ’multi-variations’ design framework aimed at
facilitating early-stage concept exploration. The technical foundation of this
framework is based on a multi-fidelity formulation, and more specifically
the AR1 scheme, where the varying fidelity analysis data is sourced not from
different fidelity codes but from distinct design variations. Ultimately, this
framework seeks to streamline concept exploration, enabling more effective in-
vestigations into design trends across multiple concepts by leveraging analysis
data derived from alternative concepts.

The proposed framework was evaluated through two design cases: a cantilever
beam problem and a frigate case study that featured two variations, specifically
a 2D and a 5D. The findings from the cantilever beam study suggested that the
MF approach showed considerable promise in low-data regimes. In the frigate
case study, designs were evaluated using two KPIs: hogging and sagging.
Similar to the cantilever beam results, the MF model outperformed the SF

model in low-data regions for the 2D scenario. Likewise, in the 5D scenario,
the MF model consistently exhibited improved performance across all tested
cases. These findings indicate that the proposed ‘multi-variations’ design
framework can be an effective approach for specific design problems.

• [RQ4] How can the uncertainty of the predicted objective landscape be em-
ployed to facilitate the design optimization of novel vessels?
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The idea of incorporating information entropy to enhance the proposed MF

design framework for early-stage design exploration was examined. Specific-
ally, two key concepts were explored: an entropy-driven termination criterion
and an entropy-driven kernel optimization criterion. These concepts were
formulated and demonstrated through case studies, which included analytical
benchmark problems such as the 1D Jump Forrester and the 2D shifted-rotated
Rastrigin function, as well as a physical problem, including the 2D AXE frigate
design problem. The case studies showed consistent patterns. Concerning the
termination criterion, the error performance metrics slightly exceeded those
of the base model while concurrently achieving computational savings. This
indicates the promise of using information entropy for design exploration,
especially for identifying design trends. Furthermore, kernel optimization
resulted in improvements in most cases and comparable outcomes in others,
demonstrating the potential for efficiently integrating compositional kernels
into a design optimization loop using the compositional kernel optimization
criterion.

7.2 contributions

The contributions proposed in this dissertation (as outlined in Section 1.5) are
revisited and further analyzed based on the research presented:

1. [C1] The development of an early-stage design framework based on the
integration of compositional kernels to the AR1 scheme to facilitate design
exploration by revealing the structure of the underlying objective landscape.
The originality lies in how these mathematical methods are leveraged to
support early-stage design.

This dissertation introduced and evaluated a MF method for constructing
design-space approximations by incorporating compositional kernels into
the AR1 scheme to enhance design analysis and exploration. The proposed
approach was applied to a range of problems, from analytical benchmark
functions to complex engineering problems. In many cases, the use of compos-
itional kernels led to improved accuracy in the predicted objective landscape.
The case studies’ findings highlight both the advantages and limitations of the
method.

2. [C2] Scaling up the established framework for the early-stage exploration of
the AXE frigate design, with a focus on assessing the wave-induced vertical
bending moment, incorporating weak nonlinearities.

In this dissertation, the proposed method was expanded to tackle a real-world
design challenge involving the design of AXE frigates, specifically focusing on
the wave-induced VBM developed on the hull. Analyzing motions and loads is
essential for evaluating a vessel’s performance. While motions are typically
assessed during the early stages of design, loads are often analyzed later in
the process. This dissertation advances the introduction of load analysis at an
earlier stage, providing critical insights that can support decision-making in
designing novel hull forms.
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3. [C3] The approach of constructing an MF DAF with its building blocks derived
from analysis data of past design variations, as opposed to relying on models
of various fidelities.

This dissertation proposed the development of a MF DAF that uses various
design variations as different levels of fidelity. The primary rationale for this
approach is that such a framework could facilitate concept exploration—a
phase before design optimization—where the most promising concepts are
identified and selected. The ’multi-variations’ DAF proposes that analysis data
from one concept could be leveraged to assist in exploring another area of
the design space associated with a different concept. The ultimate goal is
to leverage advanced analyses, such as load assessment, early in the design
process to enhance concept exploration and facilitate effective decision-making
in the early stages.

4. [C4] Utilize information entropy to quantify uncertainty in predicting the
objective landscape. This uncertainty metric will serve two purposes: first,
as a criterion to decide whether additional designs should be sampled for
constructing a reliable approximation of the objective landscape; and second,
as a criterion for determining the appropriate stage in the optimization process
to optimize the compositional kernel function.

This dissertation proposes the integration of two metrics based on information-
theoretic entropy to the AE and OE of the DAF. The first metric establishes a
termination criterion based on the level of uncertainty in the current prediction
of the objective landscape. The second metric leverages entropy to incorporate
compositional kernel function optimization into the overall optimization pro-
cess. Finding the optimal compositional kernel function is computationally
demanding, with the cost increasing as the dimensionality of the problem
grows. The proposed metric indicates in which optimization steps the com-
positional kernel function should be optimized.

7.3 recommendations for further research

Based on the research conducted, the following recommendations for future work
are provided:

• Leveraging a physics-informed approach to integrate the analysis method to
the DAF.

Currently, the AE and OE of the DAF operate using a data-driven approach. A
significant challenge in early-stage design is the reliance on limited, computa-
tionally expensive data especially for novel vessels, where that data is even
more limited to non-existent. This data evaluates the vessel’s performance
based on physical principles. In many cases, or at least for certain problems,
there is ample prior knowledge of the physics that govern the vessel’s behavior.
Integrating these physical principles into the development of the DAF, result-
ing in a physics-informed data-driven approach, would improve prediction
accuracy in low-data scenarios.
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• Broader validation on different vessel types, such as unconventional military
and commercial ships.

The case studies in Chapters 4 and 5 focused exclusively on AXE frigates. The
results demonstrated that the performance of various MF schemes, including
the proposed framework, is highly dependent on the specific research or
design problem. Therefore, expanding the study to a broader range of design
challenges and incorporating different vessel types would offer valuable in-
sights into the applicability and effectiveness of MF models in early-stage
design applications.

• Scaling-up the proposed DAF to include nonlinear analysis like the prediction
of loads occurred by impacts such as green water or slamming.

This dissertation focuses on the development and testing of the AE and OE

components of the DAF. These were applied to analytical benchmark problems,
a simplified engineering problem involving a cantilever beam, and a ship
design case for AXE frigates. The AXE frigates were evaluated based on
wave-induced VBM, which can be characterized as a weakly nonlinear load.
Scaling up the aforementioned DAF components to assess nonlinear loads,
such as green water and slamming, introduces additional challenges. These
challenges stem from several factors, including the need to evaluate a large
number of wave realizations using HF tools to assess such loads. This process
is computationally expensive, and repeating the analysis across multiple
designs is currently not feasible. Introducing this type of analysis early in the
design process would be highly beneficial, as it would enable more informed
decision-making when selecting and optimizing design concepts.

• The integration of compositional kernels to the nonlinear scheme of GPs,
NARGP.

In this dissertation, the development of the AE was achieved by integrating
compositional kernels into the AR1 scheme of MF-GPs. The AR1 scheme assumes
a linear relation between the models of the various fidelity levels. The nonlinear
schemes of MF-GPs, such as NARGP and deep GPs, have proven advantageous
when the linear relationship between fidelities breaks down. Consequently,
further exploration of integrating compositional kernels into these nonlinear
schemes is recommended.

• Further exploration of the ‘multi-variations’ design framework concept to eval-
uate its capabilities.

Chapter 5 introduced the concept of a ’multi-variations’ design framework,
built upon the AR1 scheme of MF-GPs. However, alternative mathematical
frameworks, such as MF-NNs, may be more suitable for this approach. Further
research is recommended to explore the technical implementation of this
’multi-variations’ early-stage design framework across various design problems
and case studies.
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7.4 supplementary data availability

Table 7.1 below lists, where applicable, references to datasets, models, and code
that support the results presented in this dissertation. Access to the source code
developed for this research may be provided for academic and research purposes,
subject to written approval from Delft University of Technology, and the author of
this dissertation.

Table 7.1: Access to supplementary data
Models/ Data DOI/ URL

Data and models used in Chapter 3 10.4121/1dcda9bd-4ce6-4e0c-9b84-9292d4e101d0

Data and models used in Chapter 4 10.4121/fc643c31-5428-48dc-bcf3-c8a24d49331a

Data and models used in Chapter 5 10.4121/61b728e7-402c-4533-8977-ca1e22f27f93

Data and models used in Chapter 6 10.4121/459cfd14-ab90-4fbb-9a1f-2cbd96baaa1a

Design Architectural Framework (python code) https://gitlab.tudelft.nl/ndcharisi/mf-daf-for-novel-vessels.git

10.4121/1dcda9bd-4ce6-4e0c-9b84-9292d4e101d0
10.4121/fc643c31-5428-48dc-bcf3-c8a24d49331a
10.4121/61b728e7-402c-4533-8977-ca1e22f27f93
10.4121/459cfd14-ab90-4fbb-9a1f-2cbd96baaa1a
https://gitlab.tudelft.nl/ndcharisi/mf-daf-for-novel-vessels.git
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A
F U RT H E R I N V E S T I G AT I O N O N T H E V E RT I C A L B E N D I N G
M O M E N T A N A LY S I S

Chapter 4 presented a case study assessing the wave-induced VBM for AXE frigates.
The results indicated that speed had a significant impact on the estimated VBM. Two
speed conditions were analyzed: zero-speed and 15 knots. In the zero-speed case,
the findings aligned with widely accepted view that VBM increases with the vessel’s
length. However, this relationship did not hold at 15 knots. To further explore how
VBM varies with speed, two additional cases at 5 knots and 10 knots were examined.
Three ship designs with different lengths L (98, 110, and 120 m) but the same beam
(B= 16m) were tested. The results were based on a FD calculation using PRECAL.

The calculated RAO values are summarized in Fig. A.1. For the zero-speed case,
the results showed a clear trend of increasing VBM with the vessel’s length. At 5

knots, the RAO curves for the three vessels converge. In the 10-knot case, the RAO

curves reverse positions, indicating that the shorter vessel experiences higher VBM

loads. This trend persists at 15 knots, with the differences between the RAO curves
becoming more pronounced.

The RAO curves retrieved from PRECAL were compared with those from SEACAL.
SEACAL is a FD linear 3D diffraction analysis code developed by MARIN. Given
that speed has a significant impact on wave-induced VBM, PRECAL and SEACAL
apply different approaches to forward speed corrections. PRECAL uses a zero-speed
Green functions method, which is accurate at zero speed and applies approximate
corrections for forward speed (MARIN, 2019). In contrast, SEACAL employs the
Rankine method, which provides greater accuracy when accounting for forward
speed (MARIN, 2022). As a result, SEACAL is regarded as a higher-fidelity analysis
tool. The results are summarized in Fig. A.2. Overall, as expected, the discrepancies
between the results from the analysis tools increase with speed, whereas at zero
speed, the differences are minimal. A key finding is that SEACAL’s results confirm
the observed shift in design trends: vessels with shorter lengths experience higher
loads compared to longer ships as speed increases, for the tested vessel.
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(a) u = 0 knots (b) u = 5 knots

(c) u = 10 knots (d) u = 15 knots

Figure A.1: Comparing 3 AXE frigate designs across different speeds
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(a) u = 0 knots (b) u = 5 knots

(c) u = 10 knots (d) u = 15 knots

Figure A.2: Comparison of three AXE frigate designs at varying speeds, using results
obtained from PRECAL and SEACAL
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Summary

Early-stage vessel design is crucial, as key decisions are made during this Early-stage vessel design is crucial, as key decisions are made during this 
phase. Existing frameworks, designed for conventional vessels, prioritize 
exploring a broad design space but rely on low-fidelity tools, sacrificing 
accuracy for efficiency. However, low-fidelity methods fall short for novel 
vessels, as they fail to capture complex physics associated with the 
performance of such vessels. While high-fidelity analysis improves accuracy, 
its high computational cost limits design exploration. Multi-fidelity models, 
combining low- and high-fidelity methods, offer a promising solution for combining low- and high-fidelity methods, offer a promising solution for 
enabling higher-fidelity assessments earlier in the design process. This 
dissertation builds the architecture of a multi-fidelity probabilistic design 
architectural framework for early-stage design of novel vessels.
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