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Summary
Structures and buildings built on soft soil require deep foundations often consisting
of piles. Through the piles, loads are transferred to deeper soil layers which are
capable to mobilise enough bearing capacity for the superstructure. During instal-
lation of a displacement pile, the soil around the pile gets distorted which leads to
a change of stress, density and soil properties in the distorted zone. The quantifi-
cation of change in soil properties, soil state and the influenced zone around the
pile during installation are yet a remaining uncertainty in geotechnical engineering.
This thesis examines the mechanisms that govern pile installation and subsequent
loading by numerical analysis. The study focuses on jacked and impact hammer
installation techniques in dry and fully saturated sand.

Most current numerical methods, e.g. finite element method (FEM), predicting
pile capacity do not take installation effects into account, as the occurring large
deformations can lead to mesh distortion and non-converging solutions. There-
fore, when modelling pile foundations using FEM, the installation phase is usually
not incorporated. As a result of this simplification, the soil behaviour is often not
correctly predicted leading to large differences with field measurements. In this
study, the material point method (MPM) is employed as a numerical tool to study
the installation effects. It has been successfully applied to a wide range of prob-
lems in geotechnical engineering. MPM is an advancement of the FEM, in which
the continuum body is represented by Lagrangian points. Lagrangian points are
called material points (MPs) which move through an Eulerian computational mesh.
The MPs carry all physical properties of the continuum, whereas the computational
mesh stores no permanent information. Through this approach, MPM combines the
best aspects of both Lagrangian and Eulerian formulations while avoiding some of
their shortcomings.

An appropriate constitutive model is essential to model the complex soil be-
haviour near the pile during and after installation. A model used for sand should
have a state dependent behaviour which is able to capture the evolution of the state
and the corresponding change of properties. Furthermore, the high stress level un-
der the pile tip during installation can cause grain crushing in sand. Therefore the
constitutive model should include such material property changes caused by grain
crushing. In this thesis, a constitutive model for granular materials which considers
grain crushing effects is developed in the framework of hypoplasticity. When grain
crushing occurs the behaviour of granular material is usually significantly affected.
Several empirical relations between peak strength, uniformity coefficient and stiff-
ness depending on stress level or amount of grain crushing have been derived for
sands. Such relations are employed to improve a basic hypoplastic constitutive
model based on the changes of stress level or grain size distribution. In the pro-
posed modified hypoplastic model only two additional physical parameters, namely

ix
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uniformity coefficient and mean grain size diameter are incorporated. The valida-
tion of the modified model for three different sands under triaxial test conditions
with cell pressures up to 30 MPa is presented, and shows a significantly better
correspondence compared to the original basic hypoplastic model.

The modified hypoplastic model for crushed sand is applied to model the in-
stallation process of a jacked pile in sand. Results from this application show that
simulations with the modified hypoplastic model for crushed sand lead to a signifi-
cantly improved load–displacement behaviour compared to the original hypoplastic
model and better correspondence with the experimental result. Hence, taking into
account grain crushing in the hypoplastic constitutive model can be considered as
one of the important factors to successfully model pile installation as well as pre-
dicting the pile bearing capacity.

Simulations of a jacked pile in dry sand are carried out with MPM and show good
agreement with the centrifuge test results for both the installation process as well
as the static load test (SLT) after installation. The predicted pile capacity given by
MPM simulations is in good agreement with the load–displacement curve suggested
by the Dutch standard (NEN 9997-1, 2016). The validation of MPM simulations with
centrifuge tests and standardised load–settlement curves shows the capability of
the proposed numerical tool for modelling the installation effects.

The changes of stress and density in the surrounding soil during pile penetra-
tion are investigated. During installation of a jacked pile in dry sand, soil is pushed
aside by the pile, which leads to densification around the pile and very high lateral
stresses at the pile tip. As a consequence of the change in soil state after installa-
tion, a significantly higher pile bearing capacity is observed during SLT as compared
to simulations without installation effects. This emphasizes the importance of ac-
counting for installation effects when simulating the SLT and more in general when
predicting pile behaviour.

For impact driven piles in both dry and saturated sand, there is a significant
reduction in the horizontal stress close to the pile shaft compared to the initial
K0 horizontal stress, during dynamic pile installation. In dry sand simulations, for
driven piles, the compaction of the soil around the pile is much larger than that of
the jacked pile due to the cyclic and dynamic shearing which results in lower radial
stress around the pile shaft. However, jacked piles result in higher stiffness and
capacity than driven piles due to the higher radial stress at both pile shaft and pile
toe.

In saturated sand simulations, the influence of pore water pressure on pile in-
stallation processes is significant. An increase of excess pore water pressure around
the pile tip during installation is observed. As a consequence of the effective stress
reaching zero value, the soil shows the tendency to liquefy in the area around the
installed pile. Furthermore, there is almost no compaction of the soil around the
driven pile during installation in comparison to the jacked pile. The comparison
between a jacked pile and an impact driven pile shows the significant influence of
these different installation techniques on the bearing capacity of a pile foundation.

The evolution of the excess pore pressures inside the soil body and the influence
of soil properties on the generation and dissipation of the excess pore pressures
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during a rapid pile load test (RLT) are numerically examined by MPM simulations
to gain more insight in the excess pore pressure effect on the pile capacity. The
results from simulations are in good agreement with measurements in terms of
load–displacement curve as well as the generation and dissipation of excess pore
pressures at the pile tip during RLT.





Samenvatting
Constructies en gebouwen op zachte ondergrond vereisen paalfunderingen. Door
de palen worden de belastingen overgedragen naar de dieper gelegen grondlagen
die in staat zijn om voldoende draagkracht te mobiliseren voor de bovenliggende
constructie. Tijdens de installatie van een grond-verdringende paal wordt de grond
rond de paal verstoord, en dat leidt tot een verandering van de spanning, dichtheid
en grondeigenschappen in dit verstoorde gebied. Het kwantificeren van deze ver-
andering in grondeigenschappen, grond toestand en het beïnvloedde gebied rond
de paal tijdens installatie vormt nog steeds een blijvende onzekerheid in de geo-
techniek. Dit proefschrift onderzoekt de mechanismen die de paalinstallatie en de
daarop volgende belasting bepalen met behulp van een numerieke analyse. De
studie richt zich op installatie technieken voor gedrukte en geheide palen in droog
en volledig verzadigd zand.

De meeste huidige numerieke methoden, zoals bijvoorbeeld de eindige elemen-
ten methode (EEM), nemen, voor de voorspelling van de paaldraagkracht, installatie
effecten niet in beschouwing, aangezien de optredende grote vervormingen tot me-
shverstoring en niet-convergerende oplossingen kunnen leiden. Daarom wordt de
installatie fase doorgaans niet meegenomen wanneer paalfunderingen met EEM ge-
modelleerd worden. Als gevolg van deze vereenvoudiging wordt het grondgedrag
vaak niet juist voorspeld wat tot grote verschillen met veldmetingen leidt. In deze
studie wordt de Material Point Method (MPM) als numerieke tool gebruikt om in-
stallatie effecten te bestuderen. Deze werd al succesvol toegepast voor een aantal
geotechnische vraagstukken. MPM kan als een uitbreiding op de EEM opgevat wor-
den, waarbij grond en constructies voorgesteld worden door Lagrangiaanse punten
die door een Eulerse mesh bewegen. De fysieke eigenschappen van het continuüm
verblijven in de materiaalpunten tijdens de berekening van de vervormingen, ter-
wijl het Eulerse mesh en zijn Gausspunten geen permanente informatie bevatten.
Met deze aanpak combineert MPM de beste aspecten van zowel Lagrangiaanse als
Eulerse formuleringen terwijl sommige van hun tekortkomingen vermeden worden.

Een geschikt materiaalmodel is essentieel om complex grondgedrag in de buurt
van de paal tijdens en na installatie te kunnen modelleren. Een model dat voor zand
gebruikt wordt zou toestandsafhankelijk gedrag moeten kunnen vertonen, dat in
staat is om de verandering in toestand en bijbehorende verandering in eigenschap-
pen op te vangen. Bovendien kan het hoge spanningsniveau onder de paalpunt
tijdens installatie verbrijzeling van de zandkorrels veroorzaken. In dit proefschrift is
een materiaalmodel ontwikkeld voor korrelmateriaal op basis van hypoplasticity dat
met effecten van korrelverbrijzeling rekening houdt. Wanneer korrelverbrijzeling
plaats vindt wordt het gedrag van korrelmateriaal normaliter significant beïnvloed.
Verschillende empirische relaties tussen pieksterkte, uniformiteitscoëfficiënt en stijf-
heid, afhankelijk van het spanningsniveau of mate van korrelverbrijzeling, zijn af-
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geleid voor zand. Deze relaties zijn toegepast om een hypoplastisch basismodel
te verbeteren, en gebaseerd op de verandering van spanningsniveau en korrelver-
deling. In het voorgestelde aangepaste hypoplastische model komen slechts twee
aanvullende fysische parameters voor, namelijk de uniformiteitscoëfficient en de
gemiddelde korreldiameter. De validatie van het aangepaste model is uitgevoerd
voor drie verschillende zanden voor triaxiale testcondities met celdrukken tot 30
MPa, en toont een significant betere overeenkomst dan het originele hypoplasti-
sche basismodel.

Het aangepaste hypoplastische model voor verbrijzeld zand is toegepast om het
installatie proces van een gedrukte paal in zand te modelleren. Resultaten van
deze toepassing geven aan dat simulaties met het aangepaste hypoplastische mo-
del voor verbrijzeld zand leiden tot een significant beter last-verplaatsingsgedrag
vergeleken met het originele hypoplastische model en betere overeenkomst met
de experimentele resultaten. Daarom kan het meenemen van korrelverbrijzeling in
het hypoplastische materiaalmodel beschouwd worden als een van de belangrijke
aspecten om zowel paalinstallatie succesvol te kunnen modelleren als de paaldraag-
kracht te voorspellen.

Simulaties van een gedrukte paal in droog zand zijn met MPM uitgevoerd en
tonen een goede overeenkomst met resultaten van centrifugeproeven voor zowel
het installatieproces als de statische belastingproef (static load test, SLT) na instal-
latie. De door MPM simulaties voorspelde paaldraagkracht is in goede overeen-
stemming met de last-verplaatsingskromme die door de Nederlandse norm (NEN
9997-1, 2016) voorgesteld wordt. De validatie van MPM simulaties met centrifuge-
proeven en gestandaardiseerde last-verplaatsingskrommes toont de geschiktheid
aan van het voorgestelde numerieke tool om installatie effecten te modelleren.

De veranderingen van spanning en dichtheid in de grond rond de paal tijdens
penetratie zijn onderzocht. Tijdens installatie van een gedrukte paal in droog zand
wordt grond door de paal zijwaarts gedrukt, en dat leidt tot verdichting rond de
paal en zeer hoge horizontale spanningen rond de paalpunt. Ten gevolge van
de verandering van de grondtoestand na installatie wordt een significant hogere
paaldraagkracht waargenomen tijdens een SLT vergeleken met simulaties zonder
installatie effecten. Dat benadrukt het belang om installatie effecten mee te nemen
wanneer een SLT gesimuleerd wordt en bij het modelleren van paalgedrag.

Voor geheide palen in zowel droog als verzadigd zand ontstaat een significante
verlaging van de horizontale spanningen vlakbij de paalschacht gedurende dynami-
sche paalinstallatie. In simulaties met droog zand voor geheide palen is de grond-
verdichting rond de paal veel groter dan bij een gedrukte paal, veroorzaakt door de
cyclische en dynamische verschuiving, welke in lagere radiale spanningen rond de
paalschacht resulteert. Gedrukte palen vertonen daardoor een hogere stijfheid en
draagkracht dan geheide palen als gevolg van de hogere radiale spanningen aan
zowel paalschacht als –punt.

In simulaties met verzadigd zand is de invloed van de poriënwaterdruk op het
paalinstallatie proces significant. Een verhoging van de wateroverspanning rond het
paalpunt tijdens installatie wordt waargenomen. Omdat de effectieve spanningen
naar nul gaan, vertoont de grond de neiging om te verweken in het gebied rond de
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geïnstalleerde paal. Bovendien is er bijna geen verdichting van de grond rond een
geheide paal tijdens installatie vergeleken met een gedrukte paal. De vergelijking
tussen een gedrukte en een geheide paal toont de significante invloed van deze
verschillende installatie technieken op de draagkracht van een paalfundering.

De ontwikkeling van wateroverspanningen in het grondlichaam en de invloed
van de grondeigenschappen op de ontwikkeling en dissipatie van de waterover-
spanningen tijdens een snelle belastingsproef (rapid load test, RLT) zijn numeriek
onderzocht met behulp van MPM simulaties om meer inzicht te krijgen in de ef-
fecten van wateroverspanningen op de paaldraagkracht. De resultaten van de si-
mulaties zijn in goede overeenstemming met metingen met betrekking tot zowel
de last-verplaatsings kromme als ook de ontwikkeling en dissipatie van waterover-
spanningen rond het paalpunt tijdens een RLT.
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Introduction

1.1. Background
For thousands of years, structures and buildings built on soft soil conditions have
been supported by deep foundations consisting of piles. Traditionally, wooden piles
were used, however nowadays, most piles are made of reinforced concrete or steel.
Through the piles, loads are transferred to deeper soil layers which are capable of
mobilizing enough bearing capacity for the support of a superstructure.

The improvement of technology and the development of the equipment used to
install piles, have led to a proliferation of pile types and installation methods. Based
on installation methods, there are two categories of piles. Firstly, displacement
piles: these piles are driven into the ground by impact hammers, either vibrated or
hydraulically jacked and no soil is removed but displaced during the pile installation.
The installation of the displacement pile significantly changes the soil stresses and
properties such as density, strength, and stiffness. Secondly, non-displacement
piles (e.g. auger and bored piles): a flight auger is screwed into the ground to the
required depth after which concrete is siphoned through the flight auger as it is
withdrawn from the ground to form the pile. Another type of non-displacement pile
is a bored pile. For these piles the soil is excavated and the bored hole is supported
by a steel casing or by a support fluid. During or after concreting the bored hole the
support fluid or casing are removed. For the non-displacement pile, the strength
and the stiffness of the soil are generally not altered during the installation process
and the impact is limited. The installation method influences the soil state and
consequently leads to a different behaviour and capacity of displacement and non-
displacement piles in an identical soil [1–3]. Hence different values of the factors
in the empirical equations for pile design are recommended [2, 3].

This thesis studies the behaviour of displacement piles in sand, primarily by
means of numerical simulation. In the research particular attention is given to the
jacked pile and the impact-driven pile. Displacement piles driven into the ground
by an impact hammer are widely used for offshore and nearshore foundations. On-
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shore these piles are used as well but often there are limitations due to the noise
nuisance and vibration. Each blow of the ram displaces the pile deeper into the soil
until the required depth is reached. Recent developments have allowed the piles
to be pushed into the soil with hydraulic jacks. A jacked pile method, also called
the ”pressed-in method”, results in decrease nuisance and a higher capacity and
stiffness compared to hammering and vibratory driven techniques [4].

During the installation of a displacement pile, the soil around the pile gets dis-
turbed, leading to a change in the stress and density state of the surrounding soil
as well as to a change of the soil properties in the disturbed area close to the pile.
The extent of the change of the soil properties, the soil state and the affected area
around the pile during installation are a remaining uncertainty in geotechnical en-
gineering. In the geotechnical literature, relatively little attention has been paid to
the influence of the installation methods on the behaviour or performance of the
pile foundation.

In general, the most important questions regarding the design of the pile foun-
dation are related to the bearing capacity. The bearing capacity of a pile foundation
is governed by the soil properties or the soil state. As the soil state is altered by
the pile driving process, its effects are accounted for in empirical design methods
by the application of certain factors. However, most of these methods only es-
timate pile bearing capacity and do not consider to model the underlying physical
mechanisms and the interaction between the pile and the soil during the installation
process. Moreover, the complications of all effects or unusual ground conditions
are not included in the prediction of the pile bearing capacity by the empirical meth-
ods. Nevertheless, these information is essential to make more reliable predictions
of the pile bearing capacity, as well as the influence of the installation on adjacent
structures and appropriate load settlement behaviour. In other words, current de-
sign methods for pile foundations offer a low reliability [5] and are not based on
the physical processes which govern the pile capacity [6].

With the increase in computational power, numerical techniques e.g. Finite Ele-
ment Method (FEM) have been developed in geotechnical engineering. Nowadays,
it is increasingly essential to assess the behaviour (settlements) of piled construc-
tions. For buildings, and in particular in case of a combination of lateral loads of
pile groups, the assessment is often executed using FEM models. However, FEM
models when modelling pile foundations in the FEM code, do not often incorporate
the installation phase. As a result of oversimplification, the soil behaviour is not
correctly predicted and consequently leads to a large difference between FE pre-
dictions and pile behaviour measurements [7]. In conclusion, a proper simulation
of the entire installation process is needed.

In order to improve the prediction of pile and soil behaviour, an analysis of
the pile installation and consequence effects should be included in the numerical
models. Thus, the main aspects to be considered are:

• Large deformation: When modelling penetration, the numerical framework of
a common small strain FEM cannot handle large local deformations occurring
during installation. As a result, stress concentrations and mesh distortion
occur in such FEM simulations.
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• Constitutive model: An appropriate constitutive model is quite important to
model the complex soil behaviour near the pile during and after pile instal-
lation. The model used for sand should have a state dependent behaviour
in which the soil stiffness and strength is dictated by the current state. Fur-
thermore, the high stress level under the pile tip during installation can cause
grain crushing in sand. Therefore the constitutive model should include ma-
terial property changes due to grain crushing.

• Pore water pressure effects: The numerical code should incorporate a coupled
material and groundwater description and be able to model the generation and
dissipation of pore pressure when a pile is driven into fully saturated soil.

• Dynamic loads: Dealing with wave propagation and cyclic loading are im-
portant aspects to be considered in the analysis of the dynamic installation
technique.

Hammered pile installation in dry and saturated sand was simulated in this study.
An attempt is made to validate this type of simulations by numerical modelling of
a number of Rapid Pile Load Tests (RLT) that were performed in a geotechnical
centrifuge. The RLTs were chosen to model because in these tests the piles were
installed in saturated sand and were loaded by impact. And moreover the conditions
were well defined, regarding soil, loading and the deformations were measured as
well as the pore pressures in the soil during loading. In the following a short
introduction of the different types of pile load tests and the Rapid test in particular
is given.

The most reliable method for determining the ultimate bearing capacity is to
use results from pile load tests (e.g. static load, dynamic load and rapid load tests)
and, most importantly, the tests can be used to validate the numerical simulations.
Although static load tests provide the most precise method of evaluation of the
bearing capacity [8], they are expensive to set up and time-consuming to under-
take. The dynamic testing methods provide an economic alternative for static load
testing. However, the high impact load under a considerable short blow can cause
sustain damage on the pile [9]. Another drawback of the dynamic testing method
is the assumption that an “equivalent static” capacity needs to be derived from the
dynamic load test. Hence the rapid load testing is an alternative method to over-
come the drawbacks of static and dynamic testing methods [10]. However, there is
also ambiguity in obtaining equivalent static results from rapid testing methods be-
cause the results need to be interpreted to eliminate the dynamic and rate effects.
The most complicated aspects of the interpretation of methods and results are the
load rate effect and the effect of excess pore pressure in the soil under and close
to the pile toe generated during test [11]. Several empirical reduction factors are
suggested to obtain an equivalent static bearing capacity of a pile from the rapid
load test. However, well-defined interpretation rules are still required for practical
engineering.
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1.2. Objective of the study
The objective of this study is to examine the mechanisms that govern pile installa-
tion and the subsequent loading by numerical analysis.

This study is limited to the jacked and impact hammer installation techniques.
As the jacked installation process can be considered as quasi-static loading, hence
no dynamic effects and drained conditions are assumed. For the analyses of an
impact driven pile and of a rapid pile load test, the dynamic calculations and the
consolidation analysis are coupled, and the relative movement of the fluids and
solids is considered. Consequently, an evolution of excess pore pressure can be
simulated more realistically for partially drained loading conditions.

Hence, for a suitable analysis in this study, it is important to obtain a numerical
model that can cope with/manage:

• Large deformations

• Adapted soil properties due to stress and density changes

• High stresses and related crushing

• A two phase medium, with the possibility of full liquefaction

There are several numerical methods which can manage large deformations such as
Arbitrary Lagrangian-Eulerian (ALE) schemes, meshless methods (e.g the Smoothed
Particle Hydrodynamics (SPH) method) and mesh-based particle methods (e.g. the
Material Point Method (MPM)). In this study, MPM is employed as a numerical tool
to study the installation effects. It has been successfully employed in modelling a
wide range of problems in geotechnical engineering. MPM is an advancement of the
FEM, in which the continuum body is represented by Lagrangian points. Lagrangian
points are called material points (MPs) which move through an Eulerian computa-
tional mesh. The MPs carry all physical properties of the continuum, whereas the
computational mesh stores no permanent information. Through this approach,
MPM combines the advantages of both mesh-based and point-based approaches
while avoiding the shortcomings. The problem of mesh distortion, shown by an
updated Lagrangian solution, when dealing with large deformation, or numerical
diffusion, associated with the convective terms in Eulerian approach do not appear
in MPM. Notwithstanding, as being conceived as an extension of the well developed
FEM, MPM can utilise the long tradition and experiences of FEM easily. Another ad-
vantage of MPM is that it is less complex and computationally more efficient than
point-based methods.

A hypoplastic model is used as the constitutive model for soil. In this study, the
behaviour of soil under a high stress level is investigated and a modified constitutive
model is developed to account for grain crushing effects.

The simulations results are validated using centrifuge tests and standardised
load settlements curves to show the capability of numerical tool in modelling the
installation effects. The changes of stress and density in the surrounding soil dur-
ing pile penetration are investigated. A comparison is made between jacked pile
and impact hammer pile to investigate the influence of these different installation
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techniques on the bearing capacity of a pile foundation. The evolution of the ex-
cess pore pressure inside the soil body and the influence of soil properties on the
generation and dissipation of the excess pore pressure during a rapid pile load test
are numerically examined to gain insight into the excess pore pressure effect on
the pile capacity.

This thesis is part of a larger research project in which the modelling of the pile
installation of jacked and driven displacement piles by both physical and numerical
models is investigated. The experimental part of the research project provided
the centrifuge test data to calibrate the numerical results. The most important
application of this research will be to translate the installation effects of driven piles
into the embedded pile concept and other numerical models for practical application.
In the future, a novel technique may be introduced to describe the installation
effects of a driven pile without simulating the penetration process, which would
be an enormous gain in terms of computational effort and time in the analyses of
driven pile. The results of this research will become applicable for the design of pile
foundations in the engineering practice by means of robust implementation in the
finite element method.

1.3. Outline
The thesis consists of 8 chapters. First, the literature related to the topic of the
thesis is reviewed in Chapter 2. Then the formulations of MPM (Material Point
Method) are explained in Chapter 3. The important features of the constitutive
model used in the analyses and its modification to deal with grain crushing are
presented in Chapter 4. Chapter 5 presents the numerical simulations for modelling
the installation process of jacked displacement piles in sand using MPM. A fully
dynamic analysis of the impact driven pile in sand, modelled by MPM in both dry
and saturated sand is described in chapter 6. Chapter 7 presents the modelling of
the rapid load tests for both embedded pile as well as jacked pile. Finally, the results
of this study and the recommendations for further research are given in chapter 8.
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2
Analysis of pile installation

A review

2.1. Introduction
Displacement piles are driven into the ground without removing any soil material
during the installation process. The stiffness response and bearing capacity of
displacement piles is influenced by the installation method. Although piles are well
established as a foundation solution, their behaviour remains one of the largest
sources of uncertainty in geotechnical engineering. The physical processes and
mechanisms that govern the pile response during installation and the subsequent
load tests are still not well known. The pile installation leads to significant changes
in soil structure and soil state (void ratio and stress state) in the vicinity of piles
which affects their lateral and axial bearing capacity.

This Chapter will present a summary of the installation effects investigated by
studying existing experimental research. The main focus is on the effect of pile
installation on: the bearing capacity, the stress change in the soil, the density
change in the soil and the combined changes in stress state and density change, and
the evolution of excess pore pressure under dynamic loading. Then, the different
approaches used to predict the pile bearing capacity are presented. Finally, the
numerical analysis methods and their difficulty on the modelling of proper soil pile
interaction during installation are discussed.

2.2. Previous observations of pile installation
Piles can be installed in different ways. Almost all of the prefabricated piles are
driven into the ground with an impact hammer. The kinetic energy from each blow
of the ram displaces the pile deeper into the soil. Another alternative is the vibratory
driving technique where the pile is forced to penetrate by a heavy vibratory head
on top. The vibrations degrade the strength of the surrounding soil and the pile is
penetrated due to a heavy vibrator weight. A jacked pile is pushed into the soil with
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Figure 2.1: Lateral stress variation during static tension load tests after monotonic, jacked and pseudo
dynamic installation of piles in fine silica sand. [4].

hydraulic jacks, again the pile displaces the soil. Jacking is characterised by mono-
tonic loading and soil deformation, whereas hammering and vibratory methods are
both characterised by cyclic loading, but can yield different capacities [1]. In this
section, the pile response after pile installation is compared for jacked and driven
piles in order to obtain more insight into the influences of the installation methods
and the related pile bearing capacity. Beside, the observations in the stress, den-
sity, material change and excess pore pressure during and after different installation
methods are addressed as well.

2.2.1. Bearing capacity
In practice a difference in static bearing capacity between jacked, driven and bored
pile was found [2, 3]. The capacity of a displacement pile is derived from the pile
load tests. For tension piles, the pile bearing capacity is governed by the shaft
resistance, whereas, for compression piles the bearing capacity is contributed by
both the shaft and the base resistance.

Figure 2.1 plots the development of lateral stresses during the static tension load
tests for different installation methods. A difference in load capacity was found
when a model pile was installed in a single or in multiple strokes [4]. Clearly,
the lateral stresses depend on the installation method and on the instrument level
(highest at intermediate level ℎ/𝐵 = 3)

Typical profiles of before and at ultimate capacity of lateral stress recorded in
tension and compression tests are shown in Figure 2.2. The initial lateral stresses
acting on the monotonic installed pile were slightly higher than the ones for the
jacked and pseudo dynamic installed piles. Yet, the jacked pile yielded a larger static
bearing capacity in the compression pile load test than the monotonic and pseudo
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Figure 2.2: Lateral stress profiles before and at ultimate capacity in static load tests [4].

dynamic installed piles. In tension pile load test, the pseudo dynamic installed pile
performed similar to the jacked one.

Numerous authors e.g. [4–9] have studied the ratio 𝑄𝑑𝑟𝑖𝑣𝑒𝑛
𝑄𝑗𝑎𝑐𝑘𝑒𝑑

in model tests and
field tests. The influence of pile installation methods on the ratio of the static
bearing capacity of driven and jacked piles 𝑄𝑑𝑟𝑖𝑣𝑒𝑛

𝑄𝑗𝑎𝑐𝑘𝑒𝑑
was summarised by Dijkstra [3].

A wide range of values from 0.2 to 2.4 was found for the ratio of 𝑄𝑑𝑟𝑖𝑣𝑒𝑛
𝑄𝑗𝑎𝑐𝑘𝑒𝑑

. However
a very limited amount of tests was considered to obtain such ratio. Moreover, no
distinction has been made between compression and tension piles. Dijkstra [3]
concluded that the majority of the tests show 𝑄𝑑𝑟𝑖𝑣𝑒𝑛

𝑄𝑗𝑎𝑐𝑘𝑒𝑑
< 1 or, in other words, the

static bearing capacity of jacked piles is higher than that of driven piles, due to the
stress build up in the soil during jacking a pile without many unloading cycles as
during pile driving [3].

2.2.2. Stress change
This section focusses on the experimental investigation into soil stress change in-
duced by pile installation. Ideally, the stress evolution in the soil during pile instal-
lation should be recorded in order to assess the installation effects properly.

In the past, the stress distribution has been qualitatively monitored by using
the photo-elastic method in which the soil was substituted by crushed glass or
by glass beads. The photo-elastic method was not applicable for natural soils as
they are not transparent [3]. Hence, in the centrifuge test of Dijkstra [3], the
measurement techniques limited the assessment of stress evolution in natural soil
to a point evolution, where the measurement devices were placed. The main results
deal with the shape of the shaft friction distribution (exponential or parabolic) and
the change of local horizontal stress at a certain depth with an increase of pile
displacement.

Two typical shaft friction profiles were plotted [3] in Figure 2.3. Firstly, a profile
was expected in which an exponentially increasing shaft friction with depth in homo-



2

10
2. Analysis of pile installation

A review

geneous soil (left curve sketched in Figure 2.3) [7, 10–12]. Secondly, a profile with
a parabolic shaped increase, with its maximum value located above the pile base
(right curve in Figure 2.3) was measured at large acceleration levels (60𝑔 − 100𝑔)
in centrifuge tests [13]. A similar parabolic shaft resistance distribution could also
found in the tests with carbonate sand [14]. This indicated that the parabolic shape
of the shaft friction profile might be obtained when a considerable particle crushing
took place [3]. The measurement of normalized horizontal stress during mono-
tonic installation is shown in Figure 2.4a. 𝜎′

ℎ𝑚 is the stress recorded during the
pile installation. The results indicated that the normalised horizontal stress 𝜎′

ℎ𝑚/𝑞𝑐
remained approximately constant throughout the installation at 0.016 with possibly
a very slight decrease with increasing depth. 𝜎′

ℎ𝑚/𝑞𝑐 ratios are independent of the
instrument level (Figure 2.4b). Approximately equal horizontal stress was recorded
by each instrument level at 3, 6 and 9 times D from the pile base.

White and Lehane [7] experimentally examined the influences of the installation
methods (jacked, pseudo dynamic and monotonic installed pile) on the pile shaft
friction by considering the stationary horizontal stress, 𝜎′

ℎ𝑐, which was recorded
during each installation cycle. For jacked and monotonic installation, this corre-
sponds to a value acting when the pile was unloaded to nominally a zero head
load (actually 50 N). For a pseudo-dynamic installation, this was the minimum
value recorded during each cycle and occurred close to the moment of a zero pile
load head. The profiles of 𝜎′

ℎ𝑐, with depths for each installation method, were
plotted by [7] (Figure 2.5). As can be seen, the stationary horizontal stress 𝜎′

ℎ𝑐
decreases when the instrument level ℎ/𝐵 increases, which is clear evidence of
”friction fatigue”. The term ”friction fatigue” is the phenomenon showing that the
ultimate shaft friction, that can be develop in a given sand horizon, decreases as
the pile tip penetrates to deeper level [7]. Furthermore, very low values of 𝜎′

ℎ𝑐
were recorded on the pseudo-dynamic piles compared with monotonic installation,
which may be due to two way cycling during installation. The progressive reduction
of 𝜎′

ℎ𝑐 throughout the cyclic loading was studied by [7] and shown in Figure 2.6
for ℎ/𝐵 = 1. There is a reduction trend in 𝜎′

ℎ𝑐 with a number of cycles. During
an one way compression load test, the relatively high value of 𝜎′

ℎ𝑐 reduced to a
constant value of about 50 kPa after 30 one-way cycles (which were the cycles of
fixed downward displacement followed by unloading to a zero head load) (Figure
2.6a). For the test with two-way cycles (which were the cycles of fixed downward
and upward displacement), the horizontal stress 𝜎′

ℎ𝑐 reduced to zero (Figure 2.6b).
White and Lehane [7] concluded that degradation of shaft friction during installa-
tion and cyclic loading could be better characterised by the number of cycles rather
than by the non-dimensional distance from the pile tip ℎ/𝐷.

Chow [15] studied the stress interactions between two adjacent piles in dense
sand. The variation in normalised radial effective stress and shear stress at 4 differ-
ent distances from the pile tip ℎ𝐵 was shown (Figure 2.7). During the installation of
the second pile (at 4.5D center to center to the first pile), a dramatic change in the
radial stress 𝜎′

𝑟 along the first pile occured: it increased as the pile tip approaches
a maximum and then reduced as the tip pass each measurement instruments. The
final radial stress values were approximately twice their initial values. The shear
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Figure 2.3: Two typical shaft friction profiles; exponentially increasing with depth (left) and parabolic
shaped with its maximum value located above the pile base (right) (after [3]).

(a) normalised horizontal stress during mono-
tonic installation (mean of all four tests).

(b) reduction in horizontal stress between instru-
ments during monotonic installation (mean of all
four tests).

Figure 2.4: Normalised horizontal stress during monotonic installation [7].

stresses became increasingly negative when approaching the pile tip (indicating a
downward movement of the soil around the first pile). The shear stresses then
became positive (indicating an upward movement of the soil) when the pile tip of
the second pile had passed the instruments level of the first pile. The pile load
test in Figure 2.8 showed that after the installation of the second pile, the first pile
gained 19% in the overall capacity, i.e. a 51% increase in shaft capacity and a stiffer
behaviour.
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Figure 2.5: Variation of stationary horizontal stress with installation method: (a) ℎ/𝐵 = 1; (b) ℎ/𝐵 = 3;
(c) ℎ/𝐵 = 6 ( [7]).

Figure 2.6: Degradation of stationary horizontal stress with cycling at ℎ/𝐵 = 1 during load tests: (a)
one-way compression load test; (b) two-way compression-tension load test ( [7]).
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(a) stress measurement against ℎ𝐵 (b) The instrumented pile
Figure 2.7: Normalised radial effective stress and shear stress of the first pile against location of the
second pile [15].

Figure 2.8: Pile tests on the first pile before and after installation of the second pile [15].
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(a) radiograph measurement dur-
ing jacking [18].

(b) zones of density change
around cone penetrometer [16].

Figure 2.9: density change near pile.

2.2.3. Density change
There is a limited amount of experimental work on the investigation of density
change due to pile installation. An overview of the existing literature on the quali-
tative change of the soil density around the pile base and shaft can be found in [3].
The results from literature are separated into plane strain observation and three
dimensional observations at low stress levels (1𝑔) and at scaled stress levels (𝑁𝑔).

In almost all of the 1𝑔 pile tests, loosening was observed near the pile shaft
both for initially loose and dense sand (e.g. [16], Figure 2.9b). This loosening near
the pile shaft is dilatant behaviour of the soil from the large shear deformation in
a narrow band of soil distortion close to the pile shaft [3]. Especially at low hor-
izontal stresses, this failure mechanism can be observed. Such dilative behaviour
of the soil near the penetrating pile was also observed at scaled (𝑁𝑔) stress lev-
els in a centrifuge test by [3], regardless of the density. Figure 2.10 shows the
change in porosities for different initial conditions during pile installation at 3 dif-
ferent measurement locations on the model pile. Three instrument levels for the
measurement of the density change were installed on the model pile, at 35 mm,
110 mm and 200 mm from the pile tip (i.e. model pile 450 mm in height and 15 mm
diameter). Distinct differences in porosity change between the different instrument
levels, located at different distances from the pile base, are found in the beginning
of the installation phase. These differences tend to become smaller with increased
penetration. Regardless of the loose or dense initial conditions, the soil near the
pile shaft loosened significantly during monotonic pile jacking in the centrifuge tests
[3]. In contrast to higher stress conditions, compression was observed near the pile
shaft [17] in the calibration chamber in plane strain conditions. White [17] stated
that this was partly due to redistribution of the grains and partly due to crushing.
Such compaction resulted in a far field loosening of the soil.

Regarding the density change below the pile base, the results are not consistent.
Robinsky and Morrison [18] investigated the soil behaviour around the jacked pile
in dry sand with a relative density of 37% − 57%. By using the X-ray method with
radiographic equipment, they showed that during installation, the soil below the pile
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(a) instrument level 1, base (b) instrument level 1, mid (c) instrument level 1, upper
Figure 2.10: Change in porosity during pile installation for different initial conditions at different mea-
surement locations (after [3]).

base compacted (Figure 2.9a) while the soil along the pile shaft loosened for both
dense and loose sand. The influence zone of installation effects extends up to 5.5𝐷
from the pile shaft and 4.5𝐷 under the pile base. Kobayashi and Fukagawa [19]
observed loosened soil below the pile base and densified soil along the pile shaft for
both loose and dense sand during penetration of a CPT in dry sand. The results are
in contrast with those of Robinsky due to the difference in ratio of the pile length
over pile diameter (𝐿/𝐷). In the CPT of Kobayashi and Fukagawa, a short and
stiff pile of 𝐿/𝐷 = 6 was used (failure mechanism is similar to shallow foundation),
whereas in the test of Robinsky, such ratio is about 16 (failure mechanism is similar
to deep foundation). Chong [16] investigated the density evolution during model
pile installation in dry sand (𝐿/𝐷 = 20) with a relative density in the range of 40% −
80% by using thermal conductivity elements. It is found that, for initial dense sand,
a loosening of the soil below the pile base is observed, whereas, for initial loose
sand the soil under the pile base densified (Figure 2.9b).

Different pile base geometry seems to influence the results in density change
during and after pile penetrating. For a pile with a flat base in medium dense
sand, the soil under the pile base loosens, whereas a cone shaped pile base shows
densification [20]. The influence of the base geometry is small for jacked piles [19].

For initial loose soil condition, most authors found an increase in density below
the pile base, except Davidson [21], who reports loosening. However the difference
could be caused by the initial condition 𝐿/𝐷 ratio used in Davidson [21] which was
much smaller than the average ratio from the other tests.

2.2.4. Material change
Beside the change in stresses and density during pile installation, material crushing
is also observed as a consequence of very high stress under the pile tip [22, 23].

White [24] observed that a ”nose cone” formed underneath the pile tip (Figure
2.11b) containing highly crushed sand (zone 3 and 1 in Figure 2.11a show signifi-
cant particle breakage). The crushed sand was found to flow around the pile shaft
(interface zone), to crushed even more, and to infiltrate into the soil. The fine
particles within the interface zone are significantly smaller than the void spaces. It
offers the possibility of internal migration of fine particles outwards without disturb-
ing the load carrying skeleton of large particles. This migration of particles reduces
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(a) Generalised pattern of strain and particle breakage
after pile installation

(b) ”nose cone” of soil beneath pile tip

Figure 2.11: Grain crushing in flat pile base.

the amount of material within the interface zone, leading to the remaining particles
to repack in a more dense state or to contraction of the interface zone [24].

The relations between the peak strength, the uniformity coefficient and the
stiffness of sand, depending on stress level and amount of grain crushing derived
for different sands, are reviewed in Chapter 4.

2.2.5. Excess pore water pressure
In fast penetration, especially when the loading rate is faster than the consolida-
tion rate of the soil, the interaction between sand particles and the pore water is
significant, and excess pore pressure builds up.

Vesic et al [25] conducted tests to examine the dynamic bearing capacity of
footings in dry and submerged sand. They observed a significant increment of
bearing capacity in submerged sand. In their explanation, it might be caused by
negative pore water pressure, which increased the shear strength of sand and then
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(a) v = 80 mm/s (b) v = 800 mm/s
Figure 2.12: Pore pressure response in constant rate of penetration tests (after [26]).

the footing capacity.
Eiksund and Nordal [26] performed a series of model pile tests at 1g to measure

the excess pore pressure close to the pile tip during constant rate of penetration.
Figure 2.12 shows their results of pore pressure measurements at different pene-
tration velocities in a chamber filled with Ottawa sand. In general, the overall pore
pressure response is the same: a small increase to a peak positive value is observed
initially, but the pore pressure turns into a negative value after approximately 1 mm
of model pile movement. Negative pore pressure is caused by dilating behaviour of
sand. A higher loading velocity caused a large negative excess pore pressure value
(2.12). The largest negative pore pressure measured was approximately −30 kPa,
which was extremely small in comparison with the average total stress at a pile tip
of 10000 kPa. Therefore it can be concluded that the pore pressure induced by pile
penetration had a minor influence on pile bearing capacity [26].

Holscher and Barends [27] measured the excess pore pressure near the pile tip
during pile driving, a dynamic load test, and a statnamic load test of a concrete pile
with a cross section of 25𝑥25𝑐𝑚2. The pile tip was at 18.2𝑚 below the soil surface
and penetrated 3.2𝑚 into the dense sand layer. Figure 2.13 shows the excess pore
pressure as a function of time of the last driving blow, the dynamic test three days
later, and the statnamic test five days later. The measurements showed the same
pore pressure response during all types of loading. As the pile was loaded, the soil
was compressed resulting in the increase of pore pressure, then dilation occurred
resulting in a decrease to a negative value of pore pressure. Only the duration of
the positive and negative pore pressure phases was very different and related to the
duration of the loading. It was not possible to evaluate the importance of excess
pore pressure in relation to the pile capacity due to the absence of measured pile
head force data [28].

Clayton and Dikran [29] performed dynamic penetration tests with a penetrom-
eter (25 mm diameter) over a distance of 100 mm into saturated sands by repeated
blows of a 10 kg weight falling from 430 mm height. Two types of sand, Leighton
Buzzard sand (fine sand, 𝑑50 = 0.11 mm) and Woolwich Green sand (well-graded
gravelly sand, 𝑑50 = 1.0 mm), were used. The measurements of pore pressure at
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Figure 2.13: Behaviour of excess pore pressure during pile driving and loading [27].

the pile tip (position 1) during one blow as a function of time are shown in Figure
2.15. For fine sand,the sand was initially sheared and the pore pressure dissi-
pates from overpressure (positive pore pressure). For well-graded gravelly sand,
the sand was initially compressed then sheared, and a decay of the negative excess
pore pressure occurs at the end. The dilative behaviour, at the end of penetrometer
motion, occurred in both sand types. The maximum negative pore pressure mea-
sured during penetration depended on the position of the transducer. Yagi et al.
[30] also showed the changes of pore pressure measured at the cone base during
a blow of the hammer (Figure 2.16). For loose sand, just after the blow, a positive
peak of pore pressure was observed which suggests compressive soil behaviour
under the pile base. In contrast, for dense sand a negative peak of pore pressure
appeared which indicated the dilative behaviour of the soil under the pile base. In
the loose sand, a remarkable residual pore pressure occurred which is caused by
repeated blows and insufficient drainage in the duration of tenths of a second [30].

Huy [31] and Chi [32] conducted a series of centrifuge model pile load tests
to study the influence of pore water pressure during rapid load tests and its effect
on the widely used unloading point method to derive static pile capacity. The tests
confirmed that a rapid load test could overestimate static capacity due to pore water
pressure when testing piles in medium to fine sands. Pore pressures during a rapid
load test at a maximum displacement of 0.1𝐷 and at a speed of 280𝑚𝑚/𝑠 were
measured and shown in Figure 2.14. In the field test, the pore pressure transducer
was located between the PPT in the pile toe and the PPT3 in the centrifuge test, as
can also be seen in Figure 2.14. The underpressure after loading suggested dila-
tancy followed by consolidation. It is concluded that the centrifuge tests represent
realistic behaviour [33].

In conclusion, during pile installation in saturated granular soil, excess pore
pressure can build up and depends strongly on the loading time, the contractive or
the dilative shearing behaviour of surrounding soil. For the soil at the pile tip, as
the pile goes down due to compression of the soil, initially pore pressure increase
up to a maximum positive excess pore pressure. If the pile displacement is small
enough, the pile motion stops or reverses before shearing occurs, then the excess
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Figure 2.14: Behaviour of excess pore pressure during rapid pile load tests for medium dense sand [31].

Figure 2.15: Changing of pore pressure during 1 blow at location 1 for Leighton Buzzard sand and
Woolwich Green sand [29].

pore pressure dissipates to the static equilibrium. If the pile displacement is large
enough that the shearing and dilatancy of the soil occurs and if the loading duration
is fast enough that an arrangement of soil particles happens faster than the fluid
flow then the excess pore pressure reduces dramatically to a maximum negative
value before it dissipates to the static equilibrium [31, 32, 34]. The positive excess
pore pressure results in a decrease of the effective stresses and negative excess
pore pressure inversely results in higher effective stress levels. Hence clearly, excess
pore pressure has an influence on the dynamic and/or rapid resistance by effecting
the effective stress under the tip and around the shaft of a penetrometer.
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Figure 2.16: Changing of pore pressure during 1 blow of dynamic penetration test [30].

2.3. Bearing capacity prediction in pile design and analysis
In the following sections, two distinct and often used approaches to predict the pile
bearing capacity are summarised: (1) The direct limit state methods in which pile
bearing capacity correlations are used based on field tests. (2) The indirect limit
state methods that use model parameters derived from standard laboratory tests
in empirical and analytical methods.

2.3.1. Direct Methods
In the direct limit state methods, the strength of the soil is directly measured and
correlated to the pile base and shaft capacity. In practice, these methods have
proven to be successful for single piles. The common in-situ measurement instru-
ments used as input value for the design of pile foundations are: the Standard
Penetration Test (SPT) and the Cone Penetration Test (CPT). Assuming that the
installation effects are the same in all cases, the direct methods include directly
the in-situ installation effects arising from the test in the prediction of pile bearing
capacity as these tests are penetration tests. However, the installation effects due
(different types of) to pile installation may be different than the installation effects
in CPT or SPT.

Correlation with CPT data is the most common technique used to estimate the
pile capacity. Among the many correlations that have been developed for differ-
ent subsoil and pile types in the past decades, The Dutch method [35, 36], the
French method [37], the Schmertmann method [38] and the Eslami & Fellenius
[39] method are the most established. These methods differ mostly in the deter-
mination of the representative 𝑞𝑐 value for the pile base. The representative 𝑞𝑐
value is then multiplied by several factors to account for different influence aspects
e.g. the pile type, the pile size, soil density and type, the direction of loading etc.
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Recently, new methods have been developed, especially for large diameter offshore
piles in sand [40]. In these methods, only the Dutch and French methods directly
account for pile installation effects. In some other CPT correlation methods, the
influence of pile installation is sometimes lumped together with other corrections in
a single empirical reduction factor.

The second group of pile capacity estimation methods is based on a correlation
with SPT. An empirical relation between the SPT blow count and pile capacity was
presented by Meyerhof [41], in which the installation effects are included in a sep-
arate empirical reduction factor for the shaft and base resistance. Such reduction
factors have been proposed for driven and bored piles.

2.3.2. Indirect Methods
In indirect methods, the strength and stiffness properties derived from laboratory
tests are used as input for the prediction of pile bearing capacity. The bearing
capacity factors have been analytically derived from either limit equilibrium methods
or cavity expansion methods.

Limit equilibrium analysis uses classical plasticity theory and a predefined slip
plane to derive the bearing capacity factors [42]. These factors are combined with
the vertical effective stress and the pile base area to predict the static pile base
capacity. The shaft resistance of the pile in sand is calculated by estimation of the
effective horizontal stress in combination with the effective pile soil friction angle.
The effective horizontal stress is derived from the initial effective vertical stress
by the coefficient of lateral earth pressure 𝐾. The effects of the pile installation
process are incorporated in the suggested value for K depending on pile type.

The cavity expansion theory provides useful analytical solutions for determining
the tip resistance of a penetrating cone, especially in undrained cohesive soil. De-
pending on the mechanism of the physical process, the cavity expansion solution
assumes either cylindrical or spherical cavity expansion from a finite radius. As
the cavity expands to the surface of the pile installed, it mobilizes the surrounding
soil and increases the stress level. Hence, the installation stresses are assumed to
be simulated. The failure mode considered in cavity expansion is a more realistic
failure mode than the simple pre-defined slip planes in a limit equilibrium analysis.
Subsequently, the pile bearing capacity is derived by correlating the cavity limit
pressure with the cone resistance 𝑞𝑐. The original cavity expansion method was
developed for metal research [43] and first introduced in soil mechanics for the
analysis of a spherical expansion in associated Mohr-Coulomb material [44]. The
method has been extended from small to large strain [45] and from simple elasto-
plastic soil models to more advanced constitutive model e.g. hypoplastic model
which incorporates dilatancy, contractancy and dependence of stiffness on stress
and density [46–48]. The installation effects are considered inherent and therefore,
no extra correction for the installation effects is required in the calculation of the
bearing capacity. The cavity expansion methods provide a good approximation for
the determination of the bearing capacity of a cone or displacement pile. However
the results are still of limited value as these methods do not properly simulate the
complex soil behaviour near the pile shoulder nor the tip of the CPT or the pile [3].
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2.4. Numerical Analysis of pile foundation
However, empirical prediction methods are not as useful for more complex geotech-
nical problems, where a reliable prediction of the load settlement behaviour is re-
quired in, for example, group effects, strong interaction with neighbouring struc-
tures or unusual ground conditions. In these cases, a numerical analysis is more
suitable as it is not restricted to the study of ultimate bearing capacity (as the di-
rect and indirect methods mentioned above), but provides the probability to expose
the calculated stress and strain distribution in the soil around the installed pile and
to calculate the stiffness response of the pile. This section gives an overview of
numerical methods used to model the process of pile installation and the coupling
of dynamic effects and consolidation in the modelling of saturated sand behaviour
during penetration.

2.4.1. Numerical methods in pile foundation analysis.
Granular materials can be simulated, either by using a continuum based or by a
particle based representation. An example of particle based representation is the
Discrete Element Method (DEM), which enables a more realistic modelling of soil
medium by simulating the mechanism of the interaction between soil particles;
however it is limited to small scale problems. Setting parameters for a DEM model
is difficult to achieve in a reliable way as it requires a proper description of the
contact between particles. Therefore, continuum models such as the Finite Element
Method (FEM) are usually preferred over a discrete representation.

The bearing capacity of piles has first been analysed by FEM in small-strain for-
mulations for cohesive material. Griffiths, Sloan and Randolph [49, 50], amongst
others, have assessed the ultimate bearing capacity of foundations using FEM simu-
lations, and De Borst and Vermeer [51] simulated cone penetration in FEM assuming
small strain analysis. Although both models provided good basic techniques to de-
termine the pile capacity, the influence of large deformations during the installation
process was not taken into account. In such simulations, a pre-embedded cone in
an in-situ stress state is forced to reach its ultimate load. The full simulation of the
pile installation process is difficult in FEM simulations due to the inability to track
large deformations in the soil body and consequently, severe mesh distortion leads
to numerical instability. Van Baars, Niekerk and Budwig [52, 53] incorporated the
installation effect by loading the boundary of the mesh and applying additional trac-
tion loads on the pile shaft. Another way of including installation effects was sug-
gested by Broere and van Tol[54], in which the soil around the pile is pre-stressed
with a prescribed displacement before the actual pile bearing capacity calculation
is performed. For both above mentioned methods, the magnitude of the addi-
tional load or the magnitude of the prescribed displacements is not known a priori,
rendering these methods less suitable for predictions. Engin [55, 56] presented
a simplified FEM technique to model a jacked pile, the so-called ‘Press-Replace’
technique. The Press-Replace Method (PRM) enables an engineer to model the
installation process of jacked piles as a staged construction process by any finite
element code. In PRM, the initial mesh is preserved, while the material properties
of the penetrated volume are updated at the beginning of each phase resulting in a
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change of the global stiffness matrix without the need for updating the mesh. This
makes the calculations faster than large-deformation analysis techniques [55]. The
pile and soil responses produced by PRM are in promising agreement with those
of Material Point Method (MPM) [57] ( the MPM method is briefly explained in the
next paragraph). Despite its advantages, PRM has its own limitations as well. Most
importantly, it is unable to model the flow of the soil below the pile base and around
the peripheral zone of the penetrating pile.

In contrast with the purely Lagrangian and updated Lagrangian methods used in
FEM, the Eulerian and Arbitrary Lagrangian-Eulerian (ALE) schemes (e.g. [58, 59])
allow for uncoupling of mesh and material and permit independent movement of
the material with respect to the mesh. The difference between the three schemes
Lagrangian, Eulerian and ALE is depicted in Figure 2.17. Clearly, in ALE schemes
the freedom of movement of computational nodes allows large deformations, so
that the mesh entanglement is avoided. One of the most effective ALE methods in
modelling penetration problems is the Coupled Eulerian-Lagrangian (CEL) method
in which it couples the Lagrangian and Eulerian mesh by a contact description. In
CEL, the soil is discretized by an Eulerian mesh, while the pile is discretized by a
Lagrangian mesh [60, 61] and the material is allowed to flow in an Eulerian mesh
until a contact is detected. This helps to overcome mesh distortion. In the case
of re-meshing, however, the mapping of state variables allocated to the material
introduces additional inaccuracies into the calculation [62–64]. This has led to the
development of meshless methods, such as the Smoothed Particle Hydrodynamics
(SPH) method (e.g. [65]), and mesh-based particle methods such as the Material
Point Method (MPM). The MPM can be regarded as an extension of a finite ele-
ment procedure. It uses two types of space discretization: first, the computational
mesh, and second, the collection of material points which move through an Eule-
rian fixed mesh. The material points carry all physical properties of the continuum
such as position, mass, momentum, material parameters, strains, stresses, con-
stitutive properties as well as external loads, whereas the Eulerian mesh and its
Gauss points carry no permanent information. The advantage of MPM is that the
state variables are traced automatically by the material points independent of the
computational mesh. Therefore, MPM is well suited for modelling problems with
large deformations. More details of the MPM formulation are written in Chapter 3.

2.4.2. Numerical modelling on two-phase problems
Considerable research has been carried out to address problems that involve soil-
pore fluid interaction. Such problems are complicated because of the coupled re-
sponses of two different phases: the soil skeleton (the solid phase) and the fluid
inside the pores of the soil skeleton (the fluid phase). A compression of the soil
skeleton induces an increase of pore pressure, whereas, a dilation of the soil skele-
ton causes a decrease of pore pressure. Taking into account this coupling in the
analysis is required to obtain an accurate prediction of the behaviour of two-phase
problems, especially in the case of low permeability and fast loading. However,
when the permeability is high, and the load is slowly applied, the coupling can be
ignored.
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Figure 2.17: One–dimensional illustration of Lagrangian, Eulerian and ALE motions[66]).

The equations describing a two-phase flow were originally developed by Biot
[67]. Zienkiewicz & Shiomi [68] and Zienkiewicz et al. [69] were the first to imple-
ment the Biot two-phase mixture theory in the FEM in terms of various formulations
. Gidaspow[70] gave a comprehensive review of the various formulations within the
framework of the mixture theory.

Two common formulations for the implementation of the Biot governing equa-
tions are: 𝑣 − 𝑝 and 𝑣 − 𝑤 formulation (with 𝑣 is the solid velocity, 𝑝 is the pore
pressure, 𝑤 is the fluid velocity). For the 𝑣 − 𝑝 formulation, inertial effects associ-
ated with the relative fluid motion are negligible, and therefore, this formulation is
suitable for low frequency loading in porous media (such as landslides, earthquakes
or liquefaction phenomena) or in a quasi-static analysis. For the 𝑣 − 𝑤 formulation,
all inertial effects are included, therefore they are applicable for high frequency
phenomena such as blast loading or dynamic rapid pile loading in porous media
[71].

A detailed comparison on the finite element algorithms of 𝑣 − 𝑝 formulation
and 𝑣 − 𝑤 formulation was studied by Esch et al. [72]. They concluded that both
formulations can capture the undrained wave but the 𝑣 − 𝑝 formulation is not able
to capture the damp wave. Furthermore, the 𝑣 − 𝑤 formulation has the advantage
that the algorithm for mapping information between the computational grid nodes
and material points for the fluid is virtually identical to that for the solid phase in
MPM [64]. For these reasons, the 𝑣 − 𝑤 formulation is favoured in this study.

In the 𝑣 − 𝑤 formulation, there are 4 unknown variables, i.e. the velocity of the
solid phase, the velocity of the water phase, water pressure and the effective stress.
The governing equations that are required for the solution of coupled dynamic two-
phase problems are presented following Verruijt [73]. The implementation of the
𝑣 − 𝑤 formulation in MPM is presented in Chapter 3.

With the use of low-order elements in two-phase problems, the 𝑣 − 𝑤 formula-
tion experiences numerical problems (volumetric locking) if the difference in volu-
metric compressibility of the pore fluid and the solid skeleton is large. When dealing
with incompressible fluids, the fractional step method could mitigate the patholog-
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ical locking and spurious spatial pressure oscillations [74]. In MPM, the enhanced
volumetric strain was found to be useful for accommodating incompressible plastic
strains [64].

2.5. Conclusion
In this chapter, current methods to investigate and incorporate pile installation ef-
fects are reviewed. Although the effects are quite significant, it is still not possible
to experimentally quantify the installation effects as a continuous field experimen-
tally. A large difference among the published results on soil behaviour (i.e., the
stress and density change during installation) and the comparison of the bearing
capacity from different installation methods is presented.

Not many prediction techniques incorporate installation effects. The current
methods for bearing capacity predictions by direct and indirect limit state methods
explicitly incorporate the pile installation stage or implicitly with empirical correc-
tions in the correlations. However, most methods only estimate pile bearing capac-
ity and are not able to model the underlying physical mechanism during installation
as well as the interaction between the pile and the soil.

In the field of numerical analysis, the difficulties of these methods are the frame-
work considering a large deformation formulation, and the lack of a proper consti-
tutive model including a correct description of the soil behaviour near the pile. The
strength and stiffness of soil have a non-linear dependency on the stress and strain
level and history. During the installation of a displacement pile in sand, the stress
and strain within the deforming soil vary from the in situ stress level and zero strain
to tens of MPa stress and of the order of 100% strain [24]. Coop [75] highlighted
the lack of understanding of the behaviour of sands at high stress levels as en-
countered during pile installation. Few triaxial apparatuses operate at the stress
level of interest. Existing soil models do not often correctly capture the relevant
behaviour. For this reason, the investigation of soil behaviour under high stress
as well as the introduction of a modified hypoplastic model for crushed sand are
presented in Chapter 4.

In order to gain more insight in installation effects as well as into the mechanism
of soil under and around the pile during penetration, numerical investigation of
the change of soil state during penetration of jacked and impact hammer pile is
conducted using MPM (Chapter 5, 6).

Excess pore pressure occurs during dynamic and rapid penetrations in saturated
soils. Accumulation of excess pore pressure along the failure surfaces around the
pile may be the main reason for an increase of the rapid resistance over the static
resistance. The evolution of the excess pore pressure during the rapid pile load test
are numerically investigated in Chapter 7 in order to get a deeper understanding of
the excess pore pressure effect on the pile resistance.

For validation, numerical results will be compared with centrifuge test results
[31, 32] on modelling pile installation and pile load test.
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3
The dynamic material point method
In this chapter, the formulation of the Material Point Method (MPM) will be dis-
cussed. In section 3.1, the basic concept of MPM is presented. The governing
equations and the discretization of the continuum to a cloud of material points are
explained in section 3.2 for a single phase material and in section 3.3 for a two
phase material involving saturated soil. Section 3.4 continues with approaches to
deal with other numerical issues such as volumetric locking when using low-order
elements, special boundaries for dissipation of dynamic waves, contact formulation
between bodies, moving mesh concept and mass scaling.

3.1. Basic concept of the material point method
3.1.1. Historical development
Originally developed as the Particle-In-Cell method, MPM was initially applied to
fluid dynamic problems [1] and later adapted to solid mechanics by Sulsky et al.
[2]. In 1996, Sulsky and Schreyer named the method as the Material Point Method
and presented its axisymmetric formulation. Więckowski et al. [3] applied the
method to simulate the problem of silo discharge, which showed the potential of
MPM for simulating flow of granular material. Following this, several MPM analyses
to model large deformations in geotechnical problems were performed [4, 5]. ,
after which it has been widely applied to model many issues in the field of geotech-
nical engineering, e.g. the failure of a cliff and mass flow through a trapdoor [6];
anchors placed in soil [7]; excavator bucket filling [8]; simulation of experiments
related to induced ground deformations [9]; geomembrane response settlement
in landfills[10]. MPM has demonstrated to be suitable for penetration problems
such as cone penetration test [11], pile installation [12, 13]. The MPM has been
also applied to model soil flows, such as the run-out of earthquake-induced slides
[14], landslides [15, 16] and dam failures [17]. The application of MPM was then
extended to include coupled two-phase behaviour to simulate large deformations
in fully saturated soil [18] and in partly saturated soil with groundwater table and
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groundwater flow [19]. This MPM formulation is able to capture the physical re-
sponse of saturated soil under dynamic loading. However, there is only one set of
material points is used for both the solid and the liquid phase in this formula; hence
it can not capture the groundwater flow, the transition between free surface water
and groundwater or the fluid-like behaviour of the soil problems. To overcome such
difficulties, a double-point formulation was proposed in [20, 21] and later extended
in [22, 23]. The double-point formulation is applied to model several geotechnical
problems such as dike failure [24], dam-break floods [25], fluidisation [26].

In this chapter a joint MPM code of the MPM Research Community is used,
consisting of the University of Cambridge (UK), UPC Barcelona (Spain), Technical
University Hamburg-Harburg (Germany), University of Padova (Italy), Delft Univer-
sity of Technology and Deltares (the Netherlands).

3.1.2. Basic concept
The Material Point Method (MPM) can be regarded as an extension of the Finite
Element Method (FEM). It uses two kinds of space discretisations: first, the com-
putational mesh (Eulerian fixed mesh) and second, the collection of material points
which move through the computational mesh. Through this approach, MPM com-
bines the best aspects of both Lagrangian and Eulerian formulations while avoiding
some shortcoming of them, such as the problem of mesh distortion, shown by an
updated Lagrangian solution when dealing with large deformation, or numerical
diffusion associated with the convective terms in the Eulerian approach which does
not appear in MPM [12].

The material points carry all physical properties of the continuum such as: posi-
tion, mass, momentum, strains, stresses, constitutive properties as well as external
loads, whereas the Eulerian mesh and its Gauss points carry no permanent infor-
mation. The advantage of MPM is that the state variables are traced automatically
by the material points and are carried independently of the computational mesh.
Therefore, MPM is well suited for modelling large deformations.

The MPM solution algorithm can be subdivided into three steps: the initializa-
tion phase, the Lagrangian phase and the convective phase (Figure 3.1). Firstly, all
required information carried by the material points temporarily is transferred to the
nodes of the computational background mesh. The discrete equations of motion
are initialized. During the Lagrangian phase, the computational mesh is used to de-
termine the incremental solution of the balance equations at its nodes. At the end of
this phase, the solution is mapped from the nodes of the computational mesh back
to material points. Hence, the state of the material points (velocity, displacement,
strain and stress) is updated. In the convective phase the computational mesh is
redefined or reset to its initial configuration, while the material points remain the
same as at the end of the Lagrangian phase. With the use of information carried by
the material points, the solution can be reconstructed on any mesh. Therefore, the
computational mesh can be chosen for convenience which is the great advantage
of MPM.
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Figure 3.1: The MPM solution algorithm in three steps: a) initialization phase, b) solution of balance
equations (Lagrangian phase) and c1) keep the original mesh or c2) redefine a new mesh (convective
phase)

3.2. One-phase dynamic material point method
3.2.1. Governing equations
In the MPM, a continuum is considered. The continuum is subject to governing
equations which include the conservation of mass, conservation of momentum,
conservation of energy, constitutive equations and kinematic constraints. The de-
velopment of the equations can be found in detail in the literature of continuum
mechanics e.g. Malvern[27].

Conservation laws
Consider a continuum that initially occupies region Ω(0) ⊆ ℝ3 and region Ω ⊆ ℝ3

for time 𝑡 > 0. The region Ω(0) represents the initial state of the continuum and
is referred to as the initial configuration or the undeformed configuration, whereas
the region Ω represents the state of the continuum after deformation, the current
configuration or the deformed configuration respectively (Figure 3.2).

If a material point is initially defined at the position

𝐱(0) = [𝑥(0)
1 𝑥(0)

2 𝑥(0)
3 ]𝑇

(3.1)

then its current position
𝐱 = [𝑥1 𝑥2 𝑥3]𝑇 (3.2)

is a function of 𝐱(0) with 𝐱 = 𝜓(𝐱(0), 𝑡) (superscript T denotes the transpose). The
function 𝜓 is used for the transformation from initial to current configuration. It
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t t

(0)

(0)

(0)

(0)

Figure 3.2: The initial configuration and the deformed configuration (after [12]).

is invertible, such that we may also consider 𝐱(0) to be a function of 𝐱 and 𝑡 as
𝐱(0) = 𝜓−1(𝐱, 𝑡).

The displacement, velocity and acceleration vectors of a material point are

𝐮(𝐱, 𝑡) = [𝑢1 𝑢2 𝑢3]𝑇 ,
𝐯(𝐱, 𝑡) = [𝑣1 𝑣2 𝑣3]𝑇 ,
𝐚(𝐱, 𝑡) = [𝑎1 𝑎2 𝑎3]𝑇

respectively. As indicated in Figure 3.2, the displacement 𝐮 can be defined as
𝐮(𝐱, 𝑡) = 𝐱 − 𝐱(0) (3.3)

and the velocity 𝐯 is defined as the material time derivative of the displacement 𝐮
as

𝐯(𝐱, 𝑡) = 𝑑
𝑑𝑡𝐮(𝐱, 𝑡) (3.4)

The acceleration 𝐚 is related to the velocity 𝐯 by

𝐚(𝐱, 𝑡) = 𝑑
𝑑𝑡𝐯(𝐱, 𝑡) (3.5)

with 𝑑
𝑑𝑡 = 𝜕

𝜕𝑡 .
Let 𝜌 be the mass density, 𝝈 the Cauchy stress tensor, 𝐛 the specific body

force, 𝜺 the strain tensor and 𝑟 the internal energy per unit mass in the current
configuration. Firstly, conservation of mass involves that

𝑑𝜌
𝑑𝑡 + 𝜌∇ ⋅ 𝐯 = 0 (3.6)

where 𝑑/𝑑𝑡 designates the material derivative,∇ is the gradient operator and ∇ ⋅ 𝐯
is the divergence of the vector field 𝐯. Equation 3.6 is also referred to as the
continuity equation.
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Secondly, the Cauchy form of the conservation of linear momentum is given by

𝜌𝑑𝐯
𝑑𝑡 = ∇ ⋅ 𝝈 + 𝜌𝐛 (3.7)

The conservation of angular momentum implies that the Cauchy stress tensor is
symmetric. As the conservation of angular momentum adds no new equation,
Equation 3.7 is called the momentum equation.

Finally, if thermal conduction and heat generation are ignored, mechanical en-
ergy conservation is ensured by the following equation

𝜌𝑑𝑟
𝑑𝑡 = 𝝈 ∶ 𝜺

𝑑𝑡 (3.8)

Constitutive laws
In order to complete the description of the continuum, a constitutive law relating
the strain rates and the stress rates of the material is needed. The strain rate can
be determined from the equation

𝑑𝜺
𝑑𝑡 = 1

2(∇𝐯 + (∇𝐯)𝑇 ) (3.9)

The stress will depend on the type of material under consideration. For example,
an incrementally linear elasto-plastic model can be written as

𝑑𝝈
𝑑𝑡 = 𝐃 ∶ 𝑑𝜺

𝑑𝑡 (3.10)

where 𝐃 is the fourth-order constitutive tensor.

3.2.2. Space discretization
In this section, the momentum equation 3.7 is obtained in a discretized form. The
weak form and the discrete equations of motion in MPM, which are consistent with
those of FEM, are described. The main difference between MPM and FEM is the
way the weak form of the momentum equation is integrated in space. FEM uses
Gauss points as integration points for space integration, whereas in MPM the space
integration is performed using material points instead of Gauss points.

In MPM, two kinds of space discretization are used as illustrated in Figure 3.3.
Firstly, the initial configuration of the considered body is based on a collection of
material points. Secondly, the entire region where the body is expected to move
is discretized by a computational grid. Inside the computational grid, all elements
containing material points are active elements. All nodes of active elements are
active nodes. When the material points move into an inactive element, this element
and its nodes become active.

To define the mass of a material point, the initial configuration domain Ω(0) is
divided into 𝑁𝑝 disjointed subdomains Ω𝑝 with 𝑝 = 1, 2…,𝑁𝑝, where 𝑁𝑝 is the
number of material points. Consider that each material point 𝑝 is assigned ini-
tial values of position, velocity, mass, volume and stresses which are denoted as
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active grid nodes 
inactive grid nodes 

material points 

computational grid 

physical body 

Figure 3.3: Discretization used in the material point method

𝐱(0)
𝑝 , 𝐯(0)

𝑝 , 𝑚𝑝, Ω(0)
𝑝 , 𝝈(0)

𝑝 , respectively. The density in the current configuration is
given by

𝜌(𝐱, 𝑡) =
𝑁𝑝

∑
𝑝=1

𝑚𝑝𝛿(𝐱 − 𝐱𝑝) (3.11)

where 𝛿 is the Dirac delta function.

Momentum equation
In order to discretise the momentum equation, the differential equation 3.7 is con-
verted to its weak form and a finite computational grid is chosen in which an ap-
proximate solution is searched. This discretization technique is similar to the one
applied to the finite element method. To derive the weak formulation, Equation 3.7
is multiplied by a test function, 𝐰, and integrated into the domain, yielding

∫
Ω

𝜌𝐰 ⋅ 𝑑𝐯
𝑑𝑡 𝑑Ω = ∫

Ω

𝐰 ⋅ ∇ ⋅ 𝝈𝑑Ω + ∫
Ω

𝜌𝐰 ⋅ 𝐛𝑑Ω (3.12)

Using the Green’s divergence theorem, the above equation can be reformulated
as

∫
Ω

𝜌𝐰 ⋅ 𝑑𝐯
𝑑𝑡 𝑑Ω = −∫

Ω

𝝈 ∶ ∇𝐰𝑑Ω + ∫
𝜕Ω𝜏

𝐰 ⋅ 𝝉𝑑𝑆 + ∫
Ω

𝜌𝐰 ⋅ 𝐛𝑑Ω (3.13)

where 𝝉 is the surface traction acting on the external boundary. The first term in
the weak form of the momentum equation 3.13 represents the inertia, the second
one represents the internal force, the third represents the external surface force
and the last one represents the body force.

The computational domain is a region which contains the material in Ω and is
subdivided into 𝑁𝑒 finite elements. The weak form of equation 3.13 is discretized
at each time step on this finite computational grid in a similar way as FEM. In
the MPM implementation used in this study, the mesh is constructed from 4-noded
isoparametric tetrahedral elements in which the same linear functions are used to
approximate the field variable when mapping the geometry of the parent domain
to the global domain. The finite element shape functions 𝑁𝑖(𝐱) are associated with
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the spatial nodes, with coordinate 𝑥𝑖, where 𝑖 = 1, 2… ,𝑁𝑛 and 𝑁𝑛 is the total
number of grid node.

For space discretization, the velocity 𝐯 and the test function 𝐰 are provided in
terms of the interpolation function 𝑁 and the nodal value as

𝐯(𝐱, 𝑡) =
𝑁𝑛

∑
𝑖=1

𝐯𝑖𝑁𝑖(𝐱) (3.14)

and

𝐰(𝐱, 𝑡) =
𝑁𝑛

∑
𝑖=1

𝐰𝑖𝑁𝑖(𝐱) (3.15)

where 𝐯𝑖 and 𝐰𝑖 are the nodal velocity and test functions, respectively, 𝑁𝑖 is the
nodal shape function. The above equations are substituted into the weak form of
the momentum equation 3.13 and utilizing that the test functions are arbitrary, it
follows

𝑚𝑖𝐚𝑖 = 𝐟𝑒𝑥𝑡
𝑖 − 𝐟 𝑖𝑛𝑡

𝑖 (3.16)

where𝑚𝑖 is the mass matrix, 𝐚𝐢 is the unknown vector of nodal acceleration, 𝐟𝑒𝑥𝑡
𝑖 is

the vector of external nodal forces, 𝐟 𝑖𝑛𝑡
𝑖 is the vector of internal nodal forces and 𝑖 is

the node number. The mapping of velocities from material points to nodes requires
inverting the mass matrix to calculate velocities from momentums. In traditional
finite element schemes, the consistent mass matrix is usually used. However, in-
verting the matrix has considerable computational and storage costs. To simplify
computations, a lumped mass matrix can be used instead of the consistent mass
matrix. The lumped mass matrix is a diagonal matrix with each entry is obtained by
summing over the corresponding row of the consistent mass matrix. Using lumped
mass matrix allows a fast explicit time integration and storage advantages. On the
other hand, the disadvantage of using a lumped mass matrix is some numerical
dissipation of kinetic energy [28].

The governing equation of MPM, 3.16, is identical with the formulation of FEM.
However, in MPM since the material points move through the mesh, the number of
active degrees-of-freedom of the system is changing. Hence, the mass matrix varies
with time and requires the computation of a new mass matrix at the beginning of
each time step.

The approximation of 𝑚𝑖 for the case of lumped mass matrix is as follows:

𝑚𝑖 =
𝑁𝑝

∑
𝑝=1

𝑁𝑖𝑝𝑚𝑝 (3.17)

in which the notation 𝑁𝑖𝑝 = 𝑁𝑖(𝐱𝑝) is used. The vector of internal forces is given
by

𝐟 𝑖𝑛𝑡
𝑖 =

𝑁𝑝

∑
𝑝=1

∇𝑁𝑖𝑝𝝈𝑝Ω𝑝 (3.18)
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The vector of external forces is given by

𝐟𝑒𝑥𝑡
𝑖 = 𝐛𝑖 + 𝝉𝑖 (3.19)

The first term 𝐛𝑖 is the vector of external body forces, such as gravity which is
defined by

𝐛𝑖 =
𝑁𝑝

∑
𝑝=1

𝑚𝑝𝐛(𝐱𝑝)𝑁𝑖𝑝 (3.20)

where 𝐛(𝐱𝑝) is the gravity acceleration associated with material point 𝑝. The second
term of Equation 3.19 is the traction force at the boundary of the domain Ω and
evaluated as

𝝉𝑖 = ∫
𝜕Ω𝝉

𝑁𝑖𝑝𝝉(𝐱)𝑑𝑆 (3.21)

The nodal velocities are calculated by solving

𝑚𝑖𝐯𝑖 =
𝑁𝑝

∑
𝑝=1

𝑚𝑝𝑁𝑖𝑝𝐯𝑝 (3.22)

These nodal velocities are utilized to find the strain increment as

Δ𝜺𝑝 = Δ𝑡
2

𝑁𝑛

∑
𝑖=1

(∇𝑁𝑖𝑝𝐯𝑖 + (∇𝑁𝑖𝑝𝐯𝑖)𝑇 ) (3.23)

Then, based on the constitutive relation, the stress increments are calculated at
each material point.

3.2.3. Time discretization: Explicit formulation
The motion equation in space discretization form 3.16 is continued to be discretized
in time. Basically, in MPM the balance equation is solved on the grid; subsequently
the information is used to update the quantities associated with the material points.

Following the space discretization, the mass, velocity at node 𝑖 and at current
time 𝑡 are found following from equation 3.17

𝑚𝑡
𝑖 =

𝑁𝑝

∑
𝑝=1

𝑚𝑡
𝑝𝑁𝑡

𝑖𝑝 (3.24)

and following from equation 3.22

𝐯𝑡
𝑖 =

𝑁𝑝

∑
𝑝=1

𝑚𝑡
𝑝𝑁𝑡

𝑖𝑝𝐯𝑡
𝑝

𝑚𝑡
𝑖

(3.25)

The velocity and the position of the material points need to be updated. There
are two approaches of solving Equation 3.16 to advance the state of the continuum
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from time 𝑡 to 𝑡 + Δ𝑡. The first way was shown in Sulsky et al. [29], in which the
nodal acceleration and velocity are calculated and used to update the velocity of
material points. The nodal velocity at the end of the time step is calculated as

𝐯𝑡+∆𝑡
𝑖 = 𝐯𝑡

𝑖 + Δ𝑡𝐚𝑡
𝑖 (3.26)

The nodal acceleration and velocity are then used to update the velocity and position
of the material points as

𝐯𝑡+∆𝑡
𝑝 = 𝐯𝑡

𝑝 + Δ𝑡
𝑁𝑛

∑
𝑖=1

𝑁𝑡
𝑖𝑝𝐚𝑡

𝑖 (3.27)

and

𝐱𝑡+∆𝑡
𝑝 = 𝐱𝑡

𝑝 + Δ𝑡
𝑁𝑛

∑
𝑖=1

𝑁𝑡
𝑖𝑝𝐯𝑡

𝑖 (3.28)

This way of updating velocity and position within the time step is identical to that
of the Lagrangian FEM. However, this approach might result in numerical instability
as 𝐟 𝑖𝑛𝑡

𝑖 can be finite for an infinitesimal nodal mass, 𝑚𝑖 [2]. This leads to non-
physical nodal accelerations which are used in Equation 3.27. Hence, Sulsky et al.
[2] presented an improved method of updating the material points as

𝐯𝑡+∆𝑡
𝑝 = 𝐯𝑡

𝑝 + Δ𝑡
𝑁𝑛

∑
𝑖=1

𝑁𝑡
𝑖𝑝(𝐟 𝑖𝑛𝑡,𝑡

𝑖 + 𝐟𝑒𝑥𝑡,𝑡
𝑖 )

𝑚𝑡
𝑖

(3.29)

and

𝐱𝑡+∆𝑡
𝑝 = 𝐱𝑡

𝑝 + Δ𝑡
𝑁𝑛

∑
𝑖=1

𝑁𝑡
𝑖𝑝(𝐯𝑡

𝑖𝑚𝑡
𝑖 + Δ𝑡(𝐟 𝑖𝑛𝑡,𝑡

𝑖 + 𝐟𝑒𝑥𝑡,𝑡
𝑖 ))

𝑚𝑡
𝑖

(3.30)

In this second way of updating the velocity and position, material points are used,
therefore mass conservation is always satisfied. To sum up, Equations 3.16, 3.24,
3.25, 3.29, 3.30 and 3.23 together with appropriate constitutive models are the
basic equations used in the explicit MPM algorithm.

The implementation of the MPM solution procedure for one time step is detailed
in Appendix A

3.3. Material point method for coupled dynamic two-phase
problems

In geotechnical engineering, the problems which involve a fluid in a porous mate-
rial, e.g. ground water in soil, are crucial. The requirement of coupling solid and
fluid phases introduces considerable complexities to the mechanical behaviour of
the material and its numerical simulation. The current section focuses on the ex-
tension of the MPM to deal with coupled dynamic two-phase problems. The solid
velocity - water velocity formulation, so called 𝐯𝐬 − 𝐯𝐰 formulation [30] is used. By
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using the velocity of both solid and liquid constituent as the primary unknowns, this
formulation was applied to several small and large deformation problems and is able
to capture the physical response of saturated soil under dynamic loading [31]. The
advantage of using 𝐯𝐬 − 𝐯𝐰 formulation in comparison with the 𝐯 − 𝐩 formulation
(i.e. solid velocity-water pressure) is shown by van Esch et al. [31]. He found that
both formulations can capture the undrained wave, but the 𝐯 − 𝐩 formulation can
not accurately capture the damped wave. On the other hand, in 𝐯𝐬 − 𝐯𝐰 formu-
lation, all acceleration terms are considered and the consistency between pressure
and stress is automatically ensured.

3.3.1. Governing equations
Conservation of mass
Let us denote 𝐯𝐬 and 𝐯𝐰, the velocity vectors of the solid and water phase, respec-
tively; 𝜌𝑠 represents the grain density of the solid phase, 𝜌𝑤 is the water density
and 𝑛 is the porosity. The conservation of mass for solid phase and water phase
can be expressed as

𝑑
𝑑𝑡 [(1 − 𝑛)𝜌𝑠] + (1 − 𝑛)𝜌𝑠∇ ⋅ 𝐯𝐬 = 0 (3.31)

and
𝑑
𝑑𝑡(𝑛𝜌𝑤) + 𝑛𝜌𝑤∇ ⋅ 𝐯𝐰 = 0 (3.32)

Considering incompressible solid grains and disregarding the spatial variations in
densities and porosity, then the expression for the conservation of mass of the solid
and water phases Equations 3.31 and 3.32 can be reduced to

− 𝑑𝑛
𝑑𝑡 + (1 − 𝑛)∇ ⋅ 𝐯𝐬 = 0 (3.33)

and
𝑛𝑑𝜌𝑤

𝑑𝑡 + 𝜌𝑤
𝑑𝑛
𝑑𝑡 + (𝑛𝜌𝑤)∇ ⋅ 𝐯𝐰 = 0 (3.34)

Substitute Equation 3.33 into Equation 3.34 to eliminate the term 𝑑𝑛
𝑑𝑡 . It yields

𝑛𝑑𝜌𝑤
𝑑𝑡 + 𝜌𝑤(1 − 𝑛)∇ ⋅ 𝐯𝐬 + (𝑛𝜌𝑤)∇ ⋅ 𝐯𝐰 = 0 (3.35)

The water is assumed to be linearly compressible via the relation

𝑑𝜌𝑤
𝑑𝑝 = − 𝜌𝑤

𝐾𝑤
(3.36)

in which, 𝑝 is the pore pressure and 𝐾𝑤 is the bulk modulus of water. Substituting
Equation 3.36 into Equation 3.35, the conservation of mass of the saturated soil is
expressed as

𝑑𝑝
𝑑𝑡 = 𝐾𝑤

𝑛 [(1 − 𝑛)∇ ⋅ 𝐯𝐬 + 𝑛∇ ⋅ 𝐯𝐰] (3.37)

Equation 3.37 is also known as a storage equation.
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Conservation of momentum
The conservation of momentum of the solid phase is written as

(1 − 𝑛)𝜌𝑠
𝑑𝐯𝐬
𝑑𝑡 = ∇ ⋅ 𝝈′ + (1 − 𝑛)∇ ⋅ 𝐩 + (1 − 𝑛)𝜌𝑠𝐛 + 𝑛2𝜌𝑤𝑔

𝑘 (𝐯𝐰 − 𝐯𝐬) (3.38)

where 𝝈′ is the effective stress tensor of saturated soil, 𝑘 is the hydraulic conduc-
tivity of soil or Darcy permeability. The term 𝑛(𝐯𝐰 − 𝐯𝐬) represents the velocity of
water with respect to the solid and is also known as the specific discharge.

The conservation of momentum of the water phase is as follows

𝑛𝜌𝑤
𝑑𝐯𝐰
𝑑𝑡 = 𝑛∇ ⋅ 𝐩 + 𝑛𝜌𝑤𝐛 − 𝑛2𝜌𝑤𝑔

𝑘 (𝐯𝐰 − 𝐯𝐬) (3.39)

Adding Equation 3.38 into Equation 3.39, the momentum equation of the saturated
soil is yielded as

(1 − 𝑛)𝜌𝑠
𝑑𝐯𝐬
𝑑𝑡 + 𝑛𝜌𝑤

𝑑𝐯𝐰
𝑑𝑡 = ∇ ⋅ 𝝈 + 𝜌𝑠𝑎𝑡𝐛 (3.40)

in which, 𝝈 = 𝝈′ + 𝐩 is the total stress tensor for saturated soil and 𝜌𝑠𝑎𝑡 = (1 −
𝑛)𝜌𝑠 + 𝑛𝜌𝑤 represents the saturated density.

To sum up, the two momentum equations, i.e. Equation 3.39 for the liquid
and Equation 3.40 for the mixture, together with the storage equation 3.37 and
the constitutive equation for the soil skeleton, are the governing equations for the
coupled two-phase problem.

3.3.2. Discretized equations
The procedure of transforming into the weak form and the space discretization
of the momentum equation for two-phase formulation is the same as applied for
the single-phase formulation. The detailed solution procedures for discretization in
space and time are described in Jassim [12]. In the end, the discrete system of
equations can be written as

𝑚𝑡
𝑤,𝑖𝐚𝑡

𝑤,𝑖 = 𝐟𝑒𝑥𝑡,𝑡
𝑤,𝑖 − 𝐟 𝑖𝑛𝑡,𝑡

𝑤,𝑖 − 𝐟𝑑𝑟𝑎𝑔,𝑡
𝑤,𝑖 (3.41)

𝑚𝑡
𝑠,𝑖𝐚𝑡

𝑠,𝑖 = 𝐟𝑒𝑥𝑡,𝑡
𝑖 − 𝐟 𝑖𝑛𝑡,𝑡

𝑖 − �̄�𝑡
𝑤,𝑖𝐚𝑡

𝑤,𝑖 (3.42)

in which the subscripts 𝑠 and 𝑤 indicate solid and water, respectively. No subscripts
𝑠 or 𝑤 indicates that the quantity belong to the mixture. 𝐟𝑑𝑟𝑎𝑔,𝑡

𝑤,𝑖 is the drag force
and defined as

𝐟𝑑𝑟𝑎𝑔,𝑡
𝑤 = 𝐐𝑡(𝐯𝐰

𝑡 − 𝐯𝐬
𝑡) (3.43)

where 𝐐 is a lumped matrix.
It is assumed that the saturated porous medium is represented based on the

kinematics of the solid skeleton[32]; therefore, there is no distinction between solid
and water material points. Each material points carries the information of both the
solid and liquid phase together. The material points move according to the solid
movement, while the motion of the liquid is described with respect to the solid
motion. The implementation of the MPM solution procedure for one time step of
the coupled two-phase problem is given in Appendix B
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3.4. Other numerical aspects
3.4.1. Mitigation of volumetric locking
One of the difficulties associated with low-order elements is that they may expose
volumetric locking when incompressibility constraints from neighbouring elements
are imposed. Volumetric locking can be reduced by means of a Nodal Mixed Dis-
cretization (NMD) technique proposed by Detournay [33]. Later, Stolle et al. [34]
introduced this technique to 3D dynamic MPM explicit formulation using 4-nodes
tetrahedral elements. This technique involves initial determining the strain rates
tensor ̇𝜀𝑖𝑗,𝑒 of each element as usual. This strain rate tensor can be partitioned
into two components: the volumetric strain rate ̇𝜀𝑣𝑜𝑙,𝑒𝛿𝑖𝑗and the deviatoric strain
rate ̇𝜀𝑑

𝑖𝑗,𝑒 as

̇𝜀𝑖𝑗,𝑒 = ̇𝜀𝑑
𝑖𝑗,𝑒 + 1

3 ̇𝜀𝑣𝑜𝑙,𝑒𝛿𝑖𝑗 (3.44)

in which 𝛿𝑖𝑗 is Kronecker delta. The deviatoric strain component remains unchanged
during this smoothing technique, while the volumetric strain component is modified
by an averaging procedure. The calculation of enhanced volumetric strain includes
the following steps:

1. A nodal volumetric strain rate for node 𝑖, ̄ ̇𝜀𝑣𝑜𝑙,𝑖, is determined by the weighted
averaging volumetric strain rates of all elements attached to node i.

̄ ̇𝜀𝑣𝑜𝑙,𝑖 = ∑ ̇𝜀𝑣𝑜𝑙,𝑒Ω𝑒
∑Ω𝑒

(3.45)

where ̇𝜀𝑣𝑜𝑙,𝑒 and Ω𝑒 are the volumetric strain rate and the volume of element
e

2. When the volumetric strain rate is computed for each node, the average volu-
metric strain rate for the 4-node tetrahedral element e, ̄ ̇𝜀𝑣𝑜𝑙,𝑒, is determined
as follows:

̄ ̇𝜀𝑣𝑜𝑙,𝑒 = 1
4

4
∑
𝑖=1

̄ ̇𝜀𝑣𝑜𝑙,𝑖 (3.46)

The updated strain rate within an element is computed by means of

̄ ̇𝜀𝑖𝑗,𝑒 = ̇𝜀𝑑
𝑖𝑗,𝑒 + 1

3
̄̇𝜀𝑣𝑜𝑙,𝑒𝛿𝑖𝑗 (3.47)

3. The enhanced volumetric strain of the element is then assigned to all material
points inside this element.

̄ ̇𝜀𝑣𝑜𝑙(𝝃𝑝) = ̄̇𝜀𝑣𝑜𝑙,𝑒 (3.48)

The new strain tensor resulting from the enhancement of volumetric strain is used
to calculate the stress tensor according to the constitutive relation.
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For situations which encounter the coupled dynamic two-phase problem, the
enhanced volumetric strain is applied to both the solid and the water phase. The
water pressure rate of a material point 𝑝 is calculated as

̇𝑝(𝝃𝑝) = 𝐾𝑤
𝑛 [(1 − 𝑛) ̇𝜀𝑣𝑜𝑙,𝑠(𝝃𝑝) + 𝑛 ̇𝜀𝑣𝑜𝑙,𝑤(𝝃𝑝)] (3.49)

where ̇𝜀𝑣𝑜𝑙,𝑠 and ̇𝜀𝑣𝑜𝑙,𝑤 are the volumetric strain rate for the solid and the wa-
ter phase, respectively. The enhancement procedure of volumetric strain is then
applied to calculate the enhanced volumetric strain rate of the solid phase ̄ ̇𝜀𝑣𝑜𝑙,𝑠
and the water phase ̄ ̇𝜀𝑣𝑜𝑙,𝑤 (following Equation 3.45, 3.46, 3.48). Hence, Equation
3.49 yields

̇𝑝(𝝃𝑝) = 𝐾𝑤
𝑛 [(1 − 𝑛) ̄̇𝜀𝑣𝑜𝑙,𝑠(𝝃𝑝) + 𝑛𝑏𝑎𝑟 ̇𝜀𝑣𝑜𝑙,𝑤(𝝃𝑝)] (3.50)

The effective stress tensor is then updated by the enhanced volumetric strain of
the solid phase ̄ ̇𝜀𝑣𝑜𝑙,𝑠.

3.4.2. Dissipation of stress waves
Non-reflecting boundary
In numerical simulations of dynamic problems involving wave propagation, the use
of finite mesh leads to reflection of the waves when they reach the boundaries of the
mesh. In geomechanics, reflecting waves are not physical and rigid boundaries are
mostly numerical artefacts. This problem might be reduced by moving the artificial
boundary further away. This is however not always a practical solution as the mesh
can become extremely large leading to a substantial increase in the computational
effort. A partial solution for this problem was introduced by Lysmer and Kuhlemeyer
[35] suggesting a supporting boundary by a dashpot. However, the boundary will
continue to deform as long as the dashpot still receives stress from the soil body.
In order to limit the deformation of the boundary, a spring is added parallel to the
dashpot. Hence, a Kelvin-Voigt type of boundary response is obtained.

When using an absorbing boundary, including dashpots and springs, an addi-
tional force term, which is the force of the absorbing boundary 𝐟𝑎𝑏, is added to the
equation of momentum. For a single-phase analysis, the equilibrium following from
Equation 3.16 reads,

𝑚𝑖𝐚𝑖 = 𝐟𝑡𝑟𝑎𝑐
𝑖 + 𝐟𝑔𝑟𝑎𝑣

𝑖 − 𝐟 𝑖𝑛𝑡
𝑖 − 𝐟𝑎𝑏

𝑖 (3.51)

in which
𝐟𝑎𝑏
𝑖 = ∫

𝑆

𝐍𝝉𝑑𝑆 (3.52)

where 𝝉 is the absorbing boundary traction vector.
The normal traction and shear traction of 𝐟𝑎𝑏

𝑖 at the boundary node are 𝑡𝑛 and
𝑡𝑠, respectively, they are defined as

𝑡𝑛 = 𝑐𝑛�̇�𝑛⏟
𝑡𝑑𝑎𝑠ℎ𝑝𝑜𝑡

𝑛

+ 𝑘𝑛𝑢𝑛⏟
𝑡𝑠𝑝𝑟𝑖𝑛𝑔

𝑛

, 𝑡𝑠 = 𝑐𝑠�̇�𝑠⏟
𝑡𝑑𝑎𝑠ℎ𝑝𝑜𝑡

𝑠

+ 𝑘𝑠𝑢𝑠⏟
𝑡𝑠𝑝𝑟𝑖𝑛𝑔

𝑠

(3.53)
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in which 𝑛 and 𝑠 indicate normal and shear components respectively, 𝑢 is the dis-
placement and �̇� is velocity at the boundary node. 𝑘𝑛 and 𝑘𝑠 are the spring stiffness
in normal and shear direction defined as

𝑘𝑛 = 𝐸𝑜𝑒𝑑
𝛿𝑛

𝑘𝑠 = 𝐺
𝛿𝑠

(3.54)

where 𝐸𝑜𝑒𝑑 is the constrained modulus, 𝐺 is the shear modulus of the adjacent
material. 𝛿 is the thickness of the virtual viscous layer to limit the deformation of
the boundary. Its value has to be in the range of 0 ≤ 𝛿 < ∞. For 𝛿 = 0 the element
reduces to a rigid boundary and for 𝛿 → ∞ the element reduces to a dashpot
boundary.

𝑐𝑛 and 𝑐𝑠 are the dashpot coefficients in normal and shear direction which is
determined as

𝑐𝑛 = 𝛼𝑛𝜌𝑉𝑝 𝑐𝑠 = 𝛼𝑠𝜌𝑉𝑠 (3.55)

in which 𝛼𝑛 and 𝛼𝑠 are the dimensionless parameters of the dashpot, 𝜌 is the mass
density and 𝑉𝑝 and 𝑉𝑠 are the p-wave speed and s-wave speed of the adjacent
material, respectively, and can be determined as

𝑉𝑝 = √𝐸𝑜𝑒𝑑
𝜌 , 𝑉𝑠 = √𝐺

𝜌 (3.56)

For a two-phase material analysis, the absorbing boundary is applied to both the
solid and the water phase. Therefore, the resulting momentum equations following
from Equation3.51 become

𝑚𝑤,𝑖𝐚𝑤,𝑖 = 𝐟𝑡𝑟𝑎𝑐
𝑤,𝑖 + 𝐟𝑔𝑟𝑎𝑣

𝑤,𝑖 − 𝐟 𝑖𝑛𝑡
𝑤,𝑖 − 𝐟𝑑𝑟𝑎𝑔

𝑤,𝑖 − 𝐟𝑎𝑏
𝑤,𝑖 (3.57)

𝑚𝑠,𝑖𝐚𝑠,𝑖 = 𝐟𝑡𝑟𝑎𝑐
𝑖 + 𝐟𝑔𝑟𝑎𝑣

𝑖 − 𝐟 𝑖𝑛𝑡
𝑖 − �̄�𝑤,𝑖𝐚𝑤,𝑖 − 𝐟𝑎𝑏

𝑠,𝑖 − 𝐟𝑎𝑏
𝑤,𝑖 (3.58)

where 𝐟𝑎𝑏
𝑠,𝑖 is the force resulting from the absorbing boundary of the soil. The

calculation is similar to the Equation 3.52 of the single-phase material analysis.
𝐟𝑎𝑏
𝑤,𝑖, which is the absorbing boundary of the water phase, is defined as

𝐟𝑎𝑏
𝑤,𝑖 = ∫

𝑆

𝐍𝑇 𝑝𝑤𝐧𝑑𝑆 (3.59)

where 𝑝𝑤 is the water pressure, 𝐧 is the surface normal vector.
The water pressure is then calculated as

𝑝𝑤 = 𝐾𝑤
𝛿𝑤

𝑢𝑤 + 𝛼𝑤𝜌𝑤𝑉𝑤�̇�𝑤 (3.60)

where 𝑢𝑤 and �̇�𝑤 are the displacement and velocity at the boundary node for
water, 𝛼𝑤 is the dimensionless dashpot parameter for the absorbing boundary of
the water phase, 𝐾𝑤 is the bulk modulus of water, 𝛿𝑤 is the spring parameter for
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the absorbing boundary of water and 𝑉𝑤 is the wave speed of the water which is
defined as

𝑉𝑤 = √𝐾𝑤
𝜌𝑤

(3.61)

As no shear wave exists in water, then 𝑉𝑤 indicates the p-wave speed in water.

Local damping
Natural dynamic systems contain some degree of damping due to energy loss as
a result of internal friction in the material itself or as a result of particles collision,
plasticity, etc. For analyses which aresubject to dynamic loading, the damping
in the numerical simulation should reproduce the energy losses as in the natural
system. The MPM implementation used in this thesis adopts a local non-viscous
damping which is described by Cundall [36] to achieve such convergence. The
local damping is applied by introducing the damping force 𝑓𝑑𝑎𝑚𝑝 to the system,
which is proportional to the out-of-balance force and acts opposite to the direction
of the velocity of the considered degree-of-freedom as following

𝑚𝑎 = 𝑓𝑡𝑟𝑎𝑐 + 𝑓𝑔𝑟𝑎𝑣 − 𝑓𝑖𝑛𝑡 + 𝑓𝑑𝑎𝑚𝑝 (3.62)

with 𝑓𝑑𝑎𝑚𝑝 is the damping force at a considered degree-of-freedom and is defined
as

𝑓𝑑𝑎𝑚𝑝 = −𝛼|𝑓|𝑠𝑖𝑔𝑛(𝑣) (3.63)

where 𝑓 = 𝑓𝑡𝑟𝑎𝑐 + 𝑓𝑔𝑟𝑎𝑣 − 𝑓𝑖𝑛𝑡, 𝛼 is a dimensionless damping factor and 𝑣 is the
velocity at the considered degree-of-freedom. There is no direct relation between
𝛼 and 𝜁𝑑, which is the damping ratio of viscous damping in analytical solution.
However, Jassim [12] showed that using a value for local damping 𝛼 = 0.157 results
in similar results to that of using a damping ratio of 𝜁𝑑 = 0.05.

Extending the same concept of local damping for a single-phase material above
to a two-phase material, the momentum equation of two-phase material for any
degree-of-freedom is then written for the water phase as

𝑚𝑤𝑎𝑤 = 𝑓𝑡𝑟𝑎𝑐
𝑤 + 𝑓𝑔𝑟𝑎𝑣

𝑤 − 𝑓𝑖𝑛𝑡
𝑤 − 𝑓𝑑𝑟𝑎𝑔

𝑤 + 𝑓𝑑𝑎𝑚𝑝
𝑤 (3.64)

and for the solid phase as

𝑚𝑠𝑎𝑠 = 𝑓𝑡𝑟𝑎𝑐 + 𝑓𝑔𝑟𝑎𝑣 − 𝑓𝑖𝑛𝑡 − �̄�𝑤𝑎𝑤 + 𝑓𝑑𝑎𝑚𝑝
𝑤 + 𝑓𝑑𝑎𝑚𝑝

𝑠 (3.65)

in which
𝑓𝑑𝑎𝑚𝑝

𝑤 = −𝛼𝑤|𝑓𝑤|𝑠𝑖𝑔𝑛(𝑤) (3.66)

with 𝑓𝑤 = 𝑓𝑡𝑟𝑎𝑐
𝑤 + 𝑓𝑔𝑟𝑎𝑣

𝑤 − 𝑓𝑖𝑛𝑡
𝑤 and not including the term 𝑓𝑑𝑟𝑎𝑔

𝑤 . The reason is,
𝑓𝑑𝑟𝑎𝑔

𝑤 representing the drag between the solid and water phase; consequently, it
already provides a natural damping. The damping of the solid phase is written as

𝑓𝑑𝑎𝑚𝑝
𝑠 = −𝛼𝑠|𝑓 − 𝑓𝑤|𝑠𝑖𝑔𝑛(𝑣) (3.67)
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Figure 3.4: Vertical displacement of the top of the compression beam for different values of local damping
𝛼

where 𝛼𝑠 and 𝛼𝑤 are dimensionless damping factors for the solid and water phase,
respectively; 𝑣 and 𝑤 are the velocity of the solid and water at the considered
degree-of-freedom, respectively.

An example of one-dimensional axial compressive loading of an elastic column
is calculated in single phase using different values of local damping 𝛼. The vertical
displacement of the top point was recorded as shown in Figure 3.4. For a value of
𝛼 = 0.9, the system is said to be critically damped; for 𝛼 > 0.9 it is over-damped
and for 𝛼 < 0.9 it is under-damped. The influence of the damping factor 𝛼 to the
convergence time of the system is shown in Figure 3.5. Hence, it is suggested
to use a value of 𝛼 in the range between 0.7 and 0.9 in order to get a robust
damping behaviour. However, it has to be mentioned that for each problem the
convergence behaviour has to be thoroughly investigated. High values of 𝛼 are
often used for quasi-static cases to reach static equilibrium (e.g. gravity loading
phase). For dynamic systems, only very small values of 𝛼 are allowed.
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Figure 3.5: Dependency of the convergence time of the compression beam simulation on the local
damping factor 𝛼
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Figure 3.6: Flow chart of the contact algorithm for two bodies A and B by [38]

3.4.3. Contact formulation between two bodies
Fomulation
In geotechnical engineering, problems involving soil-structure interaction, e. g.
pile penetration into soil, are common. MPM can naturally handle non-slip con-
tact between different bodies without a special algorithm [29]. However, in most
geotechnical problems, frictional sliding occurs at the contact surface, and a contact
algorithm is required to model it.

In the MPM implementation used in this study, the frictional contact algorithm
of Bardenhagen [37] was adopted to model the interaction and frictional sliding
between different bodies. With this algorithm, separation between bodies is allowed
but not interpenetration. The contact surface is automatically detected and pre-
defined contact surfaces, as well as special contact elements, are not required.

Consider two separated bodies A and B as shown in Figure 3.6 Following the
contact algorithm, Equation 3.16 is solved for the combined bodies A and B as well
as for each body separately, and yields

𝐌𝐴𝐚𝐴 = 𝐅𝐴, 𝐌𝐵𝐚𝐵 = 𝐅𝐵, 𝐌𝐴+𝐵𝐚𝐴+𝐵 = 𝐅𝐴+𝐵 (3.68)

Then, the predicted velocities of each single body 𝐯𝐴, 𝐯𝐵 and the system of
bodies 𝐯𝐴+𝐵 are computed. Contact at a specific node is detected by comparing the
velocity of the single body to the velocity of the system of bodies. The considered
node is a contact node if these velocities are different. After that, at each considered
contact node, the contact is detected to be broken or continued by approaching.
Sliding is checked for approaching contact nodes. If sliding occurs a correction of
nodal velocity is required. The process of applying the contact algorithm on body
A is illustrated in Figure 3.6.

Consider a single body A. Denote 𝐅𝐀
𝐧 and 𝐅𝐀

𝐭 are the normal and tangential
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components of the interaction force at a contact node. They are defined as

𝐅𝐴
𝑛 = 𝑚𝐴

Δ𝑡 𝐯𝑛, and 𝐅𝐴
𝑡 = 𝑚𝐴

Δ𝑡 𝐯𝑡 (3.69)

where 𝑚𝐴 is the nodal mass of a contact node computed only from body A, 𝐯𝑛 and
𝐯𝑡 are the relative normal and tangential velocities at a contact node and calculated
as

𝐯𝑛 = ((𝐯𝐴 − 𝐯𝐴+𝐵) ⋅ 𝐧)𝐧 and 𝐯𝑡 = (𝐯𝐴 − 𝐯𝐴+𝐵) − 𝐯𝑛 (3.70)

In frictional contact, sliding between body A and body B occurs only when |𝐅𝐴
𝑡 | >

|𝐅𝐴,𝑚𝑎𝑥
𝑡 |. In which |𝐅𝐴,𝑚𝑎𝑥

𝑡 | is the maximum tangential force, which is limited by

|𝐅𝐴,𝑚𝑎𝑥
𝑡 | = 𝜇|𝐅𝐴

𝑛 | (3.71)

where 𝜇 is the friction coefficient.
If sliding occurs, correction of the nodal velocity of body A is required, in which

the new nodal velocity can be written as

𝐯𝐴
𝑛𝑒𝑤 = 𝐯𝐴 + 𝐜𝑛 + 𝐜𝑡 (3.72)

where 𝐜𝑛 and 𝐜𝑡 are the correction of the normal and tangential component of the
velocity respectively. These are derived as

𝐜𝑛 = ((𝐯𝐴 − 𝐯𝐴+𝐵) ⋅ 𝐧)𝐧 and 𝐜𝑡 = −𝜇((𝐯𝐴 − 𝐯𝐴+𝐵) ⋅ 𝐧)𝐭 (3.73)

Validation
To validate the implementation of the contact algorithm, a problem of two sliding
boxes along two inclined planes is considered (see Figure 3.7). The first box is on
a 30∘ inclined plane, while the second box is located on a 45∘ inclined plane. The
boxes and the floor have the same material properties, i.e. elastic material with
Young’s modulus 𝐸 = 10000kPa and Poisson’s ratio 𝜈 = 0.

The boxes start sliding once

𝜔 sin(𝜃) ≥ 𝑟 (3.74)

in which, 𝜔 is the weight of the box, 𝜃 is the incline angle of the sliding plane
and 𝑟 is the resistance tangential force that is calculated in case of frictional contact
as

𝑟 = 𝜇𝜔 cos(𝜃) (3.75)

Substituting Equation 3.75 into Equation 3.74, it yields

𝜇 ≤ tan(𝜃) (3.76)

Therefore, a box on an inclined surface will slide if the friction coefficient between
the box and the surface 𝜇 < 𝑡𝑎𝑛(𝜃).

For the case 𝜇 < 𝑡𝑎𝑛(30∘) = 0.57, both boxes will slide; for 𝜇 ≥ 𝑡𝑎𝑛(45∘) = 1.0
both boxes stay in rest; consequently, for 𝑡𝑎𝑛(30∘) < 𝜇 < 𝑡𝑎𝑛(45∘), only the lower
box will slide. This theoretical relationship can be found back clearly in the results
of the MPM calculation as shown in Figure 3.8.
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Figure 3.7: a) Geometry of sliding boxes problem generated for MPM calculation and b) forces acting
on a sliding box [39].

a) b) c)

Figure 3.8: Total displacement of material points at the same time step of for different friction coeffi-
cients, a) 𝜇 = 0.0, b) 𝜇 = 0.4, c) 𝜇 = 0.7

3.4.4. Moving mesh concept
Consider a rigid pile being pressed into the soil by applying prescribed velocities
on the pile head. Accurate computations require a relative dense mesh around the
pile tip. However in MPM the pile would move through the mesh and one would
need mesh refinement over the complete penetration depth. In order to avoid this,
a mesh, which is fixed to the pile so that it moves into the soil, is applied for all
simulations in this thesis. Therefore, the fine part of the mesh will always remain
around the pile tip.

In the moving mesh concept, the computational domain is divided into a moving
mesh and a compressed mesh zone (Figure 3.9). The moving mesh zone is fixed
to the pile and moves with the same velocity as the pile during the penetration
process. Therefore, the prescribed velocity is applied at the same boundary nodes
of the pile head during the calculation process without mapping between material
points and nodes.

As a result of the moving mesh, the mesh below the pile tip is compressed
with time by the velocity of the pile. This zone is called compressed mesh zone.
In contrast to the elements of the moving mesh zone, which always maintain the
same shape, elements in the compressed mesh zone are compressed during the
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Figure 3.9: Concept of moving mesh for the pile driving problem: a) initial configuration, b) after pile
penetration

computation. The amount of compression is distributed linearly with depth so that
the nodes at the top surface of the compression zone have the same displacement
as the pile and the nodes at the bottom surface have zero displacement. For ex-
tremely large deformations the compression mesh zone can be distorted, which
can be solved by meshing a wider domain in the compression zone or, if necessary,
re-meshing.

An advantage of using the moving mesh concept is that the moving mesh zone
can be made fine and this fine mesh is always kept around the pile tip, which is
more efficient than generating a fine mesh along the complete penetration depth
in the standard formulation of MPM. This fixed mesh to the pile also helps to avoid
the occurrence of elements having both pile and soil material points. Moreover, the
need of determining a new contact surface between pile and soil is eliminated as
the contact nodes always coincide with the geometry of the pile throughout the
computation, leading to more accuracy in the contact algorithm.
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3.4.5. Mass scaling
Mass scaling can be applied to increase the time step size in problems involving
a slow rate of loading. Not the densities nor gravity loading, but only the mass
matrices are scaled. Considering 𝛽 being the dimensionless scale factor, the two
momentum equations, Equation 3.41 and 3.42, are modified as

𝛽𝑚𝑡
𝑤,𝑖𝐚𝑡

𝑤,𝑖 = 𝐟𝑒𝑥𝑡,𝑡
𝑤,𝑖 − 𝐟 𝑖𝑛𝑡,𝑡

𝑤,𝑖 − 𝐟𝑑𝑟𝑎𝑔,𝑡
𝑤,𝑖 (3.77)

𝛽𝑚𝑡
𝑠,𝑖𝐚𝑡

𝑠,𝑖 = 𝐟𝑒𝑥𝑡,𝑡
𝑖 − 𝐟 𝑖𝑛𝑡,𝑡

𝑖 − 𝛽�̄�𝑡
𝑤,𝑖𝐚𝑡

𝑤,𝑖 (3.78)

The new time step 𝛿𝑡2 is related to the time step without scaling 𝛿𝑡1 as

Δ𝑡2 = √𝛽Δ𝑡1 (3.79)

It is noted that in the problems involving consolidation, the use of mass scal-
ing should not affect the consolidation coefficient 𝑐𝑣, which leads to a change of
consolidation time. Hence, a reduction of the gravity is necessary

𝑐𝑣 = 𝑘
𝛾𝑤𝑚𝑣

= 𝑘
(𝛽𝜌𝑤)(𝑔/𝛽)𝑚𝑣

(3.80)

In this thesis, mass scaling is applied to all simulations of pile jacking to improve
computational efficiency.

3.5. Conclusion
The MPM - Material Point Method is one of computational methods having the capa-
bility of modelling soil-water-structure interaction problems involving large deforma-
tions. MPM has been successfully applied to a number of geotechnical engineering
problems.

MPM is an advancement of the FEM, in which the continuum body is repre-
sented by Lagrangian points. Lagrangian points are called material points (MPs)
which move through an Eulerian computational mesh. The MPs carry all physical
properties of the continuum, whereas the computational mesh stores no permanent
information Through this approach, MPM combines the advantages of both mesh-
based and point-based approaches while avoiding the shortcomings, such as the
problem of mesh distortion, shownby an updated Lagrangian solution when dealing
with large deformation, or the numerical diffusion associated with the convective
terms in the Eulerian approach which does not appear in MPM. As being conceived
as an extension of FEM, MPM therefore has the advantage of using advanced fea-
tures that are well established in FEM. Another advantage of MPM compared to
other point-based methods is that application of boundary conditions is straight-
forward since they can be directly applied to the nodes of the background grids
as in FEM. Hence, MPM is less complex and computationally more efficient than
point-based methods.

One of the disadvantages of the MPM method is that some numerical noise
associated with MPM in the numerical results can be observed. It occurs when
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material points cross element boundaries. The disadvantages could be reduced or
eliminated by applying one of the recent extensions to MPM, such as the General-
ized Interpolation Material Point Method (GIMP) [40], Convected Particle Domain
Interpolation method (CPDI) [41] or the second-order Convected Particle Domain
Interpolation method (CPDI2) [42]. Although MPM is quite powerful in simulating
geotechnical engineering problems, it is relatively high in computational demand.
Furthermore, the implementation of the MPM into available engineering software is
relatively complex and is still not commonly used in the geotechnical practise.
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4
Hypoplastic model for grain

crushing

4.1. Introduction
Many researches in soil mechanics have focused on soil behaviour at low stress
levels which is suitable for most geotechnical engineering problems. However, there
are several geotechnical applications which need thorough investigation of high
stress conditions, as e.g. high earth dams, deep mine shafts, tunnels, deep well
shafts or deep jacked pile foundations. During penetration of a cone or pile in sand,
the stress level around the pile tip can vary significantly from very low at rest (i.e. a
few kPa) to very high soil stresses which may be up to 70 MPa [2]. As the effective
confining stress around the pile increases, the strength of the surrounding soil (such
as friction or dilatancy) may reduce. For sands, Bolton [3] attributed this to the grain
crushing strength. Yamamuro and Lade [4] and Lade et al. [5] studied the effects
of grain crushing in drained and undrained triaxial compression and extension tests
at confining stresses between 0.5 MPa and 52 MPa. They concluded that increases
in confining stress cause a measured increase in the amount of grain crushing.

Hence, for applications involving large stress variations it is inevitable to have a
stress dependent soil model which can be used across a wide stress range and ac-
counts for crushing of soil grains. Daouadij et al. [6, 7] introduced the influence of
crushable grain in an elastoplastic model by making the critical state line dependent
on the evolution of the grain size distribution. Comparing with experimental data
for three different types of materials: a quartzic, calcareous sands and a rockfill ma-
terial, the model simulations can accurately reproduce the stress-strain behaviour
which demonstrates its ability to reproduce the main features of sand behaviour
subjected to grain crushing. However, the parameters controlling the amount of
grain breakage along a given test have to be determined by curve fitting. Russel
and Khalili[8] presented a new bounding surface elastoplastic constitutive model

This chapter has been published in Soil and Foundation [1].
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for sands which is suited to a wide range of stress, including grain crushing. In this
model, a unique shaped critical state line is defined to capture the three models of
plastic deformation observed across a wide range of stresses, including particle re-
arrangement, particle crushing and pseudoelastic deformation. A good agreement
between model simulations and experimental data from tests subject to five load
paths was found. Furthermore, the basic concepts of critical state soil mechanics as
well as a nonassociative flow rule commonly used in sand are confirmed to be valid
when particle crushing occurs. Later, another bounding surface constitutive model
based on Severn-Trent sand model was published, in which the critical state line
was extended to include the effect of grain breakage through a grading state index
[9]. The effect of crushing was found to shift the critical state line and compression
line downwards in the compression plane. As a result, the state parameter tends
to increase and the soil feels looser. In 2014, Engin et al. [10] proposed a model
which incorporates the effects of grain crushing at high stress levels, and which is a
modification of Von Wolffersdorffs hypoplastic model. In this model, the void ratio
is modified to be dependent on the uniformity coefficient, which is changing with
vertical stress level. Their proposed model can model the suppressed dilatancy at
high confinement stress level better than the original model, however, the simula-
tion results are not so close with experimental ones. In addition, the performance
of the model on the other hand has shown convergence issues during finite element
simulations of boundary value problems.

In the first part of this chapter, the relations between peak strength, uniformity
coefficient and stiffness of sand depending on stress level and amount of grain
crushing derived for different sands based on experimental results in literature are
described. Then, a method to modify and improve a basic hypoplastic model in
order to describe the behaviour of sand over a wide stress range, especially very
high stress levels including grain crushing is developed. For the proposed modified
hypoplastic model only two additional well-known physical parameters, namely the
uniformity coefficient and the mean grain size are included. Those parameters are
straightforward to determine, which is significantly simpler than currently existing
models accounting for grain crushing [10, 11]

The proposed modified hypoplastic model is validated using literature data of
several triaxial test series for three different sands: Hostun sand in a stress range
between 0.1 and 15 MPa [12], Toyoura sand in a stress range between 0.1 and
29.4 MPa [13] and Fontainebleau sand in a stress range between 0.1 and 30 MPa
[14].

4.2. Behaviour of sand at high stress levels
4.2.1. Grain size and uniformity
Literature review
Grain size effects play a role in crushing strength, especially in brittle sand grain and
rock aggregate. For a given shearing condition, the coarser the granular material is,
the higher the grain breakage ratio [15–17]. Ovalle et al. [17] also observed a slight
decrease in the shear strength envelope for the coarser material. For instance, the
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maximum friction angle decreases about 2∘ to 3∘ for a particle size reduction factor
of 4.

Fukumoto [9] conducted one-dimensional compression tests on initially uni-
formly graded Ottawa sand to determine the grain size distribution at different
applied vertical stresses between 7 MPa and 100 MPa. It was observed that with
increasing effective vertical stress, the uniformity coefficient increases significantly.
Nakata et al. [18, 19] performed high-pressure one-dimensional compression tests
on Silica sand samples, both initially uniformly graded and well-graded. They con-
cluded that even for the same material the yielding characteristics depend on the
initial grading curve with much more yielding occurring for uniformly graded sands
in comparison to well-graded sands. As the material was changing from uniform to
well-graded, the nature of grain crushing was changing from catastrophic onset to
gradual breakage and rounding off surfaces.

It is observed that the change of the material characteristics can be captured
by a change of the shape of the grain size distribution curve, characterized by the
uniformity coefficient 𝐶𝑢 [18–21] . Moreover the change of uniformity coefficient
has a limit value and can be related to a change of applied effective stress . By
using the test results of Nakata et al.[18]), Rohe [22] elaborated quantitatively
the dependency of the uniformity coefficient on the applied (vertical) stress level
characterized by the two stress invariants, namely mean effective stress 𝑝′ (negative
in compression) and deviatoric stress 𝑞 and generalized as,

𝐶𝑢 = 𝛼𝑝𝑝′2 − 𝛼𝑞𝑞2 + 𝛽𝑝𝑝′ − 𝛽𝑞𝑞 + 𝐶𝑢0 (4.1)

in which 𝛼𝑝 and 𝛼𝑞 are the factors controlling the quadratic change of uniformity
coefficient due to isotropic and deviatoric loading, respectively; 𝛽𝑝 and 𝛽𝑞 are the
factors controlling the linear change of uniformity coefficient due to isotropic and
deviatoric loading, respectively and 𝐶𝑢0 is the reference uniformity coefficient at
reference stress 𝜎𝑟𝑒𝑓. However, the determination of such factors was not elab-
orated and the suggested values are valid for a silica sand under one-dimensional
compression only.
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Table 4.1: Overview of investigated sands.
𝑁0 Material 𝐶𝑢0 𝑑50,0 Test type Stress level 𝑝𝑟𝑒𝑓 𝐸𝑟𝑒𝑓 Reference

[mm] [MPa] [kPa] [kPa]
(1) Fontainebleau sand 1.5 0.174 triaxial test 0.1 − 30 100 57000 [14]
(2) Hostun sand 1.69 0.32 triaxial test 0.1 − 15 50 22727 [12]
(3) Cambria sand 1.3 1.6 triaxial test 2.1 − 60 100 53700 [5]
(4) Chattahoochee river sand 2.47 0.37 triaxial test 0.1 − 62 98 30000 [23]
(5) Quartz sand 1.83 0.31 triaxial test 0.1 − 7.8 115 30000 [8]
(6) Toyoura sand 1.5 0.23 triaxial test 0.1 − 49 98 28023 [13]
(7) Sacramento river sand 1.57 0.2 triaxial test 0.1 − 13.7 98 34000 [24]
(8) Silica sand 2.17 0.75 oedometer test 0.1 − 92 [19]
(9) Ottawa sand 1.43 0.63 oedometer test 0.1 − 96.6 [9]
(10) Mono quartz sand 1 2 0.36 oedometer test 0.1 − 50 [25]
(11) Mono quartz sand 2 2.36 0.3 oedometer test 0.1 − 50 [25]
(12) Mono quartz sand 3 2.23 0.63 oedometer test 0.1 − 50 [25]
(13) Chattahoochee river sand 2.47 0.37 isotropic compression 0.1 − 62 [23]
(14) Hostun sand 1.69 0.32 oedometer test 0.1 − 100 [26]
(15) Quartz sand 1.83 0.31 oedometer test 0.1 − 1000 [27]
(16) Toyoura sand 1.5 0.23 isotropic compression 0.1 − 49 [13]
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(1) Fontainebleau sand
(2) Hostun sand
(3) Cambria sand
(4) Chattahoochee river sand
(5) Quartz sand
(6) Toyoura sand
(7) Sacramento river sand
(8) Silica sand
(9) Ottawa sand
(10) Mono−quartz sand 1
(11) Mono−quartz sand 2
(12) Mono−quartz sand 3
(13) Chattahoochee river sand
empirical relation − triaxial
empirical relation − oedometer

triaxial test
y = 0.1445x

0.0074x+1.873

oedometer test
y = 0.0036x

Figure 4.1: Dependency of the uniformity coefficient on the stress level in triaxial compression tests
(red) and in one–dimensional compression tests (blue) for various sands listed in Table 4.1.

Generalize the dependency of the uniformity coefficient 𝐶𝑢 on stress level
In order to generalize the dependency of the uniformity coefficient 𝐶𝑢 on stress
level under both triaxial and one-dimensional compression response, the amount
of grain crushing for different types of sands is derived with data collected from
literature. An overview of investigated sands listing their reference uniformity co-
efficient 𝐶𝑢0, reference grain size diameter 𝑑50,0, type of test and range of stress
level during test is summarized in Table 4.1. Based on the test data the unifor-
mity coefficient 𝐶𝑢 is determined for different applied stress levels and illustrated
in Figure 4.1. The horizontal axis represents a non-dimensional stress which is the
applied stress (vertical effective stress for oedometer test and cell pressure for triax-
ial test) multiplied by the reference uniformity coefficient 𝐶𝑢0 and reference mean
grain size 𝑑50,0 in order to account for the influence of initial grain size distribution.
𝜎𝑟𝑒𝑓 is the reference stress level of 100 kPa. 𝑑𝑟𝑒𝑓 is the reference grain diameter
of 1 mm. The vertical axis represents the difference between current uniformity
coefficient 𝐶𝑢 and reference uniformity coefficient 𝐶𝑢0 for increasing stress level.

From Figure 4.1 it can be seen that triaxial tests (red markers) result in a higher
amount of grain crushing than would occur for oedometer tests (blue markers)
which can be attributed to the additional effects of shearing. Most of the sands in
triaxial test conditions show a comparable amount of grain crushing, except Toy-
oura (6) and Sacramento river sand (7). These two sands result in a significant
higher amount of crushing. This may be caused by the fact that only the sam-



4

64 4. Hypoplastic model for grain crushing

ples of Toyoura and Sacramento river sand had enough time to achieve maximum
densification after applying cell pressure, whereas in the other triaxial tests this
issue was not considered. Miura and Yamanouchi [13] found that the porosity of a
sand at high pressure was affected not only by the magnitude of the compression
pressure but also by its duration. The influence of time on the compressibility of
the sand is considerably large when the applied pressure is higher than 29 MPa.
Maximum densification could not be reached before 350 or 570 hours for a dense
specimen compressed isotropically at a pressure of 30 or 50 MPa). On the other
hand, the higher the degree of compression the greater part of grain crushing has
been attained [13]. Hence, at the same stress level, for samples of Toyoura and
Sacramento river sand such higher values of uniformity coefficient are obtained
compared to samples of other sands. For that reason, these two tests on Toyoura
and Sacramento river sand are excluded for further study.

According to Figure 4.1, an empirical relation for the dependency of 𝐶𝑢 on stress
level is suggested as following

• For triaxial response:

𝐶𝑢 = 0.1445𝑥
0.0074𝑥 + 1.873 + 𝐶𝑢0 (4.2)

with

𝑥 = 𝜎𝑡𝑥
𝜎𝑟𝑒𝑓

𝐶𝑢0
𝑑50,0
𝑑𝑟𝑒𝑓

(4.3)

in which 𝜎𝑡𝑥 is the cell pressure of a triaxial test, the reference pressure 𝜎𝑟𝑒𝑓
is 100𝑘𝑃𝑎 and the reference grain diameter 𝑑𝑟𝑒𝑓 is 1𝑚𝑚 .

• For oedometer response:

𝐶𝑢 = 0.0036𝑥 + 𝐶𝑢0 (4.4)

with

𝑥 = 𝜎𝑜𝑒𝑑
𝜎𝑟𝑒𝑓

𝐶𝑢0
𝑑50,0
𝑑𝑟𝑒𝑓

(4.5)

where 𝜎𝑜𝑒𝑑 is the applied effective vertical stress of a oedometer test.

As the considered sands are mainly Quartz sands, the proposed relation may not
be applicable for other types of sand which are more sensitive for crushing such
as carbonate sediments, decomposed granite or residual soils. In addition, the
effects of particle shape, particle size, initial grading, water content could cause
some scatter when different sands are considered.

4.2.2. Minimum and maximum void ratio
Literature review
The maximum void ratio, 𝑒𝑚𝑎𝑥, is the void ratio corresponding to the loosest state
of the grain assembly, the minimum void ratio, 𝑒𝑚𝑖𝑛, is the void ratio corresponding
to its densest state. Some general properties following from [20, 28, 29] are
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Table 4.2: Considered void ratios use to represent the minimum and maximum void ratio

Sand 𝑒𝑚𝑖𝑛 𝑒𝑚𝑎𝑥 𝑒𝑑𝑒𝑛𝑠𝑒 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑 𝑒𝑙𝑜𝑜𝑠𝑒 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑
Hostun sand 0.61 0.96 0.67 0.9
Quartz sand 0.68 0.9
Toyoura sand 0.61 0.98 0.60 − 0.62 0.82 − 0.84
Silica sand 0.63 0.88 0.60 − 0.63 0.75

• 𝑒𝑚𝑖𝑛 decreases with increasing 𝐶𝑢 due to filling of the voids between larger
grains by smaller ones. 𝑒𝑚𝑖𝑛 decreases with diminishing angularity of grains.
𝑒𝑚𝑖𝑛 increases as roundness and sphericity decrease.

• 𝑒𝑚𝑎𝑥 decreases with increasing 𝐶𝑢. 𝑒𝑚𝑎𝑥 increases as particle roundness
and particle sphericity decrease.

Rohe [22] suggested that the change of maximum and minimum void ratio can be
related to a change of the uniformity coefficient 𝐶𝑢 and the shape of grains as

𝑒𝑚𝑖𝑛,𝑚𝑎𝑥 = 𝑓(𝐶𝑢(𝑅,𝑆)) (4.6)

in which 𝑅 is grain roundness and 𝑆 is the grain sphericity. However, it is not
straightforward to generalise Equation (4.6) for various sands since information on
R and S is often missing and complex to determine.

Elaborating empirical correlation between the void ratios and stress level
For the purpose of simplicity, an empirical correlation between the void ratios and
stress level is elaborated replacing Equation (4.6). During one dimensional tests,
relations between 𝜎𝑜𝑒𝑑 and the current void ratio are determined for both loosest
and densest state of each sand. The loosest state of sand (𝑒𝑙𝑜𝑜𝑠𝑒 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑) is
used as reference for 𝑒𝑚𝑎𝑥 and the densest state of sand (𝑒𝑑𝑒𝑛𝑠𝑒 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑) is
used as reference for 𝑒𝑚𝑖𝑛. Table 4.2 shows the value of void ratio used to build
up the relation for 𝑒𝑚𝑖𝑛 and 𝑒𝑚𝑎𝑥.

The decrease of minimum and maximum void ratio in oedometer tests for four
different sands in Table 1 is quantified and illustrated in Figure 4.2. The horizontal
axis represents a non-dimensional stress which is the ratio between applied vertical
effective stress of a oedometer test 𝜎𝑜𝑒𝑑 and reference pressure 𝜎𝑟𝑒𝑓 of 100 kPa.
The vertical axis represents the change of minimum and maximum void ratio for
increasing stress level: Δ𝑒𝑚𝑖𝑛 = 𝑒𝑚𝑖𝑛 − 𝑒𝑚𝑖𝑛,0 and Δ𝑒𝑚𝑎𝑥 = 𝑒𝑚𝑎𝑥 − 𝑒𝑚𝑎𝑥,0.

From Figure 4.2 it can be seen that most of the sands show similar behaviour
for stresses ranging between 0 and 100 MPa. Based on that, the following empir-
ical relations are suggested for the change of minimum and maximum void ratio
depending on stress level,

Δ𝑒𝑚𝑖𝑛 =
0.0132 𝜎𝑜𝑒𝑑𝜎𝑟𝑒𝑓

0.0159 𝜎𝑜𝑒𝑑𝜎𝑟𝑒𝑓
+ 7.77 (4.7)

Δ𝑒𝑚𝑎𝑥 =
0.0072 𝜎𝑜𝑒𝑑𝜎𝑟𝑒𝑓

0.0119 𝜎𝑜𝑒𝑑𝜎𝑟𝑒𝑓
+ 6.37 (4.8)
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Figure 4.2: Dependency of the minimum (a) and maximum (b) void ratio on stress level for various
sands listed in Table 4.1.

These two relations are supposed to be applicable for Quartz sands and re-
stricted for one dimensional loading mode only. The relations between maximum
and minimum void ratio and triaxial loading mode are important and should be in-
cluded in Equations 4.7 and 4.8. However the data needed to buid up such relations
is missing, which can be considered in future research.

4.2.3. Peak strength
Various investigations examining soil behaviour in triaxial compression tests at high
confining stresses have been carried out in the past. In several conclusions re-
garding the Mohr-Coulomb secant friction angle at high stresses it is stated that
the friction angle in compression decreases with increasing confining stress while
approaching an asymptotical limit value at high stress [13, 23]. Other researchers
have found that the friction angle in compression tests decreases to a minimum
value and then increases to a constant value at higher stress level [4, 12, 24]. It
is also found that the volumetric and axial strains at failure in compression tests
become more contractive with increasing confining stress [4, 12–14, 23, 24].

Bolton [3] proposed an empirical relation to express that the peak friction angle
and dilatancy angle of a sand depend on the stress level. It yields

𝜑′
𝑚𝑎𝑥 − 𝜑′

𝑐𝑟𝑖𝑡 = 3𝐼𝑅 (4.9)

The maximum dilatancy rate at failure state is defined as,

(−d𝜀𝑣𝑜𝑙
d𝜀𝑣𝑒𝑟𝑡

)
𝑚𝑎𝑥

= 0.3𝐼𝑅 (4.10)

𝜑′
𝑚𝑎𝑥 and 𝜑′

𝑐𝑟𝑖𝑡 are the maximum and critical state friction angle respectively,
and the relative dilatancy index 𝐼𝑅 (non-dimensional value) is defined as,

𝐼𝑅 = 𝑅𝐷[𝑄 − ln(𝑝′)] − 𝑅 (4.11)

in which 𝑅𝐷 is the relative density of sand and 𝑝′ is the applied mean effective
stress level. 𝑄 and 𝑅 are relative dilatancy indices for which Bolton suggested the
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Figure 4.3: Comparison of triaxial test data on Quartz sand (𝑅𝐷 = 95%) at high stress levels [3, 14].
a) relation between stress level and friction angle, b) relation between stress level and dilatancy angle.

values 𝑄 = 10 and 𝑅 = 1 for Quartz sand. (The value of Q depends on the units
taken for 𝑝′: kPa is used here)

The dilatancy angle can be calculated from drained triaxial tests according to
Schanz and Vermeer [30] as follows,

sin𝜓 = −
d𝜀𝑣𝑜𝑙
d𝜀𝑣𝑒𝑟𝑡

2− d𝜀𝑣𝑜𝑙
d𝜀𝑣𝑒𝑟𝑡

(4.12)

Combining Equations (4.10) and (4.12), the maximum dilatancy angle can be
expressed in the form,

sin 𝜓 = 0.3𝐼𝑅
2 + 0.3𝐼𝑅

(4.13)

The triaxial test results of Luong et al. [14] performed on very dense Fontainebleau
sand (𝑒 = 0.56,𝑅𝐷 = 95%) with different cell pressure levels ranging between 0.5
MPa and 30 MPa are used to evaluate above relationship. Results show that fric-
tion angle and dilatancy angle depend on mean stress level and can be calculated
based on Bolton’s relation 4.11, 4.9 and 4.13. The comparison between results of
laboratory triaxial tests and the empirical relation is shown in Figure 4.3. Based on
the results it can be concluded that the relations derived by Bolton [3] and Schanz
and Vermeer [30] are in good agreement with the triaxial test results and can be
used to describe the evolution of strength at high stress levels.

4.2.4. Stress dependency of stiffness
Literature review
Ohde [31] studied the behaviour of sand in compression tests and derived the
stress-dependent oedometer modulus following a power law as

𝐸 = 𝐸𝑟𝑒𝑓( 𝑝
𝑝𝑟𝑒𝑓 )

𝑤
(4.14)

in which 𝐸𝑟𝑒𝑓 is the reference value of stiffness 𝐸50 at reference pressure 𝑝𝑟𝑒𝑓

(Table 4.1) and 𝑤 is an exponential factor. Schanz and Vermeer [32] concluded
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Figure 4.4: Dependency of exponent 𝑤 (Equation 4.14 on cell pressure level for various granular soils
under triaxial test conditions for sands listed in Table 4.1.

that for oedometer and triaxial tests the exponent 𝑤 is in a range between 0.4 and
0.75 for different types of sands and influenced by the mean grain size 𝑑50 and the
uniformity coefficient 𝐶𝑢. Janke [33] showed that 𝑤 decreases with decreasing 𝐶𝑢,
increasing angularity and increasing 𝑑50. According to Herle and Gudehus[34], the
value of 𝑤 = 0.33 is considered as a lower bound, corresponding to the behaviour of
elastic spheres without rearrangements. 𝑤 = 1 is the upper bound which represents
the familiar straight compression line in a semi-logarithmic plot.

Normalised function of stiffness depending on the stress level and grain crushing
To understand the dependency of exponent 𝑤 on stress level, the value of 𝑤 is
calculated following Equation 4.14, using data from triaxial test results for various
sands. The results are illustrated in Figure 4.4. It can be seen that the exponent
𝑤 is in the range between 0.2 and 1. It is observed that during the increase of
confining stress, the exponent 𝑤 reaches its highest value, after which it reduces
significantly towards a minimum and then it may rise somewhat.

Figure 4.5 shows the dependency of 𝑤 on both stress level and uniformity. The
graph can be divided into three zones.

• Zone 1, ( 𝜎𝑡𝑥𝜎𝑟𝑒𝑓
.𝐶𝑢0.𝐶𝑢. 𝑑50,0

𝑑𝑟𝑒𝑓
) ≤ 5: 𝑤 increases due to the densification of soil

during loading. Assuming 𝑤 = 0.2 is the lowest value for pressures from 0 to
200 kPa, the increase of 𝑤 in zone 1 can be estimated as

𝑤 = (0.179𝑙𝑛(𝑥) + 0.712)𝑅𝐷 (4.15)

where 𝑥 = 𝜎𝑡𝑥𝜎𝑟𝑒𝑓
.𝐶𝑢0.𝐶𝑢. 𝑑50,0

𝑑𝑟𝑒𝑓
and 𝑅𝐷 is the relative density of sand

• Zone 2, 5 < ( 𝜎𝑡𝑥𝜎𝑟𝑒𝑓
.𝐶𝑢0.𝐶𝑢. 𝑑50,0

𝑑𝑟𝑒𝑓
) ≤ 1300: 𝑤 reduces significantly. In this zone,

the soil starts to be crushed leading to a rapidly increasing 𝐶𝑢. The more
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Figure 4.5: Normalised function of 𝑤 depending on pressure and uniformity.

crushing, the lower value of exponent 𝑤 is obtained. 𝑤 can be defined in
zone 2 as

𝑤 = (0.126𝑙𝑛(𝑥) + 1.202)𝑅𝐷 (4.16)

• Zone 3, ( 𝜎𝑡𝑥𝜎𝑟𝑒𝑓
.𝐶𝑢0.𝐶𝑢. 𝑑50,0

𝑑𝑟𝑒𝑓
) > 1300: crushing process is nearly finished, and

soil is densifying again, hence a gradual increase of 𝑤 is observed, which can
be defined as

𝑤 = (0.091𝑙𝑛(𝑥) − 0.356)𝑅𝐷 (4.17)

The empirical relations in Equations (4.15), (4.16) and (4.17) are used to es-
timate the value of 𝑤 for increasing stress level and grain crushing for different
sands. Hence, the dependency of stiffness on stress level can be calculated follow-
ing Equation (4.14).

It could be argued that if the data are not enough for a huge scatter in Figure
4.5, then the empirical evidence is limited, but with the used expression for the
parameters of influence, there seems to be a trend that indicates three stages
in the evolution of the level of stress-dependency of stiffness, which is explained
physically. A third order polynomial function could have been used, but instead the
authors simply divided the function into three zones, and quantified the function
constants based on the limited data. These constants, that are hard-coded in the
model, could be updated in the future when more data is taken into consideration.
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The purpose here is to identify this trend in stress-level dependency and to describe
it at least qualitatively.

To conclude, the empirical relations above are developed to estimate the de-
pendency of the uniformity coefficient, void ratio, strength and stiffness on the
stress level. In the following section, the implementation of such relations into a
constitutive relationship is introduced.

4.3. Modified hypoplastic model for sand at high stress lev-
els

Hypoplasticity is an anelastic (dissipative) and incrementally nonlinear constitutive
theory of granular materials, which requires neither a yield surface nor a decompo-
sition of strain rate into elastic and plastic portion Niemunis [35]. In the framework
of hypoplastic constitutive relations dilation, contraction and the dependency of
stiffness on stress and density is incorporated. The hypoplastic model was first
proposed in 1978 by Kolymbas [36]. It suffered from difficulties in determining
the input parameters as well as its physical meaning for such rate type constitutive
equation. Until 1991, a solution was proposed by Kolybas [37] which combined
the influences of pressure and density into the model. Later in 1996, the pressure-
dependent limit void and stress ratios were introduced by Bauer [38] and Gudehus
[39] into the hypoplastic relation. This lead to a possible easy and robust way of
model parameter determination and consequently, more and more validation of the
model with laboratory tests. A shortcoming of the model by Bauer and Gudehus
was that it did not predict proper shape of the critical state locus in the octahedral
plane. Hence, another modification of the model is attributed to von Wolffersdorff
[40], who modified the Lode-angle dependency in such a way that it corresponds
to the Matsuoka-Nakai limit surface.

The hypoplastic constitutive model by von Wolffersdorff [40] will be used in this
study as the basic model for further development. The Cauchy (effective) stress
tensor 𝝈 and the void ratio 𝑒 are state variables. It is assumed that the soil is
a homogeneous granular body whose state is fully described by these two state
variables. The constitutive relation is presented in the form which consists of terms
linear in strain rate similar to hypoelasticity as well as additional terms that are
nonlinear in strain rate. It is written as

�̊� = 𝑓𝑠(𝐋 ∶ ̇𝜺 + 𝑓𝑑𝐍 ∥ ̇𝜺 ∥) (4.18)

with
𝐋 = 𝐹 2 ̇𝜺 + 𝑎2tr(�̂� ⋅ ̇𝜺)�̂� (4.19)

𝐍 = 𝑎𝐹 ∥ ̇𝜺 ∥ (�̂� + �̂�𝑑) (4.20)

it yields

�̊� = 𝑓𝑒𝑓𝑏
1

tr(�̂�2) [𝐹 2 ̇𝜺 + 𝑎2tr(�̂� ⋅ ̇𝜺)�̂� + 𝑓𝑑𝑎𝐹 ∥ ̇𝜺 ∥ (�̂� + �̂�𝑑)] (4.21)
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in which 𝐋 and𝐍 are the fourth and second order constitutive tensors, respectively,
both functions of stress. The first part in Equation 4.18 is the hypoelastic part which
linear in ̇𝜺 and the second part is non-linear in ̇𝜺 due to the Euclidean norm of the
strain rate tensor ∥ ̇𝜺 ∥= √tr2( ̇𝜺).

Further,

�̂� = 𝝈
tr(𝝈) (4.22)

is the stress ratio tensor and
�̂�𝑑 = �̂� − 1/3𝐈 (4.23)

is the deviatoric part of �̂� and 𝐈 is the unit tensor.
The scalars 𝑎 and 𝐹 , in Equation 4.21 depend on the invariants of the Cauchy

stress tensor 𝝈 and the void ratio 𝑒. They determine the Matsuoka-Nakai critical
state surface in stress space as

𝑎 =
√

3(3 − sin 𝜑𝑐)
2
√

2sin 𝜑𝑐
(4.24)

in which 𝜑𝑐 is the friction angle in critical states and

𝐹 = √1
8 tan2 𝜓 + 2 − tan2 𝜓

2 +
√

2tan 𝜓 cos3𝜗
− 1

2
√

2
tan 𝜓 (4.25)

in which the invariants tan 𝜓 and cos3𝜗 read

tan 𝜓 =
√

3 ∥ �̂�𝑑 ∥ (4.26)

and

cos3𝜗 = −
√

6 tr(�̂�3
𝑑)

[tr(�̂�2
𝑑)] 3

2
(4.27)

The scalar 𝐹 specifies the shape of the Matsuoka-Nakai yield function. The
critical state surface of this model can be written as

𝑓 = 1
2 ∥ �̂� ∥ −𝐹 2 4 sin 𝜑𝑐

3(3 − sin 𝜑𝑐) (4.28)

The pycnotropic functions 𝑓𝑑 and 𝑓𝑒 in Equation 4.21 are density dependent
which are defined as

𝑓𝑑 = ( 𝑒 − 𝑒𝑑
𝑒𝑐 − 𝑒𝑑

)
𝛼

, 𝑓𝑒 = (𝑒𝑐
𝑒 )

𝛽
(4.29)

and the barotropic function 𝑓𝑏 is pressure dependent which is written as

𝑓𝑏 = ℎ𝑠
𝑛 (1 + 𝑒𝑖

𝑒𝑖
)( 𝑒𝑖0

𝑒𝑐0
)

𝛽
( − tr(𝝈)

ℎ𝑠
)

1−𝑛
[3 + 𝑎2 −

√
3𝑎( 𝑒𝑖0 − 𝑒𝑑0

𝑒𝑐0 − 𝑒𝑑0
)

𝛼
]

−1
(4.30)
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Figure 4.6: Dependency of reference void ratios on stress level (for Hostun sand, 𝑅𝐷 = 90%).
in which 𝛼, 𝛽, 𝑛 are material factors which are constant in the exponents; ℎ𝑠

is the granular hardness; 𝑒𝑐0, 𝑒𝑑0, 𝑒𝑖0 are the critical void ratio, the minimum void
ratio and the maximum void ratio at zero mean pressure, respectively. Altogether,
there are eight parameters defining the basic hypoplastic model according to von
Wolffersdorff [40], i.e. 𝜑𝑐, ℎ𝑠, 𝑛, 𝑒𝑑0, 𝑒𝑐0, 𝑒𝑖0, 𝛼 and 𝛽.

Such parameters are usually calibrated at low stress levels (0 − 200 kPa) for
which they are assumed to be constant. As shown in Section 4.2, high stress levels
and grain crushing may have a significant influence on the material behaviour. In
the following section a method will be introduced to modify the hypoplastic model
such that high stress levels and grain crushing behaviour can be considered.

4.3.1. Modified minimum and maximum void ratio
Based on a regression analysis of experimental data of oedometer tests, Section
4.2.2 shows the dependency of the reference void ratio on the applied vertical
stress. As a consequence of grain crushing, both minimum and maximum void
ratios decrease with the increasing applied stress (see Figure 4.2). Therefore it is
proposed to redefine reference void ratios at each stress level to account for grain
crushing. Based on the initial values of reference void ratios at zero pressure, 𝑒𝑑0
and 𝑒𝑐0, the generalized form of modified reference void ratios according to Rohe
[22] and Engin [10] can be defined as

𝑒𝑚
𝑑0 = 𝑒𝑑0 − Δ𝑒𝑚𝑖𝑛 (4.31)

𝑒𝑚
𝑐0 = 𝑒𝑐0 − Δ𝑒𝑚𝑎𝑥 (4.32)

and
𝑒𝑚

𝑖0 = 1.15𝑒𝑚
𝑐0 (4.33)

where Δ𝑒𝑚𝑖𝑛 and Δ𝑒𝑚𝑎𝑥 follow the correlations in Equation (4.7) and (4.8), re-
spectively. The effects of modifying reference void ratios depending on stress levels
are shown in Figure 4.6.

4.3.2. Modified parameter 𝛼
Herle and Gudehus [34] indicated that the peak state in a triaxial compression test
simulation with the hypoplastic model can be controlled by considering the exponent
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Figure 4.7: Relation between a) friction angle at peak 𝜑𝑝 versus mean pressure 𝑝 and b) exponent 𝛼
versus mean pressure 𝑝 (for Hostun sand, 𝑅𝐷 = 90%).

𝛼. They defined the following relation between 𝛼 and maximum friction angle

𝛼 =
ln[6 (2+𝐾𝑝)2+𝑎2𝐾𝑝(𝐾𝑝−1−tan𝜈𝑝)

𝑎(2+𝐾𝑝)(5𝐾𝑝−2)√4+2(1+tan𝜈𝑝)2
]

ln((𝑒 − 𝑒𝑑)/(𝑒𝑐 − 𝑒𝑑)) (4.34)

With the peak ratios

𝐾𝑝 = 1 + sin 𝜑𝑝
1 − sin 𝜑𝑝

(4.35)

tan 𝜈𝑝 = 2𝐾𝑝 − 4 + 5𝐴𝐾2
𝑝 − 2𝐴𝐾𝑝

(5𝐾𝑝 − 2)(1 + 2𝐴) − 1 (4.36)

in which

𝐴 = 𝑎2

(2 + 𝐾𝑝)2 [1 − 𝐾𝑝(4 − 𝐾𝑝)
5𝐾𝑝 − 2 ] (4.37)

and

𝑎 =
√

3(3 − sin 𝜑𝑐)
2
√

2sin 𝜑𝑐
(4.38)

The value of friction angle at peak 𝜑𝑝 is determined following Bolton’s Equation
(4.9) which is stress dependent. Hence, it is possible to determine 𝛼 corresponding
to each stress level as shown in Figure 4.7 for a reference stress of 𝜎𝑟𝑒𝑓 = 100 kPa.
The value of exponent 𝛼 reduces significantly with increasing stress level, and can
even become negative.

4.3.3. Modified parameter 𝛽
Through the factor 𝑓𝑠 = 𝑓𝑒.𝑓𝑏 the calculated stiffness modulus 𝐸 increases with
increasing density and stress level [34]. For a measured 𝐸 corresponding to partic-
ular stress level, density and direction of stretching, exponent 𝛽 can be calculated
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from Equation 4.21, thus it follows

𝛽 =
𝑙𝑛[𝐸 3+𝑎2−𝑓𝑑0𝑎

√
3

3+𝑎2−𝑓𝑑𝑎
√

3
𝑒𝑖1+𝑒𝑖

𝑛
ℎ𝑠

( 3𝑝𝑠
ℎ𝑠

)
𝑛−1

]
𝑙𝑛(𝑒𝑖/𝑒) (4.39)

Herle and Gudehus [34] suggested to determine parameter 𝛽 by considering the
ratio of stiffness modulus at two different void ratios but at the same stress level.
Hence, 𝛽 is constant and the influence of 𝑝𝑠 in the calculation of 𝛽 is neglected.
Using this approach, 𝛽 is limited to the range of 0 ≤ 𝛽 ≤ 2.5 and 𝛽 ≈ 1 is obtained
for many sands.

For the modified hypoplastic model exponent 𝛽 is proposed to be defined al-
ternatively. Consider a sand which has the same initial void ratio but at different
stress level, Equation (4.39) then becomes

( 𝑒𝑖1𝑒1
)𝛽1

( 𝑒𝑖2𝑒2
)𝛽2

= 𝐸1
𝐸2

3 + 𝑎2 − 𝑓𝑑2𝑎
√

3
3 + 𝑎2 − 𝑓𝑑1𝑎

√
3

𝑒𝑖1
1 + 𝑒𝑖1

1 + 𝑒𝑖2
𝑒𝑖2

(𝑃1
𝑃2

)
(𝑛−1)

(4.40)

in which the hypoplastic void ratios depend on the mean stress and are defined
as

𝑒𝑖
𝑒𝑖0

= 𝑒𝑐
𝑒𝑐0

= 𝑒𝑑
𝑒𝑑0

= exp[ − (−tr𝝈
ℎ𝑠

)
𝑛

] = exp[ − (−3𝑝𝑠
ℎ𝑠

)
𝑛

] (4.41)

Hence, 𝑓𝑑1 = 𝑓𝑑2 and the term
3+𝑎2−𝑓𝑑2𝑎

√
3

3+𝑎2−𝑓𝑑1𝑎
√

3 becomes 1.
The relation between stiffness 𝐸 and mean stress 𝑝 follows the power law in

Equation (4.14). Therefore, 𝐸1/𝐸2 = (𝑃1/𝑃2)𝑤 and Equation (4.40) can be written
as

(𝑒𝑖2
𝑒2

)
𝛽2 = (𝑒𝑖1

𝑒1
)

𝛽1 1 + 𝑒𝑖1
𝑒𝑖1

𝑒𝑖2
1 + 𝑒𝑖2

(𝑃2
𝑃1

)
𝑤+𝑛−1

(4.42)

Consider 𝛽1 is the reference value of 𝛽 which is determined following Herle and
Gudehus [34] at a reference mean stress 𝑝1 of 100 kPa, hence

𝛽2 =
𝑙𝑛[( 𝑒𝑖1𝑒1

)
𝛽𝑟𝑒𝑓 1+𝑒𝑖1𝑒𝑖1

𝑒𝑖21+𝑒𝑖2
( 𝑃2

𝑃𝑟𝑒𝑓
)

𝑤+𝑛−1
]

𝑙𝑛( 𝑒𝑖2𝑒2
)

(4.43)

where 𝑤 is defined by Equations (4.15), (4.16) and (4.17)
The relation between 𝛽 and mean stress 𝑝 is shown in Figure 4.8 for Hostun

sand. A slight increase in 𝛽 at low stress level to a peak value of about 2.5 can be
observed, after which a significant decrease of 𝛽 from 2.5 to -2.5 follows.

In summary, a modified hypoplastic model is proposed in such way that param-
eters 𝑒𝑐0, 𝑒𝑑0, 𝑒𝑖0, 𝛼, 𝛽 are stress dependent. For the basic hypoplastic model,
there are eight parameters to be determined: 𝜑𝑐, ℎ𝑠, 𝑛, 𝑒𝑐0, 𝑒𝑑0, 𝑒𝑖0, 𝛼, 𝛽. In
the modified hypoplastic model, nine parameters need to be determined: 𝜑𝑐, ℎ𝑠,
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Figure 4.8: Relation between exponent 𝛽 versus normalised stress 𝑝 (for Hostun sand, 𝑅𝐷 = 90%).

𝑛, 𝑒𝑐0, 𝑒𝑑0, 𝑒𝑖0, 𝛽𝑟𝑒𝑓, 𝐶𝑢0 and 𝑑50 . Parameter 𝛼 can be eliminated as it is calcu-
lated directly from the mean stress level. 𝛽𝑟𝑒𝑓 is the value of 𝛽 at reference stress
level of 100 kPa. 𝐶𝑢0 and 𝑑50 are two additional physical input parameters used to
account for grain crushing. The determination of standard hypoplastic parameters
follows Herle and Gudehus [34].

4.4. Validation of the modified hypoplastic model
The modified hypoplastic model is validated by simulating several triaxial tests for
three different sands, i.e. Hostun, Fontainebleau and Toyoura at stress levels be-
tween 0.5 and 30 MPa. The modified hypoplastic model is implemented in UMAT
format [41] and triaxial test simulations are done using a single Gauss point ele-
ment test. The numerical results are compared with laboratory test results which
are available in literature. The hypoplastic input parameters (which were calibrated
for stress levels between 50 and 500 kPa) for the three sands are listed in Table
4.3.

In the previous section, it is suggested to modify the reference void ratios, expo-
nent 𝛼 and exponent 𝛽 depending on the stress level. The effects of each parameter
adaption are illustrated in Figure 4.9 for Hostun dense sand with relative density
of 90%. Note that the simulations are carried out with the original parameters of
Table 2 which where determined for the reference stress level. At a cell pressure
of 10 MPa, the original hypoplastic model predicts too high peak friction angle and
too much dilatancy, whereas in the triaxial test, the friction angle tends towards
the critical value and only contractive behaviour is observed. In other words, in
the simulation the dense Hostun sand at very high cell pressure behaves in a quite

Table 4.3: Hypoplastic parameters for Hostun sand [34], Toyoura sand [34] and Fontainebleau sand
[14].
Parameter 𝜑𝑐[∘] ℎ𝑠[𝑀𝑃𝑎] 𝑛 𝑒𝑑0 𝑒𝑐0 𝑒𝑖0 𝛼 𝛽 𝐶𝑢0 𝑑50[𝑚𝑚]
Hostun 32 1000 0.29 0.61 0.96 1.09 0.13 2.0 1.69 0.32
Toyoura 32 120 0.69 0.61 0.98 1.13 0.12 1.0 1.5 0.23
Fontainebleau 32 10000 0.56 0.54 0.94 1.08 0.08 1.2 1.48 0.174
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Figure 4.9: Triaxial response of dense Hostun sand (𝑅𝐷 = 90%) at high cell pressures of 10 MPa.
Comparison of test result [12] with different hypoplastic model modifications. a) stress ratio versus
vertical strain, b) volumetric strain versus vertical strain.

similar way as loose sand. The modification for the reference void ratio suggested
by Rohe[22] and Engin [10] only slightly improves the peak strength and dilative
behaviour. The modification of 𝛼 results in quite accurate peak friction angle com-
pared to the test, however, the soil stiffness is still too high. Finally, using also
the modification of exponent 𝛽, the stiffness and dilative behaviour is reduced sig-
nificantly to correspond with the test data. Hence, the modified hypoplastic model
proposed in the previous section results in simulations which are in good agreement
with the triaxial laboratory test results.

More sands at different stress levels were selected to validate the model. Figures
4.10, 4.11 and 4.12 show the comparison between triaxial simulations at increased
cell pressure using the original and the modified hypoplastic model with test results
for three sands: Hostun sand, Toyoura sand and Fontainebleau sand, respectively.
Each figure is divided into three rows, in which the first row shows the laboratory
test results (Figure a and b), the second row shows the simulation results using the
original hypoplastic model (Figure c and d) and the last one shows the simulation
results using the modified hypoplastic model (Figure e and f). In the first column
of each figure the relation between stress ratio 𝜎1/𝜎3 and axial strain 𝜀1 is plotted,
and the second column illustrates the relation of volumetric strain 𝜀𝑣 versus axial
strain 𝜀1. For all simulations using the original hypoplastic model of all three sands,
there is no contractive behaviour observed even at very high confining stresses
(Figure 4.10d, 4.11d and 4.12d). Moreover, the use of a constant value for 𝛼 in the
original hypoplastic model overestimates the peak friction angle, especially at high
stress levels, whereas, the modified hypoplastic model results in quite accurate
peak strength compared to the test data of all three sands. At very high stress
level (larger than 5 MPa) the modified hypoplastic model results in a soil stiffness
response that is much softer than for the original hypoplastic model which is quite
similar to the test results. From the test data in Figure 4.10a, 4.11a and 4.12a, it
is observed that there is a slight reduction of critical state friction angle to lower
values with increasing stress level. In the case of Toyoura sand, Figure 4.11a, after
reduction to a low value, the critical state friction angle rises somewhat. Hence,
further studies are necessary to get a better understanding of the change of the
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critical state friction angle when crushing occurs.
To summarise, the validation of the modified hypoplastic model using triaxial

test data shows the added value with regard to the original hypoplastic model. This
indicates that the modified hypoplastic model considering grain crushing effects is
very well suited to model the behaviour of sands for a wide range of stress levels.

4.5. Conclusion
The characteristics of sand at high stress levels and related to grain crushing are
analysed. Based on these analyses, it is proposed to modify and improve the hy-
poplastic constitutive model to account for the influence of grain crushing. In the
modified model, two well-known physical parameters, uniformity coefficient 𝐶𝑢 and
mean grain size diameter 𝑑50, are included. Such parameters are straightforward
to determine making the proposed model convenient to use.

The empirical relations involving grain-crushing of the modified hypoplastic model
are implemented in Plaxis or in MPM as a user defined soil model. A series of tri-
axial tests on three different sands were used to calibrate and validate the model.
Comparison between experimental data and numerical simulations demonstrates
that the modified hypoplastic model is capable of predicting both stress and strain
accurately.

The modified hypoplastic model for crushed sand is applied to model the instal-
lation process of a jacked pile in sand in chapter 5 (section 5.6). Results from this
application shows that the simulation with the modified hypoplastic model gives a
better correspondence with the experiments than the original hypoplastic model.
Hence taking into account grain crushing in the hypoplastic constitutive model can
be considered as one of the important factors to successfully model the pile instal-
lation as well as predicting the pile bearing capacity.

This study only considers stress dependency of five parameters 𝛼,𝛽, 𝑒𝑖, 𝑒𝑐, 𝑒𝑑 of
the hypoplastic model. However, parameters ℎ𝑠, 𝑛 and 𝜑𝑐 are most likely influenced
by grain crushing and stress level as well [34]. Hence, further investigation should
be carried out to improve the model, which may lead to a better correspondence
with test data.
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Figure 4.10: Triaxial response of Hostun sand at cell pressures between 50 kPa and 15 MPa, a) and
b) are test results [12], c) and d) are simulation results using original hypoplastic model, e) and f) are
simulation results using modified hypoplastic model.
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Figure 4.11: Triaxial response of Toyoura sand at cell pressures between 98 kPa and 29400 kPa, a) and
b) are test results [13], c) and d) are simulation results using original hypoplastic model, e) and f) are
simulation results using modified hypoplastic model.



4

80 4. Hypoplastic model for grain crushing

0 0.05 0.1 0.15 0.2 0.25 0.3
0

1

2

3

4

5

6

7

8

ε
1
 [%]

st
re

ss
 r

at
io

, σ 1/σ
3 [−

]

a) test data, σ ∼  ε
1

0 0.05 0.1 0.15 0.2 0.25 0.3
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

ε
1
 [%]

ε v [%
]

b) test data, ε
v
 ∼  ε

1

0 0.05 0.1 0.15 0.2 0.25 0.3
0

1

2

3

4

5

6

7

8

ε
1
 [%]

st
re

ss
 r

at
io

, σ 1/σ
3 [−

]

c) original HP, σ ∼  ε
1

0 0.05 0.1 0.15 0.2 0.25 0.3
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

ε
1
 [%]

ε v [%
]

d) original HP, ε
v
 ∼  ε

1

0 0.05 0.1 0.15 0.2 0.25 0.3
0

1

2

3

4

5

6

7

8

ε
1
 [%]

st
re

ss
 r

at
io

, σ 1/σ
3 [−

]

e) modified HP, σ ∼  ε
1

0 0.05 0.1 0.15 0.2 0.25 0.3
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

ε
1
 [%]

ε v [%
]

f) modified HP, ε
v
 ∼  ε

1

 

 

0.5 MPa 2 MPa 4 MPa 6 MPa 16 MPa 30 MPa

Figure 4.12: Triaxial response of Fontainebleau sand at cell pressures between 500 kPa and 30 MPa, a)
and b) are test results [14], c) and d) are simulation results using original hypoplastic model, e) and f)
are simulation results using modified hypoplastic model.
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5
Jacked installation in dry sand

5.1. Introduction
During installation, jacked displacement piles are pushed into the ground leading to
a distortion of the surrounding soil. As a result, large shear strains and significant
increase of stresses surrounding the pile tip are observed [4]. This complex installa-
tion process will substantially influence the bearing capacity of the pile foundation.

In this chapter, numerical simulations are presented for modelling the installa-
tion process of jacked displacement piles in sand using the aforementioned MPM
Software. Both the Mohr Coulomb model and the hypoplastic model are used as a
constitutive model to investigate the differences between those two models. Choos-
ing a suitable constitutive model for the soil plays a crucial role in geotechnical
numerical modelling. In this study, the hypoplastic constitutive model in the fomu-
lation of Von Wolffersdorff [5] is used. This model is able to incorporate dilation,
contraction and the dependence of stiffness on stress and density. Centrifuge tests
[6, 7] showed that very high stresses occur at the pile tip during the installation
process. The range of stress may increase up to 100 times the initial value. Under
such a large increase of stress in the soil, a decrease in a dilatancy effect caused
by the particle crushing is observed, which leads to significant reduction on shear
strength of the soil [8–11]. These effects are addressed by adapting the hypoplastic
model parameters accordingly in order to successfully simulate a centrifuge test as
presented in this work [2]. Two different initial densities of sand are investigated,
namely loose (𝑅𝐷 = 36%, e0 = 0.75) and medium-dense sand (𝑅𝐷 = 54%, e0 =
0.68). Afterwards simulations of a static load test following the pile installation pro-
cess are carried out. The numerical simulation results are compared with results
of pile installation and static load test experiments in the centrifuge. It should be
noted that a shortcoming of the centrifuge test is, that it captures the size effect due
to stress level but not due to the mean grain size in the case of shear localization.

This chapter is part of three papers [1–3].
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Table 5.1: Properties of Baskarp sand.

Parameter Value Dimension
Density of soil particles 2647 𝑘𝑔/𝑚3

𝑑10 90 𝜇𝑚
𝑑50 130 𝜇𝑚
𝑑90 200 𝜇𝑚
Minimum porosity 34 %
Maximum porosity 47 %
Friction angle at 𝑅𝐷 = 50% 41 degree

However, choosing a pile with large dimensions relative to the grain size can mini-
mize the error of the grain size effect [12]. Moreover, centrifuge tests are preferred
to field tests because of the well-defined testing and material conditions compared
to the complex characteristics of sand in natural condition. In the last section, MPM
results are compared with another method named Press Replace Method (PRM)
which is a simple method used in finite element code for simulating boundary-value
problems that involves penetration of an object into a continuum.

5.2. Centrifuge test
5.2.1. Test set-up
The performed numerical calculations are based on the geometry of the centrifuge
test carried out at Deltares. The centrifuge experiments performed are described
in detail in Huy[13] and Holscher et al. [14]. Figure 5.1, shows the test set up. The
tests were done in a 0.6 m diameter and 0.79 m high steel container filled with sand
(sample height 0.46 m). A loading system with plungers was mounted on top of
the container. It consisted of two hydraulic plungers that were installed in a series.
The first and largest plunger was fixed on the loading frame, and was used to install
the pile in flight to its starting position before the load test program began. The
second, smaller plunger which was affixed to the rod of the first plunger was the
fast loading plunger and used to perform the model pile load tests. The pile was
attached to the second plunger.

The model pile was a steel pile with a length of 0.3 m and a diameter of 0.0113
m. The model pile weighed 0.57 kg. A load cell was placed on the model toe to
measure pile toe resistance.

5.2.2. Sample properties & preparation
Soil properties
Baskarp sand with a 𝑑50 = 130 𝜇𝑚 was used for the tests. It is widely used in
laboratory tests, and its soil parameters have been reported in a variety of literature.
Table 5.1 presents the sand’s basic properties as determined in laboratory tests
[13, 15].
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Figure 5.1: Test set up of the centrifuge test ([13]): schematic view (left) and test equipment (right).

Sample preparation

The sand samples with a homogenous sand body at a pre-determined density were
prepared following the method of van der Poel and Schenkeveld [16]. The container
was first filled with de-aerated water and the pre-determined amount of wet sand
was pluviated under the water surface. A very loose sand sample was created.
A loaded permeable plate was placed on the surface of the sand sample. The
container was lifted a few centimeters above the floor and released. The loose
sand sample was then compacted by shock waves to achieve the predetermined
relative density. It is possible to prepare a soil sample with a predefined relative
density within 1 − 2% accuracy by using this preparation method. In the samples,
a viscous fluid was used instead of water to fulfill the scaling rule. In particular
the permeability, it was necessary to choose a pore fluid with a viscosity much
higher than of water. The saturated water in the prepared sand sample above was
replaced by the viscous fluid by using the method of Allard and Schenkeveld[17].
The viscous fluid was first slowly positioned above the saturated sand sample. A
vacuum at the bottom of the container was used to extract the water, therefore the
viscous fluid penetrated into the sand sample.
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Pile installation
During preparation at normal gravity (1𝑔), the pile was initially embedded at 10
times its diameter (10𝐷) below the sand surface. The installation of the model
pile started after the centrifuge had been accelerated to a level of 40𝑔. During
this installation phase, the pile was installed in-flight to a final depth of 20𝐷 with a
velocity of 1.67 × 10−4 m/s. After the installation phase, a series of static load tests
(SLT) was performed to determine the pile capacity with a velocity of 1.67 × 10−6

m/s and an additional displacement of 0.1𝐷.
The pre-embedment of 10𝐷 was chosen for practical reasons relating to the test

set-up. Earlier centrifuge research ([15]) has shown that after 10𝐷 penetration, a
steady state is achieved in terms of the stress and the deformation field around the
pile toe. The pile may therefore be seen as a soil displacement pile in terms of pile
toe behaviour.

During each test the following variables were measured: displacement of the
pile, the force at the head and the toe of the pile, the pore fluid pressure at the pile
toe and the pressure in the four buried transducers.

5.3. Numerical model
The numerical simulations are done with a geometry prototype scale. The detailed
geometry of the numerical model is shown in Figure 5.2. The right side boundary
is at a distance of 26𝐷 from the pile center, which is identical to the size of the
sample container in the centrifuge experiment. The right side boundary is fixed in
the normal direction and free in the other directions. The bottom boundary is fully
fixed.

The pile is modelled as a rigid body penetrated into the soil. The shape of the
pile tip is flat which is identical to the pile in the centrifuge test. However, the edge
of the pile tip in the simulation is slightly curved to avoid numerical difficulties due
to locking (Figure 6.3). Additionally, the moving mesh concept (section 3.4.4) is
adopted in all simulations.

The simulations are done with one –phase (drained) material behaviour since no
change in pore pressure was recorded in the centrifuge tests during the installation
process and static load test due to the low applied loading rates.

A contact algorithm (section 3.4.3) is used to model the frictional contact be-
tween the pile and the soil. The friction angle of sand against polished steel of
the model pile is chosen around 10∘ as suggested by Murray and Geddes [18]. The
mobilized wall friction angle may be different along the mantle due to varying stress
level. However, for simplification reasons a constant wall friction coefficient along
the pile is assumed (e.g. [19, 20]). The chosen value of wall friction coefficient
for all simulations in this study is assumed based on the characteristics of a pol-
ished steel pile surface, which is 𝑚𝑢 = tan 𝜑 = 0.194. The influence of 𝑚𝑢 on the
load-displacement curve is investigated and shown that the value of 𝑚𝑢 plays an
important role on the evolution of total pile shaft force rather than the evolution of
total pile tip force (Appendix D.2).

For the simulations in this work, an implementation of MPM is applied in which
4-noded tetrahedral elements with linear interpolation of displacements are used.
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Figure 5.2: Geometry of considered problem

The finite element mesh for the problem is shown in Figure 6.3. This mesh has a
total of 26, 826 tetrahedral elements including the initially inactive elements, with a
total 152, 020 of material points. The mesh is refined near the pile. The inactive
elements above the soil surface may be activated during the calculation process as
material points are entering. Although the considered problem is axisymmetric, the
simulations are three dimensional due to the nature of the MPM implementation.
A 20∘ section of the axisymmetric problem is considered for discretization. It was
determined that elements of the background mesh near the vertical axis with an
angle smaller than 20∘ could generate numerical inaccuracies due to the extreme
aspect ratios.

The stresses in the soil are initiated using the so-called 𝐾0-procedure. The pile
which is initially embedded at 10𝐷 below the soil surface is installed into the soil by
10𝐷 with a velocity of 0.02 m/s. The penetration of the pile into the soil is modelled
by applying a prescribed velocity on the top of the pile. A relaxation phase follows
the installation phase. During the relaxation phase, the pile is slowly unloaded until
the pile head force becomes zero. Finally, a static load test (SLT) is performed with
a velocity of 0.002 m/s. The velocity values used in the numerical analyses is higher
than the values used in the centrifuge test to optimize the calculation time. It has
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Figure 5.3: Mesh discretization and the distribution of material point method used for numerical analysis
with MPM

been confirmed in a parametric study that the velocity used does not significantly
influencing the results (Appendix D.1).

The evolution of shear bands in granular bodies is strongly related to the micro
–properties of the material. Shear band thickness is influenced by the soil grain size
which cannot be modelled properly with the current continuum model. In order to
properly describe the behaviour of granular materials with shear localization, MPM
may need regularization by using e.g. micro –polar or non –local terms, which is
out of the scope of this study.

5.4. Soil model
During the installation process the soil around the pile tip is exposed to (very) high
stress levels. According to the centrifuge results, the maximum stress at the pile
tip near the end of the installation process is about 8.5 MPa for medium dense sand
and 5.5 MPa for loose sand (Figure 5.4). Therefore, the constitutive model used for
the numerical simulations must be able to account for an appropriate soil response
over a wide range of stress levels.
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Figure 5.4: Change of stress under the pile tip during installation

5.4.1. Mohr Coulomb model
The value of friction angle and dilation angle with increasing stress level is calculated
based on empirical formulas in section 4.2.3 and plotted in Figure 5.5 for both
medium dense sand (black line) and loose sand (red line). The horizontal axis shows
the range of stress change and the vertical axis shows the corresponding value of
friction angel (Figure 5.5a) and dilation angle (Figure 5.5b) at particular stress level.
According to that, at a stress level of 8.5 MPa (stress measured under the pile tip
for medium dense sand near the end of installation), the maximum friction angle
is determined around 30∘ and the dilation angle is slightly negative (around −4∘).
The same value of friction angle and dilation angle is obtained for loose sand at
stress level of 5.5 MPa (stress measured under the pile tip for loose sand near the
end of installation). These values are significantly lower than the values of friction
angle (37∘) and dilation angle (12∘) obtained from the triaxial tests at 200 kPa. It
is decided to use the same low values for the friction angle 𝜙 and dilation angle 𝜓
in Mohr-Coulomb model for both medium dense and loose sand to account for the
high stress level under the pile tip. Then, the difference between those two sands is
only the value of stiffness parameter 𝐸. Stiffness increased with depth is used. In
this MPM code, it is possible to increase the shear stiffness 𝐺 (related to the normal
stiffness 𝐸 through Poisson’s ratio using elasticity theory 𝐸 = 2𝐺(1 + 𝜈) with depth.
The increase of shear stiffness with depth takes the form: 𝐺 = 𝐺0 + 𝐹𝑎𝑐𝑡𝑜𝑟 ∗ 𝐷𝑒𝑝𝑡ℎ
(depth from specified soil surface). Where 𝐺0 is the shear stiffness at a reference
level (model surface in this case 𝐺0 = 0). The stiffness parameter at the bottom of
the soil model is estimated based on the correlation 𝐸 = 60𝑅𝐷 [MPa] proposed by
Lengkeek [21].

The material parameters for the Mohr-Coulomb model are summarized in Table
5.2. Such approach of using critical angle of friction 𝜑𝑐 to calculate pile bearing
capacity was previously pointed out in literature. For example, Randolph et al. [22]
used 𝜑𝑐 in predicting the end bearing capacity of driven pile in sand. [23] found in
his FLAC analyses that the angle of friction at any point around the deep pile is not
greater than 𝜑𝑐 even in dense sand. The influence of Mohr-Coulomb parameters,
E, 𝜑 and 𝜓 on the penetration process is examined and reported in appendix D.3.
The higher value of soil stiffness or strength parameter, the higher capacity of the
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Figure 5.5: Calculated friction and dilation angle used in Mohr-Coulomb model for both medium and
loose sand to simulate the pile installation according to Bolton.

Table 5.2: Mohr-Coulomb material parameters for medium dense and loose sand used in the MPM
simulations.

Sand 𝑅𝐷 𝐸 [kPa] 𝜙 𝜓 𝑐 [kPa] 𝜈
Medium dense 0.54 32400 30∘ 0∘ 1.0 0.3
Loose 0.36 21000 30∘ 0∘ 1.0 0.3

Table 5.3: Hypoplastic parameters for Baskarp sand (Anaraki, 2008).
Parameter 𝜙𝑐 ℎ𝑠 [MPa] 𝑛 𝑒𝑑0 𝑒𝑐0 𝑒𝑖0 𝛼 𝛽
Baskarp sand 31∘ 4000 0.42 0.548 0.929 1.08 0.12 0.96

pile is obtained.

5.4.2. Hypoplastic model
The hypoplastic model as implemented in the MPM code used in this study is based
on the formulation of Von Wolffersdorff [5]. This hypoplastic constitutive relation-
ship requires eight basic parameters: granular stiffness ℎ𝑠, critical friction angle
𝜙𝑐, critical void ratio at zero pressure 𝑒𝑐0, minimum and maximum void ratio at
zero pressure 𝑒𝑑0 and 𝑒𝑖0, and the constants 𝑛, 𝛼 and 𝛽. Anaraki [24] performed
experiments on Baskarp sand to determine its hypoplastic material properties which
are summarised in Table 5.6. Several simulations of triaxial test were done on both
loose and dense sand to validate the hypoplastic parameter set in Table 5.6. De-
tailed results are shown in Appendix C. Based on the validation with the laboratory
tests, the parameter value suggested by Anaraki [24] are reasonable to use for sim-
ulation with pressure range from 50 to 200 kPa. However for simulations with high
pressure level, it is suggested (Appendix C) to use a lower value of the parameter
ℎ𝑠 for loose sand, which is 2 GPa instead of 4 GPa.

As well known in section 4.3, in order to avoid overestimation of the pile base
capacity, the dependency of 𝛼 on high stress level during installation will be con-
sidered. In the triaxial compression test, as the cell pressure increase from 200
kPa to 10000 kPa, the value of 𝛼 shows a significant reduction from 0.12 to −0.03
for medium dense sand and −0.06 for loose sand (Figure 5.7). Therefore, in this
chapter, a reduction of 𝛼 from 0.12 to 0.02 is assumed in all the simulations.
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Figure 5.7: Comparison of triaxial element test simulations at 10 MPa on Baskarp sand using the modified
hypoplastic parameter set (𝛼𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 = 0.02) with one using the original parameter set (𝛼𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 =
0.12)

To include the effect of grain crushing, the dependency of void ratio on the stress
level is considered according to Rohe [25]. Based on such relations, the maximum,
minimum and critical void ratio input are calculated at a vertical stress level of 10
MPa and used for all simulations.

The final suggested hypoplastic parameter set for Baskarp sand in order to get
a good response under high stress level in the pile installation simulations is given
in Table 5.4. The comparison of triaxial behaviour at confining pressure of 10 MPa
between modified and original hypoplastic parameter sets for Baskarp sand is shown
in Figure 5.7. The modified parameter set clearly reduces the peak shear strength as
well as dilation behaviour at high cell pressure. A parametric study on the influence
of the hypoplastic parameters on the penetration analysis has been performed and
reported in appendix D.4. Both total pile tip force and total pile shaft force are
reduced with the reduction of ℎ𝑠 and 𝑛; whereas, the use of lower 𝛼 only reduces
the total pile tip force, but almost no influence on the total pile shaft force.

Parameter set for small strain stiffness in the hypoplastic model is tabulated in
Table 5.5. The parameters are determined based on Appendix C.3.

As a conclusion, the standard or original hypoplastic model parameters are not
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Table 5.4: Modified parameters for the Hypoplastic model of Baskarp sand used to model centrifuge test
Parameter 𝜙𝑐 ℎ𝑠 [MPa] 𝑛 𝑒𝑑0 𝑒𝑐0 𝑒𝑖0 𝛼 𝛽
original HP 31∘ 4000 0.42 0.548 0.929 1.08 0.12 0.96
modified HPmedium dense 30∘ 4000 0.42 0.51 0.88 1.01 0.02 0.96
modified HPloose 30∘ 2000 0.42 0.51 0.88 1.01 0.02 0.96

Table 5.5: Small strain stiffness parameters of Baskarp sand used in jacking pile simulation
𝑚𝑅 𝑚𝑇 𝑅𝑚𝑎𝑥 𝛽𝑅 𝜒

5 2 1𝑒 − 4 1 1

suited for pressures larger than approximately 1 MPa. Furthermore, for extremely
high pressures, the soil below the pile is not a granular body anymore due to the
breakage of grains. Nevertheless, the hypoplastic constitutive model is able to pre-
dict the soil response at high pressures if its parameters are adapted according to
the changing of stress level from low to high. The constitutive hypoplastic model in
this chapter is improved to account for grain crushing by two difference approaches.
Firstly, in section 5.5, the adapted values for 𝛼 = 0.02 which are based on the av-
erage stress level during installation is chosen for both medium dense and loose
sand. The relevant parameter 𝛼 is calibrated using high pressure triaxial test re-
sults. With such adapted values for 𝛼, the effects of grain crushing are accounted
for, which significantly helps to improve the constitutive behaviour. Secondly, in
section 5.6, the modified hypoplastic model proposed in Chapter 4 is used to model
the centrifuge test. This modified hypoplastic model considers stress dependency
during pile installation of five parameters 𝛼,𝛽, 𝑒𝑖, 𝑒𝑐, 𝑒𝑑 of the hypoplastic model.

5.5. Results
5.5.1. Load-displacement curve during pile installation
To compare the numerical results with the centrifuge test the evolution of the axial
force on the pile head is investigated. In Figure 5.8, the simulation with the orig-
inal hypoplastic model parameters significantly overestimates the pile head force
compared to the experiment results. Simulations with the modified hypoplastic pa-
rameter set, using 𝛼 = 0.02, or with proposed Mohr-Coulomb parameters, show a
better correspondence with the experiments. This again confirms the importance
of taking into account the dependency of friction and dilation angles on the increase
of the stress as explained in the previous section.

Figure 5.9 shows in detail the evolution of total pile shaft force, 𝐹𝑠 and total
pile tip force 𝐹𝑡 for different densities and different constitutive model of soil. The
curves 𝐹𝑠 are nearly similar between medium dense sand and loose sand. Hence
the density has no influence on the evolution of the total pile shaft in this case.
This is because of the assumption that friction angle and dilatancy angle (in Mohr-
Coulomb model) and 𝛼 (in hypoplastic model) are the same for both medium dense
and loose sand. The Mohr-Coulomb model is observed to result in two times higher
𝐹𝑠 than the hypoplastic model. This may be due to the assumption of zero dilation in
Mohr Coulombmodel, then the soil is only compacted along the pile shaft, whereas a
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Figure 5.8: Load-displacement curve of the pile head during pile installation for a) medium dense sand
(𝑒 = 0.68, 𝑅𝐷 = 54%) and b) loose sand (𝑒 = 0.75, 𝑅𝐷 = 36%). Comparison of centrifuge test results
and MPM simulations using Mohr Coulomb model (MPM-MC) and hypoplastic model (MPM-original HP
and MPM-modified HP).
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Figure 5.9: Total pile shaft and tip reaction curves obtained during installation for different densities.
Comparison of Mohr Coulomb results and hypoplastic results.

loosening zone is observed along the pile shaft of hypoplastic model (section 5.5.4).
The ratio between 𝐹𝑡/𝐹𝑠 in Mohr-Coulomb model is 2.7 for loose sand and 3.6 for
medium dense sand. This ratio is about 2.5 times higher when using hypoplastic
model. While, the centrifuge test gives values of 𝐹𝑡/𝐹𝑠 as 3.6 for loose sand and
4.3 for medium dense sand. Hence the measured ratio from the centrifuge test are
in between the given ratios from Mohr-Coulomb model and hypoplastic model.

5.5.2. Load-displacement curve during static load test (SLT)
Validation with centrifuge SLT
After the pile has been installed to a depth of 20𝐷 and unloaded, a pile load test
is carried out. During the unloading phase, the pile head is slowly pulled out at
a prescribed velocity of 0.0001 m/s until the pile head force becomes nearly zero.
The displacement of the pile head during this phase is less than 0.02D, which cor-
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Figure 5.10: Load –displacement curve of the pile head during unloading and reloading phase for loose
sand (𝑒0 = 0.75, 𝑅𝐷 = 36%). Comparison of centrifuge test results and MPM simulations.
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Figure 5.11: Load-displacement curve of the pile base during SLT for a) medium dense sand (𝑒 =
0.68, 𝑅𝐷 = 54%) and b) loose sand (𝑒 = 0.75, 𝑅𝐷 = 36%). Comparison of centrifuge test results and
MPM simulations.

responds to the centrifuge test (Figure 5.10).
The load-displacement curves of the calculated SLT comparing with the cen-

trifuge tests are plotted in Figure 5.11. It can be seen that the base bearing capacity
in the simulation is in good agreement with the centrifuge test results. Although the
stiffness of the load-displacement curves during SLT between the simulation and
centrifuge test is slightly different, the capacity at 0.1𝐷 penetration is corresponding
well, for both loose and medium dense sand.

Simulations in which the SLT has been performed immediately after the pile
is pre-embedded (wished-in-place) 20𝐷 are also shown in Figure 5.11. Clearly,
without considering installation effects the calculated bearing capacity of the pile
is significantly lower than the test results. This emphasizes the importance of ac-
counting for installation effects when simulating the SLT. These results could be
compared with findings in the literature regarding the ratio between pile capacity
of non-displacement and displacement piles. These ratios between the base capac-
ities ranges from 0.18 for loose to 0.33 for dense sand according to a data base in
Gavin et al. [26]. The ratios in Figure 5.11 are between 0.31 and 0.34 for the base
capacity at a penetration of 10𝐷.



5.5. Results

5

97

0 25 50 75 100
−25

−20

−15

−10

−5

0

R
b
 / R

b,max
 [%]

pe
ne

tr
at

io
n 

de
pt

h 
/ p

ile
 d

ia
m

et
er

 [%
]

 

 

1©

2©

3©

NEN 1 (Driven pile)
NEN 2 (Auger pile)
NEN 3 (Bored pile)
MPM (Driven pile)
MPM (Bored pile)

Figure 5.12: Comparing results of the design load test suggested by Dutch code (NEN 9997 − 2011)
with MPM simulations (𝑅𝑏 is effective stress of pile tip during SLT and 𝑅𝑏,𝑚𝑎𝑥 is effective stress of pile
tip after SLT).

Validation with Dutch code
The SLT results were compared with the prescribed load displacement curves in NEN
9997 − 2011 [27], the Dutch application document of Eurocode 7 with additional re-
quirements which is, to our knowledge, the only Eurocode adaptation that provides
(dimensionless) numerical values for load displacements behaviour. The normalised
plots given in Figure 5.12 show the relative stiffness of load-displacement curve re-
sponse from the numerical simulations (𝑒0 = 0.68, 𝑅𝐷 = 54%) in comparison with
the design curves suggested by NEN 9997 − 2011. For a reliable design using this
code, the ultimate base capacity is determined at 0.1𝐷 displacement for a driven
pile and at 0.2𝐷 displacement for a bored pile. The resulting normalised base re-
sistance curve of the simulation of the displacement pile SLT is in good agreement
with curve 1 for driven piles from the NEN 9997 − 2011 code. This demonstrates
the importance of including the pile installation in the simulation and using an ad-
vanced soil model e.g. hypoplastic model in modeling pile load tests. The curve
that simulates the pre-embedded pile shows a good correspondence with the curve
suggested by curve 3 for a bored pile in NEN 9997 − 2011 code.

5.5.3. Stress state after pile installation
Figure 5.13 shows the comparison of the radial stress distribution after 10𝐷 pene-
tration between simulation using the Mohr-Coulomb and hypoplastic model. After
10D penetration for both loose and medium dense sand, a significant increase of
horizontal stresses due to pile installation is observed. The radial stresses are in-
creased along the pile shaft and with a peak near the pile tip. Two cross sections
𝐴𝐴′ (close to the pile tip) and 𝐵𝐵′ (along the pile shaft) are investigated in detail
for the change in radial stresses. The radial stresses after 10𝐷 penetration at a
horizontal cross section 𝐴𝐴′ are plotted in Figure 5.14. Close to the pile, the initial
radial stresses are increased by a factor of almost 75 for medium dense sand and a
factor of 50 for loose sand. At a distance from the pile center larger than 10𝐷, no
stress changes can be observed for either case.
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Figure 5.13: Radial stresses after 10D penetration for simulation using a) Mohr Coulomb model and b)
hypoplastic model.

There are significant differences in the radial stress distribution in the vertical
cross section 𝐵𝐵′ between the Mohr-Coulomb model and the hypoplastic model
(Figure 5.13 and 5.15). It should be noted that, the position of the pile in figure
5.15 is initially at 𝑧/𝐷 of −10 and at 𝑧/𝐷 of −20 in the end of penetration process.
The radial stresses along the pile shaft after 10𝐷 installation are 4 to 5 times the
initial 𝐾0 value in the case of Mohr-Coulomb model, whereas, only a factor of 1.5 to
2 is observed for the hypoplastic model. Below the pile tip, the horizontal stresses
drop down to a value below the 𝐾0 state for both cases. The observed change of
radial stresses along a vertical cross section near the pile shaft is in good agreement
with Mahutka [28]

5.5.4. Density change after installation
One of the benefits of the hypoplastic model over the Mohr Coulomb model is
that it accounts for the change of density during the installation process. The final
state of the void ratio after 10𝐷 penetration is shown in Figure 5.16. The significant
densification of the soil around the pile after installation is observed for both medium
dense and loose sand, excepting a small dilative zone near the end of the pile shaft
and around the corner of the pile. The dilative zone may be explained due to the
high shear strains in the soil surrounding the corner pile. Hence, the compaction of
the soil close to the pile is superimposed by the shearing process while at a greater
distance from the pile corner the compaction is dominant, which is in line with the
findings of other researchers ([28]). In Figure 5.17, the distribution of void ratio
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Figure 5.15: Radial stresses after 10𝐷 penetration at a vertical cross section 𝐵𝐵′ close to the pile shaft
for medium dense and loose sand. MPM simulation with a) hypoplastic model, b) Mohr-Coulomb model

in vertical cross sections at different radial distances from the centre of the pile
after 10𝐷 penetration can be seen for both medium dense sand (Figure 5.17a) and
loose sand (Figure 5.17b). It can be seen that for medium dense sand at a distance
of 0.5𝐷 which is next to the pile shaft, the void ratio increases due to dilation is
observed almost along the pile shaft whereas, it is only seen in the corner of the
pile in the case of loose sand. For both medium dense and loose sand, the lowest
void ratio value is found just under the pile tip which is considered as the highest
densification zone. The densification reduces gradually with the increasing distance
from the pile. At a distance of 10𝐷 from the centre pile and 5 − 7𝐷 below the pile
tip, no change in void ratio is observed.

Several horizontal cross sections at different depth 10𝐷, 15𝐷, 20𝐷 and 25𝐷
from the soil surface are also plotted in Figure 5.18 to obtain the distribution of
void ratio after installation in horizontal direction. In general, the disturbance zone
due to installation is extended to a distance of about 8𝐷 from the pile center and no
change in void ratio at cross section 25𝐷 for both loose and medium dense sand.
In loose sand, the soil around the pile is compacted for both cross section 10𝐷,
15𝐷 and 20𝐷, whereas, a small dilation is observed near the pile shaft in the case
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Figure 5.16: Void ratio change after 10𝐷 penetration. MPM simulation for a) medium dense sand
(𝑒 = 0.68, 𝑅𝐷 = 54%) and b) loose sand (𝑒 = 0.75, 𝑅𝐷 = 36%).
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Figure 5.17: Void ratio distribution in vertical cross sections at different radial distances from the center
of the pile after 10𝐷 penetration for a) medium dense sand (𝑒 = 0.68, 𝑅𝐷 = 54%) and b) loose sand
(𝑒 = 0.75, 𝑅𝐷 = 36%).

of medium dense sand.

In conclusion, the results in density change after installation seem reasonable
but that specific validation is not present, only the overall behaviour (in term of
capacity) confirm the results.
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Figure 5.18: Void ratio distribution in horizontal cross sections at different depth after 10D penetration
for a) medium dense sand (𝑒 = 0.68, 𝑅𝐷 = 54%) and b) loose sand (𝑒 = 0.75, 𝑅𝐷 = 36%).

5.5.5. Influence of pile tip shape
In this section, the influence of pile tip shape on the installation effect is examined.
The flat pile tip used above is compared with the triangular pile tip shape in which
the transition from the shaft to the tip is curved (Figure 5.19). Such a smooth shape
of the tip is often used in simulation to avoid numerical difficulties due to locking
(e.g. [20, 28, 29]).

Displacement of soil around the pile tip:
Figure 5.20 illustrates the differences in calculated horizontal displacement and ver-
tical displacement between flat and triangular pile tip shape after 10𝐷 pile instal-
lation. Under the flat pile tip, the zone ABC has no horizontal displacement and is
mainly moving down with the same displacement of the pile. Such a zone is quite
similar with the ‘nose cone’ observation of White et al. [30]. The ‘nose cone’, which
was referred to a highly compressed region below the pile tip, had a central core
that is stationary relative to the pile tip. They also observed the soil sliding out
from the nose cone and flowing around the shaft of the pile. In contrast, there is
no ‘nose cone’ formed under the triangular pile tip. The vertical displacement of

E 

F 

G E 

F 

G 

Figure 5.19: Triangular pile tip (left) and flat pile tip (right).
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Figure 5.20: Displacement of soil around the pile tip after 10𝐷 penetration (simulation with loose sand
and hypoplastic model).

the soil under the triangular pile tip is much less than the soil under flat pile tip,
amounting to about half the displacement of the pile. However, the soil is pushed
aside more significantly in the case of triangular pile tip.

Stresses of the soil around the pile tip
The comparison in horizontal and vertical stresses for different pile tip shape is
shown in Figure 5.21 The flat pile tip generates very high vertical stress underneath
it, which is three times larger than the vertical stress under triangular pile tip. It is
clearly reasonable due to a highly densified ‘nose cone’ formed under flat pile tip.
With such high vertical stresses, the flat pile tip results in 25% higher total pile tip
force at the end of installation (Figure 5.22a). As the pile shaft forces are nearly
the same in both cases (Figure 5.22b), then consequently flat pile tip gives larger
bearing capacity than in the case of triangular pile tip. Noted that, the total pile tip
force is the sum of vertical nodal forces at all nodes along the curve EFG in Figure
5.19.
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a) triangular pile tip shape b) flat pile tip shape 

Horizontal stresses Horizontal stresses 

Vertical stresses Vertical stresses 

Figure 5.21: Vertical and horizontal stresses of soil around the pile tip after 10𝐷 penetration (simulation
with loose sand and hypoplastic model).
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Figure 5.22: Comparison of load-displacement curve of the pile tip during installation between flat and
triangular tip shape.
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Figure 5.23: Triaxial response of Baskarp sand at elevated cell pressures: 𝑎 = 30𝑀𝑃𝑎,𝑏 = 16𝑀𝑃𝑎,𝑐 =
6𝑀𝑃𝑎,𝑑 = 4𝑀𝑃𝑎,𝑒 = 2𝑀𝑃𝑎,𝑓 = 0.5𝑀𝑃𝑎. Comparison between original HP and modified HP
model.

5.6. Application of the modified hypoplastic model
In this section, the proposed modified hypoplastic model for crushed sand ( written
in chapter 4) will be used to model the installation process of a jacked pile in sand
and compare to the centrifuge results.

The modified hypoplastic model uses the same parameter set of original hy-
poplastic model and two new added physical parameters which are uniformity co-
efficient 𝐶𝑢0 and mean grain size 𝑑50. The hypoplastic parameters of Baskarp sand
was used in the simulation is listed in Table 5.6. The dependency of parameters
𝛼,𝛽, 𝑒𝑖, 𝑒𝑐, 𝑒𝑑 on stress level is accounted itself inside the proposed modified model
automatically. Figure 5.23 compares the triaxial response of Baskarp sand at ele-
vated cell pressure from 0.5 MPa to 30 MPa between original HP and modified HP
model. For all simulations using the original HP model, there is no contractive be-
haviour observed even at very high confining pressure. Moreover, the original HP
model gives much higher value of the peak friction angle, especially at high stress
levels compared to modified HP. Unfortunately, there is no available triaxial test
data of Baskarp sand under high cell pressure level to validate the results given by
modified HP.

With increasing stress around the pile tip during installation, the properties of
the surrounding sand are significantly influenced as discussed in the previous chap-

Table 5.6: Hypoplastic parameters for Baskarp sand [24].
Parameter 𝜑𝑐 ℎ𝑠 [MPa] 𝑛 𝑒𝑑0 𝑒𝑐0 𝑒𝑖0 𝛼 𝛽 𝐶𝑢0 𝑑50[𝑚𝑚]
Baskarp sand 30∘ 4000 0.42 0.548 0.929 1.08 0.12 0.96 1.60 0.13
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Figure 5.24: Evolution of stress under the pile tip during pile installation in medium dense sand (𝑅𝐷 =
54%). Comparison of centrifuge test results and MPM simulation results using original and modified
hypoplastic model.

ter, e.g. a change in grain size distribution or a high reduction in the peak strength
and stiffness of soil due to grain crushing. Hence, the simulation with the original
hypoplastic model parameters (black line with square markers in Figure 5.24) sig-
nificantly overestimates the pile tip stress compared to the centrifuge results. The
simulation with the modified hypoplastic model (black line with start markers in Fig-
ure 5.24) shows a better correspondence with the experiments. Therefore, taking
into account grain crushing in the hypoplastic constitutive model can be considered
as one of the important factors to successfully model the pile installation as well as
predicting the pile bearing capacity.

This study only considers stress dependency of five parameters 𝛼,𝛽, 𝑒𝑖, 𝑒𝑐, 𝑒𝑑 of
the hypoplastic model. However, parameters ℎ𝑠, 𝑛 and 𝜑𝑐 are most likely influenced
by grain crushing and stress level as well [31]. Hence, further investigation should
be carried out to improve the model, which may lead to a better correspondence
with test data.

5.7. Comparison of Press-Replace Method and Material Point
Method for Analysis of Jacked Piles

In this section, installation of jacked piles in sand is simulated using Press-Replace
Method (PRM) and Material Point Method (MPM) and the results are compared
together. PRM is a simple method based on small deformation theory, which has
been solely for simulation of penetration problem such as pile jacking and cone
penetration. The simplicity of PRM enables an engineer to model the installation
process of jacked piles as a stage construction process by any finite element code.
Such a comparison shows if the PRM can be relied upon for the analysis of jacked
piles. It also reveals the differences that exist between PRM and MPM. This section
is a part of the journal paper: Comparison of Press-Replace Method and Material
Point Method for analysis of jacked piles in Computers and Geotechnics [3].
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5.7.1. Press Replace Method
The PRM is a simplified approach based on standard finite element (FE) method
for simulating boundary-value problems that involve penetration of an object into
a continuum. PRM was first introduced by Andersen [32] for simulating the load-
controlled penetration of a suction anchor in clay. Recently, Engin [33] successfully
used the displacement-controlled PRM to simulate pile and cone penetration in a
sandy soil. In PRM, the initial mesh is preserved, while the material properties of
the penetrated volume are updated at the beginning of each phase resulting in
a change of the global stiffness matrix without the need for updating the mesh.
This makes the calculations faster than large-deformation analysis techniques [34].
Despite its advantages, PRM has its own limitations, too; most importantly, it is
unable to model the flow of the soil below the pile base, and around peripheral
zone of the penetrating pile.

Figure 5.25 illustrates three sequential phases. As shown in Figure 5.25, the
penetration path is divided into several slices of thickness 𝑡𝑠. When the pile base (in
gray color) is resting on top of slice 𝑖, the displacement-controlled axial loading of 𝑢𝑖,
equal to the summation of previous displacement and an additional displacement
increment, is applied on the pile head. The displacement increment is equal to
the thickness of the soil slice 𝑡𝑠. Once the loading stage is completed, the soil
material in slice 𝑖 is replaced by the pile material. This process continues until
the pile base reaches to the last slice on the penetration path. PRM is performed
within the framework of the small-deformation theory (infinitesimal strain), in which
the global stiffness matrix is always formed based on the original (undeformed)
geometry of the soil-pile model. In other words, the global stiffness matrix only
takes the updated material properties in the clusters (slices) that have switched to
the pile material into account. It is noted that in the replace stage, a thin slice of
soil is replaced by stiffer elastic material (pile). Therefore, there should be some
compensation in the form of straining inside and near the zone that is replaced by
the pile material. However, this straining is not achieved in PRM, which relies on
small deformation theory, because the amount of the elastic energy is very small
compared to the total energy that is spent in the system. The total spent energy is
mostly dissipated due to plastic deformation. Therefore, this small compensation
of straining is not required. Hence, by not incorporating this straining, the amount
of the dissipated energy is slightly overestimated. More details about PRM can be
found in [34].

5.7.2. Numerical model
Continuous jacking of a circular cross section pile, with the diameter 𝐷 = 0.3 m,
into uniform Baskarp sand is considered in this section. Figure 5.26 shows the
problem studied. A thin elastic layer is considered on top of the sand layer to avoid
numerical issues due to the tension developed at the surface of the sand layer
during the installation process. Detailed finite element mesh, contact problem and
soil model for both PRM and MPM are described in [3]
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Figure 5.25: Press-Replace technique (after [3]).

Figure 5.26: Geometry and properties of the axisymmetric soil-pile model (after [3]).

5.7.3. Results
The pile was jacked down to 10𝐷 below the ground level. Figure 5.27 shows the
total penetration (installation) resistance and the base resistance mobilized during
the penetration for both PRM and MPM.

It is clear from Figure 5.27 that, in general, the total jacking force and the
mobilized base resistance computed using PRM are in good agreement with those
calculated using MPM. The total jacking force, which is equal to the summation of
the base and shaft resistances, obtained from PRM is slightly higher (8% to 14%)
than MPM; given that the base resistances from PRM and MPM are very close, it
is clear that the shaft resistance obtained from PRM during the pile installation is
greater than the one obtained from MPM.

To explore the effect of interface friction at the pile base on the penetration re-
sistance calculated using PRM, an additional analysis with the base interface friction
angle of 30ᵒ was performed for the dense sand, which is labeled PRM* in Figure
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(a) Total resistance (b) Base resistance
Figure 5.27: Penetration resistance during the pile installation (after [3]).

5.27. It is shown in Figure 5.27(a) that altering the base interface friction angle
from 27.5ᵒ to 30ᵒ has an immaterial effect on the penetration resistance (the as-
sociated plots overlap each other), which warrants the use of one interface friction
angle at the pile-soil interface for all analyses presented in this paper.

It is shown in Figure 5.28 that as the soil becomes denser the soil extent that
undergoes the same radial displacement becomes greater in PRM than in MPM.
Figure 5.29 shows that the same observation made for the radial displacement holds
for the vertical displacement, too. However, it is shown that in MPM simulation the
maximum vertical displacement right below the pile base is greater than PRM. As
shown in Figure 5.30, a greater part of the domain of the loose sand undergoes
compaction (𝑒 < 𝑒0) in PRM analysis than in MPM analysis. For the dense sand, both
methods show clear soil dilation next to the pile shaft (𝑒 > 𝑒0), with PRM resulting
in more dilation right next to the pile shaft than MPM. This difference between MPM
and PRM is the major reason behind predicting higher installation shaft resistance by
PRM, compared to MPM. Noted that in Figure 5.30, the PRM results seem ’smoother’
than MPM results because MPM results were plotted from raw particle data without
any smoothing function, whereas the post processing used in PRM is much more
advanced.

Figure 5.31 and Figure 5.32 show the similarity of the radial, vertical stresses
around the pile base in PRM and MPM. This explains the similar base resistances
observed in Figure 5.27(a).

Once the installation is complete, the pile is unloaded. Then, a numerical static
load test (SLT) is performed where a displacement-controlled loading is applied to
the pile head until the pile head vertical displacement reaches 0.2𝐷. Figure 5.33
shows the load-settlement response of SLTs in the loose and dense sands. As shown
in Figure 5.33, the load settlement responses obtained from PRM and MPM are in
good agreement for the piles installed in the loose sand, while for the piles installed
in the dense sand the load predicted by PRM for 0.2𝐷 pile head settlement in the
dense sand is about 9% higher than the MPM. The shaft resistance calculated using
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(a) MPM in the loose sand (b) PRM in the loose sand

(c) MPM in the dense sand (d) PRM in the dense sand
Figure 5.28: Radial displacement after 10𝐷 pile penetration (after [3]).

PRM is greater than MPM and the base resistance calculated using PRM is lower
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(a) MPM in the loose sand (b) PRM in the loose sand

(c) MPM in the dense sand (d) PRM in the dense sand
Figure 5.29: Vertical displacement after 10B pile penetration (after [3]).
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(a) MPM in the loose sand (b) PRM in the loose sand

(c) MPM in the dense sand (d) PRM in the dense sand
Figure 5.30: Void ratio after 10𝐷 pile penetration (after [3]).
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(a) MPM in the loose sand (b) PRM in the loose sand

(c) MPM in the dense sand (d) PRM in the dense sand
Figure 5.31: Radial stress after 10𝐷 pile penetration (after [3]).
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(a) MPM in the loose sand (b) PRM in the loose sand

(c) MPM in the dense sand (d) PRM in the dense sand
Figure 5.32: Vertical stress after 10D pile penetration (after [3]).
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(a) Total resistance (b) Shaft resistance (c) Base resistance
Figure 5.33: Soil resistance during the numerical static load tests (after [3]).

than MPM.
The difference in the shaft and base resistances of PRM and MPM can be at-

tributed to the difference in the state of the soil at the very beginning of the static
load tests. One of the parameters that quantifies the state of the soil in this study
is the sand void ratio. Figure 5.34 shows the void ratio around the pile base (2𝐷
below the pile base and 3𝐷 away radially from the pile centerline) in the loose and
dense sands after unloading the pile at the end of pile installation. There is a clear
compaction below the pile base in both loose and dense sands after pile unloading,
whereas in PRM this soil compaction is not significant in the loose sand and there
is no sign of soil compaction below the pile base in the dense sand. Therefore, it is
reasonable to observe higher base resistance in the numerical SLT results of MPM
than from those of PRM.

5.8. Conclusion
Several calculations were performed using the material point method (MPM) in order
to model the installation process as well as the static load capacity of a jacked dis-
placement pile in sand. The geometry and soil parameters of the simulations were
chosen according to a centrifuge test in which the pile was installed in-flight during
the test at 40𝑔. The results of the simulations are compared with the centrifuge
experiments.

The outcome of the research implies the importance of considering installation
effects in numerical simulations when calculating the pile capacity and load settle-
ment behaviour. Moreover, it shows the capability of the used numerical scheme
to simulate the installation process of jacked piles in sand. MPM instead of clas-
sical FEM, as applied in this study, is well suited to model the large deformations
and flow of material occurring during the pile installation process. In order to suc-
cessfully model the centrifuge test, it is necessary to account for a reduction of
the friction and dilation angles at very high stress levels. With this reduction, the
MPM simulations show good agreement with the centrifuge test results for both the
installation process as well as the static load test (SLT) after the installation both
for the simulation with the Mohr Coulomb and hypoplastic model. The numerical
analyses of the pile installation show significant differences of the soil stresses and
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(a) MPM in the loose sand (b) PRM in the loose sand

(c) MPM in the dense sand (d) PRM in the dense sand
Figure 5.34: Void ratio around the pile base after unloading (after [3]).

strains around the pile after installation compared with the initial 𝐾0-state. During
installation, soil is pushed aside by the pile, which leads to densification around
the pile and very high lateral stress at the pile tip. The influence of the installation
extends to 8 pile diameters in horizontal direction from the center of the pile and
7 pile diameters below the pile tip. The pile capacity given by MPM simulations
results in a good agreement with the load-displacement curve suggested in NEN
9997 − 2011 code. As a consequence of the change in soil state after installation,
a significantly higher pile bearing capacity is observed during SLT as compared to
simulations without installation effects. With this research, the importance of in-
cluding installation effects in numerical simulations, which aim to determine the
bearing capacity of displacement piles and realistic load displacement behaviour, is
demonstrated.

The simulation with the modified hypoplastic model for crushed sand (proposed
in chapter 4) shows a significant improve load displacement behaviour of the model
pile compared to the one using original hypoplastic model and better correspon-
dence with the experiment result. This proposed hypoplastic model considers stress
dependency of five parameters 𝛼,𝛽, 𝑒𝑖, 𝑒𝑐, 𝑒𝑑 of the hypoplastic model automati-
cally. However, other parameters e.g. ℎ𝑠, 𝑛 and 𝜑𝑐 are most likely influenced
by grain crushing and stress level as well. Hence, further investigation should be
carried out to improve the model.

Regarding the comparison of PRM and MPM, it was shown that during pile instal-
lation PRM can produce jacking force and base resistance that are very close to the
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jacking force and base resistance obtained from MPM. Also, it was concluded that in
comparison with MPM, PRM results in lower base resistance and higher shaft resis-
tance during pile operational loading (e.g., SLT). At the operational loading stage,
PRM simulates a small-strain BVP with the assumption that the geometry of the
pile-soil system does not change. But, in MPM, the pile indeed further penetrates
into the soil and therefore benefits from increase in the soil bearing capacity due
to this penetration. Thus, it can be suggested that PRM yields a conservative base
resistance at the operational loading stage in comparison with MPM. The higher
shaft resistance and lower base resistance from PRM counterbalance each other
and result in the total capacity that is very close to the one predicted by MPM. In a
conclusion, PRM as a method that is founded on small-strain finite element method
can produce pile and soil responses that are in a promising agreement with those of
MPM which is a finite-deformation analysis method. This comparison is important
because a realistic and yet efficient simulation of installation of jacked piles is an
appealing step towards the design and analysis of this type of displacement piles.
Although, PRM is unable to model the flow of the soil below and around the pile
during installation process, the simplicity of PRM enables an engineer to model the
installation process of jacked piles as a staged construction process by any finite
element code.

Having concluded that it is important to take installation effects into account,
however simulating the whole penetration process of all piles of a practical applica-
tion by means of MPM is expensive and not practical in engineering. It is ideal to
develop a method to incorporate the installation effects around the wished-in-place
pile to account for these effects [34]. Hence, there would be particular efficient
and useful due to a significant reduction in computational demand, especially for
situation with more than one pile.

References
[1] N. Phuong, A. van Tol, A. Elkadi, and A. Rohe, Modelling of pile installation

using the material point method (mpm), in International Conference on Nu-
merical Methods in Geotechnical Engineering, NUMGE, Delft, The Netherlands,
Vol. 1 (CRC Press, 2014) pp. 271–276.

[2] N. Phuong, A. van Tol, A. Elkadi, and A. Rohe, Numerical investigation of
pile installation effects in sand using material point method, Computers and
Geotechnics 73, 58 (2016).

[3] F. S. Tehrani, P. Nguyen, R. B. Brinkgreve, and A. F. van Tol, Comparison of
press-replace method and material point method for analysis of jacked piles,
Computers and Geotechnics 78, 38 (2016).

[4] R. Salgado, J. Mitchell, and M. Jamiolkowski, Calibration chamber size effects
on penetration resistance in sand, Journal of Geotechnical and Geoenviron-
mental Engineering 124, 878 (1998).

[5] P.-A. von Wolffersdorff, A hypoplastic relation for granular materials with a

http://dx.doi.org/http://dx.doi.org/10.1016/j.compgeo.2016.04.017


References

5

117

predefined limit state surface, Mechanics of Cohesive-frictional Materials 1,
251 (1996).

[6] E. Klotz and M. Coop, An investigation of the effect of soil state on the capacity
of driven piles in sands, Géotechnique 51, 733 (2001).

[7] J. Dijkstra, W. Broere, and A. F. van Tol, Density changes near an advancing
displacement pile in sand, in 2nd BGA International Conference on Founda-
tions ICOF (2008) pp. 545–554.

[8] M. Luong and A. Touati, Sols grenus sous fortes contraintes, Revue Française
de Géotechnique , 51 (1983).

[9] J. L. Colliat-Dangus, J. Desrues, and P. Foray, Triaxial testing of granular soil
under elevated cell pressure, Advanced triaxial testing of soil and rock, ASTM
STP 977, 290 (1988).

[10] N. Miura and T. Yamanouchi, Compressibility and drained shear characteristics
of a sand under high confining pressures, Technology reports of the Yamaguchi
University 1, 271 (1973).

[11] J. A. Yamamuro and P. V. Lade, Drained sand behavior in axisymmetric tests
at high pressures, Journal of Geotechnical Engineering 122, 109 (1996).

[12] L. Balachowski, Différents aspects de la modélisation physique du comporte-
ment des pieux: Chambre d’Etalonnage et Centrifugeuse, Ph.D. thesis (1995).

[13] N. Huy, Rapid load testing of piles in sand: effect of loading rate and excess
pore pressure, Ph.D. thesis, Delft University of Technology (2008).

[14] P. Holscher, A. F. van Tol, and N. Huy, Rapid pile load tests in the geotechnical
centrifuge, in the 9th International Conference on Testing and Design Methods
for Deep Foundations, Japanese Geotechnical Society (2012) pp. 257–263.

[15] J. Dijkstra, On the modelling of pile installation, Ph.D. thesis (2009).

[16] J. Van der Poel and F. Schenkeveld, A preparation technique for very homoge-
nous sand models and cpt research, in Centrifuge, Vol. 98 (1998) pp. 149–154.

[17] M. Allard and F. Schenkeveld, The delft geotechnics model pore fluid for cen-
trifuge tests, in Centrifuge, Vol. 94 (1994) pp. 133–138.

[18] E. Murray and J. D. Geddes, Uplift of anchor plates in sand, Journal of Geotech-
nical Engineering 113, 202 (1987).

[19] J. Grabe, T. Pucker, and T. Hamann, Numerical simulation of pile installation
processes in dry and saturated granular soils, in International Conference on
Numerical Methods in Geotechnical Engineering, NUMGE, Delft, The Nether-
lands,, Vol. 1 (CRC Press, 2014) pp. 663–668.



5

118 References

[20] I. K. Jassim, Formulation of a Dynamic Material Point Method (MPM) for Ge-
omechanical Problems, Ph.D. thesis, University of Stuttgart (2013).

[21] H. Lengkeek, Estimation of sand stiffness parameters from cone resistance,
Plaxis Bulletin Issue (2003).

[22] M. Randolph, R. Dolwin, and R. Beck, Design of driven piles in sand, Geotech-
nique 44, 427 (1994).

[23] M.-w. Gui, Centrifuge and numerical modelling of pile and penetrometer in
sand, Ph.D. thesis, Cambridge University (1995).

[24] K. E. Anaraki, Hypoplasticity investigated: parameter determination and nu-
merical simulation, Master’s thesis, Delft University of Technology (2008).

[25] A. Rohe, On the modelling of grain crushing in hypoplasticity, Tech. Rep. (Delft
University of Technology, 2010).

[26] T. A. Gavin K, Cadogan D and C. P, The base resistance of non–displacement
piles in sand. part i: field tests. Proceedings of the Institution of Civil Engi-
neers–Geotechnical Engineering 166, 540 (2013).

[27] NEN-EN 9997-1: 2016 NL: Geotechnical Design - part 1: general Rules, Ned-
erlands Normalisatie Instituut„ Delft, The Netherlands (2011).

[28] K. Mahutka, F. Konig, and J. Grabe, Numerical modelling of pile jacking, driv-
ing and vibro driving. in International conference on Numerical Simulation of
Construction Processes in Geotechnical Engineering for Urban Environment
(Bochum, Rotterdam, 2006).

[29] S. Henke and J. Grabe, Numerical modelling of pile installation, in In Proceed-
ings of 17th International Conference on Soil Mechanics and Geotechnical En-
gineering (Alexandria, Egypt„ 2009) pp. 1321–1324.

[30] D. White and M. Bolton, Displacement and strain paths during plane-strain
model pile installation in sand, Géotechnique 54, 375 (2004).

[31] I. Herle and G. Gudehus, Determination of parameters of a hypoplastic con-
stitutive model from properties of grain assemblies, Mechanics of Cohesive-
frictional Materials 4, 461 (1999).

[32] K. H. Andersen, L. Andresen, H. P. Jostad, and E. C. Clukey, Effect of skirt-
tip geometry on set-up outside suction anchors in soft clay, in ASME 2004
23rd International Conference on Offshore Mechanics and Arctic Engineering
(American Society of Mechanical Engineers, 2004) pp. 1035–1044.

[33] H. Engin, R. Brinkgreve, and A. van Tol, Simplified numerical modelling of pile
penetration-the press-replace technique, Int. J. for Num. and Analytical Meth.
in Geomech. (2015).

[34] H. K. Engin, Modelling pile installation effects: a numerical approach, Ph.D.
thesis (2013).



6
Pile installation in dry and

saturated sand

6.1. Introduction
Impact driven piles are widely used in the construction of buildings and infrastruc-
ture. In these driving methods, the piles are pushed down by each drop, or blow,
of the hammer, until the required penetration depth is achieved. This method of
pile installation leads to significant changes in soil structure and soil state in the
vicinity of the piles, which affects their bearing capacity. A proper assessment of
the size and type of hammer needed to drive the pile to the required depth, as well
as an assessment of the probability of pile damage due to high driving stresses, is
important.

In the early analysis of pile driving, Smith [1] and Lee et al. [2] applied the one
dimensional wave theory to calculate the wave propagation in an elastic rod . How-
ever, the prediction results were not accurate enough due to the one-dimensional
approximation of soil response. In 1982, Smith and Chow [3] reported consider-
able differences between the one dimensional analyses and the axisymmetric finite
element analyses for driven piles in clay. In 1994, Mabsout and Tassoulas [4] con-
ducted a detailed numerical analysis of pile driving using a finite three-dimensional
model, which is handled by two-dimensional analysis due to the axisymmetric na-
ture of the problem. They adopted a frictional contact algorithm to characterize
the interaction between soil and structure. They also added transmitting viscous
elements to the far field boundaries to mitigate wave reflections [5]. Henke [6, 7]
used the three dimensional Finite Element Method (FEM) to investigate the effect
of the different pile installation methods of jacking, hammering and vibratory pile
driving, on the behaviour of surrounding dry sand. The influence of driving a pile
near existing piles was also examined.

Most of the numerical simulations of pile installation processes are performed
with dry sand. Modelling the behaviour of soils under pile driving in saturated soils
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is a challenge. It requires a method that is capable of modelling large deformation
and able to account for the dynamic generation and dissipation of the pore water
pressure. Grabe et al. [8] presented the influence of pore water pressure during
an installation process of drilled full displacement piles, by using the two phase ap-
proach proposed by Hamann & Grabe [9]. Galavi et al. [10] used the material point
method to simulate vibratory and impact driving of offshore monopiles, and pro-
vided useful insight into pile installation processes. The similarities and differences
between the behaviour of jacked piles and that of driven piles are poorly under-
stood, mainly because of the lack of field experience and a high quality load test
database. Meyerhof [11] suggested that the shaft capacity of a jacked pile is only
one third of that of a driven pile. Chow [12] and the BCP Committee [13] suggested
that there is little evidence for this installation effect, and recorded similar behaviour
when testing jacked and driven piles. Nauroy and Le Tirant [14] carried out cal-
ibration chamber tests in which open- and closed-ended piles were hammered or
jacked past a buried total stress cell. They observed that the stress level measured
during jacking is approximately one third higher than during hammering. Foray et
al. [15] found that jacked piles mobilised 20% greater base resistance than driven
piles, but 40% less shaft friction. De Nicola and Randolph [16] conducted centrifuge
model tests of jacked and driven pipe piles and revealed comparable base and shaft
capacities. Deeks et al. [17] reported that jacked piles behave much stiffer than
comparable driven piles. Yang et al. [18] studied the similarities and differences
between the behaviour of jacked piles and that of driven piles by conducting a series
of full scale field tests on H-piles in sand. They observed that the shaft resistance
of jacked piles is generally stiffer and stronger than that of driven piles, whereas
the base resistance of jacked piles is weaker than that of driven piles. At a load
level of twice the design capacity, the percentage of pile head load carried by base
varies from 2% to 10% for jacked piles, whereas for driven piles the percentage
varies from 6% to 61%.

In this chapter, a fully dynamic analysis of the impact driven pile in sand is
modelled by the Material Point Method (MPM) in both dry and saturated sand. The
pile is assumed to behave as linear elastic so that the assessment of its damage is
excluded from this study. The hypoplastic model is used to capture the behaviour of
sand under cyclic loading. The results after pile installation are compared between
jacked and driven piles in order to obtain further insight on the influence of the
installation method to the soil state and the pile bearing capacity.

6.2. Numerical model
6.2.1. Converting hammer impact into surface traction
The pile is driven into the ground by a drop hammer with a mass 𝑚 and the falling
height is ℎ. For simplicity, Jassim [5] converted the momentum gained by the
hammer during the free fall into surface traction 𝑓(𝑡) acting on the pile head with a
pre-defined function in time. Figure 6.1 shows an illustration of the hammer drop
and the corresponding force function.

Goble and Rausche [19] provided measurements data for the loading function
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Figure 6.1: a) Illustration of hammer drop, b) corresponding force function ([5])

Figure 6.2: The forcing function for pile driving: (left) measured [19] and (right) the approximation to
haversine time distribution [5]

shown in Figure 6.2(left), where 𝑡1 is the load duration and 𝑓𝑚𝑎𝑥 is the peak
load. The function was approximated as a so-called haversine by Jassim [5] (Figure
6.2(right)). For any hammer blow, Jassim [5] suggested to approximate the loading
function as

𝑓(𝑡) = {𝑓𝑚𝑎𝑥𝑠𝑖𝑛( 𝜋𝑡
𝑡1

) if 𝑡 ≤ 𝑡1
0 if 𝑡 > 𝑡1

(6.1)

where

𝑓𝑚𝑎𝑥 = 𝜋𝜂𝑚√2𝑔ℎ
2𝑡1

(6.2)

𝑡1 is the loading duration, 𝑓𝑚𝑎𝑥 is the peak load and 𝜂 represents the hammer
efficiency. 𝜂 is chosen as 64% following Borja [20]. With A being the cross-sectional
area of the pile, the peak pressure 𝑝𝑚𝑎𝑥 at the pile head is written as

𝑝𝑚𝑎𝑥 = 𝜋𝜂𝑚√2𝑔ℎ
2𝑡1𝐴 (6.3)
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6.2.2. Numerical model
The detailed geometry of the numerical model is shown in Figure 6.3 (right). The
length and depth of the investigated area is 18.5𝐷 and 32𝐷 respectively, in which
𝐷 = 0.64 m is the pile diameter. Absorbing boundaries are placed along the lateral
outer surface and along the base of the model to absorb waves travelling in both
the solid and liquid phase. The formulation of absorbing boundaries is based on
the local absorbing boundary, which was first described by Lysmer and Kuhlmeyer
[21] and, subsequently, extended by Al-Kafaji [5] to a two-phase formulation by
considering separate dashpots for the solid and the liquid phases. The damping
coefficients of the dashpots are calculated based on the wave speed in the solid
and the liquid phases. The detailed formulation of absorbing boundaries is written
in section 3.4.2.

The 4-noded tetrahedral elements with linear interpolation of displacements are
used in the simulations. The finite element mesh (shown in Figure 6.3 (left)) has
a total of 37, 594 tetrahedral elements including the initially inactive elements, with
a total 178, 653 of material points. The mesh is refined near the pile. The inactive
elements above the soil surface may be activated during the calculation process as
material points are entering. As the simulation of the jacked pile in chapter 5, a 20∘

section of the axisymmetric problem is considered for discretization.
In Chapter 5, the jacked pile is modelled as a rigid body, whereas the impact-

driven pile in this chapter is discretised with volume elements in FEM. The jacking
process was displacement controlled, while the driving process is load controlled.
Hence, it allows to simulate the wave propagation inside the pile as in reality. The
shape of the pile tip is flat and slightly curved at the edge to avoid numerical diffi-
culties due to locking (Figure 6.3). The pile is assumed to behave according to the
linear elastic constitutive relation, with a Young’s modulus of 𝐸 = 500[𝑀𝑁/𝑚2], a
Poisson’s ratio of 𝜈 = 0 and a density of 𝜌 = 2500[𝑘𝑔/𝑚3]. To increase the accu-
racy of results, the moving mesh concept is utilised in which the top part of the
mesh moves together with the pile, while the lower part of the mesh is being com-
pressed. This ensures that the refined elements are always located along the pile.
More detail on the moving mesh concept is written in Section 3.4.4.

The considered pile is embedded 10𝐷 below the soil surface. Then an impulse
load is applied on top of the pile head, as described in the previous section 6.2.1.
The value of impulse load 𝑝𝑚𝑎𝑥 applied on the pile head is chosen to get the optimal
penetration depth per blow. The loading duration 𝑡1 = 0.012𝑠 and the time until the
next blow 𝑡2 = 0.1𝑠 is used for all simulations.

The stresses in the soil are initiated using the 𝐾0-procedure. A frictional contact
formulation (written in Section 3.4.3) is used to prevent interpenetration of pile and
soil. The friction coefficient between the pile and the sand is assumed to be 0.174.

Parametric studies on the influence of the damping factor 𝛼 for pile, skin friction
𝜇, relative density 𝑅𝐷 and driving pressure 𝑝𝑚𝑎𝑥 are illustrated in Appendix E.

6.2.3. Soil model
The hypoplastic constitutive model of von Wolffersdorff [22] with the extension of
intergranular strain by Niemunis and Herle [23] is used. This hypoplastic model
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Figure 6.3: Geometry of considered problem and mesh discretization

is able to realistically reproduce the non-linear and inelastic behaviour of granular
materials like sand including dilatancy, contractancy, and different stiffnesses for
loading and unloading. With the additional state variable of intergranular strain, it
is possible to model the accumulation effects and the hysteric material behaviour
under cyclic loading which is of particular importance for the dynamic installation
processes. Details of the hypoplastic formulation are given in Chapter 4.

For all the calculations of the impact hammer pile in this chapter, the original
hypoplastic parameters of Baskarp Sand, listed in Table 5.3, are used. Parameter
sets for small strain stiffness in the hypoplastic model are tabulated in Table 5.5.

For simulations of saturated soil, excess pore pressures can develop due to
external loading. Soil has a time-dependent behaviour which depends on perme-
ability. To capture such behaviour and the development of excess pore pressure,
a two-phase material with partially drained conditions is considered. The 𝑣 − 𝑤
formulation is used, where the unknown primary variables are solid velocity 𝑣 and
fluid velocity 𝑤. The implementation of the 𝑣 − 𝑤 formulation in MPM is presented
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Table 6.1: Additional parameters for modelling soil as a two phase material.
Parameter Value Description
𝜌𝑠 2647 density of solid grains [𝑘𝑔/𝑚3]
𝜌𝑤 1000 density of water [𝑘𝑔/𝑚3]
𝐾𝑠 1 ⋅ 1015 bulk modulus of solid grains [𝑘𝑁/𝑚2]
𝐾𝑤 81400 bulk modulus of water [𝑘𝑁/𝑚2]
𝑘 8.85 ⋅ 10−5 hydraulic conductivity [𝑚/𝑠]

in Section 3.3. Additional parameters for modelling soil as a two phase material are
listed in Table 6.1.

6.3. Numerical results of impact hammer pile installation
Considering a hammer having a mass of 𝑚 = 2000[𝑘𝑔] dropped from a height of
ℎ = 1[𝑚] and a load duration of 𝑡1 = 0.012[𝑠], the corresponding peak pressure at
the pile head was found to be 𝑝𝑚𝑎𝑥 ≈ 10000[𝑘𝑁/𝑚2]. This pressure is applied
directly on the pile as a nodal force for the actual modelling of the pile driving
process. The time between successive blows is 𝑡2 = 0.1[𝑠], corresponding to a
driving frequency of 10[𝐻𝑧].

6.3.1. Pile driving in dry sand
Stress state after pile driving
Figure 6.4 shows the radial stress as a contour plot after 1 blow, 10 blows, 50 blows
and 100 blows, respectively, for pile driving in medium dense sand (𝑅𝐷 = 45%). It
can be noticed that the radial stresses decrease in the near area of the pile shaft.

Figure 6.5a shows the radial stress for the horizontal cross section in 10𝐷, 13𝐷
and 17.5𝐷 depth, respectively, directly after 100 hits. Figure 6.5b shows the radial
stress along the pile and at several distances from the axis of symmetry after 100
blows. It should be noted that the position of the pile in Figure 6.5 is initially at 10𝐷
and at 16.5𝐷 at the end of penetration process. During the driving process, a high
stress peak occurs at the pile tip, about 3 times the value of the initial𝐾0 stress. The
stress increase reaches down to 3𝐷 beneath the pile tip for the medium dense sand
and spreads out in a radial direction for about 4𝐷. Along the pile shaft (𝑟 = 0.5𝐷),
the radial stress decreases significantly below the initial 𝐾0 state. Below the pile
tip, the radial stress drops down to a value below the 𝐾0 state. At a distance from
the pile centre larger than 10𝐷, no stress changes can be observed.

The observed change of radial stress along the vertical cross section near the
pile shaft, as well as the radial stress contour around the driven pile, are in good
agreement with simulation results obtained by Mahutka et al. [24]

Density change after pile driving
Figure 6.6 shows the calculated void ratio distribution after 1 blow, 10 blows, 50
blows and 100 blows for a driven pile in medium dense sand. It can be seen that the
soil close to the pile is significantly compacted, except for a small dilative zone near
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After 1 blow After 10 blows After 50 blows After 100 blows 

Figure 6.4: Calculated radial stress distribution around the driven pile after 1 blow, 10 blows, 50 blows
and 100 blows.
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Figure 6.5: Calculated radial stress after 6.5D pile penetration (100 blows) in dry sand for different cross
sections: a) horizontal cross section in different depth from the soil surface, b) vertical cross section for
different distances to axis of symmetric.

the end of the pile shaft and around the corner of the pile. The soil is compacted
in a region of approximately 2𝐷 − 2.5𝐷. The compaction comes mainly from the
displacement of the soil and some additional compaction results from cyclic shearing
due to the drop impulse [24]. The dilative zone may be explained due to a high
shear strain in the soil surrounding the corner pile. Hence, the compaction of the
soil close to the pile is superimposed by the shearing process, while at a greater
distance from the pile corner the compaction is dominant, which is in line with the
findings of other researchers ([24]).

Several horizontal cross sections at different depth: 10𝐷, 13𝐷 and 17.5𝐷 from
the soil surface, are plotted in Figure 6.7a to obtain the distribution of the void ratio
after 100 blows in horizontal direction. Figure 6.7b shows the change in void ratio
after 100 blows for different distances from the axis of symmetry. The pile tip is
at the depth of 16.5𝐷 from the soil surface. In general, the disturbance zone due
to pile driving is extended to a distance of about 5𝐷 from the pile center and no
change in void ratio below the depth of 25𝐷 from the soil surface. The largest
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Figure 6.6: Calculated void ratio distribution around the driven pile after 1 blow, 10 blows, 50 blows and
100 blows.
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Figure 6.7: Calculated void ratio after 6.5D pile penetration (100 blows) in dry sand for different cross
section: a) horizontal cross section in different depth from the soil surface, b) vertical cross section for
different distances to axis of symmetric.

compaction can be found at the depth of 10D below the soil surface close to the
pile shaft.

6.3.2. Pile driving in saturated sand
Stress state after pile driving
The change of the vertical and horizontal effective stress after 1 blow, 10 blows, 50
blows, 100 blows and 150 blows of a driven pile in saturated medium dense sand is
shown in Figure 6.8a, 6.8b. The effective stress near the pile is reduced after blows
to approximately zero. Thus, the soil shows the tendency to liquefy in this area.
Such behaviour of soil liquefaction was also found in previous numerical studies
[8, 10]. The horizontal stress decreases close to the pile shaft during dynamic pile
installation has also already been observed in various field tests. Ng et al. [25] and
Axelsson [26] both investigated the earth pressure acting on a pile after installation.
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Very low effective earth pressure on the pile shaft after the end of pile driving of
around 𝐾 = 0.07 − 0.3 was obtained, although pore pressures had already been
equalised.

Figure 6.9a shows the calculated radial stress right after 150 blows in saturated
medium dense sand for different horizontal cross sections. Figure 6.9b plots the
calculated radial stress near the pile shaft and at a different distance from the pile
center (note that the pile tip is at 16.5𝐷 depth). As can be seen, the zone, in which
the reduction of radial stress to nearly zero is extended to a distance of about
2.5𝐷 from the pile center. At a distance between 2.5𝐷 − 7𝐷 from the pile center,
a significant increase in radial stress is obtained. The peak value of stress in this
zone is at the same level with the pile tip and has a value of about 2 times the initial
stress. The influence zone due to installation is about 8𝐷 from the pile center and
30𝐷 below the soil surface.

Influence of pore water pressure during and after pile driving
The effective stress reaches a zero value due to an increase of excess pore water
pressure around the pile tip during installation. Figure 6.8c shows the distribution
of pore water pressure around the pile after 1 blow, 10 blows, 50 blows,100 blows
and 150 blows. Clearly, the excess pore water pressure is built up gradually during
the pile installation.

Figure 6.10 shows the development of pore water pressure calculated for ten
different particles located around the pile during 10 blows. During the loading
time of each blow, pore water pressure increases rapidly and then reduces during
unloading time for most particles, except for particle 4. Under the pile tip (particle
1, 2, 3), pore water pressure reduces significantly and tensile stress is observed
after a few blows, especially at location 1𝐷 below the pile tip (particle 2). For the
rest of particles 4 to 10, there is still some excess pore pressure that remains after
each blow which causes excess pore water pressure increase at those locations in
time.

Density change after pile driving
The distribution of the void ratio near the driven pile after 1 blow, 10 blows, 50
blows, 100 blows and 150 blows is shown in Figure 6.11. The soil around the pile
is slowly densifying after blowing. Almost along the entire pile shaft and under the
pile tip, dilation is observed. This also can be seen clearly in Figure 6.12. At the
distance of 𝑟 = 2𝐷 from the pile center, soil is compacted, however the amount of
compaction is quite small, about 14% of the initial void ratio. The disturbance zone
due to installation is extended to a distance of about 4𝐷 from the pile center and
to the depth of 20𝐷 from the soil surface.

In general, there is almost no compaction of the soil around the driven pile
during installation in comparison to the jacked pile, as can be seen in Figure 6.13
a and b. These differences are caused by the appearance of excess pore pressure
during installation of an impact hammer pile.

After installation, the simulation is continued with a relaxation phase. During
the relaxation phase, there is no load applied on the pile head. As the results of
flow balance, the excess pore water pressure around the pile tip is reduced to zero,
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After 1 blow After 10 blows After 100 blows After 50 blows After 150 blows 

(a) radial effective stress

After 1 blow After 10 blows After 100 blows After 50 blows After 150 blows 

(b) vertical effective stress
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(c) pore water pressure
Figure 6.8: Calculated stresses after 1 blow, 10 blows, 50 blows, 100 blows and 150 blows of pile driving
in saturated medium dense sand.
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Figure 6.9: Calculated radial stresses after 6.5D pile penetration (150 blows) in saturated sand for
different cross sections: a) horizontal cross section in different depth from the soil surface, b) vertical
cross section for different distances to axis of symmetric.
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Figure 6.10: Developing of pore pressure during 10 blows for several particles around the pile tip.

leading to the effective stress of the soil being slowly built up. This leads to some
compaction of the soil around the driven pile, as shown in Figure 6.13c, but much
less than with the jacked pile.
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Figure 6.11: Calculated void ratio distribution after 1 blow, 10 blows, 50 blows, 100 blows and 150 blows
of pile driving in saturated medium dense sand .
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Figure 6.12: Cross section of void ratio after 6.5D pile penetration in saturated sand: a) horizontal cross
section, b) vertical cross section.
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Figure 6.13: Comparison of void ratio distribution between jacked pile and impact hammer pile. Case
of medium dense sand (𝑅𝐷 = 45%).
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6.4. Comparison of impact hammer pile and jacked pile in
dry sand

In this section the results of the simulations of an impact driven pile installed in
dry sand are presented and compared with the results of the jacked pile (results
from Chapter 5). The detailed geometry of the considered problem and the mesh
discretization for numerical analysis of driven pile are the same in Figure 5.2 and 5.3.
The diameter of the pile 𝐷 is 0.452𝑚. Absorbing boundaries are placed along the
lateral outer surface and along the base of the model. The jacked pile is modelled
as a rigid body, whereas the driven pile is discretised with a volume element in FEM
and assumed to behave according to the linear elastic constitutive relation. The
parameters of the pile model are the same as in the previous section. The relative
density of the soil is 𝑅𝐷 = 0.36 and 𝑅𝐷 = 0.54. The hypoplastic soil parameters as
well as additional parameters for modelling two-phase material are the same as in
Section 6.2.3.

Figure 6.14 illustrates the difference in radial stress distribution after 4.5D pen-
etration between a jacked and a hammered pile for both loose and medium dense
sand. For a jacked pile, there is a significantly increasing radial stress around the
pile tip, whereas in hammered pile, the radial stress reduces and reaches zero in
some place around the pile tip and shaft.

The vibration of the pile after loading causes the soil around it to compact and
to increase in density, which explains the results of the void ratio changing after
installation as shown in Figure 6.15, where the soil around the impact driven pile is
much more compacted than around the jacked pile.

All installation methods show significant differences concerning radial stress and
void ratio after pile installation. From the numerical results it can be stated that the
radial stress depends highly on the degree of densification during the installation
process. In all cases a certain amount of soil is pushed aside by the pile. In the
case, of the jacked pile, there is only a slight densification of the surrounding soil.
Because of the monotonic nature of the installation method, the soil is not able to
rearrange its grain structure and, as a result, high stress interlockings occur around
the pile [24]. In case of the hammered pile driving, the soil is compacted close to
the pile shaft due to small cyclic shearing. In this compacted area the soil grains
are allowed to rearrange themselves. As a result, the soil near the pile shaft is able
to relax and the radial stress decreases [24].

Figure 6.16 compares the load-displacement curve during installation between
a hammered pile and a jacked pile for both loose and medium dense sand. it can
be seen that, the jacked pile gives about a 4 times higher total bearing capacity
than the hammered pile in both cases of relative density. This observation is in
good agreement with Deeks et al. and Dijkstra [17, 27]. Deeks et al. [17] found
that the stiffness of jacked piles is considerably higher than conventionally driven
or bored piles due to the pre-loading of the soil below the base during installation
and the presence of residual base load. In their test results, the stiffness of these
jacked piles exceeds recommended design stiffness for driven piles by factor of more
than 2. Dijkstra [27] summarized through the test performed by various authors
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Figure 6.14: Horizontal stress distribution after 4.5D penetration. Comparison between jacked pile and
driven pile for both loose and medium dense sand

the ratio 𝑄𝑑𝑟𝑖𝑣𝑒𝑛/𝑄𝑗𝑎𝑐𝑘𝑒𝑑 (𝑄 is the static bearing capacity of considered pile).
The majority of the tests shows 𝑄𝑑𝑟𝑖𝑣𝑒𝑛/𝑄𝑗𝑎𝑐𝑘𝑒𝑑 < 1. In other words, the static
bearing capacity of jacked piles is higher than that of driven pile.

6.5. Penetration per blow
Figure 6.17 shows the number of blows applied on different simulations and the
reached depth. According to the simulation results, it is easier to hammer the
pile in dry sand than in saturated sand and, similarly, easier in loose sand than in
dense sand. It may be explained as a result of the generation of negative excess
pore water pressure appearing under the pile tip during each blow. Figure 6.18c
illustrates the generation of pore water pressure for different particle near the pile
tip. It can be seen that for both particles under the pile tip (particle 1, 2, 4 and
5), a negative excess pore pressure is obtained during the loading duration. The
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Figure 6.15: Void ratio distribution after 4.5D penetration. Comparison between jacked pile and driven
pile for both loose and medium dense sand

negative excess pore pressure results in an increase of the effective stresses, which
leads to more difficulty to penetrate the pile to a deeper level in the sand.

6.6. Conclusion
A numerical study on impact driving piles in both dry and saturated sand has been
presented in this chapter. Complex pile installations processes of impact hammer
pile can be simulated using MPM. The influence of pore water pressure on pile
installation processes can be taken into account using the two-phase 𝑣 − 𝑤 formu-
lation.

For both dry and saturated sand, there is a significant reduction in the horizontal
stress close to the pile shaft during dynamic pile installation. This behaviour has
also observed in various field tests [25, 26] and numerical studies [8, 10, 24].
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Figure 6.16: Load displacement curve during static load test. Comparison between jacked pile and
driven pile for both loose and medium dense sand
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Figure 6.17: Penetration depth per blows, impulse load of 10000 kPa, pile diameter of 0.64 m.

For hammered piles, the compaction of the soil around the pile is much larger
than that of the jacked pile due to the cyclic and dynamic shearing which results in
lower radial stress around the pile shaft.

Generally, if the volume decrease caused by densification of the soil is higher
than the volume of soil pushed away by the pile, a relaxation of the radial stress at
the shaft can be expected. If instead the densification is smaller than the displaced
soil volume, the radial stress will increase [24]. Hence, in dry sand, jacked piles
result in a higher stiffness and capacity than hammered piles due to the higher
radial stress at both pile shaft and pile toe.

In saturated sand, the influence of the pore water pressure on the pile installa-
tion processes is significant. An increase of excess pore water pressure around the
pile tip during installation is observed. As a consequence, as the effective stress
reaches zero value, the soil shows the tendency to liquefy in the area around the
installed pile. Furthermore, there is almost no compaction of the soil around the
driven pile during installation in comparison to the jacked pile.

The investigation of pile installation processes and the estimation of the impact
of pile installation processes on surrounding structures are possible due to numerical
simulations.



References

6

135

particle 1  2 
0.5D 

0.5D 0.5D 

 3 

 5 particle 4 

Figure 6.18: Measurement during first blow, a) vertical stress of the pile head vs time, b) pile displace-
ment vs time, c) pore water pressure at different locations vs time.
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7
Modelling rapid pile load testing

7.1. Rapid load test
In chapter 6 the hammered pile installation in dry and saturated sand was simulated.
In this chapter an attempt is made to validate this type of simulations by numerical
modelling of a number of Rapid Pile Load Tests (RLT) that were performed in a
geotechnical centrifuge. Because in these tests the piles were installed in saturated
sand and were loaded by impact. And moreover the conditions were well defined,
regarding soil, loading and the deformations were measured as well as the pore
pressures in the soil during loading.

In the following at first a short introduction of the different types of pile load
tests and the Rapid test in particular is given.

7.1.1. Introduction
The purpose of a pile load test is to prove that a foundation fulfils requirements in
terms of the stiffness under working load and the bearing capacity at the ultimate
limit state. In general, there are three types of tests available, which are Static Load
Test (SLT), Rapid Load Test (RLT) and Dynamic Load Test (DLT). The static load test
is quite expensive due to its duration, which is about one day, and the requirements
regarding the test facilities, dead weight, reaction frame, etc. The dynamic load test
is much faster and cheaper; however, piles may experience tension during the test
and the derivation of an equivalent static pile capacity is hampered by wave effects.
The rapid pile load test method is conducted by exerting a long duration pulse load
(between 50 and 200 milliseconds) on the pile head [1]. The long duration load of
rapid pile load test, which is 10 to 20 times longer than the typical loading duration of
a dynamic pile load test but still considered as a dynamic event. The long loading
duration helps to significantly reduce stress-wave effects, thus leading to a less
complex analysis method. Hence, rapid pile load testing methods which are less
time consuming than the static load tests and less complicated to analyse than the
dynamic load tests, are considered to be efficient alternatives for the prediction of
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the static bearing capacity of the pile.
The rapid load testing method is distinguished from the other testing methods

as it is based on the wave number 𝑁𝑤 or the relative duration 𝑡𝑟. In which the
relative duration 𝑡𝑟 represents the ratio between the length of the applied pulse load
and the length of the pile ([1]), 𝑡𝑟 represents the ratio between the duration of the
applied pulse load and the duration needed for a compression wave to propagate
forwards and backwards through the pile ([2]). If 𝑁𝑤 is in between 10 and 1000 or
𝑡𝑟 is between 5 to 500, it is regarded as a rapid load test; if 𝑁𝑤 < 10, it is regarded
as a dynamic load test and if 𝑁𝑤 > 1000, it is regarded as a static load test ([2]).

During the rapid load test, excess pore pressure is generated in the soil closed
to the pile, even in sand [3] and the effect of generated excess pore pressure on
the ultimate bearing capacity of the pile is uncertain. The Unloading Point Method
(UPM) [4], which takes into account the soil viscous damping and the pile inertia but
not the effect of pore pressure, is the most common method to derive an equivalent
static pile capacity from a rapid test. McVay et al. [5] and Holscher et al. [6]
confirmed that the derived capacity with UPM from a rapid load test overestimates
the ultimate bearing capacity of piles in sand with about 10%.

Huy [7]and Holscher et al. [8] studied the effect of excess pore pressure by
performing a number of rapid load tests on a model pile in sand in a geotechnical
centrifuge. They found that, the maximum of pile tip resistance is higher in a rapid
load test than in a static load test due to the rate effect (less than 10%) and the
effect of excess pore pressure (maximum of about 30%).

7.1.2. Centrifuge rapid load tests
The centrifuge test was performed at Deltares (Delft, the Netherlands) based on a
1:40 scale test. Detail descriptions of the centrifuge test are given by Huy [7, 8]
and Chi [9]. During the sample preparation, the pile was installed at a depth of
10D (for jacked pile) and 20D (for pile without installation effects) from the soil
surface. The jacked pile was pushed down in flight 10D deeper to 20D depth from
the soil surface. The objective is to have a pile installed without installation effects
which is similar to a bored pile in comparison with a jacked pile. The load test
sequence shown in Table 7.1 was applied after the centrifuge had been spun to an
acceleration level of 40g.

The jacked pile (Test 2 and 3), the pile was pushed down in flight 10D deeper
to 20D depth from the soil surface with a penetration velocity of 0.067 mm/s. After
installation, the test programme was carried out and starting with a static load
test. Then three sets of four RLTs were performed, with each set followed by
another SLT. The duration of the load was shortened for each set of four RLTs.
This led to an increasing test loading velocity. Each of the four RLTs was carried
out with a constant duration (slow 50 ms, average 20 ms or fast 10 ms) and the
amplitude was changed to achieve a different displacement of the pile (1%D, 2%D,
5%D and 10%D). For the pile without installation effects (Test 24), the RLTs began
without the installation phase and the first static load test SLT - 1. All load tests
were displacement-controlled with the displacement pattern shown in Figure 7.1.
Experience with dynamic tests leads to a preference for displacement control since
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Table 7.1: Loading scheme of considered tests.

Name Test 2 - Huy (2008) Test 3 - Huy (2008) Test 24 - Chi (2012)

Installation Jacked pile Jacked pile wished in place pile

Dr 54% 36% 45%

Dpile 11.3 mm 11.3 mm 16 mm

1 Installation Installation x

2 SLT - 1 SLT - 1 x

3 RLT2 - 1 - 0,01D RLT3 - 1 - 0,01D RLT24 - 1 - 0,01D

4 RLT2 - 1 - 0,02D RLT3 - 1 - 0,02D RLT24 - 1 - 0,02D

5 RLT2 - 1 - 0,05D RLT3 - 1 - 0,05D RLT24 - 1 - 0,05D

6 RLT2 - 1 - 0,1D RLT3 - 1 - 0,1D RLT24 - 1 - 0,1D

7 SLT - 2 SLT - 2 SLT - 2

8 RLT2 - 2 - 0,01D RLT3 - 2 - 0,01D RLT24 - 2 - 0,01D

9 RLT2 - 2 - 0,02D RLT3 - 2 - 0,02D RLT24 - 2 - 0,02D

10 RLT2 - 2 - 0,05D RLT3 - 2 - 0,05D RLT24 - 2 - 0,05D

11 RLT2 - 2 - 0,1D RLT3 - 2 - 0,1D RLT24 - 2 - 0,1D

12 SLT - 3 SLT - 3 SLT - 3

13 RLT2 - 3 - 0,01D RLT3 - 3 - 0,01D RLT24 - 3 - 0,01D

14 RLT2 - 3 - 0,02D RLT3 - 3 - 0,02D RLT24 - 3 - 0,02D

15 RLT2 - 3 - 0,05D RLT3 - 3 - 0,05D RLT24 - 3 - 0,05D

16 RLT2 - 3 - 0,1D RLT3 - 3 - 0,1D RLT24 - 3 - 0,1D

17 SLT - 4 SLT - 4 SLT - 4

RLT time & displacement

RLT1

Step

Test 

information

0,1D 0,1D 0,1D

RLT2 RLT3

slow medium fast

50 ms 20 ms 10 ms

Figure 7.1: Displacement pattern of a rapid load test(after [7]).

it is more stable [8].

Pore pressure beneath the pile tip is measured by an integrated pore pressure
transducer in the pile tip. Pore pressure in the sand model is measured in several
different places beneath and at the flank of the loading location of the pile. The
pore pressure transducers were positioned in the soil as shown in Figure 7.2.

Baskarp sand was used in the centrifuge test. Details of Baskarp sand properties
as well as the sample preparation are described in Chapter 5. A viscous fluid is used,
instead of water, in the considered tests with viscosities of up to 300 times the
viscosity of water. The reason of using viscous fluid is in detail explained detailed
in the following.
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Figure 7.2: Positions of pore pressure transducers (after [7]). 𝑤𝑠𝑚𝑝𝑙 is the pore pressure transducer
in the pile tip and 𝑤𝑠𝑚1, 𝑤𝑠𝑚2, 𝑤𝑠𝑚3, 𝑤𝑠𝑚4 are the pore pressure tranducers in the sand.

Scaling drainage conditions during the rapid load tests in sand
The effect of excess pore pressure in a rapid load test is expressed by a so-called
dynamic drainage factor 𝜂 [3, 10] as

𝜂 = 𝐺𝑇
𝑔𝜌𝑅2 𝑘 = 𝐺𝑇

𝜌𝑅2
𝐾
𝜈 (7.1)

where 𝐺 is the shear modulus [Pa], 𝑇 is the duration of the loading [s], 𝜌 is the
water volumetric mass [𝑘𝑔/𝑚3], 𝑘 is the permeability of the sand [𝑚/𝑠], 𝐾 is the
intrinsic permeability of the sand, 𝑔 is the acceleration level and 𝜈 is the viscosity
of the pore fluid.

In the centrifuge test with a scaling factor of 𝑁 = 40, if water was used, the
drainage factor would be 𝑁 times smaller than in the prototype since time was
scaled with factor 1

𝑁 and the radius with 1
𝑁2 . Hence, in order to have an identical

drainage factor, a fluid with𝑁 times higher viscosity was used in the centrifuge tests.
To compensate for the limitation of the loading duration in the centrifuge test, which
was three times slower than the requirement, the viscosity of the fluid had to be
increased three times (i.e. 3𝑥40 = 120 times higher than water). However, with this
viscous fluid, the drainage factor of the fastest rapid load test was still too high to
show any effect of excess pore pressure. Hence, it was decided to increase the fluid
viscosity in order to slow down the drainage process and to render the phenomenon
of interest more visible. Finally, the viscosity of the fluid in the centrifuge test was
chosen to be 300 times higher than water viscosity and the drainage in the centrifuge
was 300/40/3 = 2.5 times slower than it would be in the prototype with Baskarp
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sand.

7.1.3. Case study
In this chapter, the material point method is used to model the rapid load tests
(RLT) for both the jacked pile as well as the pile without installation effect. The
results are compared with the ones from the centrifuge test in order to validate the
numerical method. After that, the effect of excess pore pressure is investigated in
more detail.

The RLTs in test 2, test 3 (jacked pile) and test 24 (pile without installation
effect) were chosen to be simulated. Due to the extensive computational time of
the calculations and the limited time available, it was not possible to model all RLTs
series in each test. For the pile without installation effects, the slow test 24 (step 3
to 6 in Table 7.1) is considered to be simulated. The results from the tests and the
simulations were compared and described in section 7.2. The reason to choose test
24 is that no installation effect in the results of this first RLT. Hence, it is good to use
the test results (of test 24) to calibrate several input parameters for the numerical
model e.g. water stiffness or small strain stiffness of the hypoplastic model. For the
pile without installation effect, there was no focus on fitting the results of MPM and
the centrifuge tests. The goal of the comparison is rather on the jacked pile because
the RLTs are strongly influenced by the installation process. MPM modelling of the
RLT for the jacked pile is introduced in section 7.3.

In the centrifuge test, SLTs were carried out before and after each RLT. The
comparison between the results of the SLTs provides information about changing
soil conditions due to the RLTs performed in between SLTs. All force displacement
curves during the SLTs are shown in Figure 7.3 for both the jacked pile and the pile
without installation effects. In the case of the pile without installation effects, the
deviation between each curve is significant, whereas a very small deviation can be
seen in the SLTs curve of a jacked pile. It is assumed that the deviation is caused by
the densification of sand due to RLTs performed in between two SLTs [7]. Therefore,
the highest deviation is found in the results of the pile without installation effect,
where the soil has not yet been compacted by the installation effect. Similarly, in
the case of the jacked pile, the SLT curves of the pile in loose sand (Test 3) give a
higher deviation than in medium dense sand (Test 2). For Test 2, SLT curves are
almost the same, hence, it can be concluded that there is almost no change in soil
condition due to RLTs performed in between two SLTs. Due to the fact that there
are no soil condition changes, in section 7.3, the last rapid load test RLT2-3-0.1D
with 10% of pile displacement (step 16 in Table 7.1) is chosen to model directly
after the installation phase. It saved time and computational cost.
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Figure 7.3: Force displacement curve during of SLTs after each set of RLT, results from centrifuge tests
for medium dense sand 𝑅𝐷 = 54% and pile diameter of 16 mm (comparison between wished in place
pile and jacked pile).

7.2. MPM modelling of RLT for the pile without installation
effects (Test 24)

In this section, a series of RLTs in Test 24, RLT24-1-1, RLT24-1-2, RLT24-1-3, RLT24-
1-4 (step 3 to 6 in Table 7.1) are modelled by MPM. A detailed loading scheme was
used in the centrifuge for the slow rapid load test, as shown in Table 7.2. In test
24, initial relative density of medium dense sand 𝑅𝐷 = 54% was used.

7.2.1. Numerical model
Geometry
A prototype of a 0.64 m diameter pile in a fully saturated sand bed was modelled
by a 16 mm model scale pile at an acceleration of 40 − 𝑔 in the centrifuge test. In
the numerical modelling, the geometry and results are scaled to prototype scale
and used in simulations instead of applying an artificial acceleration field of 40 − 𝑔.
The problem geometry and the mesh discretization are shown in Figure 7.4. The
length and depth of the investigated area are 18.5𝐷 and 35.4𝐷 respectively, in which
𝐷 = 0.64 m is the pile diameter. Absorbing boundaries are placed along the lateral
outer surface and along the base of the model to absorb waves travelling in both
the solid and liquid phase. The detailed formulation of the absorbing boundary is
presented in section 3.4.2.

For the simulations in this research, an implementation of MPM was applied in
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Table 7.2: Loading scheme of slow rapid load tests for the pile without installation effects in Test 24
(model scale).

Number Name Direction Displacement Time Velocity
[% D] [mm] [ms] [mm/s]

1 RLT24-1-1 Down 1 0.16 50 3.2
up 0.5 0.08 1.6

unloading
2 RLT24-1-2 Down 2.5 0.4 50 8

up 1 0.16 3.2
unloading

3 RLT24-1-3 Down 5 0.8 50 16
up 1 0.16 3.2

unloading
4 RLT24-1-4 Down 10 1.6 50 32

up 1 0.16 3.2
unloading
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Figure 7.4: Mesh discretization and geometry of the considered problem for the pile without installation
effects in Test 24.

which 4-noded tetrahedral elements with linear interpolation of displacements were
used. The finite element mesh had a total of 28, 005 tetrahedral elements including
the initially inactive elements, with a total 170, 298 of material points. The mesh
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was refined near the pile. The inactive elements above the soil surface may be
activated during the calculation process as material points are entering. Although
the considered problem was axisymmetric, the simulations were three dimensional
due to the nature of the MPM implementation. A 20∘ section of the axisymmetric
problem was considered for discretization. A contact algorithm (section 3.4.3) was
used to model the frictional contact between the pile and the soil. The chosen
value of wall friction coefficient for all simulations in this study was assumed based
on the characteristics of a polished steel pile surface, which was 𝜇 = 𝑡𝑎𝑛𝜑 = 0.194.
The simulations were done with two–phase material behaviour. The stresses in the
soil were initiated using the so-called K0-procedure. The hydraulic conductivity of
water 𝑘 is 8.85𝐸 − 5 m/s.

The pile was modelled as a rigid body. The shape of the pile tip was flat which
is identical to the pile in the centrifuge test. However, the edge of the pile tip in
the simulation was slightly curved to avoid numerical difficulties due to locking.
The pile was initially embedded at 20𝐷 below the soil surface. The penetration of
the pile into the soil was modelled by applying a prescribed velocity on the top of
the pile. The amplitude of the prescribed velocity was generalized from the actual
(measured) value by finding the mean value during the test as shown in Figure 7.5.
To increase the accuracy of the results, the moving mesh concept was utilised in
which the top part of the mesh moved together with the pile, while the lower part
of the mesh was being compressed, ensuring that the refined elements are always
located along the pile. More detail on the moving mesh concept is presented in
Section 3.4.4.

Material parameters
Baskarp sand with a relative density of 45% (medium dense sand) is used in the
centrifuge test. The hypoplastic constitutive model of Wolffersdorff [11], with the
extension of intergranular strain by Niemunis and Herle [12], is used to model the
soil behaviour.

For simulations of saturated soil, excess pore pressures can develop due to
external loading. Soil has a time dependent behaviour which depends on perme-
ability. To capture this behaviour and the development of excess pore pressure, a
two-phase material with partially drained conditions is considered. The 𝑣 − 𝑤 for-
mulation is used, where the unknown primary variables are the solid velocity 𝑣 and
the fluid velocity 𝑤. The implementation of 𝑣 − 𝑤 formulation in MPM is presented
in Section 3.3. Additional parameters for modelling soil as a two phase material are
listed in Table 6.1

For all calculations of RLT in this section, the original hypoplastic parameters of
Baskarp sand listed in Table 5.3 are used. Parameter sets for small strain stiffness
in the hypoplastic model are tabulated in Table 5.5.

In the following section, the influence of water stiffness 𝐾𝑤 is studied to get a
realistic behaviour of pore water pressure in comparison with the centrifuge test.
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Figure 7.5: Prescribed velocity on the pile head during rapid load tests for wished in place pile with pile
displacement of a) 1%𝐷, b) 2%𝐷, c) 5%𝐷, d) 10%𝐷.

7.2.2. Influence of water stiffness
In this section, the value of water stiffness 𝐾𝑤, hydraulic conductivity of water 𝑘
and the initial stress 𝐾0 are varied to investigate their influence on the rapid load
test results, as well as on the generation of excess pore pressure, in order to get
a realistic value of the excess pore pressure. The prescribed velocity used in this
parametric study follows the pile velocity in test RLT-24-1-1, shown in Figure 7.5 a.

For the saturated soil, the compressibility of the water is related to the air con-
tent. Verruijt [13] introduced an equation to estimate a water bulk modulus 𝐾𝑤
related to the degree of saturation as

𝐾𝑤 = 𝑝𝑎𝑡𝑚
1 − 𝑆𝑟

(7.2)

with 𝑝𝑎𝑡𝑚 being the atmospheric pressure of approximately 100kPa. Hence, if as-
summing a degree of saturation of 𝑆𝑟 = 0.99 the corresponding water bulk modulus
𝐾𝑤 is estimated to be 10 MPa.

In Figure 7.6, the influence of the water stiffness on the generation of pore
water pressure during the rapid load test is examined. Five different values of water
stiffness 𝐾𝑤 = 81400, 20000, 10000 8000 and 5000 kPa are chosen for comparison.
As can be seen in Figure 7.6b, the water bulk modulus has a significant influence
on the stiffness as well as the peak value of the excess pore pressure at tip. In
fact, water is not fully incompressible, but a realistic value for the bulk modulus of
water is very large. However, during the test preparation, the presence of a very
small air bubble may significantly reduction of the water stiffness.
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In conclusion, to attain a good match between the results of centrifuge tests and
simulations regarding the generation of excess water pressure, the bulk modulus
of water 𝐾𝑤 is chosen as 8000 kPa for all rapid load test simulations.

7.2.3. Results and discussion
Changing of stress during the RLT-24-1-1
The horizontal and vertical stresses at different times during the rapid load test,
𝑡 = 0.75𝑠, 𝑡 = 2.55𝑠, 𝑡 = 3𝑠, and 𝑡 = 4𝑠, are plotted in Figure 7.7 and 7.8. From
𝑡 = 0 → 0.75𝑠, the pile is pushed down fast with velocity of 𝑣 ≈ 5𝑚𝑚/𝑠, then the
increasing of both horizontal and vertical stresses, and positive excess pore water
pressure is observed under the pile tip as shown in Figure 7.7 a, Figure 7.8 a, Figure
7.9 a, respectively. From 𝑡 = 0.75 → 2.55𝑠, the pile is pushing down with decreasing
velocity 𝑣 = 5 → 0𝑚𝑚/𝑠, the pore water pressure around the pile tip is gradually
dissipated. From 𝑡 = 3 → 4𝑠, the pile is slightly pulled up, a minor negative excess
pore pressure is observed under the pile tip. At the end of simulation, 𝑡 = 4𝑠,
vertical effective stresses around the pile tip and pile shaft gradually reach zero
(Figure 7.8 d).

Load-displacement curve during the RLT
Figure 7.10 shows the results of MPM simulation in comparison with the results
of the centrifuge test. The simulation gives the peak value of the tip force and
excess pore pressure which are similar as the ones of the centrifuge test. The
simulated stiffness of the load displacement curve is slightly softer than in the result
of centrifuge test. On the other hand, the generation of pore water pressure during
the first second in the simulation is quite fast in comparison with the test result.
In general, for the first rapid load test, RLT-24-1-1, both the simulation and test
results are in good agreement.

After the first rapid load test with a pile displacement of 1%𝐷, three additional
rapid load tests were continuously modelled with a pile displacement of 2%𝐷, 5%𝐷
and 10%𝐷 respectively. The results of load displacement curves during the simu-
lations are plotted and compared with centrifuge test results in Figure 7.11.

Except the results of RLT-24-1-2, in which the simulation gives a slightly higher
peak value of the pile tip force than in the centrifuge test, the pile tip forces in the
other simulations are significantly smaller than in the centrifuge test (43% and 57%
smaller in RLT-24-1-3 and RLT-24-1-4, respectively). One of the possible reasons for
the lower tip force in the simulation after each cyclic loading might be that the con-
stitutive model is not able to correctly model the cyclic behaviour. When compared
a numerical triaxial of a compression test with the triaxial test on sand, Bauer and
Wu [14] observed that a reversal from unloading to reloading, the stiffness becomes
smaller while it should be larger. Other shortcoming in numerical simulation is that,
cyclic loading with a given stress amplitude produces exactly identical stress strain
cycles (ratcheting), which leads to the predicted strain in one-dimensional com-
pression increase unlimitedly as the stress reaches infinity. The hypoplastic model
in this thesis used the so-called ”intergranular strain extension” to avoid excessive
ratcheting in the case of cyclic loading (For more detail see Section 7.3.2).
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Figure 7.6: Influence of water bulk modulus 𝐾𝑤 on the rapid load test results.(simulation with 𝐾0 = 0.46 and 𝑘 = 8.85𝑥10−5 m/s)
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Figure 7.7: Horizontal effective tress around the pile tip at different time during RLT 24-1-1
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Figure 7.8: Vertical effective stress around the pile tip at different time during RLT 24-1-1
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Figure 7.9: Pore water pressure around the pile tip at different time during RLT 24-1-1
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Figure 7.10: Comparison between centrifuge test and MPM for the first rapid load test RLT 24-1-1
(embedded pile with 1%𝐷 displacement

As mentioned before, the purpose of this section is mainly to choose a good set
of parameters for the validation of MPM with the centrifuge test. The numerical
simulation of the centrifuge tests is focussed on the jacked pile with a 10%D pile
displacement and will be discussed in the following section.

7.3. MPM modelling of RLT for jacked pile
In this section, the fast rapid load test RLT2-3-0.1D (medium dense sand) and RLT3-
3-0.1D (loose sand) with 10% of pile displacement are simulated (step 1, 2 and 16
in Table 7.1).

7.3.1. Problem description
A prototype of a 0.452 m diameter pile in a fully saturated sand bed was modelled.
The pile was initially embedded 10D below the soil surface and then pushed down
10D in flight to simulate the installation process. After this, the first SLT is modelled
and followed by the RLT with 10%D of pile displacement. Details of the numerical
model and the mesh discretization are similar as in Chapter 5 (Figure 5.2, 5.3).
Absorbing boundaries are placed along the lateral outer surface and along the base
of the model to absorb waves travelling in both the solid and the liquid phase. The
detailed formulation of the absorbing boundary is described in section 3.4.2.

During the installation of the pile in the centrifuge test, the pile is pushed deeper
in to the sand bed with a velocity of 0.167 mm/s. In the MPM simulation of the
installation phase, a constant velocity of 20 mm/s is applied on the pile head. In
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Figure 7.11: Load displacement curves during four rapid load test; comparison between centrifuge test
and MPM for the pile without installation effect with pile displacement of a) 1%𝐷, b) 2%𝐷, c) 5%𝐷,
d) 10%𝐷.
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Figure 7.12: Prescribed velocity on the pile head during fast rapid load tests for jacked pile.

order to guarantee no excess pore pressure is generated during the installation, a
higher value of hydraulic conductivity of 𝑘 = 8.85𝐸 − 04 m/s is used. This value is
also used for the simulation of the SLT after the installation phase. Using a higher
value of 𝑘 also helps to increase the time step size and as a consequence, the com-
putational cost reduces. The RLT is simulated with the same velocity and hydraulic
conductivity as in the centrifuge test. A prescribed velocity, which is applied on the
pile head during RLT is shown in Figure 7.12.

Baskarp sand with a relative density of 54% (medium dense sand) and 36%
(loose sand) is used in the tests. The hypoplastic constitutive model of Wolffersdorff
[11] with the extension of an intergranular strain by Niemunis and Herle [12] is used
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to model the soil behaviour.

The 𝑣 − 𝑤 formulation is used to simulate the saturated soil behaviour. Additional
parameters for modelling soil as a two phase material are listed in Table 6.1. For all
calculations of the rapid load test in this section, the original hypoplastic parameters
of Baskarp Sand, listed in Table 5.3, are used. Parameter sets for small strain
stiffness in the hypoplastic model are discussed in the following section.

As recommended in the previous section (7.2.2), the bulk modulus of water 𝐾𝑤
is chosen as 8000 kPa, 𝐾0 is 0.35 and hydraulic conductivity 𝑘 is 8.85𝐸 − 5 m/s for
all rapid load test simulations.

7.3.2. Influence of small strain parameters on the results of RLT
As mentioned in Chapter 4, the hypoplastic model in this thesis is used with the
so-called ”intergranular strain extension” to avoid excessive ratcheting in the case
of cyclic loading. Niemunis and Herle [12] proposed a method to determine the
additional parameters for the extended model which is based on the theoretical
considerations. The set of the parameters Niemunis and Herle gave for one sand
was used successfully in many finite element simulations without further experi-
mental investigations. Hence, this set IGS-3 (Table 7.3) is used in this thesis for
most of the simulations in chapter 5 and 6 and section 7.2 of chapter 7. However,
as shown in the previous section, after several loading cycles, the simulations of
RLT gave significant lower values of total tip force in comparison with the centrifuge
RLT. Furthermore, by evaluating the cyclic tests (resonant column, oedometric com-
pression and triaxial shearing), Meier [15] revealed that the parameter 𝑚𝑅 should
depend on the stress state and density. In his calibration of a resonant column test
on Karlsruhe sand together with post test calculation results, for 𝑝′

0 = 320 kPa an
𝑚𝑅 = 6 is obtained and for 𝑝′

0 = 20 kPa an 𝑚𝑅 = 12. Meier also found that, for
the same stress 𝜎𝑣 = −185 kPa, an 𝑚𝑅 ≈ 4.3 was obtained for the loose sample
(𝑒0 = 0.9) and 𝑚𝑅 ≈ 3.0 for the dense sample (𝑒0 = 0.9). Thus, it is concluded that
a mean value should be taken for 𝑚𝑅, to fit the experimental results correctly in
a relevant range of stress and density. The same stress and density dependence
is conjectured for 𝑚𝑇 , however, there has not been an experimental study with
regard to determine the intergranular strain parameters. Meier [15] also suggested
that 𝑅 = 10−4 can be treated as a independent material constant, and that 𝜒 = 1.0
together with 𝛽𝜒 = 0.1 are good starting values for calibration.

For Baskarp sand, no data is available on cyclic tests (e.g. oedometric compres-
sion tests with at least one unloading /reloading cycle) to calibrate𝑚𝑅 and 𝛽𝜒 = 0.1
in order to realistically represent the increase in stiffness after a deformation re-
versal. Therefore in this section, the value of small strain parameters is taken as
IGS-14 set in Table 7.3. Values of these parameters are chosen by trial and error
to achieve the best fit with the centrifuge test. The influence of each small strain
parameter on the results of RLT is individually investigated and shown in Appendix
F.
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Table 7.3: Small strain parameters for sand.
Name 𝑅 𝑚𝑅 𝑚𝑇 𝜒 𝛽𝜒
IGS-3 10−4 5 2 1 1
IGS-14 10−4 7 7 1 0.2
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Figure 7.13: Comparison between centrifuge test and MPM for a) medium dense sand and b)loose sand.

7.3.3. Results and discussion
Load displacement curve
The comparison between the results of the centrifuge test and the simulations using
MPM are shown in Figure 7.13 for both medium dense sand and loose sand. A good
fit between simulation and centrifuge results is found for medium dense sand. In
loose sand, the simulation gives a bit lower peak value (about 16% less) and a
softer behaviour than in centrifuge test. It may be related to the deviation of SLTs
in between RLTs as explained in Section 7.1.3. In loose sand, a deviation of 16%
is observed between the first and the last SLT, due to the densification of the soil
during many RLTs from step 3-15 (in Table 7.1) in the centrifuge. Therefore, for
loose sand, the omission of many RLTs in between, and the fact that only the last
RLT in step 16 is modelled, causes the difference in results between the MPM and
centrifuge test.

Pore water pressure generation during rapid load test
Figure 7.14 gives an overview of the change in pore pressure at the beginning of
the RLT and the size of the influence zone. Close to the pile 1D, a high change in
PWP and in the size of the influence zone up to 5D wide from the pile centre and
about 5D depth under the pile tip is observed. Increasing pore pressure (positive
excess pressures) is generated by a compression of soil and a decreasing pore
pressure(under pressures) is caused by dilative soil behaviour during failure [8].
Under the pile tip, the soil is compressed during pile penetration and a nose cone
is formed [16]. The formation of the nose cone is also confirmed in chapter 5 by
MPM simulation. As the pile penetrates into the sand, the nose cone moves with
the pile and the surrounding sand is sliding and sheared along the edge of the nose
cone. The pore pressure response during the RLT is dependent on the deformation
pattern and the existence of the pore flow in the soil region underneath the pile tip
[7].
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Figure 7.14: Pore pressure generated at time 4: t = 0.23 s in rapid load test for medium dense sand.

Figure 7.15 shows in detail how the pore pressure around the pile tip is changing
at different loading times during RLT. The excess pore pressure inside the nose
cone first increases to a maximum value then starts to dissipate when the pile is
unloading. It may be due to the flow through the saturated soil, that the pore
pressure equalises.

Along the edge of the nose cone and the pile shaft, the soil particles are sheared
and slide, and this shear behaviour is dominant over the compression behaviour
[16, 17]. Because of the dominance of the shear behaviour along the edge of the
nose cone, the excess pore pressure in this zone is negative during most of the
loading duration.

In the test set up, four pore pressure transducers (T1, T2, T3, T4) were placed
at four different locations in the soil underneath the pile, and a fifth transducer
was fitted on the pile tip to measure the response of pore pressure during the
load tests. Figure 7.16 illustrates the changing of excess pore pressure at different
locations in the centrifuge test in comparison with the MPM simulation for medium
dense sand. As can be seen, the excess pore pressure observed at the pile tip
(Figure 7.16 a) in the simulation is quite similar in evolution trend and the peak
value with the change of pore water pressure in the centrifuge test. No excess
pore pressure is observed at location T4 (Figure 7.16 d) for both simulation and
measurement. For transducer T1 (Figure 7.16 b), placed at a distance 2,5D directly
underneath the pile tip, MPM simulation gives positive excess pore pressure during
the test, whereas the centrifuge test first gives a negative excess pore pressure
during half of the time, then changes to a positive excess pore pressure. Huy
[7] stated that, the decrease in pore pressure at the location of transducer T1 in
centrifuge test seems very unrealistic. The pore water pressure would be expected
to increase at the start of the test due to compression, and then to decrease but
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Figure 7.15: Pore pressure generated at different time during rapid load test for medium dense sand.

the measurement shows an opposite trend. An explanation for the appearance of
negative excess pore pressure in the centrifuge test is due to the set-up and the size
of the transducer (6 mm in diameter), which is large in comparison with the size of
the pile tip [7]. When the pile is pushed down during the test, the transducer acts as
an obstacle in the soil. Hence the soil particles slide around the transducer instead
of moving straight downward and as a consequence, a shear surface is formed.
At the location of transducer T3, a similar trend of increasing pore pressure at the
start of the load test, which then decreases due to the sand dilatancy, is observed
in both the centrifuge test as well as the MPM simulation (Figure 7.16 c). However
the measurement shows a relatively higher increase in pore pressure in comparison
with the result from the simulation. It is due to the horizontal displacement of sand
particles in this region [16] and the set-up of the transducer that the compression
of the soil in front of the porous stone increase [7]. Hence the set up causes pore
pressure to increase more than the real value without the transducer.
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Figure 7.16: Pore pressure at different location during rapid load test for medium dense sand. Compar-
ison between centrifuge test and MPM simulation.

7.4. Conclusions
Several RLTs are numerically simulated by the MPM-model. In this section the
results are summarized.

A series of RLT in test 24 were simulated. The bulk modulus of water 𝐾𝑤 is
chosen as 8000 kPa to attain a good match between the results of centrifuge tests
and and simulation regarding the generation of excess water pressure. For the
first test RLT 24-1-1 with a pile displacement of 1%𝐷, the simulations gives the
peak value of the tip force and excess pore pressure are similar as the ones of the
centrifuge test. However, in the test RLT 24-1-3 and RLT 24-1-4, the simulations
result in significant smaller tip force values than in the centrifuge tests, which can
be due to the constitutive model is not able to correctly model the cyclic behaviour.

In order to avoid excessive ratcheting in the case of cyclic loading, It is important
to use the hypoplastic model with the intergranular strain extension. There are 5
input parameters in the intergranular strain extension, 𝑚𝑅, 𝑚𝑇 , 𝑅, 𝜒, 𝛽. The
parameter 𝑚𝑅 and 𝑚𝑇 of the intergranular strain extension should depend on the
stress state and density [15]. Hence a mean value should be taken for 𝑚𝑅 and 𝑚𝑇
to fit correctly the experimental results in a relevant range of stress and density.
𝑅 = 10−4 can be treated as a material independent constant, and that 𝜒 = 1.0
together with 𝛽𝜒 = 0.1 are good starting value for calibration. In this study, for
Baskarp sand, the value of small strain parameters is taken as 𝑅 = 10−4, 𝑚𝑅 = 7,
𝑚𝑇 = 7, 𝜒 = 1.0 and 𝛽𝜒 = 0.2. The values of the parameters are chosen by trial
and error to achieve the best fit with the centrifuge test since no cyclic test data
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are available to calibrate.
The results of MPM simulations are compared with the results from the cen-

trifuge tests. A good fit of a load displacement curve between simulation and
centrifuge results is found for medium dense sand. In loose sand, the simulation
gives a slightly lower peak value (about 16% less) and a softer behaviour than in
centrifuge test. The observation of excess pore pressure at the pile tip in the sim-
ulation is quite similar in evolution trends as well as the peak value from centrifuge
test.

Close to the pile 1𝐷, a high change in pore water pressure is observed and the
size of the influence zone is up to 5𝐷 wide from the pile centre and about 5𝐷 depth
under the pile tip.

Under the pile tip, the soil is compressed during the pile penetration and a nose
cone is formed. The formation of the nose cone under the pile tip influences the
generation of pore water pressure. As the pile penetrates into the sand, the nose
cone moves with the pile and the surrounding sand is sliding and sheared along the
edge of the nose cone. Increasing pore pressures are generated by a compression
of soil and decreasing pore pressures are caused by dilative soil behaviour during
failure. The excess pore pressure inside the nose cone first increases to a maximum
value, then starts to dissipate when the pile is unloading. It may be due to the
flow through the saturated soil that the pore pressure equalises. Along the edge
of the nose cone and the pile shaft, the excess pore pressures in this zone are
negative during most of the loading duration because of the dominance of the
shear behaviour in this area.
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8
Conclusion

8.1. Conclusion
This thesis presents a numerical modelling approach to investigate the stress and
density change in the soil during pile installation of a jacked and driven pile in dry
and saturated sand. The installation of displacement piles in sand leads to severe
changes in the stress state, density and soil properties around the pile tip and
shaft, and, therefore, has a significant influence on the pile bearing capacity. Most
current numerical methods predicting pile capacity do not take installation effects
into account, as large deformations can lead to mesh distortion and non-converging
solutions. For a correct analysis of the pile installation and its consequential effects
the numerical model should be able to deal with:

• large deformations

• adapted soil properties due to stress and density changes

• very high stresses and the related crushing

• a two phase medium, with the possibility of full liquefaction

8.1.1. Numerical model
Material point method
In this study, the Material Point Method (MPM) is applied to simulate the pile instal-
lation process and the subsequent static pile loading tests. MPM is an extension of
the Finite Element Method (FEM), which is capable of modelling large deformations
and soil-structure interactions. This study utilizes the moving mesh algorithm where
a redefined computational mesh is applied in the convective phase. This allows a
fine mesh to be maintained around the pile tip during the installation process and
improves the accuracy of the numerical scheme, especially for the contact formu-
lation. In chapter 5, several calculations were performed using the material point
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method in order to model the installation process as well as the static pile load test
of a jacked displacement pile in sand. The results of the simulations are compared
with centrifuge experiments. It shows the capability of the used numerical scheme
to simulate the installation process of jacked piles in sand. In order to successfully
simulate the centrifuge test, it is necessary to account for a reduction of the fric-
tion and dilation angles at very high stress levels. With this reduction, the MPM
simulations show good agreement with the centrifuge test results for both the in-
stallation process as well as the Static Load Test (SLT) after the installation both for
the simulation with the Mohr Coulomb and the hypoplastic model. The pile capacity
given by MPM simulations results in a good agreement with the load-displacement
curve suggested in NEN-EN 9997 − 1, 2016 the Dutch code for geotechnical design.
In conclusion, MPM as applied in this study, instead of classical FEM, is well suited
to model the large deformations and flow of material occurring during the pile in-
stallation process.

Constitutive model for crushed sand
In chapter 4, a constitutive model for granular materials which considers grain
crushing effects, is developed in the framework of hypoplasticity. As grain crush-
ing occurs, the behaviour of granular material can be significantly affected. In this
study, several empirical relations between peak strength, uniformity coefficient and
stiffness of sand, depending on stress level or amount of grain crushing have been
derived for different sands based on experimental results in the literature. These
relations are applied to improve a basic hypoplastic constitutive model based on the
changes of stress level or grain size distribution. In the proposed modified hypoplas-
tic model only two additional physical parameters, namely uniformity coefficient 𝐶𝑢
and mean grain size 𝑑50 are incorporated. The afore mentioned parameters are cru-
cial in the propose model. The empirical relations involving grain-crushing of the
modified hypoplastic model are implemented in Plaxis, or in MPM, as a user-defined
soil model. The validation of the modified model for three different types of sand
under the triaxial test response with cell pressures up to 30 MPa is presented and
shows a significantly better correspondence in both stress and strain in regard to
the original basic hypoplastic model. The modified hypoplastic model for crushed
sand is applied to model the installation process of a jacked pile in sand in chapter
5 (section 5.6). The importance of incorporating grain crushing effect into the hy-
poplastic model is confirmed by a significant improved load-displacement behaviour
in simulation which is more closer with centrifuge result. Hence taking into account
grain crushing in the hypoplastic constitutive model can be considered as one of
the important factors to successfully model the pile installation as well as predicting
the pile bearing capacity.

8.1.2. Installation effects
Installation of a jacked pile in dry sand

• The numerical analyses of a jacked pile installation in dry sand show signif-
icant differences of the soil stresses and strains around the pile after instal-
lation compared with the initial 𝐾0-state. During installation, soil is pushed



8.1. Conclusion

8

163

aside by the pile, which leads to densification around the pile and a very high
lateral stress at the pile tip. The influence of the installation extends to 8
pile diameters in horizontal direction from the centre of the pile and 7 pile
diameters below the pile tip.

• Under the flat pile tip, the ‘nose cone’ is observed. The ‘nose cone’, which
is referred to as a highly compressed region below the pile tip, has a central
core that is stationary relative to the pile tip. The soil is sliding out from the
nose cone and flowing around the shaft of the pile. Due to a highly densified
‘nose cone’ formed under flat pile tip, it generates a very high vertical stress
underneath the pile. With the high vertical stresses, the flat pile tip results
in a 25% higher total pile tip force than the triangular pile tip at the end of
installation.

• A significant densification of the soil around the pile after jacked installation
is observed for both medium dense and loose sand, except in a small dilative
zone near the end of the pile shaft and around the corner of the pile. The
dilative zone may be explained due to the high shear strains in the soil sur-
rounding the corner pile. Hence, the compaction of the soil close to the pile is
superimposed by the shearing process, while at a greater distance from the
pile corner the compaction is dominant, which is in line with the findings of
other researchers ([1]). For medium dense sand at a distance of 0.5𝐷 which
is next to the pile shaft, a void ratio increase due to dilation is observed almost
along the whole pile shaft, whereas, the dilation is only seen in the corner of
the pile in the case of loose sand. For both medium dense and loose sand,
the lowest void ratio value is found just under the pile tip which is considered
as the highest densification zone. The densification gradually reduces when
the distance from the pile increase.

• As a consequence of the change in soil state after installation, a significantly
higher pile bearing capacity is observed during SLT as compared to simulations
without installation effects and thus emphasizes the importance of accounting
for installation effects when simulating the SLT. The results could be compared
with findings in the literature regarding the ratio between pile capacity of non-
displacement and displacement piles. The ratios between the base capacities
ranges from 0.18 for loose to 0.33 for dense sand according to a data base
in [2]. The ratios in this research are between 0.31 and 0.34 for the base
capacity at a penetration of 10𝐷.

Installation of an impact driven pile in dry sand and saturated sand
• For impact driven piles in both dry and saturated sand, there is a significant
reduction in the horizontal stress close to the pile shaft during dynamic pile
installation. This behaviour has also been observed in various field tests [3, 4]
and numerical studies [1, 5, 6].

• In dry sand simulations for driven piles, the compaction of the soil around the
pile is much larger than that of the jacked pile due to the cyclic and dynamic
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shearing resulting in a lower radial stress around the pile shaft. Generally, if
the volume decrease caused by a densification of the soil is higher than the
volume of soil pushed away by the pile, a relaxation of the radial stress at
the shaft can be expected. If instead the densification is smaller than the
displaced soil volume, the radial stress will increase [1]. Hence, in dry sand,
jacked piles result in higher stiffness and capacity than driven piles due to the
higher radial stress at both the pile shaft and the pile toe.

The disturbance zone is, due to pile driving, extended to a distance of about
5𝐷 from the pile centre and no change occurs in the void ratio below the
distance of 8.5𝐷 from the pile tip. The largest compaction can be found at
the position of 6.5𝐷 above the pile tip and close to the pile shaft.

• In saturated sand simulations, the influence of the pore water pressure on pile
installation processes is significant. An increase of excess pore water pressure
around the pile tip during installation is observed. As a consequence of the
effective stress reaching zero value, the soil shows a tendency to liquefy in the
area around the installed pile. Furthermore, there is almost no compaction of
the soil around the driven pile during installation in comparison to the jacked
pile.

The zone, in which the radial stress is reduced to nearly zero, is extended to a
distance of about 2.5𝐷 from the pile center. At a distance between 2.5𝐷 − 7𝐷
from the pile centre, a significant increase in radial stress is obtained. The
peak value of stress in this zone is at the same level with the pile tip and has a
value of about 2 times the initial stress. The influence zone is about 8𝐷 from
the pile centre and 13.5𝐷 below the pile tip due to installation.

8.1.3. The generation and dissipation of excess pore pressure
For simulations of pile installation in saturated soil, excess pore pressures can de-
velop due to external loading. Soil has a time dependent behaviour which is contin-
gent on permeability. To capture the time dependent behaviour and the develop-
ment of excess pore pressure, a two-phase material with partially drained conditions
is considered. The 𝑣 − 𝑤 formulation is used, where the unknown primary variables
are the solid velocity 𝑣 and the fluid velocity 𝑤.

Pore water pressure during pile installation
During the installation process of an impact driven pile, the excess pore water
pressure is gradually built up. During the loading time of each blow, pore water
pressure increases rapidly and then reduces during unloading time. Under the pile
tip pore water pressure reduces significantly and tensile stress is observed after a
few blows, especially at location 1𝐷 below the pile tip. For the residual particles
in the zone around the pile tip (extended to a distance of about 2.5𝐷 from the
pile centre), there still remains some excess pore pressure after each blow, which
causes the excess pore water pressure around the pile tip to increase with time.

The generation of a negative excess pore water pressure, which appeared under
the pile tip during each blow, results in an increase of the effective stresses and in
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more difficulty for a deeper penetration of the pile. Therefore, according to these
simulations, it is easier to hammer the pile in dry sand than in saturated sand, easier
as well as in loose sand than in dense sand.

Pore water pressure during pile rapid load test
Several RLTs are numerically simulated by the MPM-model in chapter 7. The results
from simulations are in good agreement with measurements in term of the load
displacement curve as well as the generation and dissipation of excess pore pressure
at the pile tip during RLT.

Closed to the pile 1𝐷, a high change in pore water pressure is observed and the
size of the influence zone up to 5𝐷 wide from the pile centre and about 5𝐷 depth
under the pile tip.

Increasing pore pressures (positive excess pressures) are generated by a com-
pression of soil and a decreasing pore pressure(under pressures) are caused by
dilative soil behaviour during failure [7]. Under the pile tip, the soil is compressed
during pile penetration and a nose cone is formed [8]. As the pile penetrates into
the sand, the nose cone moves with the pile and the surrounding sand is sliding
and sheared along the edge of the nose cone. The pore pressure response during
the RLT is dependent on the deformation pattern and the existence of pore flow
in the soil region underneath the pile tip [9]. The excess pore pressure inside the
nose cone first increases to a maximum value, then starts to dissipate when the pile
is unloading, possibly due to the flow through the saturated soil that equalises the
pore pressure. Along the edge of the nose cone and the pile shaft, the soil particles
are sheared and slide and this shear behaviour is dominant over the compression
behaviour [8, 10]. Because of the dominance of the shear behaviour along the
edge of the nose cone, the excess pore pressures in this zone are negative during
most of the loading duration.

8.2. Recommendation
A constitutive model for granular materials in the framework of hypoplasticity is
developed which takes grain crushing effects into consideration. The importance of
incorporating the crushing effects in the constitutive model is confirmed. This study
considers stress dependency of five parameters 𝛼,𝛽, 𝑒𝑖, 𝑒𝑐, 𝑒𝑑 of the hypoplastic
model. However, parameters ℎ𝑠, 𝑛 and 𝜑𝑐 are most likely influenced by grain
crushing and by stress level as well [11]. Hence, further investigation should be
carried out to improve the model, which may lead to a better correspondence with
test data.

The stress/strain paths observed around the pile during penetration is complex.
The constitutive models are known to have limitations for more complex problems.
Further investigation of the physical test model utilizing photo-elastic measurements
to observe the stress/strain paths.

The importance of including pile installation effects in numerical simulations, is
demonstrated. However, simulating the entire penetration process of all piles of a
practical application by means of MPM is expensive and not practical in engineering.
Ideally, a method should be developed to incorporate the installation effects around
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the wished-in-place pile to account for these effects [12]. It would leads to a
significantly reduction in the computational demand, in particular for situations with
more than one pile.
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A
Solution procedure for a single time

step of one-phase dynamic MPM
The implement of MPM solution procedure for one time step consists of the following
phases and steps

1. Initialization phase

In this phase, all the information of material points within the background
mesh such as position, mass, body forces, tractions and other properties of
continuum to material points is determined.

Consider a tetrahedral element which has 1 or 4 or 8 or 10 or 20 material
points inside. Each material point 𝑝 is predefined an initial local position 𝝃𝑝
inside the parent element. The global position 𝐱𝑝 is calculated as:

𝐱(𝝃𝑝) ≈
𝑛𝑒𝑛

∑
𝑖=1

𝑁𝑖(𝝃𝑝)𝐱𝑖 (A.1)

in which 𝑛𝑒𝑛 is the number of nodes per element,𝑁𝑖(𝝃𝑝) is the shape function
of node i which is evaluated at the local position of material point 𝑝 and 𝐱𝑖 is
the global position of node i.

All material points inside the same element have initially the same portion
of the element volume, therefore the initial volume associated with material
point 𝑝 is obtained as

Ω𝑝 = 1
𝑛𝑒𝑝

∫
Ω𝑒

dΩ ≈ 1
𝑛𝑒𝑞

𝑛𝑒𝑞

∑
𝑞=1

𝜔𝑞|𝐉(𝝃𝑞)| (A.2)

with 𝑛𝑒𝑝 and 𝑛𝑒𝑞 denote the number of material points and Gauss points in
the element respectively, 𝜔𝑞 is the integration weight of Gauss point 𝑞 and 𝐉
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is the Jacobian matrix. The mass of the material point 𝑚𝑝 is then determined
based on the volume associated with material point Ω𝑝 and its density 𝜌𝑝,

𝑚𝑝 = Ω𝑝 𝜌𝑝 (A.3)

The gravity force of particle 𝑝 is calculated as

𝐟𝑔𝑟𝑎𝑣
𝑝 = 𝑚𝑝 𝐠 (A.4)

where 𝐠 is gravitational acceleration vector.
2. Lagrangian phase, solution phase for a time step 𝑡 to 𝑡 + Δ𝑡

(a) Mapping from material points to nodes

i. Compute nodal mass

𝑚𝑡
𝑖 ≈

𝑛𝑒𝑝

∑
𝑝=1

𝑚𝑝𝑁𝑖(𝝃𝑡
𝑝) (A.5)

ii. Compute nodal momentum

𝑚𝑡
𝑖𝐯𝑡 ≈

𝑛𝑒𝑝

∑
𝑝=1

𝑚𝑝𝑁𝑖(𝝃𝑡
𝑝)𝐯𝑡

𝑝 (A.6)

iii. Compute traction force

𝐟𝑡𝑟𝑎𝑐,𝑡
𝑖 =

𝑛𝑒𝑏𝑝

∑
𝑝=1

𝑁𝑖(𝝃𝑡
𝑝) ̃𝐟𝑡𝑟𝑎𝑐

𝑝 (𝝃𝑡
𝑝) (A.7)

in which, 𝑛𝑒𝑏𝑝 denotes the number of boundary particles inside the
element which are located next to the loaded surface and ̃𝐟𝑡𝑟𝑎𝑐

𝑝 is
the traction force assigned to particle p. The way to calculate the
traction force is detailed in section ??.

iv. Compute gravity force

𝐟𝑔𝑟𝑎𝑣,𝑡
𝑖 ≈

𝑛𝑒𝑝

∑
𝑝=1

𝑁𝑖(𝝃𝑡
𝑝)𝐟𝑔𝑟𝑎𝑣

𝑝 (A.8)

v. Compute internal force

𝐟 𝑖𝑛𝑡,𝑡
𝑖 =

𝑛𝑒𝑝

∑
𝑝=1

Ω𝑝𝝈𝑡
𝑝∇𝑁𝑖(𝝃𝑡

𝑝) (A.9)

vi. Compute nodal force

𝐟𝑡
𝑖 = 𝐟𝑡𝑟𝑎𝑐,𝑡

𝑖 + 𝐟𝑔𝑟𝑎𝑣,𝑡
𝑖 − 𝐟 𝑖𝑛𝑡,𝑡

𝑖 (A.10)
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(b) Solving equation 3.16
𝐚𝑡

𝑖 = 𝐟𝑡
𝑖 /𝑚𝑡

𝑖 (A.11)

(c) Mapping from nodes to material points

i. Update material point velocities

𝐯𝑡+∆𝑡
𝑝 = 𝐯𝑡

𝑝 +
𝑛𝑒𝑛

∑
𝑖=1

Δ𝑡𝑁𝑖(𝝃𝑡
𝑝)𝐚𝑡

𝑖 (A.12)

ii. Update nodal velocities

𝐯𝑡+∆𝑡
𝑖 = 𝑚𝑡,−1

𝑖

𝑛𝑒𝑝

∑
𝑝=1

𝑚𝑝𝑁𝑖(𝝃𝑡
𝑝)𝐯𝑡+∆𝑡

𝑝 (A.13)

iii. Update nodal incremental displacements

Δ𝐮𝑡+∆𝑡
𝑖 = Δ𝑡𝐯𝑡+∆𝑡

𝑖 (A.14)

iv. Update new position of material points

𝐱𝑡+∆𝑡
𝑝 = 𝐱𝑡

𝑝 +
𝑛𝑒𝑛

∑
𝑖=1

𝑁𝑖(𝝃𝑡
𝑝)Δ𝐮𝑡+∆𝑡

𝑖 (A.15)

v. Update strain increment 𝜺𝑡+∆𝑡
𝑝 and stresses 𝝈𝑡+∆𝑡

𝑝 of material points

Δ𝜺𝑡+∆𝑡
𝑝 = 𝐁(𝝃𝑡

𝑝)Δ𝐮𝑡+∆𝑡
𝑒 (A.16)

𝝈𝑡
𝑝

∆𝜀𝑡+∆𝑡
𝑝

−−−−−−−−−→
constitutive relation

𝝈𝑡+∆𝑡
𝑝 (A.17)

vi. Update volumes associated with material points

Ω𝑡+∆𝑡
𝑝 = (1 + Δ𝜀𝑡+∆𝑡

𝑣𝑜𝑙,𝑝)Ω𝑡
𝑝 (A.18)

in whichΔ𝜀𝑡+∆𝑡
𝑣𝑜𝑙,𝑝 is the volumetric strain increment: Δ𝜀𝑣𝑜𝑙 = Δ𝜀11 +

Δ𝜀22 + Δ𝜀33

3. Convective phase

Reset the computational mesh or redefine the new one to the next time step.
In the end of this step, the new number of material points per each finite
element is determined and the new local position of each material point inside
the element is obtained.





B
Solution procedure for a single time

step of two-phase dynamic MPM
1. Initialization phase

Knowing the local position 𝝃𝑝 , the global position 𝐱𝑝 and the volume Ω𝑝
associated with material point 𝑝 are calculated in a similarly way as Equation
A.1 and Equation A.2 of one-phase formulation. Noted that, the volume Ω𝑝
is the total volume which contains both water and solid phase volume.

The following masses are determined and assigned to the material point as

𝑚𝑠,𝑝 = Ω𝑝 𝜌𝑠,𝑝, 𝑚𝑤,𝑝 = Ω𝑝 𝜌𝑤,𝑝 and 𝑚𝑝 = Ω𝑝 𝜌𝑠𝑎𝑡,𝑝 (B.1)

The corresponding gravity forces associated with above masses are calculated
as

𝐟𝑔𝑟𝑎𝑣
𝑠,𝑝 = 𝑚𝑠,𝑝 𝐠, 𝐟𝑔𝑟𝑎𝑣

𝑤,𝑝 = 𝑚𝑤,𝑝 𝐠 and 𝐟𝑔𝑟𝑎𝑣
𝑝 = 𝑚𝑝 𝐠 (B.2)

2. Lagrangian phase, solution phase for a time step 𝑡 to 𝑡 + Δ𝑡
(a) Mapping from material points to nodes

i. Compute nodal mass

𝑚𝑡
𝑤,𝑖 ≈

𝑛𝑒𝑝

∑
𝑝=1

𝑚𝑤,𝑝𝑁𝑖(𝝃𝑡
𝑝) (B.3)

�̄�𝑡
𝑤,𝑖 ≈

𝑛𝑒𝑝

∑
𝑝=1

𝑛𝑡
𝑝𝑚𝑤,𝑝𝑁𝑖(𝝃𝑡

𝑝) (B.4)

𝑚𝑡
𝑠,𝑖 ≈

𝑛𝑒𝑝

∑
𝑝=1

(1 − 𝑛𝑡
𝑝)𝑚𝑠,𝑝𝑁𝑖(𝝃𝑡

𝑝) (B.5)
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ii. Compute nodal momentum

𝑚𝑡
𝑠,𝑖𝐯𝐬

𝑡 ≈
𝑛𝑒𝑝

∑
𝑝=1

(1 − 𝑛𝑡
𝑝)𝑚𝑠,𝑝𝑁𝑖(𝝃𝑡

𝑝)𝐯𝐬
𝑡
𝑝 (B.6)

𝑚𝑡
𝑤,𝑖𝐯𝐰

𝑡 ≈
𝑛𝑒𝑝

∑
𝑝=1

𝑛𝑡
𝑝𝑚𝑤,𝑝𝑁𝑖(𝝃𝑡

𝑝)𝐯𝐰
𝑡
𝑝 (B.7)

iii. Compute traction force

𝐟𝑡𝑟𝑎𝑐,𝑡
𝑖 =

𝑛𝑒𝑏𝑝

∑
𝑝=1

𝑁𝑖(𝝃𝑡
𝑝) ̃𝐟𝑡𝑟𝑎𝑐

𝑝 (𝝃𝑡
𝑝) (B.8)

𝐟𝑡𝑟𝑎𝑐,𝑡
𝑤,𝑖 =

𝑛𝑒𝑏𝑝

∑
𝑝=1

𝑁𝑖(𝝃𝑡
𝑝) ̃𝐟𝑡𝑟𝑎𝑐

𝑤,𝑝 (𝝃𝑡
𝑝) (B.9)

iv. Compute gravity force

𝐟𝑔𝑟𝑎𝑣,𝑡
𝑖 ≈

𝑛𝑒𝑝

∑
𝑝=1

𝑁𝑖(𝝃𝑡
𝑝)𝐟𝑔𝑟𝑎𝑣

𝑝 (B.10)

𝐟𝑔𝑟𝑎𝑣,𝑡
𝑤,𝑖 ≈

𝑛𝑒𝑝

∑
𝑝=1

𝑁𝑖(𝝃𝑡
𝑝)𝐟𝑔𝑟𝑎𝑣

𝑤,𝑝 (B.11)

v. Compute internal force

𝐟 𝑖𝑛𝑡,𝑡
𝑖 =

𝑛𝑒𝑝

∑
𝑝=1

Ω𝑝𝝈𝑡
𝑝∇𝑁𝑖(𝝃𝑡

𝑝) (B.12)

𝐟 𝑖𝑛𝑡,𝑡
𝑤,𝑖 =

𝑛𝑒𝑝

∑
𝑝=1

Ω𝑝𝜹𝑝𝑡
𝑝∇𝑁𝑖(𝝃𝑡

𝑝) (B.13)

where 𝜹 = [1 1 1 0 0 0 ]𝑇
vi. Compute drag force

𝐟𝑑𝑟𝑎𝑔,𝑡
𝑤,𝑖 = 𝐐𝑡(𝐯𝐰

𝑡 − 𝐯𝐬
𝑡) (B.14)

(b) Solving momentum Equation 3.41 and 3.42

𝐚𝑡
𝑤,𝑖 = [𝐟𝑡𝑟𝑎𝑐,𝑡

𝑤,𝑖 + 𝐟𝑔𝑟𝑎𝑣,𝑡
𝑤,𝑖 − 𝐟 𝑖𝑛𝑡,𝑡

𝑤,𝑖 − 𝐟𝑑𝑟𝑎𝑔,𝑡
𝑤,𝑖 ]/𝑚𝑡

𝑤,𝑖 (B.15)

𝐚𝑡
𝑠,𝑖 = [𝐟𝑡𝑟𝑎𝑐,𝑡

𝑖 + 𝐟𝑔𝑟𝑎𝑣,𝑡
𝑖 − 𝐟 𝑖𝑛𝑡,𝑡

𝑖 − �̄�𝑡
𝑤,𝑖𝐚𝑡

𝑤,𝑖]/𝑚𝑡
𝑠,𝑖 (B.16)

(c) Mapping from nodes to material points
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i. Update material point velocities

𝐯𝐬
𝑡+∆𝑡
𝑝 = 𝐯𝐬

𝑡
𝑝 +

𝑛𝑒𝑛

∑
𝑖=1

Δ𝑡𝑁𝑖(𝝃𝑡
𝑝)𝐚𝑡

𝑠,𝑖 (B.17)

𝐯𝐰
𝑡+∆𝑡
𝑝 = 𝐯𝐰

𝑡
𝑝 +

𝑛𝑒𝑛

∑
𝑖=1

Δ𝑡𝑁𝑖(𝝃𝑡
𝑝)𝐚𝑡

𝑤,𝑖 (B.18)

ii. Update nodal velocities

𝐯𝐬
𝑡+∆𝑡
𝑖 = 𝑚𝑡,−1

𝑠,𝑖

𝑛𝑒𝑝

∑
𝑝=1

(1 − 𝑛𝑡
𝑝)𝑚𝑠,𝑝𝑁𝑖(𝝃𝑡

𝑝)𝐯𝐬
𝑡+∆𝑡
𝑝 (B.19)

𝐯𝐰
𝑡+∆𝑡
𝑖 = �̄�𝑡,−1

𝑤,𝑖

𝑛𝑒𝑝

∑
𝑝=1

𝑛𝑡
𝑝𝑚𝑤,𝑝𝑁𝑖(𝝃𝑡

𝑝)𝐯𝐰
𝑡+∆𝑡
𝑝 (B.20)

iii. Update nodal incremental displacements of the solid phase

Δ𝐮𝑡+∆𝑡
𝑖 = Δ𝑡𝐯𝐬

𝑡+∆𝑡
𝑖 (B.21)

iv. Update new position of material points using the displacement of
solid phase

𝐱𝑡+∆𝑡
𝑝 = 𝐱𝑡

𝑝 +
𝑛𝑒𝑛

∑
𝑖=1

𝑁𝑖(𝝃𝑡
𝑝)Δ𝐮𝑡+∆𝑡

𝑖 (B.22)

v. Update strain increment 𝜺𝑡+∆𝑡
𝑝 and effective stresses 𝝈′𝑡+∆𝑡

𝑝 of ma-
terial points

Δ𝜺𝑡+∆𝑡
𝑝 = 𝐁(𝝃𝑡

𝑝)Δ𝐮𝑡+∆𝑡
𝑒 (B.23)

𝝈′𝑡
𝑝

∆𝜀𝑡+∆𝑡
𝑝

−−−−−−−−−→
constitutive relation

𝝈′𝑡+∆𝑡
𝑝 (B.24)

vi. update water pressure of particle 𝑝

𝑝𝑡+∆𝑡
𝑝 ≈ 𝑝𝑡

𝑝 + Δ𝑡𝐾𝑤,𝑝
𝑛𝑡𝑝

𝜹𝑇 [(1 − 𝑛𝑡
𝑝)𝐁(𝝃𝑡

𝑝)𝐯𝐬
𝑡+∆𝑡
𝑒 + 𝑛𝑡

𝑝𝐁(𝝃𝑡
𝑝)𝐯𝐰

𝑡+∆𝑡
𝑒 ]
(B.25)

vii. Calculate total stress at each particle

𝝈𝑡+∆𝑡
𝑝 = 𝝈′𝑡+∆𝑡

𝑝 + 𝑝𝑡+∆𝑡
𝑝 (B.26)

viii. Update volumes associated with material points

Ω𝑡+∆𝑡
𝑝 = (1 + Δ𝜀𝑡+∆𝑡

𝑣𝑜𝑙,𝑝)Ω𝑡
𝑝 (B.27)

3. Reset the computational mesh or redefine the new one to the next time step.
The book-keeping is updated using the new positions of material points





C
Baskarp sand and its hypoplastic

parameters
[1] performed experiments on Baskarp sand to determine its hypoplastic material
properties which are summarised in Table C.1.
Table C.1: Hypoplastic parameters for for Baskarp sand ([1]

Parameter 𝜙𝑐 ℎ𝑠 𝑛 𝑒𝑑0 𝑒𝑐0 𝑒𝑖0 𝛼 𝛽
Baskarp sand 31∘ 4000 MPa 0.42 0.548 0.929 1.08 0.12 0.96

C.1. Oedometer tests
Figure C.1 shows the oedometric response of different specimens with an initial
void ratio varying between 0.657 (dense) and 0.823 (loose). In addition, simulated
response from the element test is presented as well. First the oed simulations
were done using ℎ𝑠 of 4GPa (Figure C.1a). At low axial pressures (<200 kPa) the
numerical results match well the experimental results for both specimens. How-
ever, under high axial pressure (>200 kPa), the matching between experimental
and numerical result is obtained only in dense and medium dense specimens. For
loose specimens, numerical results give significantly stiffer response as compared
to the experimental result. In the hypoplastic model, the parameter ℎ𝑠 denotes the
granulate hardness. This parameter is determined and valid for certain pressure
range. Occurrence of e.g. grain crushing at higher pressures changes the granular
properties, thus the value of ℎ𝑠, an attempt to get a better fit for the loose sand,
ℎ𝑠 value of 2 GPa is used instead of 4 GPa (Figure C.1b).
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Figure C.1: Oedometric test on Baskarp sand, comparison between measurement and simulation.

C.2. Triaxial test
C.2.1. Dense sand
Tests on dense Baskarp samples were performed with three confining pressures:

• 𝜎 = 50 kPa, e = 0.59

• 𝜎 = 100 kPa, e = 0.6

• 𝜎 = 200 kPa, e = 0.6

The obtained experimental results and the numerical simulation of the drained
triaxial compression tests performed on dense samples of Baskarp sand are shown
in Figure C.2. The simulated peak shear strength and the residual shear strength
are in accordance with laboratory experiments. The volumetric behaviour as simu-
lated is qualitatively (shape) in accordance with the experimentally obtained results,
however, simulated dilatancy angle is smaller as compared with the experimental
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Figure C.2: Numerical simulation of triaxial compression test on dense sand specimens. (a) Deviatoric
stress vs. axial strain and (b) Volumetric strain vs. axial strain. M-e0.60-200 means mesurement data
for specimen with void ratio of 0.6 at confining pressure of 200 kPa; S-e0.60-200 means simulation data
for specimen with void ratio of 0.6 at confining pressure of 200 kPa

results. According to [1], in the test with the initial effective confining pressure
of 50 kPa, the initial stiffness behaviour as observed in the measurements is not
representative and is merely due to logging error by the program. This logging
error has also its effect on the simulated volumetric response. According to [1],
the lower dilatancy angle in the element tests are probably linked to effects of lu-
bricated ends and slenderness ratio. Conventional test conditions, i.e. slenderness
ratio of 2 and no application of lubricated ends, lead to a pronounced stress peak.
Shear banding occurs and simultaneously, the increase of the volumetric strain is
abruptly stopped.

C.2.2. Loose sand
Tests on loose Baskarp samples were performed with three confining pressures:

• 𝜎 = 50 kPa, e = 0.70

• 𝜎 = 100 kPa, e = 0.84
• 𝜎 = 200 kPa, e = 0.81

The results of the triaxial tests on loose sand are plotted in Figure C.3. For loose
sand, the initial stiffness response, peak shear strength and the residual shear
strength of numerical simulations are quantitatively in accordance with the exper-
imental data. However, in the experimental data, mobilisation of the peak shear
strength, especially for high confining pressure, is more gradual compared to the
numerical simulation. The volumetric behaviour as simulated is qualitatively (shape)
in accordance with the experimentally obtained results. There is agreement in di-
latancy angle between the simulation and the experiments, which is different from
the case of the dense sand. This could be linked to the less pronounced peak in
loose samples with a more ductile behaviour.
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Figure C.3: Numerical simulation of triaxial compression test on loose sand specimens. (a) Deviatoric
stress vs. axial strain and (b) Volumetric strain vs. axial strain. M-e0.81-200 means mesurement data
for specimen with void ratio of 0.81 at confining pressure of 200 kPa; S-e0.81-200 means simulation
data for specimen with void ratio of 0.81 at confining pressure of 200 kPa

C.3. Choosing small strain stiffness parameters
For jacking pile simulated in dymamic MPM, although no cyclic loading happened,
ratcheting still has significant influences on the simulation results. It especially oc-
curs in dynamic numerical models, as the wave propagation through the soil will be
reflected at each material point. It means that the process of loading and unloading
cycles always happens at material point level during simulation. Therefore, the use
of hypoplastic model with IGS is neccessary for all MPM simulations in this thesis.

The intergranular strain model includes 5 parameters: 𝑚𝑅, 𝑚𝑇 , 𝑅𝑚𝑎𝑥, 𝛽𝑅,
𝜒([2]). However, the stiffness multipliers for shift in strain direction by 180 (𝑚𝑅)
and 90 (𝑚𝑇 ) are usually taken 5 and 2 respectively and 𝑅𝑚𝑎𝑥 is usually taken
0.0001. Therefore, this part only considers the influence of 𝛽𝑅 and 𝜒.

Proposed small strain stiffness parameters are given in Table C.2, in which IGS1,
IGS2 are based on literature. Since there is no experimental data available on cyclic
oedometer test, it is suggested for choosing suitable IGS parameters so that the
initial stiffness of the oedometer response with IGS parameters should be nearly
similar as the one without IGS. Figure C.4 gives results of cyclic oedometer element
tests with and without IGS. Clearly, using IGS helps to reduce the effect of ratch-
eting for the modelling of small loading cycle in which elastic deformations occur.
However the initial stiffness of the oedometric response in simulations with IGS1
and IGS2 is significantly stiffer than the one without IGS. Therefore, IGS3 is chosen
to model the jacking pile problem in Chapter 5
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Table C.2: Proposed parameter sets for small strain stiff-
ness
Parameter 𝑚𝑅 𝑚𝑇 𝑅𝑚𝑎𝑥 𝛽𝑅 𝜒
IGS 1 1 5 2 1𝑒 − 4 0.5 6
IGS 2 2 5 2 1𝑒 − 4 1 2
IGS 3 5 2 1𝑒 − 4 1 1
no IGS 0 0 0 0 0
1 [2]
2 [3]
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Figure C.4: Cyclic Odometric simulation on Baskarp sand with difference sets of small strain stiffness
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D
Parametric study

Several simulations have been performed to study the influence of prescribed ve-
locity, contact algorithm and soil model parameters on the evolution of the load-
displacement curve during penetration.

D.1. Inluence of precribed velocity
The penetration was performed with three different velocities of 0.02, 0.1, and 0.2
m/s to investigate the influence of penetration speed. Results are plotted in Figure
D.1. As seen, the general behavior is of resemblance but when zooming in, local
oscillations increase considerably with increasing velocity. In order to consider both
the computational time as well as the oscillations of the results, the velocity of 0.02
m/s is chosen for all simulations of penetration into dry sand.
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Figure D.1: Influence of installation velocity on analysis results. Simulations with Mohr-Coulomb model,
E = 20 MPa, 𝜑 = 30∘ and 𝜓 = 0∘.
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D.2. Inluence of coefficient of friction of contact
Figure D.2 shows the influence of the coefficient of friction of contact 𝜇 on the load
displacement curve during installation. Clearly, the value of 𝜇 plays an important
role on the evolution of total pile shaft force, 𝐹𝑠 rather than the evolution of total
pile tip force, 𝐹𝑡. 𝐹𝑠 increases significantly with the increase of 𝜇. With smooth
contact, 𝜇 = 0.0, 𝐹𝑠 is zero, whereas with fully rough contact, 𝜇 = 1, the value of
𝐹𝑠 is 1.5 times greater than 𝐹𝑡. The contact angle between polish steel and sand
is about 10∘, therefore a coefficient of friction 𝜇 = tan 10∘ = 0.176 is used.
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Figure D.2: Influence of coefficient of friction of contact 𝜇 on analysis results. Simulations with Mohr-
Coulomb model, E = 22 MPa, 𝜑 = 30∘ and 𝜓 = 0∘.

D.3. Influence of Mohr-Coulomb parameters on the load-
displacement curve during penetration

D.3.1. Influence of stiffness value
Three different values of Young modulus of soil E = 30, 40 and 50 MPa are used
to examine the influence of soil stiffness on the analysis results. Results are shown
in Figure D.3. Higher value of Young modulus of the soil results in stiffer total pile
tip force-displacement curve. The curve using low Young modulus value is fully
mobilised at earlier depth than the others.
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Figure D.3: Influence of soil stiffness on analysis results. Simulations with Mohr-Coulomb model, 𝜑 = 30∘

and 𝜓 = 0∘.

D.3.2. Influence of strength parameter
In this section the influence of friction angle 𝜑 and dilation angle 𝜓 is investigated.
In Figure D.4 the friction angle is varied from 30∘ to 37∘ while soil stiffness and
dilation angle are remained the same. The initial stiffness of the load displacement
curve for the pile tip is increasing with the increase of friction angle. The higher
value of friction angle, the higher capacity of the pile is get.
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Figure D.4: Influence of friction angle on analysis results. Simulations with Mohr-Coulomb model, E =
30MPa and 𝜓 = 0∘.

Figure D.5 plot the load-displacement curve during penetration when using dif-
ferent value of dilation angle 𝜓 from 0 to 10∘. As seen, the dilation angle has signif-
icant influence on the stiffness as well as mobilised depth of the load-displacement
curve of the pile tip. The curve is much stiffer and fully mobilised at earlier depth
when using higher value of dilation angle. The influence of dilation angle on shaft
friction is not clear observed in this figure.
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Figure D.5: Influence of dilation angle on analysis results. Simulations with Mohr-Coulomb model, E =
30 MPa and 𝜙 = 35∘.

D.4. Influence of hypoplastic parameters on the load-displacement
curve during penetration

D.4.1. Influence of ℎ𝑠 and n
ℎ𝑠 and 𝑛 are two parameters presenting the stiffness of soil in the hypoplastic
model. The influences of these two parameters ℎ𝑠 and 𝑛 are illustrated in Figure
D.6 and D.7 respectively. As seen, the total pile tip force and total pile shaft force
are both reduced with the reduction of ℎ𝑠 or 𝑛.
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Figure D.6: Influence of ℎ𝑠 on analysis results.
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Figure D.7: Influence of n on analysis results.

D.4.2. Influence of 𝛼
As stated in previous chapter that the strength and dilatancy of soil in hypoplastic
model can reduce by the decrease of parameter 𝛼. Therefore, the use of lower 𝛼
reduces the total pile tip force, 𝐹𝑡 significantly as shown in Figure D.8. However, it
has almost no influence on the total pile shaft force.
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Figure D.8: Influence of 𝛼 on analysis results.

D.4.3. Influence of initial void ratio
Figure D.9 plots the load-displacement curves during penetration process for sim-
ulations using hypoplastic model with three different initial void ratios. Clearly, the
denser the soil, the more pile capacity is obtained.
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Figure D.9: Influence of initial void ratio on analysis results.



E
Parametric study for pile

hammering
This work has been performed in collaboration with Jassim [1]. A pile driving prob-
lem for deep penetration is analysed in this section.

The pile with a diameter of 0.3𝑚 was initially embedded in the soil to a height
of 0.4 m from its tip point. It was assumed to behave according to the linear elastic
relation.

Detail of geometry and boundary condition, problem description, finite element
mesh and constitutive model are refereed to Jassim[1].

E.1. Varying pile damping
Computations are carried out with different values of the local damping factor 𝛼
to study the effect of damping on the installation process of an elastic pile. The
frequency dependent Rayleigh damping was adopted in the work of Mabsout and
Tassoulas [2] with a damping ratio of 𝜁𝑑 = 3% estimated at the natural frequency of
the pile. The local damping factor 𝛼 is related to the damping ratio 𝜁𝑑 as 𝛼 = 𝜋𝜁𝑑.
Three value of 𝛼 = 0%,6% and 10% are selected. The coefficient of friction between
the sand and the pile was fixed to 𝜇 = 0.5, an initial relative density of 𝑅𝐷 = 30.4%
and the peak pressure at the pile head is 𝑝𝑚𝑎𝑥 = 2000[𝑘𝑁/𝑚2]. Figure E.1 shows
the number of blows versus penetration depth for the considered cases. The results
confirm the importance of good estimation of the damping factor for predicting
realistic installation process of a pile.
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Figure E.1: Influences of damping on the load displacement curve.

E.2. Varying skin friction
The effect of skin friction 𝜇 which is the friction between the soil and the pile is
studied. Two value of the friction coefficient 𝜇 = 0 (fully smooth contact and 𝜇 = 0.5
(which is realistic for concrete piles) are considered. All computations are carried
out with a fixed damping factor of 𝛼 = 0% for pile and initial relative density of
𝑅𝐷 = 63.4% for sand. Figure E.2 illustrate considerable differences in the result of
pile penetration depth per blow.

Figure E.2: Influences of skin friction on the load displacement curve.

E.3. Varying sand density
Simulations with different value of relative density 𝑅𝐷 = 30.4% and 63.4% are car-
ried out. The simulations are performed with 𝜇 = 0.5 and 𝛼 = 6%. Figure E.3 shows
that for driving the pile to a penetration depth of 0.6 m in loose and dense sand, it
requires 4 and 14 blows respectively, which indicates the need for heavier hammer
for deeper penetration of dense sand.



E.4. Varying driving pressure
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Figure E.3: Influences of sand density on the load displacement curve.

E.4. Varying driving pressure
Two different driving pressure 𝑝𝑚𝑎𝑥 = 1000 and 2000[𝑘𝑁/𝑚2] are considered in
this problem. Simulations are carried out with 𝛼 = 0, 𝜇 = 0.5 and 𝑅𝐷 = 30.4%. The
results of penetration depth per blow are shown in Figure E.4

Figure E.4: Influences of driving pressure on the load displacement curve.
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F
Influence of small strain parameters

on the result of RLT
In this section, the influence of small strain parameters on the result of rapid load
test (RLT) is examined. Prescribed velocity is applied on the pile head for all case
studies. The value of prescribed velocity is approximated from the centrifuge test
value and shown in Figure F.1.
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Figure F.1: Prescribed velocity applied on the pile head during rapid load test.
Figure F.2 → F.5 illustrate the influences of parameter 𝜒, 𝛽𝜒, 𝑚𝑅, 𝑚𝑇 , respec-

tively, on the results of load-displacement curve during the rapid load test.
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Figure F.2: Influence of different values of 𝜒, 𝜒 = 1, 2𝑎𝑛𝑑 3 on the results of load-displacement curve
during the rapid load test.
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Figure F.3: Influence of different values of 𝛽𝜒, 𝛽𝜒 = 1, 0.2𝑎𝑛𝑑0.1 on the results of load-displacement
curve during the rapid load test.
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Figure F.4: Influence of different values of 𝑚𝑅, 𝑚𝑅 = 5, 𝑎𝑛𝑑9 on the results of load-displacement
curve during the rapid load test.
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Figure F.5: Influence of different values of 𝑚𝑇 , 𝑚𝑇 = 2, 𝑎𝑛𝑑5 on the results of load-displacement
curve during the rapid load test.
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