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Bit by bit, I've realized

That'’s when I need them

That's when I need my father’s eyes
My father’s eyes

That's when I need my father’s eyes,
look into my father’s eyes

My father’s eyes

Then the jagged edge appears
Through the distant clouds of tears
I'm like a bridge that was washed away
My foundations were made of clay
As my soul slides down to die

How could I lose him?

What did 1 try?

Bit by bit, I've realized

That he was here with me

And I looked into my father’s eyes

Eric Clapton
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Abstract

In the early years of numerical simulation methods, Fermi, Pasta, Ulam and Tsingou (FPUT) discovered that
an undamped, weakly nonlinear equation describing the motion of a chain of masses and springs could show
complex dynamics. Integration of these equations from an initial displacement in the form of the fundamen-
tal mode resulted in significant mode coupling: energy was transferred from the fundamental mode to several
other modes, before the energy would return to the initial condition. To date, very little observations of such
behavior in mechanical vibrations have been reported. Recent developments in fabrication of high stress
Silicon-Nitride (Si3N4) string resonators have shown that it is possible to generate resonators with extremely
high Q-factors, proving a potential testbed for these mechanics. This research shows, through modal con-
version of the FPUT potential, that one may observe significant FPUT behavior in systems with non-integer
frequency ratios and certain coupling coefficients. In addition, it is shown that for the default FPUT -model,
the effect of damping is negligible for fundamental mode Q-factors higher than 10,000. Simulations of the ex-
perimental frequency response of a high-Q Si3gNj, string resonator show that the nonlinear dynamics of these
resonators may be approximated by an analytical model that does not possess the required frequency ra-
tios and coupling coefficients for FPUT behavior. Another string model, for which no mechanical equivalent
has (yet) been found, may potentially show FPUT behavior. Several string-like resonator designs are tested
using a numerical tool which can extract the modal coefficients. These resonators are modelled using simpli-
fied deformation models, which account only for axial deformation of the structure. The results for various
string-like designs show that the eigenfrequencies and nonlinearity may be engineered easily, but these do
not generate the required coupling coefficient for FPUT behavior.
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Introduction

The document that lies in front of you is a study on the nonlinear dynamics of string resonators. Nonlinear
dynamics are inherently present in any structure. However, whether these -often complex- dynamics become
visible is largely related to the size of the structure and the environment it resides in.

Let’s for example take a guitar string. Gently plucking this string will generate a wave in the string, which will
cause vibration at its fundamental frequency. The air surrounding this string will also start to vibrate at this
frequency, generating waves. Eventually, these waves will enter the human ear, which the human perceives
as a sound or a tone. Once the guitar string is plucked, the tone will slowly fade out as time progresses. The
mechanism behind this fading-out is damping, which causes the string to lose the energy that was put into it
by plucking the string. Imagine that the fading-out happens on a much longer time-scale: the string will then
vibrate at a certain frequency for a very long time, as very little energy is lost in each vibration cycle.

By plucking the string stronger and stronger, one can generate waves that are so strong that the sound gener-
ated by the string changes slightly or that it may even cause one of the other strings to vibrate as well. Imagine
that we would pluck an undamped string so strongly that some of the other strings on the guitar are excited
as well, generating a different sound. Plucking this string strongly will thus excite other strings, which will
change the sound guitar produces as this sound will consist of many tones. In dynamics, these tones are of-
ten referred to as a "mode”: each of these modes has its own tone (frequency) and a corresponding shape of
vibration (wavelength). The effect where a string of a guitar is excited through excitation of another string, is
caused by a coupling between various strings. However, this coupling is not only present between multiple
strings. Excitation of a single string can also cause excitation of multiple modes of this single string, which is
known as mode coupling. This mode coupling is most significant when a string is plucked strongly, specifi-
cally in the regime where the plucking force and the resulting string amplitude no longer follow a linear, but
a nonlinear relationship: the nonlinear regime.

Nonlinear dynamics are most easily observed for systems which have very little (or negligible) damping. Ex-
perimentally testing structures without any damping is quite an intensive process, as it requires very strict
environmental conditions. However, since the emergence of computers in the Fifties of the last century, this
has become significantly easier, since these computers can compute solutions to certain sets of equations
which represent the dynamics of the studied structures.

Before diving into the exact topic of this research, it is important to first look at some theories on dynamics,
as will be done in the next three sections.

1.1. Linear and nonlinear dynamics

Dynamics is the part of physics that is concerned with the response of systems to forces. The response of
a system to a force will cause motion of the system. In linear dynamics, the response to an (external) force
function F at time ¢ is dependent on three system parameters: mass m, stiffness k and damping coefficient
c. This motion may be expressed in an equation; which is commonly referred to as an equation of motion.
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For a linear system, this equation of motion is as follows:

..+C.+k _F()
e

(1.1)

The equation clearly scales linearly with ¢, ¢ and ¢, the amplitude, velocity and acceleration of the motion,
respectively. Once a system starts to vibrate, e.g. due to an excitation in the form of a instantaneous force
(e.g. by plucking it), it will deform, generating kinetic and potential energies. During the resulting vibration
cycle, the kinetic and potential energy will be exchanged continuously. These vibrations, like guitar strings,
do not continue infinitely, as some of the energy will be lost in each vibration cycle. At a certain frequency,
the response of the system is largest, and the kinetic and potential energies have equal magnitudes [31]. This
frequency is commonly referred to as the eigenfrequency and it is a function of the mass and stiffness of the
system, according to the following formula:

wo =1/ —. (1.2)
m
In the absence of damping, any excitation would lead to an infinitely sustained motion. Should damping be
present in the system (i.e. ¢ > 0), some of the energy will dissipate and thus this will (slightly) decrease the
eigenfrequency, generating a resonance frequency. The damping coefficient is often written in terms of the
resonance frequency and the (dimensionless) Q-factor: ¢ = % This Q-factor is expressed as the ratio of in-
ternal energy versus the dissipated energy of a system [29, 36]. A system that has a clear response at a certain
frequency is called a resonator. The resonance frequency is often considered to be equal to the eigenfre-
quency under the assumption that damping is small. Any physical system, e.g. the guitar string, has many of
these eigenfrequencies, which each have their own shape, the combination is commonly referred to as modes
[19, 31]. Each of the modes of a string may be visualized, as is done in Figure 1.1 for the first three modes of
a string. The total response of a string may be a function of multiple modes. In the linear regime, the effects

Mode 1
Mode 2
Mode 3

Figure 1.1: The first three mode shapes of a string.

of other modes are usually small. However, as the force is increased, the amplitude increases and the linear
equation (Eq. 1.1) can no longer accurately describe the response of the system, as the displacement of the
string no longer scales linearly with the applied force. The origin of this behavior may be sought in the fact
that any vertical displacement (w in Fig. 1.2) of the string with length L will also cause the string to stretch
in the length direction by a factor AL. For small (linear) amplitudes (w < L), this AL is negligible. For larger
amplitudes, this stretching is no longer negligible and thus a different formulation is required [19]. The effect
of this larger displacement is that the structure stretches, which in turn increases the tension in the material.
This additional displacement-induced-tension increases the resistance of the structure to displacements in a
nonlinear manner, resulting in a stiffness that scales with the cube of the displacement. This type of (geomet-
ric) nonlinearity commonly referred to as the Duffing nonlinearity. The following formula describes motion
of such a nonlinear resonator for a nonlinear coefficient b and a force of F = %:

t]+%q+w§q+bquﬁcos(wft). (1.3)
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Figure 1.2: String element of length L under a vertical displacement denoted by w. This displacement causes the length to increase
from Lto L+AL.

The example showed that the displacement-induced-tension increases the stiffness. For hardening nonlin-
earity, b is positive. If the displacement-induced-tension decreases the stiffness (softening), b is negative.
The frequency response of such a hardening Duffing resonator is depicted in Figure 1.3. Here, clearly, the

-20 -10 10 20

Figure 1.3: The response of a resonator with Duffing nonlinearity. The response is shown for several values of E The frequency Q is
defined as wg — wf. Source: [19].

frequency of the resonator that is associated to a certain amplitude increases as the drive power is increased,
due to the increase in stiffness from the positive (hardening) Duffing coefficient.

The previous examples have considered the vibration of a single mode. In reality, a system has multiple (an
infinite number of) modes, which become increasingly important once a system is driven further into the
nonlinear regime. The response for two modes (¢; and g,) can be expressed using the following formula [19]:

.. w1 . »
v+ otk + b}y ad+ bl = Freostwp
1
(1.4)
.. w2 . I
G+ Q_zch + 0302+ D1y g2 + by 43 = Facos (wpz ).
2

Both of these equations of motion contain a term that is dependent on the amplitude of both modes, the
bglz)z- and bﬁ)z—terms. These terms create a coupling between modes 1 and 2. This coupling may be induced
via various types of forces, but this report is primarily focused on the mechanical coupling between modes.
For special conditions of w; and w», this coupling is strongest, resulting in a stronger response of mode 2
through increased driving of mode 1. These special conditions are most significant for cases where w; = nw;
and n is integer. This relation, the internal resonance condition, couples the internal modes of the resonator.
The effects of this relation may be found by assuming that the modal amplitudes can be written in terms of a
trigonometric function, e.g. g; = cos (w1 t) and g» = cos (w2 t). Substituting these modal amplitudes into the
nonlinear parts of the first equation of motion gives Eq. 1.5.

Fynii= bgll)l cos® (w1 1) + bglz)z cos (w1 1) cos? (wa 1) (1.5)

Using that cos® (1) = i (3cos(wt) + cos(3wi)) and cos(w; 1)? cos(w;t) = i (cos((2w; —wj) 1) +2cos(w ;1) + cos(Rw; + w ;) 1))
will generate the following nonlinear force term:

_ 1 1
Fypa =0\, 7 Boos(@1 1)+ cosBwi 1) + bglgzz (cos((2n— Dwy 1) +2cos(w; 1) +cos(2n+ Dwi 1)) (1.6)
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Which shows that the Duffing term (bﬁll)l) excites both w; and a harmonic at 3w;. The bilz)z-term only excites
uneven harmonics of the first mode, causing coupling between the modes at these uneven harmonics of the
first mode. For example, if n = 3, the harmonic of the first mode in the Duffing term will weakly excite the
third mode and the coupling terms will also become stronger, generating energy transfer.

1.2. Fermi-Pasta-Ulam-Tsingou behavior
During the period when computers emerged as methods that could "compute” solutions of complicated sci-
entific problems, many researchers began to see their potential in generation of new knowledge. Some of
these researchers were Fermi, Pasta, Ulam and Tsingou, who conducted a series of numerical experiments on
an undamped chain of N masses (of mass m = 1kg) and N + 1 linear springs (of k = INm™!), to which a small
nonlinear perturbation (@ or B, Fig. 1.4a) was added, to generate the following equations of motion (EoM) of
mass i:

%= (K41 + Xio1 = 2%;7) + al(Xjp1 — %)% — (x; — x1_1)°] (1.7)

i = (g1 + X1 =20 + Pl = 6)° = G = xi-)°), (1.8)
where i = 1,2,..., N. The nonlinear perturbation, quadratic in the degrees of freedom for the @-model and
cubic for the f-model, was expected to aid in the rate at which the system would "thermalize” to reach
equipartition: the state where all modes of the system have equal energy. However, to their astonishment,
they observed that when they would excite the first mode and let the system vibrate freely (ring down) over
time, the energy would first transfer to several higher modes (modes 3, 5 and 7 in Fig. 1.4b), before (nearly)
all of it returned to the initial condition after 15,000 cycles [11]! Similar to what was previously shown for the
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Figure 1.4: 1.4a a chain of N masses of mass m, connected by N + 1 springs of linear and nonlinear stiffness of k and f, respectively.
A.1a FPUT recurrence for the -model, for N =16 and = 8Nm3. Source: [11].

vibration of a guitar string, they thus observed that energy was exchanged between the modes (or tones) of
the string, before showing recurrent behavior, where the energy returned to the initially excited mode. This
phenomenon is referred to as Fermi-Pasta-Ulam-Tstingou (FPUT) recurrence.
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Since the publication of these results, many researchers have tried to explain the observed behavior through
mathematical and dynamical theories. A prominent explanation is provided by Zabusky and Kruskal, who
claim that the behavior may be approximated by the solutions of the Korteweg-de-Vries equation, which
generates stable waves which can interact while keeping their form (solitons), resulting in exchange of en-
ergy [4].

Later, Chirikov proposed an explanation that deals with chaos [4]. Chaos basically implies that a system is
extremely sensitive to the initial conditions; a slight change in these initial conditions may generate signifi-
cantly different dynamics. Chirikov claimed that the exchange of energy was generated through overlapping
nonlinear resonances of several modes of the system [6]. This theory theory of resonance is widely adopted
in later studies [12, 28, 33, 34].

Though many theories try to explain this behavior, the number of physical observations is scarce. There are
several reports of this behavior in optical waves, but for mechanical vibrations, this is hardly ever observed
as is shown in [23, 35]. Recently, Barnard showed that the thermal vibrations of a carbon nanotube (CNT)
can show quasi-periodic modulations over time (see Fig. 1.5), which is associated to a change in the reso-
nance frequencies the system [3]. Several modal frequencies appear to have an influence in these changes in
frequencies, and numerical simulations show that this is closely related to FPUT-behavior.

0 fi
-60 . . .
-80 -40 0 40 80
60
£ o
N -60 1 1 1
-450 -225 0 225 450
60 ' i '
-60 X X X
-2,500 -1,250 0 1,250 2,500
60 ' . '
-60 \ ) \
-15,000 -7,500 0 7,500 15,000

Figure 1.5: Amplitude of the CNT over time, showing quasi-periodic modulations in the amplitude over time. Source: [3].

Other than this work, there are no observations of such behavior in mechanical systems. Midtvedt stated
that FPUT behavior will only become visible for systems which have a strong (nonlinear) coupling already
for low energies, as well as a long time scale for dissipation to the environment, such that energy can be
exchanged among other modes before it is dissipated to the environment [21]. The first topic, the strength of
the nonlinearity, is often related to the geometry and/or material of a system, as was shown in the previous
section. The second topic, that of low dissipation (i.e. high Q-factors in Eq.’s 1.3 and 1.4), could be achieved by
using a material or structure which inherently has small energy dissipation. The next section will show what
the most dominant damping mechanisms in string resonators are, as well as means to mitigate this damping.

1.3. High Quality factor Silicon-Nitride string resonators

Recent developments in manufacturing techniques of Silicon-Nitride (SigN4) (nano)resonators have made
these very small nanoresonators a promising test-bed system for FPUT behavior [10, 13, 37]. These nanores-
onators typically have lengths of around a millimeter and width and thicknesses even smaller than 10% of the
thickness of a hair. Si3Ny (string) resonators have been shown to exhibit excellent sensing performance: the
material is stable, allowing for constant dynamical characteristics and above all, these resonators have been
shown to achieve very low dissipation per vibration cycle (high Q-factors) [36, 37].

Many mechanisms appear to dissipate energy, e.g. through intrinsic, medium and clamping loss mecha-
nisms. Placing a resonator in a vacuum will reduce the medium losses, and thus two mechanisms remain:
clamping losses and internal (material) losses.

Material losses could result from irreversible motion of the atoms of the material, which results in energy
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losses. This type of dissipation mechanism is always present in a system; its magnitude depends on the type
of material of the resonator. Clamping losses are related to the shape of the resonator under vibration: near
the clamped edges of a string resonator, the string cannot deflect into a perfect mode shape (as is shown in
Fig. 1.1), which will cause energy to dissipate into the substrate of the resonator. Several methods have been
proposed to reduce this effect. Increasing the internal energy is one of them, as is shown in the following
equation.

Wiension O-SUAJE)L[‘% u(x)%dx

Qutr = L2 Qg =
N 2 Whending 0 05EL [F1Z u(x)Pdx

Qbending (1.9)

Here, Qpending is the Q-factor that accounts for losses in due to bending of the string in relaxed states [30].
The Q-factor of a string resonator may thus be increased by increasing the numerator of Eq. 1.9 by increasing
the pre-stress of the material [36, 37].

Secondly, by using strain engineering techniques [10, 13] one can reduce the clamping loss even further. This
method uses local variations in the strain of a resonator that localize a mode shape far away from the clamped
edges, as well as local increases in stress that further increase the internal energy, as is displayed in Fig. 1.6.

Internal (material) losses in string resonators could have two origins, volume and surface losses. In strings of
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Figure 1.6: A design that reduces clamping losses by localizing the mode shape near the centre of the resonator. Source: [10].

thickness smaller than 400nm, the surface losses are most significant. The largest surface loss mechanisms
are those related to material and manufacturing roughness. Additionally, non-uniform strain fields will result
in thermal losses as the resulting non-uniform deformation causes heat production.

Several research groups have shown that high stress string resonators with a constant cross-section may reach
Q-factors around 1 million [30, 37]. Further reduction of the losses through strain engineering may increase
the Q-factor by another order of magnitude [10, 13]. Furthermore, the wide manufacturing possibilities of
these SizN4 materials show that more complex geometries may also be fabricated [27], making this material
a possible test-bed for FPUT mechanics.

1.4. Goals of the research

This thesis is focused on dynamics and specifically the nonlinear dynamics of string-like resonators. The
goal of this thesis is to determine whether one may possibly observe Fermi-Pasta-Ulam-Tsingou recurrence
through mode coupling in string resonators.

To explore this, the following research questions are set-up:

1. What are the requirements of FPUT behavior?

2. Which models may predict the nonlinear dynamics of vertical vibrations in continuous string res-
onators?

3. Which string resonator designs could (in theory) potentially show FPUT behavior?

The research will first elaborate upon the requirements for Fermi-Pasta-Ulam-Tsingou (FPUT) recurrence.
Subsequently, analytical string models are proposed, which show what the origin of the nonlinearity in string
resonators is. These analytical string models are subsequently verified using experiments. Finally, the re-
semblance between the numerical FPUT experiment and string models is analyzed, before showing possible
improvements in string resonator designs to improve mode coupling in such resonators. The main findings
of this research are elaborated upon in a scientific paper format in Chapter 2. The conclusions, discussions
and recommendations of the research may be found in Chapter 3. More detailed information about the FPUT
problem, string vibrations and FPUT mechanics in string resonators may be found in Appendices A, B and C.
Supplementary material may be found in Appendix D to F.
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This chapter will contain the main findings of the research. they are presented in a scientific paper.
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ABSTRACT

In the early years of numerical simulation methods, Fermi, Pasta, Ulam and Tsingou (FPUT) discov-
ered that an undamped, weakly nonlinear equation describing the motion of a chain of masses and
springs could show complex dynamics. Integration of these equations from an initial displacement in
the form of the fundamental mode resulted in significant mode coupling: energy was transferred from
the fundamental mode to several other modes, before the energy would return to the initial condition.
To date, very little observations of such behavior in mechanical vibrations have been reported. Re-
cent developments in fabrication of high stress Silicon-Nitride (Si;Ny) string resonators have shown
that it is possible to generate resonators with extremely high Q-factors, proving a potential testbed for
these mechanics. This research shows, through modal conversion of the FPUT potential, that one may
observe significant FPUT behavior in systems with non-integer frequency ratios and certain coupling
coefficients. In addition, it is shown that for the default FPUT f-model, the effect of damping is negli-
gible for fundamental mode Q-factors higher than 10,000. Simulations of the experimental frequency
response of a high-Q Si;N, string resonator show that the nonlinear dynamics of these resonators
may be approximated by an analytical model that does not possess the required frequency ratios and
coupling coefficients for FPUT behavior. Another string model, for which no mechanical equivalent
has (yet) been found, may potentially show FPUT behavior. Several string-like resonator designs are
tested using a numerical tool which can extract the modal coefficients. These resonators are mod-
elled using simplified deformation models, which account only for axial deformation of the structure.
The results for various string-like designs show that the eigenfrequencies and nonlinearity may be

engineered easily, but these do not generate the required coupling coefficient for FPUT behavior.

1. Introduction

In 1953, during the early years of numerical simulation
methods, Fermi, Pasta, Ulam and Tsingou conducted a series
of numerical experiments on the thermalization of various
nonlinear systems. One of those nonlinear systems was an
undamped chain of N masses, connected by N + 1 springs
with a linear stiffness and a weak nonlinear perturbation;
quadratic for the a-model and cubic for the f-model. The
Equations of Motion (EoMs) for this f-model are as follows

[11]:
X = (g + x50 — 2x) + Bl — xi)3 —(x; = x,-_l)}] (D

here i = 1,2,..., N. The researchers hypothesized that this
nonlinear perturbation would cause the energy in the sys-
tem to thermalize quickly, leading to equipartition of energy.
However, to their astonishment, the energy appeared to be
distributed among several modes of the system, before re-
turning to the initial condition (Fig. 1). Up to now, many
research groups have undertaken efforts to explain this be-
havior: its origin is sought in nonlinear resonances which are
closely linked to chaos theories in nonlinear dynamics [6,
12]. Though many reports of theoretical research on these

Fermi-Pasta-Ulam-Tsingou (FPUT) mechanics have been pub-

lished, reports of experimental observations are scarce. Sev-
eral reports claim to have observed FPUT behavior in opti-
cal waves [23, 35]. However, observations of this behavior
in mechanical vibrations are much more scarce. Recently,
Barnard linked quasiperiodic behavior in the amplitude of
a carbon nanotube to FPUT behavior, but full recurrence is

*This paper is part of the authors master thesis of the same name under
supervision of dr. F. Alijani, dr. R.A. Norte and ir. A. Keskekler.
ORCID(S): 0000-0002-4265-3179 (T. Jansen)

not observed there [3]. The lack of observations in mechan-
ical vibrations may be attributed to effects from damping
and (manufacturing) imperfections, which could limit en-
ergy transfer [26]. Recent advances in design and manufac-
turability of high stress Silicon-Nitride (Si;N,) resonators
may circumvent these limitations. High stress Si;N, nanos-
trings are shown to have low damping at room temperature
and good mechanical stability [37]. In addition, recent re-
search shows that more complicated designs may further in-
crease the Q-factors, through reduction of clamping losses
[10, 27]. This report will show which requirements should
be satisfied to observe this FPUT behavior in string-like res-
onator designs. The procedure is as follows: Section 2 will
first explore the requirements and limitations of FPUT be-
havior. Subsequently, two analytical string models will be
presented and experimentally verified in Section 3. Section
4 will then show if FPUT behavior may be observed for any
of these string models, as well as methods to improve the
modal coefficients of some designs. Finally, Section 5 will
elaborate upon the conclusions and possible improvements
of the research.

2. Fermi-Pasta-Ulam-Tsingou mechanics

The present study is focused on the f-model, as this (cu-
bic) order of nonlinearity is inherently present in string sys-
tems (Section 3). Time integration of the EoMs of Eq. 1,
and subsequent Fourier transformations generate a formula-
tion for the modal linear energy. This linear energy (con-
sisting of the kinetic and potential energy generated of the
system) was assumed to sufficiently represent the total en-
ergy, since the nonlinear energy remained small [11]. The
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FPUT researchers found that for an undamped chain of 16
mass elements (N = 16) of mass lkg, connected to one
another with springs with linear stiffness k = 1INm~! and
nonlinearity # = SNm~3 (referred to as the “default” FPUT
p-model), energy transfer and subsequent energy recurrence
may be observed. This section will show that by performing
a modal coordinate transformation, one may find the direct
relations between the respective modes of the model.
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Figure 1: FPUT mechanics for N = 16 and f = 8N /m’.
Adopted from [11].

2.1. FPUT model in modal coordinates

A modal coordinate transformation is quite an intensive
process, as the increase of Degrees of Freedom (DoFs) or
number of considered modes increases the number of equa-
tions and modal interactions. The number of DoFs may not
just be chosen randomly. Tuck and Menzel (née Tsingou)
have shown that the number of DoFs (N) determines the
magnitude of the initial nonlinearity in the EoMs: few DoFs
increase the initial nonlinearity, which could show different
dynamics [34].
The modal conversion is conducted for the default FPUT g-
model. The procedure is as follows: first, the EoMs from Eq.
1 are integrated to find the equations for the kinetic and po-
tential energies (Eq. 2). Subsequently, the modal energy for-
mulations are derived through substitution of Eq. 3 (where
subscript u denote max-1 eigenvectors, where ¢,) = 1). The
conversion from these max-1 eigenvectors to mass normal-
ized eigenvectors is conducted using the scaling parameter

a = /2. Finally, the modal EoMs are found by taking

Myor
the derivatives of the energies with respect the modal coor-
dinates, generating Eq. 4.

N+1

N
. k
T = Z%xf, V= ; 70— X )+ g(xi -x_ )t @

6 .
x:(I)Iquza(I)uTqm—>xi=a28in<;ill>qk 3)
n=1
6 6 6
G, +k"q, + Z 2 2 b(.r)lqjqkq, =0,r=12,.,6 (4

J
j=1 k=j 1=k

Table 1
Single-mode modal coefficients for the default FPUT g-model.
The variables are normalized with respect to the first mode.

n |1 2 B @ (5) (6)
k, | 100 397 880 1533 2334 3255
@, | 100 199 297 392 48 571
B | 100 1573 7739 23639 625.60 1059.65

In this modal conversion, it is assumed that the first six modes
of the system can represent the dynamics with sufficient ac-
curacy (hence the summation from 1 to 6 in Eq. 3). The lin-
ear frequency ratio of the fifth mode which is computed us-
ing the above-mentioned method is different to that resulting
from a modal analysis: 5.00 versus 4.83 respectively (App.
A.2). The former ratio generates little energy transfer, as
is shown in Fig. 2, which is a ringdown simulation (using
Matlab’s ODE45 solver) from an initial excitation of the first
mode. The origin of this discrepancy likely originates from
the modal conversion. The modal coefficients of the default
FPUT model are tabulated in Table 1, the nonlinear modal
coupling coefficients may be found in Table A.4.

0.15 T T T T

@ Mode 1

— Mode 2

g 01+ Mode 3 [
-~ Mode 4

3 Mode 5

g 0.05F Mode 6 | |
]

0 1 i o 1 I e
0 50 100 150 200 250 300

g

o

o
-
-
-
—
—

Amplitude (m)

e
2

i

i 0 50 100 150 200 250 300
Time (s)

Figure 2: FPUT simulation for N = 16 and f = 8Nm™.
The linear frequency ratios of the first six modes of Z’T" =

1.00,1.99,2.97,3.92,5.00 and 5.71. ’

The linear stiffness ratios from the modal analysis (I}n)
follow the equation:

7 wi _ .2 n .2 T
kn_ —é = 4sin (m>/4sm (m) (5)

which generates non-integer frequency ratios (shown by @,
in Table 1), which are slightly lower than the mode number n
[33]. Irrational frequency ratios can generate quasiperiodic
behavior [24]. This could generate modulation of the am-
plitude (beatings, where the local minima and maxima vary
over time), as is shown in Fig. 3, resulting from a ringdown
simulation for initial excitation of the first mode. The energy
plot in Fig. 3 is similar to Fig. 1: it shows energy trans-
fer and energy recurrence. The exclusion of higher modes
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Figure 3: Numerical ring-down simulation for the modal EoMs
of the N = 16 and # = 8Nm™>, from initial excitation of the
first mode. (a) depicts the linear energy vs. time. (b) depicts
the modal amplitude vs. time.

Table 2
Modal coupling coefficients for modes 1,3, and 5 of the N =

16 FPUT p-model, normalized with respect to b(|11)|~

Ea. | (O (3) (5)
Fin 1 0.09 0
Bys | 207 1750  14.83
Buis 0 14.83  50.02
By | 17.59 0 43.99
Bis | 20.67  87.99 0
Biss | 50.02 0 0
Bass 0 77.38 0
Bys | 43.99 0 440.05
Bass 0 440.05 0
Bsss 0 0 625.60

than mode 6 causes some -expected- differences in the en-
ergy plots. The modal amplitude plot shows that though the
third mode’s energy is dominant for some time, its modal
amplitude remains smaller than that of the first mode. This
implies that while the amplitude of this mode remains small,
energy dominance may still occur due to higher linear stiff-
ness of higher modes. Energy transfer is generated by the
nonlinear coupling terms of the uneven modes (Table 2),
where the nonlinear parts of the EoMs are represented by
bj.;j,qj g4, of each column (r). These coefficients are derived
from a single potential, E,,, which accounts for all possi-
ble modal contributions. The energies associated to modes
1 and 3 are represented by many terms, e.g. E,j;;(x ¢;g3):
diqlE1113 = 3%Em3, and thus (5", = 35,).
Fig. 3 shows that only the uneven modes are excited, as the
energy (and amplitude) of the even modes remain zero. The
origin of this behavior may be explained through the theory
of resonant terms. The first mode’s equation for the nonzero
nonlinear parts from Table 2 are written in Eq. 6.
= b0 a1 +b, 30005+ b5, 45+ 55010305+ By 556105+ bi3503-
(0)

Distinction can be made between three amplitude dependen-

cies, which scale with either one mode (qj?), two modes (qqu)
or three modes (g, 4, 4,)- Assuming that these modal displace-
ments may be approximated by harmonic solutions of the
form g, = cos (nw,t) (where the mode frequencies follow an
integer relation with the mode number #) results in the fol-
lowing equation:

1 . )
99 = 7 [cos (( = k = Dasyt) + cos ((j + k — Dasy1)
+cos ((j — k + Dawyt) + cos ((j + k + Dwyt).

Now, any combination of uneven j, k and ! will yield an un-
even pre-factor from the (j+k+/)-terms. This implies that the
uneven modes j , k and / will only excite uneven harmonics
of w, generating energy transfer between only the uneven
modes. The equations of motion for this default FPUT prob-
lem may thus be reduced to only those for the uneven modes.
The unique feature of FPUT behavior is that under initial
static deflection of (only) the first mode, multiple modes are
excited. At =0, gy, # 0, o3 = 0and gy5 = 0 will generate
the following equations:

g+ k(ll)qO.l + b(lll)lqg.l =0, ¢+ b(131)1‘13.1 =0and g5 =0. (3)
Which shows that the initial excitation of the first mode gen-
erates a nonzero term in the EoM of mode 3, which will ini-
tiate energy transfer [33]. Without this 5%’ -term (the back-
coupling term), the energy will only be distributed through
excitation of the harmonics of the first mode, which will pre-

vent energy dominance by the third mode (Fig. A.6).

2.2. Limitations of the FPUT problem

The previous subsection has shown that energy recur-
rence is generated through two variables: the linear frequency
ratios and a back-coupling term. To determine if this FPUT
behavior may be observed in mechanical resonators, it is im-
portant to characterize its limitations first. Possible limita-
tions of the FPUT behavior may be influenced by (1) damp-
ing, (2) linear frequency ratios, (3) the nonlinearity of the
resonator, and (4) the initial conditions.
The influence of damping on this default FPUT problem is
studied first, by tracing the percentage of energy that returns
to the first mode during the first recurrence period, for var-
ious Q-factors. The Q-factors of the higher modes are as-
sumed to scale with the fundamental mode Q-factor (Q) and
the inverse of the mode number n: Q, = % ,le. ifn =3,

0, = % The effect of damping is checked by sweeping the
first mode’s Q between 500 and 1 million (and the Q-factors
of the higher modes scale according to the above relation).
Using this relation, it was found that for Q-factors larger than
10,000 more than 99.5% of the initial energy returns to the
initially excited mode, showing that damping is negligible
for those Q-factors (Fig. A.7). Should the damping of the
higher modes be (much) higher, then these higher modes will
dissipate part of their energy to the environmental bath, re-
ducing the magnitude of the following recurrence peak.
The three remaining parameters are swept altogether, as these
are related through the ratio of initial linear versus initial
nonlinear forces:
bido, _ B

r =—= 9
Nk kigo, ky 70t ©
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For the default FPUT model, this ratio is 21%. The linear
stiffness (or frequencies) are swept by varying the stiffness
of the higher modes (k,, where n = 2,3,...,6) with respect
to the first mode. In this sensitivity study, the stiffness of
these modes is swept between 90% and 110% of their orig-
inal value (as is reported in the first row of Table 1). The
nonlinear stiffness is subsequently swept between g = 0 and
20Nm~3 . Finally, the maximum initial amplitude of the first
mode (q,,, = aq, ) is swept between 0.1and 3.25m. Fig. 4
depicts the results of the parameter sweep for the default ini-
tial amplitude g, = Im. The results are presented in terms
of the maximum linear energy of the third mode with re-
spect to the fundamental mode (max(@)), which will
show if, and by how much the third modoe’s energy domi-
nates that of the first mode. The figure shows that gener-

105

Energy dom. of mode 3

Figure 4: Energy dominance of the third mode w.r.t. the initial
energy, for initial excitation of the first mode: g, = 1m. The
simulations were run with a Q-factor of 100,000.

ally, for low nonlinearity (f# = ONm™ or 4Nm™) or increased
linear stiffness (percentages > 105%), there is little energy
dominance. On the other hand, for lower stiffness percent-
ages (< 100%) and higher nonlinearity (8 > 8Nm™>); there
is significant energy dominance. This is a result of the Duff-
ing nonlinearity, which causes frequencies to increase with
increasing amplitude (and magnitudes of the nonlinearity).
The decreased linear frequencies could thus be compensated
through increased nonlinearity. Similar effects may be seen
for the fifth mode (App. A.3). Increasing the magnitude
of the initial conditions may increase the energy dominance
and vice versa. However, the assumption that the nonlinear
energy remains small becomes less valid for increased non-
linearity and higher initial amplitudes - these increase the
initial nonlinear force ratio from Eq. 9.

Nelson reported a similar result for a tolerance study of the
quadratic FPUT a-model [26]. They found that inhomoge-
neously adding tolerances to both the linear and nonlinear
stiffness may promote energy transfer compared to the cases
where these tolerances were added to only the linear or non-
linear terms. In addition, for higher numbers of elements

N, they observed less energy transfer. This is verified here
as well, as increasing N will increase the linear frequencies
to near-integer values (Eq. 5); in the present study this is
observed for percentages larger than 100%.

3. String models

The previous section has shown that FPUT behavior is
visible for systems with certain modal coefficients. This sec-
tion will show what dynamics are visible in pre-stressed string
resonators with a constant cross-section, which could be po-
tential test beds for FPUT mechanics. Two models will be
analysed: the first model accounts only for vertical string
displacements, the second model accounts for both vertical
and longitudinal displacements of the string. These models
will subsequently be fitted to experimental results, to deter-
mine which model shows the best agreement.

3.1. Analytical string models

Analytical models for string vibrations are extensively
studied in literature. The analysis in this paper is based on
the studies by Anand, Nayfeh and Zhao [2, 24, 38]. Fig. 5
depicts a string and its associated displacement directions.
The displacements in x-, y- and z-directions are referred to
as longitudinal, transverse and vertical displacements, which
are denoted by u, v and w, respectively. It is assumed here
that the forces related to bending are negligible, due to the
small thickness of the string. The Young’s modulus, density

ds

Figure 5: Simply supported string of length L. Shown is an
element with length dx. The initial configuration of the string
is shown in black; the deformed string is shown in red. The
string is pre-loaded in the x-direction with load Tj, = 6, A.

and cross-sectional area are given by E, p and A, respec-
tively. The derivatives with respect to x are denoted by a
subscript (e.g. u,). The deformation of element dx to ds
may be found using Pythagoras’ theorem:

ds = V(dx+ dw? +dv? +du? = dx\[(1+u,)? + 02 + w?.

10)
The total tension (T'(x,7) = E Ag,,,) in the string is dependent
on the initial strain due to the pre-load (eo = %) and the

displacement-induced strain (djxd" ):

T(x.t)= EA(e,+ €)= Ty + EAdsd_ dx _
X

an

T, + EA [\/(1+ux)2+u§+w§—1].

T.Jansen

Page 4 of 10



Mode coupling in nanomechanical string resonators

The tension in each displacement direction is given by the
ratio of each displacement with respect to the total displace-
ment ds. The EoMs for all three directions are found by eval-
uating the following equation, where m = pA; the linear mass
density of the string:

10

10 1o
u, = ;6_x[TX]’ v, = ;6_x[Ty] and w, = ;a—x[Tz]- (12)

The longitudinal and vertical (and transverse) wave speeds

may be formulated as ¢, = “70 and ¢, = \/% , respectively.
The initial stress (¢, ~ 1GPa) is much smaller than the Young’s
modulus (E ~ 250GPa) of the material: ¢} —¢; ~ c].

Two displacement formulations will be analysed here. The
first is based on the assumption that the displacement of the
string will consist of vertical displacements only, here u, =

0, v, =0and w, # 0. This results in the following EoM:

3

w, = cw,, + Eclzwiwxx. (13)
The second model is based on the assumption that the verti-
cal displacement cannot occur without stretching the string
in the longitudinal direction: u, # 0, v, =0 and w, # 0. The

EoMs for this displacement formulation are:
U, =cju, + =cy— [wz] (14a)
X

(14b)

w, = cgwxx + clz[uxwxx +u, w, + %wiwxx].
Eq. 14 is dependent on two displacement directions: « and
w. The inertia of the longitudinal vibrations (u,) will be
small for vertical vibrations, where w >> u. This allows
for formulation of u in terms of w. The EoM for the vertical
vibration is thus written as:

2 L
2 ‘i 2
Wy = oW, + 3L widx| w,,.
0

This is clearly of a different form than Eq. 13. The EoMs
may be converted to modal EoMs, using Galerkin’s method.
The physical coordinates are first transformed into modal co-
ordinates using the relation between the displacement w and
the mode shapes ¢, :

15)

nmwx

N
wx,n = Y ¢, (¥)q, (1), where ¢, (x) = sin <T ) (16)
n=1

The linear (in w) parts of Eq.’s 13 and 15 are equal AND
generate the following linear stiffness, which is the square
of the linear frequencies:

2 _ n27172 (21}

The fundamental mode frequency is denoted by w,(= w,).
Galerkin’s method uses a weight function ¢, ; the mode shape
of mode r to determine the influence of mode » onto mode
r. For example, for the w-displacement model, this requires
solving the following equation:

L
3
/ ¢u, <¢unqu,,,tt - ng’un,quun - 5012(¢un,x)2¢u,,,quin> dx =0.
0
(18)

Table 3
Modal coupling coefficients for the first three modes of two
displacement models. The coefficients are normalized with

2
L3

- E
respect to ——.
P 4 oy

w-displacement uw-displacement
Eg. [ (1) (@ (O |@® & 6
b 1.5 0 15 1 0 0
b1y 0 4.5 0 0 4 0
b3 4.5 0 27 0 0 9
b2y 12 0 18 4 0 0
bps 0 36 0 0 0 0
b 27 0 0 9 0 0
by 0 24 0 0 16 0
by 18 0 108 0 0 36
byss 0 108 0 0 36 0
byss 0 0 121.5 0 0 81

where the derivatives with respect to x and ¢ are denoted by
the subscripts , x and , . The free vibrations of a single mode
(n = r) for the w- and uw-displacement models are given by
the following (non-dimensional) equations, respectively:

g, +n’q, + %nzn“aﬁan =0 (192)
0

q, + nq, + %nzn“ﬁan =0. (19b)
0y

The non-dimensionalisation was conducted using that = =
wyt and g = GL(App. D.2). These equations show the lin-
ear stiffness scales with the mode number n squared. The
nonlinear part of equations scales with the ratio of Young’s
modulus and pre-stress, and the mode number to the power
four. The magnitude of the Duffing term for w-displacement
model is larger than that of the uw-displacement model. For
both models, this strength may be tuned through variance of
E, o, and n. Neglecting the displacement in the longitudi-
nal direction hence overestimates the nonlinear stiffness. A
similar trend may be observed in the coupling coefficients,
as is shown in Table 3, where it is clear that both the cou-
pling coefficients (5%) as well as the Duffing nonlinearities

of the modes (b)) are larger for the w-displacement model.
This model contains some nonzero coupling terms, which
are zero for the uw-displacement model; e.g. the back-coupling
E(li)l—term, which is required for FPUT behavior. The ori-
gin of this term is in the nonlinear parts of the equations of
motion: the w- and uw-displacement models have nonlinear
terms of %wxxwi and = /OL wdx. A string model for the
uvw-displacements is analysed in App. B.1; it shows cou-
pling for degenerate transverse and vertical mode frequen-
cies. This model is however not considered in this paper, as
it is assumed here that vibrations remain planar.

3.2. Numerical string models

The modal coupling coefficients may also be found us-
ing numerical methods. Muravyov and Rizzi have developed
the STiffness Evaluation Procedure (STEP), which can cal-
culate the (nonlinear) modal coefficients from prescription
of multiple mode shapes [22]. A former DMN student (V.
Bos) has successfully generated software which computes
these coefficients using Matlab and COMSOL Multiphysics
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[5]. Bos’ STEP method showed excellent agreement for the
coefficients of the uw-displacement model.

3.3. Verification of experimental results

To verify which analytical model can accurately predict
string vibrations, the experimental frequency response of two
Siy N, strings was analysed by placing the resonator in a vac-
uum chamber. Excitation of this resonator was achieved by
using a piezo-element; measurements were conducted using
a Polytech vibrometer.
Experimental ringdown of the first string resonator (with
characteristics L = 1110um, w = 4ym, t = 92nm, E = 250GPa,
6, = 509MPa and p = 3100kgm™) from a weakly nonlin-
ear condition generated a Q-factor of the fundamental mode,
which is estimated to be around 200,000 at a pressure of
2.69 x 10-%mbar (Fig. B.6). The experimental frequency re-
sponse is subsequently measured for several drive levels, gen-
erating multiple frequency response curves. The experimen-
tal results show Duffing behavior, where from a certain drive
level, the frequency and amplitude cease to increase under an
increase of the driving force. This phenomenon is a multi-
mode interaction which is known as frequency locking. This
phenomenon is often seen in multi-mode nonlinear Duffing
systems [17].
These experiments are simulated using AUTO, a numeri-
cal bifurcation software, which can trace periodic solutions
of nonlinear systems. The w- and uw-displacement mod-
els replicate the amplitude-frequency curves very well for
Young’s moduli of E = 450GPa and E = 675GPa, respec-
tively (Fig. 6), but these models do not instantly replicate
this frequency locking. This frequency locking is however
observed for the uw-displacement model if the higher mode
frequencies are increased by 0.5% (Fig. 6(a)). This slight
shift of the frequency ratios increases the effect of the reso-
nant terms, generating larger amplitudes of the higher (un-
even) modes (according to Eq. 6). Conversely, no appropri-
ate frequency shift fraction could be found to replicate the
locking behavior for the w-displacement model (Fig. 6(b)).
Both displacement models are fitted for high Young’s mod-
uli, which indicate that there is a (significant) discrepancy
between the experimental and numerical results. The ex-
perimental ringdown from a weakly nonlinear initial con-
dition (Fig. B.6) show little energy transfer, which implies
that -for this resonator- the uto-displacement model (which
also replicates the frequency locking) is expected to most
accurately simulate the string’s dynamics. Similar results
are found for a second experiment, which is conducted on
a SiyN, string with characteristics L = 700um, w = 4um,
t = 344nm, ¢, = 850MPa and a fundamental mode Q-factor
of 1.36 x 10° at a pressure of 9.81 x 10~ mbar (Fig. B.19).
The Q-factor of this resonator is about six times higher than
that of the 1110um string, which was found for a lower air
pressure. This high Q-factor may result from the significant
pre-stress of this 700um resonator, which increases the stored
energy in the resonator. A remarkable result, since the in-
creased thickness (344nm versus 92nm ) increases the bend-
ing resistance of the resonator, which should -in theory- in-
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Figure 6: Experimental and simulated frequency response (at
0.36L) of a 1110um string. The colored lines display exper-
imental results for various drive voltages, showing locking
from 0.3V. The black dots depict the simulation results
for a driving voltage of 0.32V. The simulation in (@) is
run for the uw-displacement model, showing locking for
a small shift (0.5%) in the higher modes’ linear frequen-
cies. The simulation in (b) is run for the w-displacement
model, which does not generate frequency locking.

crease the bending energy loss (App B.4). The experimen-
tal results of this specimen reveal small nonlinear Duffing
effects: the frequency shifts are small; only 0.2% of the fun-
damental mode frequency. Some minor frequency locking
is observed as well, where the frequencies -instead of lock-
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increase only by a very small fraction under an increase of
driving voltage. The results are fitted for both the w- and
uw-displacement models for Young’s moduli of 3667GPa and
5500GPa respectively. Neither model shows locking, which
could be related to the small nonlinearity: excitation of the
first mode in the weakly nonlinear regime will not cause suf-
ficient excitation of the higher modes to cause significant
modal interaction to generate frequency locking. This small
(relative) nonlinearity could result from the higher pre-stress
(Eq. 19). These high Young’s moduli required for fitting
imply that the discrepancy of the numerical and experimen-
tal results becomes more significant for increased thickness
and/or pre-stress. The experimental ringdown shows a linear
decay of the first mode; this could imply that there is little
energy transfer, which is expected for the uw-displacement
model. However, it is important to note that this ringdown is
conducted from a weakly nonlinear initial condition, where
nonlinear effects are small. This, together with the obser-
vation that both models fit the Duffing behavior quite accu-
rately, while neither model generates locking, does not gen-
erate conclusive results regarding which model is most valid
for this 700um resonator.

4. FPUT mechanics in string resonators

The previous sections have elaborated upon the possible
limitations of FPUT behavior and the dynamics of continu-
ous cross-sectional string resonators. This section will show
which string models could theoretically display FPUT be-
havior. Furthermore, some design methods are tested to de-
termine whether they can generate the required coefficients.

4.1. Linear variables

The linear stiffness (and frequencies) of the FPUT prob-
lem ratios from Table 1 are -unlike strings- non-integer. Shift
ing these frequencies in strings may be achieved through a
small change in the stiffness of the string. The magnitudes
of the linear stiffness of the FPUT model and that of a nanos-
tring are much different, which will be elaborated in a later
section.

4.2. Nonlinear variables

The nonlinear variables consist of two parts: the Duffing
terms (b™ ), which scale with the amplitude of only a sin-
gle mode, and the modal coupling terms (4},), which scale
with the amplitudes of multiple modes. The ratios of the
Duffing terms of both the w- and uw-displacement mod-
els are approximately equal to those of the FPUT model:
they scale with the frequency ratios of the considered modes.
However, Table 3 shows that the magnitude of the nonlinear
terms is larger for the w-displacement model than for the uw-
displacement model. Furthermore, the former model has
more nonzero coupling coefficients, generating a stronger
coupling. This stronger coupling is especially related to the
nonzero b°°) -term, which is required for FPUT behavior: it
generates energy transfer from mode 1 to mode 3 under pure
excitation of the first mode. This w-displacement model will

therefore be studied next. Theoretically, the uw-displacement

Table 4
Variables for the FPUT model and a L = 1110um Si;N, string.
FPUT w-disp. model
®, [rads™] 0.19 1.15x 10°
b [m2s7?] | 8.19x 107 3.07%10%
a ] 0.34 1.26 x 10°
h [m] 6.45 2.07x 107"

model does not generate this initial energy transfer (as this
b(fl)l-term is zero), reducing the likelihood of it displaying

FPUT behavior.

4.3. Initial force ratio

Provided that the frequency ratios are shifted slightly,
one could thus set the hypotheses that this w-displacement
model can show FPUT behavior. Though the magnitudes of
the (non)linear coefficients are different, one could still de-
termine if a system can generate the required initial nonlinear-
to-linear force ratio ry;,, . For the default FPUT problem,
this ratio was 21%. In non-dimensional terms, this equation
writes:

s 7 =3 2

F _ Fnonlin _ blllqO.I _ qz _ < wmax > (20)

NL2L — = — - - .
Ein k(]l)q().l 01 a(Du.maxh

Where, 13(111)1 / 12(11) = 1 by choosing the space scaling param-
eter to be h = w, (b)) 3. For equal initial force ratios, it
should thus hold that §y gpy; = Gy jsuing: The maximum physi-
cal displacement w,,,, of the 1110xm string resonator may be
calculated from these modal amplitudes using the modal co-
ordinate transformation relation (Eq. 3) and the parameters
from Table 4:

w hy. . = 11.82um. @

max.string = q041astring string

Fig. 7 depicts the numerical ringdown from a static displace-
ment of 11.82um for the first mode. This simulation is con-
ducted for linear frequency ratios from Table 1, as the inte-
ger frequency ratios show less energy transfer (Fig. 2). The
linear energy depicts FPUT behavior. However, since the
strength of the nonlinear terms has increased significantly,
the single-mode energy (E, = %m;")q'f, + %kfl”)qj + j—‘bﬁl'j]"qj) is
monitored as well; this indicates that the nonlinear energy
fraction is still small, probably due to the initially satisfied
initial force ratio. The modal amplitudes clearly show the ex-
pected beatings, though the modal amplitudes of the higher
modes do not exceed the first modes, similar to the original
FPUT problem.

Two remarks can be made for the required initial condition.
First, the magnitude of the displacement is quite large: it is
nearly times larger than the maximum displacement of the
experimental results, which could be hard to achieve without
breaking the resonator. Secondly, the displacement of these
simulations is a static displacement of the first mode. Exper-
imentally creating such a static displacement is not (yet) pos-
sible in these nanostructures. To verify whether this may be
observed in an experimental set-up, one should apply a more
physical initial condition, for example by adding a velocity
to the first mode. The results of such dynamic initial condi-
tions are shown in App. C.1, where the first mode is given an
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to find the modal coefficients of the design.

The local variance of the cross-section (and thus the mass
and stiffness) will alter the mode shapes and the resonance
frequencies of the string. By changing the mode shapes, one
should thus also be able to alter the modal coupling coeffi-
cients (App. B.7).

Fig. 8 depicts a design which has such an asymmetric mass
density. It is found that such a design does not generate new
coupling terms. However, it does shift the frequencies and
it allows for significant tuning of the nonlinearity, which -
compared to continuous strings- significantly increases the
relative nonlinearity of the higher modes.

Recent research by Dou and Li shows that the Duffing coef-
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Figure 7: Numerical ringdown from a maximum displacement
of 11.82um of the first mode. (@) depicts the linear energy
vs. time, (b) depicts the single-mode (linear + nonlinear)
energy vs. time and (c) shows the modal amplitudes vs.
time. The simulation was run with a fundamental mode
Q-factor of 100,000.

initial velocity and some higher modes are (weakly) excited
as well. FPUT-like behavior is still observed for these initial
conditions.

4.4. Design for FPUT behavior

Section 3 shows that the modal coupling coefficients are
dependent on the displacement formulation for continuous
strings. Additionally, in order to see FPUT behavior, one re-
quires non-integer frequency ratios, as well as some coupling
coefficients: primarily a nonzero back-coupling to generate
initial energy transfer. However, the analytical model that
generates such a coupling term (the w-displacement model)
cannot fit the experimental results accurately, as it does not
generate all observed dynamics. Furthermore, from a con-
tinuum mechanics point of view, this model appears to be
inaccurate, as a longitudinal displacement is required to al-
low for vertical displacement of the resonator. This chapter
will therefore explore (using the STEP method) some possi-
bilities to generate an improved coupling for string-like res-
onator models that include longitudinal displacements. The
present form of the STEP software only works for truss ele-
ments in COMSOL, which account only for axial deforma-
tions due to u- and w-displacements. The procedure is as
follows: a string design of length L is divided into »n truss-
elements. The cross-section of each of these elements may
be varied, such that the mass and stiffness of the string may
be altered locally. The STEP method is subsequently used

Figure 8: First mode shape of an asymmetrical string-like res-
onator design with two cross-sectional areas, with a respective
ratio of 10.

ficients of clamped-clamped beams may be tuned in a sim-
ilar manner [9, 18]. Their method was tested for string res-
onators (with much smaller thickness to increase the valid-
ity of using truss models). It was found that their results
cannot be verified by only using truss models (App. C.2),
indicating that their improvements likely result from more
advanced deformation modelling.

For string-like resonators, it appears that the local variance
of cross-sectional area does generate different relative non-
linearity (especially for the higher modes), but it does not
generate new coupling terms. Nonetheless, this does not
mean that string-like resonators may never show FPUT be-
havior. More complicated string designs, or different struc-
tures (e.g. the T-design from Dou and Li [9, 18]) could still
generate FPUT behavior as this generates a nonzero (quadratic)
back-coupling term.

5. Discussion & Conclusion

This paper has shown methods to generate FPUT behav-
ior in string resonators. A coordinate transformation of the
p-model from physical to modal coordinates may generate
a better understanding of the coupling between the eigen-
modes of the system [28, 33]. This transformation showed
that FPUT behavior is caused by initial excitation of the third
mode through a back-coupling term; a b‘l l)l-term In addi-
tion, an eigenfrequency analysis of the original equations of
motion (Eq. 1) has shown that the linear frequencies ratios
are non-integer (Eq. 5). A subsequent sensitivity study has
shown that FPUT behavior (for the default FPUT problem,
where N = 16 and g = 8Nm™) is hardly influenced by damp-
ing in the high-Q regime, for Q-factors of the first, third and
fifth mode larger than 10,000, 3333 and 2000 respectively.
This sensitivity study also indicates (in Fig. 4) that a de-
crease in the magnitude of the frequency ratios may be com-
pensated by increasing the magnitude of the nonlinearity,
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which implies that FPUT behavior is not associated to the
variables from the original FPUT report only [11]. FPUT
behavior may thus be observed for structures with different
relative nonlinearities, such as nanostrings, provided that the
initial nonlinear to linear force ratio satisfies some ratio.
Two analytical string models were presented: a model that
includes only vertical (w) displacements and a model that in-
cludes both longitudinal (x) and vertical (w) displacements
(Fig. 5). It was found that the former model generates stronger
nonlinearity than the latter model. This stronger nonlinear-
ity was present in both a stronger Duffing strength, as well as
stronger coupling coefficients and a nonzero back-coupling
term (Table 3). The nonlinearity of both models was found
to scale with the mode number »n and the ratio of Young’s
modulus and pre-stress (f).

Simulations of experimentally obtained frequency responses
on a high-stress Siz;N, nanostring of length 1110um show
that the uw-displacement model generates qualitatively the
same results. This model shows frequency locking and a
proper fits of the Duffing curves (Fig. 6), where the w-
displacement model only replicates the Duffing curve. A
second experiment on a shorter (though thicker) string res-
onator shows a small nonlinear effect: the frequency shift
is small and frequency locking is minor, which may be ex-
plained by the higher pre-stress (lower relative nonlinearity)
in the resonator. The w-, as well as the uw-displacement
model were fitted onto the Duffing curves, but neither model
showed locking behavior. This may be an effect of the small
relative nonlinearity, which does not excite the higher modes
sufficiently to cause significant modal interaction.

The observation that both displacement models seem to fit
both experimental Duffing curve quite well is not peculiar,
since both experimental results are dominated by the Duffing
nonlinearity of the first mode. However, this does not gener-
ate conclusive results that can determine which displacement
model is most accurate. Nonetheless, the experimental ring-
down of both resonators show a constant decay of the first
mode. This works in favor of the uw-displacement model,
since the modes are less strongly coupled to the other modes
than the w-displacement model. This latter model would -in
absence of other nonlinearities- exchange energy directly to
the third mode through excitation of the first mode, which
would probably show a different decay (including a possible
increase of the amplitudes of the higher modes and subse-
quent increase of the first mode). It is important to note that
the experimental ringdown experiments were conducted in
the weakly nonlinear regime, where the effect of such non-
linearities is small, which does not have significant mode
coupling, generating a linear decay (nonlinear damping then
is small as well).

The simulations replicate the strings’ qualitative dynamics
fairly well: slope fits and (for one resonator) resonator). How-
ever, quantitative agreement could be found, as the Young’s
moduli were significantly higher, varying from 450GPa to
5500GPa: 1.8 and 22 times larger than the default Young’s
modulus of SizN,. This discrepancy could originate from in-
correct conversion of the experimental data, or from the neg-

ligence of other significant nonlinearities (e.g. from bend-
ing), requiring more advanced modelling of the strings’ dis-
placements.

To determine whether any of these analytical string mod-
els could show FPUT behavior, their coefficients were com-
pared to the FPUT model, and it was shown numerically that
the w-displacement model for the 1110um nanostring can
show FPUT behavior for initial conditions which generate
an initial nonlinear to linear force ratio of 21%, for an initial
displacement of 11.82um (nearly thee times that of Fig. 6). A
larger nonlinearity of the resonator, which may be achieved
by lowering the pre-stress, may decrease the required initial
displacement to more “physical” quantities. The frequency
ratios of this w-displacement model should be non-integer;
integer frequency ratios will generate energy some transfer,
but this is not sufficient to generate energy dominance.
Finally, it was shown that the nonlinearity of string resonators
may be changed through local variance of the cross-sectional
area of the string. The numerical software that was used to
find these coefficients is only valid for truss elements, which
neglect possibly significant displacement mechanisms, such
as bending. It was found that local increase of the cross-
section of strings may increase the relative nonlinearity of
higher modes. However, this procedure did not generate
nonzero back-coupling coefficients. Research has shown that
such coefficients (though different in terms of nonlinearity),
may be found for different structures [9, 18]. To determine
whether a string resonator may ever show FPUT behavior,
one could do a topology optimization study that is focused
on finding structures that have such nonzero back-coupling
coefficients as well as the required frequency ratios. Before
this optimization is initiated, one should expand the current
software for the STEP method, such that this software may
also account for more accurate displacement models (e.g.
beam elements). Additionally, one should include the cou-
pling between the (degenerate) vertical and transverse modes
of square or circular cross-sectioned strings, as these appear
to be strongly coupled, as is shown in App. B.8.

In summary, this research has shown that to observe FPUT
behavior, one should design a resonator that has certain modal
coefficients. This resonator should have non-integer frequency
ratios, a nonzero back-coupling coefficient and it should be
placed in an environment where Q-factors are sufficiently
high. Simulations of experimentally obtained frequency re-
sponses have shown that continuous cross-section string res-
onators generate the desired dynamics. Additionally, this re-
search has shown that the nonlinearity of string resonators
may be tuned by varying the ratio of E over o, and a non-
constant cross-sectional area along the length of the string.
Expansion of the STEP method to include more displace-
ment formulations and geometries may result in structures
which could show FPUT behavior. These structures could
then be used for various applications, e.g. sensors with non-
constant measurement characteristics, filters, and possibly
many more applications.
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Conclusion, Discussion and
Recommendations

3.1. Conclusion and discussion

The goal of this thesis was to determine whether a string resonator could show Fermi-Pasta-Ulam-Tsingou
recurrence. The research has been summarized in the research paper. The research questions are answered
in the next three subsections.

3.1.1. Requirements for FPUT behavior

The modal coefficients of the FPUT problem were determined through a modal coordinate transformation of
the FPUT potential. This transformation indicated that to see FPUT behavior, one requires the non-integer
linear frequency ratios (and slightly lower than the nearest internal resonance condition) and certain cou-
pling coefficients. Specifically, the system should have a nonzero back-coupling coefficient, which will excite
the third mode under pure excitation of the first mode.

FPUT behavior becomes visible as the energy of the initially excited mode is dominated by some other mode(s),
before the energy returns to the initially excited mode again. It was shown that energy dominance of a certain
mode does not directly imply that the modal amplitude of the dominant mode is largest. To verify that the
system shows FPUT behavior, one should thus always check both amplitudes and (linear) energies of each
mode. Furthermore, it was shown that the dynamics of the default FPUT problem (for N = 16 and 8 = 8Nm™3)
-where the first mode is excited only- is relatively insensitive to Q-factors for the first, third and fifth mode that
exceed 10,000, 3333 and 2000, respectively. In addition, it was shown in A.11 that one may still observe FPUT
behavior for a system with increased nonlinearity and (linear) frequency ratios lower than the internal reso-
nance condition. The increased nonlinearity compensates the lower frequency ratios, due to the hardening
nonlinearity. FPUT behavior may be observed for systems where the initial nonlinear to linear force ratios are
larger than approximately 21%. Energy transfer will become more significant for systems with larger nonlin-
earities and initial conditions. However, for these conditions, the negligence of the nonlinear energy fraction
is no longer valid.

3.1.2. Dynamics in continuous string resonators

The vibrations of continuous string resonators were approximated using three displacement models that ac-
count only for axial deformation of the resonator. Two of these models were considered in the research paper:
one that accounts only for vertical (w) displacements, and another that accounts for longitudinal () and
vertical (w) displacements. It is assumed that though the coupling between transverse and vertical modes
of degenerate modes is strong (App. E.2.2), the vibrations still remain planar, since the resonator’s transverse
and vertical frequencies are non-degenerate.

All analytical models generate the same linear stiffness parameters (for the vertical modes of the string),
which scale with the mode number 7, generating integer frequency ratios. On the other hand, it was found
that the w-displacement model generates significantly stronger nonlinear (coupling) coefficients than the
uw-displacement model, which implies that negligence of a displacement direction will cause overestima-
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tion of the stiffness. Both analytical models show that the relative nonlinearity of strings is dependent on the
ratio of Young’s modulus and pre-stress, as well as the mode number. Using frequency response simulations,
it was shown that the uw-displacement model replicates the frequency response of a physical resonator of
length 1110um fairly accurately, as it shows slope fits of the Duffing curve and frequency locking. The w-
displacement model generates similar Duffing curves for this resonator, but it does generate frequency lock-
ing. The experimentally obtained Duffing response of another string resonator (of length 700um, and a much
larger thickness) could be simulated using both displacement models, but neither model could replicate fre-
quency locking. The simulations of this second experimental frequency response hence remain inconclusive
regarding which displacement formulation is most valid, as the Duffing response could be fitted using both
analytical models. The results of the experimental ringdowns (from the weakly nonlinear regime) for both
resonators of this resonator do not show modal significant interactions either, as the decay is linear. This
could -together with the notion that in reality, a vertical displacement is only possible for some longitudi-
nal displacement- imply that the uw-displacement model is probably most valid. However, this conclusion
should be drawn carefully, as the ringdown experiments were conducted from the linear regime.

All frequency response simulations showed qualitative agreement in the form of fits of the Duffing curve
(and frequency locking for one of the two experiments), but they did not show qualitative agreement, as the
Young’s modulus in simulations should have been increased to values that are 1.8 times (E = 450GPa) or even
22 times larger (E = 5500GPa). This implies that there is still some error present in the analysis, which could
be related to experimental data conversion, or assumptions regarding the considered deformation models
of these resonators. Interestingly, the model appears to be most inaccurate for a larger resonator thickness,
which could have more significant bending deformation.

3.1.3. FPUT recurrence in string resonators

A string-like resonator may potentially show FPUT behavior if certain requirements are met. One of these
requirements is that the frequency ratios are non-integer, and slightly lower than the nearest internal reso-
nance condition. Another requirement is that the system should have a nonzero back-coupling coefficient.
For these criteria, the w-displacement model may potentially show FPUT behavior for an initial nonlinear
to linear force ratio of 21%, which is achieved for a displacement that is nearly three times larger than the
experimental displacements. To achieve a more realistic displacement, the relative nonlinearity should be
increased. Though this w-displacement model may display FPUT mechanics, simulations of frequency re-
sponses show that the w-displacement model (which has this nonzero back-coupling coefficient) is the least
valid analytical model. This implies that a different resonator design should be found, which either allows
for negligence of the longitudinal displacements, or it should possess a nonzero back-coupling term for the
uw-displacement model as well.

In this regard, STEP method was employed to show that an asymmetry in the resonator’s cross-sectional area
allows for shifting of the linear frequencies and variation of the relative nonlinearity. However, these designs
did not generate nonzero back-coupling coefficients. Hence, to observe FPUT recurrence in string-like res-
onators, one should try different designs, with more complicated geometries. The current implementation
of the STEP method only works for axial deformation models; it does not work for more complicated defor-
mation models, such as those for beams or plates. The coefficients of the improved designs, where the mass
density was varied, are thus computed using a simplified deformation model, which is only valid for systems
with large pre-stresses, where possible bending of the structure is neglected.

3.2. Recommendations

This research has clarified why FPUT behavior may, or may not be observed in a structure. This research is
not perfect, and there is certainly room for improvements. This section will elaborate upon further steps,
which may taken into account when improving the nonlinearity in (string) resonators -possibly even with the
target to design a system that displays FPUT recurrence. The recommendations are divided into three topics
concerning the FPUT study, (simulated and experimental) string vibrations and design for FPUT behavior.

3.2.1. Recommendations regarding the FPUT study
* The present study is focused primarily on the FPUT -model, which only includes a cubic nonlinearity.
The a-model (for quadratic nonlinearities) is not considered here, since the nonlinearity of string res-
onators is cubic. This results in the fact that the present study may not be taken one-to-one for other
structures, which could have different types of nonlinearities. Furthermore, this research neglects all
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linear couplings in resonators. Subsequent studies should characterize the influence of these addi-
tional coupling methods as well, and possibly even combine them.

¢ The simulated FPUT study is an approximation of the original experiment, as it only accounts for the
first three uneven modes (modes 1, 3 and 5). There appears to be a slight difference in the energy
plots of the third and fifth modes. This could be improved by adding higher (uneven) modes to the
simulation.

¢ The FPUT study was conducted for 16 mass elements, which basically simulates a strongly discretized
string, generating linear frequency ratios that are far from integer values. It was shown that for ring-
down from a certain initial nonlinear to linear force ratio, these non-integer frequency ratios generate
the most significant energy transfer. The hardening nonlinearity of the resonator increases the fre-
quency ratios, which should be taken into account during the design of a resonator. The effects of
larger numbers of masses -which approach integer frequency ratios- should be characterized together
with the corresponding hardening effect of the nonlinearity, to generate a design that displays the most
significant energy transfer.

3.2.2. Recommendations for the experimental validation of analytical models

e The simulation method has thus far only been tested for two string resonators. The simulations of
both resonators’ frequency responses were found for significant increases of the Young’s modulus in
the simulation. Neither simulation model generated a fully conclusive result regarding which model is
most valid. Additional tests on multiple string resonators with different relative nonlinearities (e.g. by
decrease of the pre-stress) and thickness could fully characterize the discrepancy and limitations of the
considered (analytical) models. Once these limitations are known, one can generate a more accurate
simulation model (with possibly more deformation mechanisms, e.g. bending deformations). This
model could then potentially be used for characterization of a material’s Young’s modulus [8].

¢ The analytical study is based on a square or circular cross-sectioned string, which was shown to have
degenerate transverse and vertical eigenfrequencies, generating strong coupling between these two
modes (as shown in Fig. B.27). In reality, this effect is expected to be less significant, since the res-
onators’ cross-sections is are rectangular, and thus these frequencies will not be degenerate. However,
this effect should be characterized first, before it may be safely neglected. In addition, such structures
will also posses torsional modes, of which the coupling with respect to the transverse modes is un-
known. Experimental measurements in combination with modelling of the frequency response of the
resonator for transverse and torsional motion could validate the true coupling between these trans-
verse, vertical and torsional modes. This way, the assumption that vibrations remain planar can be
verified or rejected.

3.2.3. Recommendations for the design of resonators showing FPUT behavior
¢ Tt was shown that string resonators with constant cross-sectional areas do not posses the required cou-
pling coefficients, nor do they have the required non-integer frequency ratios. A string-like resonator
with a local increase in cross-sectional can be designed to have non-integer frequency ratios and im-
proved (relative) nonlinearity, but it does not have the required coupling coefficients. These results
should be experimentally verified.

e Similarly to the recommendation about the analytical deformation models, the STEP method only
works for string-like resonators that allow for simulation using truss models, which account for axial
deformations only. This method should be expanded to account for additional deformation formula-
tions, such bending deformations.

¢ Once a solid numerical framework has been established, additional geometries should be tested for
improvement of the coupling coefficients. This could be done efficiently using topology optimization,
which could then be used to extract the modal coefficients of various designs. The goal would then be
to find a system which has non-integer frequency ratios (below the internal resonance condition) and
a nonzero back-coupling term. However, the nonlinear problem that is solved to yield the nonlinear
modal coupling coefficients, may complicate this topology optimization study significantly.






The FPUT [-model

This chapter will first characterize the modal interactions in the FPUT -model through a modal coordinate
transformation. A subsequent study will explore the limitations for occurrence of FPUT behavior. Finally,
requirements are formulated for systems to show FPUT behavior.

A.1. The default FPUT -model

The original FPUT study analysed several models; quadratic (e¢-model), cubic (f-model) and broken linear
models. All of these models resulted in significant energy transfer, followed by recurrence of the initial condi-
tion [11]. Fig. A.1a depicts a result for the f-model, which is analysed in this section. This model consists of
16 mass elements (N = 16) of m = 1kg, a linear stiffness of k = INm™!, and a nonlinear stiffness of B= 8Nm3,
The equations of motion are are shown in Eq. A.1.

%= (i1 + Xio1 = 227) + Bl(xi41 — %)% = (x; — x;-1)°], wherei = 1,2,...N (A1)
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Figure A.1: FPUT B-model simulations, for N=16, =8, %= é and the initial conditions were half a sine wave (similar to the first

mode of a string). A.1a depicts the result from the original report [11]. A.1b depicts a reproduction that is based on Dauxois’ paper [7].

Fig. A.1 depicts a plot from the original report of the FPUT study, as well as a reproduction of the original
experiment, which is produced using a modified code from Dauxois’ paper on FPUT mechanics [7].
In the FPUT experiment, the linear modal energy (consisting of a kinetic and a potential part) is monitored

23
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under the assumption that the nonlinearities remain small; the energy residing in each involved mode k is
calculated using the Fourier transforms of the amplitudes, as is shown in Eq. A.2.

) . 1. o7k N (nkn
Efllk” = E’;I’c” +E55t = Eai +2ag sin® (ZV) where ay = leln(T) (A.2)
n=

These Fourier functions map the displacement of each individual mass element i (given by x;) to the modal
displacement of mode k of the system, aj. Several differences may be distinguished from both graphs. The
first is that the recurrent behavior is present in Fig. A.1b, but the quantities along the horizontal and vertical
axes of the plots do not seem to match. This could be due to some scaling of the time response in the original
experiment. Secondly, the energy versus time graph from the original experiment is smooth, whereas the
reproduced experimental plot shows a rough graph. This is due to the fact that the original plot was drawn
manually, which generated these smooth graphs [34]. In addition, it is clear that the local minimum of the
third mode’s energy (and corresponding local maximum of the fifth mode’s energy) at ¢ = 8 in Fig. A.la is
not of the same magnitude as the same behavior in Fig. A.1b. This difference could have various origins: for
example, different integration tolerances may be used in the left and right simulations, or a (slightly) different
magnitude of the initial conditions could have been used in either computation. The difference may also be
present due a slight shift in the linear frequencies. The full effect of shifted linear frequencies will be shown
later in this chapter. Though the exact origin of these differences is not known, the author of this report will
continue with the same simulation scheme, as the reproduced experiment still reproduces FPUT behavior
with sufficient accuracy.

A.2. The f-model in terms of modal coordinates

To determine the origin of the recurrent behavior, it is convenient to transform the physical coordinates x; of
each mass element to modal coordinates, which represent state of the system in terms of its eigenmodes. This
will generate linear and nonlinear modal coefficients, which will show what relations are present between all
considered modes.

A.2.1. Relation of considered modes and initial conditions

The number of considered modes (or degrees of freedom) in the model determines the accuracy of the mod-
eled dynamics. Tuck and Menzel (née Tsingou) [34] stated that for FPUT behavior to become visible, the
imposed initial condition should not generate nonlinear forces that exceed 10% of the linear force:

. _ Fnp_ Blexivn —x)° = (6 = xi1)°]
NEvSE =gy (Xi+1 +Xi-1 —2x;)

<0.1, wherei =1,2,..N (A.3)

Which implies that for a decreased number of elements N, the difference between the initial coordinates
(x(n) — x(n—1)) increases.
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String discretisation
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Figure A.2: Discretisation of a string’s first mode shape. Shown are discretisations for N =2, N =8 and N = 16.

Decreasing the mode number N will result in a large difference between the initial amplitudes, as is depicted

in Fig. A.2. Comparing the amplitudes of the first point (denoted by A;) along the string for the N = 2 and

the N = 16 cases, shows that the initial amplitudes are A; = ‘/75 =0.71 and A; = 0.18 respectively. These

amplitudes generate cubic nonlinear forces (Fyy = ,BAEI‘). Comparing these nonlinear forces with each linear
counterpart, by dividing the nonlinear force over the linear force (Fy = kA;), the following nonlinear to linear

force relation is found:

Fny  BA
FiLL = k—Ai = BAZ. (A.4)

For N =2 and N = 16, these nonlinear-to-linear force ratios equal:

V2

2
N=2: 7) B =0.508 and for N = 16: (0.18)? B=0.038 (A.5)

which amounts to 50% and 3%, respectively. Hence, discretising the string into N elements might have sig-
nificant influence in the computational efficiency, as the initial nonlinearity increases significantly with a
decrease in the number of elements.

A.2.2. Modal coupling coefficients of the FPUT 5-model

If one were to take into account the comments that were made in the above paragraph, it would be sensible to
continue with system with a number of elements that does not exceed this 10%-threshold. Clearly, the N = 16
case obeys this condition, and hence we could derive the modal coupling coefficients of this model, by first
writing the kinetic and potential energies of this system, which derive from the equations of motion from Eq.
Al

mi;, wherei =1,2,..N (A.6)

N | —

N
r=y
i=1

N+1 1 )
V=) 5 kX = xi-1)”+

i=1

1

Z;(S(x,-—x,-_l)‘*,wherei =1,2,..N (A7)
Where the boundary conditions imply that xp = 0 and xn+; = 0.

The physical coordinates of the mass elements i (denoted above in terms of x;) do not provide information
about the interaction between the eigenmodes of the system. It is hence convenient to convert the FPUT
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equations of motion from these physical coordinates (in terms of x;) into modal coordinates (in terms of g;)
to derive the modal coefficients. These coefficients indicate what interaction is present between the modes
of the system. These coefficients could generate requirements (e.g. required frequency ratios) for FPUT be-
havior.
To determine these modal coupling coefficients of this system, one should substitute the mode shapes into
the energy formulation and take the derivatives to find the modal equations of motion. This method is em-
ployed, because if the opposite procedure would be followed, where first the equations of motion (in physical
coordinates) are derived and subsequently the mode shapes are substituted, the energy potential will change,
resulting in equations of motion that derive from different energy potentials.
The linear and nonlinear elastic (modal) forces are dependent only on the potential energy of the system
(scleronomic system) and they may be derived by taking the derivative with respect to the considered modal
degree-of-freedom ¢:

w_ av.

A.8
e (A8)

The modal potential energies may be computed by substituting the following relations into the potential
energy of the system:

x=¢lqu=¢Lq=adlq. A.9)

Where « is a parameter that scales the max-1 eigenvectors (max(¢,) = 1 and associated displacement q,,)
to the mass-normalized eigenvectors, ¢, (and its associated displacement g, = g ). The displacement of a
single mass element -in terms of modal displacements- is given by Eq. A.10.

x~—a§(sin( ]mi) (A.10)
PR L S ) I '

First, the modal coefficients of the first mode (n = 1) mode may be derived, this results in the following po-
tential:

Vinode1 = 0.017027kq3 +0.000026 347 . (A.11)

Using Eq. A.8, this will generate the following elastic force:

1
F{) = 0.034054kq, +0.00010284; . (A.12)

The first six modes are considered here, as they generate the most significant dynamics. Repeating the pro-
cedure for modes 2 to 6 will then result the single-mode coefficients from Table A.1, where k = INm~! and
B =8Nm3.

Table A.1: Single mode coefficients for the FPUT f-model, normalized with respect to the first mode (n = 1).

n 1) (2) 3) (4) (5) (6)
kn 0.0341 0.1351 0.2996 0.5220 0.8518 1.1085
kn 1.00 3.97 8.80 15.33 25.0 32.56
‘:)—’11 1.00 1.99 2.97 3.92 5.00 5.71
bnnn 1.00 15.73 77.39 236.39 625.60 1059.65

The validity of these linear variables may be verified by conducting an eigenvalue analysis of the mass and
stiffness matrices that result from the original equations of motion (Eq. A.1). This yields a slightly different
result for the fifth mode, as is shown in Table A.2.

Table A.2: Linear stiffness for the FPUT S-model (from an eigenvalue analysis).

n 1) (2) (3) 4) (5) (6)
kn | 0.0341 0.1351 0.2996 0.5220 0.7947 1.1085
kn 1.00 3.97 8.80 15.33 23.34 32.55
“n 1.00 1.99 2.97 3.92 4.83 5.71

W]
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Which shows that the employed method for computing the modal coefficients of the FPUT model is at least
valid for the first four modes, as it shows some discrepancy with the fifth mode’s eigenfrequency.
This eigenfrequency analysis is considered to be the most accurate approximation of the linear variables of
the FPUT model, as these are derived directly from the original equations of motion. The linear variables
from Table A.1 are calculated indirectly, as they are transformed into modal coordinates first, which could
lead to approximation errors. Dauxois [7] and Pace [28] have shown that the frequencies of the FPUT chain
follow the following relation:

wp =Zsin(—”n ) (A.13)

2(N+1)

Which exactly generates the frequencies from Table A.2. The effects of such inaccuracies in the linear stiffness
are elucidated in section A.2.4.

A.2.3. Modal coupling coefficients of the FPUT 5-model

Table A.3 displays the modal coupling coefficients for the FPUT f-model, which are derived by first prescrib-
ing displacements of multiple modes into the potential energies of the system and subsequently deriving the
modal equations of motion by taking the modal derivatives (Eq. A.8). Eventually, this will generate all terms
for the following equations of motion from Eq. A.14.

6

6
m® G, +k" g+ 3 Y Y b aiarai=0,r=12,..,6 (A.14)
j=lk=jl=k

Table A.3 displays the modal coupling coefficients for any . This does not generate much insight, and hence
one should normalize these coefficients with respect to the bgll)l-term to find the ratios of these coupling co-
efficients. The resulting normalized variables are shown in Table A.4. This table is quite crowded: it contains
quite some nonzero values. Most of these values are non-integer, which likely results from the discretization
of system. Still, there is a trend visible in these modal coupling coefficients: they appear to follow -with some
margin, and certainly some exceptions- the scaling law with the considered linear frequency ratio, which is
denoted by n, for mode r. For strings (App. B), there is no difference between the mode numbers and the
frequency ratios, as these follow an integer relationship. Contrary to the model that is considered here -the
FPUT model-, there is such a difference. This likely results from the discretization, and there is thus a like-
lihood of disappearance of this difference once more elements are considered, as the frequencies approach
integer values as N is increased in Eq. A.13. The relation between the coupling coefficients and the normal-
ized mode frequencies is as follows:

7 (1)
bijk

=2nrnjnjnl. (A.15)
One of the aforementioned exceptions is present for the cases where j = k and [ # j. For example for the
bgll)g-term:

B, =2npningny : by = 1.00 x 1.00 x 1.00 x 2.97 = 2.97. (A.16)
This shows that the coupling coefficients, though calculated for a discretized model, follow the relation where
the coupling coefficients have a dependency on the frequency ratios.

A.2.4. Accuracy of the linear modal stiffness

Now that the nonlinear coefficients are known, one may check the accuracy of the conversion from physical
to modal coordinates, by checking if the calculated modal coefficients actually show FPUT behavior. The
linear energy formulation of mode # is given by Eq. A.17.

1 1
Ejin = 5q§+§knq,§ where n=1,..,N (A.17)

Fig. A.3 shows the linear energy versus time plots of two simulations, for two sets of linear stiffness coef-
ficients: one simulation is run for the linear coefficients that result from the method where the modal dis-
placements are substituted into the potential energy, and another simulation with the linear coefficients that
result from an eigenfrequency analysis of the linear part of the FPUT equations of motion. These simulations
are conducted using Matlab’s ODE45 solver. The difference is present only in the frequency ratio for the fifth
mode; 5.00 for the first method (Table A.1) and 4.83 for the second method (Table A.2). However, there is
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Table A.3: Modal coupling coefficients for the N = 16 FPUT B-model, for the first 6 modes.

Eq. (1) (2) (3) (4) (5) (6)
b111 0.0001023238 0 0.000101162p 0 0 0
b112 0 0.00081161508 0 0.0007977968 0 0
b113 0.0003034858 0 0.001800248 0 0.00151779p8 0
b114 0 0.000797796 8 0 0.0031368508 0 0.00228564
b115 0 0 0.00151779p8 0 0.005118618 0
b116 0 0 0 0.00228564 0 0.006661668
b122 0.0008116158 0 0.0012036 0 0.00202953 0
b123 0 0.00240721p8 0 0.004732448 0 0.00689652
b124 0.001595598 0 0.00473244p 0 0.007979880 0
b125 0 0.004059058 0 0.007979880 0 0.0116298
b126 0 0 0.006896528 0 0.0116298 0
b133 0.00180024 0 0 0 0.004501680 0
b134 0 0.004732448 0 0 0 0.0135582f
b13s 0.003035580 0 0.009003358 0 0 0

b136 0 0.00689652 0 0.0135582 0 0
|2 0.0031368508 0 0 0 0 0

b145 0 0.00797988 0 0 0 0
b146 0.004571280 0 0.0135582p 0 0 0
b1s5 0.005118618 0 0 0 0 0
b156 0 0.0116298 0 0 0 0
b166 0.006661668 0 0 0 0 0

b222 0 0.00160941p8 0 0 0 0.001536968
b223 0.0012036 0 0.0071396508 0 0 0
bo24 0 0 0 0.01244068 0 0
b5 0.002029538 0 0 0 0.02030018 0
125 0 0.004610880 0 0 0 0.02641980
bo33 0 0.00713965p8 0 0.00701808p8 0 0
bo3a 0.00473244p 0 0.0140362p 0 0.0236679 0
bo3s 0 0 0 0.02366798 0 0.0344909
bo36 0.00689652 0 0 0 0.034490948 0

bo44 0 0.01244068 0 0 0 0.0178208p
boys 0.00797988p 0 0.0236679 0 0 0

b6 0 0 0 0.0356416 0 0

boss 0 0.02030018 0 0 0 0
base 0.0116298 0 0.03449098 0 0 0
boes 0 0.0264198p 0 0 0 0
b333 0 0 0.0079182p 0 0 0
b334 0 0.00701808p8 0 0.02759438 0 0

b33s 0.0045016808 0 0 0 0.0450276 0

b336 0 0 0 0 0 0.0586016
b344 0 0 0.0275943 0 0.0232649 0

b345 0 0.02366798 0 0.0465298 0 0.0678072f
b346 0.01355820 0 0 0 0.0678072p 0
b3ss5 0 0 0.0450276 0 0 0
b3s6 0 0.03449098 0 0.0678072 0 0

b3e6 0 0 0.0586016 0 0 0

byaa 0 0 0 0.0240411p8 0 0
byas 0 0 0.0232649p 0 0.0784589p 0

bya6 0 0.0178208p 0 0 0 0.1021118
byss 0 0 0 0.07845898 0 0.057168583
byse 0 0 0.0678072p 0 0.114337p 0
baes 0 0 0 0.1021118 0 0
bss5 0 0 0 0 0.06401348 0

bss6 0 0 0 0.05716850 0 0.166622
bse6 0 0 0 0 0.166622 0

bees 0 0 0 0 0 0.108426
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Table A.4: Modal coupling coefficients for the first 6 modes of the N = 16 FPUT -model, normalized with respect to b

Eq. (1) (2) (3) (4) (5) (6)
bin 1 0 0.99 0 0 0
b112 0 7.93 0 7.80 0 0
b113 2.97 0 17.59 0 14.83 0
b114 0 7.80 0 30.66 0 22.34
b11s 0 0 14.83 0 50.024 0
bi1g 0 0 0 22.34 0 65.10
D122 7.93 0 11.76 0 19.83 0
b123 0 23.53 0 46.25 0 67.40
D124 15.59 0 46.25 0 77.99 0
b1os 0 39.67 0 77.99 0 113.65
b126 0 0 67.40 0 113.65 0
b33 17.59 0 0 0 43.99 0
D134 0 46.25 0 0 0 132.50
b135 29.67 0 87.99 0 0 0
bi3g 0 67.40 0 132.50 0 0
D1aa 30.67 0 0 0 0 0
b1as 0 77.99 0 0 0 0
Dbiag 44.68 0 132.50 0 0 0
byss5 50.02 0 0 0 0 0
bis6 0 113.65 0 0 0 0
big6 65.10 0 0 0 0 0
Dbooo 0 15.73 0 0 0 15.02
D03 11.76 0 69.78 0 0 0
Doy 0 0 0 121.58 0 0
Dboos 19.83 0 0 0 198.39 0
boog 0 45.06 0 0 0 258.20
b33 0 69.78 0 68.59 0 0
D34 46.25 0 137.8 0 231.31 0
bo3s 0 0 0 231.31 0 337.08
bo3g 67.40 0 0 0 337.08 0
Doy 0 121.58 0 0 0 174.16
bogs 77.99 0 231.31 0 0 0
Dboag 0 0 0 348.32 0 0
boss 0 198.39 0 0 0 0
bosg | 113.65 0 337.08 0 0 0
Dboge 0 258.20 0 0 0 0
b333 0 0 77.38 0 0 0
D334 0 68.59 0 269.68 0 0
ba3s 43.99 0 0 0 440.05 0
b33 0 0 0 0 0 572.71
D344 0 0 269.68 0 227.37 0
b3as 0 231.31 0 454.73 0 662.68
bass | 132.50 0 0 0 662.68 0
b3s5 0 0 440.05 0 0 0
D356 0 337.08 0 662.68 0 0
b3e6 0 0 572.71 0 0 0
Im 0 0 0 234.95 0 0
Daas 0 0 22737 0 766.78 0
baas 0 174.16 0 0 0 997.93
Dbys5 0 0 0 766.78 0 558.71
Dbase 0 0 662.68 0 1117.41 0
bags 0 0 0 997.93 0 0
bss5 0 0 0 0 625.60 0
bss6 0 0 0 558.71 0 1628.39
bse6 0 0 0 0 1628.39 0
Dbess 0 0 0 0 0 1059.64

(1)
111°
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still a clear difference in the resulting dynamics. Fig. A.3a(i) indicates some energy transfer between only the
uneven modes, though none of the higher modes seem to dominate the first mode’s energy at any point in
the considered time frame. Fig. A.3b(i) shows dominance in terms of energy, where the behavior is similar
to the original experiment for the FPUT -model from Fig. A.1a, where energy is distributed among only the
uneven modes. Figures A.3a(ii) and A.3b(ii) depict the modal amplitudes of each simulation. The left figure
shows that the small energy of the higher modes is related to small amplitudes of modes 3 and 5. The right fig-
ure shows that higher amplitudes do relate to this energy transfer, though the difference in magnitude of the
modal amplitudes for the left and right figures is small. This implies that though a system shows modulations
in the modal amplitudes (beatings), one cannot discern whether a system shows energy transfer between
modes. One should there always calculate the linear energy of each mode, to verify any presence of modal
energy dominance.

The difference in the two energy plots of Fig. A.3 clearly indicates that an non-integer frequency ratio (which
is slightly smaller than the internal resonance condition, which requires an integer relation: ws = 5wq) for
the fifth mode is required to generate the classical FPUT behavior. This could mean that one of the possible
origins of the FPUT behavior lies in these non-integer frequency ratios. This FPUT behavior is closely re-
lated to quasiperiodic behavior, which requires a system with NV modes to have incommensurate (irrational)
frequency ratios [24]. These frequencies should follow the relation from Eq. A.18, where all n,-terms are
integers.

nmw)+nwr+..+nyoy=0 (A.18)

This relation should only be valid if all n,-terms are zero. To observe quasiperiodic behavior, none of the
frequency ratios should be integer. The FPUT phenomenon, where energy is seen to be transferred from the
fundamental mode to higher modes, before it returns to the fundamental mode essentially results from some
quasiperiodicity in the amplitude of the system. In subsequent steps, the linear values from the eigenfre-
quency analysis (Table A.2) will be employed as these are calculated accurately and the resulting dynamics
agree very well with the original experiments.
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Figure A.3: Ringdown simulations from an initial displacement of the first mode for the undamped FPUT system. The model consists of
the first six eigenmodes. The nonlinear coefficients from Table A.3 for 8 = 8Nm ™3 are used here. A.3a depicts the results for the linear
variables from the potential substitution method in Table A.1. A.3a(i) depicts the energy, A.3a(ii) depicts the amplitude. A.3b depicts the
results with linear variables that follow from an eigenfrequency analysis of the FPUT equations (Table A.2). A.3b(i) depicts the energy,
A.3b(ii) depicts the amplitude. The star indicates the first recurrence of energy at approximately 150 seconds. 99.8% of the initial energy
is recovered in this point.

A.2.5. Required coupling coefficients

The equations of motion consist of nonlinear terms, which result in energy transfer through cross-terms (i.e.
b; jr-terms where i # j and/or j # k). This energy transfer is most dominant for the cases where the internal
resonance condition is satisfied (as is shown in Section B.5). The nonlinear coupling coefficients from Table
A.4 show that the amount of nonzero cross-terms is quite large. Before determining which these terms are
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the origin of the FPUT behavior, it is important to note that the total nonlinear energy may be found by
integrating any of the six modal equations of motion, according to the following formula for the total energy:

M=

>y

b;.rk)lqjqkql dqrwheren=1,2,..,Nandr=1or2or.. or N (A.19)
j=lk=

Eror = f
0

—

1=k

~.

which is valid for any choice of the variable r, because all equations of motion basically result from the same
energy potential, which consists of all considered modes. The variable r basically sets which modal equation
of motion is integrated; it determines which column of Table A.4 is used for integration. The integration will
generate a pre-factor, which will generate certain relations between these coupling coefficients. One of these
relations is shown in Eq. A.20.

() )
Ejji= 3bm‘71 a

E(l) (l)

jjj - ]]]q] qi (A.20)

() _ (N 3 (l)
Ejji=Ejj;— 3buz‘7f‘7 b ;4

This implies that the following relation should always be valid:

0} 0}
b\ =3b). (A21)

Using a similar method, it can be proven that the following relations should also be valid:

(r) o) 0] (k)
bjkl brkl brjk_brjl (A.22)

The total energy may be considered to consist of two parts: a part that accounts for the energy that resides
in only one mode (i.e. if r = j = k = [ = 1, this term is denoted by 3 bgll)l ql) and a part that allows for energy
transfer between several modes; the coupling energy. The coupllng energy -for the first mode- may be written

as Ecoupling:

N N N
I b(l)lq] qxq | dgi where 1> 1 (A.23)

1
Ecoupling:f
0 j=lk=jl=k

—
~.

The variable / should be larger than one, such that only the nonlinear coupling energy is considered. For the
default FPUT system (where f = 8Nm™>), the coupling energy may be found at each time integration point.
Plotting all three quantities over time, which are (1) the linear energy per mode Ej;,. ,, = %mé]n + %k(”) qfl, 2)
the total single mode energy (Ezor.n = 3mdn + 3k g%, + 1b,q%) and (3) the coupling energy (Eq. A.23),
will generate the following plots:
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Figure A.4: Several plots of quantities over time. (a) depicts the linear energy, (b) shows the total single-mode energy, (c) depicts the
coupling energy, (d) depicts the modal amplitudes and (e) depicts the modal velocity.

Fig. A.4 reveals several interesting topics:
¢ Only the uneven modes are excited: the even modes appear to remain zero during the entire simulation.

* The linear modal energy and the single mode energy (which also accounts for the nonlinear energy
fraction) do not differ much: their difference is hardly visible in these plots. This could be due to the
small magnitudes of the nonlinear coefficients, as well as amplitudes that remain smaller than one,
resulting in small nonlinear energy fractions;

* The coupling energy follows an expected trend: this quantity increases as the first mode’s energy de-
creases, indicating that energy flows from the first mode to the higher modes. On the contrary, once the
first mode’s energy increases, the coupling energy decreases. The trend of the maxima of the coupling
energy is likely to show the total coupling energy, where the lower peaks (e.g. the one between 0 and
50s) could indicate that energy flows to the third mode. These trends are accompanied by the local
increase of the amplitude of the third mode (and similarly for the fifth mode). This observation is in
agreement with Eq. A.23: the coupling energy may only increase as the amplitude of the higher modes
increase.

e The amplitude plot indicates that the amplitudes are modulated (generating beatings). As was men-
tioned before, this energy dominance of a higher mode does not necessarily imply that the modal am-
plitude of the corresponding mode dominates. FPUT behavior may hence be present in structures for
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which these beatings are visible in the amplitude signal. The modal velocity does show this dominance:
the FPUT behavior may thus be predicted for systems that show beatings in both the modal amplitudes
and modal velocities.

The coupling energy (as mentioned before) is dependent on the amplitudes of at least two modes. To deter-
mine which terms are required to see FPUT behavior, the coupling energy should be analyzed. Keeping only
the nonzero coupling terms (from Table A.3) results in Eq. A.24.

Loy s 1oy 20 1.0 » 1wy 20,1 ) 2
Ecoupling.1 = §b§1)3071 qs + §b§2)2q1 q; + Ebiz)ﬂl q2qs + §b§3)3q1 qs + §b§3)5q1 qsqs+

1 a 1 a 1 a 1 a 1 1 1 1
5b§4)4 aiq; + EbLﬁG 4% qaqe + §b§5)5 a2 q: + Ebig)e a2 qi + b8 a1 a2 qs + b a1 a5 gs + bY, 41 42 G5 Ga + By q1 G2 G5 G+

b&)s 19249445 + b§15)6 q192959s + b%)s q145qs + béffﬁ 41939496
(A.24)

For this problem, where the even modes always have zero amplitude (Fig. A.4), there is no coupling energy
generated by any term that dependent on the amplitude of an even mode, since ¢g,(t) = 0, g4(¢) = 0 and
qes(t) =0 for t = 0, Eq. A.24 may thus be simplified to Eq. A.25.

L a L 22, 1.0 » L w 22,0 2
Ecoupling.1 = gbifg le qs + §b§3’3 q7qs + Ebgf’ q7939s + 51755)5 q1qs + bég)s 419595 (A.25)

This shows that there are only five terms which are responsible for this coupling energy. Of course, the nonlin-
ear parameter of a single mode (for cubic nonlinearity, this is the Duffing term), also excites the other modes’
harmonics, as is shown in Section B.5. However, the energy that is associated to this Duffing behavior has no

dependency on the amplitudes of the other modes. Hence, should these terms (the bﬁg-, b%)s—, bil3)5-, b%)s-

and the béls)s-terms) not be present, it is likely that this FPUT phenomenon cannot be observed. It is however
important to note that this simplification (from Eq. A.24 to Eq. A.25) is only valid in the regimes where these
even modes are not excited. Any other initial condition, where one of these even modes does have nonzero
initial amplitude, most likely results in different dynamics, as the even modes will most likely also receive
energy.

The required coupling terms (from Table A.3) may be determined by checking which coefficients generate a
nonzero force from the nonzero coupling coefficients multiplied by the nonzero modal amplitudes (in this
case, this is g; (1), g3 () and g5(?), as was shown in Fig. A.4). This results Equations A.26, A.27 and A.28 for the
first, third and fifth equation of motion, respectively.

g1+ kV g+ b g3 + DD g g3 + b, q193 + b q1g3q5 + b q192 + b g5 G5 = 0 (A.26)
G3+ kS g3 + b, a3 + b5t a3 + D54 s + bs a1 43 G5 + D5 + b ds g =0 (A27)
dis + k5 + by 7 ds + b5 q1 ds + b3 013 + b 43 ds + b3 = 0 (A.28)

The nonlinear parts of the equations consist of Duffing parameters (bill)l, bg’) and béss)s), coupling parameters

which were be found using Equations A.21, A.22 and A.25, and coupling coefficients between the third and
fifth modes (bg?5 and béss)s, which are only present in the equations of motion for the third and fifth modes).
Table A.5 shows (in the highlighted terms) which coefficients are thus required to see this FPUT behavior.
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Table A.5: Modal coupling coefficients for the first 6 modes of the N = 16 FPUT f-model, normalized with respect to bill)l' The
coefficients that generate a nonzero force for the amplitude condition ¢ (£) #0, g2 (¢) =0, g3(¢) #0,qa(t) =0, g5(¢) #0 and ge(t) =0 are

highlighted here. The coefficients that are highlighted in yellow are the Duffing terms, the terms which are highlighted in - are
the coupling terms.

Eq. (1) (2) (3) (4) (5) (6)
5111 1 0 - 0 0 0
bi12 0 7.93 0 7.80 0 0
b | [BSH o [ o 0
br1a 0 7.80 0 30.66 0 22.34
bi1g 0 0 0 22.34 0 65.10
bioo 7.93 0 11.76 0 19.83 0
b3 0 23.53 0 46.25 0 67.40
b12a 15.59 0 46.25 0 77.99 0
bios 0 39.67 0 77.99 0 113.65
b12g 0 0 67.40 0 113.65 0
biss | (W88 o 0 o [@s o
b13a 0 46.25 0 0 0 132.50
bi3g 0 67.40 0 132.50 0 0
brag 30.67 0 0 0 0 0
biss 0 77.99 0 0 0 0
b1ss 44.68 0 132.50 0 0 0
biss | 5002 0 0 0 0 0
b1s6 0 113.65 0 0 0 0
bi66 65.10 0 0 0 0 0
Dbooo 0 15.73 0 0 0 15.02
boo3 11.76 0 69.78 0 0 0
Doy 0 0 0 121.58 0 0
bos 19.83 0 0 0 198.39 0
bog 0 45.06 0 0 0 258.20
b33 0 69.78 0 68.59 0 0
bo3a 46.25 0 137.8 0 231.31 0
bo3s 0 0 0 231.31 0 337.08
ba3e 67.40 0 0 0 337.08 0
boga 0 121.58 0 0 0 174.16
bogs 77.99 0 231.31 0 0 0
bosg 0 0 0 348.32 0 0
Dboss 0 198.39 0 0 0 0
bosg 113.65 0 337.08 0 0 0
boge 0 258.20 0 0 0 0
b333 0 0 77.38 0 0 0
D334 0 68.59 0 269.68 0 0
b33 0 0 0 0 0 572.71
m 0 0 269.68 0 227.37 0
b3as 0 231.31 0 454.73 0 662.68
b3ag 132.50 0 0 0 662.68 0
Bsss 0 0 (440,05 0 0 0
b3se 0 337.08 0 662.68 0 0
b3ge 0 0 572.71 0 0 0
Daga 0 0 0 234.95 0 0
baas 0 0 227.37 0 766.78 0
baasg 0 174.16 0 0 0 997.93
byss 0 0 0 766.78 0 558.71
Dbys6 0 0 662.68 0 1117.41 0
bage 0 0 0 997.93 0 0
bss5 0 0 0 0 625.60 0
bss6 0 0 0 558.71 0 1628.39
bse6 0 0 0 0 1628.39 0
Dbese 0 0 0 0 0 1059.64

To verify that these terms generate this behavior, the green highlighted terms are set to zero, and another
ringdown simulation is run. This results in Fig. A.5.
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Figure A.5: Simulated ringdown for the first 6 modes of the FPUT f-problem. The initial condition is an initial amplitude of the first
mode. §=8Nm™3 and all green variables in Table A.5 are zero.

This clearly shows that all energy remains in the first mode. The energy of the higher modes does not increase,
indicating that the energy is not transferred. It may hence be concluded that the green highlighted terms in
Table A.5 and/or the coupling terms from Eq.’s A.26, A.27 and A.28 are required to see this FPUT behavior.

Effect of initial conditions
Tuck and Menzel stated that this behavior was sensitive of the initial force ratio, which was (in terms of spatial
coordinates) given by Eq. A.4 [34]. Its modal equivalent may be written as:
1 3 1)
_Fnp_binagy by o, A.29
MNLvsL = ===~y =~y doa (A4.29)
L k 1 doa k 1

Substitution of these variables from Table A.1 combined with g ; = ai’fi]‘T = 2.93 m gives a initial force ratio
that equals 0.21. This implies that for the default problem, this modal initial nonlinear force equals 21% of
the initial linear force.

For the initial condition where only the first mode is excited, this will only generate nonzero forces for the
terms which are only dependent on the amplitude of the first mode. Plugging the initial condition g; = go.1,
gs =0 and g5 = 0 into the equations A.26, A.27 and A.28 gives:

i1+ Ky goa + by, g, =0 (A.30)
G3+ b} 40, =0 (A31)
Gs =0. (A.32)

These equations show that the first equation of motion is excited through the linear stiffness (k;”) and the
Duffing term (bﬁ)l). The fifth mode’s equation of motion remains zero. However, for the third equation of
motion, there is a term that is excited as well: the term that scales with bﬁ)l. This generates an excitation of
the third mode, through an initial excitation of the first mode. This could be the term that is responsible for
the initial energy transfer from the first mode to the third mode. Again, to verify that this term is responsible
for the initial energy transfer, the simulation may be run once more, though this time with bﬁ)l, (and thus
bill)g) equal to zero. The results are depicted in Fig. A.6. This shows that no energy is transferred to the other
modes. This bﬁ)l-term (referred to as the back-coupling term) may thus be seen as the "catalyst”-term: the
term that initiates excitation of another mode under pure excitation of a single mode, as is verified by Sholl
[33].

The origin of the bﬁ)l-term may be traced by checking the potential that is associated to a prescribed dis-
placement that is a function of both the first and third mode. This procedure is shown for two analytical
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Figure A.6: Simulated ringdown for the first 6 modes of the FPUT B-problem. The initial condition is an initial amplitude of the first

- (3) _ 1 _
mode. f=8and b7, =0and by ;5 =0.

string models in Section B.7; for the FPUT model, this is basically identical to the w-displacement string
model.

A.2.6. Conclusions
From this study on the default FPUT f-model, the following conclusions may be drawn:

FPUT behavior may become visible through energy transfer from the initially excited mode to other
modes and subsequent recurrence of energy to the initially excited mode. To generate this in- and de-
crease in the energy, local modulations of the modal amplitudes (beatings) are required. However,
though beatings in the amplitude signal of a mode could mean that energy is transferred to other
modes, it is not sufficient to only check amplitude versus time plots to determine whether a system
shows FPUT behavior. To verify whether a system shows FPUT recurrence, one should check both the
modal amplitude versus time plots, the modal velocity versus time plots and preferably the energy ver-
sus time plots.

The conversion from physical to modal parameters is done with sufficient accuracy: the converted
variables generate FPUT behavior. However, the linear frequencies from this conversion do not equal
those of a linear eigenfrequency analysis of the equations of motion in terms of the physical coordi-
nates. Therefore, in this section, the frequency ratio from this eigenfrequency analysis (Table A.2) was
used in combination with the found nonlinear modal coefficients in Table A.3.

In addition to the previous point one may conclude that to generate FPUT behavior, one should have
linear frequency ratios which are non-integer and slightly lower than the nearest internal resonance
condition.

The modal coupling coefficients seem to show a relation to these frequency ratios. Note that this is not
related to the (integer) mode number.

For the studied nonlinearity (8 = 8Nm~3) and magnitude of the initial conditions, it is sufficient to only
account for the linear fraction of the total energy, as the nonlinear energy remains fairly small (Fig.
A.4(a) vs. Fig. A.4(b)).

Though it was shown that the nonlinear energy remains small, this nonlinear energy is responsible for
the energy transfer, as was shown in Fig. A.4(c). The coupling energy follows an expected trend: it
increases as energy is transferred from the first mode to others, and it decreases for cases where energy
is transferred from the higher modes to the first mode.

To see FPUT-behavior, a coupling between the uneven modes is required. This coupling may be es-
tablished through nonzero modal coupling terms, which couple the amplitudes of several (in this case,
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uneven) modes of vibration. Eq.s A.26, A.27 and A.28 display the required nonzero coefficients. It

was shown that without these coefficients, especially the bﬁ)l-term (the back-coupling term) there

would not be any energy transfer. This bﬁ)l -term may be seen as the "catalyst”-term, which produces
a nonzero force in the equation of motion of the third mode, under excitation of only mode 1. Hence,

to see FPUT behavior, these terms should be nonzero.

¢ The study in this section shows FPUT behavior under exactly the same conditions as the original exper-
iment [11]: the initial conditions, damping, linear stiffness and nonlinear stiffness were all identical. To
see whether this behavior may be visible for different conditions, another study should be conducted.
This will be done in the next section.

A.3. Limiting conditions of the FPUT [-problem

The previous section comprised a study of the default FPUT problem, using initial conditions and linear ver-
sus nonlinear relations which were in agreement with the original experiment. This study showed -among
many others- that the linear frequency ratios should not be integer, as well as the necessity for certain modal
coupling coefficients to be nonzero. This section will explore the limits of this behavior: this will generate
insight into which conditions should be met in order to see the desired behavior. These conditions aim to an-
swer the following questions, regarding what damping, linear strength, nonlinear strength or initial condition
should be present to see FPUT-like behavior:

1. What quality-factor (Q) is needed?

2. What linear frequency ratio is required?

3. What ratio of linear to nonlinear stiffness is required?

4. What initial ratio of the nonlinear versus linear force is required?

The first question accounts for damping, which is not present in the original FPUT experiment. Should a
mechanical system allow for the required energy transfer, then the damping should be small enough to be
able to observe this exchange [21]. This question is answered independently of the three other questions,
as this has no direct relation to the others: a change in the magnitude of damping does not immediately
generate large difference in the linear, nonlinear and initial condition of the system. The second question
is formulated such that the required linear frequency ratios may be determined. The third question aims to
quantify the required strength of nonlinearity. Finally, the last question generates insight into what the initial
force ratio (nonlinear versus linear) should be. Tuck and Menzel claimed that this ratio should not exceed
10% for the default FPUT problem [34]. The previous section has shown that in terms of modal coordinates,
this is more: about 20%. Since the present study goes beyond this default problem (in different regimes of
nonlinearity), this condition may no be valid. The latter three questions are all related to one another, as e.g.
any change in the linear stiffness will impact the initial force ratio (Eq. A.29) as well.

A.3.1. The influence of linear damping on FPUT mechanics

This paragraph will aim to answer the question which quality factor is required to see FPUT-like behavior.
This may be done quite easily by adding a modal damping coefficient to the default FPUT f-problem. The
present analysis will assume linear damping, which is expressed in terms of the Q-factor of the first mode,
where the Q-factors of the higher modes are assumed to scale with the inverse of the mode number (Q,, = %),
this appears to be approximately valid for strings, as is shown in Section B.4. By setting the quality factor of
the first mode (Q,), the modal damping may thus be tuned. The equations of motion (from Eq. D.16) become,
with inclusion of this additional damping factor and exclusion of the quadratic coupling coefficients:

.. ) Wy . N N N r
Gr + ky qr+EQr+Z’1kZ.lebjqujqkql=0, r=1.2,..,N. (A.33)
]: :] =

Where kﬁr ) = w? and again, the first six modes are considered: N = 6. These equations are solved using the
linear stiffness parameters from Table A.2, in combination with the nonlinear variables from Table A.3 for
B =8Nm~3. The quality factor is swept for 20 logarithmically spaced variables between 500 and 1 million.
This produces the energy evolution over time that is depicted in Fig. A.7. Evidently, the recurrent behavior is
still visible, though is is suppressed heavily for quality factors below 1000. From Q-factors of 8230 and higher,
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(a) Modal energy versus time for the first six modes of the FPUT f-model with § = 8Nm~3 and initial excitation of the first mode. These plots were generated
for simulations with 20 logarithmically spaced Q-factors between 500 and 1 million.
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Figure A.7: Modal energy versus Q-factor plots. A.7a depicts the versus time for the first six modes of the FPUT -model for § = 8 and
initial excitation of only the first mode. These plots were generated for simulations with 20 logarithmically spaced Q-factors between
500 and 1 million. A.7b depicts the fraction of energy returning to the initially excited mode.

more than 95% of the initial energy returns to the first mode. For quality factors of approximately 135,000,
this has increased to nearly 99.5%, which shows that for Q-factors higher than approximately 100,000, the
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Figure A.8: Simulations of the damped default FPUT problem for a first mode Q-factor of 100,000. In 1.8a Q3 = 1000 and Qs = 200. In
A.8b Q3 = 100 and Qs = 20.

effect of damping on this default FPUT problem (where N = 16 and 8 = 8Nm~3) may be assumed to be very
small. Note that this is observed for Q-factors of the higher modes that scale with the inverse of the mode
number. For lower Q-factors of the higher modes, part of the transferred energy will dissipate to the environ-
mental bath. This dissipation will influence the recurrent peak of the first mode, as the total energy dissipates
quickly for these cases. Fig. A.8 depicts two iterations, where the Q-factors of modes 3 and 5 have deteri-
orated significantly. Figures A.8(a) and A.8(b) show that less energy is present in the first recurrence peaks,
indicating that part of the energy that is distributed among these higher modes is dissipated sooner than that
it is returned to the first mode. Fig. shows that for Q3 = 1000 and Qs = 200, a large amount of energy returns
to the initial condition, indicating that recurrence is still present. Now, if one were to manufacture a SigNy
string-like resonator, it is very likely that a Q of 100,000 can be achieved in high vacuum. In the subsequent
iterations in this section, the effect of damping is however not neglected. Rather, the fundamental Q-factor is
set to 100,000, and the Q-factors of the higher modes are assumed with the inverse of the mode number.

A.3.2. Linear frequency ratios

The second question that was set-up in the beginning of this section considered the required frequency ra-
tio to observe FPUT behavior. Table A.2 and Fig. A.3 have previously shown that the FPUT behavior for the
default FPUT system is most significant for non-integer frequency ratios near the internal resonance condi-
tion. Although it may be clear that these linear frequency ratios should be non-integer, it is not clear by how
much. This may be checked by manually varying the linear stiffness. Nine options for these stiffness ratios
will be analyzed in this section. These nine values are expressed in terms of the percentage of the default
FPUT problem parameters. This percentage ranges between 90% and 110%. The higher modes (modes 2, 3,
4, 5 and 6) are multiplied by this percentage only, to check the influence with respect to the first mode. The
following procedure shows how these linear stiffness values are swept:

1. The non-dimensional linear stiffness parameters of the default FPUT system are (from Table A.2):

k =1[1.00, 3.97, 8.80, 15.33, 23.34, 32.55]. (A.34)

2. The higher modes (2, 3, 4, 5 and 6) are multiplied by the sweep percentage p, using the following for-

mula:
k, =[1.00, 3.97p, 8.80p, 15.33p, 23.34p, 32.55p]. (A.35)
3. For example, for a percentage of p = 90%, the linear parameters will become:
k, = [1.00, 3.57, 7.92, 13.80, 21.00, 29.30]. (A.36)

4. The linear frequency ratios for p = 90% are thus given by:
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W= l~cp =[1.00, 1.89, 2.81, 3.71, 4.58, 5.41]. (A.37)

A.3.3. Nonlinear versus linear stiffness ratio
(1)
The third question, concerning the ratio of nonlinear over linear stiffness, %, may determine the regime for
1
which FPUT behavior may be observed. The linear and nonlinear modal variables for the default FPUT prob-
lem are listed in Table A.1. The parameter sweep that is conducted in this paragraph uses various variables of
B, since the linear stiffness is swept already for the method that is shown in the previous paragraph. In this
analysis, this B-variable is chosen to be in the same order of magnitude of the original variable (8 = 8Nm™3);
the variable range consists of six linearly spaced values between 0 and 20Nm 3.

A.3.4. Initial ratio of nonlinear versus linear force

The final question treats the ratio of nonlinear versus linear force. This ratio could determine what effect
the initial condition may have on the resulting dynamics. This analysis is conducted on the initial force ra-
tio generated by the first mode, it is expressed by Eq. A.29. This equation shows the dependency on three
variables: the nonlinear stiffness bill)l, the linear stiffness kil) and the initial amplitude ¢q,,,. The previous
two paragraphs have already set values for the first two, leaving only one "free” variable: the initial modal
amplitude q,,, (= @arpyTqo.1). This variable is swept for several values ranging between 0.1 and 3.25m, where
for small values (0.1m), the initial nonlinearity is suppressed due to the quadratic dependency in Eq. A.29:
IN12L(Gu,, = 0.1m) < 1. On the contrary, for initial amplitudes larger than unity, the initial ratio is already
strongly nonlinear: ryz2r(qu,, = 3.25m) > 1.

A.3.5. Three conditions to determine the sensitivity of the FPUT -problem

The previous paragraphs have shown that four questions may be set up to define the sensitivity of the FPUT
behavior to certain conditions for damping, linear stiffness, nonlinear stiffness and initial conditions. This
paragraph will show several results from this sensitivity study. The study consists of three free parameters: (1)
the linear frequency ratio, (2) the strength of the nonlinearity and (3) the magnitude of the initial conditions.
The range of the swept variables are:

p =190%,92.5%,95%,97.5%, 100%, 102.5%, 105%, 107.5% and 110%] (A.38)

for the linear stiffness, where the higher modes’ stiffness is multiplied with this variable, according to Eq.
A.35. The nonlinear stiffness is swept for 6 variables between 0 and 20Nm3:

$=0,4,8,12,16 and 20Nm 3, (A.39)
The last variable, the initial condition g, , (= arpyTqo.1) is swept for 8 variables between 0.1 and 3.25m:
Guy, =0.1,0.55,1.00,1.45,1.90,2.35,2.80 and 3.25m. (A.40)

These parameters are swept for 9, 6 and 8 magnitudes, for the linear stiffness ratio, nonlinear strength and
the initial conditions, respectively. In total, there are 9 x 6 x 8 = 432 combinations possible. The default FPUT
problem is considered here as well: this is the combination where p = 100%, f = 8Nm™ and q,,, = 1.00m.
During these sweeps, several quantities are monitored: the linear energy, the modal amplitude, the recur-
rence fraction in terms of the initial energy and the energy dominance of the third and fifth mode. The latter
quantity is calculated as the maximum difference between the energy of the first mode (E;) and the third (E3)
or fifth mode (E5), with respect to the initial energy Ej (at t = 0):

En(t)— Ey(t
Egomn(t) = max(%), Vit and n=3, 5. (A.41)
0

The sweep results are depicted for constant initial conditions, because this allows for proper comparison of
the behavior for different conditions over the simulated time. Fig. A.9 depicts the energy and amplitude
versus time plots for a sweep for g,,, = 1.00m and the values from Equations A.38 and A.39.
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(b) Energy versus time plots for sweeps for linear frequency ratios and nonlinear stiffness and a constant initial condition gg ; = Im.

Figure A.9: A.9a (A.9b) depict the energy versus time (amplitude versus time) plots for various combinations of linear and nonlinear
stiffness. The first mode is indicated by blue lines, the third mode is indicated by yellow lines and the fifth mode is indicated by the
green lines. The rows show (from top to bottom) an increasing percentage for the linear stiffness: [90%, 92.5%, 95%, 97.5%, 100%,
102.5%, 105%, 107.5% and 110%]. The columns depict (from left to right) the sweep for g, for f=0,4,8,12,16 and 20 Nm_s, which
generate an initial nonlinear force ratio of 0,10,21,31,41,51%. The red rectangle annotates the default FPUT problem, for p=100% and
B= 8Nm™3. The stars in the plots indicate the recurrence of energy of the first mode, after another mode has been dominant over the

first mode.

This figure shows several interesting things:
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* As expected, the energy transfer is zero for zero nonlinear stiffness (8 = 0Nm~3). The amplitude of the
first mode remains constant.

¢ For low nonlinear stiffness (e.g. for § = 4Nm~3, the second column) there is some energy transfer, but
the energy of the third mode dominates the energy of the first mode for only one combination: the case
where p = 100%.

« For a nonlinear stiffness that is equal to the default FPUT variable, 8 = 8Nm™ (an initial force ratio of
21%), the energy transfer is stronger than for the case where = 4Nm™3 (initial force ratio of 10%). The
recurrent behavior is only visible for the linear frequency ratios which are equal to the default FPUT
system. Hence, this behavior (as was also shown in Fig. A.3a) appears to be quite sensitive to variations
in the linear frequency ratios. The increase in energy of the higher modes is accompanied by an increase
in the amplitude of these modes.

¢ The last three columns (for initial force ratios larger than 31%) show that the dynamics become more
complicated for stronger nonlinearity, as there is more energy exchange visible. Clear modulations in
amplitude are visible for all modes.

¢ The bottom two rows, for values of p equalling 107.5 and 110%, the energy exchange is present, though
the E, is never dominated by E3 nor Es. The increasing nonlinearity does show that the energy transfer
(and the amplitude of the higher modes) increase accordingly.

¢ The upper right plots show that there is quite some energy exchange visible, both in energy and ampli-
tude. A trend is visible if one were to draw a (diagonal) line from the default FPUT problem to the up-
per right-hand corner of the figure. Along this line, the nonlinearity is increased as one moves towards
the right, and the frequency ratio is decreased further as one moves upwards. This implies that for de-
creasing linear stiffness ratios and increasing nonlinear stiffness, the behavior remains -approximately-
similar to the default problem. The decrease in the linear stiffness ratios may be thus be compensated
by increasing the nonlinear stiffness, which in turn increases (hardens) the effective frequency of the
modes, similar to the Duffing behavior from Section B.3.2.

» During this increase in nonlinearity, the recurrence time appears to decrease, showing that for systems
with stronger nonlinearity, this behavior may occur on a smaller time scale.

Before expanding to various other initial conditions, it is important to compare the abovementioned obser-
vations with literature.

A.3.6. Literature

Nelson et. al recently presented a study that shows what the influence of tolerances to the nonlinear stiffness
is [26]. They conducted numerical simulations of the FPUT a-model, where they placed tolerances (¢;) on
the linear and/or nonlinear stiffness of Eq. A.42:

Xi = b1 Xie1 + L1 Xiog = 28X + @(te1 Xie1 + 8% = (1 + i1 xXi-1)). (A.42)

These tolerances were considered to cover the manufacturing tolerances which are commonly present in pas-
sive electronics; their magnitudes are claimed to vary between +0.1% and +10% of the considered strength.
Their study covered three topics: (1) the effects of tolerances on the linear, nonlinear, or both terms; (2) the
effects of tolerances on the number of elements (N) in the model, and (3) the effects of asymmetry in the
coupling coefficients, where ¢; # t;_; # t;+1. The study that is conducted in this report is primarily focused on
Nelson’s first topic, but the others may also be quite relevant during further design stages. Nelson’s research
showed that the effects of adding such tolerances to either the linear, nonlinear or both linear and nonlinear
terms may quickly reduce the recurrent behavior of the system.
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Figure A.10: From Nelson et. al, [26]. The effect of tolerance on different parts of a 1D FPUT-« array with a coupling coefficient of a =
0.25 and N = 64 oscillators. Panels (a)-(c) show examples with tolerance in both the linear and nonlinear terms, panels (d)—(f) show
examples with tolerance in only the linear terms, and panels (g)—-(i) show examples with tolerance in only the nonlinear terms. Observe
that adding tolerance to only the linear terms has a comparable effect on recurrence to adding tolerance to only the nonlinear terms.
Tolerance in both linear and nonlinear terms: (a) +1%, (b) +5%, and (c) +10%. Tolerance in the linear terms: (d) +1%, (e) +5%, and (e)
+10%. Tolerance in the nonlinear terms: (g) +1%, (h) +5%, and (i) £10%.

Figures A.10(a)-(c) from Nelson [26] depict that increase of tolerances to both the linear and nonlinear stiff-
ness result in deteriorating recurrent behavior. For tolerances larger or equal to +5%, in A.10 (b-c), the recur-
rent behavior is hardly visible. Adding tolerances only to the linear (Fig. A.10(d-f)) or nonlinear terms (Fig.
A.10(g-i)) show approximately the same behavior: the energy dominance and recurrent behavior disappears
as the tolerance is increased. Comparing the case where a tolerance to only the linear fraction or nonlinear
fraction is added with the case where a tolerance is added both linear and nonlinear fractions, it is clear that
the other modes receive more energy for the case where the tolerances are added to both. Nelson subse-
quently shows that asymmetry in the tolerances of the coupling elements and a lower number of elements
may enhance the recurrent behavior as well. The latter statement may be verified using the results from the
previous subsection, where it was shown that FPUT recurrence is most likely to occur for non-integer fre-
quency ratios. Now, imagine one were to discretize a string into N elements: using a lot of elements (large
N) will approximate a string’s properties with increasing accuracy. This in turn generates frequencies that are
close to the frequencies of a string, which follow integer relations. By using less elements, these frequencies
will approximate the string frequencies with less accuracy, generating non-integer ratios, which were previ-
ously shown to generate strong recurrent behavior.

This research by Nelson shows that the recurrent behavior in the FPUT-a model is very sensitive to the applied
tolerances, and it is shown to be most significant for the cases where the tolerances are added to both the
linear and nonlinear variables. These effectively generate similar results (showing recurrent behavior) to what
was shown in the upper right corner of Fig. A.9a, where both the linear and nonlinear stiffness deviated from
the default problem. Though the dynamics of these FPUT-a and FPUT- models may appear to be similar,
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Figure A.11: Energy dominance of the third mode over the first mode, for several parameter sweeps. The results are grouped per initial
condition. Each plotted point depicts a combination of 3 parameters: the magnitude of the initial condition, the percentage of the
default linear stiffness and the magnitude of the nonlinearity. The output of each iteration -the magnitude of the energy dominance- is
plotted along the vertical axis and plotted in different colors, depending on its magnitude.

the comparison should be executed carefully, as their global dynamics are different. For instance, in the a-
model, there is a coupling between even and uneven modes, due quadratic nonlinearity.

A.3.7. Results of the sensitivity analysis

In the previous section, it was found that the quantitative dynamics of the FPUT a-model agree fairly well
with the observations that were made in Fig. A.9. However, these observations should not be considered
to be valid for the FPUT fB-model. This section will elaborate upon the results of the parameter sweeps for
linear, nonlinear stiffness and initial conditions, as were presented in Section A.3.5. The parameter sweeps
are grouped per initial condition, and the results for each parameter sweep are plotted in a 3-dimensional
scatter plot. The x-, y- and z-axes contain the linear frequency ratio (expressed in terms of a percentage p,
Eq. A.38), the magnitude of 8 (Eq. A.39) and the magnitude of the energy dominance (Eq. A.41), respectively.
The magnitude of the energy dominance will also be expressed in a color, which will show gradual effect of
the swept parameters.

The initial force ratio of each of these initial conditions depends only on the initial amplitude of the first mode
and the magnitude of S, since the first mode’s linear frequency is kept constant. The initial force ratios may
thus be calculated for each initial condition and value of 8, using Eq. A.29. Figures A.11 and A.12 depict the
results for 8 initial conditions, which are each swept for 6 values of 8. Table A.6 depicts the initial force ratios,
where each row indicates an initial condition from Figures A.11 and A.12.
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Figure A.12: Energy dominance of the fifth mode over the first mode, for several parameter sweeps. The results are grouped per initial

condition. Each plotted point depicts a combination of 3 parameters: the magnitude of the initial condition, the percentage of the

default linear stiffness and the magnitude of the nonlinearity. The output of each iteration -the magnitude of the energy dominance- is

plotted along the vertical axis and plotted in different colors, depending on its magnitude.
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Table A.6: Initial nonlinear force ratios (Eq. A.29). Rows indicate the initial force percentages for all subplots in Figures A.11 and A.12,
for the nonlinearities in each column.

BINm ™3]

Quo,!m | 0 4 8 12 16 20
0.10 0 0 0 0 0 1

0.55 0 3 6 9 12 16
1.00 0 10 21 31 41 51

1.45 0 22 43 65 87 108
1.90 0 37 74 111 149 186
2.35 0 57 114 170 227 284
2.80 0 81 161 242 323 403
3.25 0 109 217 326 435 543

The results for the third and fifth mode in Figures A.11(a-b) and A.12(a-b) show that for small initial condi-
tions, where g,,, < 1m (Fnr2r < 16%), the dominance of the modal energy is small: there is little significant
energy transfer for the case where g,,, = 0.1m, since the dominance remains well below 0. The case where
quy, = 0.550m indicates that the energy transfer is more significant. For the case where the linear frequen-
cies equal 100% of the FPUT variables, there is energy dominance, which increases as the nonlinear strength
increases. For Figures A.11(c) and A.12(c), where gy = 1m, there is significant energy transfer, which follows
the trend which was already observed in Fig. A.9a: for a smaller value of p and increased nonlinearity, the
energy transfer seems to increase in magnitude. Interestingly, for the cases where the linear frequencies have
shifted to a higher frequency (p > 100%), this energy dominance magnitude decreases, for both the third and
fifth modes. Figures A.11(d-e) and A.12(d-e) show that as the magnitude of the initial condition increases
(to qu,, = 1.45m or q,,, = 1.8m), where the initial nonlinear force ratio exceeds 37%, the energy dominance
seems to be destroyed for increased nonlinearity and shifted frequencies. However, the cases where the lin-
ear stiffness is increased, we start to see more significant energy transfer. This effect is also present in the
remaining Figures Fig. A.11(f-h) and A.12(f-h), though it is less significant: the energy transfer first increases
before it drops for = 8Nm™~3, and increases again for higher nonlinearity. The latter plots, Fig. A.11(h) and
A.12(h), show that the energy transfer mostly increases for all considered conditions. Generally, large initial
force ratios (exceeding 100%, for higher nonlinearities and larger magnitudes of the initial condition) increase
energy transfer. For higher initial amplitudes and increased magnitudes of nonlinearities, the energy domi-
nance increases beyond the point where E;,5,.,(#) > 1 (Eq.A.41), implying that there is more energy located
in the studied mode, than there was initially present in the first mode. The reason for this could be that the
initial energy is defined as the initial linear energy. For higher nonlinearity and increasing magnitudes of the
initial conditions, this linear approximation of the energy will no longer be valid, implying that the fraction of
nonlinear energy will become larger and no longer negligible. Nonetheless, this analysis has shown that it is
possible to see FPUT behavior for stronger nonlinearities (and magnitudes of the initial conditions), as long
as the initial force ratios remain larger than 21%, which was found for the default FPUT model.

A.3.8. Conclusion

In summary, from this sensitivity study on the default FPUT system, it may be concluded that FPUT behavior
is not confined to the default FPUT problem only, where k = INm™! and f = 8Nm™. In this section, the the
influence of a linear damping factor on the default FPUT system (where N = 16 and 8 = 8Nm~%) was inves-
tigated first. This showed that the behavior is still visible for relatively low Q-factors, where roughly 80% of
the initial energy returned to the initial condition for Q-factors of the first mode of around 1,000 (and higher
mode Q-factors were here assumed to scale with the inverse of the mode number). For first mode’s Q-factors
that exceed this 100,000, it could be observed that less than 1% of the initial energy was lost in single recur-
rence period. For lower Q-factors of the higher modes, part of the energy that is distributed to these modes
will dissipate sooner than it can be transferred back to the first mode, which reduces the recurrent peak.

The observations that were made here are in line with the study on the @-model from Nelson [26], who re-
ported that by increasing the tolerances of both the linear and nonlinear stiffness terms of the a-model, one
will more or less conserve the FPUT mechanics. Where Nelson included maximum tolerances of 10%, the
present research does not include tolerances, but it varies the magnitude of the nonlinear stiffness in larger
steps than this 10%. The present research shows that for a weakly damped S-model, which includes a cubic
(Duffing) nonlinearity, one may compensate the decrease of the linear frequencies by increasing the non-
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linear stiffness. This model is weakly damped, the first mode’s Q = 100,000 and higher modes are assume to
scale with this Q and the inverse of the mode number. In addition, contrary to what Nelson reported, it can be
concluded that the FPUT mechanics in these regimes for high nonlinearity are less sensitive to the changes
of these nonlinearities. Fig. A.9a indicates that for example that two of the requirements for FPUT behavior
(energy dominance of another mode over the initially excited mode, followed by recurrence of the initial con-
dition) may be observed for higher magnitudes of nonlinearity. However, increasing the nonlinear magnitude
of the system will also increase the nonlinear energy, which therefore should be taken into account as well,
especially for large amplitudes of vibration.






String vibrations

This chapter elaborates upon string vibrations. First, two analytical models are presented which are sub-
sequently compared to a numerical model. Finally, experimentally obtained frequency responses of string
resonators will be simulated using these analytical models.

B.1. Analytical string models

This section will show in what form nonlinearities appear in the equations of motion of a continuous string
resonator. Many theoretical studies investigate the nonlinearities in strings. The analysis that is presented
here is a combination of research by Anand, Zhao and Nayfeh (2, 38, 25]. Zhao derives the equations of mo-
tion from Hamiltons priciple, but Nayfeh and Anand follow a more direct approach using force equilibrium.
Eventually, both methods will generate the same equations of motion.

These string resonators may be modelled by the following system, a simply supported string of length L. The
string is made of a material with density p and Young’s modulus E. The string is under a pre-load in the
longitudinal direction with magnitude Ty, which is distributed over a cross-sectional area A, resulting in a

T
pre-stress of oo = .

Figure B.1: Simply supported string of length L. Shown is an infinitesimal element with length dx. The initial configuration of the string
is shown in black; the large deformation case is shown in red. The string is pre-loaded in the x-direction with load Tp.

49
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Now, as can be seen in Fig. B.1, the string consists of a infinitesimal element which has length dx in the
initial (black) configuration. The deformed configuration (in red) shows that the element is displaced in the
vertical direction. The two points that initially were at locations x; = [x1, y1, z1] and X = [x2 = X1 +d X, ¥2, 22]
have displaced to x| =[x}, ¥}, z}] and x, = [x}, )}, z,] respectively. The longitudinal displacement (in the
x-direction) is denoted by u, the transverse displacement (the y-direction) is denoted by v and the vertical
displacement (in the z-direction) is denoted by w. The following equations show how these displacements
are formulated:

Xj—x1=u
r_
n=v
r_
2 =w

/ (B.1)
Xy—(x1+dx)=u+du

Va=Yyi+dv=v+dv
zZy=zy+dw=w+dw.

Pythagoras’ theorem is can be used to determine the length of the stretched element ds:

2 2 2
ds:\/(xg—xi)2+(y§—yi)2+(zé—zi)z:\/(dx+du)2+dv2+dw2):dx\/(1+@) +(dv) +(dw)'

dx dx] " \dx
(B.2)
The derivatives with respect to x may be written as % = Uy, % =v,and ‘Zi—'jc’ = Wy
du\®> (dv\®> (dw)?
d“””‘ﬂ“a) oG] + () man/aruorteuz B3

The analytical models in this chapter are based on the assumption that the bending motion of the string
may be neglected, as the area moment of inertia is very small for small string thickness. This area moment of
inertia scales with the string thickness to the power three (for a rectangular cross-section, the area moment of
inertia equals ﬁ bh®, where b and h are the width and thickness, respectively). For the small thicknesses that
are considered here, this will result in a magnitude that is considered to be small with respect to the energy
that is associated to the axial deformation of the resonator. This latter quantity is large due to the significant
pre-stress of the resonator.

Anand’s method is based on the assumption that though the displacements will be relatively large, they will
still be small enough for Hooke’s law to be valid [2]. This assumption allows one to also assume that the
derivatives of the displacement (u,, vy and wy) are very small compared to unity. Assuming that v > u
and w > u (small longitudinal displacement w.r.t. the transverse or vertical displacements) allows us to get
rid of u-terms that scale with higher orders than 2 and to get rid of terms that scale with the cube of the
displacement in the transverse and vertical directions: v and w respectively.

Approximating ds by Taylor expanding u, up to second order gives:

u
ds= |\ 2+ w2+1+ —————+0u?) | dx. (B.4)
\/v§+w)2€+1

Subsequently Taylor expanding v, and wy up to the power three, will then give, after some algebra:

1 1
ds= 1+ux+5v)2€+—w§ dx. (B.5)

2

The axial tension force that is present the string results from two parts, (1) the pretension force -denoted by
Ty- and (2) the stretching force of the element from length ds to dx -denoted by EA%, where E is the
Young’s modulus of the string material and A is the cross-sectional area of the string. This can be given by the
following formula for the tension at location x and time ¢:

ds—dx

1, 1
T(x,t)=To+EA =To+EA(uy+ zquJrgwfc). (B.6)



B.1. Analytical string models 51

The tension due to the stretching in the longitudinal direction is given by the ratio of the longitudinal stretch-
ing over the total stretched length ds:

1+ uy)dx

Tx(x, ) =T(x,0) (B.7)
ds
And similarly for the tension in the transverse (Eq. B.8) and vertical (Eq. B.9) directions.
T, (6, 1) = T(x, 2% (B.8)
y ’ - ’ ds .
wydx
TZ (xr t) = T(xr t) (B.9)
ds
Where the fraction % is given by:
dx_l " 11/2 lw2 (B.10)
ds " 2% 2°© :

Force equilibrium in all directions will give us three expressions: one for the each of the three displacement
directions. The linear mass density of the element is given by m and it is equal to the product of the density
and the cross-sectional area: m = pA. The force that results from a change in displacement should thus be
equal to the inertia terms in these directions.

ds| o 1, 1, 1, 1,
mun:a T(x,t)(1+ux)a :a [T0+EA(ux+va+5wx)](l+ux)(l—ux—va—awx)] (B.11)
mu”=i T(x t)(vx)ﬁ]zi [To+EA ux+lv2+lw2)]v (l—u —lvz—lwz)] (B.12)
0x ’ dx]  ox 2 X2 oo o2F
ds 1, 1, 1, 1,
mwnza T(x,t)(wx)a :a [T0+EA(ux+zvx+wa)]wx(l—ux—évx—iwx) (B13)

Expanding Eq.’s B.11, B.12, B.13 and neglecting the @(u2), 0 (v3), ©(w?3) and cross-terms that scale with u,
results in the equations of motion for all three directions:

1 0, 9
Mty = EAt+ 5 (EA=To) (v + wy] (B.14)
3 5 L 5
mvsy = ToVxx + (EA—To) Uy Uxx + Uxx Uy + > Vilxx + WxWyx Uy + > Wy Vxxl (B.15)
15 3 5
Mmwes = ToWyy + (EA—To) [Uy Wiy + Uxx Wy + > ViWyx + Uy Uxx Wy + 3 Wy Wxx] (B.16)

Several analytical models will be shown in this chapter: the first model will show how the linear resonance
frequencies may be determined through linearization of the strains which result from vertical displacements
of strings. Subsequently, a nonlinear model will be derived that includes only vertical displacements. There-
after, the modal equations of motion for planar vibrations (where the transverse displacement is assumed to
be zero) are derived from a model that accounts for all three displacement directions. Finally, the full modal
equations of motion for strings will be derived. In the latter model, all displacement directions (longitudinal,
transverse and vertical) will be considered.

B.1.1. Analytical string model for vertical displacements

Zhao recently presented an analytical string model which only accounts for vertical displacements [38]. Here,
it is assumed that (1) the vibrations remain planar (in the xz-plane) and (2) that the displacement in the
longitudinal direction is much smaller than that in the vertical direction: dv = 0 and du «< dw. Therefore,
it may be assumed that the displacement du is negligible with respect to the displacement dw. This then
results in the following displacement directions:

u,y=0, vy, =0, and w, #0. (B.17)

The equation (Eq. B.3) for the stretched element ds reduces to the following expression when these assump-
tions of planar vibrations and small longitudinal displacements are applied:

ds=dx\/1+w2. (B.18)
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Linear string models for vertical vibrations

If it is furthermore assumed that the strain may be approximated by using that \/1+ w? =~ 1+ %w)zc, the fol-
lowing strain formulation is found:

2 L, L 5
€vertical = 1+wx—1:1+5wx—1:5wx. (B.19)

The equation of motion for w then becomes, after assuming that only /inear terms in w should be kept (@(wi)
and higher are zero):
mw;zr = ToWxx. (B.20)

This equation could also be found from Eq. B.16 when neglecting longitudinal and vertical displacement
directions (z = 0 and v = 0) and negligence of all nonlinear terms.

This equation results in the following equation of motion if the relation for the pre-tension force Ty is substi-
tuted for o9 A in Eq. B.20:
P w _ 09 Pw
02 p ox%’
This yields the familiar (linear) wave equation. This equation is a strong simplification of the vibrations of a
string as it relies on the assumptions that the vibrations remain small. In subsequent (nonlinear) analyses, it
will be shown that this equation becomes much more complex when the vibrations become large.

(B.21)

The linear frequencies of the string may be determined by separating Eq. B.21 into two parts, which are
time and space dependent, respectively. If we assume that the displacement may be divided into a time-
dependent part p(#) and a space dependent part W (x), we can rewrite the wave equation assuming that both
terms equal some constant —w? [20], as is shown in Eq. B.22.

PO _oo W' 5 (B.22)
p) p Wx) |

The space-dependent part of the above equation can be rewritten as:

W'+ Lw =o. (B.23)
Oo

This is just a harmonic ordinary differential equation with solutions of the following form:

W(x) = Acos (w‘ / iJc) + Bsin (a) ﬁx). (B.24)
g (o)

Imposing the boundary conditions of a simply-supported string of length L, i.e. that W(0) =0 and W (L) =0,
we can immediately see that A =0 and that the following equation should be satisfied:

W(L) = Bsin (w, /ﬁL) - 0. (B.25)
0o

This requires that either B = 0 or that sin (w, / U%L) = 0. The latter is the only feasible solution, and hence the

following relation should be satisfied:
o/ L L=nm, n=12,.. (B.26)
o

This yields the following equation for w,, the string’s n'" eigenfrequency:

nrw [og
Wp=—4/—.

I\ (B.27)

The space-dependent part can thus be written as,

W, (x) = sin ("—L”x) (B.28)
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Which shows that the eigenfrequencies of a string scale with mode number 7, these linear frequencies thus
scale with the real mode number n as well.

Now the frequencies of the system are known, a non-dimensionalization and a coordinate transformation to
modal coordinates may be performed as well. The non-dimensionalisation of Eq. B.21 is conducted using

the following relations D.2.2:
W _ X T |0op ; (B.29)
W=—,X=—,wy=—1/—, T=wol. .
L T\ p 0

Substitution of these relations into Eq. B.21, gives Eq. B.30.

oy d*w ol d*w 2w 1 d*w
—_— _—_—— — :0—» _— — :0 (B.?)O)
L p dt® p Ldx? dr®  m? dx?

Now, in order to determine the modal equations of motion, a modal coordinate transformation should be
performed. The displacement w may be written as:

WX, 7) = Py, (X) Gn (7). (B.31)

Where ¢, (X) is the linear mode shape of mode 7, which has a maximum of unity:

¢y, (x) =sin(nrx) = sin(nx). (B.32)
Substitution of the mode shapes results in the following expression for the modal equations of motion:

. 1
Gu, (T)sin(nmx) + ;nznz sin (nx) gy, (1) = 0. (B.33)

Evaluating the integrals over the domain of %, which ranges from 0 to 1, gives:

1
f (Gu, (@) sin(nnx) + n?sin (n %) Gy, (1)) dx = Gy, (7)(1 - cos (n1)) + n° Gy, (1)1 —cos (nm)) =0 (B.34)
0

The first mode is considered only: n = 1. The linear (non-dimensional) equation of motion of a string will
thus become:

Gu, (@) + 12 Gy, () = Gy (T) + Gy (1) =0 (B.35)

Which shows that the dimensionless linear modal equation of motion does not depend on any string param-
eters. This means that the inertia term and the linear stiffness term both scale with the same parameters,
which can also be seen in Eq.’s B.21 and B.30, where all string’s dimensional parameters appear to drop out.
The equation in Eq. B.21 is often written as ¢y, + @2 gy, =0, where the w-terms for a string scale linearly with
mode number 7. The effect of dimensional parameters on the nonlinear or large-amplitude vertical vibration
of strings is examined in the next subsection.

Nonlinear string models for vertical vibrations: the w-displacement model

If one still were to take into account only the vertical vibrations w and that terms that scale nonlinearly in
w, are nonzero, (i.e. for which @(w?) and higher are nonzero), we arrive (using Eq. B.16) at the following
equation of motion for w:

3
pAw;: — [EA- Tyl ( Wyx Wy ) Towxx =0 (B.36)
After division with the mass density, the constants in this equation can be rewritten as ¢y = 4/ pTﬂl , /=2 ‘70 and

C1 = 4 / \/7 which are the vertical and longitudinal wave velocities in a string. Their ratlo, 2 > 1, as

the Young s Modulus is much larger than the pre-stress of the strings that are considered in this research (250
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GPa vs. 1 GPa, respectively). Hence, it is assumed that cf - cg = cf for the considered string characteristics.

Finally, this simplification will generate the following equation of motion:

3 3
Wyt — (cf - c(z)) (5 Wyx wi) - cg Wyx =0 — wy — cf (5 Wyx wi) - c(z) Wiy = 0. (B.37)

Now, in order to compute the modal variables, current (physical) coordinates should be transformed to modal
coordinates, which allow for separation of space and time, similarly to the previous section. This may be done
using the following equation:

N
wx, )= $u,(X)qu, (1) (B.38)
n=1

where the (dimensional) displacement w is written as a combination of N eigenmodes. Here, ¢, (x) is gives
the max-1 shape of the eigenmode n, and g, (¢) is the time dependent modal amplitude of mode n. The
modal shape function may be assumed to be a function that is equal to one of the eigenmodes of the string.
In this case, this is a Sine-function (according to Eq. B.32), the mode shape of mode n may be written as
follows:
b, () = sin(ﬂ) (B.39)
" L

To determine the modal parameters of the system, we should imply the Galerkin method, where the equation
is first multiplied by a certain weight function, before it is integrated over the length of the string [20]. This
weight function is just another mode shape of the system; this allows one to decompose the modal variables
into parts that are only present in the equation for mode r. This weight function is denoted by ¢, , the mode
shape of mode number r. Note that the mode numbers r and n are not necessarily equal: if not, this method
allows for computation of the influence of mode 7 onto mode r.

bu (x) = sin(ﬂ) (B.40)
ur I .
To determine the modal parameters of mode 7 in equation of motion r (i.e. the modal equation of mode
r), one should evaluate the following integral (where g, (¢) is written as q,,, for simplicity). For r = n, the
integral from Eq. B.41 should be solved to arrive at Eq. B.42.

L 3
fo gbur(x)(w”—c(z)wxx—chwiwxx) dx=0 (B.41)
L. nznzc(z) 3ﬂ4n4cf 3

Which generated the modal mass, stiffness and nonlinear stiffness (all normalized with the linear mass-
density, pA). This shows that the modal mass is independent of the mode number, where the linear and
nonlinear stiffness are dependent of the mode number.

. wtn*c 3ntntc?
quy, + L2 Gu, + 84

G5 = Gu, + 05 qu, + b\, qs, =0 (B.43)

The equation may then be normalized with respect to the length of the string for the space variable g, and
the fundamental mode frequency wy for the time ¢.

- qu T |og
= —2 T=twy, wherewg=—, [ — B.44
qu, 7 0 0= 7 ) ( )

If these variables are substituted into Eq. B.64, the following non-dimensional equation is found:

2,22 44 2
menccy _ 3n*ntey 4

+
L qun 8L qun

wiLa, + =0 (B.45)

Normalization with respect to the inertia term then gives:

- 2~ 3 » 4C%~3 11 2~ 3 2 4 E 3
Gu, 0 qu, + 500 — Gy, =Gy, + 0 Gu, + "0 —q, =0 (B.46)
n 8 or " " 8 gg "
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Where it is clear that the nonlinearity (for one mode, this is the Duffing parameter) is dependent on ratio of
Young’s modulus (E) over the pre-stress (0p), and the mode number. The Duffing strength of a mode may
hence be improved by either decreasing the pre-stress or increasing the Young’s modulus. Additionally, the
relation with the mode number shows that the higher the mode number, the larger the relative nonlinearity
(the linear stiffness scales with n2, and the Duffing parameter with n*). This results in the following terms for
n=1:

- 3n° E -3
qul +6]ul+TU—0qu1 =0. (B.47)
Which generates the following modal variables:
- - 3n2 E -
kD=1, b)) = ——=1b{},. (B.48)
8 (o))

Repeating the same procedure for the higher modes, where n = 1,2, ..,6, generates the following modal pa-
rameters:

- - 3722 E -

(2) _ 92 _ 2) _ _ (1)
k) =2% =4, by), = 5 0—0—1617111
- - 3723 E -

(3) _ 92 _ 3) _ _ 1)
ky) =3%=9, b)), = 0—0—8119111

- - 3124* E -

4) _ 42 _ 4) _ _ (1)
kY =4%=16, b)), = 8 o 256b1") (B.49)
B =52 =25, B9, = 5 B _ g5

5 = - » Y555 T 8 00 - 111
- - 3n%6* E -

6) _ 12 _ 6) _ _ 1)
kg =4% =36, by, = 8 o0 1296b;7,

The modal coupling terms can be computed by letting w(x, t) be a combination of all considered modes. For
example, if modes 1 and 2 are considered, one can compute the magnitudes of terms such as 5512)2, which
quantifies the coupling between mode 1 and 2 on mode 1. If the first three modes are considered (N = 3),
w(x, t) writes (using Eq. B.38):

X

3 . . (27nx
w(x, t) = n;ld)un (X)qu, (1) = s1n( I )qul +s1n(T

5 . (3nx
qu, +SIN (T) qus (B.50)

This, together with the space and time normalization, will generate the following equation of motion for the
first mode (k =1):

~I

~ 3 L, E - ~ 2 2 ~
G, + 1 Gu, + Enza_o (1G5, +8Gu, G5, +3G5, Gus + 125, Guy +18Gu, G5, ] =0 (B.51)
The nonzero coupling terms appear to follow the following relations:

,31% E
rrn oo rnn 8 oo

- 3n% E -

b\ = r3nl— and b\) =2r%n (B.52)
Which shows that these nonzero coupling terms are dependent on the mode numbers of these coupled
modes (r and 7). The equation delivered the following modal coefficients (note that the coupling terms have
been normalized with respect to bill)l):

- - 3n* E .
kil) =L bgll)l = = lbgll)l
8 0y (B.53)

7)) _qop1) () _q7r1) 1) _ 170 71 _ 1971
by =3Dbyy), byyy =8y}, by33 =18D 53, byyy = 12by7)

Once the same procedure has been repeated for r = 2 and r = 3, the following nonlinear modal coefficients
may be obtained:
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Table B.1: Linear modal coefficients for a string model that includes only vertical displacements. These values are normalized with
respect to k%l).

Eq. [ (1) (2 (3)
k1 1 0 0
ko 0 4 0
ks 0 0 9

Eq. | (1) (@) @)

bhu| 1 0o 1
b | 0 8 0
bus| 3 0 18
bio| 8 0 12
Dios| 0 24 0

biss| 18 0 0
by | 0 16 0
15223 12 0 72
bss | 0 72 0
bsss | 0 0 81

The results of the procedure for an inclusion of up to six modes is shown in Table E.2 in E.1.1.

Conclusion

The analytical model that accounts only for the linearized vertical displacements of a string generates the
linear wave equation, which may give insight into the linear frequencies of a string. A more advanced model,
which uses a nonlinear strain formulation for the vertical displacements, generates identical linear frequen-
cies. Additionally, this model contains nonlinear terms which have a cubic dependency on the modal coor-
dinates. A string with this cubic nonlinearity will thus contain Duffing terms. The relative strength of this
Duffing parameter is dependent on the ratio of Young’s modulus over the pre-stress (a%)’ and scales with the
mode number (to the power four). The higher the mode number, the higher the relative nonlinearity of this
mode. The linear stiffness scales with n? and the Duffing nonlinearity scales with n*. The modal coupling co-
efficients are also dependent on the mode numbers of the modes that are involved; for the B;.rk)l-term, scales

with n; njnin;, which shows the dependency on the mode numbers for the coupling coefficients.

B.1.2. Nonlinear equations of motion including vertical, transverse and longitudinal dis-
placements

Equations B.14, B.15 and B.16 showed a string’s equations of motion for all three directions. Before diving into
the equations where one of these displacements may be neglected, one could approximate these equations
under the assumption that the longitudinal inertia (u;;) is most likely to be small under excitation of one
of the first transverse or vertical modes. If this inertia is neglected, and it is again assumed that the ratio of
pre-tension over Young’s modulus will still be very small (EA > Tj and thus EA— Ty = EA), Eq. B.14 can be
simplified to the following expression:

1 Toy o , 5 10 , 5
uxxz—E l_ﬂ a[vx+wx]=———[vx+wx]=—vxvxx—wxwxx. (B.54)

This expression should also obey the boundary conditions of a pinned-pinned string, where the displacement
in both directions is zero at x = 0 and x = L, as follows:

u0,)=v0,1)=w,)=0and u(L, 1) = v(L, ) =w(L,1) =0 (B.55)

Integration then gives:

1 1 [t
us=—5 (F 4w+ o7 [ (R wds (B:56)
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And the second integration gives:

u:—L x(v2+w2)dx+ifL(v2+w2)dx (B.57)
2LJo VXX 2LJo VT '

This generates the following equations of motion:
3 Lo
muvy = ToUxy + EA[Uy Ugyx + Uy Uy + 2 ViUxx + WxWyx Uy + > WiVxx] =

_ I N Loy s : 3 35 L5
mvy = Tovgy + EA Z(U"+w")+2L | (Vi + wy) dx | vex + (—VxVxx wxwxx)vx+2vxvxx+wxwxxvx+2wxvxx

Uxx

1 L
mvy = Tovxx + EA [if() (V12c+ LUJZC) dx

(B.58)

1 3
2 2
Mmwer = ToWxyx + EA[Ux Wyx + Uxx Wy + vawxx + Uy Ugx Wy + wa Wiyl =

Loy o 1 (b L5 3 5
mw;; = Towyex + EA —5(vx+wx)+i A (vi+wy)dx wxx+(—vxvxx—wxwxx)wx+5vxwxx+vxvxxwx+5wxwxx =

1 L
mwn:Towxx+EA[ij(; (V2 + w?)dx | wyx

(B.59)

Which decouples the dependency of the vertical and transverse equations from the longitudinal displace-
ments.

Nonlinear string models for longitudinal and vertical vibrations: the uw-displacement model

This subsection will show what the equations of motion are for strings which include both vertical and lon-
gitudinal displacements. These vibrations are still assumed to remain planar (v = vy = vyxx = 0), but they
account for stretching in the longitudinal direction (u,) as well. This assumption is valid only when the eigen-
frequencies in the transverse direction are sufficiently far away, or for transverse frequencies which are very
weakly excited through internal resonance. The governing equation for this uw-displacement model, which
accounts for vertical and longitudinal vibrations will thus be equal to Eq. B.60.

1 L
mw;; — Towyx — EA (— f widx) Wiy =0 (B.60)
2L Jo
After division with the linear mass density, we can again rewrite the constants in this equation as cp = %
and ¢; = E—”?, the transverse and longitudinal wave velocities in the string. Their difference, i.e. cf - 0(2) may

(again) be approximated by cf, generating the following equation of motion:

L

wn—cgwxx—cf (if w)zcdx) Wyx =0. (B.61)
2L Jo

This equation of motion is thus a function of both the longitudinal and transverse wave speeds, which in turn

depend on the Young’s modulus and the pre-stress of the material, respectively. Now, in order to compute

the modal variables, it is important to change to modal coordinates, which allow for separation of space and

time. The modal coordinates may be written as follows using Equations B.38, B.39 and B.40, to arrive at the

single-mode equation of motion (r = n):

L 1 L
/ gbur(x)(mwt,—Towxx—EA(—f widx) wxx)dxzo
0 2L Jo

L (rnx) ) (nnx).. T nm? (nnx) EA 1 L(nzn2 Z(nnx) 2 14 nm? (nnx) dr=0
A sin T msin T qu, 075111 T qu, Z o ?COS T qun X 12 sin T du, X =
mL . +n2n2T0 +714114EA 3 _)

g or, Tt gy T T

(B.62)
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Which provided us with the modal mass, stiffness and nonlinear stiffness. This again shows that the modal
mass is constant for each mode, whereas the linear and nonlinear stiffness are dependent of the mode num-
ber.

qu, +w%lqun + bnnnqin =0
N2 T, TAntEA 5 (B.63)
u, + Zm u, alim u, =0
After substitution of the linear mass density m = p A and the tension force as a function of the pre-stress and
the cross-sectional area (Ty = 09 A), we will arrive at the following modal equation of motion for mode #:

. 7m*n*og min*E 4
Gu, + %5 Gu, + aTip Gy, =0 (B.64)

The following non-dimensional variables may then be used: g, = % and 7 = twg, where wg = %, /%: the

fundamental mode frequency. The derivatives may then be computed as follows, using the non-dimensional
time 7:

dq dgqdr dq d*’q d [dqgdr ,d%q
e P gt i sk ek B i B.65
dt drdr °dr de " dr|drde]” “Vdr? (565
Also using the space scaling, g = gL:
dg d(gL) dr dg _, d*gL _d [ dgdt 2 A2G 5,
_— = —:L —:L , = — —_— | = L—: L . B66
at~ dr dar ar " Tae Tar [Var ar| 0 are T 0M (566
Substitution of these relations into Eq. B.64, generates the non-dimensional equation in Eq. B.67.
wiLgl + o0, TE (B.67)
oldy, o quy, 4lp 9u, = .
Normalization with respect to the inertia term then gives:
1 E
dn +nGy, +-m*n*—g =0. (B.68)
n 4 oo n

Here, it is clear that the nonlinearity (for one mode, this is the Duffing parameter) is also dependent on ratio
of Young’s modulus (E) over the pre-stress (0g). The Duffing strength may hence be improved by either de-
creasing the pre-stress or increasing the Young’s modulus. This Duffing parameter is 1.5 times smaller than
that of the previous model, the w-displacement model.

This results in the following terms for n = 1:

Guy + Gu +”—2£éi =0 (B.69)
1 1 4 00 1

Which generates the following modal variables:
2
i 0 T E s
k=1 by = = =10, (B.70)

Forn=1,2,..,6, this results in:
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Eq. B.50 can also be used to write w(x, t) as a combination of all considered modes; this will then generate the
coupling terms. If this transformation is conducted, and a subsequent non-dimensionalization is conducted,
we will get the following modal coefficients, for r = 1 (note that the coupling terms have been normalized with
respect to 13511)1):

4
. - n* E ~
K= 8= =l .
7D _ 25D (D) _ g7
by, =4byyy, bg3 =9byy)

If the same procedure is repeated for r = 2 and r = 3, the following parameters will be found:

47[2 () 72 _ 647[4 E

kP = ) = = =16bY
2 L2 0 222 4L4 0 111 (B.73)

7@ _ 450 5@ _arid
b112 - 4blll' b233 - 36b111

- 972 0 - 324n* E -

B = o B = e =mibh
12 p 4I* p (B.74)
73) _orn() 733 _ (1)
bllS - 9blll' b223 - 36b111

Table B.3: Linear modal coefficients for a string model that includes vertical and longitudinal displacements. These values are
normalized with respect to kil).

Eq. [ (1) (2 (3)
k1 1 0 0
ko 0 4 0
ks 0 0 9

Table B.4: Modal coupling coefficients for a string model that includes vertical and longitudinal displacements Note that the

coefficients are scaled with respect to B;ll)l

Eq. | 1) (2 3)
bbu| 1 0 o0
b | 0 4 0
bus| 0 0 9
bio| 4 0 0
biss| 0 0 0
biss| 9 0 o0
Do | O 16 0
Do | O 0 36
bss | 0 36 0
bsss | 0 0 81

The results of the procedure for an inclusion of up to six modes are shown in Table E.4 in E.1.2.

Nonlinear string models for non-planar vibrations, the v w-displacement model

In the previous analyses, the influence of the modes in the transverse direction was neglected, since the as-
sumption was made that the vibrations of the string remained planar as the transverse mode frequencies
were assumed to be of negligible influence. For strings with a square or circular cross-section, this may not
be a safe assumption, since the modes will likely be resonant since the modal frequencies of both modes are
degenerate. To determine the modal coupling coefficients of a string while accounting for vertical, longitu-
dinal and transverse vibrations, one cannot further simplify Equations B.58 and B.59. The vertical (modal)
displacements are still assumed to be well approximated by Equations B.38, B.39 and B.40. However, the
transverse (modal) displacements should now also be formulated. This may be done by assuming that the
mode shapes are still of the same function (¢, (x)), since the transverse and vertical modes are identical in
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terms of mode shape, but they are perpendicular to each other. The modal displacement in the transverse
direction is written as py,,.

N
v, 0 =) Pu, () Ppu, (1) (B.75)
n=1

Substitution of equations B.38, B.75, B.39 and B.40 into equations B.59 and B.58 and applying the Galerkin
method once again, one will arrive at the modal variables from Tables B.5 and B.6.

Table B.5: Linear modal coupling coefficients for a string model that includes vertical, longitudinal and transverse displacements.
These values are normalized with respect to kil). Note that the uneven (even) modes are the vertical (transverse) modes.

Eq. | 1) 2) 3 @
ky 1 0 0 0
ko 0 1 0 0
ks 0 0 4 0
ka 0 0 0 4

Table B.6: Modal coupling coefficients for a string model that includes vertical, longitudinal and transverse displacements. The

coefficients are scaled with respect to Bgll)l, Note that the uneven (even) modes are the vertical (transverse) modes.
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B.2. Comparison of three models

Three models may be used to simulate the planar dynamics of strings. These models are as follows:

1. The analytical model (w-displacement model), which only considers vertical displacements from Sec-
tion B.1.1;

2. The analytical model (vw-displacement model), which that considers both longitudinal and vertical
displacements from Section B.1.2;

3. The numerical model that is based on the STEP method from Section D.1.1.

To determine what the differences are between each method, a high stress Silicon-Nitride string with the
material properties and dimensions from Table B.7 is considered.

Table B.7: Si3Ny string variables

Variable Symbol [ Magnitude
Density 0 3100 %
Young’s modulus E 250 GPa
Poisson’s ratio v 0.23
Pre-stress o) 849.2 MPa
Length L 1110 pm
Width w 4 ym
Thickness t 92 nm

The modal coefficients of a Silicon-Nitride string

For the considered string variables, these three models generate the modal parameters from Tables B.8 and
B.9.

Table B.8: SizNjy string frequencies

Variable | w-displacement | uw-displacement | STEP
S [kHz] 235.76 235.76 235.77
f> [kHz] 471.52 471.52 471.60
f3 [kHz] 707.28 707.28 707.54
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2

Table B.9: Modal nonlinear coupling strength (normalized by ”T Ui) for a SizNy string, computed by a model that only considers

vertical displacement (w-displacement model), an analytical model that considers both vertical and longitudinal displacements
(uw-displacement) and a numerical model that considers both transverse and longitudinal displacements (STEP).

w-displacement | uw-displacement STEP
Eq. | (1) (2) (3) 1 (2 (3) (1) (2) (3)
ar 0 0 0 0 0 0 0 0 0
750 0 0 0 0 0 0 0 0 0
a3 0 0 0 0 0 0 0 0 0
779 0 0 0 0 0 0 0 0 0
1755} 0 0 0 0 0 0 0 0 0
ass 0 0 0 0 0 0 0 0 0
Eq. | (1) (2 (3) 1) @ (3) 1) (2) (3)
binn | 1.5 0 1.5 1 0 0 1.00 -0.00 0.00
13112 0 4.5 0 0 4 0 -0.00 4.04 0.00
5113 4.5 0 27 0 0 9 0.02 0.00 9.09
bip | 12 0 18 4 0 0 4.04 000 0.13
5123 0 36 0 0 0 0 0.00 0.26 0.00
15133 27 0 0 9 0 0 9.09 0.00 0.00
13222 0 24 0 0 16 0 0.00 16.00 0.00
l~7223 18 0 108 0 0 36 0.13 0.00 36.37
5233 0 108 0 0 36 0 0.00 36.37 0.00
15333 0 0 121.5 0 0 81 0.00 0.00 80.99

The linear frequencies of all three models are approximately equal, as was shown in Table B.8. It is hence
expected that the w-displacement model shows a stronger nonlinear response than the other models.
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B.3. Experimental results of a 1110um string resonator
A. Keskekler and M. Xu conducted experiments on a SizgNy string resonator with the following characteristics:

Table B.10: Characteristics of the experimentally tested string resonator of length 1110um. * This is the stress in the axial direction.

Quantity Variable | Magnitude
length L 1110 um
width w 4um

thickness t 92 nm

Young'’s modulus E 250 GPa
pre-stress oo 850 MPa*
density 0 3100 kg/m3

This string was initially manufactured out of a Silicon Nitride film which was at an initial pre-stress of 1100
MPa, in both the x- and y-directions of the film. After etching the string, the stress redistributed to an unidi-
rectional stress of approximately 850 MPa.

The forced and free response of this string was monitored using the (simplified) set-up that is displayed in
Fig. B.2.

Polytech

*—Uacuum chamber

= Chip with resonator

4—— Piezo

Figure B.2: Simplified experimental set-up, showing the Polytech, the vacuum chamber, the piezo-element and the chip which contains
the string specimen.

The set-up consists of a measurement device (the Polytech), which monitors the vibrations of the string.
The figure also depicts a vacuum chamber, which houses a piezo-element. The chip that contains the string
resonator is connected to the piezo-element (using tape) for excitation. The pressure in the vacuum chamber
-for this specimen- was brought to 2.69 x 10 ®mbar.

B.3.1. Verification of the mode shapes

Frequency response experiments were conducted to characterize the response at the first mode’s resonance
frequency. Once the system is brought into the nonlinear regime, Duffing characteristics may start to influ-
ence the displacement and stiffness of the string, which will also influence its mode shapes. For a system
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that shows hardening (and thus an increase in the stiffness), the mode shapes of the system could change
with respect to the previously assumed linear mode shapes. Though the maximum amplitude will probably
increase in the nonlinear regime, it can be expected that the mode shape becomes slightly flattened (due to
increased tension in the nonlinear regime) when comparing it to the linear mode shapes.

The response of the first mode was measured for three locations along the string. These three points were at
0.175L, 0.364L and 0.506L respectively. One of the measurements (at 0.506L) was conducted near the center
of the string, which may be considered as the centre position of the string. Two other measurements are -due
to the symmetry of the first mode- mirrored about this centre point. This generates a total of five points,
for which the experimental mode shapes may be compared to the linear mode shapes. Fig. B.3 depicts the
amplitude for several force levels at these five measurement points.

-6
10

457 T T T T
*  Exp.loc. 1
O Exp. loc. 2

4r B O Exp.loc. 3|
p - ~ |- - sin(mx)
3.5

N
s}

Amplitude (m)
N

1.5

0.5

0 £ 1 1 1 ! = L L T !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Position w.r.t. full length

Figure B.3: Experimental amplitude at positions 1, 2, 3, 4 and 5 at x= 0.175 (stars), 0.364 (circles), 0.506 (squares), 0.636 (stars) and 0.825
(squares), respectively. A sine shape is plotted using the maximum amplitude (at 0.506L).

The plot clearly shows that though the string is driven to large amplitudes, the first mode’s linear mode shape
fits quite well, indicating that it is safe to assume that the amplitude in this nonlinear regime follows this
linear mode shape. This mode shape can thus be used in the simulations, to determine modal amplitudes
and modal forces.

B.3.2. Experimental Duffing response

The frequency response of the string is analyzed for 20 force levels; expressed in the applied voltage to the
piezo-element. These voltage levels are linearly spaced between 0.001 and 0.5 Volts. The piezo-force is as-
sumed to scale linearly with the applied voltage [32]. Fig. B.4 depicts the frequency response for three loca-
tions, for each of the 20 force levels.

The first mode’s resonance frequency is located at approximately 182.7kHz, which implies that the pre-stress
of the string has decreased significantly. For a pre-stress of 850MPa, one would expect (from Eq. B.27) a
resonance frequency at approximately 268 kHz. The pre-stress has thus decreased significantly, from 850
to 509MPa. The underlying mechanism of this reduction of pre-stress is suspected to be a creep-like phe-
nomenon, which causes the strength of a strained material to deteriorate over time. The response clearly
displays the Duffing behavior, where the frequency increases as the amplitude increases under larger driving
voltages. However, for drive levels higher than approximately 0.32V, this increase in amplitude and frequency
ceased: the frequency appears to be "locked" at 185.5 kHz. This phenomenon is known as frequency locking;
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Figure B.4: Experimental frequency of an 1110um SizgNy string resonator, measured at three locations. The driving voltage ranged from
1mV to 0.5V.

where the frequency is seen to "lock" at a certain frequency while the drive power is increased. By plotting
the compliance of this response, one can determine if there is any type of nonlinear dissipation process in
this system. Fig. B.5 shows the compliance, which is the ratio of the amplitude and the driving voltage of the
response (from Fig. B.4).

The compliance clearly decreases, indicating that there is some form of (nonlinear) dissipation present in the
system. This dissipation could have several origins, among which the two most likely options are nonlinear
damping or mode coupling [17]. The first option is an irreversible process, where energy is dissipated to an
external bath. The latter option, mode coupling, allows for energy transfer from one mode to another, which
is a reversible process (as is shown in the FPUT experiment). To verify which of these processes is the present
here, one should check the ringdown data and the frequency response for the harmonics of the higher modes.
This ringdown data serves three purposes: it will show whether or not nonlinear damping is present in the
system. Otherwise, it will allow for fitting of the Q-factor, which may then be used in simulations to simulate
this frequency response. Lastly, the exchange of energy to the other modes may be verified, to see to what
degree this system shows FPUT behavior.
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Figure B.5: Compliance of an experimental frequency response for an 1110um Si3Ny string resonator, measured at three locations. The
driving voltage ranged from 1mV to 0.5V.
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Figure B.6: Ringdown of a string, showing the response for the first six modes and fits for the quality factors for the first and third modes.
This ringdown was conducted from a weakly nonlinear initial condition.
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This ringdown plot (from a weakly nonlinear initial condition) shows that (1) there is little energy transfer (the
second mode, in red, does appear to increase somewhat during the ringdown) and (2) that -on a logarithmic
scale- the decay of the amplitude appears to remain linear. Finally, (3), no energy recurrence is visible, as
most modal amplitudes appear to decrease over the entire interval. To see significant energy transfer, one
would expect the amplitude of other modes to increase significantly with respect to that of the initially excited
(in this case the first) mode, which is not present in this figure. The second mode’s amplitude appears to
increase slightly, but this is negligible as it still significantly lower than the first mode’s amplitude. Possibly,
the initial condition is not far enough into the nonlinear regime to generate significant nonlinear effects. The
first mode’s decay appears to be fitted for a Q-factor of approximately 2 x 10, at a pressure of 2.69 x 10 %mbar.
The Q-factor for the third mode appears to scale with that of the first mode and the inverse of the mode
number: Q, = % The other Q-factors are assumed to scale accordingly in subsequent simulations.

B.3.3. Simulated frequency response of a string

The STEP method (Section D.1.1) is used to find the modal quantities of the string. This method deter-
mines the modal coefficients for longitudinal and vertical displacement directions (identical to the uw-
displacement model). The nonlinear modal parameters of the w-displacement model may be substituted
in the results from STEP by multiplying the Duffing coefficient of the first mode by 1.5 and subsequently sub-
stituting the nonlinear variables by those of Table E.2. The frequency response is simulated (using AUTO,
App. D.1.2) for the linear variables from Table B.11.

Table B.11: Simulated modal variables (for the first six vertical modes) of the experimentally tested string specimen.

Eq. 0 ) @) 4 (5) (6)
= | 04999 04997 0.4993  0.5007 0.4979  0.4970
2t 1 1.0000 1.9998 2.9990 4.0054 4.9951 5.9914

w1
% 1.0000 0.5001 0.3334 0.2497 0.2002 0.1669

The modal mass is -by approximation- constant to half the total string mass. The normalized frequencies
(with respect to the fundamental mode) nearly follow the linear relationship with the mode number n. It
was shown in the previous paragraph that the Q-factor of the fundamental mode was found to equal approx-
imately 2 x 10° and that the higher modes may be assumed to scale with the inverse of the mode number.
The cubic nonlinear variables follow the relation that is shown in Table E.2 and Table E.8 for the w- and uw-
displacement models, respectively. All quadratic nonlinear variables (a;.rk)) are zero for this system. All modal

variables may be substituted in the following equation of motions, where F'") is nonzero only for r = 1:

]

6 6 6
mG+k"q +c g+ Y Y a}rk)qjqk+ Yy ) b(.rk)lqjqkql =FVsin(ws0), r=1,2,...,6 (B.76)
k=11=1 j=1k=ji=k

The fitting procedure is shown in Section D.3. The results for simulations for a force level of 0.32V are depicted
in Figures B.7 and B.8. These fits were achieved for the w- and uw-displacement models for Young’s moduli
of 450GPa and 675GPa, which both exceed the default Young’s modulus of Si3N,4 of 250GPa significantly.
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Figure B.7: Simulated (black) vs. experimentally obtained frequency response (yellow), for a drive voltage of 0.32V. The simulation was

conducted for the w-displacement model, accounting for the first six vertical eigenmodes. B.7a depicts the response at 0.364L. B.7b
depicts the modal contributions.
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Figure B.8: Simulated (black) vs. experimentally obtained frequency response (yellow), for a drive voltage of 0.32V. The simulation was
conducted for the uw-displacement model, accounting for the first six vertical eigenmodes. B.8a depicts the response at 0.364L. B.8b
depicts the modal contributions.

Although the Young’s moduli are significantly higher than the default value, these simulations do produce
decent fits. The experimental results show that the Duffing behavior of the first mode is the most signifi-
cant nonlinearity. Both the w- and the uw-displacement models generate a Duffing nonlinearity, which may
thus be fitted easily, as long as the modal interactions are ignored. The Duffing nonlinearities of the analytical
models show a 1.5 factor difference, which is clearly conveyed in the fitted Young’s moduli as well: E = 450GPa
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and 1.5E = 675GPa for the w- and uw-displacement models, respectively. Clearly, the simulated responses
does not show the locking behavior of the experimental result; both overshoot the locking frequency from
the experimental results at approximately a normalized frequency of 1.016. To find accurate fits, one should
apply some nonlinear dissipation mechanism to the simulation. Generally, two methods could be used for
this: the first method is to add nonlinear damping, but as was shown in Fig. B.6, the decay does not show two
slopes: it is linear [14]. The second method is probably more valid, as it assumes that energy is likely to be
extracted from this first mode through a modal coupling, supplying other modes with energy.

By allowing modes to become resonant at a certain frequency, the energy of the fundamental mode may be
supplied to the higher harmonics of the fundamental mode. This will then cause the first mode’s energy (and
hence amplitude) to remain (approximately) constant, while the modes that coincide with these harmonics
are supplied with energy.

To replicate the experimental behavior, and especially the locking behavior, the linear frequencies in the nu-
merical models could be shifted, such that the resonant terms are strongest at this locking frequency. By
looking at the resonant terms of the equation of motion of the first mode, one may determine which (nonlin-
ear) parameters influence this coupling (Eq. B.77) for the uw-displacement model.

1 1
Fl(;) = Zbill)l [3cos(wyt) + cos(Bw; )] + 1 bglz)z [2cos(wqt) + cos(Bw; t) + cos(bwi 1)] +
1 (B.77)
1 b%)g [2cos(wq t) + cos(bw t) + cos(7w t)]

This equation originates from Section B.5, which results from negligence of all coupling terms that equal
zero. It is shown there that excitation at the first mode’s frequency may result in excitation of harmonics
of the first mode as well. Here, these nonzero coupling terms result in excitation of the (uneven) modes at
integer harmonics of the first mode: 3w, 5w; and 7w, as is depicted in the simulated frequency response
in Fig. B.8b. This shows that there is some interaction between the first, third and fifth modes, which is
dependent on the amplitude of the first mode: increasing the amplitude of the first mode results in a stronger
coupling. Fig. B.8b clearly depicts that the amplitude at w/w; = 1.015 is much larger than the amplitude at
w/wy = 1.000. The normalized locking frequency is at approximately 1.016, as is depicted in Figures B.7 and
B.8. The simulated integer frequency ratios of the string (from Table B.11) hence should be shifted such that
the resonant terms are stronger at this frequency of 1.016.
Iterations have shown that the uw-displacement model is highly sensitive to these (small) frequency shifts,
where the w-displacement models do not show this sensitivity: it does not show significant effects for values
of ws between —0.05 and 0.05. Fig. B.9 depicts a simulated response (for the uw-displacement model) where
the resonance frequencies of all modes (except the fundamental modes) have been shifted by a small value
ws, according Eq. B.78.

w) = (1+ws)wy,, where n=2,3,..,N (B.78)

In Figures B.8a and B.9, this shift (w;) is equal to 0.000 and 0.005 respectively. The latter value implies that the
frequencies have been shifted by 0.5% of the fundamental mode’s frequency. The experimentally obtained
frequency response is simulated using the uw-displacement model with these shifted linear frequencies, to
result in response from Fig. B.10; this replicates the experimental results quite well, as the Duffing curves and
the frequency locking are simulated quite accurately. Aside from the large Young’s moduli, it is thus possible
to find good fits for the uw-displacement model by shifting the linear frequencies of the higher modes. The
w-displacement model appears to remain fairly insensitive to these slight frequency shifts.

These frequency responses show that the solution becomes unstable from approximately w/w; = 1.016. Typ-
ically, the onset of instability is caused by a bifurcation of some type (e.g. Period Doubling or Torus bi-
furcations). These bifurcations are associated with a change in the solution: it may for example become
quasiperiodic through either a Period Doubling or Torus bifurcation [24]. The periodicity of the solution may
be checked easily by selecting a data point along the frequency response curve, and subsequently checking
the steady state motion by solving the forced equations of motion for these points as initial conditions.
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Figure B.9: Simulated frequency response graph for the uw-displacement model, accounting for the first six vertical eigenmodes. The
linear frequencies are shifted by ws = 0.005. The drive voltage is approximately 0.32V. The uneven harmonics have clearly increased in
magnitude. Solid lines denote stable solutions, dotted lines denote unstable solutions.

B.3.4. Forced vibrations from the frequency response curve

The steady state response of a string to continuous forcing may possibly show quasiperiodic motion of this
string under constant forcing frequencies (and force levels). By selecting a data point on the frequency re-
sponse curve, one may integrate the equations of motion at the considered force level, amplitude and fre-
quency of the selected data point. The equations of motion from Eq. B.76 are integrated using Matlab’s ODE45
solver. Since the uw-displacement model can replicate the experimental response quite well (it shows slope-
fits and frequency locking), this model is used here. Again, all variables a;rk) are zero. The force vector, F("
is only nonzero for r = 1, implying that only the first mode is excited. Fig. B.10a depicts two points: a fully
stable solution (denoted by the red star) and a solution at the onset of instability (denoted by the black star).
These two points will be analyzed in the next sections.

Forced vibrations for a stable solution on the resonance curve

The response at the red star is checked first. The normalised frequency driving frequency for this star is
at approximately 1.01 (Fig. B.10a). The force level is 0.32V. The time response to the constant driving is
depicted in Fig. B.11. The total amplitude plot shows that there are amplitude modulations (beatings) visible:
the minima and maxima of the amplitude in- and decrease as the time progresses. This implies that the
amplitude consists of (at least) two (sinusoidal) signals of two different frequencies: when they are out-of-
phase, their sum is of a small magnitude, generating the minima. Oppositely, when these signals are in-phase,
the sum is of a larger magnitude, generating the maxima.

The FFT plot in Fig. B.11 shows more than two frequency peaks; it depicts four peaks (labeled from left to
right as @ 4,@p,®c and @p), at normalised frequencies of approximately @4 = 0.97, @p = 1.01, @&¢ = 1.05 and
@p = 1.09. The magenta color is visible only, indicating that the frequency content of this fourth time frame
is equal to that of the previous three. This implies that the frequency content is approximately constant over
the four considered time periods. The peak at @®p = 1.01 may be attributed to the forcing frequency. The
peaks are spaced at a constant frequency difference, namely @c — @p = 0.04, which implies that the peak at
@c = 1.05 is the average of @p and @p: &¢c = W% = 1.05. The peak at @4 may thus be approximated by
WA= MT_“’D =0.97. It is uncertain what the origin is of these peaks, but it is likely to be present a nonlinear
effect. It may for example be a result of some harmonics of the first mode. To verify that this is the case, the
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Figure B.10: Simulated frequency response graph for the uw-displacement model, accounting for the first six vertical eigenmodes. The
linear frequencies were shifted slightly, by ws = 0.005. The drive voltage is approximately 0.32V. Solid lines denote stable solutions,
dotted lines denote unstable solutions. B.10a depicts the total response when measuring at one point along the length of the string.

B.10b displays all modal contributions. Note that there is an unstable branch generated at the maximum of all modal amplitudes.

simulation is run once more, though this time for the case where only one mode is considered: the first mode.
Fig. B.12 depicts the resulting amplitude and the frequency content.
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Figure B.11: Simulated time response of forced oscillations from the stable (red) point on Fig. B.10a at w—f =1.01. The simulation model

is the uw-displacement model, it consists of the first six vertical modes of the string. (a) Depicts the total amplitude of the string at
0.364L. The colored bars on the bottom of the plot indicate four time windows, for which (b) depicts the FFT of each time window.
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Figure B.12: Simulated time response of forced oscillations from the stable (red) point on Fig. B.10a at w—f =1.01. The simulation model

is the uw-displacement model, it consists of the only the first vertical mode of the string. (a) depicts the total amplitude of the string at
a point at 0.364L. (b) depicts the FFT of the signal from (a).
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The amplitude versus time plot of Fig. B.12 depicts two interesting topics. The first is that -to the eye- the total
amplitude remains approximately similar to Fig. B.11, showing that the first mode is the dominant over the
higher modes. Secondly, it is clear that the frequency content has not changed significantly. This implies that
the contribution of the higher modes is very small. The peaks at @4,@p,®¢ and @p are thus likely to result
from the nonlinearity of the first mode. This may be verified by checking the response of the linear equations
for the first mode (bﬁ)1 =0), as is depicted in Fig. B.13.
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Figure B.13: Simulated time response of linear forced oscillations for an initial condition at % = 1.01. The simulation model is a linear

displacement model, it consists of the only the first vertical mode of the string. (a) depicts the total amplitude of the string at a point at
0.364L. (b) depicts the FFT of the signal from (a).

The beatings in the amplitude seem to have become more distinct: the oscillations in the amplitude are now
clearly visible. Additionally, the maximum of the total amplitude has increased from 7um in Fig. B.11 to ap-
proximately 25um. This could imply that the nonlinearity drains quite some energy (as was shown in Fig.
B.11), which suppresses the amplitude significantly, by distributing energy to multiple harmonics of the first
mode. Additionally, it could be due to the nonlinearity, which shifts the resonance frequency: driving the
system slightly outside the resonance frequency could already generate less significant amplitudes. Lastly,
the FFT in Fig. B.13(b) depicts two clear peaks: one at a normalised frequency of 1.00 and another at 1.01.
These could both be clarified by the linear resonance and the driving frequency, which are at 1.00 and 1.01
respectively. The latter observations imply that the driving near the resonance frequency of a nonlinear sys-
tem that includes just one mode of vibration, will generate modulations (beatings) of the amplitude signal.

The resulting behavior may be further analysed by checking what the origin of these modulations is, through
an analysis of a single-degree-of-freedom linear mass-spring-damper system under harmonic sine-wave ex-
citation, as is shown in Appendix B.6. Eq. B.99 shows that -under the assumption of negligible influence from
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damping and dependency of the initial conditions-, a solution may be formulated as follows:

f Wf+wo)  (Wf—wo
Qest(f)sz " 2cos 5 sin 5

(B.79)

o f
This shows that two signals determine the estimated solution: a Cosine signal which is dependent on the av-
erage of the drive (w 1) and resonance (wg) frequencies and a Sine-signal that is dependent on the difference
between the two frequencies. The first signal (represented by the Cosine-function), oscillates at a high fre-
quency (small period), and the second signal (the Sine-function) oscillates at a low frequency (long period).
This results in the beatings that are shown in Figures B.23 and B.24. Comparison of these two figures shows
that the closer one excites near resonance, the slower the period of the slow oscillation, as is verified by Eq.
B.79. Fig. B.14 depicts the extimated (linear) solution (for zero initial conditions) of the simulated string from
this section. The analysis of an undamped linear system shows that the estimated solution is approximately
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Figure B.14: The estimated solution for the amplitude of a linear (undamped) string. The normalised forcing frequency is equal to 1.01.
(a) depicts the amplitude (at a point at 0.364L) versus time. (b) depicts the FFT of the amplitude signal.

correct: the total amplitude shows similar behavior to that of the nonlinear string from Fig. B.12. Note that
the amplitudes in the estimated (from Eq. B.79) and simulated solutions do not match. This could have sev-
eral origins; first, the initial conditions are zero for the estimated solution, where they are nonzero and quite
large in the simulation model (the total amplitude is approximately 3.6um in Fig. B.10a). Additionally, this
initial condition is for strong driving power in the nonlinear regime.

Generally, it may be concluded that the simulated oscillations (from a stable point on the resonance curve) of
a nonlinear and weakly damped (Q = 200,000) string under constant excitation remain fairly well understood
through the comparison with single-mode nonlinear and linear models. The single-mode nonlinear model
shows that some of the peaks in the FFT plots of the simulated oscillations may be attributed to the linear
resonance and forcing frequencies. Additional peaks may hence be attributed to harmonics of the first mode,
as they are also present in the single-mode model. Lastly, a linear undamped model shows qualitative agree-
ment with the linear single-mode model, indicating that -for the linear system- the influence of damping is
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negligible for the considered fundamental mode Q-factor (of 200,000). For the nonlinear model, this negligi-
ble damping assumption cannot be made with certainty. However, one can deduct that the nonlinear effects
of the first mode are dominant, as they are present in both the multi-mode, as well as the single mode model:
these nonlinear effects generate a more complex amplitude modulation, originating from multiple frequency
peaks.

Forced vibrations for a solution at the onset of instability
The results of the forced response from the black star (at the onset of intstability) in Fig. B.10a are depicted in
Fig. B.15.

%10 Total amplitude at 0.364L
(a) 1 T T T T T T T T
E
o 0.5
©
2
S 0
IS
©
T -05f
(@]
|_

) 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
Time (s)

%107 FFT of total amplitude

(b) T T T T T T T T T

1st quarter time
2nd quarter time |
3rd quarter time
4th quarter time

w
T

Magnitude (m)
N

—
T

i« I i I

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
Normalised frequency (w/w1)

Figure B.15: Simulated time response of forced oscillations from the unstable (black) point on Fig. B.10a at % =1.016. The simulation

model consists of the first six eigenmodes. (a) Depicts the total amplitude of the string at 0.364L. The colored bars on the bottom of the
plot indicate four time windows, for which (b) depicts the FFT of each time window.

The amplitude versus time plot shows similar behavior to that of Fig. B.11(a), where amplitude modulations
are visible in the amplitude signal. Similar to the response on the stable solution, these modulations occur
on a relatively small time frame. Hence, though the excitation frequency is further from resonance, the slow
period of these modulations did not change significantly. The frequency content is similar to that from Fig.
B.11, though the peaks in the FFT in B.15(b) seem to have shifted slightly. This may be due to larger effect of
the nonlinearity, as the system is brought further into the nonlinear regime. The increase in the amplitude in
this nonlinear regime will result in higher frequencies (as was shown in B.10a), which will in turn generate a
difference in the period of the beatings. The relations between the four peaks are identical to those from Fig.
B.11.

Altogether, this implies that the response near the onset of instability does not show much different results
compared to those along the stable branch. Further analyses of a single mode nonlinear model or a un-
damped linear model will hence not generate much (more) insight, as the phenomena that are elucidated
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here correspond very well to those of the previously analysed point (Section B.3.4).

B.3.5. Conclusion - simulations of of 1110um string

This section has shown that the experimentally obtained frequency response of the first mode of a SizNy string
is largely dominated by a Duffing-like behavior. Increase of the driving power in experiments has shown that
at some point, the frequencies and amplitudes "lock”, where both measured quantities appear to remain con-
stant. Simulated solutions of a numerical uw-displacement model (STEP) show that this may be explained
by interaction with the uneven eigenmodes in the system, which have been shifted slightly (by approximately
0.5% of the first mode’s frequency). On the other hand, it is found that the w-displacement shows decent
slope fits, but it cannot not generate the locking behavior. To achieve these slope fits, the Young’s moduli
have been increased from the default value of 250GPa to 675GPa and 450GPa for the uw- and w-displacement
models (D.3), respectively. This could result from either an error in the conversion of the experimental data,
or that the assumption that the strings’ dynamics can be reproduced using only axial deformation models is
invalid, as other deformation mechanisms could generate additional nonlinearities.

Two solutions along the nonlinear resonance curve were analysed (using the uw-displacement model) to de-
termine whether the system would show any (nonlinear) quasiperiodic motion. This quasiperiodic motion
could originate from various bifurcations in the frequency response figures. Two points were analysed: a
stable nonlinear solution and a solution near the onset of instability (the bifurcation point). The solutions
indicate that the behavior may be well explained through the nonlinearity of only the first mode, since the re-
sults for a single-mode system are similar to those of a multi-mode system. The beating behavior is expected,
since an undamped linear system that is excited near resonance also produces these beatings, consisting of
two distinct frequencies. A added nonlinearity, though small (the maximum frequency shift is only by 1.6%)
generates a different frequency content, where more peaks are visible.

It may thus be concluded that the forced oscillations from the two analysed points remain dominated by the
first mode’s nonlinearity, though the frequency response curves show locking: a multi-modal interaction. It is
probable that the effect of the higher modes is still too small to become significant in the forced oscillations.

B.4. Experimental results on a 700um string resonator

Zichao Li conducted similar experiments on a second SizNy string resonator with the characteristics from
Table B.12.

Table B.12: Characteristics of the experimentally tested string specimen of length 700mum. * This is the stress in the axial direction.

Quantity Variable | Magnitude
length L 700 um
width w 4 um

thickness t 344 nm

Young’s modulus E 250 GPa
pre-stress oo 850 MPa*
density 0 3100 kg/m3

While the pre-stress and the width of this string are equal to the previously studied string resonator (Table
B.10), this string has a significantly larger thickness than the previous experimentally tested resonator: 344nm

versus 92nm. This implies that the string’s bending area moment of inertia (which scales with the thickness

to the power 3) has increased by (39%) = 52.3 times, increasing the resistance to bending. The assumption

that bending may be neglected could thus become less valid for this particular string resonator.

B.4.1. Verification of the mode shapes

Five force measurements were conducted at three points along the length of the string: %, % and % The mode
shapes for each of these points may be verified by mirroring the measurements at Ig, % about the centre point.
For each of these five sweeps, a sine function in the form of the first mode with a maximum amplitude equal

to the amplitude at % is fitted. The measurements and the fitted functions are depicted in Fig. B.16.
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This shows that the linear mode shapes agree quite well, also in the nonlinear regime.

B.4.2. Experimental Duffing response

This experiment consists of five force sweeps ranging between 0.03 and 0.15V. The measurements were con-
ducted for air pressures of approximately 9.81 x 10~ mbar: slightly higher than that of the experiments on the
1110um string (2.69 x 10-®mbar). The experimental frequency response and the corresponding compliance
are depicted in Figures B.17 and B.18. The responses show Duffing behavior. Contrary to the Duffing response
of the 1110um string, this response does not show such perfect locking, where the amplitude and frequency
cease to increase under increase of the driving voltage. However, these experimental results show a smaller
increase in frequency and amplitude from driving voltages larger than 0.09V, showing that there is probably
some locking present. Interestingly, the frequency shift for this specimen is quite low: it is approximately
0.2% of the fundamental mode frequency.
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Figure B.17: Experimentally obtained frequency response for three measurement locations.
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Figure B.18: Experimentally obtained compliance for three measurement locations.

The compliance appears to decrease for increasing driving voltages, but for a drive level of 0.09V, the com-
pliance suddenly increases for all three measurement points. The origin of this behavior may become clear
from frequency response simulations, which will be shown in the next section. To conduct proper simula-
tions, one should first determine the Q-factor of the considered mode. A ringdown experiment shows that
this fundamental mode’s decay is linear with a Q-factor of 1.326 x 106 (Fig. B.19). This is a significantly larger
Q-factor than the 1110um string, which was found for an even lower air pressure: in theory, a higher air
pressure generates lower Q-factors.
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Figure B.19: Ringdown of the first mode for a L = 700pm string.

From Eq. B.80, one would expect the Q-factor to decrease with increased thickness [31].

n’n? (t\’E 1t |E :

BTH (Z) P NAAR, Qintr (B.80)
Here, Qin is the intrinsic Q-factor of the resonator. The left and right terms inside the square brackets denote
the Sine-shape bending and the edge bending respectively. For strings, where ¢ <« L, the edge bending is pro-
portional to (%)2; it is much larger than the Sine-shape bending ( f). The Q-factor for this thicker 700um
string would thus be expected to have decreased with respect to that of the 1110um string (Q = 200, 000).
Rather, the Q-factor has increased significantly for an increased thickness. This could be related to the de-
crease in pre-stress of the 1110um string resonator, which decreases the Q-factor due to a decrease of the
denominator of Eq. 1.9. Furthermore, the 1110um string resonator already was quite old, which could have
accumulated more (dust) particles from the environment, which limit the Q-factor.

An additional effect of this higher pre-stress is that it limits the relative nonlinearity of the resonator, which
depends on the ratio of U% This may clarify the limited frequency shift.

Qstr =

B.4.3. Simulated frequency response

Though the frequency response does not show significant frequency shifts, it does show some weak locking
behavior, where the amplitude and frequency increase at a much slower rate. This is the result of system
slowly losing its sensitivity to the applied force, where any energy is transferred from the first mode into the
higher order modes. The uw-displacement model showed good agreement with the locking behavior for the
1110pum string, and thus it was used to simulate the frequency response of this second string as well. This ©w-
displacement model (including the first six vertical eigenmodes) was fitted for a Young’s modulus of 5500GPa,
approximately 22 times larger than the default Young’s modulus of 250GPa. Fig. B.20a depicts the fit for the
uw-displacement model, Fig. B.20b depicts the magnitudes of each of the involved modes.

To determine whether this simulation model can show locking, the linear frequency was perturbed by the
parameter w;. Many combinations were analysed (ranging from -0.05 to 0.05), but this did not generate the
desired locking behavior. A possible explanation of this may be sought in the small magnitude of the relative
nonlinearity in the simulation model: this does not generate sufficient excitation of the higher modes to
cause significant modal coupling. Comparing Fig. B.20b to Fig. B.10a shows that the higher modes increase
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Figure B.20: Simulated frequency responses for a (uw-displacement) string model accounting for the first six vertical eigenfrequencies.
The drive power is estimated to be approximately 0.15V. Solid lines denote stable solutions, dotted lines denote unstable solutions.
B.20a depicts the total response when measuring at one point along the length of the string. B.20b displays all modal contributions.

Note that there is an unstable branch generated at the maximum of all modal amplitudes.
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in magnitude when the system is brought further into the nonlinear regime. Should this condition not be
achieved, one cannot reproduce this behavior using this zw-displacement model.

Since it was previously found that the w-displacement model generates stronger nonlinearities and (perhaps
for this simulation most importantly) stronger coupling coefficients, this model was fitted as well. A decent fit
was found for a Young’s modulus of 3667GPa; reviewing Table B.9 shows that the first mode’s Duffing stiffness
for this model is 1.5 times larger than that of the uw-displacement model. The same relation holds between
the fitted Young’s moduli of both models: 5500GPa = %3667GPa. Fig. B.21a clearly does not show locking
either. Unfortunately, for this w-displacement model, no suitable frequency shift parameter could be found.
Hence, although the third and fifth modes’ magnitudes at @ = 1 are significantly higher than that of the uw-
displacement model (Fig. B.20b), this is still not sufficient to generate the locking behavior, probably due to
the stronger coupling term and the nonzero back-coupling term.

B.4.4. Conclusion - simulations of a 700um string resonator

This section has shown that a large part of the pre-stress was still present in the 700um string. This re-
sults weakly nonlinear response, were small frequency shifts of maximum 0.2% of the fundamental mode
frequency were obtained. Both simulation models were fitted for very high -unphysical- Young’s moduli. The
locking behavior was not observed in either model, possibly due to the small excitation of the higher modes
in this weakly nonlinear regime. Other possible effects may be that the estimated damping coefficients of
these higher modes do not scale with the inverse of the mode number, which could possibly significantly
influence modal contributions.

The simulations for this 700um string resonator are thus inconclusive regarding which displacement for-
mulation model is most appropriate, as the Duffing behavior can be fitted using both models. However,
ringdown results of the first mode do not depict significant energy transfer to other modes, which would gen-
erate a different (a much faster, nonlinear) decay of the first mode. Should this significant energy transfer be
present, this could be related to a nonzero back-coupling term, and thus a fit for the w-displacement model.
On the contrary, a linear decay would suggest that the uw-displacement model is probably more valid. How-
ever, since this ringdown was conducted from the weakly nonlinear regime, this modal coupling will be small
(and probably invisible) for both models, invigorating the statement about the inconclusiveness of the most
appropriate displacement formulation.
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Figure B.21: Simulated frequency responses for a (w-displacement) string model accounting for the first six vertical eigenfrequencies.
The drive power is estimated to be approximately 0.15V. Solid lines denote stable solutions, dotted lines denote unstable solutions.
B.21a depicts the total response when measuring at one point along the length of the string. B.21b displays all modal contributions.

Note that there is an unstable branch generated at the maximum of all modal amplitudes.
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B.5. Appendix - Resonant terms in strings

If it is assumed that the solutions of Eq.’s B.76 (for r = 3) are of the form g; (#) = cos(w1 1), g2(t) = cos(wy 1)
and g3(t) = cos(wst) (where, since it is assumed that the system is a string resonator: w, = nw;) and if we
substitute this to determine the nonlinear coefficients that cause the strongest (resonant) coupling, Eq. B.81
is found. Note here that the quadratic coupling coefficients of this system are zero.

3 2 2 2
FO = kD g, + b, g} + b\, 2 g2 + b, a7 g3 + by g1 5+

(r) (r) 2 r 3 r)y 2 (r) 2 (r) 3 _
blrzgqlbhck’» + blrggfh qs + bzrzzqz + b2r23q2 qs + b2233672qs + b3r33q3 =

kY) cos(wy t) + bYl)l cos(wy 1) + bgrl)z cos(wy 1)? cos(wx 1) + birl)s cos(w; 1) cos(w» 1) cos(ws )+ (B.81)

birz)z cos(wi 1) cos(wa H)? + bg% cos(w1 t) cos(wa t) cos(ws t) + bgrg)3 cos(w 1) cos(ws )3+
bgz)z cos(wy ) + bgz);-; cos(ws 1) cos(ws 1) + Iog3 cos(wy 1) cos(wsz 1) + bég):-; cos(ws1)®
The trigonometric relations from Equations B.82 and B.83 show how a nonlinear equation will generate exci-

tation of the harmonics of a mode.

cos(wt)3 = 3(3 cos(wt) + cos(3wt)) (B.82)

cos(w; 1) cos(w;jt) = i(cos((Zwi —wj)t)+2cos(w;t)+cos(Cw; +wj)t) (B.83)

To reduce the length of the Eq. B.81, the following notation is defined: F) — k" g, = Fl(;), which may be
assumed to be linear in g,. Using this simplification, together with the relations from equations B.82 and
B.83 and substituting w, = nw,; into Eq. B.81 results in Eq. B.84.

1 1 1
Fl(;) = Zbgrl)l [3cos(w; t) + cos(B3wi )] + Zbgrl)z [2cos(2wit) + cos(4wr t) + 1] + Zbirl)g)[cos(wl ) +2cos(3w t) + cos(5w; )]+

1 1
Zbgf;z [2cos(w) 1) + cos(3w t) + cos(5w 1)] + L—lbYZ)g [cos(2w1 1) + cos(4w: 1) + cos(bwy 1) + 1]+

1 1 1
Zbig)s. [2cos(w; ) + cos(5w t) + cos(7w1 )] + n bérz)z [3cos(2wi t) + cos(6w; )] + n b§2)3 [cos(w; t) +2cos(Bwi t) +cos(7w; B)]+

(r

1
" b23)3 [2cos(2w 1) + cos(4wy £) + cos(8w; )] + — b

1
1033 [3cos(3wqt) + cos(9wq 1))

(B.84)
This shows that shows that the by12, b22, b123 and boss-terms only excite harmonics of the even modes. The

other terms; the by11, b113, b122, b133, b223 and bsss-terms only harmonics of the uneven.

Now, one may check which modes are (resonantly) coupled with the first mode, by setting 7 = 1 and keeping
only the nonzero terms for the first modal equation of motion (Tables E.3 and E.4):

1 1
Fl(;) =- bgll)l (3cos(wit) +cos(Bwi 1)) + — bglz)z (2cos(w1t) + cos(Bwi 1) +cos(bwi t))+
4 X 4 (B.85)
1 b%)s (2cos(wr t) + cos(bwi t) + cos(7w1 t)).

This equation shows that if an external excitation would be present at the first mode’s frequency, these reso-
nant terms will cause excitation of the higher harmonics as well. In this model, where cubic coefficients are
present only, the uneven modes will be excited through excitation of the first mode.

B.6. Appendix - Single DoF forced mass-spring-damper system
This section will show what dynamics may be visible for a one-dimensional mass-spring-damper system that
is under harmonic excitation. This analysis is based on an analysis from Inman [16].
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Figure B.22: One-dimensional mass spring damper system under a harmonic forcing.

The single degree-of-freedom (SDOF) system in Fig. B.22 consists of a block with mass m, the stiffness of the
(massless) spring is k, the damping coefficient is ¢ and a forcing is present at amplitude F and frequency w .
The equation of motion for the degree of freedom g writes:

méj+cc'7+kq:Fsin(wft) (B.86)
Mass-normalization gives:

i S X g Esinw,n (B.87)
G+—G+—q=—sin(y :

Where wg =/ r—’;, f= %, and it may be assumed that the damping c -for now- is zero, resulting in the equation
of motion:
G+wiq=fsin(so) (B.88)

To solve this equation, one should assume that there are two types of solutions: a homogeneous solution
(qn (1)), which is the solution in absence of the forcing term, and a particular solution (g, (7)), which is the
solution of the forcing term. The total solution is hence written as a combination of the two:

q(0) = qn(t) + qp (1) (B.89)

qp(t) may be assumed to be of the same form of the forcing equation: g,(#) = Xpsin (w b, substitution of
this equation into the Eq. B.88 results in:

c']',,+w%qp = fsin(wyi)

2 . . . (B.90)
—wao sin (wf 1) + wyXp sin (wf ) = fsin (wf 1).
The equality allows for cancellation of the sin (w £ #)-terms, to generate the following equation:
~ 07 Xo+wiXo=f. (B.91)
Where Xy may be written as Eq. B.92.
Xo = % (B.92)
wg — 0y

Which is hence dependent on the ”closeness” of the resonance and the forcing frequency. The particular
equation is given by:

ap(0)=— o sin (@ 1) (B.93)
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The homogeneous equation is assumed to be a function of both Cosine- and Sine-terms: g, (f) = Acoswgt +
Bsin (wg?). The total solution (from Eq. B.89) is given by Eq. B.94.

q() = qn(t) + g, (1)

q(t) = Acos(wot) + Bsin (wot) + > 5 sin(wgt) (B.94)
iy
The variables A and B may be determined using the initial conditions, g(0) = gy and g (0) = go.
q(0) = Acos (wo0) + Bsin (wg0) + 5 5 sin (wr0)
Wy~ Wy (B.95)
Go=A—A=qo
o . foy
q(t) = —woqosin(wot) + woB cos (wot) + ——— Cos (wr0)
iy
4(0) = go = —woqgo sin (wo0) + woB cos (wo0) + 5 5 €08 (w£0)
w5~ W
(B.96)
. for
Go=woB+———
w5~ W%
gt _r|_f
wo W | W3- a)?
The total solution is thus:
] w
q(t) = qocos(wot) + G _2F > ! 5 sin (wot) + > ! > sin(wyt) (B.97)
wWo  Wo \wp— Wy Wy~ W

Then, if the excitation frequency wy is close to the resonance frequency of the undamped, unforced system

wy, it is valid to assume that ‘Z—g ~ 1. In addition, if it is assumed that the initial conditions are -for now- zero,
the solution will equate to:

q)=- f sin (wof) + f sin(a)ft)
w2 —w? w2 — w?
0 f 0 f
7 (B.98)
q(t) = —— [sin(wy 1) = sin (o 1)].
wg— W}

Using the trigonometric identity, which states that sin (x) —sin (y) = 2 cos (%) sin (%), the solution may be
re-written as follows:

f . .
t [ A— t — t
Gest(t) = —— [sin (@ 1) = sin (wo )]

0"
f

q t)— 2C()S( O)Si]l( 0)]
eSt( ([)2 ([)2 2 2 )

o f
The latter equation of Eq. B.99 shows that the solution consists of two functions, which both oscillate at
different frequencies. The Cosine-term oscillates at a frequency of 2r ;wo , where the Sine-term oscillates at a
frequency of 2 ;wo . This implies that the Cosine-term oscillates at a much higher frequency than the Sine-
term.
The produced response is thus a function of two frequencies: a fast frequency and a slow frequency, which
generate a total response that consists of an oscillation that slowly changes in amplitude, while these slow
changes in amplitude consist of rapid oscillations. For a system with m = 1kg, k = INm™!, F = and 0 f
between 0.9 and 1.01, this results in the amplitude versus time plots of Fig. B.23.
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Forced vibrations near the resonance frequency
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Figure B.23: Plots of gest (t) for wg = 1rad/s, wg = 0.9,0.825,0.85,0.975,1.00,1.025,1.05 or 1.1 rad/s for F = 1N.

Which shows that there are indeed two frequencies present in the system, as beatings are present, For forc-
ing frequencies even closer to the resonance frequencies, e.g. for wy = 1 rad/s, this phenomenon is more

pronounced, as is depicted in Fig. B.24.
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B.7. Appendix - Origin of coupling terms

B.7.1. Origin of the coupling terms of the w-displacement model

The coupling terms from Tables B.1 and B.2 seem to follow the relation from Eq. B.52. This section will elab-
orate upon the coupling terms that are generated between the first and third modes. It was shown that the
modal coupling coefficients of the FPUT problem resemble those w-displacement analytical model. It was
shown that the behavior that is typical for FPUT -the immediate energy exchange to the third mode from an
initial excitation of the first mode- is related to a nonzero bﬁ)l -term.

The origin of these coupling terms will become clear after revisiting the equation of motion of the analytical
model that accounts for vertical displacements only (Eq. B.37):

Wer— 2 2 § 2| _
tt— CoWxx — €] 2wxxwx =0 (B.100)

The first two terms of this equation generate terms which are linear in the modal displacement (due to the
linear relation with w), as has been shown for the linear model in Equations B.21 and B.35. The latter (non-
linear) term hence produces the nonlinear coupling terms. This section will hence focus solely on the part of
the equations of motion that follow from this nonlinear part:

23 2
—clzwxxwx. (B.101)

The modal coefficients may be found by substitution of Equations B.38 and B.39 and through integration of

the mode shape from Eq. B.40. Assuming that the displacements can be written in terms of the first and third
modes, the displacement can be written as:

. (X 3nx
w(x, t) = ¢y, (X)q1(8) + Py, (x) g3 (1), where ¢y, = sm( I ) and ¢, = sm( I ) (B.102)

and its derivatives with respect to x equal:

dw dc/)ul (x) ¢u3( Xx) X 37 37mx
Wy = Ix - dx () + ———q3(1) = —cos( 7 )ql(t) + Tcos( 7 )6]3(t)
2 2 2 2 (B.103)
w —d_w—w ([)_,_M (t) = _ﬂ_sm(n ) (t) — I Sm(?)nx) )
xS T T 2 q dx2 qs 72 q I qs
The weight function of the third mode is given by Eq. B.104.
. (3nx
Puy (x) = s1n(T) (B.104)

The nonlinear part of the equation of motion is then found using the following equation:

f Qbu3(x)
3n 9?2 Sﬂx T TX 3n 3nx 2
T L2 sm q1+ 2 sin qs cos( )q1+TCOS 7 qs
c2§n—4f [sm sm( ) (9s1n (:m—x)cosz(ﬂ)+6sin(H)sin(3n—x)cos(ﬂx)cos(?ﬂr )) +
1214 ) L L L L L s
(9sin(ﬂ)sin(?ﬂt—x)cos2(?ﬂ—x)+54sin2(?ﬂ[—x)cos(nx)cos(3ﬂ ))
L L L L L N5+
3 3
81sin® (_er) cos? (—”x)qux.
L L
(B.105)

The equation may be split up in various modal contributions and using that 7 = X results in more simple
equations, as is shown by Equations B.106 to B.109.

dx=

wxxw

2%
12

at
23

‘s L3f [sin (%) sin (37%) cos® (nX)| dxq; = c1 (f MNLDng)dqu (B.106)



90

B. String vibrations

37 4
i f [9 sin? (37 %) cos® (%) + 65sin (7w%) sin (37%) cos (%) cos (37 %)) ] dXq? g3 =
2L
(B.107)
1 2 L3 (f MNLDgngdx) ql q3
3at !
cf—n—f [(9sin (%) sin (37 %) cos? (37 %) + 54 sin? (37%) cos (%) cos (37%))| dxq1 45 =
213 )
(B.108)
23 nt
(S 51 3 (f MNLDglggdx) q1q3
37 4
%2L3f [8151n (371X) cos® (Sﬂx)]dxq3 —c12 3 (f MNLD3333dx) q; (B.109)

The terms inside the integration terms may be seen as the modal nonlinear displacement function, this func-
tion is dependent on the modal displacements and their derivatives with respect to the axial coordinate x.
Fig. B.25 depicts the magnitudes of these functions as a function of . In these figures, the modal nonlinear
displacement functions of modes j, k, and [ onto mode r are defined as MNLD; ;.
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Figure B.25: The normalized modal nonlinear displacement functions with respect to the fractional length of the string. The colors blue,

red, yellow and purple depict the magnitudes of the to be integrated functions in B.106 to B.109.

This figure shows that the integral that is represented by Equation B.106 (which basically is surface between
the blue line and the zero displacement line), is larger than zero, which will generate a positive coupling term.
The same may be said for the red and purple lines, which generate the by13- and bs33-terms. The surface
under the yellow line will most likely be zero. Solving the integrals confirm this, and the following terms are

found:

3t o i} L 3
%2L3f [sin (%) sin (37 %) cos? (%)) dXq7 = 0 3q1 b g3 (B.110)

37 4
cfz f [9 sin? (37 %) cos® (%) + 6sin (7w%) sin (37%) cos (%) cos (37%))| dxq: g3 =
(B.111)
27 ,1* , @
) = 073 I3 6/16]3 b 13611613
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237" f [9 (sin (%) sin (37 %) cos? (3m %) + 54sin? (37%) cos (%) cos (37%))| dxq1 45 =
12L3 3 (B.112)
09145 = brys 1 73
237 L3 23 ,m 4 g
12L3f [81sin? (37%) cos® (3n%)] dxq; = BTN = b5 q5 (B.113)

Normalization with respect the bill)l -term (from Eq. B.42) results in the expected normalized variables:

bty = 1D1}), biis = 18byy), big, =0, bl =81byY). (B.114)
The relations with respect to the mode numbers may also be discerned from Equations B.110, B.111, B.112
and B.113.
The origin of the nonzero bil)l-term hence lies in the formulation of the displacement. For this term to be-
come nonzero, one should hence have a term in the equation of motion that follows the relation from Eq.
B.101. The uw-displacement model follows a different displacement relation, due to the inclusion of the
in-plane (longitudinal) displacements in the strain formulation. The next section will elaborate upon this
equation and it will show the modal coupling terms for this model.

B.7.2. Origin of the coupling terms of the 1 w-displacement model

The previous section served as a means to show the origin of the coupling between the first and third mode
for the w-displacement model. This section will show why the terms that are nonzero in the w-displacement
model, could become zero in the uw-displacement model. Revisiting the equation of motion for w of the
uw-displacement model in Eq. B.115 (from Eq. B.61) will show what the difference is.

1 L
w”—c(z)wxx—cf (ﬂfo widx) Wyx=0 (B.115)

For this displacement model, the nonlinear part is given by the —cf (ﬁ fOL wfcdx) Wyxx-term. Similar to the

previous section, this analysis will study the third equation of motion under the influence of the first and
third modes as well. Using Equations B.102, B.103 and B.104 will generate the following equation for the

nonlinear part of the equation of motion:
of 1[5
-l |= | widx|w
! (ZL f * ) ”

L
f (pu3 (x)
0

CZ(L-[L(ECOS(”X) +3—nCOS(3nx) )2 )(H—ZSIH(HX) +9”251n(3”) )
oz o \Z Dt q3 Ntz qs3

dx=

dx
(B.116)

fL ' (Bﬂx)
s | ——
0 L

The integral term inside the square brackets of Eq. B.116 may be solved to find Eq. B.117.

1 7% L nx X 3mx 3mx n?
2 2 2 2 2| .
CIZLszo (cos (L )q1+6cos( 7 )cos( 7 )q1q3+9cos ( 7 )qg)d c1 (q1+9q3) (B.117)

Substitution of this result into Eq. B.116 generates the following integral:

c 4L3f [(sin (7 %) sin (37%) g5 + 9sin (%) sin (37%) q1 G2 + 9sin® 37 X) g% g3 + 81 sin® (1%) g3 )] dx.  (B.118)

This may be split up in the following terms:

T 1
a 4L3f (sin (%) sin (37%)] dxq; = ? UO MNLngd;c) @ =04} =00 ¢t (B.119)

9 n4
%—f 9SlIl (Sﬂx)dqu q3 = (f MNLD3113dx) 8 quq:; Zbﬁ)s(/]%bb (B.120)

Tl
cfmf 931n(7tx)sm(37rx)dxq1qg—c1 (f MNLDglgng) 0% q5 = b(33q1q3 (B.121)
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4
2 81 , n* ®)
) 4L3f 81sin? (nx)dxq3 = c1 (f MNLD3333dx) 5 —C—= Ve qs b333q3 (B.122)

Normalization with respect the bgl)l -term (from Eq. B.62) results in the expected following normalized non-
linear variables:
3 1) 303 1) 30 3 _ 1)
byyy =0byy), byy3 =9byy), byg3 =0, byg3 =81Dyy;. (B.123)

This shows that the bﬁ)l—term is zero. Fig. B.26 depicts the (normalized) magnitudes of the modal nonlinear

displacement functions over x.
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Figure B.26: The normalized modal nonlinear displacement functions with respect to the fractional length of the string. The blue, red,
yellow and purple lines the magnitudes of the to be integrated functions in B.119 to B.122.

The figure shows that the purple and the red lines overlap. The integral of these functions over the region
0 < x < 1, results in the nonzero b%)s- and bﬁg-terms, respectively. The blue line is overlapped by the yel-
low which appears to have an equal surface above the zero-displacement line, as well as below the zero-

displacement line. These bﬁ)l— and b%)g—terms are thus zero.

B.7.3. Conclusion

The coupling terms were shown to result from different displacement functions, which in turn generate dif-
ferent dependencies on the modal displacements (here, this is presented by the modal nonlinear displace-
ment functions). In theory, one should be able to change these coupling terms using two methods: changing
the nonlinear part of the equation of motion, and through variance of the mode shapes of the resonator. A
change in the nonlinear part of the equation of motion would require different strain formulations, which
could become different for varying cross-sections in the resonator. Additionally, one should be able to tune
the nonlinear coefficients with different mode shapes, which may be achieved in a similar method; by local
variance of the cross-section of the resonator, which locally change the mass and (nonlinear) stiffness, this
will definitely influence the linear and nonlinear stiffness coefficients of the resonator.

B.8. Appendix - frequency response of the v w-displacement model

The string vibrations which are analysed in this research are based on the assumption that the vibrations
remain planar (in the xz-plane), where the displacement of the string in the transverse direction is zero (v = 0).
This assumption is approximately valid for systems where the transverse and vertical mode frequencies are



B.8. Appendix - frequency response of the uvw-displacement model 93

sufficiently apart, such that they are not resonantly coupled. However, for square or circular strings, these
(theoretical) frequencies are always degenerate (of equal values, but different direction). To determine what
the influence of these degenerate modes is, the frequency response is simulated using the variables from
section E.2.2 for the 1100pum string which was analysed in section B.4. This results in the frequency response
graphs in Fig. B.27. Fig. B.27 depicts a strong interaction between the these vertical and transverse modes,

%1077 Frequency response
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9t Mode 1, F=0
Mode 2, F=0
8+ Mode 2, F=0
Mode 3, F=0
7L Mode 3, F=0

[0)

Ss5¢ 1

é-

4 i
3r i
2 i
1r i

¥
_]
0 7 1 R — ] | =
0.9995 1 1.0005 1.001 1.0015 1.002

Normalised frequency (w / w1)

Figure B.27: Frequency response of a model that includes uvw-displacements. The uneven modes are the vertical modes, the even
modes are the transverse modes.

while the transverse modes are initially not excited. Their excitation results from the modal coupling between
the transverse and vertical modes. The coupling is quite significant, as both perpendicular modes are of the
same order of magnitude. This coupling will generate out-of-plane or transverse displacement of the string,
resulting in a whirling motion.






FPUT mechanics in string resonators

The present chapter will show how, and for which type of string resonators, FPUT mechanics may be ob-
served. This chapter will first compare the FPUT and string models, before the requirements to string systems
are set. Lastly, some string designs will be tested for their (improved) nonlinearity and frequency ratios.

C.1. The FPUT f-model verus string models

The difference in behavior for the FPUT $-model and string models have several origins, which will be elabo-
rated in this section. Section B.1 presented three (analytical) string models: a model which accounts only
for vertical displacements (w-displacement model), a model that accounts for both vertical and longitu-
dinal displacements (uw-displacement model) and finally a model which accounts all three displacement
directions (the uvw-displacement model). This section will first compare the linear string variables with
the FPUT-model, before comparing the nonlinear (coupling) coefficients of strings to the FPUT model. The
FPUT model is based on a hypothetical system, for which a physical equivalent has yet been found. The anal-
ysis in this section will mostly consist of comparison of the ratios of the modal coefficients, as evidently, the
magnitudes of these coefficients are entirely different.

C.1.1. Linear variables
The normalized linear coefficients of the vertical modes of all analytical string models are shown in Table C.1.
The linear stiffness has a linear dependency on the mode number according to Eq. B.27).

Table C.1: The linear stiffness and frequency ratios of the simple string model versus the linear stiffness ratios for FPUT $-model (from
an eigenvalue analysis).

n| 1 @ @ (4) (5) (6)
string: Ksuing | 1.00  4.00 9.00 16.00 25.00 36.00
string: Wsying | 1.00  2.00 3.00 4.00 5.00 6.00
FPUT: kypy | 1.00 3.97 8.80 15.33 23.34 3255
FPUT: Osying | 1.00 1.99 297 3.92 4.83 5.71

The table shows that the frequency ratios of strings are integer, where the frequency ratios of the FPUT model
(from Section A) are non-integer. Furthermore, it was shown that the frequencies of the third and fifth mode
should be 2.97 and 4.83 (and thus lower than the nearest internal resonance condition) to generate FPUT
behavior, as is depicted in Fig. A.3. Hence, to observe FPUT-like behavior in strings, one should design a
string system which contains these non-integer frequency ratios. Though the difference in the frequency
ratios is only several per-cents e.g. (222532 x 100% =3.4%), the effect on the dynamics is still significant.
Analytical models for continuous strings (with constant cross-sectional areas) generally follow this integer
frequency relation, which also generate certain relations between the coupling terms. A string system which
would have these non-integer frequency ratios could hence also generate modal coupling parameters of a
different magnitude.

95
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Until now, the comparison mostly consisted of analyses of frequency ratios, and it has yet included an analysis
of the magnitudes of the linear variables, as these are dependent on the geometry of the structure.

C.1.2. Nonlinear variables

The nonlinear modal variables consist of two types. The first type of variables are the Duffing coefficient
(denoted by the bglnrzn—terms), which generates a force that is only dependent on the amplitude of the consid-
ered mode (of number n). The second type are the modal coupling coefficients, which generate a force that
depends on the amplitudes of several modes. The Duffing coefficients are studied first, before the coupling
coefficients are compared.

Duffing coefficients

The Duffing coefficients of the analytical models were shown to be dependent on the amount of displacement
directions that were considered. It was shown that the Duffing coefficients of the w-displacement model were
1.5 times larger than those of the uw- and uvw-displacement models. This may be an important requirement
for FPUT dynamics (which was shown to be dependent on the ratio of nonlinear versus linear forces for the
initial conditions). Comparison of the Duffing nonlinearities of the FPUT model and the analytical models
may be done through normalization with respect to the first mode. This yields Table C.2.

Table C.2: Normalized Duffing nonlinearities, for the first six (vertical) modes, for the FPUT 8 model and three analytical string models.
The last row shows the Duffing coefficients of the uneven (even) vertical (transverse) modes.

n| (D (2) (3) (4) (5) (6)
FPU: bppyt | 1.00 15.73 77.39 236.39 6256 1059.69
string.w: bsying | 1.00  16.00 81.00 256.00 625.00 1096.00
string.uw: bgying | 1.00  16.00 81.00 256.00 625.00 1096.00
string.uvw: bsying | 1.00  1.00  16.00 16.00 81.00 81.00

This shows that the ratios of the Duffing coefficients for the FPUT problem nearly resemble those of the string
models that include the w- or uw-displacements. The discrepancy between the FPUT and string models is
likely to result from the discretization into N elements. The FPUT model shows that the Duffing nonlinearity
approximately follows the same trend as the w- and uw-displacement models: it scales with the frequency
ratio to the power four. The uvw-displacement model is included here as well, because this may also show
desired dynamics: perpendicular modes were shown to be strongly coupled in Table E.6.

Modal coupling coefficients

This section will compare the modal coupling coefficients of string models to those of the FPUT model. Ref-
erence will often be made to Tables E.2, E.4 and E.6. The modal coupling coefficients of the FPUT model are
shown in Table A 4.

Table C.3: Coupling coefficients for the first three uneven modes: 1, 3 and 5. From left to right: the required coupling coefficients for the
FPUT B-model, the coupling coefficients of the w-displacement string model, and the uw-displacement string model. The
uvw-displacement string model is excluded here, since these modes are defined differently.

FPUT model String model (w) String model (uw)
Eq. (1) (3) (5) (1) (3) (5) (1) (3) (5)
b1 1.00 0.99 0 1.00 1.00 0 1.00 0 0
bns | 297 1759  14.83 | 3.00 18.00  15.00 0 9.00 0
b11s 0 14.83  50.02 0 15.00  50.00 0 0 25.00
}5133 17.59 0 43.99 18.00 0 45.00 9.00 0 0
biss | 29.67  87.99 0 30.00 90.00 0 0 0 0
15155 50.02 0 0 50.00 0 0 25.00 0 0
b3s3 0 77.38 0 0 81.00 0 0 81.00 0
b3ss | 43.99 0 440.05 | 45.00 0 450.00 0 0 225.00
bsss 0 440.05 0 0 450.00 0 0 225.00 0
bsss 0 0 625.60 0 0 625.00 0 0 625.00
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Section A.2.5 showed that FPUT behavior may only be observed for systems with a nonzero back-coupling

coefficient (the 5531)1 -term). This term causes excitation of the third mode through initial excitation of the first

mode. Table C.3 shows that Bﬁ)l.w is nonzero, where it is zero for uw-model (Bﬁ)l.uw =0.00). This implies
that the w-displacement model is the only string model that satisfies this requirement. Additionally, none of
the higher modes contain nonzero B;rj)j—terms (here, r > j). This implies these modes do not cause excitation
of mode r through excitation of only mode j.

Interestingly, the three-dimensional (vvw-displacement) model, which includes an additional displacement
direction, shows coupling between perpendicular (vertical and transverse) degenerate modes (Table E.6),
but these are not directly excited for the default FPUT initial condition, reducing the possibility to see FPUT
behavior for this uvw-displacement model. In summary, it may be stated that the simplest string model,
the w-displacement model, is the only model that could potentially show FPUT behavior, since its coupling
coefficients are in good agreement with those of the FPUT $-model. However, (as was shown in section B.4)
this model does not capture all experimentally observed dynamics. To observe FPUT behavior in a string-like
resonator, one may thus concluded that a string system should be designed for which the assumption may
be made that the longitudinal and transverse displacements remain negligible.

C.1.3. Comparison of modal quantities
Where previous subsections have shown comparison of the modal coefficients in terms of their ratios with
respect to the first modes of each model, this section will compare the actual quantities of the FPUT model
and the w-displacement string model.
The FPUT model is a hypothetical model, of which no mechanical equivalent has (yet) been found. The
default FPUT problem that was studied in Section A consisted of 16 elements with mass m = 1kg, connected
to springs with a linear stiffness of k = INm™! and a nonlinear perturbation to the stiffness of § = 8Nm™3.
The total mass of the system would thus be m,; = mN = 16kg.
The modal equation of motion for the first mode of the FPUT $-model was found to write:
g1 +3.41x 10 %kqy +1.02x 104 B3 = 0. (C.1)
Where the total equation has been normalized with respect to the modal mass, which -by approximation-
equals half the total mass of the system: @ = % = 8kg. For a Si3N,4 nanostring, this modal mass will be
multiple orders of magnitude lower, due to its significantly smaller size. The dimensions and properties of
a SigsN,4 nanostring with similar properties to those of the experimentally tested specimen of length 1110um
are (once more) tabulated in Table C.4.

Table C.4: Characteristics of the experimentally tested string specimen.

Quantity Variable Magnitude
length L 1110 um
width w 4 um

thickness t 92 nm

Young’s modulus E 250 GPa
pre-stress g 509 MPa
density o 3100 kg/m3
cross-sectional area A=tw 3.68 x 10713 m?
total mass Mitring = PAL | 1.27x10712 kg

The modal coefficients of the w-displacement string model were found in Section B.1. For a single mode, the
following modal equations of motion were found (from Eq. B.42). This equation, here once again multiplied

with the mass density p A, equates to:

pAL . w*n*Ty 3n*n*EA 4
2 qu, + qu, + 8L3 Uy =0.
pAL —

This equation shows that for strings, the modal mass is defined by
mass normalization, using mass-normalized eigenvectors (according to the method that is shown in Section

2

%: half the total mass. After the
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D.2.1), the following equation of motion is found for the first mode:

N palons . 2 37'E ,
sz qu1 pAL 8L4p qul

Gu, =0. (C.3)

The mass-normalized coefficients of both the FPUT model and the string’s equations of motion are tabulated

in Table C.5.

Table C.5: Mass-normalized modal coefficients for the FPUT B-model (left) and the coupling coefficients for the simple string model,
which only accounts for vertical displacements (right).

Variable Unit FPUT-model String model (w)
m(l) -] 1 1
_ 2kg _ 2kg _ 6
a -] £ =0.35 giL = 1.26 x 10
kY = 2 1 3.41x102k=3.41 x 1072 TT00 .32 x 1012
1 0 52 pL?
— _ 4
b 54z | 1:02x107=8.19x10"* | @?I5E = a?1.94x 102 =3.07 x 10%
‘”5 ‘”3 -11
h [m] b(_l) =6.45 b(_l) =2.07x10
111 111

(1)
The table depicts a difference in relative nonlinearity, which may be defined through the ratio of %: this

1
value is much larger for strings than for the FPUT model, since bgll)l >> kil) for a string, whereas for the FPUT

model, this is the opposite. However, since the amplitudes of both systems are on very different orders of
magnitude, it is more useful to compare the non-dimensionalized quantities. This non-dimensionalization
is conducted using the equations from Section D.2.2.

T w?
t=—, gn=Gnh, where h = —10. (C.4)
wo bgl)l

In this non-dimensionalization, time is scaled from dimensional variable ¢ to non-dimensional time 7 using
the time constant wy. Space is scaled through the introduction of the variable h, which chosen such that the
non-dimensional bill)l -term is unity.
Recall from Section A that the initial force ratio should be approximately 21% for the default FPUT system, for
N =16 and = 8Nm?3. The initial force ratio quantifies the relative nonlinearity of the initial condition, and it
may be written as the ratio of these the nonlinear and linear forces:
AP A
_bygy by
TP ARG
Fin  kPq &Y

_ Fhonlin

(C.5)

The initial displacement is -for the default FPUT problem- defined as half a sine wave, or the mode shape
of the first mode of a string. This mode shape is maximum at its center (%): the vertical displacement of
this point is defined as w,. For the FPUT problem, this centre-point displacement was defined to be one
meter: w,rpy = 1m. The displacement may be scaled to the (mass-normalized) modal displacement using
the following formula:

W=y Gu1 = P, 1 = €y, 1. (C.6)
The max-1 eigenvectors, which are denoted by the @, -terms, have a maximum of 1 (max(®,,) = 1). The
maximum (mass-normalized) non-dimensional modal displacement (Eq. C.7) may thus be written as a func-
tion of the maximum string displacement (w.), the maximum of the max-1 eigenmode and the parameter
that scales the eigenvectors from max-1 eigenvectors to mass-normalized eigenvectors, a.
_ we 1
" max(®,,) ah’

qi (C.7

Finally, the comparison of both models can be made. For a string system to generate the same initial force
ratio as the FPUT model, the following equation needs to be satisfied:

I'NL2LFPUT = I'NL2Lstring (C.8)
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: 7,1 7-(1) 7,1 — 7-(1) — ; ; ;
Since b7, gpyr and k; gy are scaled such that by}, oy = 1 and &y pyyp = 1, Eq. C.5 may be simplified, which

results in a dependency on the square of the initial (non-dimensional) amplitude:

B(l)
_ Pr1LFPUT 2 _ =2
INL2LFPUT = — 3y 4r.rpuTr = 91.FPUT" (C.9)
L.FPUT

The same normalization has been applied to the string model, which implies that ]ElglfoT = lzéir)in g and BEII)I.FPUT =

laill)ll string’ This thus implies that the following relation should be satisfied:

I'NL2L.FPUT = I'NL2L.string = (C.10)

~2 =2 ~ -
41 FpUT = Y1.string — 91.FPUT = J1.string-

The latter equation states that the non-dimensional (mass-normalized) amplitudes should be equal. This
equation is subsequently combined with Eq. C.7 to find the relation between the string and the FPUT models.

WEPUT _ Wstring

G1.FPUT = {1.string = =
@rpUTHFPUT  string Pstring C.11)
@string Pstring '

— Wstring = WFPUT——————
agputhEPUT

C.1.4. FPUT mechanics for the w-displacement string model
Substitution of the variables from Table C.5 and assuming again that wgpyt = 1m, gives the following required
displacement for the string model:

Qstring Pstri
Wstring = WEPUT — 28 — 11,82 x 107° = 11.82um (C.12)
arpuThEPUT
Which implies that -to generate the same initial force ratio- for the w-displacement string model, an initial
displacement of centre point in the form of the first mode with a magnitude of 11.82 micron is required.

Fig.C.1 depicts a (damped, Q; = 100,000, Q3 = 33,333 and Qs = 20,000) ringdown simulation for this initial
condition (and the parameters from E.1.1), it generates energy transfer, but it does not generate FPUT be-
havior. Though the linear energy is exchanged among the higher modes, no energy dominance is visible. In
addition, comparison of the linear and nonlinear energy magnitudes shows that the magnitude of the non-
linear energies still is small (Fig. C.1(b and c)). The modal amplitudes and velocities (Fig. C.1(d and e)) show
beatings, but the effect not significant. This simulation was run for the linear frequency ratios from Table
E.1, which follow an integer relation with the mode number. Section A has shown that non-integer frequency
ratios generate more significant energy transfer than integer frequency ratios. This simulation is therefore
run again, but this time for the frequency ratios of the default FPUT problem; the results are depicted in Fig.
C.2.

The energy and amplitude plots show that this weakly damped (w-displacement) string model can show
FPUT-like behavior. This FPUT behavior is visible in the linear energy plot, which only accounts for part of
the total energy. Fig. C.2(b) shows this behavior is still present when accounting for the nonlinear energy
fraction, which is associated to only this mode (the Duffing energy). Though the nonlinear stiffness has in-
creased significantly, the nonlinear energy thus remains small. This is due to the small orders of magnitude
of the vibrations, which basically suppress magnitude of the nonlinear energy.

The remaining nonlinear energy, which is associated to the coupling terms, is depicted in Fig. C.2(c). This
plot clearly shows that while the first mode’s energy decreases, the coupling energy increases, increasing the
energy of the higher modes. Similar to what was shown for the default FPUT model, the highest peaks in the
coupling energy seem to follow a similar trend as the third and fifth modes combined. In addition, the lower
peaks in the coupling energy depict the trends which follow from solely the third or fifth mode.

The modal amplitude and velocity plots clearly show beatings, where the first mode decreases while the other
modes strongly increase, up to the point where the higher modes’ amplitudes and velocities are of the same
order of magnitude.

The magnitude of this initial displacement could require some further attention, as the maximum displace-
ment that is required for this string equals nearly 12 micron. Comparing this value to the amplitudes which
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Figure C.1: Numerical simulation for a string model that includes only vertical displacements. The linear stiffness ratios are integer. The
initial condition resembles the first mode with a maximum displacement of 11.82um. This simulation was run with a quality factor of
the fundamental mode of 100,000, the Q-factors of the higher modes scale with the inverse of the mode number. Shown in (a), (b) and

(c) are the linear, single mode and coupling energies, respectively. The modal amplitudes and velocities in are shown in (d) and (e).

were found in the experiments, e.g. Fig. B.4, one may deduct that the required amplitudes for this FPUT
behavior are significantly higher than those of the experiments: 11.82um versus 4pum respectively. Achieving
such a displacement without breaking the resonator is likely to be impossible. However, simulations of the
frequency response of this 1110um resonator (Section B.4) indicate that the Young’s modulus should be much
higher than the estimated Young’s modulus of Si3Ny4: 450GPa (for the w-displacement model) versus the es-

timated 250GPa. For a larger Young’s modulus, the nonlinearity increases (through Eq. C.3), increasing the
)

ratio of 1(})1 The required initial amplitude should thus be lower to generate the required initial force ratio.
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Figure C.2: Numerical simulation for a string model that includes only vertical displacements. The linear stiffness ratios are
non-integer and equal to those of the FPUT problem ([1.00, 1.97, 2.97, 3.92, 4.83 and 5.71]). The initial condition resembles the first
mode with a maximum displacement of 11.82um. This simulation was run with a quality factor of the fundamental mode of 100,000,
the Q-factors of the higher modes scale with the inverse of the mode number. Shown in (a), (b) and (c) are the linear, single mode and

coupling energies, respectively. The modal amplitudes and velocities in are shown in (d) and (e).
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For a Young’s modulus of 450GPa, one an initial displacement of 8.81 micron is required, which appears to be
about double the maximum midpoint amplitude that is seen in experiments on strings (B.4). This displace-
ment of 8.81 micron would equal 0.79% of the resonator’s length.

This latter analysis has shown that for an increased nonlinearity, which could be present in strings, a smaller
initial displacement is required. The section on the analytical string models has shown that this effective
nonlinearity is dependent on the ratio of Young’s modulus and pre-stress: % The effective nonlinearity may
thus be increased through either increasing the Young’s modulus, or decreasing the pre-stress.

Sensitivity of initial conditions

The previous subsection has shown that FPUT behavior may be observed for string resonators that are rep-
resented by the w-displacement string model for an initial condition that resembled the first mode’s mode
shape. This is a static initial condition, as the amplitudes and velocities of all other modes is assumed to be
zero. Should a resonator be manufactured that suits the requirements, one may still never exactly replicate
this initial condition in experiments. This is due to the fact that little (simple) non-destructive methods exist
that can statically displace these nanoresonators. This section will therefore explore the sensitivity to an ini-
tial velocity for the first mode, as well as some displacement of the first modes uneven harmonics (the third
and fifth mode).

First, the dynamic first mode’s initial condition may be considered, where an initial velocity is added to the
first mode, to replicate ringdown from an initial condition where the system is driven near the first mode’s
resonance frequency. The initial velocity is assumed to be related to the initial amplitude through Equations
C.13 and C.14, where it is assumed that the displacement is a function of a trigonometric function.

N
w(t) =) Apsin(w,1) (C.13)
n=0
d d N N
=22 =213 Asin@nt)| = Y. Apw,cos@,) (C.14)
dt dat n=0 n=0

For a pure initial displacement of the first mode, A; = wy and A,, = 0 for n = 2. The velocity is then given by:
w= Wow1.

To see FPUT behavior in a string-like resonator, one requires an initial displacement of 11.82 micron. For a
string-like resonator with a fundamental mode frequency of wy = w; = v'1.32 x 1012 = 1.15x 10% rad/s, this ini-
tial modal velocity should thus be 1w = wyw; = 13.59m/s. Such an initial condition will generate the dynamics
from Fig. C.3

For this dynamic initial condition, there is immediate energy transfer, but no immediate energy dominance.
Before this dominance occurs, the first mode’s energy first decreases (in the first 0.1ms, under increase of the
higher modes), it subsequently increases and then decreases before the higher modes start to dominate the
first mode’s energy. After this dominance, the first recurrence of the first mode (at approximately 0.18ms) is
not as "perfect” as that for a static initial condition: at this time, the higher modes still have quite some energy
due to the nonzero amplitude of the higher modes. The amplitudes of the higher modes decrease to smaller
magnitudes at around 0.78ms. The first mode then increases and generates near full recurrence (note that
the system is weakly damped) at 0.78ms, which is significantly longer than the first recurrence from Fig. C.2.
At this time point, the coupling energy is also very small. FPUT-like behavior is thus still visible for dynamic
initial conditions, where both the velocity and amplitude of the first mode are nonzero.

However, to achieve such large initial conditions (e.g. the required 11.82 micron), one will have to force the
system far into the nonlinear regime. It was shown in the experimental section that in this nonlinear regime,
one will also see excitation of higher modes through harmonics of the first mode. The subsequent ringdown
simulation will thus be run for nonzero amplitudes (and velocities) of the first, third and fifth modes. It is
assumed that the third and fifth mode have no larger magnitude than 15% and 5% of the initial amplitude,
respectively, generating the following initial amplitudes (and velocities):

A1 =80%wy =9.46um, A =0um, A3 =15%wo =1.77um, Ay =0um, As =5%wy =0.59um, Ag =0um
Al = A1 Wy = 10.857’71/5, Az = Ang = Om/s, Ag = A3w3 = 6.04m/s,

Ay = Agws =0mls, As = Asws = 3.28m/s, Ag = Agwe =0m/s
(C.15)
The results of such initial conditions are presented in Fig. C.4. Initial weak excitation of the higher uneven
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Figure C.3: Numerical simulation for a string model that includes only vertical displacements. The linear stiffness ratios are
non-integer and equal to those of the FPUT problem. The initial condition resembles the first mode with a maximum displacement of
11.82um and an initial velocity of 13.59m/s. This simulation was run with a quality factor of the fundamental mode of 100,000, the
Q-factors of the higher modes scale with the inverse of the mode number. Shown in (a), (b) and (c) are the linear, single mode and
coupling energies, respectively. The modal amplitudes and velocities in are shown in (d) and (e).
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Figure C.4: Numerical simulation for a string model that includes only vertical displacements. The linear stiffness ratios are
non-integer and equal to those of the FPUT problem. The initial condition resembles dynamic excitation of the first, third and fifth
modes, as is shown in Eq. C.15. This simulation was run with a quality factor of the fundamental mode of 100,000, the Q-factors of the
higher modes scale with the inverse of the mode number. Shown in (a), (b) and (c) are the linear, single mode and coupling energies,
respectively. The modal amplitudes and velocities in are shown in (d) and (e).
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modes still generates energy transfer (as expected, since all these modes are initially excited), as well as dom-
inance. The initial energy (at ¢ = 0s) is distributed among all three uneven modes through a nonzero initial
condition. A large fraction of the energy is located in the first mode after approximately 0.06ms. Thereafter,
the third and fifth mode dominate the first mode for some time, before some of the energy is returned to the
first mode at 0.15ms, but this time for a larger amount of energy, since the amplitudes of the third and fifth
modes have decreased (Fig. C.4(d)).

Later, at approximately 0.23ms, the energy, amplitude and velocity states from 0.065ms are achieved again.
Similarly, the state at approximately 0.15ms appears to return at around 0.30ms. The previous analysis shows
that energy exchange may still be observed for less "perfect” initial conditions, where the higher modes have
anonzero initial energy. The typical FPUT phenomenon; the immediate recurrent behavior in the energy plot
is more difficult to define. For these initial conditions, one should distinguish between recurrence of the ini-
tial conditions, or recurrence of a certain state (e.g. where all energy is located in the first mode). Nonetheless,
both types of recurrence may be observed here.

C.1.5. Conclusion

This section has shown that though the magnitudes of the modal coefficients of the w-displacement string
model and the FPUT model do not match, they could display similar behavior for some non-integer fre-
quency ratios and certain sets of initial conditions. The linear and single-mode energy still show that there
is recurrent behavior visible, which is verified by the modulations of the amplitude. This single-mode energy
is assumed to sufficiently represent the modal energies since the (nonlinear) terms only become significant
when the amplitudes of the associated modes are large.

C.2. Design for FPUT behavior

The previous sections have shown that FPUT behavior may be observed for a string model which only ac-
counts for vertical displacements. However, experiments have shown that for at least one resonator, this
model probably does not replicate the string’s dynamics accurately, as this requires the inclusion of longi-
tudinal displacements. To design a resonator that could potentially show FPUT behavior, one should thus
optimize the structures which account for displacements in vertical and longitudinal directions. This section
will show methods that may be used to improve the nonlinearity of these string resonators. The requirements
of the system will be elaborated upon first. Thereafter, a method which could improve the nonlinearity of
beams in literature will be presented, before the STEP method is employed to test this method.

C.2.1. Requirements for FPUT behavior
Other than the requirement that Q-factors should be sufficiently large, two requirements have previously
been established, which determine whether a structure could show FPUT-like behavior:

1. The frequency ratios should be a non-integer value; slightly lower than the integer frequency ratios for
strings.

2. A back-coupling term (the bYll)l -term) should be nonzero, this will cause initial excitation of mode n

through excitation of the first mode.

Section B.1 has shown that the continuous cross-sectional strings do not posses all these requirements, since
its frequency ratios are integer. It was previously shown that a system that is represented by the w-displacement
model with non-integer frequency ratios may show FPUT behavior; this model is only valid for resonators for
which it is safe to ignore the longitudinal displacements. Experimental results have however shown that it
is likely that this w-displacement model is not entirely accurate for the considered string resonators; from a
mechanics point of view, it is sensible to include the longitudinal displacements of a system. Hence, a method
should be sought that can generate the required modal coupling coefficients and frequency ratios for a system
that does include longitudinal displacements. This section will therefore -numerically- show which methods
may be employed to design a resonator that will generate such coefficients. The origin of the nonzero back-
coupling coefficients was shown in Section B.7, it essentially depends on the mode shape and the nonlinear
displacement formulation. The mode shapes of these resonators may be easily changed by local variance
of the cross-sectional area of the string. The next section will show some theories on improvement of the
nonlinearity in literature.
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C.2.2. Literature - improvement of the nonlinearity of beam resonators
Several studies (e.g. those by Dou and Li [9, 18]) have shown that the Duffing nonlinearity of clamped-

clamped beam resonators may be enhanced by local variance of the beams’ geometries. Dou and Li found
that the nonlinearity of a constant cross-sectional area beam (Fig. C.5a) could be improved by locally increas-
ing the beam’s thickness, specifically at approximately 0.25L and 0.75L (Fig. C.5b). Oppositely, by decreasing
the thickness at certain locations (Fig. C.5c), the Duffing nonlinearity can be decreased. The results of these
iterations show that the resonance frequency decreases with increasing nonlinearity and vice versa. Li has
experimentally validated the results for Dou’s designs, showing that by locally varying the thickness, one may
tune the resonators behavior: one may increase the size of the linear regime by decreasing the magnitude
of the nonlinearity and vice versa for a smaller linear regime [18]. The design optimization was constrained
through a condition on the frequency ratios, which was set to remain close to the (integer) internal resonance

conditions.
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Figure C.5: Four designs which have been analysed for their nonlinear behavior. C.5a-C.5c¢ depict three designs for clamped-clamped
beam structures which have been designed for a certain Duffing nonlinearity. C.5a depicts the initial design, C.5b shows a design for
maximum nonlinearity and C.5¢ shows a design for minimum nonlinearity. C.5d depicts the results of the iterations to find the
strongest coupling between two modes (which are in 2:1 IR) of the T-structure. Adopted from [18].

The coupling terms of these improved clamped-clamped beam structures are not reported. However, Li does
report a modal coupling optimization scheme for a T-structure (Fig. C.5d). This optimization is focused on
the coupling between two modes, and it is sought for the condition where these modes are in 2:1 internal
resonance. Fig. C.5d depicts initial and final designs; the latter was found to have the largest modal coupling.
This structure is claimed to have a quadratic (passive back-)coupling term (ail)). This ail)-term passively
excites mode 2 through excitation of mode 1. This method may be employed to find structures that display
FPUT behavior. However, the nonlinearity should be cubic for the FPUT -model (and, through the theory of
resonant terms, the coupled mode should be located at mode 3). Regardless, this T-structure may be tested
to see if it replicates FPUT behavior that is similar to the FPUT a-model.

It is important to note here that the studies by Dou and Li are based on beam elements, which account for
more strain formulations (e.g. mid-plane stretching and bending) than the truss-structures in the current
research [9, 18]. This assumption may be valid for the dimensions and pre-stress of the present structures.
The next sections will first attempt to verify (using the STEP method) the results form Figures C.5a and C.5b,

before attempting more complex geometries.

C.2.3. Limitations of the STEP method

Before attempting to verify the results from Dou and Li using STED it is paramount to first characterize the

limitations of this method.
The STEP method allows for rapid computation of the modal variables for various designs. The system has
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shown to work for strings (including longitudinal and transverse displacements), square and circular mem-
branes, fully clamped plates and cantilevers. The STEP method (in its present form) may thus be used for
fully constrained systems, such as the fully clamped strings and membranes/plates which are clamped on all
sides.

The STEP method produces reliable results for (continuous) strings: the linear as well as nonlinear variables
agree very well with the analytical (uw- and uvw-displacement) models. However, these string systems are
modelled based on some assumptions. The first is that the cross-section of the string is assumed to be con-
stant and square. For the SizN4 resonators that are considered in the present study, this is not the case, but
this model generated sufficient agreement with experiments on continuous strings, since the axial deforma-
tion is assumed to be the governing displacement model. A string-like resonator with non-integer frequency
ratios may be generated by varying the cross-sectional area along the length of the string (i.e. by making the
string’s cross-sectional area discontinuous).

Such designs would be most sufficiently represented by a model that includes the non-uniform tension along
the length of the string. Plate deformation models allow for such non-uniform tension due to the inclusion of
additional displacement directions in the strain formulation, causing an inhomogeneous stress distribution
along the width of the resonator [15]. However, the present STEP software does not allow for this, as the pre-
scribed displacements of plates (clamped on 2 edges) are not sufficiently constrained, generating incorrect
displacements and subsequently incorrect coupling coefficients. The modelling method is hence restricted
to the use of truss models (which account only for axial deformations due to a displacement), for systems
which are pinned at each end.

Such a discontinuous cross-sectioned string may however be modelled through discretization of string mod-
els. This discetization entails that a single string is divided into multiple string elements, where the cross-
sectional area of each element may be varied. Fig. C.6 depicts a structure which consists of several cross-
sections. The structure consists of 5 elements, of which three have dimensions Ly, w; and two have dimen-
sions L, and w-; the thickness is assumed to remain constant.

Figure C.6: A string design consisting of 5 elements, of which 3 have have dimensions L, w; and two have dimensions Ly and wy. The
system is pre-stressed on the edges with a pre-stress of o. The system has a constant thickness (into the paper) of ¢.

The pre-stress generates a force that is assumed to scale linearly with the the cross-sectional area (A; = tw;).
This force is constant over the length of the resonator.

Fpre=01tw) =0otw) =02tw; (C.16)

The thickness is constant, and o is equal to the pre-stress at the edges: 0, = g¢. The constant force allows
for computation of the pre-stress in the second element, as follows:

O2=0)0—=0¢9—. (C.l?)
twy

This method allows one to check whether this method of locally varying a string’s cross-sectional area can
generate (1) shifted frequencies and (2) additional coupling coefficients. The next section will show how this
is modelled using COMSOL.

C.2.4. Design method

The design from Fig. C.7 consists of 100 truss elements. It is assumed that the length and thickness of each
of these elements is constant. The width of each element may be varied, generating a different cross-section
and thus different stresses in these elements. Additionally, through this variance in the width, the mass and
stiffness of each element is varied, which will influence the modal quantities. Tables E.11 and E.12 depict the
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Figure C.7: A COMSOL model of a string design. The design consists of 100 elements (with constant length and width), the width may
be varied per element.

linear and nonlinear modal coefficients, which show that there is some small (negligible) discrepancy with
the continuous model (from Tables E.7 and E.8). In addition, there are some coefficients that are nonzero
which should be zero, though their influence is assumed to remain small due to the small magnitudes of
these coefficients with respect to the others; these terms are multi-mode coefficients, of which the effect will
be negligible when the amplitude of one of these modes remains small.

Comparison of beam elements and truss elements
The present form of STEP cannot accurately replicate the results that were found by Dou, since it can only
account for axial deformations in truss models. This simplification -from beam elements to truss elements-
will probably result in different results, since some deformation mechanisms (e.g. mid-plane stretching due
to bending) are neglected. However, the qualitative results from Dou and Li [9, 18], may be compared to
those for truss models, to see whether this theory will still hold for systems that account only for axial defor-
mations.

The designs from Li have considerably larger ratio of width versus thickness (% =

L= 9‘;‘;"; = 40 for the considered 1110um string), generating much larger bending stiffness for Li’s struc-

tures. Modelling these beam designs using truss elements would hence be very inaccurate. The present
analysis will therefore compare the qualitative results of local variance of a systems cross-sectional area (i.e.
beam elements versus string elements); this will generate insight on how the eigenfrequencies and Duffing
nonlinearities change for string systems. Another difference is that Dou and Li vary the thickness, where for
truss models, one should change the cross-sectional area, which is achieved in this (truss) analysis through
variance of the width.

20um

Sum = 3.33 for Li, and

The resulting coefficients of several designs similar to those in Fig.’s C.5a, C.5b and C.5c are shown in Table
C.6. All modal coefficients (up to the sixth mode) are shown in Sections E.3.1, E.3.2 and E.3.3, respectively.

Table C.6: Single mode coefficients for the first 3 vertical modes of a discretized string of 100 elements. The characteristics of the string
are similar to Table C.4. The coefficients are tabulated for three designs: the default design (constant width), a design for increased
width near the clamping points and at 0.25L and 0.75L (similar to Fig. C.5b, and wspring = 4pm and Wmass = 3Wspring = 12pm) and a
design for decreased width near at 0.25L and 0.75L (similar to Fig. C.5¢ and wepring = 4pm and wmass = % Wspring = 1.33pum.). The
coefficients were found using STEP.

Design Default (const. width) Max Min

Eq. (1) (2) (3) (1) (2) (3) (1) (2) (3)

kn [s2] 1.32x 1012 526x1012  1.18x1013 | 255x1012  734x1012  224x100 | 1.57x1012  8.03x1012  1.66x 101

wp [rads™!] 1.15x 108 2.29x 108 3.44x 108 1.60 x 106 2.71x 108 4.73x 108 1.25x 106 2.83x 108 4.08 x 108

bunn ms™2] | 2.05x10%  327x10%  1.66x10% | 1.17x103  966x1033  9.01x103 | 1.83x1033  4.80x103%  2.05x1035
n

% [m] 155x1021  622x1021  1.41x10%22 | 459x1020  132x10%21  4.02x102! | 1.17x1021  598x102!  1.23x10%2

n 1.00 4.00 9.00 1.00 2.88 8.78 1.00 5.11 10.58

@n 1.00 2.00 3.00 1.00 1.70 2.96 1.00 2.26 3.25

bnnn 1.00 16.00 80.98 1.00 8.26 76.97 1.00 26.17 111.95

The modal coefficients of the string designs based on local in- or decrease of the cross-sectional area are
shown in Tables E.13 and E.15. Clearly, these string-like structures do not follow the same trend as beam
structures: locally increasing or decreasing the width results in higher frequencies than the default model.
The nonlinearity of the first mode is decreased as well, for both designs. The linear frequency ratios appear
to decrease with a local increase of the width, and vice versa. The ratios of the Duffing coefficients follow the
same trend, and the relative nonlinearity (b;’fg” ) also decreases with the variance of the dimensions. The effect
of the coupling coefficients, which may be found by comparison of Tables E.12, E.14 and E.16, is small. Some
parameters slightly increase, where some slightly decrease. It is however clear that the coupling coefficients
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(especially those of the higher modes) increase the most trough the local decrease in width. However, the
bﬁ)l -term is zero for all designs, implying that these designs do not generate coupling terms that can generate
FPUT behavior.

Zipper-like designs

Another method that may be (numerically) tested is a zipper-like design. This design is similar to what is
depicted in Fig. C.6, but it may contain more thin (referred to as string elements) and thick (referred to
as mass elements) elements, generating a chain of such elements. This system replicates the (hypothetical)
FPUT system trough the alternating spring-mass elements, which represents a discretized string. An example
of such a zipper-like design is depicted in Fig. C.8. This design consists of 16 masses (each mass consists of 2
elements of width wmass) and 17 springs (here, each of these strings consists of 4 elements of width wspring).
Two designs were tested: one with wspring = 4um and Wmass = 4Wepring = 16pum and another with a larger
mass width: wspring = 4um and Wmass = 10wWspring = 40um. The single-mode coefficients of each iteration are
tabulated in Table C.7.
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Figure C.8: A string design in COMSOL. The design consists of 100 elements (with constant length and width). The black elements are
the spring elements with wgpring and the blue elements have width wmass. All other design characteristics are similar to Table C.4.

Table C.7: Single mode coefficients for the first 3 vertical modes of a discretized string of 100 elements. The coefficients are tabulated for
two zipper-like designs: a design wgpring = 4um and Wmass = 4Wspring = 16pum) and a for wypring = 4pm and
Wmass = 10Wspring = 40pm.). All other design characteristics are similar to Table C.4. The coefficients were found using STEP.

Design Wmass = 4Wspring Wmass = 10Wspring |
Eq. (1) (2) (3) (1) (2) (3)
kn [s72] 6.57x101T  263x1012  590x101%2 | 329x10TT  131x1012  294x10T2
wp, [rads™!] 8.11x 10° 1.62 x 108 2.43x10% 5.73x 10° 1.14 x 108 1.71 x 106
bunn ms™2] | 672x1032  1.07x103%  541x10%° | 1.79x1032  2.85x103%  1.43x1034

n
b(,'g;%” [m] 1.02x 1021 4.07x1021  9.17x10%2 | 544x10%0  219x1021  4.86x 102!
n 1.00 4.00 8.97 1.00 3.99 8.94
@n 1.00 2.00 3.00 1.00 2.00 2.99
bnnn 1.00 15.96 80.48 1.00 15.92 79.92

The results are shown in Tables E.17, E.18, E.19 and E.20 which indicate that the linear frequencies ratios have
not changed much: they have only decreased for a couple per cents. The same is visible for the ratios of the
nonlinear coupling coefficients: the influence is hence very small; they are close to those of a constant width
design.

These two designs show that the zipper-like designs with 16 mass elements of width wp,,ss and 17 spring ele-
ments of width wgpring do not have a significant influence on the modal parameter ratios. The linear variables
seem to decrease with an increase width of the masses, which tends to the required non-integer frequency
ratios for the default FPUT system. However, the effect on the nonlinear coefficients is small: the coefficients
hardly change with respect to those of a continuous cross-sectioned string. The reason behind this small
effect may be that the mode shapes of such resonators remain fairly similar to those of continuous strings,
which will generate modal variables that are similar to those of continuous strings. The mass and stiffness are
uniformly distributed over the length of the string, which generates symmetrical mode shapes. Appendix B.7
shows that the origin of the coupling is in the displacement formulation, which in turn generates coupling
terms from the nonlinear displacement formulations. These nonlinear displacement formulations depend
on the shape of each mode, where symmetry along the length of the mode shapes may result in zero coupling
coefficients. Theoretically, by tuning the shapes of the modes, one should thus be able to generate different
coupling coefficients. These mode shapes may be tuned by introducing asymmetry to the system, by inho-
mogeneously distributing the mass or stiffness over the length of the string. This may be achieved by locally
increasing the number of "mass” elements, as will be shown in the next section.
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Asymmetric designs

An asymmetrical mode shape may be generated by inhomogeneously distributing the mass (or stiffness)
along the length of the string. Fig. C.9a depicts such a design, where (from left to right) the first 10 elements
have width wspring, the following 30 elements have width wmass, and the last 60 elements have width wpring.
The mode shapes are shown in C.9b to C.9g. The mode shapes clearly show asymmetry.
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Figure C.9: Design and mode shapes of an asymmetrical string design. C.9a depicts a design where the black elements (the first 10 from
the left and the last 60 elements from the right) have width wgpring = 4pm, elements 11 to 40 (in blue) have width wmags = 40pm. All
other design characteristics are similar to Table C.4.
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Table C.8: Linear stiffness and Duffing coefficients for the first 6 modes of an asymmetrical discretized string of 100 elements from Fig.
C.9. The coefficients were found using STEP. wypring = 4um and wmass = 40pm. All other design characteristics are similar to Table C.4.

Eq. 1) (2) (3) (4) (5) (6)

kn [s2] 286x101T  1.88x1012  377x1012  6.80x1017  123x1013  1.60x 103

wp rads™ 5.35 x 10° 1.37x 108 1.94 x 108 2.61x 108 3.51x 108 4.00x 108

bunn Im™2s72] | 1.33x10%2  575x1033  230x10%  752x10%%  247x10%5  4.15x10%°
n

b(,'é;%" [m] 465x1020  306x1021  6.10x1021  1.11x10%2  2.01x10%22  2.59x10%2

fn 1.00 6.58 13.18 23.76 43.11 55.93

@n 1.00 2.56 3.63 4.87 6.57 7.48

brnn 1.00 43.32 173.50 566.05 1860.76 3127.26

The results of the STEP analysis of this design are tabulated in Tables C.8, E.21 and E.22. These indicate that
the linear stiffness (and hence the linear resonance frequencies) have dropped to non-integer ratios. The
relative nonlinearity has increased significantly with respect to the mode number, showing that the (rela-
tive) nonlinearity of a mode may in fact be engineered in this manner. However, though most of the modal
coupling coefficients have increased, none of the bg’})l-coefﬁcients are nonzero for n > 0. It is hence likely
that these coefficients generate little initial energy transfer, which reduce the likelihood of observing FPUT

behavior for these structures.

C.2.5. Conclusion

This section showed that through variance of the cross-sectional area of string-like systems, one may tune
the frequency ratios, tune the (Duffing) nonlinearity of especially the higher modes while the coupling ra-
tios hardly improve. Nonetheless, the method that is employed here is far from perfect, as it is limited to
string-like resonators, which can be modelled by truss elements only. This implies that deformations of these
systems only generate axial deformation in the resonator, while in reality, much more displacement mecha-
nisms may be present. Expansion of this method is thus necessary, such that all possible displacements are
accounted for in the computation of the modal variables. Dou and Li found that a structure consisting of two
perpendicular beams may also have nonzero quadratic back-coupling coefficients [9, 18]. This STEP method
should be expanded to work for such designs as well. Lastly, since the possibilities for geometries are endless,
a topology optimization or machine learning algorithm could be linked to the STEP software, such that the
modal coefficients of each design may be efficiently analysed. Such study would have several constraints,
among which two should be as follows: (1) the frequency ratios of the system should be non-integer (and
lower than the mode number) and (2) the method should find nonzero back-coupling coefficients.






Methods

This section will elaborate on some of the methods that are employed in this research, these consist of nu-
merical methods, analytical (scaling) methods and numerical simulations. The numerical methods will first
elaborate upon a method which is used to determine the modal coefficients: the STEP method. Subsequently,
the resulting numerical integration methods are shown, which allow for solving of the differential equations
and subsequent analysis of the resulting dynamics. Three clear distinctions in the integration methods may
be made: (1) frequency characterization, (2) forced vibrations and (3) free vibrations (ringdown). All three
methods -though somewhat similar- will be explained in this section. The analytical methods will show some
scaling methods, which are used for further analyses. The last section will highlight the procedure for numer-
ical simulation of experimental results.

D.1. Numerical methods

D.1.1. Numerical determination of the modal coefficients

Nonlinear effects may become visible in structures if a (large-amplitude) out-of-plane displacement is ap-
plied to this structure. A (geometric) nonlinearity becomes apparent in the fact that the imposed out-of-plane
displacement does not only result in an vertical (out-of-plane) deformation, rather it also shows deformation
in a plane perpendicular to this out-of-plane displacement: the longitudinal (in-plane) direction. A common
-though simple- example is that of applying a transverse load to an elastic band: here, the band will deflect in
the transverse (out-of-plane) direction, but it will also show some deformation in the longitudinal (in-plane)
direction. Now, if we would consider a linear model, where all displacements follow a linear relationship, we
cannot capture this effect; the system should be expanded to higher orders to find an equation that suits this
(nonlinear) behavior sufficiently. The dynamics of a resonator may be approximated by the following modal
equations of motion, if two modes are considered and the nonlinearity is approximated up to third order:

- 1) m 2 (68) 1 2 @ .3 m 2 (e8] 2 @1 3 _ ()
q+ k1 qitayqyta),q1qz2+ay, 4, + b111q1 + buqu qz + blzgqlqz + b222q2 =F

5 2) 2 2) @) 2 2) (2 2)

(D.1)
2 2 2 2 2
G2+ k5 qx + afy af + ayl a1 g2 + a5 a3 + b, 4 + b, a5 a2 + b, a5 + by a3 = FP.

The coefficients of these equations can be found using two methods: analytical and numerical methods.
The former method is quite an intensive process, as it requires solving lengthy equations, as was shown in B.
Furthermore, to reduce complexity of the equations, the analytic method is limited to continuous or constant
cross-section geometries. If one would try to build an analytic model that accounts for discontinuities in e.g.
the cross-section of the structure, the model will quickly become complicated. The numerical models could
make use of finite element methods (FEM) to determine the nonlinear stiffness of the structures. Muravyov
and Rizzi presented a method, the STiffness Evaluation Procedure (STEP), to find the nonlinear coefficients of
the modal equations of motion for any structure using FEM-software [22]. The following citation of Muravyov
and Rizzi’s article accurately portrays how this method works:

"The equations of motion of a multiple degree-of-freedom, viscously damped geometrically non-

113



114 D. Methods

linear system can be written in the form:
MX(#) + CX(2) + KX(1) + T(X (1)) = F(2) (D.2)

where M, C, K are the mass, proportional damping, and linear stiffness matrices, respectively,
and X is the displacement response vector and F is the force excitation vector. For the problems
of interest, the nonlinear stiffness force vector I'(X) represents a deviation from the linear stiff-
ness force vector KX and is more than adequately represented by second and third order terms
in X(#). When displacements are small, the second and third order terms become negligible and
the total stiffness- related force vector is reduced to the regular linear term KX(#). Solution to Eq.
(1) via any method requires knowledge of the system matrices. In the context of a commercial
finite element program, M, C, K are generally available. The nonlinear stiffness is related to T’,
which is typically not available within a commercial finite element program. Therefore, a means
of numerically evaluating I" to determine the nonlinear stiffness was developed. A set of cou-
pled modal equations with reduced degrees- of-freedom is first obtained by applying the modal
coordinate transformation

X =g (D.3)

to Eq. (1), where @ is the eigenvectors obtained from (1) without I’, q is the vector of modal coor-
dinates, and the time dependence is implied. Generally, a subset of L eigenvectors are included
in the solution such that (L < N), and N is the number of physical degrees of freedom. In the SI
system, @ has units of [m]; q is non-dimensional

This coupled set is expressed as

Mq+Cq+Kq+y(q1,qo,....q1) =F (D.4)
where
M=o M = [I]
C=o"Cco=[2¢,0,]
K=0"K® = [2(,0,] (D.5)
y=oIT
F=0'F

q1, G, ..., qr, are the components of q, and w;, are the undamped natural frequencies. In the SI
system, entries of M have units of [Nms?], entries of C have units of [Nms], and entries of K, Y
and F have units of [Nm]. By writing the nonlinear force vector in the form

L L L

L L
Yr(@n e ) =) Y a5 didqe+ Y Y Y by dideqn r=12,.., L (D.6)
J=lk=j i=lk=ji=k

the problem of determining the nonlinear stiffness is reduced from one in which a large set of
simultaneous nonlinear equations must be solved to one involving simple algebraic relations, as
will be subsequently shown. This form is sufficient for characterizing the type of nonlinearity of
interest in this paper and facilitates the subsequent solution of the equivalent linear system. Its
evaluation entails solving for the coefficients a;; and bjx; using a new procedure developed for
use with finite element programs having a nonlinear static solution capability. The procedure
is based on the restoration of nodal applied forces by prescribing nodal displacements in both
linear and nonlinear static solution settings. The total nodal force Fr may be written in physical
coordinates as

Fr =Fr +FnL = KX +T'(X¢) (D.7)

where X, is a prescribed physical nodal displacement vector, and Fy, and Fyy, are the linear and
nonlinear contributions to the total nodal force. Note that when displacements X; are small,
the nodal force vector is approximated by a regular linear term Fy, = KX, since nonlinear terms
become negligible. Fy, is first obtained by prescribing X, in the linear static solution. Fy is then
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obtained by prescribing X, in the nonlinear static solution. Finally, the nonlinear contribution
FNL is obtained by subtracting Fy, from Fr, or

Fyp =TXc) =Fr—Fp (D.8)
To illustrate the technique, one can begin by prescribing the displacement fields
=+
Xe=+h1n (D.9)
Xe=—p1n

The nonlinear nodal force contributions Fyy, are determined using (7) after solving the linear and
nonlinear static solutions. These may be written in modal coordinates as

Enr, =0 Fyp, =0 y(+p1q1) = [al 11y + (D] )1 1 p

= —_ s — T~ 1,7 i (D.10)
Fni, =@ Fnp, =0 y(—p1q1) = lay 1qiqh — b1 i an

where the sought stiffness coefficients [a],] and [b],,] are vectors of length L. Note that the other
nonlinear terms do not appear in (9) since g; = 0 for j # 1. Since g is a known scalar, the coef-
ficients [ah] and [b{ ;1) for r =1,2,..., L can be determined from the resulting system (9) of 2 x L
linear equations. The remaining coefficients [a]’. j] and [b; i j] for j =2,3,...,L can be determined
in an analogous manner. A similar technique can be employed to determine stiffness coefficients
with two unequal lower indices, e.g. [a],], [b],,] and [b],,]. Coefficients of this type appear only
if the number of retained eigenvectors is greater than or equal to two (L = 2). Prescribing the
displacement fields

Xe=+d1q1+ 2492

Xe=—¢p191 — P22 (D.11)

Xe=+P1q1 — 292

results in the following equations

Byp, =@ T(+¢1q1 + pago) =

[a1,)q1q1 + (D111 11 g1 1 + (@551 G2G2 + (D551 G2G2 G2 + (a1, 12 + (D151 G1G1 G2 + (D151 419292
Fyp, =0 T(-¢p1q1— p2g2) =

[ay)q1 1 — (11111 G1 1 + [a35) G2G2 — (D351 G242 G2 + (a1, G1G2 — (D151 91612 = (D151 419292
Fnr, =@ T(+¢1q1— p2g2) =

[ay11q1q1 + [by111G1 1 Gy + [a551G2Go — (D51 G2 Ga G2 — [ay,] G1 G2 — (D151 G1G1 G2 + (D151 1G22
(D.12)

Summing the first two of Eq. (11) results in

Fyi, +Fni, =2[a])q1 g1 +21al,) g2 g2 + 21al,1 g1 g2 (D.13)

from which the coefficients [a{Z] may be determined, since [a{ ,Jand [agz] were previously found.
Then, from the first and third of Eq. (11), the coefficients [bﬁz] and[b{zz] may be determined
from the 2 x L system of equations. In this manner, all coefficients of the type [b]’.j ) and [b,’ckj]

for j,k =1,2,...,L may be found. For cases when the number of retained eigenvectors if greater
than or equal to three (L = 3), coefficients with three unequal lower indices, e.g. [b{23], may be
determined by prescribing the displacement field

Xe=+p1q1+ P2g2 + P3g3 (D.14)

The resulting equation

Fne =@ T(+p1q1 + 2o + P3g3) =
lan, 1 g1 g1 + (a5, G2 G2 + [as3) g3 qs + [at,) g g2 + [aj311 g3 + (a3 G2 g3 + (b1 1y g g +
(D5921G2G2 G2 + [D4331G3G3q3 + [b1151G1G1 G2 + (D301 1G2G2 g1 + [D]131G1 G1 g3 + [Dia11G3 g3 g1+

[bézg] qz2q92493 + [bggz] q3q3qz + [bizg] q192493
(D.15)
contains one column of unknown coefficients [b],,]. All coefficients of type [b]’. ] # k#1) can

be found in this manner.”
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Figure D.1: Method for numerical analysis of the modal equations of motion. The dashed box is the STEP method. The subsequent
steps are elaborated in the next section.

Eventually, the coefficients of the following mass-normalized nonlinear reduced order model (ROM) -of N
modes- are found:

N N N N L
G+ kg + Y Y a;fk)qjqﬁ Yy b;’k)lqjqkql =0,r=1,2,.,N (D.16)
j=lk=j j=lk=jl=k

This method was implemented by Vincent Bos, a former DMN student, who built software which combines
both Matlab and COMSOL Multiphysics. The software operates according to the flowchart in Fig. D.1.

The ”in-plane” block indicates in what method the in-plane (longitudinal direction) modes are included in
the model. Here, static condensation is used. This static condensation basically implies that the in-plane
displacement direction is left free, such that the solver can search for an equilibrium position where the in-
plane forces result in a small potential energy. This is quite an efficient procedure, as it only explicitly solves
for the out-of-plane modes [5]. A more complicated procedure would be to explicitly include in-plane modes
in the model, but this will significantly increase computation time.

This STEP method is employed on string models in COMSOL. These string models are built using COMSOLs
truss physics, which account only for axial forces. The downsides of this method are as follows:

¢ The cross-sectional area of the model is assumed to be square or circular;

¢ Complicated displacement phenomena, such as bending or shear in the system are neglected. These
will become more dominant with larger cross-sectional areas. Truss elements will have a constant stress
distribution in the vertical and transverse directions;

¢ The resonator’s boundary conditions are simply supported, where it would probably be more fit to
model the system with clamped-clamped boundary conditions.



D.1. Numerical methods 117

D.1.2. Vibration simulation schemes

Three simulation schemes are employed in this thesis: (1) frequency response simulations, (2) forced oscil-
lation simulations and (3) free oscillation simulations (ringdown). Generally, each of these three methods
solves the following equations of motion. Here, each method is based on a free parameter:

N N N N N
m® G (0 +k" g0+ g0+ Y Y a;.rk)qj(t)qk(t)+z Yy b;’,jlqj(t)qk(t)ql(t) =FOsin(wst), r=1,2,..., N.
Jj=lk=1 j=lk=jl=k
(D.17)
Where r denotes the mode number of the equation of motion: this ranges from 1 to the total amount of
modes that are considered in the simulation: N. The variables m"”, k", ¢V and F") denote the modal mass,
stiffness, damping and force coefficients. The nonlinear variables, a}rk) and bj.rk)l denote the quadratic and
cubic nonlinear modal coefficients of the equation. The sin (w ¢ )-term generates a harmonic excitation of
the system, at forcing frequency w . The degrees of freedom (the modal coordinates), are denoted by g, (1)-
and q;(1)-, qi(1)- and g;(1)-terms. To generate shorter notations, the time dependency of these coordinates
is not written down.
N N N N N
m" g, + k" g+ gy + Zlkzl alajai+ Zl lekbﬁ.’,glqjqkq, =F"sin(ws1), r=1,2,.,N  (D.18)
j=lk= j=lk=jl=

by
.

Frequency response simulation

The frequency response of Eq. D.18 is simulated in AUTO, a powerful differential equation solver which gen-
erates periodic solutions which also allow for detection of bifurcations and continuation after such bifurca-
tions.

This simulation consists of two sweeps: the force sweep and the frequency sweep. Initially, the force magni-
tude (F"") is swept over a specified range of values (while the forcing frequency w r remains constant). There-
after, the opposite is done: the force magnitude is kept constant while the forcing frequency is swept. The
software subsequently calculates the modal responses for all N modes: g for r = 1,2,..., N. This generates
amplitude versus frequency plots, which may be used to quantify the nonlinear behavior of resonators. These
amplitude versus frequency plots depict the modal response to a certain (drive) frequency, which generate
insight into both Duffing nonlinearity and modal coupling.

Forced oscillation simulations

The time evolution of forced oscillations may be monitored by solving Eq. D.18 for a constant force magnitude
F). The results of this simulation are the modal amplitude and velocity over time. These simulations are
conducted in Matlab, using the ODE45 solver, which may compute the solutions for non-stiff ODEs. The
results from this method provide insight into the periodicity of the solution.

Free oscillation simulations
The time evolution of free oscillations (ringdown) may be monitored by solving Eq. D.18 for zero-force mag-
nitudes, providing the time response of a system. The equation of motion that is solved here is hence as
follows:
N N N N N
m g, + k" g+ g, + P3P a}rk) apae+y. Y Y bs.’ljlqjqkql =0,r=1,2,..,N. (D.19)
Jj=lk=1 j=lk=jl=k
These simulations are also conducted using Matlab’s ODE45 solver. This method is particularly relevant for
studies on the decay of a system.

Simulation of forcing

The simulations of forced oscillations in this research are conducted for application of forces through base
excitation. In experiments, this base excitation is generated by fixing (with tape) the chip (which contains the
resonator) to a piezo-element. By applying a voltage to this piezo-element, a force is generated on the chip
and is subsequently applied to the resonator. The force that is applied to the resonator through excitation
of the chip is considered to be distributed homogeneously over the length of the resonator. The conversion
from this distributed load to a modal force is shown in the following.

Consider a string of length L and a distributed force of Fgjs¢r = FZ” , as is depicted in Figure D.2.
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Fdistr

Figure D.2: Distributed force over a clamped-clamped string.

If the string is discretized over n elements, this will generate a distributed force vector F, ; of length n. Sub-
sequently, to find the modal force (of mode r, F M), one should multiply this distributed force vector of length
n by the eigenvector (of length n) of the excited mode r:

F" =l Fap (D.20)

D.2. Equation scaling

D.2.1. Eigenvector scaling

Generally, there are two methods to express eigenvectors. The first method is to express the eigenvectors
of mode r in terms of max-1 vectors (denoted by ¢,,,), the maximum magnitude (max(¢,,,)) of this vector
is unity, making it particularly useful for analytical derivations (as was shown in Section B.1). The second
method expresses the eigenvectors in terms of mass-normalized vectors ¢,,,, which generates a mass matrix
for which the maximum is unity; this reduces the effort to solve the resulting equation.

To convert from one method to the other, it should be clear how each of the terms depend on any scaling
parameters. This will will be shown in this section. The displacement is denoted by x and it is a function of the
eigenvectors ¢ and the modal displacement g. This analysis is similar to that from Bos [5]. The displacements
in terms of modal coordinates may be written as:

X=du, Gu, = Om, dm, (D.21)

Where the relation between the two eigenvectors is as follows:

Pmy = AnPu,- (D.22)
The modal displacements (g, and g,,,,) are thus related through this scaling parameter a as well:

G, = 1 (D.23)

Qn

The equation of motion (in matrix form) for the max-1 eigenvectors is written as:

¢£nM¢un éun +¢LT¢nK¢un Qun +Yu(¢/u]; CIuk, C/ul) = (PZnF (D24)

Where the cubic nonlinear part of the equation -of which the nonlinear dependency on the eigenvectors is
yet unknown- is written as yu(qu;, qu;, qu,)- Substitution of equations D.22 and D.23 into Eq. D.24 gives the
following equations:

1 1 . 1 1 1
_(Pra,,M(Pmn_CImn“n + _¢£1nK¢mn — qm, Cn+YulGm; &, Gy Xk, Gy A1) = _ﬁbrTnnF (D.25)
apn an an Ay Qpn
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1 .. 1 1
— P, M, G, + — D Kb, Gy, + Y (i @ o G Wk Gomy @1) = — by F (D.26)
an, ap ap

(/’rTn,,Mﬁbmn Gm, + ¢rTnnK9bmn Amy + CnYu(Gm; @, Gy Qs Gy @1) = (/’rTnnF (D.27)

Now, the y,-term essentially represents the following relation:
Yu= bu,k, Gu; Qui Guy - (D.28)
The nonlinear term of the Eq. D.27 is thus:
Y = @nYuldm; @, Gmy Ok Gy 1) = A @R CLDY Gy G Gy = Dy, Ay i - (D.29)

Which shows that the nonlinear part has quartic depedency on the eigenvector scaling (a). However, to go
from the mass matrix for max-1 eigenvectors (¢5n M¢,,,) to the mass matrix in terms of the mass-normalized
eigenvectors ((,b;rnnMcpmn), this mass matrix has been multiplied by a? (assuming that a, ~ a iR agp=a).

Hence, the nonlinear part of the equation scales yet another time by a?.

Eigenvector scaling for the w-displacement string model

For the w-displacement string model, with modal mass 2= (SectlonB 1.1) this (dimensionless) a,-parameter
should be chosen to be ”Cg %, where m = pA. The nonlinear part of Eq. A.10 (for n = 1) may be ap-
proximated as:
L Amy_ ] 3n*n*EA (qm,, )3 5 13n'n'EA 5 3n'n'EA | D:30)
an ay T an 1618 \an ) mIme T gr e I T Tym2rs T '

D.2.2. Space and time scaling
For computation efficiency, it convenient to scale the equations with respect to space and time. Consider the
following (dimensional) equation of motion:

N N N
r e K0 g+ e +Zlkzla1kq1qk Zlkz 2. b m]szIJCIkCIl FOsin(s1), r=1,2,..,N (D:31)
J J=1lk=jli=k

Now, if we choose an undamped single-degree-of-freedom model, where r = 1 and N = 1, we will arrive at the
following modal equation of motion:

Gi+oiqi+al) g? +b\) g3 = Fsin(wr0), (D.32)

The equation is normalized using the following relations to normalize space and time respectively:
_ T
dn=qnh, t=— (D.33)
0]

This generates the following derivatives:

d d dt A d _ .

Sylan) = - ldnl = T[th]:hWOEQn:thQn»
a2 ddi|d di A d . L&, (D34)
R b e R o O L R e

Plugging these derivatives and the space scaling of Eq. D.33 into equation D.32 gives:
. w
hw?éy + 02 ha +alV 2 + bY. B3 = Fsin (=L 1) (D.35)
Wo

Normalizing the inertia term:

G, R, E
h+—q+——q 2 = ZSIH(_T)
wj o wj hwg 0

(D.36)

2
w
~(1) =2 m = f
+a +b Fsin(—71)
C/ woql 1na 1q1 wo
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The mass and linear stiffness terms appear to have no dependency on the variable A. It is thus possible to
choose h to be any value, depending on what is most computationally efficient. Setting bgll)l =1 would be
most convenient, since this is a small nonlinearity. This requires the following relation for A:

Wo

h= (D.37)
1)
Vb
The coefficients will thus be:
2 1 L, 2 (1)
b= Wy _my_ 9 -y _biwy o Fy b
1= a4 =~ — b1 = =1, F=——= (D.38)
w? 0 bV w2 w
0 wo\/ b7, 111%0 0

D.3. Numerically reproducing experiments

Section B.3 showed experimental results of frequency characterization measurements on SizNy strings. Gen-
erally, to fit frequency response simulation results to experimental data, one should follow five steps. These
steps allow the experimental response to be simulated properly. During these steps, the magnitudes of four
variables are determined: Q, w, F and E; the Q-factor, the resonance frequency, excitation force and the ef-
fective Young’s modulus of the resonator, respectively. This section will show how the numerical results were
fitted to the experimental results of a string with characteristics of Table B.10, according to the following five
steps:

1. Convert the measurement data into the desired magnitudes;
2. Find the experimental Q-factor from ringdown and/or linear frequency response plots;

3. Find the linear resonance frequency to calculate the pre-stress of the string resonator. This pre-stress
is used in numerical and/or analytical models;

4. Fit the baselines of the experimental data by varying the magnitude of the forcing;

5. Guess a Young's modulus and simulate the corresponding response. Plot the simulated amplitude ver-
sus frequency and amplitude squared versus frequency data for both the simulations and the experi-
ments. Continue iterations to find accurate fits.

Step 1: Data conversion

The first step requires proper conversion of the data. The amplitudes of a single mode are measured using a
Polytech vibrometer in combination with a lock-in amplifier and an attenuator, which attenuates noise below
—20dB. The relation between the input and output voltages is:

V, V, V.

in in

n

The outputted voltage (V,,;) is expressed in a root-mean-square (RMS) voltage Vrys = Vour = 10V;,. To
determine the peak values (V}.qt), one should convert this RMS voltage to the peak values, by imposing Eq.
D.40 [1].

Vpeak = VRMS\/E = 10\/5Vin (D.40)

Two options can be employed to convert this (peak) voltage into an amplitude in meters. The option that
should be employed depends on the measurement scheme:

* Ifthe modal velocities are detected, one should first convert the voltage V¢4« into a velocity x(#), using
a parameter Cy3ye; [’”7/5], before integrating with respect to time to find the amplitude x(#). Assuming
that the velocity signal is a Cosine function, the equations will become:

%(f) =Acos@r f1) = 10V2Vi,Cyoper cOSm f 1) (D.41)
_ A _ 10V2Vi,Craper .
x(1) “onf sin@r ft) = onf sin(2r f 1) (D.42)
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Where f is the measured frequency. The amplitude that is measured at this frequency is thus given by

— 10\/2‘/inCV2vel
xX= 2 f [m].

* Ifthe modal amplitudes are detected, one should first convert the voltage V.4 into an amplitude x(z),
using a parameter Cyaamp [§71:

x(t) = Asin@a f 1) = 10V2Vi,, Cyaamp sin@u f 1) (D.43)

The amplitude that is measured at this frequency is thus given by x = 10V2Vi,Cyaam plml.

After this conversion, the experimental frequency response may be plotted. One measurement location will
be shown here, but the same procedure works for any other frequency characterization measurement. Fig.
D.3 depicts the experimental frequency response for 20 force levels, ranging from 0.001 to 0.5V.

4 x10® Measurement location @ 0.364L
T T T T T T T
0.5
351 R
0.45
3+ 0.4 {
0.35
— 25 - o~ -
g < L
e g 07
3 2t £ 025 -
= >
Q. [}
S £ 02F
<15F e 1
0.15
1F o1 4
0.05
051 |
|
1 1 1 1 |
0 J \
182 1825 183 1835 184 1845 185 1855 1.86 1.865
Frequency (Hz) %10°

Figure D.3: Frequency response of a Siz Ny string of length 1110um for drive levels ranging from 0.001 to 0.5V.

This response shows a hardening nonlinear effect. Before simulating the responses in the nonlinear regime,
it is important to find proper fits for the linear response. This linear part determines the magnitude of the
resonance frequency.

Step 2: Finding Q
The Q-factor of this response was already found in Section B.4 (Fig. B.6 depicts the ringdown). The Q-factor
of this measurement was estimated to be approximately 2.00 x 10°.

Step 3: Find the linear resonance frequency
The linear frequency in Fig. D.3 may be estimated to be around 182.65 kHz (where there is still some deep
dark blue line visible). Fig. D.4 displays a zoom-in of the linear response (for a force level of 0.001V).
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Figure D.4: Frequency response of a Siz Ny string at a drive level of 0.001V.

By using the equation (Eq. D.44) for the linear resonance frequency of the string, one may determine some
parameters of the string, such that a numerical model may be formulated to replicate the string’s dynamics.

w =2, ]2 (D.44)

This equation consists of three free parameters: the length L, the pre-stress of the string oy and the material
density p. Two of these variables are assumed to be known and constant: the length of the string and the
material mass density. This leaves one unknown variable: the pre-stress . By choosing this pre-stress to
be one of the fitting parameters, one may account for possible stress reduction in the material over time.
Re-writing Eq. D.44 for the resonance frequency will deliver an expression for the pre-stress of the resonator:

oo =4pf2L2. (D.45)

For the considered resonator, one will find a pre-stress of approximately 509 MPa. This results in a linear plot
that is shown in Fig D.5a, which shows good agreement for the linear response.

Step 4: Fitting the baselines

The following variable that needs to be determined is the excitation force. This variable is responsible for
the amount of energy that is "pumped” into the system: increasing this force will increase the amplitude.
Simulations with the correct excitation force will thus deliver correct simulation amplitudes. During this
step, one should find a near perfect fit for the linear regime, though the fits in the nonlinear regime may still
differ with the experimental response, as these will be improved in the next step. Fig. D.5 depicts the region
that needs to be fit properly: the baselines of the experimental results should be simulated accurately, as is
shown in Fig. D.5c.



D.3. Numerically reproducing experiments 123

9 x10°° Frequency response at 0.364*L
8 059
v 0.45 f |
0.4
6 4
€ 0.35
o 5F s i
03}
3 g
= £
g 4r T 0.25 1
3
< 2 02f
3 5 i
0.15
2r N
0.1

w
(@
%108 Frequency response at 0.364*L
45} 0548 |
4r 045 1
351 048
€ 3t 0.35 | |
° S
= 03f
:S 251 % i
a S 025}
E Ll s |
< £ 0.2F
o
13 0.15
1 01§
0.5F 0.05 ff
S | . ‘ ‘
1 1.005 1.01 1.015 1.02 1.025
@
(b)
x107 Frequency response at 0.364*L
0.5
5r J
0.45
0.4
4+ ]
€ 0.35
o S
2 o3t
83t g 3
E= i
g. ] 0.25
< 2 02
2+ a A
0.15
1k 0.1 |
0.05
0 1 I, . S— 1 1
0.9995 1 1.0005 1.001 1.0015
@
(0

Figure D.5: Baseline fits for various drive forces. D.5a: Linear frequency response of a Sig Ny string for a drive level of 0.001V. Shown are
the experimental (black line) and the simulated response (colored line). Note that the frequency axis is normalized with respect to the
first mode’s frequency. D.5b: Baseline fit in the nonlinear regime for an excitation level of 0.316V. Note that (to clarify this particular
step) an incorrect magnitude of nonlinearity is used here. This may not be the case in the initial fit. D.5c Zoom-in of D.5b, showing the
region of interest. Note the small magnitude of the linear response: the small peak at @ = 1.
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The accuracy of the force estimation can be verified by checking the relation between the fitted force level and
the drive voltage. For piezo-elements, the produced force is known to scale linearly with the applied voltage,
as shown in D.46 [32].

F = kAly, where Alyx V (D.46)

The force-voltage plot for the considered fits are depicted in Fig. D.6, which shows a required near-linear
relation between the force values and the drive voltage.

%107

0 0.1 0.2 0.3 0.4 0.5
Voltage (V)

Figure D.6: Force versus voltage plot, showing a near-linear relation between the experimental drive voltage and the fitted force values.

Step 5: Guess the Young’s modulus and iterate

Now that the resonance frequency, the linear damping factor and the force level are determined, the non-
linear response may be simulated. To do so, one should revisit the single-mode equation of motion for the
uw-displacement model from Eq. B.64 and set n = 1.

pAL .  m?n*Ty 3nin*EA 4
PR VA L Y
720y 2 m*E
I2p G pAL 4L%p

=0

(D.47)

” gy, = F{"sin(w,1)

Here, the part of the equation that is linear in g, is equal to the square of Eq. D.44. The last term of the
equation is nonlinear in q,,, and it is dependent on the Young's modulus E, the length L and mass density p.
The length and mass density of the string are known, which leaves one free variable for fitting: the Young’s
modulus. Using this as the fitting parameter allows for compensation for changes in the Young’s modulus over
time (creep-like phenomena). To start the simulations, one could set a first guess for the magnitude of this
parameter: 250GPa, the default Young’s modulus of Silicon-Nitride. Fig. D.7 depicts two plots: an amplitude
vs. frequency plot and an amplitude squared vs. frequency plot. The latter plot indicates how "good” the
estimation of the nonlinear strength is. The frequency shift in a Duffing oscillator with nonlinearity b is
dependent on the square of the amplitude (here, denoted by g), as is indicated by Eq. D.48 [19]. This equation
shows that the shift of the frequency scales with the square of the modal amplitude q.

b
Wshife = Wo + ——q° (D.48)
mao

Plotting the amplitude squared versus the frequency thus shows how good the estimation of the nonlinear
parameter is.
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Figure D.7: Experimental (solid lines) and simulated (dashed lines) frequency response of a Si3 Ny string for five drive levels, ranging
between 0.001V and 0.5V. The estimated Young’s modulus in the numerical model is 250GPa. Note that the frequency axis is normalized
with respect to the first mode’s frequency.

These plots indicate that the nonlinearity in the experiments is larger than that in the simulations, since the
frequency shift in the experimental response is larger than the frequency shift in the simulated response. To
find accurate fits, the Young’s modulus should hence be increased. For this resonator, a Young’s modulus of
675GPa shows a proper slope fit, as is shown in Fig. D.8.
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Figure D.8: Experimental (solid lines) and simulated (dashed lines) frequency response of a Si3 Ny string for five drive levels, ranging
between 0.001V and 0.5V. The estimated Young’s modulus in the numerical model is 675GPa. Note that the frequency axis is normalized
with respect to the first mode’s frequency.

The overshooting of the numerical simulations is due to the continuation by AUTO from a bifurcation point,
yielding an unstable solution which still increases both amplitude and frequency. Since this unstable solution
cannot be traced in physical experiments: the amplitude jumps down after the bifurcation point, which is the
origin of the vertical lines in the experimental plots.

Possible additional steps

This system showed no nonlinear damping, as could be seen from the ringdown plot in Fig. B.6 in Section B.3.
In this figure, the decay was approximated very well by assuming that the decay is linear. Should this linear
approximation be invalid, it would have been necessary to add another step in the fitting process: the inclu-
sion of a nonlinear damping coefficient. This additional step could decrease the maximum amplitude in the
frequency response. In addition, if frequency locking is observed, one could shift the resonance frequencies
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of the higher modes slightly, such that the modal interaction at the bifurcation point is most significant. This
technique is elaborated further in Section B.4.

Conclusion

These simulations show that the estimated effective Young’s modulus of 675GPa is significantly higher than
the Young’s modulus of Silicon-Nitride (this is estimated to be 250GPa). The general string’s dynamics could
hence be predicted using this method, though quantitative conclusions should not be drawn from it. Addi-
tional experiments should be conducted, with multiple specimens (strings of different dimensions), to char-
acterize the validity of this simulation method.



Modal coefficients

This section contains the single-mode and nonlinear coefficients of several models. All modal variables are
computed for a string with characteristics similar to those from Table C.4, unless noted otherwise.

E.1. Modal coupling coefficients of the analytical models

127
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E.1.1. w-displacement model

Table E.1: Single mode coefficients for the first 6 modes of an analytical string model that includes only vertical displacements
(w-displacement model). The variables are computed for a string with characteristics similar to those from Table C.4.

Eq. (1) (2) (3) (4) (5) (6)
kn [s72] 132x107%  527x102  1.19x101%  211x101  329x100°  4.74x 1003
wp [rads™1] 1.15x 108 2.30x 108 3.44 x 108 459 x 108 5.74 x 108 6.89 x 10°
b0 m2s72] | 3.07x103  491x10%  249x10%°  7.84x10%  1.92x10%®  4.00x 106
(,'52" [m] 233x1021  932x1021  209x10%22 3.72x10%2  584x10%2  8.44x10%2
n 1.00 4.00 9.00 16.00 25.00 36.00
@n 1.00 2.00 3.00 4.00 5.00 6.00
B 1.00 16.00 81.00 256.00 625.00 1296.00

Table E.2: Modal coupling coefficients for the first 6 modes of an analytical string model that includes only the vertical displacements

(w-displacement model). Note that the coefficients are scaled with respect to b;ll)l.
Eq. (1) (2) (3) (4) (5) (6)
b111 1 0 1 0 0 0
b112 0 8 0 8 0 0
b1 3 0 18 0 15 0
b11a 0 8 0 32 0 24
b11s 0 0 15 0 50 0
b1 0 0 0 24 0 72
b12o 8 0 12 0 20 0
b123 0 24 0 48 0 72
D124 16 0 48 0 80 0
bi2s 0 40 0 80 0 120
b2 0 0 72 0 120 0
D133 18 0 0 0 45 0
b134 0 48 0 0 0 144
b13s5 30 0 90 0 0 0
D136 0 72 0 144 0 0
b1aa 32 0 0 0 0 0
biss 0 80 0 0 0 0
biss 48 0 144 0 0 0
bis5 50 0 0 0 0 0
b1s6 0 120 0 0 0 0
Dbigs 72 0 0 0 0 0
b2oo 0 16 0 0 0 16
boo3 12 0 72 0 0 0
booa 0 0 0 128 0 0
boos 20 0 0 0 200 0
boog 0 48 0 0 0 288
b33 0 72 0 72 0 0
b3 48 0 144 0 240 0
bo3s 0 0 0 240 0 360
Dbo3s 72 0 0 0 360 0
I2m 0 128 0 0 0 192
bogs 80 0 240 0 0 0
Dbogs 0 0 0 384 0 0
boss 0 200 0 0 0 0
bosg | 120 0 360 0 0 0
Dbogs 0 288 0 0 0 0
b33 0 0 81 0 0 0
D334 0 72 0 288 0 0
b335 45 0 0 0 450 0
b336 0 0 0 0 0 648
b3aa 0 0 288 0 240 0
b3gs 0 240 0 480 0 720
Db3ag 144 0 0 0 720 0
b3ss 0 0 450 0 0 0
b3s6 0 360 0 720 0 0
Db3gs 0 0 648 0 0 0
Daas 0 0 0 256 0 0
bays 0 0 240 0 800 0
Dasg 0 192 0 0 0 1152
Dass 0 0 0 800 0 600
Dby 0 0 720 0 1200 0
Dbags 0 0 0 1152 0 0
bss5 0 0 0 0 625 0
bss6 0 0 0 600 0 1800
bse6 0 0 0 0 1800 0
Dess 0 0 0 0 0 1296
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E.1.2. uw-displacement model

Table E.3: Single mode coefficients for the first 6 modes of an analytical string model that includes only the longitudinal and vertical
displacements (uw-displacement model). The variables are computed for a string with characteristics similar to those from Table C.4.

Eq. (1) (2) (3) (4) (5) (6)

kn s 132x 1017  527x1012  1.19x 108 211x10°  3.29x100%  4.74x1013
wp [rads™!] 1.15x 108 2.30x 108 3.44 x 108 459 x 108 5.74 x 10° 6.89 x 108
B, m2s72] | 2.04x103  327x103%  166x1035  523x1035  1.28x10%  265x 1036
b(]’g% [m] 155x1021  6.20x10%1  1.39x10%22  248x10%2  3.89x10%2  559x10%2
kn 1.00 4.00 9.00 16.00 25.00 36.00
@n 1.00 2.00 3.00 4.00 5.00 6.00
B, 1.00 16.00 81.00 256.00 625.00 1296.00

Table E.4: Modal coupling coefficients for the first 6 modes of an analytical string model that includes only the longitudinal and

vertical displacements (zw-displacement model). Note that the coefficients are scaled with respect to Bgll)l.

Eq.
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E.1.3. uvw-displacement model

Table E.5: Single mode coefficients for the first 6 modes of an analytical string model that includes only the longitudinal, transverse
and vertical displacements (uvw-displacement model). The variables are computed for a string with characteristics similar to those

from Table C.4.
Eq. (1) (2) (3) (4) (5) (6)
kn [s~2] 132x102  132x1012  527x101%7  527x1012  1.19x108°  1.19x 1083
wp [rads™!] 1.15x 106 1.15x 108 2.30x 108 2.30x 108 3.44x 108 3.44x 108
B m2s72] | 2.04x1033  204x1033  327x103%  327x10%  1.66x10%  1.66x103

(n)

R () 155x 1021 155x1021  620x1021  620x1021  1.39x10%2  1.39x10%2
kn 1.00 1.00 4.00 4.00 9.00 9.00
@n 1.00 1.00 2.00 2.00 3.00 3.00
b 1.00 1.00 16.00 16.00 81.00 81.00

nnn

Table E.6: Modal coupling coefficients for the first 6 modes of an analytical string model that includes longitudinal, transverse and

vertical displacements (zvw-displacement model). Note that the coefficients are scaled with respect to B;ll)l. The uneven modes
represent vertical modes, the even modes represent the transverse modes.
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E.2. Modal coupling coefficients from STEP

E.2.1. uw-displacement model

Table E.7: Single mode coefficients for the first 6 modes of a STEP model that includes only the longitudinal and vertical displacements
(uw-displacement model). The variables are computed for a string with characteristics similar to those from Table C.4.

Eq. 1) (2) (3) (4) (5) (6)

kn [s72] 132x107%  527x101%  1.19x101%  211x1018  330x10°°  4.76x 1013

wn [s72] 1.15x 108 2.30x 108 3.44 x 108 459 x 108 5.74 x 108 6.90 x 10°

B, m2572] | 2.05x103  328x103%  1.66x10° 525x1035  1.28x10%  267x10%
n

% [m] 155x 1021 6.22x1021  1.39x10%2  249x10%2  3.88x10%2  5.61x10%

n 1.00 4.00 9.01 16.02 25.05 36.10

@n 1.00 2.00 3.00 4.00 5.00 6.01

B 1.00 16.01 81.12 256.70 627.59 1303.91

Table E.8: Modal coupling coefficients for the first 6 modes of a STEP model that includes only the longitudinal and vertical
displacements (zw-displacement model). Note that the coefficients are scaled with respect to b

(1)

111°

Eq. (1) (2) (3) (4) (5) (6)
bi11 1.00 0.00 0.00 0.00  —0.01 ~0.00
br12 0.00 4.01 -0.00 0.03 —0.00 0.00
b3 0.01 -0.00 9.04 -0.00 0.05 -0.00
biia | —0.00 0.03 —0.00 16.08 —0.00 -0.08
byis | -0.04  —0.00 0.05 -0.00 2514 -0.01
b | —0.00 0.00 -0.00 -0.08  -0.01 36.25
bras 4.01 0.00 0.04 0.00 0.06 0.00
bras | -0.00 0.08 -0.00 0.16 —0.00 -0.25
D124 0.05 0.00 0.16 0.00 0.27 0.00
bios | —-0.00 0.13 -0.00 0.27 -0.00 -0.42
b12g 0.00 0.00 -0.25 0.00 -0.42 0.00
b33 9.04 -0.00 0.00 0.00 0.15 0.00
byz4 | —-0.00 0.16 0.00 -0.00  —0.00 -0.51
b13s 0.10 -0.00 0.30 -0.00 0.00 -0.01
bizg | -0.00 -025 0.00 -051  -0.01 -0.00
bras | 16.08 0.00 -0.00  -0.00  —0.00 0.00
bus | -o0.01 0.27 -0.00  —-0.01 0.01 0.01
bg | -0.16 0.00 -0.51 0.00 0.01 -0.00
biss | 2514  —0.00 0.00 0.00 -0.00 0.01
bisg | -0.01  -042  -0.01 0.01 0.01 -0.02
bigs | 3625 0.00 -0.00  -0.00  —0.01 -0.00
222 0.00 16.01 —0.00 0.00 0.00 -0.05
boo3 0.04 -0.00  36.16 -0.01 0.01 -0.01
D24 0.00 0.00 -0.01 64.33 -0.01 0.01
baos 0.06 0.00 0.01 —-0.01  100.61 -0.02
2o 0.00 -0.16  —0.01 0.01 -0.02 145.04
byzz | -0.00  36.16 0.00 0.24 -0.01 0.01
D234 0.16 -0.01 0.48 -0.02 0.85 -0.00
bozs | —0.00 0.01 -0.01 0.85 -0.01 -1.31
bozg | -025  -0.02 0.02 -0.00 -131 -0.02
boag 0.00 64.33 -0.01 0.00 -0.01 -0.67
boas 0.27 -0.02 0.85 -0.02 0.02 0.04
bosg 0.00 0.02 -0.00 -1.33 0.04 -0.04
byss | -0.00 10061  -0.01 0.01 —0.00 0.02
bosg | -042  -004  -131 0.04 0.04 -0.05
bogs 0.00 14504  —0.01 -0.02  —0.02 -0.01
b333 0.00 0.00 81.12 0.00 0.00 -0.00
b334 0.00 0.24 0.00 144.81  —0.04 0.04
D335 0.15 -0.01 0.01 —-0.04 22648 -0.06
b336 0.00 0.01 —0.00 0.04 -0.06 32651
b3ag | -0.00 -001 14481  -0.00 0.87 -0.04
bsss | —0.00 0.85 -0.07 1.73 -0.11 —2.66
by | -051  —0.00 0.07 -0.07  —2.66 -0.07
b3ss 0.00 -0.01 22648  —0.06 0.00 -0.06
bssg | -0.01  -131  -011  -266  -0.11 0.11
bsgs | -0.00 —0.01 32651  —0.04 0.06 0.00
bgas | -0.00 0.00 —-0.00  256.70 0.00 -0.00
bgs | -0.00  -0.01 0.87 0.00 402.93 -0.05
baas 0.00 -0.67 —0.04 —-0.00 -0.05  580.90
byss 0.00 0.01 -0.06 40293 0.00 -2.16
byse 0.01 0.04 -266  -0.10  —431 0.02
bsgs | -0.00 -002  -0.04  580.90 0.01 -0.00
bsss | -0.00  -0.00 0.00 0.00 627.59 -0.00
bsse 0.01 0.02 -0.06 -216  —0.00  908.50
bsgs | —-0.01  -0.02 0.06 0.01 908.50 0.00
bees | —-0.00  -0.00 0.00 -0.00 0.00 1303.91
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E.2.2. uvw-displacement model

Table E.9: Single mode coefficients for the first 6 modes of a STEP model that includes only the longitudinal, transverse and vertical
displacements (uvw-displacement model). The variables are computed for a string with characteristics similar to those from Table C.4.

Eq. (1) (2) (3) (4) (5) (6)

kn [s72] 132x107%  1.32x1017  527x107%  527x10"7  1.19x10°°  1.19x 1003
wn [s72] 1.15x 108 1.15% 108 2.30x 108 2.30x 108 3.44x 108 3.44x108
B m2s72] | 202x103  202x10%  332x10%  332x103%  1.66x10%  1.66x10%
% [m] 153x1021  1.53x102  630x10%!  630x10%2  1.39x10%%  1.39x10%?
fn 1.00 1.00 4.00 4.00 9.01 9.01
@n 1.00 1.00 2.00 2.00 3.00 3.00
B, 1.00 1.00 16.00 16.44 81.97 81.97

Table E.10: Modal coefficients for the first 6 modes of a STEP model that longitudinal, transverse and vertical displacements
(uvw-displacement model). Note that the coefficients are scaled with respect to 13511)1. The uneven modes represent vertical modes, the

even modes represent the transverse modes.

Eq. (1) (2) (3) (4) (5) (6)
b111 1.00  -0.00 0.0 0.00 -0.03 —0.00
b1z | -0.00 101 -0.00 0.0 0.00  —0.00
b3 0.00  —0.00  4.06 001  —0.00 —0.00
br14 0.00 0.00 0.01 405  -0.00 —0.00
byis | -0.10 000 -000 -000 911 0.02
byig | —0.01  —000 -000 -0.00 0.2 9.13
b122 1.01 0.00  —-0.00  0.00 0.00 0.00
bips | -0.00 -000 -002 o0.01 0.00 0.00
b12g 0.00 0.00 0.01 0.02  —0.00  0.00
b1s 0.01 0.00 0.00  -0.00  0.03 0.02
bipg | -0.00 0.1 0.00 0.00 0.02  -0.03
b33 406  —0.01 —0.00  0.00 0.01 0.03
b134 0.02 0.01 0.00 0.00 0.02 0.01
bizs | -0.00  0.00 0.01 0.02  -0.00 —0.00
bisg | —0.00  0.00 0.06 001  —0.00 —0.00
brag 4.05 0.01 0.00  -0.00  0.02 0.01
bias | -0.00 -000 0.2 0.04  -0.00 —0.00
b | -0.00  0.00 0.01 0.02  —0.00 —0.00
b1ss 9.11 0.02  -0.00 -0.00  0.01 —0.00
b1sg 0.03 0.02  -0.00 -0.00 —0.00 —0.00
bies 913  -0.02 -0.00 -0.00 -0.00 —0.01
oo 0.00 100 -000 000 —-0.00 003
bypps | -000 -000 405 -001 -000 -0.00
b224 0.00 0.00 —-0.01  4.06  —-0.00 —0.00
boos 0.00  -0.01 -0.00 -0.00 9.3  —0.02
bosg 0.00 010  -0.00 -0.00 -0.02  9.11
bo33 | —0.01 4.05 0.00 -0.00 0.01 —0.02
o34 0.01 -0.02 -000 -000 -0.01 0.2
bo3s 0.00  -0.00 002  -0.01 -0.00  0.00
ba3s 0.00  —0.00 —0.04  0.02 0.00 0.00
Do 0.01 406  -0.00 —0.00 003  —0.01
bogs | -0.00 -000 -001 006 -000 —0.00
boas 0.00  —0.00 0.02  -0.01 —0.00  0.00
boss 0.02 913  -0.00 —0.00 —0.01  0.00
bose 0.02  -0.03 000 -0.00 000  —0.00
byes | -0.02 911 0.00 0.00  —0.00 —0.01
bszs | -0.00  0.00 16.00 0.05  —0.00  0.00
b334 0.00  —-0.00  0.14 1620 —0.00  —0.00
b33s 0.01 0.01 -0.00 -0.00 3642  —0.00
b33g 0.03  -0.02 000 -0.00 —0.00 3657
b4y 000 —-0.00 1620 -0.14 -0.00 —0.00
b3as 0.02  -0.01 -0.00 -0.00 -0.01  0.15
b3ag 0.01 0.02  -0.00 -0.00  0.15 0.01
bsss | -0.00 -000 3642 000 -0.00 —0.00
b3sg | 000 000 -001 015 -000 -0.00
bsgg | -0.00 000 3657 0.00  -0.00 —0.00
bgas | -0.00 -000 -005 1644 0.00 0.00
baas 0.02 0.03  —-0.00 0.0 3657  0.00
baas 0.01 -0.01 -0.00 0.0 0.00  36.42
bgss | -0.00 -000 -000 3657 -0.00 —0.00
byse | -0.00 -000 015 0.01 —-0.00  —0.00
bses | —-0.00  0.00 0.00 3642  —0.00  —0.00
bsss 0.00  -0.00 -0.00 -0.00 8197  0.05
bssg | -0.00 000 -000 -000 0.5 82.06
bsgg | -0.00 -000 -000 -000 8206 -0.15
bges | -0.00 -000 -000 -000 -005 81.97
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E.3. Modal coupling coefficients of new designs
E.3.1. Discretized string design with constant cross-sections

Table E.11: Single mode coefficients for the first 6 modes of a discretized string of 100 elements. The coefficients were found using STEP.
The variables are computed for a string with characteristics similar to those from Table C.4.

Eq. (1) (2) (3) (4) (5) (6)
kn [s72] 132x10%  526x1012  1.18x1013  210x1013  329x100°  4.74x 1003
wp rads™1 1.15x 108 2.29x 106 3.44x 108 4.59x 108 5.73x 108 6.88 x 10°
B, m2572] | 205x103  327x103%  1.66x10%° 524x1035  1.28x10%  265x10%
%ﬁ" [m] 155x 1021 6.22x1021  1.41x10%2  250x10%2  3.89x10%2  5.93x10%
n 1.00 4.00 9.00 16.00 25.00 36.00
@n 1.00 2.00 3.00 4.00 5.00 6.00
B 1.00 16.00 80.98 255.96 624.94 1295.99

Table E.12: Modal coupling coefficients for the first 6 modes of a discretized string of 100 elements. The coefficients were found using

STEP. Note that the coefficients are scaled with respect to b

(1)

111
Eq. (1) (2) (3) (4) (5) (6)
bi11 1.00 0.00 0.00 0.00 ~0.01 0.01
br12 0.00 4.01 -0.00 0.03 —0.00 -0.00
b3 0.00 -0.00 9.03 0.00 0.05 0.00
br14 0.01 0.03 0.00 16.05 0.00 0.09
byis | -0.02  -0.00 0.05 0.00 25.09 0.01
b11g 0.03 -0.00 0.00 0.09 0.01 36.14
bras 4.01 —0.00 0.04 —0.00 0.07 —0.00
bras | -0.00 0.08 -0.00 0.16 —0.00 0.24
D124 0.05 -0.00 0.16 -0.00 0.27 -0.00
bros | —0.00 0.13 -0.00 0.27 -0.01 0.42
biag | -0.00  -0.00 0.24 -0.00 0.42 -0.00
b33 9.03 -0.00 0.00 -0.00 0.15 -0.00
D134 0.00 0.16 -0.00 0.00 0.00 0.51
b13s 0.10 -0.00 0.30 0.00 0.01 0.01
D136 0.00 0.24 -0.01 0.51 0.01 0.00
D144 16.05  —0.00 0.00 -0.00 —0.00 -0.01
bias 0.00 0.27 0.00 -0.00  —0.01 -0.01
b1ag 0.17 -0.00 0.51 -0.01  -0.01 -0.02
byss | 25.09  -0.00 0.01 -0.01 0.01 -0.01
b1s6 0.01 0.42 0.01 -0.01  -0.02 -0.00
bigs | 3614  -0.00 0.00 —-0.01  —0.00 -0.01
bys | -0.00  16.00 0.00 -0.01 0.01 0.03
boo3 0.04 0.01 36.12 0.00 0.01 0.01
boos | -0.00  -0.02 0.00 64.21 0.01 0.01
baas 0.07 0.04 0.01 0.01 100.36 0.02
bosg | —0.00 0.10 0.01 0.01 0.02 144.55
byzz | -0.00 3612 -0.00 0.24 -0.01 -0.01
D234 0.16 0.00 0.47 -0.00 0.83 0.02
bo3s | —0.00 0.01 -0.02 0.83 -0.02 1.30
bo3g 0.24 0.01 -0.01 0.02 1.30 -0.03
boas | -0.00 6421 —0.00 0.01 -0.01 0.67
boas 0.27 0.02 0.83 -0.03  —0.01 0.01
bosg | —0.00 0.02 0.02 133 0.01 0.05
byss | -0.00 10036  -0.01 -0.01  —0.01 -0.02
bose 0.42 0.04 1.30 0.01 -0.03 -0.06
bogg | —-0.00 14455  —0.02 0.03 -0.03 0.03
b333 0.00 -0.00 80.98 0.01 -0.01 0.03
b33s | —0.00 0.24 0.02 144.50 0.03 0.04
b33 0.15 -0.01  —0.04 0.03 225.82 0.05
bszg | -0.00 -0.01 0.08 0.04 0.05 325.27
D344 0.00 —-0.00  144.50 0.00 0.87 0.03
b3as 0.00 0.83 0.06 1.74 0.10 2.74
D346 0.51 0.02 0.08 0.06 2.74 0.05
bss 0.01 -0.01 22582 0.05 0.01 0.05
b3se 0.01 1.30 0.10 2.74 0.10 0.13
b3es 0.00 -0.02 32527 0.02 0.07 -0.02
bgas | —0.00 0.00 0.00 255.96 0.01 -0.03
bgs | -0.00  -0.01 0.87 0.04 401.52 0.14
by | —-o0.01 0.67 0.03 -0.08 0.14 578.34
bgss | -0.01  -0.01 0.05 401.52 0.00 2.35
bysg | —o0.01 0.01 2.74 0.28 4.70 0.39
bygs | —o0.01 0.03 0.02 578.34 0.20 0.02
bsss 0.00 -0.00 0.00 0.00 624.94 0.02
bssg | —-0.01  —0.02 0.05 2.35 0.06 903.84
bsgg | —0.00  -0.03 0.07 0.20 903.84 -0.01
bges | —0.00 0.01 -0.01 0.01 -0.00  1295.99
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E.3.2. Discretized string design with increased width at the edges and at 0.25L and 0.75L

Table E.13: Single mode coefficients for the first 6 modes of a discretized string of 100 elements with increased width near the clamping
points and at 0.25L and 0.75L (similar to C.5b). wgpring = 4pum and wmass = 3Wspring = 12pum. The coefficients were found using STEP
The variables are computed for a string with characteristics similar to those from Table C.4.

Eq. (1) (2) (3) (4) (5) (6)

kn 1s~2] 255x 1012 734x1012  224x1013 444x1015  623x108  9.37x1083
wn 872 1.60 x 106 2.71x 108 4.73x 108 6.66 x 10° 7.89 x 10° 9.68 x 106
b ims™2] | 1.17x10%%  9.66x103  9.01x103%  356x10%°  699x10%  1.58x1036
% [m] 459x10%1  1.32x1021  4.02x1021  801x10%1  1.12x10%2  1.69 x 1022
n 1.00 2.88 8.78 17.41 24.43 36.72
@n 1.00 1.70 2.96 417 4.94 6.06
pim 1.00 8.26 76.97 304.08 597.79 1348.82

nnn

Table E.14: Nonlinear modal coefficients for the first 6 modes of a discretized string of 100 elements with increased width near the
clamping points and at 0.25L and 0.75L (similar to C.5b). The coefficients were found using STEP. wgpring = 4pm and

(1)

Wmass = 3Wspring = 12pum. Note that the coefficients are scaled with respect to 5111'

Eq. (1) (2) (3) (4) (5) (6)
D111 1.00 0.00 —0.00  —0.01 —0.01 —0.03
b112 0.00 2.90 0.00 -0.05 0.00 -0.01
b1z | —-0.00 0.00 8.80 0.00 -0.13 -0.00
byga | -0.03  -0.05 0.00 17.54 0.00 0.23
b5 | -0.04 0.00 -0.13 0.00 24.63 -0.01
by | -0.10  -0.01 —0.00 0.23 —-0.01 37.01
b12> 2.90 0.00 -0.05 0.00 0.08 -0.00
b123 0.00 -0.09  —0.00 0.21 -0.00 0.34
byog | -0.10 0.00 0.21 -0.00  —0.52 0.00
by2s 0.00 0.15 -0.00 -052  —0.00 -0.84
biag | -0.02  -0.00 0.34 0.00 -0.84 -0.00
b33 8.80 -0.00 0.13 0.00 0.10 -0.00
D134 0.00 0.21 0.01 0.42 —0.00 -0.80
b13s | 026  -0.00 0.20 -0.00 0.34 -0.00
byzg | —0.00 0.34 -0.00  -0.80  —0.00 -0.24
D144 17.54 -0.00 0.21 0.00 -0.50 -0.00
buss 0.01 -0.52  —-0.00 -1.00  -0.01 0.27
biss 0.46 0.00 -0.80  —0.00 0.27 0.01
byss | 24.63 -0.00 0.17 -0.00 -0.63 -0.01
bisg | —-0.01  -0.84  —0.00 0.27 -0.01 0.86
bigs | 3701  -0.00  —0.12 0.00 0.43 0.01
b2 0.00 8.26 —0.00 -0.01 0.02 -0.00
bopz | -0.05  -0.01 25.34 0.00 -0.02 -0.00
Do 0.00 -0.02 0.00 50.25 0.01 0.16
baos 0.08 0.06 -0.02 0.01 70.59 -0.02
boss | -0.00  -0.00  —0.00 0.16 -0.02 106.41
bp3z | -0.00 2534 —-0.01 -0.27 0.00 0.25
D234 0.21 0.00 -0.54 0.00 0.88 0.01
bo3s | -0.00  -0.05 0.01 0.88 0.01 1.81
bo3g 0.34 -0.01 0.51 0.01 1.81 0.02
bogq | -0.00 5025 0.00 -0.21 0.01 -0.89
bogs | -0.52 0.02 0.88 0.01 -0.27 0.01
boge 0.00 0.31 0.01 -1.78 0.01 -1.32
bass | -0.00  70.59 0.00 -0.14  -0.01 -0.37
bosg | -0.84  -0.03 1.81 0.01 -0.75 0.06
bogg | —0.00  106.41 0.01 -0.66 0.03 -1.52
b333 0.04 -0.00 76.97 0.03 -0.02 0.12
D334 0.00 -0.27 0.10 154.02 0.03 -0.37
D335 0.10 0.00 -0.05 0.03 216.06 -0.05
b3ze | —0.00 0.25 0.37 -037  -0.05 324.65
b34a 0.21 0.00 154.02 0.02 -3.30 -0.03
b3gs | —0.00 0.88 0.05 -6.60  —0.09 -4.71
b3ge | —0.80 0.01 -0.74  -0.07  -4.71 0.05
b3s5 0.17 0.00 21606  —0.05  -3.44 0.00
b3sg | —0.00 1.81 -0.09  -471 0.01 -3.80
b3 | —0.12 0.01 324.65 0.03 -1.90 0.01
m 0.00 -0.07 0.01 304.08  —0.05 0.70
bgys | —0.50 0.01 -330  -0.14  432.09 —0.04
byae | -0.00 -089  -0.03 2.09 —0.04 645.41
bgss | —-0.00 -014  -0.05 43209  -0.07 6.86
Dyse 0.27 0.01 —4.71 -0.08 13.71 0.02
Dyes 0.00 -0.66 0.03 645.41 0.01 5.78
bsss | -021  -000  -1.15  -0.02  597.79 -0.11
bssg | —-0.01  -037 0.00 6.86 -0.33 905.87
bsge 0.43 0.03 -1.90 0.01 905.87 -0.18
Dess 0.00 -0.51 0.00 1.93 —0.06  1348.82
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E.3.3. Discretized string design with decreased width at 0.25L and 0.75L

Table E.15: Single mode coefficients for the first 6 modes of a discretized string of 100 elements with decreased width near the clamping
points and at 0.25L and 0.75L (similar to C.5¢). Wepring = 4pm and wmass = % = % pm. The coefficients were found using STEP. The
variables are computed for a string with characteristics similar to those from Table C.4.

Eq. (1) (2) (3) (4) (5) (6)

kn 872 157x 1017 8.03x1012  1.66x101°  240x1013  3.89x10°  6.55x 1010
wn [s72] 1.25x 106 2.83x 108 4.08x10°% 4.90x 108 6.23 x 10° 8.10x 108
bW ms™2] | 1.83x10%%  4.80x103%  2.05x103  4.26x10%°  1.12x10%  3.19x1036
% [m] 117x10%1  598x1021  1.23x10%2  1.78x10%?  2.88x10%2  4.87x10%
kn 1.00 5.11 10.58 15.26 24.73 41.70
@n 1.00 2.26 3.25 3.91 4.97 6.46
b 1.00 26.17 111.95 232.44 611.07 1740.80

Table E.16: Nonlinear modal coefficients for the first 6 modes of a discretized string of 100 elements with increased width near the
clamping points and at 0.25L and 0.75L (similar to C.5b). The coefficients were found using STEP. wgpring = 4pm and wmass = % = % pm.

Note that the coefficients are scaled with respect to E;U

11"
Eq. (1) (2) (3) (4) (5) (6)
D111 1.00 0.00 0.00 0.01 0.01 —0.02
b112 0.00 5.12 0.00 0.05 0.00 0.01
b113 0.01 0.00 10.63 0.00 0.07 0.00
br14 0.03 0.05 0.00 15.33 0.00 -0.08
b11s 0.04 0.00 0.07 0.00 24.76 0.01
big | -0.06 0.01 0.00 -0.08 0.01 41.76
b122 5.12 -0.00 0.11 0.00 0.17 0.00
D123 0.00 0.22 0.00 0.46 0.01 -0.46
b12g 0.10 0.00 0.46 0.00 0.41 0.00
b12s 0.00 0.34 0.01 0.41 0.01 -0.26
b12e 0.02 0.00 -0.46 0.00 -0.26 -0.00
b33 | 1063 0.00 0.31 0.00 0.42 0.00
D134 0.00 0.46 0.01 0.53 0.01 -0.74
D135 0.13 0.01 0.83 0.01 -0.06 0.01
b13g 0.01 ~0.46 0.01 ~0.74 0.01 -0.36
baq | 1533 0.00 0.26 -0.00 0.22 0.00
b1as 0.00 0.41 0.01 0.45 0.01 0.06
b | -0.15 0.00 —0.74 0.01 0.06 -0.00
byss | 24.76 0.00 -0.03 0.01 0.85 0.03
b1se 0.01 -0.26 0.01 0.06 0.06 1.63
bies | 4176  -000  -0.18  -0.00 0.82 0.00
byp | -0.00 2617 0.01 -0.01 0.03 -0.15
boo3 0.11 0.04 54.42 0.01 -0.11 0.02
bo2g 0.00 -0.03 0.01 78.46 0.01 0.30
baas 0.17 0.08 -0.11 0.01 127.19 0.04
booe 0.00 -0.45 0.02 0.30 0.04 214.59
bo33 0.00 54.42 0.01 0.85 0.01 -0.18
bo3q 0.46 0.02 1.69 0.03 1.88 0.01
bo3s 0.01 -0.22 0.02 1.88 -0.00 -2.60
boze | -0.46 0.03 -0.37 0.01 ~2.60 0.00
I 0.00 78.46 0.01 0.64 0.01 -1.45
boys 0.41 0.02 1.88 0.03 -0.39 -0.04
boas 0.00 0.59 0.01 -2.90 —0.04 -1.39
boss 0.00  127.19  -0.00  -0.20 -0.00 0.77
byse | -0.26 0.08 -2.60  —0.04 1.54 0.11
byes | —0.00 21459 0.00 -0.70 0.06 -0.78
b333 0.10 0.00 111.95 0.03 -0.02 -0.08
D334 0.00 0.85 0.10 162.64 0.04 -0.67
B335 0.42 0.01 -0.07 0.04 262.98 0.06
b3s3e 0.00 -0.18  -0.25  —0.67 0.06 443.41
b3aq 0.26 0.01 162.64 0.04 1.52 0.04
b3as 0.01 1.88 0.08 3.04 0.07 -4.15
b3 | -0.74 0.01 -1.33 0.08 -4.15 0.04
b3ss | -0.03  -0.00  262.98 0.03 -2.83 -0.01
b3se 0.01 ~2.60 0.11 -4.15 -0.02 -6.78
b3gs | —0.18 0.00 443.41 0.02 -3.39 0.02
bgaq | -0.00 0.21 0.01 232.44 0.04 0.04
byas 0.22 0.01 1.52 0.12 378.24 0.07
byss 0.00 -1.45 0.04 0.13 0.07 638.22
byss 0.01 -0.20 0.03 378.24 0.03 -1.08
byse 0.06 -0.04  —4.15 0.15 217 0.16
byes | -0.00 -0.70 0.02 638.22 0.08 6.38
bsss 0.28 -0.00  —0.94 0.01 611.07 -0.04
bsse 0.03 0.77 -0.01  -1.08 -0.12 1036.92
bses 0.82 0.06 -3.39 0.08 1036.92 0.01
bees 0.00 -0.26 0.01 2.13 0.00 1740.80
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E.3.4. Discretized zipper-like string designs for wmass = 4 Wspring

Table E.17: Linear modal coefficients for the first 6 modes of a discretized string of 100 elements from Figure C.8. The coefficients were
found using STEP. wgpring = 4pum and wmass = 16um. The variables are computed for a string with characteristics similar to those from

Table E.18: Nonlinear modal coefficients for the first 6 modes of a discretized string of 100 elements from Figure C.8. The coefficients
were found using STEP. wgpring = 4um and Wmass = 16pm. Note that the coefficients are scaled with respect to b

Table C.4.
Eq. (1) (2) (3) (4) (5) (6)
kn [s~2] 6.57x1011  263x1012  590x1012  1.05x1013  1.63x1015  233x103
wp [rads™] 8.11x10° 1.62x 108 2.43x 108 3.23x 106 4.03 x 108 4.83x 108
B im2s72] | 672x1032  1.07x10%%  541x103%  1.70x10%%  4.12x103  846x103

(n)

R () 1.02x1021  4.07x1021  917x1021  162x1021  253x10%2  3.63x10%2
kn 1.00 4.00 8.97 15.90 24.75 35.46
@n 1.00 2.00 3.00 3.99 4.98 5.96
Bm 1.00 15.96 80.48 252.90 612.68 1257.60

(1)

111
Eq. (1) (2) (3) (4) (5) (6)
bi11 1.00 0.00 0.00 0.00 ~0.01 0.01
br12 0.00 4.00 0.00 0.02 —0.00 -0.00
b3 0.00 0.00 8.99 -0.00 0.04 -0.00
br14 0.01 0.02 —0.00 15.95 0.00 0.07
byis | -0.02  -0.00 0.04 0.00 24.82 0.01
b1 0.02 —-0.00  —0.00 0.07 0.01 35.57
brao 4.00 —0.00 0.03 —0.00 0.05 —0.00
b123 0.00 0.06 0.00 0.12 0.00 0.19
D124 0.04 -0.00 0.12 -0.00 0.21 -0.00
bias | —0.00 0.10 0.00 0.21 -0.01 0.33
biog | -0.00  -0.00 0.19 -0.00 0.33 -0.00
b33 8.99 0.00 -0.00  —0.00 0.11 -0.00
bz | —0.00 0.12 —0.00 0.00 -0.01 0.40
b13s 0.07 0.00 0.23 -0.01  —0.01 -0.01
bizg | —o0.01 0.19 -0.01 0.40 -0.01 0.01
D144 1595  —0.00 0.00 -0.01 —0.00 -0.01
b1as 0.01 0.21 -0.01 -0.01  —0.01 0.00
bag 0.13 -0.00 0.40 -0.01 0.00 -0.02
byss | 2482  -0.00 -0.00 -0.01 —-0.01 -0.01
b1se 0.01 0.33 -0.01 0.00 -0.02 -0.01
bigg | 3557  -0.00 0.01 -0.01  —0.00 -0.01
bosa | —0.00 15.96 0.00 -0.00 0.01 0.03
boo3 0.03 0.00 35.94 -0.00  —0.01 -0.01
byos | -0.00 -001 -000  63.71 0.01 0.01
baas 0.05 0.02 -0.01 0.01 99.18 0.02
bosg | —0.00 0.08 -0.01 0.01 0.02 142.13
bo33 0.00 35.94 -0.00 0.18 -0.01 -0.01
D234 0.12 -0.01 0.36 -0.01 0.64 -0.02
bo3s 0.00 —-0.01  —0.02 0.64 0.00 1.03
bo3g 0.19 -0.02  -0.02  -0.02 1.03 0.01
boag | -0.00  63.71 -0.00  -0.01  —0.02 0.51
bous 0.21 0.02 0.64 -0.03  -0.02 0.01
bosg | —0.00 0.02 -0.02 1.02 0.01 0.05
byss | -0.00  99.8 0.00 -0.01  —0.01 -0.02
bose 0.33 0.04 1.03 0.01 -0.04 -0.07
bogs | —0.00 14213 0.00 0.02 -0.03 -0.01
b33z | -0.00  -0.00 80.48 0.00 -0.02 0.02
b33s | —0.00 0.18 0.01 143.09 0.01 0.03
D335 0.11 —-0.01  -0.05 0.01 222.75 0.05
bssg | -0.00 -0.01 0.05 0.03 0.05 319.20
D344 0.00 -0.00 143.09  —0.00 0.63 -0.04
b5 | —o0.01 0.64 0.02 1.25 -0.01 213
b3ass 0.40 -0.02 0.07 -0.08 2.13 -0.10
b3ss | —0.00 0.00 22275  -0.00  —0.02 -0.06
bssg | —o0.01 1.03 0.11 213 -0.13 -0.09
b3es 0.01 0.00 31920 -0.05  —0.05 -0.02
bgas | -0.00 -000 -000 25290 0.01 -0.03
bys | -0.00  -0.02 0.63 0.02 394.92 0.14
by | -o0.01 0.51 -0.04  —0.08 0.14 565.93
bgss | -0.01  -001  -000 39492  -0.01 1.86
byse 0.00 0.01 2.13 0.28 3.72 0.39
byes | —o0.01 0.02 —-0.05  565.93 0.19 -0.05
bsss | -0.00  -000  -0.01 -0.00 61268 0.01
bssg | -0.01 -002  -0.06 1.86 0.03 881.02
bsgs | -0.00 -003  -0.05 0.19 881.02 -0.02
bees | -0.00 -000  -0.01 -0.02  -0.01  1257.60
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E.3.5. Discretized zipper-like string designs for wmass = 10 Wspring

Table E.19: Linear modal coefficients for the first 6 modes of a discretized string of 100 elements from Figure C.8. wspring =4pm and
Wmass = 40um. The coefficients were found using STEP. The variables are computed for a string with characteristics similar to those

from Table C.4.

Eq. (1) (2) (3) (4) (5) (6)
kn [s~2] 329x 100 131x1012  294x1012  519x1017  804x1017  1.15x1083
wp [rads™ 5.73x 10° 1.14x 108 1.71x 108 2.28x 108 2.84x 108 3.39x 106
B im2s72] | 1.79x1032  285x1033  1.43x103%  447x10%%  1.07x10%  218x10%

(n)
. () 544x1020  218x1021  4.86x1021  861x1021  133x1022  1.90x10%2
kn 1.00 3.99 8.94 15.80 24.48 34.88
@n 1.00 2.00 2.99 3.97 4.95 5.91
B 1.00 15.92 79.92 249,52 599.29 1216.77

were found using STEP. wgpring = 4um and Wmass = 40pm. Note that the coefficients are scaled with respect to b

(1)

111"

Eq. (1) (2) (3) (4) (5) (6)
D111 1.00 0.00 0.00 0.00 —0.01 0.01
b112 0.00 4.00 0.00 0.02 -0.00 -0.00
b113 0.01 0.00 8.96 0.00 0.03 -0.00
b114 0.01 0.02 0.00 15.84 —0.00 0.05
by1s | -0.03  -0.00 0.03 -0.00 24.55 0.01
b1 0.02 —-0.00  —0.00 0.05 0.01 34.99
b12> 4.00 -0.00 0.03 0.00 0.05 -0.00
D123 0.00 0.06 0.00 0.12 0.00 0.18
D124 0.04 0.00 0.12 -0.00 0.20 -0.00
bios | —0.00 0.09 0.00 0.20 -0.01 0.31
b1z | -0.00  -0.00 0.18 -0.00 0.31 -0.00
D133 8.96 0.00 —0.00 0.00 0.11 -0.00
D134 0.00 0.12 0.00 0.00 0.01 0.37
D135 0.07 0.00 0.21 0.01 -0.01 -0.01
bizg | -0.01 0.18 —-0.01 0.37 —-0.01 0.01
D14 15.84 -0.00 0.00 -0.01 -0.00 -0.00
bas | -0.01 0.20 0.01 -0.01 0.00 0.01
biss 0.11 -0.00 0.37 -0.01 0.01 -0.01
byss | 2455  -0.00 -0.00 0.00 —-0.01 -0.01
b1s6 0.01 0.31 -0.01 0.01 -0.02 -0.01
bigs | 3499  -0.00 0.01 —-0.00  —0.00 -0.01
bay | -0.00 15.92 0.00 -0.01 0.01 0.02
boo3 0.03 0.00 35.76 0.00 -0.01 -0.01
Doos 0.00 -0.02 0.00 63.20 —-0.01 -0.01
baos 0.05 0.02 -0.01 -0.01 97.96 0.02
boss | —0.00 0.07 -0.01 -0.01 0.02 139.61
Dbo33 0.00 35.76 —0.00 0.18 —-0.01 -0.01
D234 0.12 0.01 0.35 0.01 0.61 -0.00
bo3s 0.00 -0.02  —-0.02 0.61 0.00 0.96
Doz 0.18 -0.02  —0.02  -0.00 0.96 0.01
boaq | -0.00  63.20 0.01 -0.01 -0.02 0.48
boss 0.20 -0.03 0.61 -0.03 0.03 -0.04
bogg | -0.00  -0.03  —0.00 0.95 —0.04 -0.01
bass | -0.00  97.96 0.00 0.01 -0.01 -0.02
bosg 0.31 0.05 0.96 -0.04  —0.04 -0.07
bogs | —0.00  139.61 0.00 -0.01 —-0.04 -0.02
b33z | -0.00  -0.00 79.92 0.00 -0.01 0.01
D334 0.00 0.18 0.01 14161  —0.02 -0.04
D335 0.11 -0.01 -0.04  -0.02 21951 0.06
b3zg | -0.00  -0.01 0.04 -0.04 0.06 312.84
b34a 0.00 0.01 141.61  -0.01 0.58 -0.04
D345 0.01 0.61 —-0.04 1.16 —-0.02 1.91
b3ae 0.37 -0.00  -0.08  -0.09 1.91 0.06
b3ss | —0.00 0.00 21951  -0.01 -0.03 -0.07
b3sg | —0.01 0.96 0.11 1.91 -0.13 -0.08
b3ee 0.01 0.00 312.84 0.03 —0.04 -0.02
bgag | -0.00  -0.00  —0.00  249.52 0.00 -0.02
bgas | -0.00  -0.02 0.58 0.01 387.93 0.05
byae | —-0.00 0.48 -0.04  -0.05 0.05 552.88
D455 0.00 0.01 -0.01  387.93  -0.01 1.53
Dyse 0.01 -0.04 1.91 0.10 3.07 —0.04
bggs | —0.00  -0.01 0.03 552.88  —0.02 -0.05
bsss | —-0.00  -0.00  —0.01 -0.00  599.29 0.01
bssg | —-0.01  -0.02  —0.07 1.53 0.02 857.00
bsgg | —-0.00 -0.04  -0.04  -0.02  857.00 -0.02
bess | —0.00  -0.01 -0.01 -0.02  -0.01  1216.77

Table E.20: Nonlinear modal coefficients for the first 6 modes of a discretized string of 100 elements from Figure C.8. The coefficients
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E.3.6. Discretized asymmetrical string design

Table E.21: Linear stiffness and Duffing coefficients for the first 6 modes of an asymmetrical discretized string of 100 elements from
Figure C.9. The coefficients were found using STEP. wgpring = 4pm and wmass = 40pum. The variables are computed for a string with

characteristics similar to those from Table C.4.

Eq. 1) (2) (4) (5) (6)

kn [s72] 2.86x 1011 1.88x10"7  3.77x10%  6.80x1017  1.23x101°  1.60x 107

wp [rads™] 5.35x 10° 1.37x 108 1.94 x 108 2.61x10°% 3.51x 108 4.00x10°

B m2572] | 133x1032  575x10%  230x103%  752x103%  247x10%  415x10%
n

b(,'é:%" [m] 465x1020  3.06x1021  6.10x10%1  1.11x10%2  201x10%2  2.59x10%

n 1.00 6.58 13.18 23.76 43.11 55.93

@n 1.00 2.56 3.63 4.87 6.57 7.48

[ 1.00 43.32 173.50 566.05 1860.76 3127.26

Table E.22: Nonlinear modal coefficients for the first 6 modes of an asymmetrical discretized string of 100 elements from Figure C.9.

The coefficients were found using STEP. wgpring = 4pm and wmass = 40pum. Note that the coefficients are scaled with respect to b

Eq. (1) (2) (3) (4) (5) (6)
b111 1.00 ~0.00 0.00 0.00 ~0.00 0.00
b2 | -0.01 6.59 —0.02 0.03 —0.01 —0.00
b13 0.00 -0.02 13.19 -0.05 0.03 0.01
br1a 0.00 0.03 -0.05 23.84 -0.11 -0.07
byis | -0.01  —0.01 0.03 —0.11 43.20 0.13
b1 0.00 -0.00 0.01 -0.07 0.13 55.99
brao 6.59 0.02 -0.00 -0.03 0.12 0.07
bias | -0.05  —0.00 0.09 0.04 —0.09 -0.29
b124 0.07 -0.05 0.04 0.18 0.09 0.19
bras | -0.02 0.23 -0.09 0.09 0.33 -0.03
biag | —0.00 0.13 -0.29 0.19 -0.03 0.45
b3z | 13.19 0.04 -0.08 0.10 0.12 -0.09
byzs | -0.09 0.04 0.20 -0.42 0.25 -0.26
b13s 0.06 -0.09 0.24 0.25 —0.60 -0.49
b13g 0.01 -029  -0.18 -0.26 —0.49 -0.61
brag | 2384 0.09 -0.21 0.51 -0.36 -0.27
bus | -0.21 0.09 0.25 -0.72 1.23 0.95
b | -0.14 0.19 -0.26 -0.54 0.95 1.09
biss | 43.20 0.17 -0.30 0.61 -0.40 -0.36
b1se 0.26 -0.03  —0.49 0.95 -0.71 -0.75
bies | 55.99 0.23 -0.30 0.55 -0.37 -0.55
bozo 0.01 43.32 -0.08 -0.14 0.10 -0.04
boo3 | —0.00  -0.24 86.81 —-0.22 —-0.43 -0.43
bypg | -003 042  -022 157.38 -0.08 0.87
boos 0.12 0.30 -0.43 -0.08 284.92 1.25
baoe 0.07 -0.12 -0.43 0.87 1.25 369.01
bo33 0.04 86.81 -0.05 0.23 0.22 0.21
bo3g 0.04 -0.44 0.47 -0.75 1.34 -0.10
bazs | -0.09 087 0.44 1.34 —0.74 -2.08
bozg | -029  -0.86 0.43 -0.10 -2.08 -0.39
boay 0.09 15738  —-0.37 -1.39 -0.61 -1.66
boys 0.09 -0.17 1.34 -1.22 —-2.50 -1.23
bosg 0.19 1.74 -0.10 -3.31 -1.23 -2.68
boss 0.17 28492  -0.37 -1.25 1.12 0.73
bosg | —0.03 251 -2.08 -1.23 1.47 1.45
bogs 023  369.01 -0.19 -1.34 0.72 0.50
bszz | -0.03  —0.02  173.50 -0.11 -0.19 -0.05
b33q 0.10 0.23 -0.34  313.81 -0.02 0.39
b33s 0.12 0.22 -0.58 -0.02 569.43 0.21
b3z | —0.09 0.21 -0.16 0.39 0.21 738.53
b3ag | -021  -037 31381 -2.30 0.35 -0.46
b3as 0.25 1.34 -0.03 0.69 -3.34 -4.89
bssg | 026  -0.10 0.77 -0.92 -4.89 -2.14
b3ss | -030 -037  569.43 -1.67 -2.80 -1.76
b3sg | -0.49  —2.08 0.42 -4.89 -3.52 -3.42
bsgs | -0.30  -0.19 73853 -1.07 -1.71 -1.93
byas 0.17 -0.46  —0.77  566.05 -0.68 0.92
bys | -036  -0.61 0.35 -2.03 1030.41 5.49
by | -027 -166  —0.46 2.77 5.49 1335.16
byss 0.61 -125  -1.67  1030.41 -2.08 -2.10
base 0.95 -123  -4.89 10.98 -4.19 0.30
bags 0.55 -134  -1.07 1335.16 0.15 3.28
bsss | -0.13 0.37 -0.93 -0.69 1860.76 4.25
bssg | —0.36 0.73 -1.76 -2.10 12.75 2423.08
bsgg | —0.37 0.72 -1.71 0.15 2423.08 10.73
bess | —0.18 0.17 —0.64 1.09 3.58 3127.26

(1)
111°



E1. Matlab codes
E1l.1. FPUT simulation

Code

1%

2 clear all; clc

FPUT code - can run default FPUT problem or run the simulation for string parameters

upper/lower matrix vector

upper and lower

4 % Load string variables

5 S_A_structure_par_string_Minxing

6

7 % Load FPU vars

s N = 16;

9 k =1; m=1;

10 m_vec = m*ones (1l,N);

n % mass matrix

12 M = diag(m_vec);

13 % lin stiff matrix

u kd = 2xkxones(N,1); % diag matrix vector
15 kd_UL = -kxones(N-1,1); %

16 KD = diag(kd); % diagonal matrix

17 KD_U = diag(kd_UL,1); KD_L = diag(kd_UL,-1); %
18 K = KD + KD_U + KD_L; % total matrix

20 % modal analysis

% Scaling of eigenvectors with modal mass
% s

(alpha = sqrt(2/m_tot))

2 [V, D] = eig(K,M);

22 alpha = max(max(V));

23 modmassmat = V'*xMxV; hould be unity
22 modstiffmat = V'xK+V; % modstiffmat =

26 k_modal =
27 ind_eig =

[1 2345 6];

29 % Select string parameters

[

30 stringvals = 1 %

31 perf freq = 0;

32

33 1f stringvals == 0

34 beta = 8;

35 omega = sqgrt (k_modal);

36 elseif stringvals

37 % For string

D-matrix

diag(modstiffmat); % take diagonal since stiffmatrix is diagonal

string parameters or not?

% Eigvector scale parameter

38 m_string = rhoxAs*Length;

39 alpha = sqgrt(2/ (rhoxAsxLength)); %

40 for n_i = l:length(ind_eigqg)

11 k_modal (n_i) = (ind_eig(n_1i)"2xsig0*pi”~2)/((Length”2)*rho);
42 b_simpleSTEP (n_i) =

% this one matches with STEP
43 end

(3/8)*((ind_eig(n_1i) "4 *«Emod*pi~4)/ ((Length”4) xrho)) xalpha”2;

139
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E Code

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91

92
93

94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

beta = b_simpleSTEP (1)/(0.000102323); % beta for string parameters
end

Q = [le5];

zeta = 1./(2%Q);

c_modal = 2.0.%zeta.*sqgrt (k_modal/k_modal(l)); % ND already
n_solve = 6;

k_modal = k_modal (l:n_solve);

if perf_ freq ==
k_modal = k_modal(1l).*diag(modstiffmat (:,1l:n_solve))/modstiffmat (1,1);
end

% If f5 is integer

% k_modal (5) = k_modal(5)*1.07 % scales £5/fl1 to 5.00
c_modal = lxc_modal (l:n_solve);

a = zeros(21,6);

min_stringb = le-25; % onset of destroyed FPU is at le-3
if stringvals ==
b_FPU = b_matrix(beta);
elseif stringvals == 1
[b_FPU, b_string] = b_matrix_string_simple (b_simpleSTEP (1), min_stringb);
end

{

Uncomment this to find the needed coupling terms

oo o

b_nonzero = ones (56, 6)

% 1lst EoM: terms with modes 1, 3 and 5
b_nonzero(3,1) = 0;

b_nonzero(12,1) = 0; b_nonzero(1l4,1) = 0;
b_nonzero(19,1) = 0; b_nonzero(39,1) = 0;

$ 3rd EoM: terms with modes 1, 3 and 5

b_nonzero(1,3) = 0;

b_nonzero(3,3) = 0; b_nonzero(3,5) = 0;

b_nonzero(14,3) = 0; b_nonzero(44,3) = 0;

% 5th EoM: terms with modes 1, 3 and 5

b_nonzero(3,5) = 0; b_nonzero(5,5) = 0;

b_nonzero(12,5) = 0; b_nonzero(39,5) = 0;

b_FPU = b_nonzero.xb_FPU

% COMPARE TO STRING VALUES

% if stringvals ==

% simple = 1;

% if simple == 0

% [b_compS, b_string, b_larger, b_string_l] = b_matrix_string(b_FPU,
min_stringb); % u and w-disp model

% elseif simple == 1

% [b_compS, b_string] = b_matrix_string_simple (b_FPU, min_stringb); % w-only
model

end

b_FPU = b_compS; % This sets either the simple or the full model --> dep of simple
b_FPU_norm = b_FPU./b_FPU(1,1); % This normalizes the b-matrix

O
o]
Q.

o0 oo oo oo oe

% Time and space normalization

= sqgrt(l/k_modal(l)); % Time scaling parameter = 1/omega_0
D = k_modal.xT"2;

= sqgrt (k_modal (1)) /sqgrt (b_FPU(1,1));

ND = axh/k_modal (1) ;

_ND_FPU = b_FPU.xh"2.xT"2;

_ND = b_ND_FPU;

Z

T
k.
h
a.
b
b

% This is the total space scaling: also with max eigenvector
u_scale = hxalpha;

ND = 1; % Sets the ND or Dimensional equation of motion
clear t_span g_free E
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141

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

130
131

132

133
134

135
136
137
138
139
140

146

147

148

149

150

154

155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

options = odeset ('Reltol',le-14, 'Abstol',le-12, 'OutputsSel’, [1,2,n_solvel);

w0O = zeros(l,2xn_solve);
if ND ==
dt = 0.01;

tspan = 0:dt:300;
if stringvals ==

wO(l) = 11.82e-6;
% w0 (1) = 0.8x11.82e-6;
% w0 (3) = 0.15%11.82e-6;
% w0 (5) = 0.05%11.82e-6;
% w0 (7) = wO (1) +sqgrt (k_modal(l));
% w0 (9) = w0 (3)+sqrt (k_modal(3));
% w0 (11) = w0 (5)*sqgrt (k_modal (5));
elseif stringvals ==
wO(l) = 1;
end
g0 = w0./u_scale; % scales it to the nondimensional space using the eigenvect and
space scaling
g0 (7:end) = g0(7:end) .*T;
[t_free,q _free] = ...
ode45 (@ (t,q) freeODE_6D (t,q, k_ND,c_modal,a_ND,b_ND), tspan, g0, options);
g _free = g_free.xh; % scales the amplitude and vel back to mass—-norm space: for
energy comp
q_free(:,7:end) = g_free(:,7:end)./T; % scales the vel back to original time
g _free_PA = g _free.xalpha; % scales the amplitude and vel back to original space:
incl alpha
elseif ND == 0
g0 = wO/alpha;
% q0(l) = 5% form= 0.1
dt = 0.1;
tspan = 0:dt:2000;
[t_free,g _free] = .
oded5 (@ (t,q) freeODE_6D (t,q, k_modal, c_modal, a,b_FPU), tspan, g0, options);
end

tspan = tspan.xT;

% Find peak values of signal to find max points for energy criterion

[t_maxgl, g _maxgl, i_rec, recl_time, recl_perc, E.Elpeak, E.Elpotpeak, E.Elkinpeak,
E.E1NLpeak] = fT_PeakFinder (q_free,tspan,1l,k_modal,b_FPU);

[t_maxg2, g _maxg2, -, 7, 7, E.E2peak, E.E2potpeak, E.E2kinpeak, E.E2NLpeak] =
fT_PeakFinder (g_free,tspan, 2, k_modal,b_FPU);

[t_maxg3, 9_maxqg3, 7, 7, 7, E.E3peak, E.E3potpeak, E.E3kinpeak, E.E3NLpeak] =
fT_PeakFinder (q_free, tspan, 3,k_modal, b_FPU);

[t_maxg4, 9 _maxg4, 7, 7, 7, E.E4peak, E.E4dpotpeak, E.E4kinpeak, E.E4NLpeak] =
fT_PeakFinder (q_free, tspan, 4,k_modal, b_FPU);

[t_maxg5, g_maxg5, -, 7, 7, E.ES5peak, E.EbSpotpeak, E.ESkinpeak, E.E5NLpeak] =
fT_PeakFinder (q_free, tspan, 5, k_modal, b_FPU);

[t_maxg6, g _maxg6, -, 7, 1, E.E6peak, E.E6potpeak, E.E6kinpeak, E.E6NLpeak] =
fT_PeakFinder (q_free, tspan, 6,k_modal, b_FPU);

% total single-mode energy at these peaks

E.Eltotpeak = E.Elpeak + E.ElNLpeak(:,1); E.E2totpeak = E.E2peak + E.E2NLpeak(:,1);
E.E3totpeak = E.E3peak + E.E3NLpeak(:,1);
E.E4totpeak = E.E4peak + E.E4NLpeak(:,1); E.E5totpeak = E.E5peak + E.ES5SNLpeak(:,1);

E.E6totpeak = E.E6peak + E.E6NLpeak(:,1);
E.E0 = 0.5«k_modal (1l)+q_free(l,1)"2 + 0.5+«1xg_free(l,1l+n_solve)"2;

[max_Erectot,i_rectot] = max(E.Eltotpeak(2:end,1l)); i_rectot = 1 + i_rectot;
perc_recTot = max_Erectot/E.Eltotpeak (1)

% Compute energies

for 1 = 1l:length(tspan)

E.E1(i) = 0.5xk_modal(1l)+*qg_free(i,1)"2 + 0.5x1*qg_free(i,l+n_solve)"2;
E.E2(i1) = 0.5xk_modal(2)*g_free(i,2)"2 + 0.5x1*qg_free(i,2+n_solve)"2;
E.E3(1) = 0.5xk_modal(3)+*g_free(i,3)"2 + 0.5x1*qg_free(i,3+n_solve)"2;
E.E4 (i) = 0.5xk_modal (4) g _free(i,4)"2 + 0.5x1xqg_free(i,4+n_solve)"2;
E.E5(1) = 0.5xk_modal(5)+*g_free(i,5)"2 + 0.5x1xqg_free(i,5+n_solve)"2;
E.E6(1i) = 0.5xk_modal(6)*g_free(i,6)"2 + 0.5x1xqg_free (i, 6+n_solve)"2;
E.Elpot (i) = 0.5+«k_modal (1l)*qg_free(i,1)"2;
E.E2pot (i) = 0.5xk_modal (2)*q_free(i,2)"2;
E.E3pot (i) = 0.5+«k_modal (3)*qg_free(i,3)"2;

’
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11 E.Edpot (i) = 0.5+k_modal (4)+q_free (i, 4)"2;

12 E.ES5pot (i) = 0.5xk_modal (5)xg_free(i,5)"2;

113 E.E6pot (i) = 0.5xk_modal (6) xg_free (i, 6)"2;

174 E.Elkin(i) = 0.5x1xg_free(i,l+n_solve)"2;

175 E.E2kin(i) = 0.5x1lxqg_free(i,2+n_solve)"2;

176 E.E3kin(i) = 0.5x1xg_free(i,3+n_solve)"2;

177 E.E4kin (i) = 0.5x1lxqg_free(i,4+n_solve)"2;

178 E.ESkin(i) = 0.5+1xg_free(i,5+n_solve)"2;

179 E.E6kin(i) = 0.5x1lxqg_free (i, 6+n_solve)"2;

180 E.diffE3E1(i) = E.E3(i)-E.E1(1i);

181 E.diffES5E1(i) = E.E5(i)-E.E1(1i);

12 [E.NL1(i), E.NL2(i), E.NL3(i), E.NL4 (i), E.NL5(i), E.NL6(i), E.coup (i),

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

218
219
220
221
222

223
224
225
226
227
228
229
230
231

233
234
235
236
237
238

E.coupuneven (i)] = fT_ModalEnergy (b_FPU,qg_free,i);
end

[E.maxdomE3El, E.imaxdomE3El] = max(E.diffE3El);
[E.maxdomE5E]l, E.imaxdomES5El1] = max(E.diffE5EL);
EdomE3El = E.maxdomE3E1l/E.EQ
EdomES5E]1 = E.maxdomE5E1/E.EO

$b-coefficients

count_b = 1;
for 1 = 1:6
for j = 1:6
for k = j:6
b_name (count_b, :) = [i, j, kI;
count_b = count_b+1;
end
end
end
% Criteria
% (1) linear frequency ratio
k_ND;

% (2) structure-specific Linear vs Nonlinear strength
mn = 1; % modenumber
b_111 = b_FPU(1,1); % this is the reference NL variable

k_blll = k_modal (mn)/b_111;

o

(3) Damping

|©)

% (4) Initial force ratio

b = b_FPU;

gl = q0(1); a2 = g0(2); g3 = g0(3); g4 = g0(4); g5 = g0(5); g6 = g0(6);

gl_or = g0(1l)*u_scale; g2_or = g0(2)+u_scale; g3_or = g0(3)+u_scale; g4_or =
g0 (4) xu_scale; g5_or = g0(5)*u_scale; g6_or = g0(6)*u_scale;

F_lin_or = k_modal(l).*gl_or;
F_lin = k_ND(1).*qgl;
for mn =1
F_NL =
a_ND (1, mn) *gl”2+a_ND (2, mn) *glxg2+a_ND (3, mn) xgl+g3+a_ND (4, mn) rgl+ gd+a_ND (5, mn) xgl+g5+
a_ND (6, mn) xglxg6. ..
+a_ND (7, mn) xg2+«g2+a_ND (8, mn) xg2+g3+a_ND (9, mn) xg2xg4+a_ND (10, mn) xg2xg5+a_ND (11, mn) xg2+gb
+a_ND (12, mn) »g3+g3+a_ND (13, mn) rq3+«g4+a_ND (14, mn) rg3+«g5+a_ND (15, mn) »g3+g6. . .
+a_ND (16, mn) xg4+gd4+a_ND (17, mn) rgd+gS+a_ND (18, mn) rg4*gb6. . .
+a_ND (19, mn) »g5+g5+a_ND (20, mn) xg5*g6. . .
+a_ND (21, mn) xg6*qg6. . .
+b_ND (1, mn) xgl”3+b_ND (1,2) *gql”2+g2+b_ND (3, mn) *gl*2+g3+b_ND (4, mn) xgql"2+qg4
+b_ND (5, mn) xgl"2+xg5+b_ND (6, mn) xql"2xg6. . .
+b_ND (7, mn) xgl+«g2”2+b_ND (8, mn) xgql+«g2+g3+b_ND (9, mn) xgqlxg2+g4+b_ND (10, mn) rgl«g2*g5+
b_ND (11, mn)»gl*g2+g6. ..
+b_ND (12, mn) *gql*g3*g3+b_ND (13, mn) xglxg3+g4+b_ND (14, mn) xgql*g3*g5+b_ND (15, mn) xglxg3+g6. .
+b_ND (16, mn) xgl+gd+gd+b_ND (17, mn) *gqlxgqd+g5+b_ND (18, mn) rgql+«gd+gb. ..
+b_ND (19, mn) xgql*g5%g5+b_ND (20, mn) xglxg5xg6. . .
+b_ND (21, mn) xgl*«gbxgb. . .
+b_ND (22, mn) *gq2+gq2”°2+b_ND (23, mn) xg2xq2+qg3+b_ND (24, mn) xg2+g2+xg4+b_ND (25, mn) xgq2+ g2+g5
+b_ND (26, mn) xgl«g2xg6. . .
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239
240

242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260

262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278

279
280

282
283
284
285
286
287
288
289
290
291
292

293
294
295
296
297
298
299
300

302
303
304
305
306

+b_ND (27, mn
+b_ND (31, mn
+b_ND (34, mn
+b_ND (36, mn
+b_ND (37, mn
+b_ND (41, mn
+b_ND (44, mn
+b_ND (46, mn
+b_ND (47, mn
+b_ND (50, mn
+b_ND (52, mn
+b_ND (53, mn
+b_ND (55, mn
+b_ND (56, mn

end

F_ratio = F_NL/F_lin;

*g2+g3+g3+b_ND (28, mn) xg2xg3+q4+b_ND (29, mn) *g2+g3+g5+b_ND (30, mn) xg2xg3+g6. .
*q2+xq4*qg4+b_ND (32, mn) xg2+xg4+g5+b_ND (33, mn) xq2+qd*g6. . .
*g2+g5+g5+b_ND (35, mn) xg2xg5xg6. . .

*Q2*q6*g6. . .

*q3+g3*g3+b_ND (38, mn) xg3xg3+q4+b_ND (39, mn) xgq3+g3*xg5+b_ND (40, mn) xg3*xq3+g6. .
*q3+q4*qg4+b_ND (42, mn) »g3*xg4+g5+b_ND (33, mn) xgq3+q4*gb6. . .
*q3xgq5+xg5+b_ND (45, mn) »g3*xg5*gb. . .

*q3xg6*gb. . .

*q4xqd+qg4+b_ND (48, mn) g4 +xg4+g5+b_ND (49, mn) xgqdrgd*g6. . .
*q4+g5+g5+b_ND (51, mn) xgd4xg5xg6. . .

*q4xqb*gb. . .

*5+xg5+g5+b_ND (54, mn) xg5+g5*g6. . .

*g5xqo*gb. . .

(
(
(
(
(
(
(
(
(
(
(
(
(
( *q6xq6*q6;

o

% Visualize it

figure(l); clf

plot (t_maxqgl,E.Elpeak(:,1),t_maxg2,E.E2peak,t_maxg3(l:3:end),E.E3peak(l:3:end),t_maxqg4,
E.E4dpeak,t_maxg5(l:5:end),E.ES5peak(l:5:end),t_maxg6,E.E6peak); hold on % smooth
legend('Mode 1', 'Mode 2', 'Mode 3', 'Mode 4', 'Mode 5', 'Mode 6', 'lst rec.')

xlabel ('Time (s)','FontSize',12); ylabel('Energy (a.u.)','FontSize',12)

x1im ([0 tspan(end)])

figure(2); clf

subplot (5,1,1)

plot (tspan,E.El,tspan,E.E2,tspan,E.E3, tspan,E.E4, tspan,E.E5,tspan,E.E6); hold on
plot (t_maxqgl (i_rec),E.Elpeak (i_rec), "kx');

legend('Mode 1', 'Mode 2', 'Mode 3', 'Mode 4', 'Mode 5', 'Mode 6', '"lst rec.')
xlabel (' {Time (s)}','FontSize',10); ylabel ('Energy (a.u.)")

x1im ([0 tspan(end)])

title('Total linear energy')

subplot (5,1,2)
E.Eltot = E.E1+E.NL1; E.E2tot = E.E2+E.NL2; E.E3tot = E.E3+E.NL3;
E.E4tot = E.E4+E.NL4; E.E5tot = E.E5+E.NL5; E.E6tot = E.E6+E.NL6;

Eldiff = (E.Eltot - E.E1l)/E.El; max_Eldiff = max (E1diff)
plot (tspan,E.Eltot, tspan,E.E2tot,tspan,E.E3tot, tspan,E.E4tot, tspan,E.E5tot, tspan,E.E6tot) ;
hold on

legend('Mode 1', '"Mode 2', '"Mode 3', 'Mode 4', 'Mode 5', 'Mode 6','lst rec.')
title('Single-mode (linear + nonlinear) energy')
xlabel (' {Time (s)}','FontSize',10); ylabel ('Energy (a.u.)")

subplot (5,1, 3)

plot (tspan,E.coup) ;

title('Coupling energy', 'FontSize', 9)

xlabel ('"{Time (s)}','FontSize',10); ylabel ('Energy (a.u.)")
x1im ([0 tspan(end)])

subplot (5,1, 4)

plot (tspan,qg_free_PA(:,1),tspan,q free PA(:,2),tspan,q_free_PA(:,3),tspan,qg free PA(:,4),

tspan,q_free_PA(:,5),tspan,q _free PA(:,6)); hold on

legend('Mode 1', 'Mode 2', 'Mode 3', 'Mode 4', 'Mode 5', 'Mode 6', 'Mode 1', 'Mode 2', '"Mode
3','Mode 4', 'Mode 5', 'Mode 6'")

xlabel (' {Time (s)}', 'FontSize',10); ylabel ('Amplitude (m)','FontSize',8)

x1im ([0 tspan(end)])

title('Modal amplitudes', 'FontSize', 8)

subplot (5,1, 5)

plot (tspan,g_free_PA(:,1l+n_solve),tspan,q_free_PA(:,2+n_solve),tspan,q_free_ PA(:,3+n_solve

,tspan,q_free_PA(:,4+n_solve),tspan,q _free_PA(:,5+n_solve),tspan,q_free_PA(:,6+n_solve));

hold on

legend('Mode 1', '"Mode 2', '"Mode 3', 'Mode 4', '"Mode 5', 'Mode 6', 'Mode 1', 'Mode 2', "Mode
3','Mode 4','Mode 5', "Mode 6")

xlabel (""{Time (s)}','FontSize',10); ylabel('Velocity (m/s)', 'FontSize', 8)

x1im ([0 tspan(end)])

title ('Modal velocities', 'FontSize', 8)

annotation('textbox', [0.08, 0.95, 0, 0], 'string', '\bf (a)','FontsSize', 9)
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37 annotation ('textbox', [0.08, 0.775, 0, 0], 'string', '"\bf (b)','FontSize', 9)
308 annotation('textbox', [0.08, 0.6, 0, 0], 'string', '\bf (c)','FontSize', 9)

309 annotation ('textbox', [0.08, 0.43, 0, 0], 'string', '\bf (d)','FontSize', 9)
310 annotation('textbox', [0.08, 0.26, 0, 0], 'string', '\bf (e)','FontSize', 9)

E1.2. STEP and AUTO simulations

Used to determine modal coefficients from STEP and run them in AUTO
HEAD - RUNS ALL SCRIPTS
Vincent Bos - adapted by Tim Jansen

N
o oo oo

4

5

6 clear all
7 close all
8

9

clc
10 matlabfolder = pwd;
n  add_folders % define location of AUTO
files
12 cd(autofolder); delete 'fort.x'; cd (matlabfolder); % remove old AUTO files

4 % SETTINGS

15 ind_eig = [1 2 345 6]; % select eigenmodes

16

17 n_eig_solve = max(ind_eiq); % number of eigenmodes searched for in eigenvalue
solver

18 n_eig = length(ind_eigq); % number of modes in the ROM

20 % Option 1: continuous structure

21 loc = 0.364;

22 S_A_structure_par_string_Minxing

23 [a_coefname,b_coefname,a_coef_un,b_coef_un,Km_value_un, MD] =

fsnaar_model_out_of_plane_Minxing(n_eig_solve, ind_eig,MP_snaar); % string

24 hardcode = 1;

25 1f hardcode ==

26 fprintf ("ATTENTION! NOT hardcoded!')

27 elseif hardcode ==

28 fprintf ('ATTENTION! Hardcoded!'")

29 end

30

31 1f hardcode ==

32 Km_value_un(2:end) = Km_value_un(1l)*(1.00533"2)*[ind_eig(2:end) ."2]

33 end

34

33 % Matching, scaling and generation of dimless variables

[a_coef_un,b_coef_un] = fmatchcoef (a_coef_un,b_coef_un,a_coefname,b_coefname);

% correct coefficients

36

37
38 [a_coef,b_coef,Km_value,scale_h,scale_T] =
fscalecoef (a_coef_un,b_coef_un,Km_value_un); %scale_h = (1/sqgrt (20))+scale_h;
39 [a, b, k_modal, m_modal] =
fT_odevars (a_coefname,a_coef,n_eig,b_coefname,b_coef,Km_value, MD);
40
a1 for n_i = l:length(ind_eigqg)

2 b_analytical(n_i) = (ind_eig(n_i)"4+Emod*pi~4)/ (4x (Length”4)+rho);

43 b_analySTEP (n_i) = ((ind_eig(n_1i)"4+«Emod*pi”~4)/ (4% (Length”4)+rho))«MD.alpha(l)"2;
4 k_analytical(n_i) = (ind_eig(n_1i)"2%sig0*pi”~2)/ ((Length”2) xrho);

45 end

46

47 % AUTO

oo oo

48 AUTO preparation

49

50 % cd(autofolder); delete 'fort.x'; cd(matlabfolder); % remove old AUTO files
51 clear leg legl leg_exp leg_sim_point f_res

52 clear Mf7 Mf7_point

53

sa figure (100)

55 clf

56 figure (400)




El.

Matlab codes 145

72
73
74
75
76
77
78
79
80
81
82
83
84

85
86

87

103
104
105
106

107
108
109

110
111

112

113

114
115

clf
Q = [2e5, 2e5]; % for characterization: 1.45e5
zeta = 1./(2%Q); % set damping

SFAST SETTING: omega_start = 0.9002, omega_end = 4, NMX = 10k

omega_start
omega_end

0.9991; % start freq sweep low values can give errors 6 modes = 0.97
1.025; % end freq sweep

o

omega_1l = 1; % keep this fixed
slaop = 0; savefigs = 0;

Volt = linspace(le-3,0.5,20);
sweep = [13]; sweeps = [1 5 10 13 14 15 16 17 18 19 20];

for

jj = l:length (sweep)
figure (400); clf; figure(100); clf;

Fsweepvalues = [0.275e-13, 65e-13, 100e-13, 135e-13, 150e-13, 160e-13, 170e-13,

180e-13, 190e-13, 200e-13, 215e-13]; % For mode 1 only: % without any exp scaling

Fvalues = Fsweepvalues (find(sweeps==sweep (jJj)));
Fmode_exc = ones (1l,length(ind_eig)); Fmode_exc(l) = 1;
F_exc = zeros(length(ind_eiqg),1); F_exc(ind_eig==Fmode_exc) = 1;

for

i = l:length(Fvalues)

cd(autofolder); delete '"fort.x'; cd(matlabfolder) ; % remove old AUTO files
clear Mf7 Mf7_point leg legpoint

sweepno = sweeps (sweeps==sweep (jJ));

Fvalue = Fvalues (i);

Cm_value = 2.0.xzeta (i) .xsgrt (Km_value); Mm_value = diag(MD.mat.Mm);
% add damping

i_u = 1:2:n_eig*2; i_v =1i_u + 1; n_dim U = n_eig*2 + 2; % indices of U
with the amplitude and velocity

Cco = ...
fvar2struc(a_coef,b_coef, a_coefname, b_coefname,Km_value,Mm_value,n_eig,i_u);
CO.Cm_value = Cm_value; % write coeff to structure

fstruc2var (MD) % load model parameters

[mapl, I] = fcoord2mod_correct (coordl,MD, Length); % MAPS FORCE TO MODAL

% determine mapping according to excitation point

F_sweep = F_exc .* mapl .x Fvalue .* scale_T"2 ./ scale_h; % modal force vector

u_scale_axvec = scale_hxMD.alpha; %scales dimens to ND and modal to physical

% MD.alpha is the max eig vect scaling

u_scale_ax0 = diag(reshape (repmat (u_scale_axvec,2,1),[1,1)); % scaling matrix
for state space dof

F kkkxxrxrxrxrxxxx Ak xxxkkk4% FREQUENCY RESPONSE AUTO #%kkkhkhkhhkhhhhhhkkkhkhkhkrrrx 5%

error =
fwrite_equation(a_coef,b_coef,a_coefname,b_coefname,Km_value,Cm_value,omega_start,

o

n_eig,mostfolder, F_sweep); % write equations

o

system (command); system(command); % compile equations

S_A_auto_base_lmode % this controls the two sweeps and places them into the Mf7
matrix % run AUTO frequency sweep

% READ FORT 8 INITIAL CURVE

n_labels = Mf7(end, 4); % pre—-allocate
for reading fort8

[Dat_f8] = freadfort8(n_labels,NTST,autofolder); % read fort 8

Xp = fFRFpoint_fast (Dat_£8,scale_h,MD, I); % map data

(scaled to real displ) to point (point sensor) ORIGINAL
Mf7_point = fpointMf7 (Xp,M£f7,[1,11);
Mf7 matrix for easy plotting

rewrite data in

o

if slaop == 1
L = (Length - 2%x5e-6)x*1leb6;
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116 filenamedatsave_point = .
sprintf ('Mf7_pointL%d_E%d_loc%.3f_sweep%d F%$.0fn_%.0f.mat',L,Emod/1le9, loc,

n7 sweep (j7J), round (Fvalue/le-13),ind_eig(end));

118 save (filenamedatsave_point, 'Mf7_point'); fprintf('Data sweep %d is
saved!\n', sweep (3j));

119 filenamedatsave = .
sprintf ('Mf7_L%d_E%d_loc%.3f_sweep%d_F%.0fn_%.0f.mat',L,Emod/1le9, loc,

120 sweep (J7J), round (Fvalue/le-13),1ind_eig(end)) ;

121 save (filenamedatsave, 'Mf7"); fprintf ('Data sweep %d is saved!\n', sweep(Jj));

122 elseif slaop ==

123 fprintf ("ATTENTION! Data sweep %d is NOT saved!\n', sweep(i)"')

124 end

125

126 S_A_plot_physical_base % plot physical domain

127

128 % 3. DEFINE LEGENDS

129 legpoint.length (i) = length(pl);

130 legpoint.lengthsum (i) = sum(legpoint.length(l:1));

131 if 1 ==

132 figure (400)

133 title (sprintf ('Frequency response physical point at %.3fxL',
coordl (1) /Length)); hold on

134 end

135

136 end

137
138
139
140
141

142
143
144
145
146
147
148
149
150
151

152
153

154
155
156
157

% PLOT THE EXPERIMENTAL DATA IN POINT PLOT
sweepno_exp = [1:1:20]; % Define experimental sweep data

[fwd, bwd, f_abs_exp, vel_exp, amp_exp, f_res_exp, freq_creep_exp, leg.exp] =
fT_plot_expdata (loc, sweepno_exp, efreq, ind_eig, colorv,Fvalues);

leg.all(l:1length(legpoint.sim)) = legpoint.sim;

leg.all (length (legpoint.sim)+1:length(legpoint.sim)+length(leg.exp)) = leg.exp;

legend(leg.all, "Location', "northwest")
title('")

figl00 = figure(100);
x1lim([omega_start omega_end])

if savefigs == 1
filename_100 =
sprintf ('Full 1L%d_E%d_loc%.3f_ sweep$d_F%.0fn_%$.0f.fig',L,Emod/1e9, loc, sweep (J7)
,round (Fvalue/le-13),ind_eig(end));
filename_400 =
sprintf ('Point_L%d_E%d_loc%.3f_sweep%d F%.0fn_%.0f.fig',L,Emod/le9, loc, sweep (J]j)
,round (Fvalue/le-13),1ind_eig(end));
saveas (fig400, filename_400); saveas (figl00, filename_100)
end
end

E2. Mathematica codes

E2.

1. Modal conversion FPUT problem

[

~ oW

In[l]:= a =0

Tl = 0.5+xmxyl'[t]"2; T2 = 0.5xmxy2'[t]"2; T3
0.5xmxy4"'[t]"2;

T5 = 0.5+mxy5'[t]"2; T6 = 0.5xmxy6'[t]"2; T7 = 0.5xmxy7'[t]"2; T8 =
0.5xm*xy8'[t]"2;

T9 = 0.5+xm*xy9'[t]"2; T10 = 0.5xmxyl0'[t]"2; T1l =
0.5xmxyl1l'[t]"2; T1l2 = 0.5xmxyl2'[t]"2;

T13 = 0.5+mxyl13'[t]"2; T1l4 = 0.5+mxyl4'[t]"2; T15 =
0.5xmxyl15'[t]"2; T1l6 = 0.5xmxyl6'[t]"2;

T=T1 + T2 + T3 + T4 + T5 + T + T7 + T8 + T9 + T10 + T1ll + T1l2 +
T13 + T14 + T15 + T16 (» Total kinetic energy x)

V1l = 0.5xkxyl[t]"2 + (1/3)*a*yl[t]”3 + 0.25+bxyl[t]"4;

0.5xmxy3'[t]"2; T4 =

V2 = 0.5+kx(y2[t] - y1[t])"2 + (1/3)*ax(y2[t] - yl[t])"3 +
0.25%bx (y2[t] - yl[t])"4;
V3 = 0.5«kx(y3[t] - y2[t])"2 + (1/3)*ax(y3[t] — y2[t])~3 +
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0.25%bx (y3[t] — y2[t])"4
V4 = 0.5%kx (y4[t] - y3[t])"2 + (1/3)#ax(y4l[t] — y3[t])"3 +
0.25+bx (y4[t] — y3[t])"4
V5 = 0.5xkx (y5[t] — v4[t])"2 + (1/3)*ax(y5[t] - y4[t])"3 +
0.25%bx (y5[t] — ya[t])" 4
V6 = 0.5xkx (y6[t] - y5[t])"2 + (1/3)*ax(y6[t] - y5([t])"3 +
0.25+bx (y6[t] — y5[t])"4
V7 = 0.5xkx (y7[t] - y6[t])"2 + (1/3)*ax(y7[t] - y6[t])"3 +
0.25+bx (y7[t] - y6[t])"4
V8 = 0.5xkx(y8[t] - y7([t])"2 + (1/3)xax(y8[t] - y7[t])"3 +
0.25«bx (y8[t] - y7[t]) 4
VO = 0.5%kx(y9[t] — y8IE]) 2 + (1/3)#ax(y9lt] — y8[t])~3 +
0.25%bx (yO[t] — y8[t])"4;
{
{V10 = 0.5xkx(y10[t] — y9[t])"2 + (1/3)*ax(yl0[t] - y9[t])"3 +
0.25+bx (y10[t] - y9[t])"4;},
(V11 = 0.5xkx(yll[t] - yl0[t])*2 + (1/3)%ax(yll[t] - y10[t])~3 +
0.25%bx (y11[t] — ylO[t]) 4;},
(V12 = 0.5%kx(y12[t] - y11[t])"2 + (1/3)#a*(yl2[t] — yll[t])~3 +
0.25%bx (y12[t] - yll[t])~4;
V13 = 0.5+k#(y13[t] - y12[t]) 2 + (1/3)#ax(yl3[t] - yl2[t])~3 +
0.25%bx (y13[t] — yl2[t])"4;
V14 = 0.5+k# (yl4[t] - y13[t]) 2 + (1/3)#ax(yld[t] - yl3[t])~3 +
0.25xbx (y14[t] - y13[t])"4;}

}

V15 = 0.5+k«x (y15[t] — y14[t])" 2 + (1/3)*ax(yl5[t] - yl4[t])~3 +
0.25xbx (y15[t] - yl4[t])~4;

V16 = 0.5+k* (y16[t] — y15[t]) 2 + (1/3)ax(yl6[t] — y15[t])"3 +
0.25+bx (y16[t] — y15[t])"4;

V17 = 0.5+k*yl6[t]”2 + (1/3)*axyl6e[t]”3 + 0.25+«bxyl6[t]"4;
V=Vl + V2 + V3 + V4 + V5 + V6 + V7 + V8 + V9 + VI0 + VIl + V12 +
V13 + V14 + V15 + V16 + V17 (x Total potential energy =)

(*Check Equations of Motion=%)

In[21]:= EoMxl D[D[T, yl'[t]], t] + D[V, yl[t]]
EoMx2 = D[DI[T, y2’[t]], t] + D[V, y2[t]]
EoMx3 = D[D[T, y3'[t]], t] + D[V, y3[t]]
EoMx4 = D[D[T, y4'([t]], t] + D[V, y4([t]]
EoMx5 = D[DI[T, 5'[t]], t] + D[V, y5[t]]
EoMx6 = D[D[T, y6'([t]], t] + D[V, y6[t]]
EoMx7 = D[D[T, y7'[t]], t] + D[V, y7[t]]
EoMx8 = D[DIT, 8 [t]], t] + D[V, y8[t]]
EoMx9 = D[DI[T, "[t]], t] + DIV, y9lt]]
EoMx10 = D[DI[T, le'[t]], t] + D[V, yl0[t]]
EoMx1l = D[D[T, y11'[t]], t] + D[V, yl1[t]]
EoMx12 = D[DI[T, yl2'[t]], t] + D[V, yl2[t]]
EoMx13 = D[D[T, y13'[t]], t] + D[V, yl13[t]]
EoMx14 = D[DI[T, yl1l4'[t]], t] + D[V, yl4[t]]
EoMx15 = D[D[T, y15'[t]], t] + D[V, yl5[t]]
EoMx16 = D[DI[T, yl6'[t]], t] + D[V, y16[t]]

In[57]:= («Define mode shapesx*) (x1x)
Alrl = 0.18453671892660;

Alr2 = 0.36278926121756; Alr3 = 0.52868745033551; Alrd = \
0.67658182242300; Alr5 = 0.80143601201832; Alr6 = 0.89899825944091;
Alr7 = 0.96594619936780; Alr8 = 1.00000000000000; Alr9 = \

1.00000000000000; Alrl0 = 0.96594619936780; Alrll = 0.89899825944091;

Alrl2 = 0.80143601201832; Alrl3 = 0.67658182242300; Alrld = \

\

\

0.52868745033552; Alrl5 = 0.36278926121756; Alrl6 = 0.18453671892660;

(%2%)

A2rl = 0.36278926121756; A2r2 = 0.67658182242300; A2r3 = \
0.89899825944091; A2r4 = 1.00000000000000; A2r5 = 0.96594619936780;
A2r6 = 0.80143601201832; A2r7 = 0.52868745033552; A2r8 = \
0.18453671892660; A2r9 = -0.18453671892660; A2rl10 = \

-0.52868745033551; A2rll = -0.80143601201832; A2rl12 = \
-0.96594619936780; A2rl13 = -1.00000000000000; A2rl4 = \
-0.89899825944091; A2rl5 = -0.67658182242300; A2rl6 = \
-0.36278926121756;

(%3%)

A3rl = 0.52868745033551; A3r2 = 0.89899825944091; A3r3 = \

\
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gz 1.00000000000000; A3r4 = 0.80143601201832; A3r5 = 0.36278926121756; \

88 A3r6 = —0.18453671892660; A3r7 = -0.67658182242300; A3r8 = \

89 —0.96594619936780; A3r9 = -0.96594619936780; A3rl0 = \

90 -0.67658182242300; A3rll = -0.18453671892660; A3rl2 = \

o1 0.36278926121756; A3rl3 = 0.80143601201832; A3rl4 = 1.00000000000000; \

92 A3rl5 = 0.89899825944091; A3rl6 = 0.52868745033552;

93 (x4x)
94 Adrl = 0.67658182242300; A4r2 = 1.00000000000000; A4r3 = \
95 0.80143601201832; Ad4r4 = 0.18453671892660; A4r5 = -0.52868745033551; \

96 Adr6 = -0.96594619936780; A4r7 = -0.89899825944091; A4r8 = \
97 —-0.36278926121756; A4r9 = 0.36278926121756; A4rl0 = 0.89899825944091; \
98 Adrll = 0.96594619936780; A4rl2 = 0.52868745033552; A4rl3 = \

99 —-0.18453671892660; Ad4rld = -0.80143601201832; Ad4rl5 = \

10 —1.00000000000000; Adrle = -0.67658182242300;

101 (*5%)

12 ASrl = 0.82969011373806; A5r2 = 1.00000000000000; A5r3 = \

103 0.37557915902045; A5r4 = -0.54732598014417; A5r5 = -1.03525434507065; \
14 ASr6 = -0.70043427145923; A5r7 = 0.19104244009385; A5r8 = \

105 0.93069185429715; A5r9 = 0.93069185429715; A5r10 = 0.19104244009385; \
106 A5r11 = —-0.70043427145923; A5rl1l2 = -1.03525434507065; A5r13 = \

07 —0.54732598014417; A5rl4 = 0.37557915902045; AS5rl5 = \
18 1.00000000000000; A5rl6 = 0.82969011373806;

109 (*6x)

mo A6rl = 0.89899825944091; A6r2 = 0.80143601201832; A6r3 = \

m -0.18453671892660; A6rd = -0.96594619936780; A6r5 = \

nz —-0.67658182242300; A6r6 = 0.36278926121756; A6r7 = 1.00000000000000; \
13 A6r8 = 0.52868745033552; A6r9 = -0.52868745033551; A6rl0 = \

ms —1.00000000000000; A6rll = -0.36278926121756; A6rl2 = \

ns 0.67658182242300; A6rl3 = 0.96594619936780; A6rld = 0.18453671892660; \
ne A6rl5 = -0.80143601201832; A6rle = -0.89899825944091;

7 (x7x)

us A7rl = 0.96594619936780; A7r2 = 0.52868745033552; A7r3 = \
me -0.67658182242300; A7r4 = -0.89899825944091; A7r5 = 0.18453671892660; \
120 A7r6 = 1.00000000000000; A7r7 = 0.36278926121756; A7r8 = \

121 —0.80143601201832; A7r9 = -0.80143601201832; A7r10 = \

122 0.36278926121756; A7rll = 1.00000000000000; A7rl2 = 0.18453671892660; \
123 AT7rl3 = -0.89899825944091; A7rld = -0.67658182242300; A7rl5 = \

124 0.52868745033551; A7rl6e = 0.96594619936780;

125 (*8%)

126 A8rl = 1.00000000000000; A8r2 = 0.18453671892660; A8r3 = \

127 —0.96594619936780; A8r4 = -0.36278926121756; A8r5 = 0.89899825944091; \

128 A8r6 = 0.52868745033552; A8r7 = -0.80143601201832; A8r8 = \
129 —0.67658182242300; A8r9 = 0.67658182242300; A8rl0 = 0.80143601201832; \

1o A8rll = -0.52868745033551; A8rl2 = -0.89899825944091; A8rl3 = \

11 0.36278926121756; A8rld = 0.96594619936780; A8rl5 = \

12 —0.18453671892660; A8rl6 = -1.00000000000000;

133 (*9%)

134 A9rl = 1.00000000000000; A9r2 = -0.18453671892660; A9r3 = \

15 —0.96594619936780; A9r4 = 0.36278926121756; A9r5 = 0.89899825944091; \
136 A9r6 = -0.52868745033551; A9r7 = -0.80143601201832; A9r8 = \

137 0.67658182242300; A9r9 = 0.67658182242300; A9rl0 = -0.80143601201832; \
18 A9rll = -0.52868745033552; A9rl2 = 0.89899825944091; A9rl3 = \

19 0.36278926121756; A9rld = -0.96594619936780; A9rl5 = \

o -0.18453671892661; A9rle = 1.00000000000000;

11 (*10%)

w2 AlOrl = 0.96594619936780; AlOr2 = -0.52868745033551; Al0r3 = \

us —-0.67658182242300; AlOr4 = 0.89899825944091; AlOr5 = \
s 0.18453671892660; AlOr6 = -1.00000000000000; AlOr7 =
s 0.36278926121756; Al0r8 = 0.80143601201832; Al0r9 = \

|
-

use —0.80143601201832; Al0rl0 = -0.36278926121756; AlOrll = \
147 1.00000000000000; Al10rl2 = -0.18453671892660; Al0rl3 = \
us —0.89899825944091; AlOrl4d = 0.67658182242300; Al0rl5 = \
w9 0.52868745033552; AlO0rle = -0.96594619936780;

150 (*11%)

151 Allrl = 0.89899825944091; Allr2 = -0.80143601201832; Allr3 = \
152 —0.18453671892660; Allr4 = 0.96594619936780; Allr5 = \

153 —0.67658182242300; Allr6 = -0.36278926121756; Allr7 = \
154 1.00000000000000; Allr8 = -0.52868745033551; Allr9 = \
155 —0.52868745033552; Allrl0 = 1.00000000000000; Allrll = \
156 —0.36278926121756; Allrl2 = -0.67658182242300; Allrl3 = \

157 0.96594619936780; Allrl4 = -0.18453671892660; Allrl5 = \
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158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

222
223
224
225
226
227
228

-0.80143601201832; Allrle
(x12x)

Al2rl = 0.80143601201832;
0.36278926121756; Al2r4 =
-1.00000000000000; Al2r6 =
0.18453671892660; Al2r8 =

0.89899825944091; Al2rl0 =
-0.67658182242300; Al2rl2

-0.52868745033551; Al2rl4

0.96594619936780; Al2rl6 =
(x13%)

Al3rl = 0.70043427145923;

0.82969011373806; Al3r4d =

-0.54732598014416; Al3r6 =
-0.93069185429715; Al3r8 =
0.37557915902045; Al3rlo0

1.00000000000000; Al3riz

-0.19104244009385; Al3rl4
-1.03525434507065; Al3rlé
(x14%)

Al4rl = 0.52868745033552;
1.00000000000000; Ald4r4 =
0.36278926121756; Aldre6 =
-0.67658182242300; Al4r8 =
-0.96594619936780; Al4rl0

-0.18453671892660; Al4rl2

0.80143601201832; Ald4rld =
0.89899825944091; Aldrle =
(x15%)

Al5rl = 0.37557915902045;

0.93069185429715; Al5r4 =

1.00000000000000; Al5r6 =

0.54732598014416; Al5r8 =

-0.19104244009385; Al5rl0

-0.82969011373806; Al5rl2

-1.03525434507065; Al5rl4

-0.70043427145923; Al5rl6

(x16%)

Aléerl = 0.18453671892660;

0.52868745033552; Al6r4d =

.80143601201832; Al6re6
.96594619936780; Al6r8 =

.00000000000000; Al6rl0 =
.89899825944090; Alerl2
.67658182242300; Ale6rl4
.36278926121756; Alé6rl6

oo or oo
Il

Vmodel v;
Vmodel = Chopl
Expand[Vmodel /. {yl[t]

y3[t] —-> Alr3xqgl, v4l
y6lt] —> Alr6xgl, v7I[
v9[t] -> Alr9xqgl, ylo0
y12[t] -> Alrl2xqgl, y
y15[t] -> AlrlbS*gl, y

EoMmodl = D[Vmodel, gl]

In[77]:= Vmode2 = V;
Vmode2 = Chop|
Expand[Vmode2 /. {yl[t]
y3[t] —> A2r3%92, v4
y6[t] —-> A2r6xg2, y7
v9[t] -> A2r9xg2, vyl
y1l2[t] -> A2rl2*qg2,
y15[t] -> A2rl1l5%g2,
EoMmod2 = D[Vmode2, g2]
Vmode3 = V;
Vmode3 = Chop|
Expand[Vmode3 /. {yl[t]
y3[t] —-> A3r3xg3, y4
y6[t] —> A3r6%xg3, y7

= 0.89899825944090;

Al2r2 = -0.96594619936780;
0.52868745033552; Al2r5 =
0.67658182242300; Al2r7 =
-0.89899825944091; Al2r9 =
-0.18453671892660; Al2rll
= 1.00000000000000; Al2rl3

= -0.36278926121756;
-0.80143601201832;

Al2rl

Al3r2 = -1.03525434507065;
-0.19104244009385; Al3r5 =

1.00000000000000; A13r7

0.37557915902045; Al3r9 =
-0.93069185429715; Al3rll

-0.54732598014417; Al3rl3 =

= 0.82969011373806; Al3rl5

= 0.70043427145923;

Al4r2 = -0.89899825944091;
-0.80143601201832; Ald4r5 =
0.18453671892660; Ald4r7 =

0.96594619936780; Ald4r9 =
= 0.67658182242300; Ald4rll

= -0.36278926121756;

Ald4rl

-1.00000000000000; Al4rl5S

-0.52868745033551;

Al5r2 = -0.70043427145923;
-1.03525434507065; Al5r5 =
-0.82969011373806; Al5r7 =
-0.19104244009384; Al5r9 =
= 0.54732598014417; AlS5rll

= 1.00000000000000; Al5rl3 =

= 0.93069185429715; Al5rl5

= 0.37557915902044;

Al6r2 = -0.36278926121756;
-0.67658182242300; Al6r5 =

-0.89899825944091; Aler7

-1.00000000000000; Al6r9 =
-0.96594619936780; Alé6rll

-0.80143601201832; Alé6rl3 =

-0.52868745033551; Al6rlS

-0.18453671892660;

Al2r3 = \
\

- -

\
\
5 =\

Al3r3 = \

- = -

[
_

=\

Al4r3 = \
\
\
\
=\
3 =\
=\

Al5r3 = \

- = -

=\

Al6r3 = \

- = -

|
—~

=\

-> Alrlxgl, y2[t] -> Alr2*qgl,

t] —> Alrdxqgl, y5[t]
t] -> Alr7+gl, y8[t]

-> Al
-> Al

[t] —> AlrlOxqgl, yll[t] ->
13[t] -> Alrl3xql, yl4[t]

16[t] —> Alrléexgl }]]

r5xqgl,
r8xqgl,
Alrllxqgl,
-> Alrléd«ql,

-> A2rlxqg2, y2[t] -> A2r2*qg2,
-> A2r5xg2,

[t] —> A2rd*g2, y5[t]
[t] —-> A2r7*qg2, y8[t]

-> A

0[t] -> A2r10+q2, yll[t] -
y13[t] -> A2rl3xq2, yl4[t]

y16[t] —-> A2rl6xq2 }]

1;

2r8xqg2,
> A2rllxqg2,
-> A2rldx*qg2,

-> A3rlxg3, y2[t] —-> A3r2*g3,
-> A3r5xqg3,

[t] -> A3rd4*qg3, y5[t]
[t] -> A3r7+q3, y8[t]

-> A

3r8xqg3,
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229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273

N

74
275
276
277
278
279
280
281
282
283
284
285
286

™

87

289
290
291
292
293
294
295
296
297
298
299

y9[t] -> A3r9xqg3, yl0[t] -> A3rl0xg3, yll[t] -> A3rll=*g3,
y12[t] -> A3rl2+qg3, yl13[t] -> A3rl3%qg3, yl4[t] -> A3rl4«qg3,
y15[t] —-> A3rl5%g3, ylé6[t] -> A3rlexg3 }11;
EoMmod3 = D[Vmode3, qg3]
Vmoded = V;
Vmode4 = Chop][
Expand[Vmoded /. {yl[t] -> Adrlxqg4, y2I[t] —-> Adr2*qg4,
y3[t] -> Ad4r3xqg4, y4[t] -> Adrdxg4d, y5[t] —-> Adr5xg4,
y6[t] —> Adr6xg4, y7[t] —-> AdrTxg4, y8[t] —-> Adr8xg4,
v9[t] -> A4r9xg4, ylO0[t] -> A4rl0*qg4, yll([t] -> Adrllxqg4,
yv12[t] -> Adrl2+qgd, y13[t] -> Ad4rl3%qgd, yl4[t] -> Adrli«qg4,
y15[t] -> A4rl5+qg4, yl6[t] -> Adrlexgd }11;
EoMmod4 = D[Vmode4, g4]
Vmode5 = V;
Vmode5 = Chop|
Expand[Vmode5 /. {yl[t] -> A5rlxg5, y2[t] -> A5r2*g5,
y3[t] -> ASr3xg5, y4[t] —-> AS5r4dxqg5, y5[t] —-> A5r5xqg5,
y6[t] —-> ASr6xg5, y7[t] —-> AS5r7xgb5, y8[t] —-> A5r8xg5,
v9[t] -> A5r9xg5, ylO0[t] —-> A5rl0*g5, yll[t] -> A5rllxg5,
y12[t] —-> AS5rl2xg5, y13[t] —-> A5rl13xqg5, yl4[t] —-> Abrl4dxqg5,
y15[t] —-> A5rl5%qg5, yl6[t] -> ASrlexg5 }11;
EoMmod5 = D[Vmode5, gb5]
Vmodeb6b = V;
Vmode6 = Chop|
Expand[Vmode6 /. {yl[t] -> A6rlxg6, y2[t] —-> A6r2+g6,
y3[t] -> A6r3xg6, y4[t] -> A6rdxg6, y5[t] —-> A6r5xg6,
y6[t] —-> A6r6xg6, y7[t] —-> A6r7xg6, y8[t] —-> A6r8xg6,
v9[t] -> A6r9xg6, ylO[t] —-> A6rl0*g6, yll[t] -> A6rllxg6,
y12[t] —-> A6rl2+g6, y13[t] —-> A6rl3xqg6, yl4[t] —-> A6rldxg6,
y15[t] —-> A6rl5+qg6, ylé6[t] -> A6rlexg6 }11;
EoMmod6 = D[Vmodeb6, g6]

In[92]:= Vmodel2 = V;

Vmodel2 =

Expand[Vmodel2 /. {yl[t] -> Alrlxgl + A2rlxg2,
y2[t] —> Alr2%qgl + A2r2xg2, y3[t] —> Alr3%gl + A2r3xg2,
v4[t] -> Alrdxgl + A2r4xqg2, y5([t] -> Alr5xgl + A2r5%qg2,
y6[t] —> Alré6xgl + A2r6xg2, y7[t] —-> Alr7xgl + A2r7xqg2,
y8[t] —> Alr8xgl + A2r8xqg2, y9[t] -> Alr9xgl + A2r9+qg2,
y10[t] -> Alrl0*gl + A2r10%g2, yll[t] -> Alrllxgl + A2rllxqg2,
vl2[t] -> Alrl2xgl + A2rl2xg2, yl1l3[t] -> Alrl3xgl + A2rl1l3*qg2,
y1l4[t] -> Alrldxgl + A2rldxg2, yl5[t] -> Alrl5xgl + A2rl5xg2,
ylé6[t] -> Alrl6xgl + A2rl6xg2 }]

EoMlmodla2 = Chop[D[Vmodel2, gl] - EoMmodl]

In[129]:= Vmodel3 = V; Vmodel3 =

Expand[Vmodel3 /. {yl[t] -> Alrlxgl + A3rlxg3,
v2[t] => Alr2xgl + A3r2xq3, y3[t] -> Alr3xgl + A3r3*g3,
y4[t] —> Alrdxgl + A3r4xg3, y5[t] —-> Alrb5xgl + A3r5xg3,
y6[t] —-> Alr6xgl + A3r6xqg3, y7([t] -> Alr7+gl + A3r7+g3,
y8[t] -> Alr8xgl + A3r8xg3, y9[t] -> Alr9xgl + A3r9+g3,
y1l0[t] -> AlrlOxgl + A3rl0xg3, yll[t] -> Alrllxqgl + A3rll*qg3,
yl2[t] -> Alrl2xgl + A3rl2xqg3, yl3[t] -> Alrl3xgl + A3rl3xg3,
yl4[t] —-> Alrldxqgl + A3rl4d*qg3, yl5[t] —-> Alrl5xgl + A3rl5%qg3,
yvl6[t] —> Alrléexgl + A3rl6xg3 }]

EoMlmodla3 = Chop[D[Vmodel3, gl] - EoMmodl]

In[95]:= Vmodeld4d = V; Vmodeld =

Expand[Vmodeld /. {yl[t] -> Alrlxgl + Adrlxqg4,
y2[t] —-> Alr2xgl + A4dr2%qg4, y3[t] —-> Alr3xgl + A4d4r3*qg4,
v4[t] -> Alrdxgl + Adrdxgd, y5([t] -> Alr5xgl + Ad4r5*qg4,
y6[t] —> Alré6xgl + Adr6xg4d, y7[t] —-> Alr7xgl + Adr7xqg4,
y8[t] —-> Alr8xgl + Adr8xqg4, y9[t] -> Alr9xgl + A4r9+qg4,
y10[t] -> AlrlOxgl + A4rl0xqg4, yll[t] -> Alrllxgl + Ad4rllxqg4,
v12[t] -> Alrl2xgl + A4rl2xqg4, y13[t] -> Alrl3+gl + Ad4rl3xqg4,
y1l4[t] —> Alrldxgl + Adrldxqg4, yl5[t] —-> Alrlbxgl + Ad4rl5xqg4,
y1l6[t] -> Alrléxgl + Adrléxgd }]

EoMlmodla4 = Chop[D[Vmodeld4, gl] - EoMmodl]

In[97] := Vmodel5 = V; Vmodel5 =
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Expand[Vmodel5 /. {yl[t] -> Alrlxgl + A5rlxg5,

yv2[t] => Alr2xgl + A5r2xg5, y3[t] -> Alr3xgl + A5r3*g5,
v4[t] -> Alrdxgl + Abr4dxqg5, y5[t] -> Alr5xgl + A5r5*g5,
y6[t] —-> Alr6xgl + ASr6xg5, y7([t] -> Alr7xgl + A5r7*g5,
y8[t] —> Alr8xgl + A5r8xg5, y9[t] -> Alr9xgl + A5r9*g5,

y10[t] -> AlrlOxgl + A5rlOxg5, yll[t] -> Alrllxgl + A5rllxg5,
yl2[t] -> Alrl2xgl + ASrl2xg5, yl1l3[t] —-> Alrl3xgl + A5rl3xg5,
yl4[t] —-> Alrldxqgl + A5rl4dxg5, yl5[t] -> Alrl5xgl + A5rl5x%qg5,
vl6[t] —> Alrléexgl + AS5rl6xg5 }]

EoMlmodlab = Chop[D[Vmodel5, gl] - EoMmodl]

In[99]:= Vmodel6 = V; Vmodel6 =

Expand[Vmodel6 /. {yl[t] -> Alrlsgl + A6rlxg6,
y2[t] —-> Alr2xgl + A6r2xg6, y3[t] -> Alr3xgl + A6r3*qgb,
y4[t] —> Alrdxgl + A6rdxg6, y5[t] —-> Alr5xgl + A6r5xg6,
y6[t] —-> Alr6xgl + A6r6xg6, y7([t] -> Alr7+gl + A6r7+qgb,
y8[t] —> Alr8xgl + A6r8xg6, y9[t] —-> Alr9xgl + A6r9xg6,

y10[t] -> AlrlOxgl + A6rlOxg6, yll[t] -> Alrllxgl + A6rllxg6,
y1l2[t] -> Alrl2xgl + A6rl2xqg6, yl3[t] -> Alrl3xgl + A6rl3*g6,
yl4[t] -> Alrldxgl + A6rldxg6, yl5[t] -> Alrl5+qgl + A6rl5%qg6,
vl6[t] —> Alrléexgl + A6rl6xg6b }]

EoMlmodla6 = Chop[D[Vmodel6, gl] - EoMmodl]

E2.2. Modal EoMs of strings

(xDisplacementsx*)
ux = Dlulx], x]; vx = D[v[x], x]; wx = D[w[x], x];
ds = ((1 + ux)”"2 + vx"2 +

wx"2)"0.5; (*this is initial formulation of the stretched elementx)
dsux = Normal [

Series[ds, {ux, O,

1}11; (#this is initial formulation of the stretched element series uxx)
dsvx = Normal [Series[dsux, {vx, 0, 3}11;
dswx = Normal[Series[dsvx, {wx, 0, 3}]]
dsdx = Expand[dswx] /. ux*vx"2 -> 0 /. ux*wx"2 -> 0 /.

v 2xwx"2 -> 0 (+«Taylor expansion of ds/dxx)

dxds = Expand][
Normal [Series |
Series[Series[1/dsdx, {ux, 0, 2}1, {vx, 0, 2}1, {wx, O,
23111 /. uxxvx*2 -=> 0 /. ux*xwx"2 -> 0 /. vx"2+wx"2 -> 0 /.
ux”2 vx*2 => 0 /. ux”2 wx"2 —-> 0(*this is dx/ds=x*)

T = Simplify[(TO + EAx(dsdx - 1))] ; (xTensionx)
(#xTension in each directionx)
Tx = T (1l + ux)*dxds; Tx =
Chop [Expand[Tx] 1 /. {ux"2 -> 0, ux"3 -> 0, ux™4 -> 0, ux*vx"2 -> 0,
ux*«wx"2 -> 0, vx*4 -> 0, ux *vx™4d -> 0, vx"2 wx"2 -> 0, wx™4 -> 0,
ux*wx™4 -> 0} (xx-dir strain is 1l+uxx*)
Ty = Txvxxdxds; Ty =
Chop [Expand[Ty] /. {ux*2 -> 0, ux"3 -> 0, uxxwx"2%vx —-> O,
wx™Mxvx —> 0, ux*vx"3 -> 0, wx"2xvx"3 -> 0, vx"5 -> 0}]
Tz = T+«wx*dxds; Tz =
Chop[ Expand[Tz] /. {ux"2 -> 0, ux”"3 -> 0, ux*vx"2xwx -> 0,
vxMrwx —> 0, uxxwx”3 -> 0, vx"2+wx"3 -> 0, wx"5 —-> 0}]

(*EoM in each directionx)

EoMx = Simplify[m*«D[D[ult], t], t] - D[Tx, x]]; EoMx = EoMx
EoMy = Simplify[mxD[D[v[t], t], t] - D[Ty, x]]; EoMy =
EoMy /. {-1.5%EA + 1.5%T0 -> -1.5%EA, -0.5+EA + 0.5%T0 -> -0.5%

EA, -1.%EA + 1.xT0 —> —-1.%
EA} (#This latter assumes that EA>>TOx)
EoMz = Simplify[m«D[D[w[t], t], t] - D[Tz, x]]; EoMz =
EoMz /. {-1.5%EA + 1.5%T0 -> -1.5*EA, —-0.5%EA + 0.5+xT0 -> -0.5%
EA, -1.*xEA + 1.+xT0 -> -1.+%
EA} (#This latter assumes that EA>>TOx)
EoMx = Chop[EoMx /. {TO -> 0, u '[t] -> 0}]; EoMx =
Simplify[EoMx/ (1.%EA)] (xHere we assume that EA>>TO and utt = 0x)
d2udx2 = Simplify[EoMx + 1. u''[x]]
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(#Calculate modal EoMx)

weight = Sin[3%Pixx/L]; (*Galerkin's weight Function of mode 3x)
V[x] = Sin[1+Pi*x/L]l*qgly[t] + Sin[2+Pixx/L]l*g2y[t] +
Sin[3xPixx/L]lxg3y[t]; (+*Transverse displ. of modes 1, 2 and 3%)

dvdx = D[VI[x], x];

d2vdx2 = D[D[VI[x], x], x];

d2vdt2 = D[D[V[x], t], t];

Wix] = Sin[1l*Pi*x/L]l*glz[t] + Sin[2*Pixx/L]*g2z[t] +
Sin[3xPi*xx/L]lxg3z[t]; (xVertical displ. of modes 1, 2

dWdx = D[W[x], x];
d2Wdx2 = D[D[W[x], x], x];

and 3x)

d2wdt2 = D[D[W[x], t], tl;
d2Udx2 = -0.5+«D[dVdx"2 + dwWwdx"2, x];
dUdx = -0.5x (dvVdx"2 + dWwdx"2) + (1/(2*L)) Integrate]
dvdx~2 + dwdx"2, {x, 0, L}1;
U = -0.5«Integrate[ (dvdx"2 + dwWwdx"2), {x, O,
x}] + (x/(2+L)) Integrate[dvdx"2 + dWdx"2, {x, 0, L}1;
prefacVv = Integrate[weight*d2vdt2, {x, 0, L}1/D[D[gly[t], tl, t]; (xPre-factor
modal massx)
EoMVtot =
d2vdt2 - 1.5x (EA/m)»* (dvVdx”"2)* d2Vdx2 - (T0/m)*d2Vdx2 - (EA/m) =*
dUdx*d2vdx2 -
0.5%x (EA/m) * (dWdx"2) *d2Vdx2 - (EA/m) *dVdx*d2Udx2 - (EA/m)*dVdxx*
dWdx+d2Wdx2; (*Total EoM- transversex)
EoMmodalV = Chop[Expand[Integrate[weight«EoMVtot, {x, 0, L}111;

EoMmodalV = Expand[EoMmodalV/prefacV] (x*Modal resultx)

prefacW = Integrate[weightxd2Wdt2, {x, 0, L}]/D[D[glz([t], t], t]l; (xPre-factor
modal massx)

EoMWtot =

d2wdt2 - 1.5% (EA/m)* (dWdx"2)x d2Wdx2 — (T0/m)*d2Wdx2 - (EA/m) =*

dUdx*d2Wdx2 -
0.5%x (EA/m) * (dVdx"2) *d2Wdx2 - (EA/m) *dWdx+d2Udx2 - (EA/m)*dWdxx*
dVdx*d2Vdx2; (*Total EoM- verticalx)

EoMmodalW = Chop[Expand[Integrate[weight«EoMWtot, {x, 0, L}111;

EoMmodalW = Expand[EoMmodalW/prefacW]
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