
Modeling Inference Time of Deep Neural Networks on Memory-constrained
Systems

Hans Brouwer1
1TU Delft

Abstract
Deep neural networks have revolutionized multiple
fields within computer science. It is important to
have a comprehensive understanding of the memory
requirements and performance of deep networks on
low-resource systems. While there have been efforts to
this end, the effects of severe memory limits and heavy
swapping are understudied. We have profiled multi-
ple deep networks under varying memory restrictions
and on different hardware. Using this data, we develop
two modeling approaches to predict the execution time
of a network based on a description of its layers and
the available memory. The first modeling approach is
based on engineering predictive features through a the-
oretical analysis of the computations required to exe-
cute a layer. The second approach uses a LASSO re-
gression to select predictive features from an expanded
set of predictors. Both approaches achieve a mean ab-
solute percentage error of 5% on log-transformed data,
but suffer degraded performance on transformation of
predictions back to regular space.

1 Introduction
As a result of the recent revolution in deep learning, more
and more neural networks are being used for everyday tasks.
While this class of algorithms is undoubtedly effective at
solving problems in certain domains, like computer vision,
they also require a lot of resources to run. Not only do deep
networks require great computational power, they also need
a large amount of memory to store the parameters for those
computations. As more deep networks move from the cloud
to the edge (mobile devices, embedded systems, etc.), it is
becoming increasingly important to run these networks as
efficiently as possible.

On this front, Mathur et al. take a comprehensive look
at optimization of neural networks for a wearable camera,
DeepEye [18]. This system runs multiple deep networks ev-
ery 30-60 seconds, completely locally, using a framework
that caches, compresses, and schedules inference to run effi-
ciently. This provides a strong baseline for future improve-
ments. The system has a small form factor and uses rela-
tively low-power hardware to preserve battery life and so is
very resource-constrained. The first step towards improve-
ments is a better understanding of where systems like Deep-
Eye are bottlenecked.

We set out to profile and model the inference time of deep
networks on such CPU-only, memory-constrained systems.
Implementing profiling instrumentation and gathering data
is time intensive and so quite a barrier when researching
or developing for resource-constrained devices. For these
reasons it is desirable to be able to estimate time or mem-
ory required without actually having to go through extensive
benchmarking. To this end, we build a model that can pre-
dict the time required to run a network given a description of
its layers and the amount of available memory.

On systems with little RAM, execution is bound by the
memory bandwidth of the system. Multi-model pipelines,
like employed in DeepEye, make it impossible to keep all
layers the networks in memory at once. Under severe mem-
ory limitations, the elements necessary for a single layer
might not even fit in memory. In such cases these elements
must be copied to and from disk during execution (swap-
ping), which has a serious performance impact. It is impor-
tant to understand this bottleneck. Using simulated memory
limitations, we estimate the scaling of inference time of lay-
ers under varying amounts of required swapping. Simulating
memory constraints allows comparison without side effects
introduced by each memory size being associated with dif-
ferent hardware.

Related Work There have been multiple efforts to profile
the resource requirements of deep neural networks on edge
devices, although most use the data to develop faster infer-
ence engines rather than to predict inference time [8, 21, 22,
27]. Of the efforts into modeling inference time, the inves-
tigations do not model the effects of insufficient memory on
the performance of deep networks. Lu et al. tackle profiling
multiple popular deep convolutional networks on the NVI-
DIDA Jetson TK1 and TX1 GPU-accelerated modules [17,
20]. They build a model that estimates the execution time
and memory usage of convolutional networks based on the
floating point operations required for their layers and which
device they are run on. The TK1 and TX1 modules have two
gigabytes and four gigabytes of RAM respectively, and so
are able to fit large networks in memory completely. This
means the effects of memory swapping and loading of indi-
vidual layers are not modeled. Furthermore, the model is not
made publicly available for actual application.

Another approach to modeling the inference time of deep
networks on mobile devices is presented by Yao et al. [27],
called FastDeepIoT. FastDeepIoT uses a tree-structure lin-
ear regression model to analyze the execution profile of deep

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering

networks at runtime to optimally compress individual layers.
The tree-structure linear regression model recursively sepa-
rates measurement data into sets where a certain non-linear
effect is present or not. The data in the leaves of the binary
tree have minimal non-linearity with respect to a chosen set
of explanatory variables and so can be modeled with a linear
regression. FastDeepIoT is investigated on commercial mo-
bile phones, the Nexus 5 and Galaxy Nexus. These phones
have two gigabytes and one gigabyte of RAM respectively.
Once again, this is sufficient memory and so the model does
not need to account for swapping or individual layer loading.

Our objective is to build a model to predict the execu-
tion time of several important types of layers of deep neural
networks under different memory constraints and on differ-
ent hardware. To this end, first the resource requirements of
different deep networks and their component layers are mea-
sured under varying memory limitations and then a model is
built to predict their total execution time. This entails (1) de-
termining the memory requirements of each of the layers of
the networks, (2) determining the execution times of each of
these layers under different memory constraints, and (3) cre-
ating a model to predict the execution time of new networks
based on descriptions of their layers and available memory.

We employ two approaches to model the execution times
of deep networks. The first entails engineering predictive
features based on the computations layers require. This
matches the approach introduced by Lu et al. The second se-
lects predictors based on a LASSO regression, this is closer
to the approach of FastDeepIoT. Instead of modeling the
non-linearity in inference time with a binary tree, we ex-
pand the set of input features with higher order polynomial
functions of the predictors.

2 Profiling
This section outlines the methods used to gather execution
time and memory usage of layers. While the exact details
are specific to the profiled system, similar procedures can be
applied to any hardware or framework.

2.1 EdgeCaffe
The basis for our investigation is EdgeCaffe, which uses the
C++ and Python based deep learning framework, Caffe [4].
EdgeCaffe provides a platform for the efficient execution
of deep neural networks on low-resource hardware. Edge-
Caffe implements a pipeline that runs several deep networks
with multiple different strategies for scheduling, loading,
and executing the layers of each network. It is also eas-
ily extensible to allow for new networks to be added. An
in-depth understanding of the performance of different net-
works when executed with EdgeCaffe as well as an estimate
of the amount of time a network will take can enable further
research and development of deep networks on resource-
constrained devices.

EdgeCaffe executes networks by splitting up their layers
into a list of individual jobs with dependencies. Layers can
be scheduled for execution to one or multiple threads accord-
ing to their type, the task (loading, executing, or unloading),
expected resource requirements, or simply their order in the
network. Each layer’s parameters are loaded individually.
Once all the required inputs are available the layer is exe-
cuted and finally unloaded.

EdgeCaffe is a good target for investigation of execution
performance due to its extensive capabilities. EdgeCaffe’s
flexibility makes it an excellent framework for develop-
ing high performance deep network pipelines for resource-
constrained environments. Profiling instrumentation and ex-
ecution time estimation enhance EdgeCaffe’s utility for re-
searchers and developers alike by providing insight into the
execution of their deep networks.

While EdgeCaffe supports many different execution and
scheduling modes, for the purpose of building a model to
predict the execution times of networks, only the ”linear”
mode was considered. In linear mode, all layers are exe-
cuted on a single thread one-by-one. First the parameters
are loaded, then the layer is executed, and then it’s param-
eters are unloaded before starting the process anew for the
next layer. This ensures that measurements are specific to
single layers and are not influenced by asynchronous effects
that are possible in multi-threaded modes.

2.2 Memory Usage
Measuring memory allocation is crucial to understanding
and improving a program. However, a major problem with
profiling memory is that the instrumentation itself has per-
formance impacts which can skew results. This effect is
especially strong on memory- and compute-constrained de-
vices. Two main strategies were investigated to measure
the memory requirements of layers. One asynchronous–
checking the operating system’s log of resource usage–
and one synchronous–overriding the allocation functions of
C++.

The asynchronous method relied on the Linux kernel’s
memory statistics. The EdgeCaffe pipeline’s process was pe-
riodically polled from a separate thread to track the resident
set size (RSS). The RSS is the amount of RAM currently
in use by the process. However, this method of measuring
memory only provides an approximation of the true usage.
Being asynchronous, this strategy can miss high frequency
events which happen between reads by the other thread. In
general, it will therefore underestimate peak usage of the
program.

To refine the measurements synchronously, the pipeline
was compiled with Google PerfTools [6] (GPerfTools) in-
strumentation enabled. GPerfTools links the binary with
a memory allocation library, tcmalloc [7], that keeps track
of extra information whenever allocations are made. Then,
when executing the binary, the GPerfTools heap profiler
dumps information about the allocations made at set inter-
vals (e.g. every 100 MB allocated). These heap dumps can
then be analyzed after the fact and linked to the layers of
each network that allocated the memory. There are some
challenges linking exactly which layers allocated memory
contained in each heap dump. The interval at which logging
occurs is not synchronized per layer. While the allocation
interval can be set small enough to alleviate this issue, the
incurred overhead is considerable.

Both strategies are useful in different circumstances. The
maximum memory usage per layer measured by GPerfTools
only needs to be measured once and can be used by the
EdgeCaffe scheduler to determine which layers can be
loaded into memory concurrently. Asynchronous measure-
ment of the process’s RSS allows for low-overhead measure-

ment of the pipeline in multi-threaded execution modes to
gauge actual memory loads of the more lightly-instrumented
program.

The results from GPerfTools were used to validate the
memory availability estimates in our experiments. This is
because swapping does not occur when memory is reserved
(which RSS measures), but when it is allocated. There-
fore, GPerfTools’ measurement gives a better indication of
whether swapping is occurring.

2.3 Execution Time
Profiling execution time is relatively straightforward com-
pared to profiling memory usage. Each task (loading, exe-
cuting, or unloading a layer) starts a timer just before exe-
cution and stops it immediately after finishing. The use of
EdgeCaffe’s linear mode ensures that there is only one task
executing at a time and so no extra logging is required to de-
termine overlap or order of tasks as would be necessary in
multi-threaded execution modes.

To simulate differing memory restrictions, the EdgeCaffe
pipeline binary was run in a Linux kernel Control Group
(cgroup) [19]. Cgroups provide a hierarchy under which
groups of processes are executed whose resource usage is
tracked by the Linux kernel. Limits on the amount of al-
lowed memory can be set for each cgroup which forces the
program to use swap space when exceeding the limit of al-
lowed RAM. Therefore, executing the pipeline in cgroups
with different memory limits allows for measurement of the
scaling of execution time with respect to available memory.

3 Modeling Execution Time
3.1 Preliminary Analysis
To motivate the models outlined in this section, we first
give a preliminary analysis of the execution profiles of the
most important types of layers in deep networks. Seven dif-
ferent types of layers are taken into consideration: fully-
connected, convolutional, activation, normalization, pool-
ing, and dropout. The chosen types account for 99% of the
layers in the networks that were investigated, with the re-
maining being layers that weren’t present in all networks
(e.g. crop, scale, deconvolution) or Caffe routing layers

Table 1: Required memory, execution times, and loading times of
selected example layers under varying memory limits.

Time (ms) under Memory Limit
Task Layer Required 5 GB 512 MB 372 MB 256 MB 128 MB

LOAD FC1 163 MB 12 12 12 12 20
LOAD FC2 656 MB 77 121 136 127 144
LOAD CONV1 238 MB 51 53 52 85 77
LOAD CONV2 654 MB 94 135 135 139 140
EXEC FC3 375 MB 733 714 1268 1716 3454
EXEC FC4 1832 MB 95 2264 4572 7133 7908
EXEC CONV3 230 MB 11 23 22 103 101
EXEC CONV4 582 MB 18 51 64 65 77

which perform negligible computation (e.g. split, input, con-
catenate). The model we present relies on the assumption
that the vast majority of layers in the network whose time is
to be predicted are of the seven modeled types.

Figure 1 shows the distribution of time needed to load
and execute each type of layer under different memory lim-
its. The general pattern in both loading time and execution
time is that as the memory limit decreases the time taken in-
creases. However, the strength of the effect varies per layer
type. For most layers, the increase is greatest for the layers
that take the longest (this can be seen by the larger relative
difference in upper whiskers compared with the medians).
Some layers see no increase in execution time with tighter
memory limits, for example, pooling and activation layers.

The increase in time taken is related to the amount of
memory a layer requires to perform its computation. Once a
layer needs more memory than is available, it must swap out
values during execution which reduces performance. The
memory layers need is equal to the sum of the number of in-
put elements, number of parameters, and number of output
elements of the layer. We call the elements that are forced to
swap the ”overflow” (denoted by F).

Table 1 shows example layers and their execution times
under different memory limits. As soon as the available
memory is less than the required memory, the execution time
increases considerably. This observation motivates a model
which takes into account the different regimes that scaling
occurs in: sufficient memory and insufficient memory.

We employ two strategies to model the execution times
of deep networks under these regimes: one taking a feature
engineering approach based on the theoretical computations

drop pool norm act conv fc
Layer Type

2

1

0

1

2

3

4

5

Lo
ad

in
g

Ti
m

e
(lo

g
m

s)

Memory Limit
None
512 MB
372 MB
256 MB
128 MB

drop pool norm act conv fc
Layer Type

2

1

0

1

2

3

4

5

Ex
ec

ut
io

n
Ti

m
e

(lo
g

m
s)

drop pool norm act conv fc
Layer Type

0

100

200

300

400

500

M
em

or
y

Us
ag

e
(M

B)

Figure 1: Distribution of the loading times (left) and execution times (center) for each of the seven modeled layer types under different
memory limits. Distribution of the required memory per layer (right).

layers require, and the other taking a feature selection ap-
proach based on a LASSO regression. While the data the
models are trained on is specific to EdgeCaffe, the models
can be applied to similar data from any framework or hard-
ware.

3.2 Feature Engineering
The feature engineering model makes the assumption that
execution times scale linearly with the amount of computa-
tions that are needed for the layer. When there is insufficient
memory, some of the calculations require swapping of the
data. This has the effect that this portion of computations
have an additional overhead from having to first swap their
data into memory. This implies that a linear model with two
parts can be used to estimate each layer’s execution time–
one part for scaling under sufficient memory and one part
for steeper scaling under insufficient memory.

The input features to the models are all calculated from
the network description file (.prototxt). This ensures that any
network’s execution time can be estimated (although the ac-
curacy of the estimation still relies on the fact that the types
of layers of the network and their settings are similar to those
that we model).

The seven layer types outlined earlier, as well as a catch-
all other type, are each fit with a separate regression for ex-
ecution. One loading time regression is made for all layers
with parameters. Layers without parameters are estimated
by their mean loading time (the time it takes for EdgeCaffe
to execute an empty loading task). The input features to each
of these regressions are detailed in the following sections.
Loading Time To load a layer, every parameter needs to
be loaded and all are assumed to each take the same amount
of time. Therefore, a simple linear model suffices as long as
all the components required for calculation fit in memory. If
they do not fit in memory, data must be swapped to disk dur-
ing loading. Thus, the time taken for parameters that need to
swap will be greater. The layer’s loading time will then be
greater relative to the overflow.
Execution Time: Fully-Connected Layers Execution of
fully-connected layers entails a multiplication of the input
features with the matrix of parameters and the addition of
a bias to the result. Matrix multiplication scales with the
product of the dimensions of the matrices. We model the
case in which inference is run on only a single image at a
time, which means the first dimension is always one. In
this case, the matrix multiplication scales with the number
of weights to be multiplied (i.e. the number of parameters
of the layer). Once again, this scaling must be split into two
regimes: without swapping and with swapping. When the
values needed for the calculation do not all fit in memory,
there is an extra factor that scales with the overflow. As with
loading time, there is a minimum time required to execute a
layer even when it requires no real calculation. In this case
the overhead from EdgeCaffe executing a task dominates the
time taken.
Execution Time: Convolutional Layers The execution
time of convolutional layers depends on more than just the
number of parameters. The output shape, number of chan-
nels, kernel size, stride, padding, and grouping all play a role
[5]. Lu et al. [17] present a formula that calculates the num-
ber of multiplications needed to calculate the output (floating

point operations), however they do not account for channel
grouping, which is present in some of the networks that were
investigated. Extending the formula to account for channel
grouping and bias terms gives the following equation:

FLOPS = ODOHOW︸ ︷︷ ︸
output volume

∗(PDPHPW︸ ︷︷ ︸
parameter volume

)2/G+ OD︸︷︷︸
bias

(1)

Where O is the output, P the convolution filter kernels
(parameters of convolutional layer), G the number of chan-
nel groups, and the subscripts D, H , and W representing
the depth, height, and width respectively. # FLOPS repre-
sents the total number of floating point operations needed to
calculate the output.

Execution of convolutional layers under insufficient mem-
ory is also more complicated than fully-connected layers.
Convolutions require extra memory to store intermediate re-
sults which vary per algorithm used. This means, even if the
input features and the convolution’s parameters fit in mem-
ory, the intermediate results might incur swapping. To sim-
plify the model, memory used by these intermediate calcula-
tions is neglected. This means the convolutional model will
perform worse on layers which are forced to swap by their
intermediate calculations, as these are not factored in to the
overflow of the layer.
Execution Time: Remaining Layers The execution of
the remaining layers only account for less than 15% of
the total execution time and so are approximated more
roughly. All of these layers (activation, pooling, dropout,
and normalization) apply a static operation to their inputs.
Therefore, they are modeled with the number of input
elements as predictive feature. The other category of layers
is also modeled by number of input elements as most
operations scale at least linearly with their input. This
model will underestimate any operations that scale with
higher orders with respect to their input.

Altogether, the feature engineering model estimates the to-
tal time to execute a layer as the sum of a loading term that
scales with the number of parameters and an execution term
which scales with number of parameters, number of mul-
tiplications, or number of input elements, depending on the
layer type. Both the loading and execution terms for all layer
types have a component which scales with the overflow of
the layer.

The feature engineering model was trained with an ordi-
nary least squared regression, both with bootstrap aggregat-
ing and without. Bootstrap aggregating is a process where
the model is trained repeatedly on a subset of the data sam-
pled with replacement. After all models have been fit, the
average of the regression coefficients of all models is taken.
This helps make the model more robust to outliers in the
data by biasing its predictions towards the most frequently
occurring values.

3.3 Feature Selection
The second approach to modeling execution time that was
investigated was a feature selection approach. Rather than
fitting a model on a select few features, instead, all the gath-
ered data was used such that the model would find the most
predictive features itself. The model used for this was a

LASSO regression [25]. LASSO regression is the same as
an ordinary least squares regression but with a regulariza-
tion term added that penalizes the size of the regression’s
coefficients. This added term makes solutions with coeffi-
cients that are zero more preferable to solutions with small
coefficients–essentially forcing terms that do not contribute
to be dropped.

The input features to the feature selection model were
once again calculated from each network’s .prototxt file. The
basic features included the volume of each layer’s inputs, pa-
rameters, and outputs, the number of parameters that do not
fit in memory under a given memory constraint, and for con-
volutional layers, also the group, stride, and padding param-
eters. To allow for better modeling of the difference between
swapping layers and non-swapping layers, a binary feature
was added that was one when the layer needed swapping and
zero when it did not.

Expansion The enforced sparseness of LASSO regression
can be exploited further. From the feature engineering anal-
ysis, we believe that some nonlinear combinations of the fea-
tures mentioned above should be predictive of the execution
times (e.g. the output volume times the parameter volume
squared as in Equation 1). To allow the model to use these
combination features as well, the input data was expanded
by taking the products of all combinations (with replace-
ment) of the features. Taking combinations of two allows
for quadratic products of features, combinations of three al-
lows for cubic products, and so on. This greatly expands the
feature space that the regression can select from.

However, one drawback of this expansion is that it intro-
duces many new, highly correlated input variables. Assum-
ing LASSO is able to select meaningful variables despite
any introduced inter-correlation and co-linearity, regression
will still take much longer due to the large number of vari-
ables. To alleviate these correlation issues and reduce the
number of variables, the regression can instead be trained on
the principle components of the expanded data. This way,
the expanded data can be distilled back down to a manage-
able set of orthogonal features. Intuitively, expanding the
data amplifies the variance most in the feature directions that
are the best predictors. The resulting principle components
will then align along these directions and so be better inputs
to the regression than the principle components of the origi-
nal data.

4 Evaluation
4.1 Experimental Setup
Results were obtained on two Ubuntu machines. Their full
specifications can be found in Appendix A.1. This allowed
for a cursory examination of the effects of different hardware
configurations on execution time.

EdgeCaffe already had five networks from DeepEye [18]
implemented in the framework. To increase the amount
of layers that could be profiled and modeled, seven more
networks from the EdgeCaffe Model Zoo [3] were added.
These were selected to include as wide a range as possi-
ble of layer sizes, settings, and types. The more varied
the training set, the better the time estimation models could
generalize. The networks used are: Salient Object Subitiz-
ing [28], Salient Object Subitizing GoogleNet [28], AgeNet

[13], GenderNet [13], FaceNet [23], VGG-16 [24], VGG-16
Channel Pruning [10], VGG-19 [24], SimpNet [9], FCN32s
[16], VocNet [12], and Network in Network [15]. The VGG-
16 and VGG-19 networks are two of the largest in the Model
Zoo by parameter count, while the Channel Pruning version,
SimpNet, and Network in Network are specifically aimed
at reducing parameter count. The rest of the networks fall
somewhere in between.

Execution times were recorded by running each of the net-
works on the same image thirty to fifty times (depending on
the machine) for each memory limit. The memory limits
the pipeline was run under include five gigabytes (uncon-
strained), 512 megabytes, 372 megabytes, 256 megabytes,
and 128 megabytes. These levels were based on the baseline
in-memory size of the networks. At 512 megabytes, four
of the networks are under serious memory pressure, at 256
megabytes eight are, and at 128 megabytes they all are.

Resident set size (RSS) measurements were averaged over
ten runs of the pipeline. The measurement instrumentation
increases an unconstrained run of the pipeline on Machine
2 (see Appendix A.1) from about 1 minute 20 seconds, to
around 2 minutes. GPerfTools was deterministic with re-
spect to measured memory and each measurement at a given
allocation interval gave the same results. Memory usage was
recorded with an allocation interval of one kilobyte, this was
a small enough interval that there was a measuring point
for all but the smallest layers (which were approximated
by interpolation of their neighboring layers’ measurements).
GPerfTools balloons the total time to run the pipeline to 15
minutes, after-which the heap dumps still need to be pro-
cessed for an additional 15 minutes.

4.2 Results
Memory Measurements The results from memory mea-
surements as described are shown in Figure 2. Of note is
that the allocated memory as measured by GPerfTools is
lower than the RSS of the process reported by the kernel.
This is most likely because GPerfTools measures the actual
allocated chunks of memory, not the amount of memory re-
served. The RSS measures the amount of physical memory
reserved by the process, not what is actually allocated.

The memory requirements measured by GPerfTools were
used to validate the overflow estimations (which were calcu-
lated from the network’s .prototxt file). Note that the over-

Time
0

250

500

750

1000

1250

1500

1750

2000

M
B

RSS
GPerfTools

Figure 2: Asynchronous measurement of the resident set size (RSS)
of the process and the memory allocated by tcmalloc (as mea-
sured by GPerfTools) over the course of execution of the EdgeCaffe
pipeline for all twelve networks.

flow can be converted to memory values simply by multiply-
ing by size of the data type (e.g. for single precision float-
ing point numbers: 4 bytes). The mean absolute percent-
age error between the estimation and the measured memory
value was 17%. The estimation tended to under-predict the
value measured by GPerfTools (the mean percentage error
was −2.5%). This underestimation of the memory could
reduce the accuracy of the time prediction models by mis-
classifying a layer as not requiring swapping when it does
actually require swapping. In total only 1.12% of measure-
ments were misclassified. As the overflow value of these
layers would be relatively small, this effect on the model ac-
curacy was neglected.
Time Measurements The recorded times had a high vari-
ance so the upper and lower 25% of times were filtered out
to curb noise. Even so, the standard deviation of the time
measurements was 9-10% of the total time on average.

Bootstrapping the time measurements was tried, however,
both sampling with replacement from the measurements and
sampling from a kernel density estimation of the measure-
ments were not effective. While the standard deviation of
the data decreased considerably, the predictive performance
of the models decreased sharply and the data was noisier on
inspection. The time of some layers was drastically differ-
ent after bootstrapping while others were more or less unaf-
fected. In the end the decision was made to use the median
of the measurements.
Feature Engineering Figure 3 shows the feature engi-
neering model’s predictions for the loading time of layers

with and without parameters, the execution time of fully-
connected and convolutional layers, and the measured times
for all layers under different memory limits. These four cat-
egories of predicted time account for more than 85% of the
total time of all networks. The spread of the data with re-
spect to the predictive variables chosen for each layer is high.
Both the swapping data and the non-swapping data exhibit
vertical patterns where measurements of the same layer or
different layers with the same predictor variable values had
large differences in measured time. In the swapping regime,
the model underestimates the execution time of many of the
convolutional layers as well as the loading time of layers
that do not have parameters. Interestingly the scaling with
the overflow of the fully-connected layers Figure 3c is the
opposite of expected. Most likely, the effects of the vertical
patterns dominate the expected increase in execution times
caused by the swapping of the overflowed elements.

It is clear that the simple bi-linear feature engineering
model does not capture all the variation in the time mea-
surements. This highlights the need for a model that takes
more features into account.

Feature Selection The feature selection model was able to
compare the predictive power of a much wider range of fea-
tures compared to the manual feature engineering approach.
This allows the model to find more complex relationships in
the data.

An example of a model from cubic expansion is compared
with the feature engineered model in Table 2. Notable is that
the overflow term, F , is present in every layer’s model. In

2.0 2.5 3.0 3.5 4.0 4.5
Number of Parameters, P (log10)

5

6

7

8

9

10

11

12

Lo
ad

in
g

Ti
m

e
(lo

g1
0

ns
)

Measured Loading Time
Measured Loading Time (swapping)
tnoswap = 1.78 P + 1.26
tswap = 1.79 P + -0.07 F + 1.77
F (0, I + P + O]

(a)

1 2 3 4 5 6 7
Number of Input Elements, I (log10)

3

4

5

6

7

8

Lo
ad

in
g

Ti
m

e
(lo

g1
0

ns
)

Measured Loading Time, No Parameters
Measured Loading Time, No Parameters (swapping)
tnoswap = 4.83
tswap = 5.17

(b)

2.5 3.0 3.5 4.0 4.5
Number of Parameters, P (log10)

4

5

6

7

8

9

10

Ex
ec

ut
io

n
Ti

m
e

(lo
g1

0
ns

)

Measured Execution Time
Measured Execution Time (swapping)
tnoswap = 1.78 P - 0.31
tswap = 3.18 P + 0.66 F - 6.46
F (0, I + P + O]

(c)

8 9 10 11 12 13 14 15
Number of Multiplications, O P2 (log10)

5

6

7

8

9

10

11

Ex
ec

ut
io

n
Ti

m
e

(lo
g1

0
ns

)

Measured Execution Time
Measured Execution Time (swapping)
tnoswap = 0.60 O P2 + 0.29
tswap = 0.38 O P2 + 0.39 F + 2.33
F (0, I + P + O]

(d)

Figure 3: Linear regressions of the feature engineering model on the measured times of fifty runs of the EdgeCaffe pipeline on Machine
2 (see Appendix A.1). (a) The loading time of layers with parameters versus their number of parameters and memory overflow. (b) The
loading time of layers without parameters versus their mean loading time. (c) The execution time of fully-connected layers versus their
number of parameters and memory overflow. (d) The execution time of convolutional layers versus their number of multiplications and
memory overflow. Graphs of the remaining layers can be found in Appendix A.2.

Table 2: Left: the model found with the model selection approach
with cubic data expansion. Right: the feature engineering model.
F stands for overflow, the total number of elements that a layer
needs that do not fit in memory, I for the number of input elements
to a layer, P for the number of parameters (with P0 denoting zero
parameters), and O for the number of output elements.

Example Feature Selection Model

type terms intercept

LOAD
0.013 F3

3.962
+ 0.217 P3

LOAD P0 0.005 F3 5.391

FC

0.030 F3

3.686+ 0.079 I · O2

+ 0.235O3

CONV
0.063 F3

7.084
+ 0.109O3

ACT
0.024 F3

3.404
+ 0.166 I3

POOL 0.010 F3 6.593

DROP
0.010 F3

4.848
+ 0.142 I3

NORM
0.016 F3

4.790
+ 0.036 I3

OTHER

0.032 F3

5.030

+ 0.083 P3

+ 0.026O · P2

+ 0.017O2 · P

+ 0.009O3

Feature Engineering Model

type terms intercept

standard swapping standard swapping

LOAD 1.777 I
1.786 I

1.264 1.766
+ -0.070 F

LOAD P0 - - 4.829 5.172

FC 1.775 P
3.183 P

-0.313 -6.461
+ 0.660 F

CONV 0.603 O · P2
0.376 O · P2

0.288 2.326
+ 0.394 F

ACT 0.843 I
0.825 I

1.885 2.068
+ 0.034 F

POOL 0.518 I
0.779 I

4.173 2.948
− 0.120 F

DROP 0.590 I
0.488 I

2.480 4.380
− 0.372 F

NORM 0.604 I
0.785 I

3.722 3.166
− 0.192 F

OTHER 0.152 I
0.220 I

4.416 0.395
+ 1.644 F

general the features used are very sparse–using only two fea-
tures or three features of the 222 options. Notably, the multi-
plications feature introduced in Equation 1 was found by the
feature selection model, although it was used for the other
category rather than the convolutional layers. The other cat-
egory consistently had the most terms, which suggests that
more information was needed to model it. This seems log-
ical as multiple disparate layer types were lumped into this
category.

The models fit on the raw expanded data did not conse-
quently find the same features as most predictive. LASSO
seems to favor the maximum order features. Models of a
given order expansions all use features exclusively of the
highest order, despite also having the lower order features
as input. This could be because these features have the high-
est absolute values and so are driven to zero more slowly or
some other property of LASSO. In any case it seems unde-
sirable as the model is not weighting features equally and is
possibly overfitting. Even repeated fittings to the same ex-
panded data did not give identical predictors. This suggests

that the feature selection process is not objectively determin-
ing the true underlying explanatory variables, further moti-
vating reducing the expanded data to their principle compo-
nents.

Principle components whose explained variance percent-
age was greater than 1% were fit with a LASSO regression.
There tended to be five or six components regardless of the
expansion order of the data. Figure 4 shows the principle
components of the data with no expansion and quadratic ex-
pansion. In both cases the first principle component is re-
lated to the overflow and the second related to the parameter
volume. The principle components align with intuitively im-
portant axes in the data. Sparse PCA was also tried, however
the principle components were not much sparser and so the
slight interpretability gain was not worth the degraded per-
formance.

Layer models favored principle components which were
related to the overflow (e.g. Component 0 and Component 2
in Figure 4). Some layers also had parameter volume related
terms (Component 1 terms). Component 3 and 4, which
were mainly related to convolutional settings, were not used,
even in the convolutional layer model. This suggests that de-
spite the principle components distilling the variance in the
expanded data, the LASSO regression was not able to use the
PCA-transformed predictors to better capture the dynamics
of their effect on inference time.

4.3 Model Evaluation
Models were all trained on log-transformed data. This was
due to many of the input features and time measurements
spanning multiple orders of magnitude. Without the log-
transform, models were unstable and did not converge. Even
scaling by mean and standard deviation or by median and
inter-quartile range did not allow the same numeric stabil-
ity that the log-transform provided. This creates a major
performance issue with the model predictions on transform-
ing out of log-space. The regression assumes downward and
upward variation cost the same, however, any underestima-
tions in log-space are transformed to massive errors in reg-
ular space. This means all the models underestimate time
taken when transformed, sometimes by orders of magnitude.
For this reason, all statistics are reported in log-space for the
purpose of comparing model performance.

Model performance across the variety of different settings
investigated was evaluated using k-fold cross-validation.

F I P O group stride padx pady swap

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0 Component 0
Component 1
Component 2
Component 3
Component 4

(a)

F I P O
gr

ou
p

st
ri
de

pa
d x

pa
d y

sw
ap P O

gr
ou

p
st

ri
de

pa
d x

pa
d y

sw
ap

P·

0.4

0.2

0.0

0.2

0.4

Component 0

Component 1

Component 2

Component 3

Component 4

O
gr

ou
p

st
ri
de

pa
d x

pa
d y

sw
ap

O·

gr
ou

p
st

ri
de

pa
d x

pa
d y

sw
ap

group·

st
ri
de

pa
d x

pa
d y

sw
ap

pa
d x

pa
d y

sw
ap

pa
d y

sw
ap

sw
apF I P O

gr
ou

p
st

ri
de

pa
d x

pa
d y

sw
ap

F·

I P O
gr

ou
p

st
ri
de

pa
d x

pa
d y

sw
ap

I· stride· padx· pady· swap·

(b)

Figure 4: The magnitude of the principle component vectors along each axis in the (a) raw or (b) once expanded data. The braces in (b)
indicate that the parameters listed above the brace are all multiplied by the parameter listed below it.

Folds were chosen such that one, two, or three networks
were left out as test sets (corresponding to k sizes: 12, 6,
and 4). While the variance in performance was larger with
the leave-one-out folds due to some networks being very dif-
ferent from the rest (e.g. Channel Pruning using non-square
convolution kernels or GoogleNet having 142 layers), results
from all folds were pooled to get a more complete picture of
the models’ performance under different train and test set
sizes. Results are reported averaged over 36 folds, 12 of
each k size.

The measure used to gauge performance was the mean
absolute percentage error (MAPE). A low score on this met-
ric shows that the model’s estimate is close to the true time
taken to execute, which is the most valuable property in prac-
tice. Figure 5 shows the mean MAPE with 95% confidence
interval over the cross-validation of the feature engineering
model with different bootstrap sizes and of the feature se-
lection model for different expansion orders. The best per-
forming model was the expansion order 6, PCA based fea-
ture selection model with an average MAPE of 5.365. How-
ever, after expansion order 4 there were diminishing returns
and all models with order greater than 3 were not signifi-
cantly different from each other or the feature engineering
approach.

1 20 50 100
Bootstraps

5

6

7

8

9

10

11

12

M
AP

E
(lo

g-
sp

ac
e)

Feature Engineering

1 2 3 4 5 6
Expansion Order

Feature Selection
Feature Selection + PCA

Figure 5: Left: the mean absolute percentage error of the feature
engineering model averaged over 36 cross validations for different
numbers of bootstrapped models. Right: the mean absolute per-
centage error of the feature selection model for different levels of
iterative expansion of the predictors, trained on the raw expanded
predictors or the principle components of the expanded predictors.

4.4 Hardware Considerations
To evaluate the effect of different systems, the fitted feature
engineering models from two machines are compared (full
specifications of both machines can be found in Appendix
A.1). The feature engineering models are chosen for this test
as these always have the same parameters, while the feature
selection models sometimes do not have comparable terms.

Machine 1 is less powerful than Machine 2 and so only
thirty runs of the pipeline could be collected (compared to
Machine 2’s fifty runs). Machine 1, however, could be run
with no other processes competing for resources. Machine 2
is a multi-tenant machine and so runs could not be collected
in complete isolation. However, the other jobs were mainly
GPU bound and Machine 2 has twelve cores to share.

Due to the small amount of samples and the non-normality
of the distributions of the parameters (as found by inspection
of their histograms), the non-parametric Wilcoxon test [26]

is used to analyze the significance of the differences in the
models. The null hypothesis is that the means of the distribu-
tions of fitted model parameters over 100 bootstrapped mod-
els are the same. The p-values are corrected for multiple hy-
pothesis testing using the Benjamini–Hochberg Method [2].
The test finds that all parameters of the model are signifi-
cantly different with most p-values under 0.01. This means
that similar measurements should be performed for a wider
range of machine specifications to gain an understanding of
the scaling variance with respect to hardware.

5 Discussion
Despite their differences, the predictive performance of the
feature engineering and feature selection models is not sig-
nificantly different (for expansion orders of greater than
three in the feature selection case). However, the feature
engineering model seems the more stable choice of the two
given its straightforward theoretical foundation. It is unclear
why the expanded predictor set does not allow the LASSO
model to find solid underlying predictive features. However,
the bias towards the highest polynomial order features sug-
gests that the data expansion approach might be causing the
regression to overfit. Perhaps improved LASSO approaches
like overlapping or group LASSO could be tried. These are
specifically designed for cases where there are multiple po-
tentially overlapping groups of predictors.

While the feature engineering model does seem to capture
the majority of the variance in the log-space data (the R2

values of the best models were around 0.8), there are still
clearly some points where the model can be improved.

First of all, approaches to alleviate the severe underesti-
mation on transformation back from log-space can be inves-
tigated. Standard linear regression assumes the error with
respect to the linear model is normally distributed. However
this assumption is violated when fitting in log-space as two
points equidistant to the line in log-space are not equidistant
to the line in the original space. Generalized linear mod-
els could be applied to model an exponential/lognormal er-
ror distribution in log-space. This way the error distribution
would be normal when transformed back to regular space.
Alternatively, a way to bias the log-space regression’s objec-
tive to minimize underestimation could be found.

Second, a better estimate of the memory requirements of
convolutional layers could be found. Convolutional layers
make up 35% of total execution time, but in the swapping
regime the feature engineering model only achieves an R2

of 0.4. Despite using the same feature to model the exe-
cution time of convolutional layers as Lu et. al [17], we
were not able to achieve a similar accuracy (Lu et al. re-
ported around 80% accuracy). This suggests that the ef-
fects of swapping dominate the time needed floating point
operations. These effects are estimated with respect to the
overflow value which we know is not correctly estimated for
convolutional layers due to the neglection of the extra inter-
mediate memory these layers use.

Finally, the vertical patterns in the feature engineering
data suggest that there might be some stochastic or strongly
non-linear effects at play. One possible explanation is that
in the swapping regime, the loading time is dominated by
effects related to contiguity of memory space and other
caching effects. Some layers of a given size are lucky

to have a favorable block of memory evicted and so load
faster, while others are scattered throughout memory over
the course of multiple evictions. As the feature selection
model does not seem to be able to capture these non-linear
effects, the tree-structured linear regression used by Fast-
DeepIoT [27] seems to be a more promising direction for
improvement. This approach could be extended to include
the overflow value or other memory based parameters as pre-
dictors.

Another important way forward is to gather more time
measurements. This could give a better picture of perfor-
mance under different circumstances. More runs of the
pipeline in isolated environments could help reduce the noise
in the data and make clear trends that are currently obscured.
More intelligent setting of memory limits during profiling
could help improve the interpolation of some patterns in the
dataset. The currently used levels are based on the base-
line memory sizes of the networks, but a better strategy
could be to subject each individual layer to the same levels
of overflow. Also, multi-threaded scheduling modes could
be profiled to gain an understanding of the interaction be-
tween different kinds of layers with different bottlenecks be-
ing run at the same time. More systems with a wider range
of resource-constraint can be investigated–specifically low-
resource, CPU-only devices. This way a hardware-agnostic
model could be built based on features of the hardware like
CPU clock speed and maximum memory speed.

Memory-aware scheduling strategies like those intro-
duced by Li et al. or Abraham et al. could be profiled as well
[1, 14]. Both of these strategies use adaptive algorithms to
minimize memory use. Li et al. introduce a control module
that splits layers into independent partial operations. These
more granular jobs can then be scheduled to use the mem-
ory bus more optimally. Abraham et al. focus on analysis
of memory buffers to allocate memory in a way that opti-
mizes for reuse of buffers. Analyzing these minimal mem-
ory bandwidth scheduling strategies with the models intro-
duced in this paper could help build intuition into the reason
for their efficacy. The models can provide a distilled repre-
sentation of the scaling of different parts of inference under
these different strategies that might be easier to interpret and
compare.

6 Responsible Research
Ethical Concerns There are many concerns regarding the
use of automated systems to gather information or make de-
cisions, especially when they involve artificial intelligence.
Machine learning systems are generally harder to probe for
how they come to a decision due to their black-box na-
ture. Even when systems are not making decisions that
directly impact people, machine learning systems have un-
precedented capabilities to aggregate and parse information.
This information can influence decisions and so it is impor-
tant to consider the impacts any research into these systems
can have.

While profiling networks in resource constrained contexts
seems innocuous on a surface level, there are many appli-
cations where improvements in performance might be detri-
mental. One conspicuous example is Clearview AI, a com-
pany that has crawled vast amounts of online pictures of pub-
lic and private spaces and provides an app that allows users

to upload a picture of a person to receive more information
about them [11]. The app even includes code that allows
its use with augmented reality software such as might be
present in a wearable device. While Clearview AI might not
run any facial recognition software on-device, more perfor-
mant devices, such as DeepEye, as well as other improve-
ments brought about by better profiling capabilities could
expand the reach of currently internet-bound apps to places
that are yet out of reach. More generally, augmenting low-
resource systems (e.g. security cameras or WiFi routers)
with machine learning capabilities can systematically erode
the privacy in ever-more places.

Next to privacy concerns, profiling research can also exac-
erbate issues with biased machine learning systems. A more
performant, low-resource risk assesment model in a police
officer’s augmented reality glasses could needlessly escalate
situations according to biased trends in its training data, fur-
ther perpetuating that bias.
Epistemic Concerns While being aware of the ethical as-
pects of research is important, it is also necessary to consider
some epistemic concerns. The profiling methods employed
in this paper use free, open-source tools whose manuals have
extensive information on how to use them. The explanation
in the methodology is tailored such that, together with the
manuals of the cited tools, any source code can be instru-
mented and measured in a similar way.

EdgeCaffe builds on the strong open-source foundation of
the deep learning framework Caffe [4]. Also, all the models
used to build the execution time model are pre-trained net-
works that can be found for free online (mostly in the Caffe
Model Zoo [3]).

On top of this, the EdgeCaffe source code will be pub-
lished and so the exact code used to measure the results in
this paper will be available; including documentation on how
to reproduce the experiments.

7 Conclusions
We have presented two models that predict the total time
needed to execute individual layers of deep neural networks
under different memory restrictions. Data for the models
was gathered by instrumenting the EdgeCaffe framework’s
pipeline to measure the required memory and time needed
for execution of multiple networks under various memory
limits. One model predicts the time needed to execute a
network and its component layers based on the theoretical
computations required. The other can select predictive fea-
tures on its own from a wide range of combinations of in-
puts. While both models generally underestimate the actual
inference time needed, they correlate strongly with the log-
loading and log-execution time of several important types of
layers. This shows that estimations of the number of compu-
tations that can be performed with and without swapping are
an important part of understanding the performance of deep
networks in memory-constrained systems. Future work can
use the distilled representations of our per layer inference
time models to shed light on the performance of different
network architectures and scheduling algorithms.

References
[1] Arun Abraham, Manas Sahni, and Akshay Parashar.

“Efficient Memory Pool Allocation Algorithm for
CNN Inference”. In: 2019 IEEE 26th International
Conference on High Performance Computing, Data,
and Analytics (HiPC). 2019 IEEE 26th International
Conference on High Performance Computing, Data,
and Analytics (HiPC). Dec. 2019, pp. 345–352. DOI:
10.1109/HiPC.2019.00049.

[2] Yoav Benjamini and Yosef Hochberg. “Controlling
the False Discovery Rate: A Practical and Power-
ful Approach to Multiple Testing”. In: Journal of the
Royal Statistical Society: Series B (Methodological)
57.1 (1995), pp. 289–300. ISSN: 2517-6161. DOI: 10.
1111/j.2517-6161.1995.tb02031.x. URL: https://rss.
onlinelibrary.wiley.com/doi /abs /10 .1111 / j .2517-
6161.1995.tb02031.x (visited on 06/10/2020).

[3] BVLC Caffe Model Zoo. URL: https : / / github .
com / BVLC / caffe / wiki / Model - Zoo (visited on
05/04/2020).

[4] BVLC/Caffe. Berkeley Vision and Learning Center,
May 10, 2020. URL: https://github.com/BVLC/caffe
(visited on 05/10/2020).

[5] Vincent Dumoulin and Francesco Visin. “A Guide
to Convolution Arithmetic for Deep Learning”. In:
(Jan. 11, 2018). arXiv: 1603 . 07285 [cs, stat].
URL: http : / / arxiv. org / abs / 1603 . 07285 (visited on
05/31/2020).

[6] Google PerfTools. URL: https : / / github . com /
gperftools/gperftools.

[7] Google Tcmalloc. Google, Apr. 29, 2020. URL:
https : / / github . com / google / tcmalloc (visited on
04/30/2020).

[8] Tian Guo. “Cloud-Based or On-Device: An Em-
pirical Study of Mobile Deep Inference”. In: 2018
IEEE International Conference on Cloud Engineer-
ing (IC2E). 2018 IEEE International Conference on
Cloud Engineering (IC2E). Orlando, FL: IEEE, Apr.
2018, pp. 184–190. ISBN: 978-1-5386-5008-0. DOI:
10.1109/IC2E.2018.00042. URL: https://ieeexplore.
ieee.org/document/8360327/ (visited on 06/20/2020).

[9] Seyyed Hossein Hasanpour et al. “Towards Principled
Design of Deep Convolutional Networks: Introduc-
ing SimpNet”. In: (Feb. 17, 2018). arXiv: 1802.06205
[cs]. URL: http://arxiv.org/abs/1802.06205 (visited
on 06/09/2020).

[10] Yihui He, Xiangyu Zhang, and Jian Sun. “Chan-
nel Pruning for Accelerating Very Deep Neural Net-
works”. In: (Aug. 21, 2017). arXiv: 1707 . 06168
[cs]. URL: http : / / arxiv.org / abs /1707 .06168 (vis-
ited on 06/09/2020).

[11] Kashmir Hill. “The Secretive Company That Might
End Privacy as We Know It”. In: The New York Times.
Technology (Jan. 18, 2020). ISSN: 0362-4331. URL:
https://www.nytimes.com/2020/01/18/technology/
clearview-privacy-facial-recognition.html (visited on
05/31/2020).

[12] Sebastian Lapuschkin et al. “Analyzing Classifiers:
Fisher Vectors and Deep Neural Networks”. In:
2016 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR). 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).
Las Vegas, NV, USA: IEEE, June 2016, pp. 2912–
2920. ISBN: 978-1-4673-8851-1. DOI: 10 . 1109 /
CVPR.2016 .318. URL: http : / / ieeexplore . ieee .org /
document/7780687/ (visited on 06/09/2020).

[13] Gil Levi and Tal Hassner. “Age and Gender Classi-
fication Using Convolutional Neural Networks”. In:
IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR) Workshops. June 2015. URL: url%5C%
7Bhttps://osnathassner.github.io/talhassner/projects/
cnn agegender%5C%7D.

[14] Shijie Li et al. “A Novel Memory-Scheduling Strat-
egy for Large Convolutional Neural Network on
Memory-Limited Devices”. In: Computational Intel-
ligence and Neuroscience 2019 (Apr. 28, 2019). ISSN:
1687-5265. DOI: 10 . 1155 / 2019 / 4328653. pmid:
31182958. URL: https : / / www. ncbi . nlm . nih . gov /
pmc/articles/PMC6512078/ (visited on 06/20/2020).

[15] Min Lin, Qiang Chen, and Shuicheng Yan. “Network
In Network”. In: (Mar. 4, 2014). arXiv: 1312 . 4400
[cs]. URL: http://arxiv.org/abs/1312.4400 (visited on
06/09/2020).

[16] Jonathan Long, Evan Shelhamer, and Trevor Darrell.
“Fully Convolutional Networks for Semantic Seg-
mentation”. In: (), p. 10.

[17] Zongqing Lu et al. “Modeling the Resource Require-
ments of Convolutional Neural Networks on Mobile
Devices”. In: Proceedings of the 2017 ACM on Multi-
media Conference - MM ’17 (2017), pp. 1663–1671.
DOI: 10.1145/3123266.3123389. arXiv: 1709.09503.
URL: http : / / arxiv. org / abs / 1709 . 09503 (visited on
04/29/2020).

[18] Akhil Mathur et al. “DeepEye: Resource Efficient Lo-
cal Execution of Multiple Deep Vision Models Us-
ing Wearable Commodity Hardware”. In: Proceed-
ings of the 15th Annual International Conference on
Mobile Systems, Applications, and Services. MobiSys
’17. Niagara Falls, New York, USA: Association for
Computing Machinery, June 16, 2017, pp. 68–81.
ISBN: 978-1-4503-4928-4. DOI: 10 . 1145 / 3081333 .
3081359. URL: https : / / doi . org / 10 . 1145 / 3081333 .
3081359 (visited on 04/20/2020).

[19] Paul Menage. CGroups. URL: https : / /www.kernel .
org/doc/Documentation/cgroup-v1/cgroups.txt.

[20] NVIDIA® Jetson™ Family. Oct. 14, 2015. URL:
https : / / developer. nvidia . com / embedded / develop /
hardware (visited on 06/20/2020).

[21] Samuel S. Ogden and Tian Guo. “Characterizing the
Deep Neural Networks Inference Performance of Mo-
bile Applications”. In: (Sept. 10, 2019). arXiv: 1909.
04783 [cs]. URL: http://arxiv.org/abs/1909.04783
(visited on 06/20/2020).

[22] Samuel S Ogden and Tian Guo. “MODI: Mobile
Deep Inference Made Efficient by Edge Computing”.
In: (), p. 7.

https://doi.org/10.1109/HiPC.2019.00049
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://github.com/BVLC/caffe/wiki/Model-Zoo
https://github.com/BVLC/caffe/wiki/Model-Zoo
https://github.com/BVLC/caffe
http://arxiv.org/abs/1603.07285
http://arxiv.org/abs/1603.07285
https://github.com/gperftools/gperftools
https://github.com/gperftools/gperftools
https://github.com/google/tcmalloc
https://doi.org/10.1109/IC2E.2018.00042
https://ieeexplore.ieee.org/document/8360327/
https://ieeexplore.ieee.org/document/8360327/
http://arxiv.org/abs/1802.06205
http://arxiv.org/abs/1802.06205
http://arxiv.org/abs/1802.06205
http://arxiv.org/abs/1707.06168
http://arxiv.org/abs/1707.06168
http://arxiv.org/abs/1707.06168
https://www.nytimes.com/2020/01/18/technology/clearview-privacy-facial-recognition.html
https://www.nytimes.com/2020/01/18/technology/clearview-privacy-facial-recognition.html
https://doi.org/10.1109/CVPR.2016.318
https://doi.org/10.1109/CVPR.2016.318
http://ieeexplore.ieee.org/document/7780687/
http://ieeexplore.ieee.org/document/7780687/
url%5C%7Bhttps://osnathassner.github.io/talhassner/projects/cnn_agegender%5C%7D
url%5C%7Bhttps://osnathassner.github.io/talhassner/projects/cnn_agegender%5C%7D
url%5C%7Bhttps://osnathassner.github.io/talhassner/projects/cnn_agegender%5C%7D
https://doi.org/10.1155/2019/4328653
31182958
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6512078/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6512078/
http://arxiv.org/abs/1312.4400
http://arxiv.org/abs/1312.4400
http://arxiv.org/abs/1312.4400
https://doi.org/10.1145/3123266.3123389
http://arxiv.org/abs/1709.09503
http://arxiv.org/abs/1709.09503
https://doi.org/10.1145/3081333.3081359
https://doi.org/10.1145/3081333.3081359
https://doi.org/10.1145/3081333.3081359
https://doi.org/10.1145/3081333.3081359
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://developer.nvidia.com/embedded/develop/hardware
https://developer.nvidia.com/embedded/develop/hardware
http://arxiv.org/abs/1909.04783
http://arxiv.org/abs/1909.04783
http://arxiv.org/abs/1909.04783

[23] Florian Schroff, Dmitry Kalenichenko, and James
Philbin. “FaceNet: A Unified Embedding for Face
Recognition and Clustering”. In: 2015 IEEE Confer-
ence on Computer Vision and Pattern Recognition
(CVPR) (June 2015), pp. 815–823. DOI: 10 . 1109 /
CVPR.2015.7298682. arXiv: 1503.03832. URL: http:
//arxiv.org/abs/1503.03832 (visited on 05/31/2020).

[24] Karen Simonyan and Andrew Zisserman. “Very
Deep Convolutional Networks for Large-Scale Image
Recognition”. In: (Apr. 10, 2015). arXiv: 1409.1556
[cs]. URL: http://arxiv.org/abs/1409.1556 (visited on
06/09/2020).

[25] Robert Tibshirani. “Regression Shrinkage and Selec-
tion via the Lasso”. In: Journal of the Royal Statis-
tical Society. Series B (Methodological) 58.1 (1996),
pp. 267–288. ISSN: 0035-9246. JSTOR: 2346178.

[26] Frank Wilcoxon. “Individual Comparisons by Rank-
ing Methods”. In: Biometrics Bulletin 1.6 (1945),
pp. 80–83. ISSN: 0099-4987. DOI: 10.2307/3001968.
JSTOR: 3001968.

[27] Shuochao Yao et al. “FastDeepIoT: Towards Under-
standing and Optimizing Neural Network Execution
Time on Mobile and Embedded Devices”. In: Pro-
ceedings of the 16th ACM Conference on Embedded
Networked Sensor Systems (Nov. 4, 2018), pp. 278–
291. DOI: 10.1145/3274783.3274840. arXiv: 1809.
06970. URL: http://arxiv.org/abs/1809.06970 (visited
on 06/20/2020).

[28] Jianming Zhang et al. “Salient Object Subitizing”. In:
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2015.

https://doi.org/10.1109/CVPR.2015.7298682
https://doi.org/10.1109/CVPR.2015.7298682
http://arxiv.org/abs/1503.03832
http://arxiv.org/abs/1503.03832
http://arxiv.org/abs/1503.03832
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://www.jstor.org/stable/2346178
https://doi.org/10.2307/3001968
http://www.jstor.org/stable/3001968
https://doi.org/10.1145/3274783.3274840
http://arxiv.org/abs/1809.06970
http://arxiv.org/abs/1809.06970
http://arxiv.org/abs/1809.06970

A Appendix
A.1 Machine Specifications
Two machines were used to measure the execution of deep networks under separate hardware conditions.

Machine 1
• Ubuntu version: 18.04.4
• Linux kernel version: 5.3.0-53
• CPU: Intel® Core™ i5-8265U
• Cores: 4
• Clock speed: 1.6 GHz
• Max memory bandwidth: 37.5 GB/s

Machine 2
• Ubuntu version: 18.10.1
• Linux kernel version: 4.18.0-25
• CPU: AMD® Ryzen™ Threadripper™ 1920X
• Cores: 12
• Clock speed: 3.7 GHz
• Max memory bandwidth: 85.3 GB/s

A.2 Other Graphs
The linear models of the remaining layer categories are shown on the following pages. These account for less than 15%
of the total execution time together, as can be seen in Figure 6. While the activation fucntion and pooling layers are de-
cently modeled, the final three categories–normalization, dropout, and other layers–correlate poorly with the number of input
elements.

2G 1G 512M 256M 128M
Memory Limit

0

1

2

3

4

Na
no

se
co

nd
s

1e10

20.1% 21.3% 26.5%
27.5%

39.6%

30.2% 29.4%
27.3%

22.4%

21.3%

33.7% 33.1%
30.6%

37.6%

31.5%

13.8% 13.7%
12.6%

10.2%

6.2%
fc-load
fc-exec
conv-load
conv-exec
other-load
other-exec

Figure 6: The proportion of total execution time taken up by each category of layer for different memory limits.

1 2 3 4 5 6 7
Number of Input Elements, I (log10)

4

5

6

7

8

Ex
ec

ut
io

n
Ti

m
e

(lo
g1

0
ns

)

Measured Execution Time
Measured Execution Time (swapping)
tnoswap = 0.84 I + 1.89
tswap = 0.83 I + 0.03 F + 2.07
F (0, I + P + O]

(a)

4.5 5.0 5.5 6.0 6.5 7.0 7.5
Number of Input Elements, I (log10)

6.0

6.5

7.0

7.5

8.0

8.5

9.0

Ex
ec

ut
io

n
Ti

m
e

(lo
g1

0
ns

)

Measured Execution Time
Measured Execution Time (swapping)
tnoswap = 0.52 I + 4.17
tswap = 0.78 I + -0.12 F + 2.95
F (0, I + P + O]

(b)

4.5 5.0 5.5 6.0 6.5 7.0 7.5
Number of Input Elements, I (log10)

6.0

6.5

7.0

7.5

8.0

8.5

9.0

Ex
ec

ut
io

n
Ti

m
e

(lo
g1

0
ns

)

Measured Execution Time
Measured Execution Time (swapping)
tnoswap = 0.60 I + 3.72
tswap = 0.79 I + -0.19 F + 3.17
F (0, I + P + O]

(c)

Figure 7: The feature engineering model fit to (a) activation functions, (b) pooling layers, and (c) normalization layers. Each shows the
scaling of execution time with respect to the number input elements when executing with sufficient memory and with forced swapping.

3 4 5 6 7
Number of Input Elements, I (log10)

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

Ex
ec

ut
io

n
Ti

m
e

(lo
g1

0
ns

)

Measured Execution Time
Measured Execution Time (swapping)
tnoswap = 0.59 I + 2.48
tswap = 0.49 I + -0.37 F + 4.38
F (0, I + P + O]

(a)

1 2 3 4 5 6 7
Number of Input Elements, I (log10)

4

5

6

7

8

Ex
ec

ut
io

n
Ti

m
e

(lo
g1

0
ns

)

Measured Execution Time
Measured Execution Time (swapping)
tnoswap = 0.15 I + 4.42
tswap = 0.22 I + 1.64 F + 0.40
F (0, I + P + O]

(b)

Figure 8: The feature engineering model fit to (a) dropout layers and (b) all remaining layers not from one of the seven layer types. Each
shows the scaling of execution time with respect to the number input elements when executing with sufficient memory and with forced
swapping.

	Introduction
	Profiling
	EdgeCaffe
	Memory Usage
	Execution Time

	Modeling Execution Time
	Preliminary Analysis
	Feature Engineering
	Feature Selection

	Evaluation
	Experimental Setup
	Results
	Model Evaluation
	Hardware Considerations

	Discussion
	Responsible Research
	Conclusions
	Appendix
	Machine Specifications
	Machine 1
	Machine 2

	Other Graphs

