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SUMMARY

W IRELESS communications and networking are gradually permeating our life and
substantially influencing every corner of this world. Wireless devices, particularly

those of small size, will take part in this trend more widely, efficiently, seamlessly and
smartly. Techniques requiring only limited resources, especially in terms of hardware,
are becoming more important and urgently needed. That is why we focus this thesis
around analyzing wireless communications and networking based on signal strength
(SS) measurements, since these are easy and convenient to gather. SS-based techniques
can be incorporated into any device that is equipped with a wireless chip.

More specifically, this thesis studies SS-based localization and path-loss exponent
(PLE) self-estimation. Although these two research lines might seem unrelated, they
are actually marching towards the same goal. The former can easily enable a very sim-
ple wireless chip to infer its location. But to solve that localization problem, the PLE is
required, which is one of the key parameters in wireless propagation channels that de-
cides the SS level. This makes the PLE very crucial to SS-based localization, although it is
often unknown. Therefore, we need to develop accurate and robust PLE self-estimation
approaches, which will eventually contribute to the improvement of the localization per-
formance. Additionally, our work also provides very useful links to possible applications
in other related fields.

In this thesis, we start with the first research line, where we try to cope with all pos-
sible issues that we encounter in solving the localization problem. To eliminate the
unknown transmit power issue, we adopt differential received signal strength (DRSS)
measurements. Colored noise, non-linearity and non-convexity are the next three major
issues. To deal with the first two, we introduce a whitened linear data model for DRSS-
based localization. Based on that and assuming the PLE is known, three different ap-
proaches are respectively proposed to tackle the non-convexity issue: an advanced best
linear unbiased estimator (A-BLUE), a Lagrangian estimator (LE) and a robust semi-
definite programming (SDP)-based estimator (RSDPE). Note that the RSDPE is partic-
ularly designed to be robust against the model uncertainties (imperfect PLE and inac-
curate anchor location information) while the A-BLUE and the LE are based on an exact
data model. We thoroughly compare them from different perspectives and conclude
they have their own advantages: the A-BLUE has the lowest computational complexity;
the LE holds the best accuracy for a small measurement noise; and the RSDPE yields the
best performance under a large measurement noise and possesses a very good robust-
ness against model uncertainties. Moreover, to cope with an unknown PLE, we propose
a robust SDP-based block coordinate descent estimator (RSDP-BCDE) that jointly esti-
mates the PLE and the target location. Its performance iteratively converges to that of
the RSDPE with a known PLE.

As mentioned earlier, while generating DRSS measurements, we eliminate the un-
known transmit power. This is very similar to the way time-difference-of-arrival (TDOA)

ix



x SUMMARY

methods cope with an unknown transmit time. Both of them use a differencing process
to cope with an unknown linear nuisance parameter. Our DRSS study shows the differ-
encing process does not cause any information loss and hence the selection of the ref-
erence is not important. However, this apparently contradicts what is commonly known
in TDOA-based localization, where selecting a good reference is very crucial. To resolve
this conflict, we introduce a unified framework for linear nuisance parameters such that
all our conclusions apply to any kind of problem that can be written into this form. Three
methods that can cope with linear nuisance parameters are considered by investigating
their best linear unbiased estimators (BLUEs): joint estimation, orthogonal subspace
projection (OSP) method and differential method. The results coincide with those ob-
tained in our DRSS study. For TDOA-based localization, it is actually the modelling pro-
cess that causes a reference dependent information loss, not the differencing process.
Many other interesting conclusions are also drawn here.

Next, we turn our attention to the second research line. Undoubtedly, knowledge of
the PLE is decisive to SS-based localization and hence accurately estimating the PLE
will lead to a better localization performance. However, estimating the PLE also has
benefits for other applications. If each node can self-estimate the PLE in a distributed
fashion without any external assistance or information, it might be very helpful for effi-
ciently designing some wireless communication and networking systems, since the PLE
yields a multi-faceted influence therein. Driven by this idea, we propose two closed-
form (weighted) total least squares (TLS) methods for self-estimating the PLE, which
are merely based on the locally collected SS measurements. To solve the unknown nodal
distance issue, we particularly extract information from the random placement of neigh-
bours in order to facilitate the derivations. We also elaborate on many possible applica-
tions thereafter, since this kind of PLE self-estimation has never been introduced before.

Although the previous two methods estimate the PLE by minimizing some residue,
we also want to introduce Bayesian methods, such as maximizing the likelihood. Some
obstacles related to such approaches are the totally unknown distribution for the SS
measurements and the mathematical difficulties of computing it, since the SS is sub-
ject to not only the wireless channel effects but also the geometric dynamics (the ran-
dom node placement). To deal with that, we start with a simple case that only considers
the geometric path-loss for wireless channels. We are the first to discover that in this
case the SS measurements in random networks are Pareto distributed. Based on that, we
derive the CRLB and introduce two maximum likelihood (ML) estimators for PLE self-
estimation. Although we considered a simplified setting, finding the general SS distribu-
tion would still be very useful for studying wireless communications and networking.

Finally, we wrap up this thesis by summarizing our research results and providing
suggestions for future work.
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1
INTRODUCTION

None is of freedom or of life deserving unless he daily conquers it anew.

Erasmus

S INCE Guglielmo Marconi successfully telegraphed the first message in Morse code,
a new era of wireless communication has been opened. Driven by the simple goal

of improving the quality of our life, generations of scientists and engineers have been
following his legacy and never ceased to contribute in this field. With great respect to
their contributions, we would also like to follow this path and offer our strength for a
better future.

Therefore, our work mainly contributes to the fields of localization and wireless chan-
nel sensing. Accordingly, this thesis is respectively comprised of two research lines: sig-
nal strength (SS) based localization and path-loss exponent (PLE) self-estimation in
wireless networks. For the convenience of reading, this chapter introduces the back-
ground and the motivations of our research, where we will also highlight our research
challenges in red blocks. Furthermore, while reading this thesis, the readers are also
recommended to refer to our research diagram in Fig. 1.8 at page 30 for a general per-
spective. Finally, based on that, we outline this thesis and our contributions.

1.1. BACKGROUND AND MOTIVATIONS

L OCATION-awareness has become an indispensable feature for many aspects of com-
mercial, public service and military sectors [1, 2]. Hence, it is already a wide and

essential concern for enabling applications such as tourist guiding [3], health-care mon-
itoring [4], animal and asset tracking [5, 6], emergency service [7], etc.. Driven by this
urgent requirement, much effort has been put on the topic of localization or position-
ing. As one of the solutions, the global positioning system (GPS), which is assisted by
satellites, provides a considerable estimation accuracy in most outdoor scenarios [8].
However, in some unattended, hostile or very severe environments, the performance of

3
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Figure 1.1: Demonstration of different localization scenarios: The localization is assisted by nearby anchors
while the GPS system heavily relies on faraway satellites in space. Any kind of node with known location can
act as an anchor, e.g., the base station in WCNs, the wireless router in WLANs and even the sensor equipped
with a GPS receiver.

GPS will deteriorate significantly [9, 10]. Moreover, if indoor scenarios are considered,
the GPS signal will become even worse and hence unreliable for localization.

As an alternative solution, localization that tackles GPS-denied scenarios is emerg-
ing rapidly and showing prominent features with many notable advantages in recent
years [1, 11–14]. To be specific, unlike GPS, this kind of localization does not rely on
orbiting satellites in space, whose locations are changing and should be periodically cal-
culated in time by the ephemeris. Instead, some surrounding nodes with a priori known
locations, i.e., the anchors, take the role of the satellites. Since the anchors are relatively
near, as shown in Fig. 1.1, the localization signal is less distorted and weakened, which
might lead to a better localization performance. Besides, constructing a localization net-
work is very easy, cheap and rather scalable in size, such that any kind of network can
feature and accordingly benefit from the location-awareness.

1.1.1. LOCALIZATION

L ET us focus on the first line of our research: signal strength (SS) based localiza-
tion. For a better understanding of localization, we will elaborate on scenarios, basic

concepts, measurements and some mathematical issues while solving the localization
problem. Finally, we make a further step and extend our research to differential signal
processing, which is closely related to localization and provides some more insights.

DIFFERENT SCENARIOS

W E would like to start with some discussions about practical scenarios. As depicted
in Fig. 1.1, localization is mostly implemented in wireless cellular networks (WCNs),
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wireless local area networks (WLANs) and wireless sensor networks (WSNs).

• WCNs primarily depend upon wide area localization, e.g. for emergency ser-
vices, since the infrastructure of the underlying networks covers a large geographic
area [15]. The communication environment varies from the urban area to the ru-
ral area, where the former yields relatively more reflections and attenuation of the
localization signal. In both cases, the base station (BS) acts as the anchor. To facil-
itate the localization, the network is often well-equipped and cooperative.

• Source localization for WLANs is actively considered for indoor scenarios such
as tourist guiding in museums [16, 17]. Basically, any wireless device with known
location can be chosen as the anchor. Though, the wireless router is the most
favorite, since it is often carefully attended and networked for a large amount of
data exchange. Compared with WCNs, WLANs encounter more complicated and
severe communication environments.

• If communication environments are hostile or unattended, WSNs are often con-
structed temporarily [18, 19]. For instance, a large number of sensors are randomly
scattered for environmental monitoring, where the geographical location of the
sensors needs to be known. In this case, localization has to be carried out with
very limited resources and cope with rather severe signal distortions. To be spe-
cific, unlike WCNs and WLANs, many more issues have to be taken into consider-
ation such as battery constraints, limited data exchange, etc..

In a nutshell, different underlying features and configurations of wireless localiza-
tion networks yield different practical concerns, which keep motivating us to extend our
research to more realistic cases. For instance, the reliability of the anchor location infor-
mation is just one of our concerns.

Research Challenge No. 1: Inaccurate Anchor Location Information

The anchor location information can be provided by the GPS system, which
might not be accurate enough especially in indoor scenarios. In military sce-
narios, such important information might also be faked, spoofed and tampered
with to sabotage the localization, as shown in Fig. 1.2. Therefore, inaccurate an-
chor location information is a rather critical issue, which needs to be taken into
account.

Question: How does the inaccurate anchor location affect the localization and
how do we deal with that?
Answer: When solving a localization problem, inaccurate anchor location infor-
mation actually results into uncertainties in our data model. Therefore, in Sec-
tion 2.3.3 of Chapter 2, we introduce a robust localization method that copes
with the model uncertainties. Note that model uncertainties can also be caused
by other inaccurate information such as an inaccurate PLE estimate, which will
be discussed later.
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Figure 1.2: Demonstration in R2 of two localization principles and the impact of inaccurate anchor location
information: the nodes A1, A2 and A3 are three anchors with known locations; the corresponding transmission
distances to the target node B are d1, d2 and d3; the corresponding transmission angles areφ1, φ2 andφ3. For
trilateration, the location B is determined at the intersection of the solid circles centered at A1, A2 and A3 with
radii d1, d2 and d3, respectively. For triangulateration, the location B is determined at the intersection of the
dashed radial lines originated at A1, A2 and A3 with angles φ1, φ2 and φ3, respectively. An adversary might
attack the localization system by reporting the wrong localization information. The target node B will then be
estimated much deviated from the true location, e.g., around the red shaded area.

BASIC CONCEPTS AND MEASUREMENTS

N EXT, we discuss some basic concepts of localization. In most scenarios, two local-
ization principles are commonly considered: trilateration [20] and triangulatera-

tion [21]. To be specific, the former relies on the distance information while the latter
depends on the angular information, as depicted in Fig. 1.2. Triangulateration is based
on angular measurements such as angle-of-arrival (AOA) information, which normally
requires multiple antennas. Although it is possible for WCNs and WLANs, it is still very
expensive, especially for WSNs, to use the AOA for localization. In contrast, as long as
there are measurements that contain distance information, trilateration is applicable
and hence preferably chosen in most cases. Therefore, from now on, the term “localiza-
tion" will only refer to trilateration for convenience, since this is the main focus of our
research.

Before elaborating on the measurements, we first notice that localization can be car-
ried out in the two following fashions: centralized and distributed [13], as depicted in
Fig. 1.3.

• In a centralized fashion, each anchor collects measurements from the target node
and then a central processor gathers all the measurements to calculate the location
of the target node. Usually, this kind of localization network is not very scalable,
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Figure 1.3: Centralized localization is demonstrated on the left side, where a single localization signal is broad-
cast by the target node and received by all the anchors. In this case, all measurements should be aggregated to
the central processor. Distributed localization is shown on the right side, where each anchor transmits its own
localization signal and hence the target node receives the measurements from different transmitters. In this
case, the target node can self-estimate its location.

since aggregating the required information such as anchor locations and measure-
ments might need a great deal of node collaborations, thus causing unnecessary
overheads and even congestions especially in large networks.

• Distributed localization is often more attractive, since there is no central controller
and the target node can infer its own position only based on locally collected in-
formation, also called self-localization. Self-localization works individually and
independently with less external assistance. The target can even just listen and
not participate into the localization network. As a result, it can not only reduce the
networking load but also be invisible to any other node if required.

These two kinds of methods can be simply distinguished by observing who transmits the
localization signal, the anchor or the target. This difference yields a notable influence,
which will be frequently observed later. Note that the signal receiver can also send back a
response signal to the transmitter, which might be helpful for improving the localization
performance. However, this kind of two-way (TW) based localization requires intensive
node cooperation and communications [22]. More importantly, the unknown response
time might also become a serious issue. Therefore, in this thesis, we only consider the
previous one-way fashion for localization, where no response signal is sent, and leave
the study of TW based localization for future work.

Now, we discuss the measurements for localization, where the popular types include
time-of-arrival (TOA), time-difference-of-arrival (TDOA) and signal strength (SS).

TOA The TOA is the measured time, at which a signal first arrives at a receiver. For
synchronized networks, the transmit time, say t0, needs to be known to the receiver in
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order to calculate the time of flight (TOF) or equivalently the transmission distance. To
be specific, let ti be the TOA measurement associated with the i -th anchor located at
si ∈R2. Then, the estimate of the corresponding transmission distance di = ||x−si ||2 can
be expressed as

d̂i , c( ti︸︷︷︸
referenced to the receiver clock

− t0︸︷︷︸
referenced to the transmitter clock

)

= ||x−si ||2 +ni ,

(1.1)

where the target location x ∈R2 is the parameter to estimate, c is the speed of light, || · ||2
indicates the Euclidean norm and ni is the measurement noise. Obviously, clock syn-
chronization plays a very significant role, since ti and t0 are related to different clocks.

• In a centralized localization network, where the localization signal is transmitted
only by the target node, there only exists a single transmit time t0 for all measure-
ments. However, clock synchronization should be carried out, not only among the
anchors, but also between the target and the anchors.

• In a distributed system, multiple localization signals are transmitted by the an-
chors. Obviously, the synchronization requirement does not become any less strict.
Moreover, the anchors also have to guarantee the same t0, which might be practi-
cally infeasible, otherwise different transmit times need to be considered.

Additionally, in whatever case, the information of t0 should also be conveyed to the sig-
nal receiver for calculating the location, which causes extra network load.

TDOA In order to relax the aforementioned constraints, TDOA is widely considered,
allowing an unknown transmit time t0. By selecting a reference, say the j -th TOA, the
TDOA is obtained as

ti , j , ti − t j︸ ︷︷ ︸
referenced to the receiver clock

, i 6= j , (1.2)

where the unknown t0 is cancelled out. Obviously, this makes TDOA based localiza-
tion more independent of the localization signal transmitter, since clock synchroniza-
tion between the target node and the anchors is not required any more. Note that TDOA
as in (1.2) can be directly computed using signal correlations without computing any
TOA [23, 24]. Then, the estimate of the distance can be expressed as

d̂i , j = cti , j = ||x−si ||2 −||x−s j ||2 +ni , j , (1.3)

where d̂i , j , d̂i − d̂ j and ni , j , ni −n j .

• In a centralized network, clock synchronization is required only between the an-
chors.

• In a distributed network, since both ti and t j are measured at the target node, it
appears that no clock synchronization is required this time. But, recall that this is
under the condition of the same transmit time t0. As already mentioned, in order
to meet this condition, the anchors need to be synchronized again.
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After all, it is readily observed that clock synchronization is the Achilles’ heel of TOA
or TDOA based localization. Once the network is not synchronized, this will incur an
unimaginable impact on the localization performance. Furthermore, a reliable clock
synchronization requires frequent information exchanges and intensive cooperations
between nodes, which is also a rather tough requirement.

On account of practical simplicity and convenience, our work is mainly focused on
localization using the SS, the last type of measurement. Compared with the former two
measurements, employing SS measurements has the following advantages:

• The SS is rather convenient to collect and we will discuss this in Section 1.1.3.
Moreover, most wireless devices are also equipped with a received signal strength
indicator (RSSI).

• It does not rely on any external assistance like clock synchronization or peak de-
tection (for determining the signal arrival if ultra-wideband (UWB) is used).

• Unlike the transmit time, the transmit power is often standardized in wireless de-
vices, constant over time and hence relatively easy to obtain.

Therefore, this topic has gradually become an emerging and popular topic in recent
years. In this thesis, we further categorize the SS as received signal strength (RSS) and
differential received signal strength (DRSS).

RSS The RSS is the measured power of the transmitted signal at the receiver, which is
mainly subject to the geometric path-loss and the shadowing effect. Commonly consid-
ered to be log-normally distributed [25], the RSS associated with the i -th anchor can be
expressed in decibels as

Pi , P0︸︷︷︸
transmitter configuration

−10γlog10

( ||x−si ||2
d0

)
︸ ︷︷ ︸

geometric path-loss

+ χi︸︷︷︸
shadowing effect

, (1.4)

where P0 is the received power at the reference distance d0, γ is the path-loss exponent
(PLE) and χi ∼ N (0,σ2) is the shadowing effect. Without any loss of generality, we as-
sume that d0 = 1 m for convenience and hence P0 can equivalently be regarded as the
transmit power. Although the value of P0 still has to be conveyed to the signal receiver
for calculating the target location, it is already more convenient than coping with the
transmit time t0, since P0 might be standardized for all transmitters and hence is easily
accessible as already mentioned.

In either a centralized or distributed localization network, the value of P0 can be pig-
gybacked on the localization signal and conveyed to the receivers. However, this will still
cause some burden for networking.

DRSS In our work, we actually consider the DRSS measurement rather than the RSS
measurement for localization. Because, while preserving all the advantages of RSS-based
localization, DRSS-based localization is more independent of the localization signal trans-
mitter, similar to the TDOA case. To be specific, we can expect the following advantages.
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• The implicit dependence of localization on the signal transmitter, which could be
defective, malicious or uncooperative, is significantly alleviated.

• It can minimize or even does not require an overhead control message between
anchors and the target node. This will saves energy, bandwidth and throughput,
which are very scarce resources for wireless networking.

• The localization process can be well concealed from the signal transmitter, which
is very beneficial to surveillance or military applications.

In order to gain the aforementioned benefits, we must allow for an unknown P0.
Then, selecting the j -th RSS as reference, we obtain the DRSS as

Pi , j , Pi −P j =−10γlog10

( ||x−si ||2
||x−s j ||2

)
︸ ︷︷ ︸

geometric path-loss

+ χi , j︸︷︷︸
shadowing effect

, (1.5)

where χi , j ,χi −χ j . Note that the unknown P0 is eliminated.
It is worth noting that the DRSS corresponds to the distance ratio whereas the TDOA

corresponds to the distance difference. Unlike TDOA-based source localization, which
has already been intensively studied, research on DRSS-based localization is still in its
infancy, thus requiring more attention. This is another reason why we consider DRSS
measurements for localization in Chapter 2.

Research Challenge No. 2: Different Unknown Transmit Powers

Although the transmit power might be standardized for wireless communica-
tions, some techniques like transmit power control could still be carried out in
order to save energy or guarantee signal coverage [26–28]. This results into dif-
ferent transmit powers. Moreover, some unpredictable power surge or system
instabilities might also lead to the same issue.

Question: How do we tackle different unknown transmit powers and what is
the impact on DRSS-based localization?
Answer: In order to be more realistic, different unknown transmit powers are
taken into account for DRSS-based localization in Chapter 2. We reasonably as-
sume that the different unknown transmit powers are normal distributed around
an unknown nominal averaged power in decibels. Then, we show that those devi-
ations of the unknown transmit powers can be incorporated into the shadowing
effect and thus can be regraded as measurement noise.

OPTIMIZATION PROBLEMS AND DISCUSSIONS

A S far as the DRSS localization problem is concerned, there exist two common facts:

• The target location is hidden inside a distance norm, i.e., di = ||x−si ||2,∀i .

• The target node cannot physically overlap with the anchors, i.e., x 6= si ,∀i .
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These two facts respectively incur two mathematical issues when solving the DRSS
localization problem: non-linearity and non-convexity.

Non-linearity The non-linearity issue is readily observed from the DRSS measurement
in (1.5).

Research Challenge No. 3: Non-Linearity

Apparently, (1.5) is not a linear function w.r.t. x, otherwise the target location x
can be directly estimated by applying a (weighted) least squares (LS) estimator.

Question: In order to estimate the target location x, how can we deal with the
non-linearity issue?
Answers: A linearization procedure can be considered, though it may proceeded
different fashions, which will be discussed below. We will not point out and ex-
plain which way we consider for DRSS-based localization at this point, since the
impact of different linearizations will also be passed on to the non-convexity is-
sue. Therefore, our solutions to the non-linearity and the non-convexity will be
discussed together thereafter.

Here, we elaborate on two common ways for linearization as follows.

• The first way applies a first-order Taylor series expansion around a given expan-
sion point. In order to keep a small approximation error, this expansion point
should be chosen as close as possible to the true target location x and thus can
also be regarded as an estimate. Obviously, some information is lost when dump-
ing the high-order terms, which however can be reduced with a better expansion
point. Therefore, the estimate is often iteratively updated to reduce the informa-
tion loss and hence to obtain a better estimation accuracy. Famous examples are
maximum likelihood (ML) estimators that use the Newton method, and those us-
ing the extended Kalman filter (EKF) for mobile scenarios [29–39].

• The other way unfolds the distance norm as d 2
i = ||x||22+2sT

i x+||si ||22 and treats R ,
||x||22 as a new unknown parameter [40–50]. As a result, a new linear localization
problem can be formulated after some manipulations. In most cases, in order to
construct a zero-mean model noise, some approximations have to be used, which
cause some information loss.

These two kinds of linearization for localization are studied in Section 3.3 of Chapter. 3.

Non-convexity For a better demonstration, we directly apply the least squares (LS) cri-
terion to (1.5) and formulate the optimization problem as

min
x

N−1∑
i=1

[
Pi , j +10γl og10

( ||x−si ||2
||x−s j ||2

)]2

, i 6= j , (1.6)

where N anchors are considered. Here comes the other mathematical issue, the non-
convexity.
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Research Challenge No. 4: Non-Convexity

There exists a singularity issue at every anchor location. More specifically, if x =
si , for some i , the logarithmic term in (1.6) will be either positive or negative
infinity. As a result, the cost function will have multiple minima, resulting into
non-convexity [51]. Also see the examples demonstrated in Fig. 2.1 of Chapter 2.

Question: How does the non-convexity affect the localization problem and
what are the solutions?
Answers: The impact of the non-convexity on the localization problem varies
with the linearization procedure. We will elaborate on that below and also dis-
cuss our solutions to the non-linearity and the non-convexity together.

Taking the earlier linearization into account, the non-convexity might manifest itself
differently:

• If the linearization is carried out by a Taylor series expansion, the non-convexity
lies in the choice of the initial expansion point. Since there exist multiple minima
for the cost function in (1.6), the target location estimate might converge to a local
solution if an inappropriate initial expansion point is selected, which also leads to
a large information loss caused by the linearization.

• When a new linear localization problem is constructed by unfolding the distance
norm, the new parameter vector that includes R is bound to a non-convex set. This
means that we also have to consider the relation between R and x when solving the
localization problem.

Obviously, if we choose the first way to linearize (1.5), the only solution to the non-
convexity is guaranteeing an appropriate initialization to avoid the local solutions. How-
ever, this is rather difficult in practice. Moreover, in order to reach a certain estimation
accuracy, a large number of iterations is required resulting into a high computational
complexity.

In Chapter 2, we consider the second kind of linearization for DRSS-based localiza-
tion, since a new linear data model is readily and immediately to use although the new
parameter vector is still bound to a non-convex set. Ignoring this constraint, we can di-
rectly obtain an unconstrained (weighted) LS estimator, which is quite convenient for a
real-life implementation.

Of course, we will not be satisfied without further resolving the non-convexity issue.
Recall that this is equivalent to considering the relation between R and x. To do so, we
present three kinds of methods:

• Two-step Estimation: The first step of the estimation uses the above unconstrained
(weighted) LS estimator such that the second step can consider the relation be-
tween R and x by fine-tuning the first-step estimate of x. For more details, please
refer to Section 2.3.1.

• Lagrangian Estimation: First, a Lagrangian multiplier is introduced to incorpo-
rate a transformed constraint that considers the relation between R and x into the
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cost function for the localization problem [51]. Then, in order to minimize the
cost function and estimate x, a trust region is also provided for efficiently finding
the unknown Lagrangian multiplier [52–54]. Please refer to Section 2.3.2 for more
details.

• Semi-Definite Relaxation (SDR): First, the relation between R and x is equiva-
lently reformulated into a linear matrix inequality (LMI) and a rank constraint [55].
Then, dropping this rank constraint can relax the new parameter vector onto a
convex set, such that semi-definite programming (SDP) can be applied [56]. More
details are presented in Section 2.3.3.

We also compare and study these three methods in a more general context in Chapter 2.

Correlated Noise Besides the two aforementioned issues, we need to notice another
issue here, i.e., the measurement noise χi , j in (1.5) is correlated.

Research Challenge No. 5: Correlated Noise

Compared with the shadowing effect χi in (1.4), the differencing process that
generates the DRSS measurement not only removes the unknown transmit
power P0 but also colours the measurement noise χi , j . The coloured measure-
ment noise significantly degrades the localization performance, which however
is often ignored in literature [57–60].

Question: How do we eliminate the impact of the coloured measurement
noise?
Answers: The coloured measurement noise results into a coloured model noise
for the localization problem. Therefore, whitening the model noise is very im-
portant for a better performance. For that, we particularly introduce a whitened
model for DRSS-based localization in Section 2.2 of Chapter 2 and further dis-
cuss the significance of the whitening procedure in Chapter 3, especially for the
DRSS and TDOA measurements which are generated by a differencing process.

Finally, we would like to discuss some practical concerns that also influence the op-
timization problem for DRSS-based localization. They are the unknown path-loss expo-
nent (PLE) γ and the unknown transmit power P0.

Unknown Path-Loss Exponent According to the geometric path-loss, the signal power
(in watts) exponentially decays over the distance. Obviously, the PLE is a key parameter
in the radio propagation channel, which is mostly unknown in real-life unless in the
ideal free space (γ= 2). Moreover, since communication environments are complicated
and time-varying, the PLE often varies over time, location and scenario [25]. Therefore,
getting grip on the PLE information is very essential not only for localization using SS
measurements, but also for many other wireless communications and networking de-
signs.
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Here, we only focus on the localization and note that the unknown PLE is usually es-
timated beforehand. In fact, this kind of PLE estimation belongs to our second research
line, i.e., path-loss exponent (PLE) self-estimation in wireless networks. Therefore, we
will not further discuss it here, but only emphasize the fact that, if this kind of PLE es-
timation is not reliable or maliciously sabotaged, an inaccurate PLE estimate might be
used in the localization phase, incurring a considerable impact.

Research Challenge No. 6: Inaccurate PLE Estimate

Currently, most PLE estimation approaches heavily rely on the assistance of an-
chors. Once the anchor location information is inaccurate or tampered with by
adversaries, this might lead to a terrible estimation result. On the one hand, we
should improve those PLE estimation methods, which is one of the motivations
of our second research line. But on the other hand, we should also consider the
impact of an inaccurate PLE estimate when designing localization techniques.

Question: How does an inaccurate PLE estimate affect the localization prob-
lem and what is our solution?
Answers: While solving the localization problem, we notice that an inaccurate
PLE estimate causes model uncertainties, which is similar to the mentioned case
of inaccurate anchor location information. Therefore, we tackle an inaccurate
PLE estimate and anchor location information together by proposing a robust
approach against general model uncertainties for DRSS-based localization in
Section 2.3.3 of Chapter 2

Next, we make a further step to consider the case when the PLE estimation is not
available before the localization phase, i.e., the PLE is totally unknown to the localization
problem.

Research Challenge No. 7: Unknown PLE

First note that estimating the unknown PLE is actually the fundamental chal-
lenge for our second research line and we will come back to that in Section 1.1.2.
However, in some cases, the PLE estimation before the localization phase might
still be very costly, difficult or unreliable, especially in unattended and hostile
communication environments. Although our second research line is exactly
aimed at preventing this kind of situation, it would be still better for us to exploit
a DRSS-based localization method that copes with a totally unknown PLE.

Question: How do we locate the target node using DRSS measurements with-
out knowing the PLE?
Answers: The solutions that estimate the unknown PLE before the localization
phase will be discussed later in our second research line. During the localization
process, we need to jointly estimate the unknown target location and PLE. To
achieve that, a new approach is proposed in Section 2.4 of Chapter 2.
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Figure 1.4: Demonstration in R2 of hyperbolic localization: the nodes A1, A2 and A3 are three anchors with
known locations; d1, d2 are the transmission distances from A1, A2 to the target node B , respectively. The
location B is determined at the intersection of three hyperbolas with foci at A1 and A2, A1 and A3, and A2 and
A3, respectively.

Unknown Transmit Power Coping with an unknown transmit power is relatively easy,
since this nuisance parameter is linear and additive to the measurement Pi . Some RSS-
based localization approaches jointly estimate the unknown P0 and target location x [40,
61]. As for the localization based on DRSS measurements Pi , j , there is no such issue,
since the unknown P0 is already eliminated by the differencing process in order to gain
more independence of the signal transmitter for localization. In fact, what interests us
here is which kind of measurement is more effective in case of an unknown transmit
power.

Research Challenge No. 8: Information Loss?

In terms of information theory, the RSS sample set holds the full data informa-
tion. The DRSS sample set is constructed by taking differences between the RSS
measurements. Therefore, the mentioned problem boils down to one intuitive
question below.

Question: Is there any information loss when using a DRSS sample set?
Answers: For the introduced DRSS-based model in Chapter 2, we show that
there is no information loss compared with the RSS measurement set by bridging
them with an orthogonal operator. Moreover, this result intrigues us to study a
more general problem with multiple linear nuisance parameters, thus leading to
our work in Chapter 3. We will brief on it next.

DIFFERENTIAL SIGNAL PROCESSING

O UR research did not cease to move forward when the localization problem had been
solved. While studying the unknown transmit power issue, we started to wonder

whether or not taking differences between observations, referred to as the differencing
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process hereafter, will cause any information loss. Or does the differencing process in-
fluence the localization performance? At the moment, what we had concluded from
DRSS-based localization says no. However, what is commonly known in TDOA based
localization implies otherwise, since a similar differencing process is used there to gen-
erate a TDOA measurement without the unknown transmit time t0. The following facts
unveil the above contradiction.

1. First, TOA and TDOA based localization are apparently studied separately follow-
ing different paths for decades [1, 62]. They even diverge in the basic principle of
localization, since, unlike trilateration, TDOA localization finds the target location
at the intersections of different hyperbolas [58, 59, 63] as depicted in Fig 1.4, thus
also called the hyperbolic localization. So far, there is no obvious indication that
these two different localization principles can be linked together.

2. Second, tremendous literature heavily exists about TDOA based localization on
topics like reference selection [64–66] or constructing an optimal differential ob-
servation set [67–69]. Those imply that the choice of the reference node used for
taking TDOA measurements is very important. Since TOA based localization does
not suffer from any reference-related issue, some reference-related information
must be lost when using TDOA measurements.

Obviously, the differencing process is a widely used manipulative trick, and undoubt-
edly there exist many applications other than localization. Therefore, resolving the above
conflictive issue is very important, which might provide some useful insights.

For that, we conduct some more research. Now, our focus is not just limited to a sin-
gle unknown parameter, but a general model with multiple linear nuisance parameters.

Research Challenge No. 9: Multiple Linear Nuisance Parameters

In the aforementioned localization cases, only a single nuisance parameter is
considered. However, estimation problems with multiple nuisance parameters
widely exist [42, 45–50, 70, 71]. Since we would like to study the differencing pro-
cess with multiple nuisance parameters, some questions arise immediately as
below.

Question: How can we use the differencing process to eliminate multiple linear
nuisance parameters? And, in this general case, will this procedure cause any
information loss?
Answers: The general idea will be briefly presented as below and elaborated on
in Chapter 3. We further prove that the differencing process will not cause any
information loss as in DRSS-based localization. Based on this fact, some more
interesting and insightful conclusions have also been drawn therein.

We consider a unified framework for linear nuisance parameters and hence let us
denote a linear (or linearized) model with the measurement vector y ∈ RN and the pa-
rameter vector x transformed by H as

y = Hx+Gu+n, (1.7)
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where n is the zero-mean (whitened) white noise vector (not necessarily Gaussian), and
the multiple linear nuisance parameters are stacked in u ∈ RM , (N > M) that enter the
observations through G. The concatenation of H and G is assumed to have full column
rank. Also note that, when G = 1N , (1.7) is reduced to the case of a single nuisance pa-
rameter. Obviously, all the obtained conclusions apply to any kind of problem that can
be written in the general form of (1.7).

In Chapter 3, we introduce and study a general differential method that tackles M
linear nuisance parameters. We will not present all the details here, but only brief the
general idea.

First, we write G = [g1, · · · ,gM ] with gk the k-th column vector of G related to the k-th
nuisance parameter uk (1 ≤ k ≤ M) such that (1.7) can be rewritten as

y = Hx+ g1u1 +·· ·+gM uM︸ ︷︷ ︸
M nuisance parameters

+n. (1.8)

Then, we eliminate the nuisance parameters recursively in the order of u1, · · · ,uM by the
differencing process, although the explicit ordering is not important.

To be more specific, let us focus on the differencing process. For instance, if the j -th
observation y j is selected as the reference, the differencing process is presented as

d j ,


...

yi − y j
...


(N−1)×1

=Γ j y, i 6= j , (1.9)

where

Γ j ,
[

I j−1 −1( j−1)×1 0
0 −1(N− j )×1 IN− j

]
(N−1)×N

(1.10)

can be seen as the differential operator with 1 the all-one matrix (sizes are mentioned
in subscript if needed), and d j is the new differential observation set with size reduced
to N − 1 since j is fixed for every element in d j . However, if we want to cancel u1, the
above differencing process cannot be applied directly unless g1 becomes a (scaled) all-
one vector 1N , since Γ j 1N = 0. Therefore, we need to find an operator O1 that satisfies
O1g1 = 1N , and pre-multiply it with (1.8) before the differencing process.

Obviously, the rest of the nuisance parameters should also be eliminated one by one
in a similar fashion. Thus, the following important facts should be noted.

• When eliminating u1, both the operator O1 and the differencing process affect the
other parts in (1.8). This will be the same when eliminating the rest of the nuisance
parameters.

• The model noise n becomes coloured as soon as the first differencing process is
carried out. Moreover, the covariance matrix of the coloured model noise will only
become more complicated with multiple differencing processes.

Therefore, even though we can cancel all the nuisance parameters, how do we express
and study this complicated procedure? In Chapter 3, we elaborate on that in details and,
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in order to study this differential method, we also investigate two other methods, i.e., the
joint estimation method and the orthogonal subspace projection (OSP) based method,
which can also cope with multiple nuisance parameters.

• The joint estimation method reformulates (1.7) as y = [
H G

][
x
u

]
+n and treats[

x u
]T

as a new parameter vector of interest. Obviously, this method estimates
the unknown nuisance parameters u jointly with x. More importantly, no pre-
processing of the original observation is considered, thus preserving the full data
information.

• The OSP based method eliminates the impact of u by pre-multiplying (1.7) with an
orthogonal projector, say P⊥

G , since P⊥
G G = 0. See Chapter 3 for the construction of

P⊥
G .

The corresponding best linear unbiased estimators (BLUEs) are exploited to bridge these
three methods. Although the relation between the joint estimation method and the OSP
based method has been reported before [72, 73], the differential method has never been
linked to them in literature.

In short, we can now briefly summarize our research about differential signal pro-
cessing by answering the following questions:

• How does the differential signal process cope with multiple linear nuisance pa-
rameters?

• Compared with the joint estimation and the OSP-based estimation, which pre-
serve the full data information, is there any information loss for the differential
method?

• In the differencing process, a reference is chosen for subtracting the observations.
Does the choice of the reference affect the estimation performance? If not, how do
we explain the TDOA localization case.

• What is the optimal differential observation set for differential signal processing?
The differential subset of size N − 1 associated with a single reference or the full
differential set of size N (N −1)/2 that considers every possible reference?

1.1.2. PATH-LOSS EXPONENT ESTIMATION

O UR two research lines are faced with the same issue as described in Research Chal-
lenge No. 7, but cope with an unknown PLE γ in (1.4) in different manners. The

previously discussed method forces the localization method to jointly estimate the PLE
and target location. Now, we pay our attention to the other one that estimates the PLE
before the localization phase.

As mentioned before, if this kind of PLE estimation is not reliable, an inaccurate PLE
estimate might be passed on to the localization phase, severely deteriorating the local-
ization performance. To deal with that, on the one hand, we should develop a robust
localization approach that tackles an inaccurate PLE estimate, which is already included
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Table 1.1: Comparison of different kinds of PLE estimation

Methods \ Drawbacks Anchor Dependence Intensive node cooperation Not Pervasive

Anchor-Based [74–76] 3 3 3

Anchor-Free [77, 78] 7 3 3

Self-Estimation [79] 7 7 3

Collective Self-Estimation [80, 81] 7 7 7

in our first line of research. On the other hand, this kind of PLE estimation could be made
more reliable. To achieve that, our second line of research, i.e., PLE self-estimation in
wireless networks, is mainly devoted to seek out a better solution, which is not only
more accurate but also less susceptible to external factors such as inaccurate location
information or attacks from adversaries.

RELATED WORKS

T HE existing methods for estimating the PLE can be categorized into anchor-based,
anchor-free, self-estimation and collective self-estimation. We compare them in Ta-

ble 1.1 and hereby elaborate on them as follows.

Anchor-Based In order to estimate the PLE, the intuitive way is observing the SS mea-
surements between anchors. With known locations, the transmission distance can easily
be calculated such that estimating the PLE becomes possible [74–76, 82]. However, this
kind of method mainly suffers from the following critical drawbacks.

1. Anchor Dependence: This kind of PLE estimation heavily relies on the anchors’
known locations. Once the location information is not reliable or even impossi-
ble to obtain, it would be very difficult to calculate the true transmission distance,
let alone an accurate PLE. For instance, the anchor location information may be
given by GPS, which can be very inaccurate in indoor scenarios; further, this in-
formation could also be tampered with by adversaries in military cases; finally, in
some WSNs, employing anchors might be very expensive or rather difficult.

2. Intensive node cooperation: In order to estimate the PLE of the targeted area,
this kind of PLE estimation often requires intensive node cooperation for shar-
ing critical information such as anchor locations and collecting the samples from
multiple transmission links. Also, the PLE estimation process often works in a cen-
tralized rather than distributed fashion. Obviously, this will consume a lot of net-
work resources like throughput, bandwidth and battery energy, which are often
very scarce in practice. Furthermore, certain node topologies are sometimes par-
ticularly required for performance enhancement, which is practically even more
difficult.

3. Not Pervasive: The above mentioned drawbacks boil down to the most significant
disadvantage that this kind of PLE estimation is not pervasive. To be more clear,
it can only be used in a network that is well-infrastructured, well-equipped and
cooperative. Once the network is temporarily formed, with very limited network
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Figure 1.5: Demonstration in R2: all possible nodal distances are constrained by the Cayley-Menger determi-
nant being zero as mentioned in (1.11.)

resources or uncooperative, implementing this kind of PLE estimation would be
very difficult.

Anchor-Free Some other scientists have also noticed those drawbacks and put consid-
erable effort on solving them.

Research Challenge No. 10: Anchor-free

To cope with the anchor dependence issue, an intuitive solution is estimating
the PLE in an anchor-free manner, i.e., without relying on any known location or
transmission distance.

Question: How can the PLE be estimated in an anchor-free fashion?
Answers: We will present the anchor-free methods below. Although the methods
following thereafter, the self-estimation and the collective self-estimation, also
work in the same fashion, they are named due to some other notable features,
which will be discussed later.

Following this idea, G. Mao et al introduced some anchor-free approaches, which es-
timate the PLE merely based on some geometric constraints [77, 78]. To be more specific,
they are based on the fact that all the possible nodal distances between the considered
nodes are subject to the Cayley-Menger determinant being zero [83].

For instance, assume there are 4 nodes in a plane, yielding
(4

2

) = 6 different nodal
distances, as shown in Fig. 1.5. Then setting the Cayley-Menger determinant to zero in



1.1. BACKGROUND AND MOTIVATIONS

1

21

Figure 1.6: Without any external assistance, the considered node A should be able to self-estimate the PLE in-
dividually and solely. Due to the unknown node topology, the neighbours of the node A are ideally considered
to be randomly deployed. In R2, the dotted circle Φ indicates a bounded set with radius d and Ω is a finite
space with n nodes randomly deployed inside.

this case can be expressed as

∣∣∣∣∣∣∣∣∣∣

0 d 2
AB d 2

AC d 2
AD 1

d 2
AB 0 d 2

BC d 2
BD 1

d 2
AC d 2

BC 0 d 2
C D 1

d 2
AD d 2

BD d 2
C D 0 1

1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣
= |M(A,B ,C ,D)| = 0, (1.11)

where M(A,B ,C ,D) is the Cayley-Menger matrix. Combining (1.4) and (1.11) results into
a complicated and highly non-linear function w.r.t the unknown PLE γ in [78, eq. 14],
which considers the SS measurements between all pairs of given nodes. In the absence of
the shadowing effect, the PLE can be obtained via a bisection method, while some smart
pattern matching techniques are required to deal with a noisy case. To avoid tautology,
we will not present more details here.

Undoubtedly, the anchor-free property is a very notable merit for PLE estimation,
making this approach less constrained. Without known locations or transmission dis-
tances, a group of nodes can cooperate to estimate the PLE, which is rather conve-
nient. However, this approach still requires intensive node cooperation for aggregating
the samples. Therefore, it cannot be universally adopted, especially not in ad hoc and
uncooperative scenarios.

Self-Estimation Next, while keeping the anchor-free property, there exist some other
approaches that can estimate the PLE without intensive node cooperation.
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Research Challenge No. 11: Self-Estimation

Nowadays, the tendency of wireless networks is towards high-efficiency and low-
cost. To accommodate that, the PLE estimation should not be based on intensive
node cooperation. The best solution may be self-estimating the unknown PLE
such that the PLE estimation process can be set free and carried out in a dis-
tributed fashion. To be specific, without any external assistance, we want any
kind of node to be able to estimate the PLE individually and solely, as demon-
strated in Fig. 1.6.

Question: How can we self-estimate the PLE as described above? Is there any
other benefit of doing so?
Answers: Self-estimating the PLE implies that the considered node should be
blind to the surrounding node topology, not require any external assistance and
even better conceal the estimation process itself if required. In this case, the
considered node ideally assumes the surrounding neighbours to be randomly
placed. Therefore, the problem of PLE self-estimation can basically be inter-
preted as "how do we use the information of the node random placement for
estimating the PLE?” We will next first present how the random node placement
is modelled, and then the existing methods for PLE self-estimation and finally
ours will be discussed.
Besides the benefit of working in a distributed fashion, we should also notice
that getting grip on the PLE has actually been an urgent demand, since the PLE
yields a multifaceted influence on wireless communications and networking. To
be more clear, it might enable smart designs of protocols and techniques in an
adaptive fashion for coping with dynamic communication environments, e.g.,
a changing PLE, which directly gives rise to our second research line, i.e., PLE
self-estimation in wireless networks.

In most cases, networks are constructed in an ad hoc manner. Due to the unknown
node topology, the nodes in wireless networks are ideally considered to be randomly
placed. According to stochastic geometry [84, 85], which treats a random node place-
ment as a stochastic process, two spatial point processes are commonly considered: a
binomial point process (BPP) and a Poisson point process (PPP) [86]. The BPP describes
a finite random node placement. In other words, if n nodes are constrained in Ω ⊂ R2

as depicted in Fig. 1.6, the probability of finding k nodes in a bounded Borel set Φ ⊂ R2

follows a binomial distribution B(n, V (Φ
⋂
Ω)

V (Ω) ) as

Pr(k nodes inΦ) =
(

n

k

)[
V (Φ

⋂
Ω)

V (Ω)

]k [
V (Φ

⋂
Ω)

V (Ω)

]n−k

, (1.12)

where V (·) indicates the standard Lebesgue measure. The PPP, which is parameterized
by the node density λ, is a limit case of the BPP, where Ω is infinite. In other words,
according to the Poisson limit theorem [87], if n approaches ∞ while n/V (Ω) remains
fixed atλ> 0, the Binomial distribution in (1.12) becomes the Poisson distribution P (λ),
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which is given by

Pr(k nodes inΦ) = e−λV (Φ) (λV (Φ))k

k !
. (1.13)

The BPP and the PPP are mostly used for studying the wireless network performance
such as the effects of routing and interference, but they rarely appear in the field of signal
processing. In our second research line, they serve as the basic concept to characterize
a random node placement.

Based on this idea, [79] introduced three PLE self-estimation approaches. The first
one observes the mean interference at the receiver to calculate the PLE, but the network
node densityλ should be known a priori or estimated beforehand [88, 89]. The other two
estimate the PLE respectively from the virtual outage probabilities and the cardinalities
of the transmitting set at two different receiver sensitivities. However, these methods
obviously require frequently changing the receiver configuration.

Admittedly, they do save a lot of network resources by self-estimating the PLE. How-
ever, the aforementioned constraints still make those approaches rather difficult for a
practical implementation. For instance, the network node density λ changes over time,
especially when new participants join the network, and hence frequently updating the
estimate of λ would be very troublesome. Furthermore, the receiver sensitivity is often
standardized and cannot be changed in most cases.

Although the three aforementioned methods are called "self-estimation", they are
still not up to what is expected. At the very least, their application is somewhat limited
due to the constraints and hence they are not very pervasive. In the next section, we will
present our expected criteria for "PLE self-estimation" and brief our proposed collective
PLE self-estimation methods.

COLLECTIVE PATH-LOSS EXPONENT SELF-ESTIMATION

W E are the first to study the collective PLE self-estimation that is free of all the men-
tioned drawbacks, as shown in Table 1.1.

In summary, the collective PLE self-estimation must hold the following features.

• Simple : The method is very easy to carry out, i.e., the requirements for a practical
implementation are not very difficult.

• Pervasive : The method is applicable to any kind of wireless network regardless of
its design.

• Local: The method works locally such that each node in the network can indepen-
dently estimate the PLE in a distributed fashion.

• Sole : The method requires neither any external assistance nor any other informa-
tion such as exact locations or the node density.

• Collective : The only freedom left for us is utilizing the SS measurements. There-
fore, this method is designed to estimate the PLE merely by collecting the locally
received SS measurements from neighboring nodes.

• Directional : The method self-estimates the PLE from a given angular window.
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• Secure : Owing to the above merits, the method is very secure and hence sabo-
taging it would be very difficult. Furthermore, we can even conceal the estimation
process from the neighbours if required, which is particularly beneficial in military
scenarios.

Compared with the previous PLE self-estimation, although also assuming a random
node placement, the desired method can only use the locally collected SS measurements
in (1.4) for self-estimating the PLE.

Research Challenge No. 12: Ranking the Measurements

Instead of coping with the unknown transmission distance, we circumvent this
issue by introducing another observation that also contains the distance infor-
mation. To be specific, we rank the locally collected SS measurements and use
the rank indices for estimating the PLE. As a result, the shadowing effect could
disturb the ranking procedure, i.e., the SS measurement rank might not exactly
map the distance rank, thus causing some mismatch in the rank indices.

Question: How can we use the rank indices for PLE estimation and how can we
cope with the mismatch of the rank indices?
Answers: We define a new distance-related intermediate parameter, which can
be estimated using the rank index based on the distribution in (1.12) that mod-
els the random node placement. This results into a total least squares opti-
mization problem for the collective PLE self-estimation. Besides the traditional
low-rank approximation solution that requires the singular value decomposition
(SVD) [90], we also propose a closed-form solution that greatly reduces the com-
putational complexity. Furthermore, we introduce a weighted closed-form solu-
tion, which particularly copes with the mismatch of the rank indices caused by
the shadowing effect and which show a good performance. Please see Chapter 4
for more details.

The proposed methods in Chapter 4 possess all the desired features. Accordingly,
wireless engineers can reasonably assume that the PLE can be accurately self-estimated
while designing some protocols or algorithms in any kind of wireless network.
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Research Challenge No. 13: Applications

Owing to all the earlier mentioned features, our proposed methods for collective
PLE self-estimation can easily be incorporated into any kind of wireless network.
The benefits of doing so have already been answered before. Nevertheless, one
might still ask the the following question.

Question: How exactly can we use the PLE information to improve the perfor-
mance of wireless communications and networking?
Answers: Obviously, there are many potential uses of the PLE information in
smart designs for wireless communication and networking. In Chapter 4, we
elaborate on some practical applications and also shed light on the possible fu-
ture paths.

Although two collective PLE self-estimation approaches will be proposed in Chap-
ter 4, there still exist some remaining problems such as the Cramér-Rao lower bound
(CRLB) and the true maximum likelihood (ML) solution [91].

Research Challenge No. 14: CRLB and ML Solution

The CRLB provides a fundamental limit of the estimation accuracy and the ML
solution yields the performance that can approach that limit. However, obtain-
ing them becomes rather difficult in Chapter 4.

Question: What are the obstacles to obtaining the CRLB and the ML solution?
Answers: If we intend to obtain the CRLB and the ML solution, we have to
first know the observation distribution. Obviously, the only observations are the
SS measurements, although in Chapter 4 the rank indices are also used to self-
estimate the PLE. However, the distribution of the SS measurements in a random
node placement is totally unknown, which will be explained in details next. In
Chapter 5, we try to derive the CRLB and the ML solution for some simplified
wireless channels and we will also discuss how we do that later on.

The difficulties in obtaining the CRLB and the ML solution are already explained in
Chapter 4. Therefore, in order to solve this issue, we can do nothing but investigating
the distribution of the SS measurements in a random node placement. Note that this
might also lead to a PLE self-estimation method that does not require ranking the SS
measurements and thus is free of any unnecessary factors such as the rank mismatch.
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Research Challenge No. 15: Observation Distribution

Given a random node placement, the SS measurement is not only impacted
by wireless channel effects, but also subject to the spatial dynamics (random
node placement). In fact, the unknown nodal distance should be regarded as a
stochastic random variable, and some distributions were derived for the ranked
nodal distances [92, 93]. This implies that the geometric path-loss of the SS mea-
surement in (1.4) also becomes stochastic. More importantly, no distribution has
been reported before in order to characterize that. Accordingly, obtaining the ob-
servation distribution for the collective PLE self-estimation is rather difficult.

Question: How do we cope with this issue?
Answers: In Chapter 5, we try to deal with the above issue and start with a sim-
ple case that considers only a geometric path-loss for wireless channels. We are
the first to discover that in this case the SS measurement in random networks is
Pareto distributed. Accordingly, the CRLB and two ML solutions can be derived.
This finding would also be very useful for studying wireless communications and
networking.

Although there exist some methods that strip out the complicated channel effects for
SS measurements and leave only the geometric path-loss [94] in the model, we would
still like to further consider more realistic wireless channels.

Research Challenge No. 16: Shadowing Effect

In order to be more realistic, the shadowing effect should also be considered for
the SS measurements.

Question: In this case, how can we obtain the observation distribution includ-
ing the shadowing effect?
Answers: To answer this question, we first need to realize that the SS measure-
ment in this case is actually log-normal distributed with the mean subject to a
Pareto distribution. Therefore, obtaining the desired distribution requires blend-
ing these two distributions.

For instance, let us denote P̄ as the SS measurement that only considers the geo-
metric path-loss. Then, the distribution that also considers the shadowing effect can be
obtained [87] as

P(P ) =
∫
Pl og nor mal (P |P̄ )Ppar eto(P̄ )d P̄ , (1.14)

where P̄ is the mean of the log-normal distributionPlog nor mal (P |P̄ ) andPpar eto(P̄ ) is the
Pareto distribution. Since this distribution is mathematically very difficult to calculate,
we leave it for our future research. Fortunately, although the ML solution in Chapter 5
is derived only considering a geometric path-loss, it is surprisingly very resilient to the
shadowing effect if considered.
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1.1.3. CHANNEL EFFECTS

O UR work is mainly focused on utilizing SS measurements for localization and PLE
self-estimation. We hereby discuss in details how the radio propagation channel

influences the SS measurement.
Let us first denote the receiver signal at time t as

y(t ) = g t x gr x gpl x(t )∗h(t )+n(t ), (1.15)

where g t x and gr x are respectively the transmitter and receiver antenna voltage gains,
gpl indicates the voltage attenuation caused by the geometric path-loss, x(t ) is the trans-
mitted signal, h(t ) models random constructive and destructive self-interference and
shadowing in a multi-path channel, n(t ) is additive white Gaussian noise (AWGN) (also
called the background noise (BGN)) and ∗ denotes the convolution operator. Also, note
that the geometric path-loss in power can be expressed as

g 2
pl ,

power at d

power at d0
=

(
d

d0

)−γ
,

where γ is the path-loss exponent, d is the transmission distance and d0 is the reference
distance.

For convenience, we do not present the frequency impact such as the Doppler ef-
fect here and only observe that, if the signal y(t ) is successfully demodulated, the BGN
n(t ) can be well segregated or suppressed, hence obtaining the denoised signal envelope
r (t ), |g t x gr x gpl x(t )∗h(t )|.

As shown in Fig. 1.7, the radio propagation channel affects r (t ) in two ways: the
small-scale fading and the large-scale fading [25].

• The small-scale fading is mainly caused by signal reflections, e.g., on buildings or
moving cars. Besides the line-of-sight (LOS) signal, multiple signal replica also
arrive at the receiver and are superimposed, which results in a rapid fluctuation
of r (t ) on a very small scale. It changes very fast in time, thus also called the fast
fading. To model that, r (t ) can be considered to be Nakagami-m distributed [95].

• The large-scale fading includes the geometric path-loss and the shadowing ef-
fect, which dominantly decides the general level of instantaneous signal power
E(r (t )2), equivalently the SS in watts. The geometric path-loss indicates that the
signal power decays exponentially over distance as dγ. Due to some large obsta-
cles like buildings and hills, which obscure the main signal path, the shadowing
effect causes some Gaussian variations on the attenuated signal power in dB . The
large-scale fading affects r (t ) on a very large scale and changes very slowly, thus
also referred to as slow fading. To model that, E(r (t )2) is commonly considered to
be log-normal distributed. In other words, expressing E(r (t )2) into decibels results
into the SS in (1.4) and we will discuss the collection of the SS measurements.

COLLECTING SS MEASUREMENTS

I F we want to collect SS measurements and assume the small-scale is modelled by a
Nakagami-m distribution, we sample the instantaneous received power p(t ) , r (t )2,
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Figure 1.7: Demonstration of the small-scale fading and the large-scale fading in R2

which is accordingly Gamma distributed as

P(p|Ω) = 1

Γ(m)

(m

Ω

)m
pm−1e−

mp
Ω . (1.16)

where Ω, E(p) is the SS to collect in watts, m is the fading parameter and a small value
of m indicates a stronger fading. Therefore, collecting SS measurements is actually the
procedure that estimatesΩ and removes the impact of the small-scale fading.

In order to do that, an unbiased ML estimator forΩ can be readily given by

Ω̂= 1

K

K∑
i=1

pk , (1.17)

where pk ,∀k = 1, ...,K are K consecutive samples of p(t ). Obviously, denoting Ω̂ =Ω+
∆Ω, the SS collection error ∆Ω is asymptotically Normal distributed as ∆Ω∼N (0,σ2

∆Ω)

and, since V ar (p) = Ω2

m , σ2
∆Ω can be obtained as

σ2
∆Ω,V ar (Ω̂) = Ω2

K m
, (1.18)

which can be reduced with more p(t ) samples, i.e., a large k.
Expressing Ω̂ in decibels and applying the first-order Taylor series expansion w.r.t.

∆Ω result in

P̂ = 10log10(Ω̂) = 10log10(Ω+∆Ω) ≈ P +∆P, (1.19)

where ∆P , 10
ln(10)

∆Ω
Ω is the SS collection error in decibels and ∆P ∼N (0,σ2

∆P ) with

σ2
∆P = 100

l n(10)2K m
.

We notice that, compared with σ2
∆Ω, σ2

∆P does not depend on Ω any more, i.e., the SS
collection error in decibels is independent of the anchors. This means that, even if we
do not collect enough p(t ) samples, the impact of ∆P is still similar to that of the shad-
owing effect in (1.4). Therefore, we can assume the SS is perfectly collected in this paper
without loss of generality.
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BACKGROUND NOISE

A LTHOUGH the background noise (BGN) is segregated in the demodulation part and
hence does not appear in the SS measurement in (1.4), it still has some influence

here.

Sample Size In fact, the signal can only be demodulated if the signal-to-noise ratio
(SNR) exceeds a system-dependent threshold. This means, if the BGN becomes severe,
collecting the SS measurements might become rather difficult due to a possible failure
of the demodulation. Therefore, the BGN leads to transmission range limitations and
hence decides how many SS measurements can be collected in real-life.

Power Floor The BGN also suggests a power floor for the SS measurement and hence
we should re-formulate (1.4) as

Pi =
{

P0 −10γlog10

( ||x−si ||2
d0

)
+χi Pr ≥ τthr es ,

Nan otherwise ,
(1.20)

where τthr es is the lowest power level in dB, only above which the packet can be demod-
ulated, and Nan indicates “not a number".

For the presented work in this thesis, we simply assume that N distinct SS measure-
ments are collected and all of them exceed the threshold. More complicated scenarios
are left for future works, which will be discussed in Chapter 6.

1.2. OUTLINE AND CONTRIBUTIONS

A FTER the background and the motivations of our research, we would like to outline
this thesis and elaborate on our contributions. Recalling that our research chal-

lenges have been highlighted in red blocks, we summarize them in Fig. 1.8 under differ-
ent research topics of the chapters such that readers can better understand this thesis.

As mentioned, our work is mainly focused on two lines of research: signal strength
(SS) based localization and path-loss exponent (PLE) self-estimation in wireless net-
works. Therefore, this thesis is comprised of four main parts. Part I contains this chap-
ter with motivations and preliminaries. Our work of the first research line, i.e., signal
strength (SS) based localization, is presented in Part II, which contains Chapter 2 and
Chapter 3. Part III is focused on our second research line, i.e., path-loss exponent (PLE)
self-estimation in wireless networks, and this part includes Chapter 4 and Chapter 5.
Finally, we summarize our work and provide some suggestions for future challenges in
Part IV, which contains Chapter 6.

Chapter 2 This chapter mainly exploits DRSS-based localization methods, of which
the advantages have already been mentioned earlier. To be specific again, similar to
TDOA-based localization, DRSS-based localization significantly alleviates the implicit
dependence on the localization signal transmitter without dropping any advantage of
RSS-based localization. As a result, the localization process becomes more robust against
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Figure 1.8: Diagram of our two research lines: The dashed rectangles separate our two research lines. Each
solid ellipse stands for our research topic in the corresponding chapter, where the highlighted research chal-
lenges in the red blocks are also included. These research challenges have already been explained previously in
this chapter. For clarity, a) Research Challenge No. 7 exists in both research lines, but is dealt with in different
manners; b) Research Challenge No. 8 originates from Chapter 2, but is also investigated in a general manner
in Chapter 3. Both of them link some of the chapters in this thesis.

defective, malicious or uncooperative signal transmitters. The network load can also be
reduced with less or even no unnecessary overhead control messages, thus saving pre-
cious networking resources. Moreover, the localization process can easily be invisible to
the neighbours if required.

Nonetheless, unlike TDOA-based localization that corrects the distance difference
errors, the optimization problem for DRSS-based localization actually corrects the errors
of the distance ratio. Accordingly, the research on DRSS-based localization is still in its
fancy and hence requires more attention.

Our contributions in this chapter are listed as follows.

• We propose a new whitened data model for DRSS-based localization, since, in
most cases, the coloured model noise is overlooked, especially the one brought
by the differencing process that generates the DRSS measurements. In order to
be more realistic, different unknown transmit powers are also taken into account.
Moreover, this model is proven to suffer no information loss, compared with an-
other properly whitened RSS-based model.
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• Based on the introduced whitened model, three different kinds of methods are
first introduced assuming that the PLE has already been estimated before the lo-
calization phase, i.e., a PLE estimation approach is assumed to be carried out be-
forehand. They are the advanced best linear unbiased estimator (A-BLUE), the La-
grangian estimator (LE) and the robust semi-definite programming estimator (RS-
DPE). In particular, the RSDPE is robust against the model uncertainties (caused
by the imperfect PLE estimate or the inaccurate location information).

• The computational complexity of these three methods is studied. Numerical sim-
ulations have been conducted to evaluate their performance. We also discuss and
compare the different localization methods in a more general context in Table 2.1,
which is expected to be helpful for practical implementation purposes.

• Finally, we deal with the unknown PLE issue during the localization phase. In other
words, a robust SDP-based block coordinate descent estimator (RSDP-BCDE) is
proposed for DRSS-based localization to cope with a completely unknown PLE.

Chapter 2 has also been submitted as:

• Y. Hu and G. Leus, "Robust Differential Received Signal Strength-Based Localiza-
tion", Signal Processing, IEEE Transactions on, 2016, Accepted

Chapter 3 In the previous chapter, the introduced whitened DRSS-based model for lo-
calization has been proven to bridge another properly whitened RSS-based model adopt-
ing an orthogonal operator, which implies that the differencing process that generates
the DRSS measurement causes no information loss. However, this is in sharp contrast
with what is commonly known in TDOA-based localization. This motivates us to study
general differential signal processing with linear nuisance parameters.

We below list the most important results from this chapter.

• The differencing process that generates DRSS or TDOA measurements only can-
cels a single nuisance parameter. Nonetheless, in this chapter, we consider a gen-
eral framework with multiple linear nuisance parameters such that all the con-
clusions apply to any kind of problem that can be written into this form. For the
first time, we introduce a new differential approach to cope with multiple linear
nuisance parameters while most existing works are merely dealing with a single
nuisance parameter.

• We also investigate two other methods that can cope with nuisance parameters:
the joint estimation and the orthogonal subspace projection (OSP) based estima-
tion. Surprisingly, the BLUEs of the three considered methods are proven rigor-
ously to be identical to each other if an appropriate preprocessing step is used.

• Compared with the joint estimation, which directly utilizes the original observa-
tions, none of the other two methods suffers any information loss.

• Although the differential method seems to rely on the selected reference, selecting
the right reference is not important since there is no actual trace of the selected
reference in the corresponding BLUE.
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• As far as the differencing process is concerned, the differential observation set as-
sociated with a single reference already preserves the full data information.

• Two kinds of localization examples are demonstrated to verify our conclusions. We
also explain the conflicts between our conclusions and what is commonly consid-
ered in localization literature.

Chapter 3 has also been submitted as:

• Y. Hu and G. Leus, “On A Unified Framework for Linear Nuisance Parameters,"
EURASIP Journal on Advances in Signal Processing, vol. 2017, no. 1, p. 4, 2017.

Chapter 4 This chapter is mainly aimed at proposing a directional self-estimator that
possesses all the required features mentioned before. We list the important results from
this chapter below.

• A new linear model for the PLE is first introduced, for which we particularly design
an intermediate auxiliary parameter that is distance related. Without any exact
information of nodal distance, we rank the locally collected SS measurements and
regard the rank index as a new observation. Based on stochastic geometry, we
obtain the ML estimate for the intermediate auxiliary parameter based on the rank
indices in order to construct this model.

• Based on this model, a traditional total least squares (TLS) method for PLE self-
estimation is first presented using the singular value decomposition (SVD), which
however holds a high computational complexity.

• To guarantee a low computational complexity, we propose a closed-form TLS so-
lution, which yields the same result but saves a great deal of computational time.

• In order to further improve the performance, we carefully analyze the model errors
and propose a closed-form weighted TLS (WTLS) solution.

• Numerical simulations have been conducted to evaluate and study the proposed
estimators.

• Some potential applications of this PLE self-estimation are carefully elaborated
on, e.g., secure RSS-based localization, energy-efficient routing.

Chapter 4 has also been published as:

• Y. Hu and G. Leus, "Self-Estimation of Path-Loss Exponent in Wireless Networks
and Applications," in IEEE Transactions on Vehicular Technology, vol. 64, no. 11,
pp. 5091-5102, Nov. 2015.
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Chapter 5 The previous chapter leaves some unfinished works such as the CRLB and
the ML solution, which are very important and provide an in-depth understanding of
the PLE self-estimation. However, it is hard to obtain them. Therefore, this chapter tries
to solve this issue.

The important results from this chapter are listed below.

• As mentioned before, the distribution of the observation is the key to further ob-
tain the CRLB and ML solution. However, the distribution of the SS measurement
in random networks is hard to obtain. In order to solve this issue, we first only
assume the geometric path-loss for the radio propagation channel and discover
that the SS measurement is subject to a Pareto distribution in this case. Although
the radio propagation channel is simplified, it is still very helpful for studying wire-
less communications and networking problems. Particularly, this distribution also
applies to the case of node clusters.

• Based on the obtained distribution, we derive and study the CRLB for PLE self-
estimation.

• Accordingly, we also introduce two ML solutions, which are evaluated later on by
numerical simulations. Simulation results show that their performances are both
very close to the CRLB.

• Although the two ML solutions are derived only assuming the geometric path-loss
for the radio propagation channel, we surprisingly find that they are also very re-
silient to the shadowing effect if considered.

Chapter 5 has also been published as:

• Y. Hu and G. Leus, "Directional maximum likelihood self-estimation of the path-
loss exponent," 2016 IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), Shanghai, China, 2016, pp. 3806-3810.

Chapter 6 This chapter summarizes this thesis and discusses some future research
challenges as mentioned before.

Next to the content presented in this thesis, I also made additional contributions
during my time as a Ph.D researcher at the Delft University of Technology.

For the first time, we extended SS-based localization to an underwater acoustic sce-
nario, where the SS measurement is subject to a different underwater propagation chan-
nel. This work has been published as

• T. Xu, Y. Hu, B. Zhang and G. Leus, "RSS-based sensor localization in underwa-
ter acoustic sensor networks," 2016 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Shanghai, China, 2016, pp. 3906-3910.

I co-worked with my friend Yao Liu on the analysis of a phase-domain ADC and an
amplitude-domain IQ ADC. This work has been published as
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• Y. Liu, R. Lotfi, Y. Hu and W. A. Serdijn, "A Comparative Analysis of Phase-Domain
ADC and Amplitude-Domain IQ ADC," in IEEE Transactions on Circuits and Sys-
tems I: Regular Papers, vol. 62, no. 3, pp. 671-679, March 2015.

In my early years as a Ph.D researcher at the Delft University of Technology, I worked
with Assoc. Prof. Ertan Onur on the topic of "Density Estimation in Wireless Random
Networks" and implemented a wireless networking platform with the OPnet simulator.
I also corrected a theoretical error in a related previous publication [88], which has been
published as

• Y. Hu, "Comments on "Cooperative Density Estimation in Random Wireless Ad
Hoc Networks"," in IEEE Communications Letters, vol. 20, no. 4, pp. 832-835,
April 2016.

In the meantime, I also supervised two MSc students, Fengju An and Tarikul Islam, re-
spectively leading to the theses entitled

• An, Fengju. "Density Adaptive Sleep Scheduling in Wireless Sensor Networks".
Diss. TU Delft, Delft University of Technology, 2013.

and

• Islam, T. "Statistical Modeling of Intelligent Transportation Systems Communica-
tion Channels". Diss. TU Delft, Delft University of Technology, 2013.

The latter also resulted in a conference publication:

• T. Islam, Y. Hu, E. Onur, B. Boltjes and J. F. C. M. de Jongh, "Realistic simulation of
IEEE 802.11p channel in mobile Vehicle to Vehicle communication," Microwave
Techniques (COMITE), 2013l Conference on, Pardubice, 2013, pp. 156-161.
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Fear not that the life shall come to an end,
but rather fear that it shall never have a beginning.

J. H. Newman

Source localization is recently drawing a lot of attention and signal strength based meth-
ods have gradually thrived as a very popular topic due to their practical simplicity. How-
ever, the severe non-linearity and non-convexity make the related optimization problem
mathematically difficult to solve, especially when the transmit power or the path-loss ex-
ponent (PLE) is unknown. Moreover, even if the PLE is known but not perfectly estimated
or the anchor location information is not accurate, the constructed data model will be-
come uncertain, making the problem again hard to solve.

This paper particularly focuses on differential received signal strength (DRSS)-based lo-
calization with model uncertainties in case of unknown transmit power and PLE. A new
whitened model for DRSS-based localization with unknown transmit powers is first pre-
sented and investigated, on which all our proposed estimators are based. When assuming
the PLE is known, we introduce two estimators based on an exact data model, an ad-
vanced best linear unbiased estimator (A-BLUE) and a Lagrangian estimator (LE), and
then we present a robust semi-definite programming (SDP)-based estimator (RSDPE), which
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can cope with model uncertainties (imperfect PLE and inaccurate anchor location infor-
mation). The three proposed estimators have their own advantages from different perspec-
tives: the A-BLUE has the lowest computational complexity; the LE holds the best accuracy
for a small measurement noise; and the RSDPE yields the best performance under a large
measurement noise and possesses a very good robustness against model uncertainties. Fi-
nally, we propose a robust SDP-based block coordinate descent estimator (RSDP-BCDE)
to deal with a completely unknown PLE. The RSDP-BCDE jointly estimates the unknown
PLE and the target location iteratively and its performance converges to that of the RSDPE
using a perfectly known PLE.
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2.1. INTRODUCTION

P RESENTLY source localization is a rather prevalent technique aimed at locating a tar-
get based on measurements related to pre-deployed distributed sensors with prior

known locations [1], i.e., anchor nodes. Briefly speaking, the commonly used measure-
ments include, for example, time-of-arrival (TOA), time-difference-of-arrival (TDOA),
angle-of-arrival (AOA) and signal strength. Among those, signal strength, such as re-
ceived signal strength (RSS) [2] and differential RSS (DRSS)[3], gradually becomes the
primary concern of numerous engineers owing to its implementation simplicity. Com-
pared with other kinds of measurements, employing the signal strength as a measure-
ment requires neither clock synchronization as for TOA-based or TDOA-based localiza-
tion nor an antenna array which is indispensable for AOA-based localization. There-
fore, this kind of source localization is more cost-effective in terms of both hardware and
software. Besides, sensors usually have very scarce resources like limited computational
abilities, constrained communication capabilities and depletable batteries, which fur-
ther emphasizes its significance.

The signal strength measurement is determined by the signal power after successful
demodulation[4, 5], which is still subject to a complicated radio propagation channel [6].
Without elaborating on the details, observe that the term “RSS”, in most literature, ac-
tually refers to the large-scale fading, the average of the instantaneous received signal
power over several consecutive time slots, such that the small-scale fading, which is usu-
ally considered to be Rayleigh [7] or Nakagami [8] distributed, can be neglected. Please
also refer to Appendix 2.6.1 for details on the RSS collection. Based on such an underly-
ing assumption, the log-normal shadowing model can be used to characterize the RSS.
Therefore, in Rd , the RSS between the i -th anchor node, located at si , and the target
node, located at x, can be presented in dB by

Pi = P0,i −10γlog10

( ||x−si ||2
d0

)
+χi , i = 1,2, · · · , N , (2.1)

where P0,i is the received power related to the i -th anchor node at the reference distance
d0, γ is the path-loss exponent (PLE), χi ∼N (0,σ2

χ) represents the shadowing effect and
N is the number of anchor nodes. Without loss of generality, we assume d0 = 1 m. Note
that P0,i can also be considered to be equivalent to the transmit power of the RSS related
to the i -th anchor node. Then, the ultimate goal is to estimate the target location x from
the RSS samples Pi and known anchor locations si .

To achieve this goal, source localization techniques using RSS measurements can
be divided into three categories: maximum likelihood (ML), least squares (LS) based
and semidefinite programming (SDP) based. The ML method is asymptotically optimal,
but the related ML optimization problem is highly non-linear and non-convex [9]. Ad-
mittedly speaking, it can be iteratively solved [10–14]. However, this actually comes at
the price of a high computational complexity. Moreover, the non-convexity also implies
multiple local minima and hence an appropriate initialization is very important. The
LS-based method relies on tackling the non-linearity by converting the non-linear ML
optimization problem into a linear form such that some (weighted) LS-based solutions
can be easily obtained [15–18]. However, these estimators are very susceptible to a large
shadowing effect. The SDP-based method deals with the non-convexity by relaxing the
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non-convex optimization problem to a convex one such that a global minimum can be
effectively found [15, 19–23]. However, this method still requires a high complexity as
well as a tight relaxation to guarantee an accurate estimate.

Besides those aforementioned issues, it is worth noting that the RSS measurements
can be collected either by anchors in a distributed fashion or locally by the target node.
To be specific, the former indicates that the localization signal is broadcast only by the
target node and hence the transmit power P0,i ,∀i is obviously the same for all the RSS
measurements. However, in the latter case, when several localization signals are emitted
by the anchors, the related transmit power P0,i ,∀i should be considered different. This
is because, even if anchors are equipped with stable and sustainable power supplies to
guarantee a consistent transmit power, a deviation ∆P0,i can still occur due to some un-
expected power surges or system instabilities and hence we have P0,i , P̄0 +∆P0,i with
P̄0 the nominal transmit power. Besides, some transmit power control techniques are of-
ten carried out for energy saving purpose, which could also result in a ∆P0,i . Compared
with the former case, which might require particular networking protocols to aggregate
the collected RSS measurements to a computation center (CC) for localization, the latter
is more convenient and widely assumed, since the target node can just listen and then
self-estimate its location based on the locally collected RSS measurements without in-
creasing any workload related to the wireless networking. However, to the best of our
knowledge, current RSS-based localization techniques rarely consider the case of differ-
ent P0,i .

In either one of the aforementioned cases, if the network is not very cooperative or
the signal transmitter intentionally withholds information (e.g., for military scenarios),
P0,i will be unknown. Similarly, the PLE γ is often unknown as well, since it might be very
difficult or expensive to acquire, especially in dynamic communication environments.
Yet, many works simply assume that they are perfectly known [12, 19, 20, 23, 24]. To
tackle the problem of an unknown PLE γ, a pre-calibration procedure of the PLE can be
carried out among the anchor nodes before the actual localization phase [25–28]. How-
ever, this will consume extra resources and will make the implementation more cumber-
some. Consequently, some joint estimators of x and γ appear in [10, 17, 18, 22, 29–32].
To handle the issue of an unknown P0,i , there are also some joint estimators for x and
P0,i [15, 16, 21, 22, 30, 31].

In this paper, instead of utilizing RSS measurements, we consider DRSS measure-
ments for localization. The practical advantages for using the DRSS measurements are
similar to those of TDOA-based localization. While preserving all the advantages of RSS-
based localization, it can significantly alleviate the passive dependence of localization on
the signal transmitter, which could be defective, malicious or uncooperative. Moreover,
control overhead message between anchors and target node is minimized or even no
longer required, which saves energy, bandwidth and throughput. This also conceals the
localization process from the signal transmitter, which is very beneficial to surveillance
or military applications. Therefore, DRSS-based localization is very promising. Consid-
ering different unknown transmit powers P0,i , the DRSS measurements can be obtained
from (2.1) as

Pi ,1 =−10γlog10

( ||x−si ||2
||x−s1||2

)
+∆P0,i ,1 +χi ,1, i 6= 1, (2.2)
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where Pi ,1 = Pi −P1, ∆P0,i ,1 ,∆P0,i −∆P0,1 and χi ,1 =χi −χ1. To construct a DRSS sam-
ple set, a reference node (RN) is chosen and the measurements are taken w.r.t. that RN.
For convenience, the RN is appointed as the first anchor. Note that, in such a case, the
size of the DRSS sample set becomes N − 1. In spite of the fact that (2.2) still remains
non-linear and non-convex, the benefit of using a DRSS sample set is that the unknown
nominal transmit power P̄0 vanishes. However, compared with (2.1), the inevitable price
is that the shadowing effect and the transmit power deviation are exacerbated since χi ,1

and ∆P0,i ,1 become correlated and (2.2) gets even more complicated to solve. This is
also the reason why very few papers study this type of localization. To the best of our
knowledge, some early results occurred in [33, 34]. In [15], some initial DRSS-based lo-
calization techniques were presented, yet having a worse accuracy than the correspond-
ing RSS-based localization techniques, except for a simple least squares (LS) estimator
which merely is slightly better. Recently, [3] presented a two-step weighted LS estimator,
yet it requires perfect knowledge of the variance of the shadowing effect. Moreover, in
practice, if the PLE and anchor location information is inaccurate (e.g., especially in mil-
itary scenarios, some critical information might be unreliable), uncertainties have to be
considered into the constructed data model for DRSS-based localization. However, very
few results exist in this area, even for RSS-based localization. In a nutshell, the research
on DRSS-based localization is still in its infancy and requires more attention.

To enrich the research on DRSS-based localization and to tackle the earlier men-
tioned problems, the first contribution of this paper is to introduce a new whitened
model for DRSS-based localization with different unknown transmit powers. Based on
this model, an advanced best linear unbiased estimator (A-BLUE), a Lagrangian estima-
tor (LE) and a robust SDP-based estimator (RSDPE) are respectively proposed, assum-
ing the PLE is known, in which the RSDPE is particularly designed to cope with model
uncertainties. Their computational complexities are discussed and verified by experi-
ments. We also conduct simulations to study their performances under different noise
conditions, different PLEs, imperfect PLE knowledge and inaccurate anchor location in-
formation. Finally, after accumulating enough insights by studying the three proposed
estimators, we take a step further and develop an RSDP-based block coordinate descent
estimator (RSDP-BCDE) to cope with the case when the PLE is totally unknown. Some
issues related to a real-life implementation are also considered and discussed.

After this brief introduction, Section 2.2 elaborates on our new whitened model for
DRSS-based localization with different unknown transmit powers, which is used through-
out this paper. Then, three different kinds of estimators based on a known PLE (i.e., the
A-BLUE, the LE and the RSDPE) are proposed in Section 2.3. Their complexities and
performances in different situations are also analyzed and studied by numerical simu-
lations. Based on those studies, Section 2.4 presents a solution (i.e., the RSDP-BCDE)
to the DRSS-based localization problem when the PLE is completely unknown. We also
simulate and discuss this solution at the end of Section 2.4. Finally, Section 2.5 summa-
rizes the results of this paper.
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Figure 2.1: Comparison between the least squares cost functions related to the models in (2.2) and (2.4): In R2,
the target node is at (28.7,16.3); the anchor nodes are located at (22.5,10.2), (44.9,38.1), (44.1,14.2), (33.6,33.2),
(6.1,20.3), (13.7,35.8), (14.1,44.8), (41.3,19.5), (24.9,34.7) and (41.7,30.5), of which the RN is selected as the one
at (22.5,10.2). Obviously, the target node cannot overlap with the anchor nodes and hence every location of
the anchor node becomes a singular point in J1 yielding multiple minima while J2 has only a single optimal
point.

2.2. WHITENED MODEL FOR DRSS-BASED LOCALIZATION

W E would firstly like to cope with the non-linearity issue of (2.2). To do this, we
transform (2.2) into

||x−si ||22P ′
i ,1 =∆P ′

0,i ,1χ
′
i ,1||x−s1||22, i 6= 1, (2.3)

where P ′
i ,1 , 10

Pi ,1
5γ , ∆P ′

0,i ,1 , 10
∆P0,i ,1

5γ , and χ′i ,1 , 10
χi ,1
5γ . Then, unfolding the Euclidean

norm in (2.3), introducing d 2
1 , ||x−s1||22 and stacking equations into matrices, our linear

model for DRSS-based localization can be written as

p =Ψθ+ε, (2.4)

whereΨ,


...

...
2sT

1 −2P ′
i ,1sT

i P ′
i ,1 −1

...
...

 , θ, [xT , ||x||22]T , p ,


...

||s1||22 −||si ||22P ′
i ,1

...

 , and ε,


...

d 2
1 (1−∆P ′

0,i ,1χ
′
i ,1)

...

 . By respectively denoting [·]i as the i -th element of a vector and

[·]1:i as the subvector containing the first i elements of a vector, we observe that [θ]1:d

corresponds to the target location x and, more importantly, a new parameter is intro-
duced at [θ]d+1 which corresponds to ||x||22. Our optimization problem w.r.t. θ obviously

becomes easier and any estimate of θ leads to an estimate of x, i.e., x̂ = [θ̂]1:d .
To be more explicit, the model (2.4) is smoother than (2.2). To illustrate that, let us

apply the least squares criterion to (2.2) and (2.4), leading to the respective cost functions
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in x:

J1 =
N∑

i=2

[
Pi ,1 +10γl og10

( ||x−si ||2
||x−s1||2

)]2

and

J2 = ||Ψ
[

x
||x||22

]
−p||22.

As depicted in Fig. 2.1, J1 has multiple minima while J2 becomes convex w.r.t. x yield-
ing only a single optimal point. Note that we explicitly take the dependence in θ into
account when formulating J2. In other words, we assume

[θ]T
1:d [θ]1:d = [θ]d+1,

which also implies that θ is bound to a non-convex set since the dependence in θ is
considered.

To obtain our whitened model for DRSS-based localization, let us denote an element
of ε as εi = d 2

1 (1−∆P ′
0,i ,1χ

′
i ,1), i 6= 1. For a sufficiently small shadowing effect and transmit

power deviation, εi can be approximated by its first-order Taylor series expansion1

εi = d 2
1 (1−10

∆P0,i ,1+χi ,1
5γ ) =C (∆P0,i ,1 +χi ,1), (2.5)

which is apparently zero-mean yet mutually correlated, where C ,− ln(10)d 2
1

5γ is a scaling
factor. For the record, when the shadowing effect or the transmit power deviation grows
very large, the approximation in (2.5) might become inaccurate. Notice that εi is subject
to the PLE γ as well as the distance d1 from the target to the RN. We cannot do much
about the PLE, but it is clear that choosing a close RN will suppress the model error ε.
Therefore, in this paper, the RN is chosen as the anchor node that has the highest RSS,
since that anchor node is most likely the one that is closest to the target node. Note that
in a mobile scenario, the RN should be updated in time, but we will not consider that in
this paper.

For convenience, we respectively define the correlated DRSS measurement noise in
(2.2) as ni ,1 ,∆P0,i ,1 +χi ,1 and the independent measurement noise as ni ,∆P0,i +χi .
Recalling that ∆P0,i ,1 = ∆P0,i −∆P0,1 and χi ,1 = χi −χ1, we have ni ,1 = ni −n1. Hence,
from (2.5), the unwhitened model error ε can be approximated as

ε=CΓn,

where n stacks all independent DRSS measurement noise terms ni and

Γ,
[−1(N−1)×1 IN−1

]
(N−1)×N , (2.6)

with I the identity matrix, 0 the zero matrix and 1 the all-one matrix (sizes are mentioned
in the subscript if needed). In this paper, we assume that ∆P0,i is a zero-mean Gaussian

1ax = 1+xln(a)+·· ·+ (xln(a))n

n! +·· · , −∞< x <∞.
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variable with variance σ2
P0

. Therefore, we can obtain ε ∼ N (0,Σε) and the covariance
matrix of ε can be computed as

Σε =C 2(σ2
P0

+σ2
χ)ΓΓT =C 2σ2

nΓΓ
T ,

whereσ2
n ,σ2

P0
+σ2

χ is the variance of the independent measurement noise ni (or simply

called measurement noise from now on), i.e., n ∼N (0,σ2
n IN ).

Finally, from (2.4), we can obtain the whitened model as

Σ−1/2
ε p =Σ−1/2

ε Ψθ+Σ−1/2
ε ε (2.7a)

⇒ (ΓΓT )−1/2p = (ΓΓT )−1/2Ψθ+ (ΓΓT )−1/2ε (2.7b)

⇒ρ =Φθ+υ (2.7c)

where ρ , (ΓΓT )−1/2p , Φ, (ΓΓT )−1/2Ψ and υ, (ΓΓT )−1/2ε. Obviously, the model er-
ror υ in (2.7c) is whitened, since its covariance matrix is a scaled identity, i.e., Συ =
C 2σ2

n IN−1.
An important observation that we would like to make about our whitened DRSS-

based data model is that no information is lost by taking differences of RSSs, since our
model can be alternatively derived from a properly whitened RSS-based model after or-
thogonally projecting out the unknown average power P̄0 (see Appendix 2.6.2 for details).
As a result, the choice of the RN has no effect on the performance of the localization ac-
curacy.

2.3. ESTIMATORS FOR KNOWN PATH-LOSS MODEL

I N this section, we assume that the PLE γ is known and our derivations start from an
exactly known data model. Considering our whitened model (2.7c) and ignoring the

dependence in θ, it is possible to formulate the following unconstrained optimization
problem

min
θ

||Φθ−ρ||22. (2.8)

This leads to the unconstrained best linear unbiased estimator (U-BLUE) for x, which
can be presented as

x̂u−bl ue = [θ̂u−bl ue ]1:d

= [ (ΦTΣ−1
υ Φ)−1ΦTΣ−1

υ ρ ]1:d

= [ (ΦTΦ)−1ΦTρ ]1:d .

(2.9)

Note that the unknowns C and σ2
n are eliminated in this solution. Although there are

other similar least squares (LS) solutions [15, 17, 18], none of them is the BLUE since
their data models are still coloured. Here, the U-BLUE will not perform very well as
we will illustrate later on. Hence, in this section, we introduce two alternative meth-
ods based on an exactly known data model and then take some model uncertainties into
account, which finally leads to a robust estimator for DRSS-based localization. We con-
duct simulations to study their performances under different noise conditions, differ-
ent PLEs, imperfect PLE knowledge and inaccurate anchor location information. Their
complexities are also studied and numerical results are presented. We end this section
by discussing some practical issues.
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2.3.1. ADVANCED BEST LINEAR UNBIASED ESTIMATOR

T O boost the performance of the U-BLUE, we will take the dependence in θ into ac-
count and hence our optimization problem has to be reformulated as

min
θ

||Φθ−ρ||22 (2.10a)

subject to [θ]T
1:d [θ]1:d = [θ]d+1. (2.10b)

The commonly known method to solve this problem indirectly is by constructing a
new data model [3, 16, 33–36]. For instance, the new model can be given by

g = Qz+m, (2.11)

where g, [[θ̂u−bl ue ]2
1, · · · , [θ̂u−bl ue ]2

d , [θ̂u−bl ue ]d+1]T , Q, [Id , 1d×1]T , z, [[x]2
1, · · · , [x]2

d ]T

and

m,


[θ̂u−blue ]2

1 − [x]2
1

...
[θ̂u−bl ue ]2

d − [x]2
d

[θ̂u−bl ue ]d+1 −||x||22

≈


2[x]1([θ̂u−blue ]1 − [x]1)

...
2[x]d ([θ̂u−blue ]d − [x]d )

[θ̂u−blue ]d+1 −||x||22

 . (2.12)

Based on this model, the location estimate considering the constraint (2.10b) can be
obtained as

x̂ = [sign([θ̂u−bl ue ]1)
√

[ẑ]1, · · · , sign([θ̂u−bl ue ]d )
√

[ẑ]d ]T ,

where sign(·) indicates the signum function and ẑ is an estimate of z. However, note
that this method actually estimates the squared element of the target location x and the
squaring procedure on θ̂u−bl ue , which leads to the new observation vector g, might ex-
acerbates the estimation error in θ̂u−bl ue .

Here, we propose an advanced best linear unbiased estimator (A-BLUE) to solve
(2.10) directly, which fine-tunes θ̂u−bl ue without any squaring procedure. Recalling from
(2.9) that θ̂u−blue = (ΦTΦ)−1ΦTρ, the cost function in (2.10a) can be rewritten as

J = (Φθ−ρ)T (Φθ−ρ)

= (θ− θ̂u−blue )TΦTΦ(θ− θ̂u−bl ue ).
(2.13)

In order to take the constraint (2.10b) into account, θ has to be reformulated as a func-
tion of [θ]1:d , i.e.,

θ =
[

[θ]1:d

[θ]T
1:d [θ]1:d

]
(2.14)

. By now using the first-order Taylor series expansion of θ − θ̂u−blue for [θ]1:d in the
vicinity of x̂u−bl ue , we obtain

θ− θ̂u−bl ue = θ|[θ]1:d=x̂u−bl ue
− θ̂u−bl ue

+ ∂θ

∂[θ]T
1:d

∣∣∣∣∣
[θ]1:d=x̂u−bl ue

([θ]1:d − x̂u−blue )

=τ+G([θ]1:d − x̂u−bl ue ),

(2.15)
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where

τ, θ|[θ]1:d=x̂u−bl ue
− θ̂u−bl ue =

[
0d×1

||x̂u−bl ue ||22 − [θ̂u−blue ]d+1

]

and G, ∂θ
∂[θ]T

1:d

∣∣∣∣
[θ]1:d=x̂u−bl ue

=
[

Id

2x̂T
u−bl ue

]
.

Substituting (2.15) into (2.13), we obtain

J = (τ+G([θ]1:d − x̂u−bl ue ))TΦTΦ(τ

+G([θ]1:d − x̂u−bl ue )).
(2.16)

Taking the derivative of (2.16) w.r.t. [θ]1:d , we have

∂J

∂[θ]1:d
= 2GTΦTΦG([θ]1:d − x̂u−bl ue )+2GTΦTΦτ. (2.17)

Finally, by forcing (2.17) to 0, the A-BLUE can be expressed as

x̂a−blue = x̂u−blue − (GTΦTΦG)−1GTΦTΦτ. (2.18)

2.3.2. LAGRANGIAN ESTIMATOR

T HE A-BLUE approximates (2.15) by linearizing it around [θ]1:d = x̂u−blue , which im-
plies that its accuracy will certainly be degraded if there is a large estimation error in

the U-BLUE. In this subsection, we would like to go one step further to find an estimator
without any approximation.

In order to do so, we need to rewrite the constraint in (2.10b) and reformulate our
optimization problem (2.10) as

min
θ

||Φθ−ρ||22 (2.19a)

subject to θT Aθ+2bTθ = 0, (2.19b)

where A,
[

Id 0
0 0

]
and b,

[
0d×1

− 1
2

]
. The Lagrangian of (2.19) is

L(θ;λ) = (Φθ−ρ)T (Φθ−ρ)+λ(θT Aθ+2bTθ), (2.20)

where λ is the Lagrangian multiplier. Taking the derivative of (2.20) w.r.t. θ, we have

∂L(θ;λ)

∂θ
= 2ΦTΦθ−2Φρ+2λAθ+2λb (2.21)

and forcing (2.21) to 0 leads to our Lagrangian estimator (LE) which is given by

θ̂le (λ) = (ΦTΦ+λA)−1(ΦTρ+λb). (2.22)

Since λ is unknown, it is required to find an appropriate value for λ. A similar prob-
lem also appears in [37, 38], where all possible values of λ should be calculated to deter-
mine the desired one. Note that some of those values might lead to a maximum of the
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Lagrangian in (2.20), since the second-order optimality conditions are not examined[9].
Besides, the above method is very cumbersome and, recalling the fact that θ is bound
to a non-convex set, a suboptimal value of λ might be selected, yielding a local solution.
Without going into many details, we will not further discuss it. Here, the idea is to firstly
pinpoint an interval for λ, in which only one single global solution is guaranteed, and
then to search for that solution..

To find such an interval, note that the solution in (2.22) is a minimum of the La-
grangian in (2.20) if the Hessian of (2.20) is positive semidefinite, i.e.,

ΦTΦ+λA º 0

⇒ (ΦTΦ)
1
2 (IN−1+
λ(ΦTΦ)−

1
2 A(ΦTΦ)−

1
2 )(ΦTΦ)

1
2 º 0

. (2.23)

In order to guarantee (2.23), the eigenvalues of IN−1 +λ(ΦTΦ)−
1
2 A(ΦTΦ)−

1
2 should be

all non-negative. Obviously, all the eigenvalues of (ΦTΦ)−
1
2 A(ΦTΦ)−

1
2 are non-negative.

Then denoting the largest eigenvalue of (ΦTΦ)−
1
2 A(ΦTΦ)−

1
2 asλmax , we need 1+λλmax ≥

0, which provides a useful interval for λ as

I = (−1/λmax ,∞)

. On such an interval, we can find the desired value of λ, say λ̂l e , such that

θ̂le (λ̂l e )T Aθ̂le (λ̂le )+2bT θ̂le (λ̂l e ) = 0. (2.24)

Then, the Lagrangian estimator (LE) for x can be obtained as x̂l e = [θ̂le (λ̂l e )]1:d .
Now the problems left are how to search for λ̂le and whether or not the LE yields the

global solution. Before going into the details, it is important to firstly realize that the
problem (2.19) is a quadratically constrained quadratic program (QCQP) which can be
cast as a generalized trust region subproblem (GTRS) [39], for which an optimal solu-
tion can be found within a bounded interval, i.e., the interval I . In this paper, we actu-
ally consider a simpler case with an equality constraint (2.19b) rather than an inequality
constraint, yet some results can still be used to support the following discussions.

To search for λ̂le , let us define a function f (λ) as f (λ) , θ̂l e (λ)T Aθ̂le (λ)+2bT θ̂le (λ),
which is already known to be strictly decreasing on the interval I [40, Theorem 5.2], such
that λ̂le , which satisfies the constraint (2.24), can be effectively found by the bisection
method. Next, the LE is guaranteed as a global solution [40, Theorem 3.2], since it follows
the Karush-Kuhn-Tucker (KKT) conditions. This also indicates that there only exists one
solution, i.e., the global solution, in the interval I , which is the reason why it is called
the trust region. Besides, note that the case λ̂le = −1/λmax is called the hard case [41] (
since it is relatively difficult to solve), which is very rare and has never been seen in our
numerous simulations. The hard case is also found to be very rare in other papers, e.g.,
in [31, 42].

2.3.3. ROBUST SEMIDEFINITE PROGRAMMING BASED ESTIMATOR

T HE previously proposed estimators are both based on an exactly known data model.
However, when the data model is not perfectly known due to an imperfect PLE esti-

mate or inaccurate anchor location information, a huge bias will obviously occur in these



2

56 2. ROBUST DIFFERENTIAL RECEIVED SIGNAL STRENGTH-BASED LOCALIZATION

estimates. Therefore, in this subsection, we present a robust semidefinite programming
based estimator (RSDPE) that can cope with such model uncertainties.

First, after using the Schur complement [43] and forming some linear matrix inequal-
ities (LMIs), we equivalently rewrite the constraint in (2.10b) as[

Id [θ]1:d

[θ]T
1:d [θ]d+1

]
º 0, (2.25a)

rank

([
Id [θ]1:d

[θ]T
1:d [θ]d+1

])
= d . (2.25b)

The semidefinite relaxation (SDR) approach then relaxes the set of θ by dropping the
rank constraint in (2.25b). This procedure is also used in [15, 19–23], but they all assume
an exactly known data model.

We want to go one step further and consider an uncertainΦ asΦ◦ ,Φ+∆Φ, where
the perturbation matrix ∆Φ collects the uncertainties caused by an imperfect PLE esti-
mate or inaccurate anchor location information. Although the data model is not exactly
known, a known upper bound ζ for ||∆Φ||2 could be very helpful, i.e., ||∆Φ||2 ≤ ζ, where
|| · ||2 denotes the spectral norm, i.e., the largest singular value of the corresponding ma-
trix.

The idea of the RSDPE is to cope with the worst-case model uncertainties using the
SDP procedure. Therefore, we reformulate (2.10) as a minmax SDP optimization prob-
lem

min
θ,t

max
||∆Φ||2≤ζ

t (2.26a)

subject to

[
IN−1 (Φ◦−∆Φ)θ−ρ

((Φ◦−∆Φ)θ−ρ)T t

]
º 0, (2.26b)[

Id [θ]1:d

[θ]T
1:d [θ]d+1

]
º 0. (2.26c)

where t is an auxiliary slack variable.
Note that ∆Φ only affects the constraint (2.26b) and hence we can isolate ∆Φ in

(2.26b) as

B(θ, t ) º
[

0 ∆Φθ

0 0

]
+

[
0 0

(∆Φθ)T 0

]
⇒B(θ, t ) º TT∆ΦL(θ)+L(θ)T∆T

ΦT,

(2.27)

where

B(θ, t ),
[

IN−1 (Φ◦θ−ρ)
(Φ◦θ−ρ)T t

]
,

T ,
[
IN−1 0

]
and L(θ) ,

[
0 θ

]
. Obviously, for the maximization in (2.26), the con-

straint (2.27) has to be reformulated considering the worst-case∆Φ.
To do so, we can easily state that

B(θ, t ) º TT∆ΦL(θ)+L(θ)T∆T
ΦT, ∀∆Φ : ||∆Φ||2 ≤ ζ (2.28)
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if and only if

x̌T B(θ, t )x̌ ≥ max
||∆Φ||2≤ζ

{x̌T TT∆ΦL(θ)x̌+ x̌T L(θ)T∆T
ΦTx̌}

= max
||∆Φ||2≤ζ

{2||∆ΦL(θ)x̌||2 ||Tx̌||2}

= 2ζ||L(θ)x̌||2||Tx̌||2,∀x̌ ∈RN .

. (2.29)

After introducing the bound ζ into (2.29), a new problem arises since the vector Tx̌ ∈
RN−1 does not have the same size as the vector L(θ)x̌ ∈ Rd+1. To bypass this issue, we
introduce a new auxiliary vector y̌ ∈ Rd+1, which is bounded using x̌, such that we can
use the Cauchy-Schwarz inequality on (2.29) to unfold the norm. To be specific, only
after the worst-case constraint (2.29) is reformulated as

x̌T B(θ, t )x̌ ≥ 2ζ||y̌||2||L(θ)x̌||2,∀x̌, y̌ : ||Tx̌||2 ≥ ||y̌||2, (2.30)

we can obtain a new constraint without the norm from (2.30) as

x̌T B(θ, t )x̌ ≥ ζ(y̌T L(θ)x̌+ x̌T L(θ)T y̌),∀x̌, y̌ : ||Tx̌||2 ≥ ||y̌||2. (2.31)

Although both (2.30) and (2.31) consider the worst-case ∆Φ, we have to use the latter
one to facilitate the derivations, which is actually a weaker condition due to the Cauchy-
Schwarz inequality. Then, for convenience, we respectively rewrite ||Tx̌||2 ≥ ||y̌||2 as[

x̌
y̌

]T [
TT T 0

0 −Id+1

][
x̌
y̌

]
≥ 0 (2.32)

and (2.31) as [
x̌
y̌

]T [
B(θ, t ) −ζL(θ)T

−ζL(θ) 0

][
x̌
y̌

]
≥ 0, (2.33)

where note that (2.33) is a necessary condition to (2.32).
Finally, according to the S-procedure[44, p. 23], the implication that (2.32) leads to

(2.33) holds true if and only if there exists an α such that

[
B(θ, t ) −ζL(θ)T

−ζL(θ) 0

]
−α

[
TT T 0

0 −Id+1

]
º 0 (2.34a)

⇔
(1−α)IN−1 Φ◦θ−ρ 0

(Φ◦θ−ρ)T t −ζθT

0 −ζθ αId+1

º 0. (2.34b)

Replacing (2.26b) by the new constraint (2.34b) leads to the following SDP optimization
problem

min
θ,t ,α

t (2.35a)

subject to

(1−α)IN−1 Φ◦θ−ρ 0
(Φ◦θ−ρ)T t −ζθT

0 −ζθ αId+1

º 0, (2.35b)

[
Id [θ]1:d

[θ]T
1:d [θ]d+1

]
º 0, (2.35c)
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which can be solved by CVX [45, 46]. The solution is our new RSDPE.
To end this subsection, we discuss how to determine the value of ζ. One possi-

bility is that ζ can be computed from the total least squares (TLS) method[47]. More
specifically, we can compute the singular value decomposition (SVD) of the augmented
matrix [Φ◦ ρ] = UΣVT and the corrected [Φ◦ ρ] is given by [Φ̂ ρ̂] = UΣ̂VT , where Σ̂
is obtained by forcing the (d + 2)-th diagonal of Σ to 0, which is the typical low-rank
approximation[48]. In fact, Φ̂ can be viewed as an estimate of the exact Φ and also ob-
serve that ||∆Φ||2 = ||Φ◦−Φ||2 ≤ ||Φ◦−Φ||F , where || · ||F indicates the Frobenius norm
or the Hilbert-Schmidt norm. Therefore, in this paper, ζ is computed as ζ= ||Φ◦− Φ̂||F ,
which will also be used in our simulations later.

2.3.4. COMPLEXITY ANALYSIS

W E now calculate the computational complexity of the different methods without
considering the whitening procedure [49]. It is easy to derive that the complexity

of the U-BLUE is O[d 2N ]. As for the A-BLUE, its complexity is O[d 2N 2] considering that
the extra cost is mainly comes from the second step in (2.18).

For the LE, the complexity is mostly due to the bisection method. Suppose that the
bisection method takes K steps to find an appropriate λ, which has already been ob-
served to be around 20. In each iteration, first the θ̂le (λ) in (2.22) is computed and then
f (λ) is calculated to check if the outcome is smaller than the tolerance. As a result, the
cost of each iteration is O[d 2N 2] and hence the complexity of the LE is O[K d 2N 2].

Finally, let us focus on the RSDPE. We consider the worst-case complexity for solv-
ing (2.35), which can be derived from employing the interior-point algorithm [9]. This
implies that the complexity for each iteration is O[d 2N 2] and the iteration number is
bounded by O[

p
N l n(1/ξ)] [43], where ξ is the iteration tolerance. Therefore, the com-

plexity of the RSDPE in this paper is O[d 2N 2.5l n(1/ξ)].
Obviously, the RSDPE has the highest complexity among all the proposed estimators.

To verify the complexities, we conduct an experiment in a 2-D space with 10 anchor
nodes and use the average computational time as a complexity measure. The experi-
ment is implemented in Matlab R2013b on a Lenovo IdeaPad Y570 (Processor 2.0 GHz
Intel Core i7, Memory 8GB). We observe that the U-BLUE and the A-BLUE respectively
have the least and the second least average computational time of 0.026 ms and 0.049 ms
while the RSDPE holds the highest one with 314.0 ms. Compared with the others, the
complexity of the LE is reasonable with a computational time of 4.8 ms.

2.3.5. NUMERICAL RESULTS

W E have conducted a Monte Carlo (MC) simulation using 1000 trials on a 50 m×50 m
field, where one target node is randomly deployed for each trial. Our proposed

estimators are compared against two existing methods: the RSS-based joint estimator
(SDP-RSS) which is the best estimator from [15] and applies the SDP procedure on a
`1-norm approximation to jointly estimate the transmit power and the target location;
and the recent DRSS-based two-step weighted least squares estimator (WLS-DRSS) of
[3] which requires perfect knowledge of the variance of the measurement noise σ2

n . Re-
call that, in this paper, the measurement noise includes the shadowing effect and trans-
mit power derivations. For computing the Cramér-Rao lower bound (CRLB), see Ap-
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(a) Performance of different estimators with a good anchor node placement.

0 5 10 15 20 25 30 35 40 45 50
X-axis

0

10

20

30

40

50

Y
-a

x
is

Reference node

(b) A good anchor node placement.
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(c) Performance of different estimators with a bad anchor node placement.
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(d) A bad anchor node placement.

Figure 2.2: Impact of the anchor node placement: In R2, 10 anchor nodes are considered with different place-
ments and the target node is randomly deployed within a 50 m ×50 m field where the path-loss exponent is
considered γ= 4. The anchor location information is accurate.
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pendix 2.6.3. The root mean square error (RMSE) is used to evaluate the performance
of all estimators.

IMPACT OF THE ANCHOR NODE PLACEMENT

W E first discuss the impact of the anchor node placement, where the simulation is
conducted with a perfectly known data model. Obviously, a good anchor node

placement is very significant for any kind of localization. To be specific, if the anchor
nodes get clustered, the measurements and the locations of those anchor nodes are both
very close to each other, which easily leads to an ill-posed optimization problem for lo-
calization. For example, the cluster of anchor nodes in Fig. 2.2(d) causes the matrixΦ to
be ill-conditioned, thus making our optimization problem very susceptible to the mea-
surement noise. To verify that, two simulations are conducted one with a good and one
with a bad anchor node placement. These two anchor node placements and the nu-
merical results are shown in Fig. 2.2. Clearly, when a good anchor node placement is
considered, our proposed estimators, especially the LE, can yield a performance very
close to the CRLB with a known PLE, i.e., C RLB3 in Appendix 2.6.3. However, a bad an-
chor node placement causes a considerable gap between our proposed estimators and
C RLB3.

To include the effect of different anchor node placements, in the following simula-
tions, 10 anchor nodes will be randomly deployed within the 50 m ×50 m field in each
simulation trial and, hence, an average CRLB will be considered since the CRLB varies
over the anchor node placement.

IMPACT OF THE MEASUREMENT NOISE

I N Fig.2.3, we study all estimators with a perfectly known data model under large and
small measurement noise when the PLE is known and fixed at γ = 4. The following

observations can be made:

1. U-BLUE: Even based on a whitened data model and being a BLUE, the U-BLUE still
yields a very bad performance especially under a large measurement noise since
it does not consider the dependence in the parameter vector θ.

2. WLS-DRSS: Even requiring perfect knowledge of the variance of the measurement
noise σ2

n to construct its system model and its weighting matrices, the WLS-DRSS
is still no better than any of our proposed DRSS-based estimators except for the
U-BLUE. This is because many approximations are used in its derivation and the
DRSS measurements are used themselves to construct the weighting matrices.
Therefore, when the measurement noise grows more severe, those approximations
become more inaccurate and the DRSS measurements are more corrupted, mak-
ing the weighting matrices less effective as they are in a small noise situation.

3. A-BLUE: Even without any knowledge of the variance of the measurement noise,
the A-BLUE still has a better performance than the WLS-DRSS under a large mea-
surement noise, as shown in Fig. 2.3(a). Under a small measurement noise, the A-
BLUE becomes very accurate and only worse than the LE, as shown in Fig. 2.3(b).
To explain this, the approximation in the second step of the A-BLUE is taken in the
vicinity of the estimate x̂u−bl ue from the U-BLUE, which remains accurate under
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(b) Impact of a small measurement noise.

Figure 2.3: Performance comparison of different estimators under different noise conditions when the actual
PLE is known and fixed at γ= 4. The anchor location information is accurate.
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Figure 2.4: Performance of different estimators under different PLEs when the variance of the measurement
noise is σ2

n = 10. The anchor location information is accurate.
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a small measurement noise. However, under a severe measurement noise, the U-
BLUE yields a very bad performance and hence it becomes more difficult for the
A-BLUE to fine-tune the U-BLUE estimate.

4. LE: The LE outperforms all the other estimators under a small measurement noise
due to the fact that it requires neither any approximation nor dropping a con-
straint. In fact, the LE is the exact solution to our optimization problem in (2.19) if
our model error υ is perfectly whitened. Therefore, we can observe from Fig. 2.3(b)
that its performance is very close to the CRLB. However, the LE becomes only the
second best estimator under a large measurement noise. To explain that, we need
to recall that the approximation in (2.5) might become inaccurate under a large
measurement noise, thus making our proposed whitened model not as effective
as it is under a small measurement noise. On the other hand, a bad anchor node
placement can also exacerbate the impact of a large measurement noise, which
heavily deteriorates the performance of our proposed estimators.

5. RSDPE: Unlike the A-BLUE, the RSDPE does not use any approximation to deal
with the non-linearity issue. Instead, the RSDPE uses the SDR procedure in (2.26)
to guarantee a global yet suboptimal solution at a price of dropping the rank con-
straint in (2.25b). This explains why the RSDPE under a small measurement noise
can not have a very accurate performance, which is merely close to the WLS-DRSS
as shown in Fig. 2.3(b). However, the RSDPE surprisingly becomes the best esti-
mator under a large measurement noise, as shown in Fig. 2.3(a). It seems that the
RSDPE possesses a very good robustness to the deviation of the whitening proce-
dure caused by the approximation inaccuracy in (2.5) under a large measurement
noise. An interpretation for this is that this deviation yields the same impact as
that of ∆Φ. And the robustness to a bad anchor node placement is also shown in
Fig. 2.2(c).

6. SDP-RSS: The SDP-RSS yields the worst performance under a small measurement
noise. Besides the fact that the SDP procedure yields a suboptimal solution, this
is also because using the `1-norm might not be the best choice for the SDP-RSS
due to a lack of ML optimality. Under a large measurement noise, the SDP-RSS
becomes better, almost the same as the A-BLUE. However, the high computational
complexity brought by the SDP procedure and a lack of robustness make it lose its
advantage over our proposed estimators.

IMPACT OF THE PATH-LOSS EXPONENT

W E are also interested in how the PLE impacts our proposed estimators and hence
we study our proposed estimators with a perfectly known data model under dif-

ferent PLEs when considering a large measurement noise. In fact, the PLE increases
when the surrounding environment becomes more severe. Interestingly though, all the
estimators grow more accurate in a more severe surrounding environment, as clearly de-
picted in Fig. 2.4. The performance of our proposed estimators can also be interpreted
from our model error υ in (2.7c), where the covariance of υ obviously drops with an in-
creasing PLE.
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(a) Performance of different estimators under imperfect PLE knowledge
when the actual PLE isγ= 4. The anchor location information is accurate.
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(b) Performance of different estimators with an imperfect PLE estimate
under different PLEs when the variance of the PLE estimate isσ2

γ = 1. The
anchor location information is accurate.
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(c) Performance of different estimators with inaccurate anchor location
information when the actual PLE is known and γ= 4.
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Figure 2.5: Performance comparison of different estimators with model uncertainties when the variance of the
measurement noise is σ2

n = 1.
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IMPACT OF IMPERFECT PATH-LOSS EXPONENT ESTIMATE

W E previously assumed that the PLE γ is perfectly known. However, in practice, the
PLE is calibrated or estimated before the localization phase [27, 28]. Hence, we

have to consider the case where the PLE is not perfectly known, i.e., the model uncer-
tainty is considered. Therefore, to study the performance of our proposed estimators in
such a case, we have also conducted two MC simulations, where for each trial an imper-
fect PLE γ̃ is used to carry out the localization. The deviation ∆γ, i.e., γ̃, γ+∆γ, of the
imperfect PLE from the actual PLE is considered to be zero-mean Gaussian distributed
with variance σ2

γ.
As shown in Fig. 2.5(a), all the estimators become worse with an increasing variance

of the PLE estimate. The U-BLUE, the A-BLUE and the LE are all heavily impacted, while
the RSDPE behaves relatively better, especially under a worse PLE estimate, due to its
robust design.

To explain this in more detail, by using the imperfect PLE γ̃, the imperfect P ′
i ,1 used

to construct our data model in (2.4) is given by P̃ ′
i ,1 = 10

Pi ,1
5(γ+∆γ) . Using the first order Taylor

series expansion of P̃ ′
i ,1 w.r.t. ∆γ, we obtain

P̃ ′
i ,1 = P ′

i ,1

[
1− l n(10)Pi ,1

5γ2 ∆γ

]
. (2.36)

Then, for a sufficiently small noise, (2.2) can be presented as Pi ,1 ≈ −5γlog10

(
d 2

i

d 2
1

)
and

hence (2.36) can be rewritten as

P̃ ′
i ,1 ≈ P ′

i ,1

[
1+ ln

(
d 2

i

d 2
1

)
∆γ

γ

]
. (2.37)

Since∆γ∼N (0,σ2
γ), from (2.37), we can clearly see that an increasing varianceσ2

γ of the
imperfect PLE γ̃ incurs a more severe impact on our proposed estimators. Fortunately,
under a large PLE γ, the impact ofσ2

γ becomes less severe than under a small PLE, which
can also be seen from Fig. 2.5(b). Finally, to better serve the following discussions, we
should emphasize again that, among all the estimators, the RSDPE yields the best per-
formance in case of an imperfect PLE.

IMPACT OF INACCURATE ANCHOR LOCATION INFORMATION

I N real life, the anchor location information might be inaccurate, if obtained by the
global positioning system (GPS). Especially in military scenarios, this kind of infor-

mation might be even more difficult to obtain, unreliable or tampered with by attackers.
Therefore, we have to consider the model uncertainty in case of inaccurate anchor loca-
tion information. Two MC simulations have been conducted, where for each trial every
anchor location is given with a deviation, i.e., s̃i , si +δs ,∀i , where δs ∼N (0,σ2

s Id ).
As shown in Fig. 2.5(c), all the estimators behave worse with an increasing variance

of the anchor location inaccuracy, but the RSDPE again yields the best performance, due
to its design for coping with model uncertainties. Finally, we notice that, if an inaccu-
rate anchor location s̃i is used for constructing our data model in (2.4), considering the
fact that δs is scaled by P ′

i ,1, a large PLE will lead to a small value of P ′
i ,1 and hence can

suppress the impact of δs , which can be observed in Fig. 2.5(d).
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2.3.6. DISCUSSIONS

I N this subsection, we present the proposed estimators in a more general context. This
discussion is also suitable for other localization problems, since there exist some com-

mon issues between the proposed localization problems and other ones.
For optimal localization problems, non-linearity and non-convexity issues are in-

evitable, both of which are due to the distance norm di = ||x− si ||2. To be more specific,
the distance norm is obviously non-linear w.r.t. x, and the target cannot physically over-
lap with the anchors, i.e., x 6= si ,∀i , which explains the non-convexity. Most localization
techniques first cope with non-linearity, either by directly applying a Taylor series expan-
sion (TSE) around an appropriate value of x, or by squaring and unfolding the distance
norm. The former leads to some iterative ML methods, where a good initiation is critical
for coping with the non-convexity as shown in Fig. 2.1(a). The latter one, which is our
main focus, requires squaring the distance norm as d 2

i = ||x||22 −2sT
i x+||si ||22, where R ,

||x||22 has to be considered as a new unknown parameter to avoid non-linearity. As a re-
sult, a linear unconstrained localization problem can be formulated, which has [xT ,R]T

as a new unknown parameter vector (other unknown parameters could be jointly esti-
mated as well), directly leading to a closed-form (weighted) LS solution. We categorize
this kind of estimator as the unconstrained linear least squares estimator (ULLSE), and
obviously the ULLSE ignores the fact that the new parameter vector [xT ,R]T (or the one
that contains it) is still bound to a non-convex set. To cope with that, the relation R = xT x
should be considered, and accordingly other localization techniques can be considered:

1. The two-step linear least squares estimation (TLLSE) first obtains an initial esti-
mate from the ULLSE and then fine-tunes it in the second step based on R = xT x,
equivalently the constraints in (2.10b) and (2.14). The Achilles’ heel of the TLLSE
are approximations like (2.12) or (2.15), which are often carried out to facilitate
the update of the estimate. The goodness of such approximations often relies on
the ULLSE. Under a small measurement noise and an exactly known data model,
the ULLSE and hence the approximations are reliable, leading to a very good per-
formance of the TLLSE. However, when the measurement noise becomes severe
or there exist considerable model uncertainties, the approximations deteriorate,
thus significantly undermining the performance of the TLLSE. In this paper, the A-
BLUE tries to minimize the impact of the approximations as much as possible, e.g.,
by sticking to the original data model instead of constructing a new one. Please re-
fer to Section 2.3.1 for details and references therein.

2. The semidefinite relaxation (SDR)-based estimator (SDRE) reformulates R = xT x
as an LMI as in (2.26c) such that an SDP problem can be constructed. More im-
portantly though, this also requires introducing slack variables so as to change
the optimization problem from minimizing the cost function to its upper bound.
All those procedures lead to a relatively worse performance of the SDRE under a
small measurement noise, but guarantee a very good estimation accuracy under a
large noise. In this paper, the RSDPE is particularly improved with a robust design
against model uncertainties. Please refer to Section 2.3.3 for details and references
therein.

3. The exact estimator (EE) is the theoretically optimal solution when considering the
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relation R = xT x. The EE translates it into a new constraint as in (2.19b) without
any approximation or dropping a constraint. Therefore, given an exactly known
data model, if the solution that meets the KKT conditions can be precisely found,
the EE should perform the best under both small and large measurement noises.
It is worth noting that (2.19b) is still a non-convex constraint, which makes the
search for the global solution very important. In this paper, the LE provides a use-
ful interval, in which only the global solution resides. However, when the data
model is uncertain, the global solution will be more difficult to find and hence the
EE will not perform as good as expected. Please refer to Section 2.3.2 for details
and references therein.

Localization techniques from the same category have a similar level of computational
complexity and hence we can refer to Subsection 2.3.4. We give a general comparison of
the ULLSE, the TLLSE, the SDRE and the EE in Table 2.1, where also some other examples
beyond the proposed estimators are listed.

Also, it is very important to notice that most localization techniques (not limited to
the RSS/DRSS-based) use a colored data model, which will generally degrade the local-
ization performance and also explains why our proposed estimators are relatively better.
Furthermore, some data models are very difficult or even impossible to whiten, since
the true nodal distances might be required for whitening like the one in [3] and the fa-
mous Chan algorithm [17, 33–35]. Additionally, taking differences between the observa-
tions, e.g., generating TDOA or DRSS measurements, also leads to a colored model noise,
which is often ignored in literature [17, 33, 34, 50].

After all, it is hard to say which kind of estimator is overall the best. Based on Ta-
ble 2.1, we can choose the most suitable estimator or adaptively switch from one to an-
other according to the demands. For example, if a low complexity is the most important
consideration, the TLLSE could be the best choice. Under a severe measurement noise
or given an uncertain data model, the SDRE is recommended. If there is no particular
requirement, the EE is a good choice, since it has a good performance and yields the best
accuracy under a small measurement noise.

2.4. ESTIMATOR FOR UNKNOWN PATH-LOSS MODEL

I N the previous sections, we have introduced robust DRSS-based localization for a
known PLE. Based on these studies, we want to take one step further and explore a

new iterative estimator which can jointly estimate the unknown PLE γ and the unknown
location x.

2.4.1. HANDLING UNKNOWN PATH-LOSS EXPONENT
Before introducing our new method, we would like to first discuss the current tech-
niques to cope with an unknown PLE. Presently, many RSS/DRSS based localization
methods assume a perfect pre-calibration stage without any PLE estimation error. Iron-
ically though, PLE calibration techniques are still rarely studied. Here, we try to col-
lect and summarize them in Table 2.2. The anchor-based methods [11, 51–53] have to
be carried out between the anchors and hence are very susceptible to inaccurate an-
chor location information. Based on some geometric constraints, the anchor-free meth-



2

68 2. ROBUST DIFFERENTIAL RECEIVED SIGNAL STRENGTH-BASED LOCALIZATION

Table 2.2: Comparison of different methods for PLE calibration

Methods \ Drawbacks Anchor Dependence Intensive Node Cooperation Not Pervasivea

Anchor-Based [11, 51–53] 3 3 3

Anchor-Free [26, 54] 7 3 3

Self-Estimation [25] 7 7 3b

Collective Self-Estimation [27, 28] 7 7 7

a
A pervasive method is a method that can be implemented in any kind of wireless network, i.e., without any external assistance or information.

b
They still require some external information (e.g., network density) or a frequently changing receiver configuration and hence are not pervasive.

ods [26, 54] can estimate the unknown PLE for temporarily grouped nodes without any
location information. But, they still require intensive node cooperation and might cause
a heavy network load. Therefore, if each node can self-estimate the PLE in a distributed
fashion, this could solve the aforementioned issues [25]. Pervasiveness is another short-
coming which we have to conquer, since the PLE is a very crucial wireless channel pa-
rameter and we want to enable a collective PLE self-estimation [27, 28] that can be used
in any kind of wireless device for facilitating efficient communication and networking
designs. In a nutshell, a more robust and cost effective PLE pre-calibration stage can
undoubtedly benefit the localization procedure.

Alternatively, we can conveniently skip the PLE pre-calibration when it is not avail-
able or reliable. Then, we have to jointly estimate the unknown PLE and the target loca-
tion, which could also save a lot of resources. In this section, we are particularly inter-
ested in this kind of solution. Commonly, an initial guess for the unknown PLE γ has to
be adopted to obtain a quasi-estimate of the target location, which can then be used to
update the PLE estimate [10, 17, 18, 22, 29–32]. Obviously, this will cause model uncer-
tainties for the localization problem, which are often ignored however. Therefore, based
on the previous studies, we want to seek a new robust DRSS localization approach in
case of an unknown PLE.

2.4.2. PROTOTYPE OF THE PROPOSED ITERATIVE ESTIMATOR

I N addition to the model in (2.4), if given a known target location, we can obtain an-
other linear model from (2.2) as

π=λγ+ν, (2.38)

where π , [· · · , Pi ,1, · · · ]T , ν , [· · · , ni ,1, · · · ]T and λ , [· · · , −10log10

( ||x−si ||2
||x−s1||2

)
, · · · ]T .

Again, we stack the equations for a fixed RN and all anchor nodes i 6= 1. However, it is
very difficult to obtain a single linear model for both an unknown target location and an
unknown PLE. This enlightens us that a block coordinate descent (BCD) method might
be applicable to this problem [55]. In order to do so, we need to redefine the parameter
vector θ to be estimated as θ, [xT , ||x||22, γ]T . The BCD is implemented by partitioning
θ into two blocks, [xT ||x||22]T and γ, and then at each iteration a cost function is mini-
mized with respect to one of the blocks while the other is held fixed. We denote the θ

estimate at the k-th iteration as θ̂
(k)

, the iteration tolerance as ξ and the cost functions
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for estimating the target location and the PLE respectively as J ′(·) and J ′′(·). The proto-
type of our proposed estimator is presented in Algorithm 1.

Algorithm 1: PROTOTYPE of proposed iterative estimator.

1 Initialization: Choose the initial value θ̂
(0)

;

2 Loop: Given θ̂
(k) = [[θ̂

(k)
]T
1:d+1, [θ̂

(k)
]d+2]T , solve

[θ̂
(k+1)

]1:d+1 = arg min
[θ]1:d+1

J ′
(
[θ]1:d+1, [θ̂

(k)
]d+2

)
; (2.39)

3 Given [[θ̂
(k+1)

]T
1:d+1, [θ̂

(k)
]d+2]T , solve

[θ̂
(k+1)

]d+2 = arg min
[θ]d+2

J ′′
(
[θ̂

(k+1)
]1:d+1, [θ]d+2

)
; (2.40)

4 Let θ̂
(k+1) = [[θ̂

(k+1)
]T
1:d+1, [θ̂

(k+1)
]d+2]T ;

5 If ||[θ̂(k+1)
]1:d − [θ̂

(k)
]1:d ||2 ≤ ξ, continue. Otherwise go back to Loop;

6 return θ̂
(k+1)

2.4.3. ROBUST SEMIDEFINITE PROGRAMMING BASED BLOCK COORDINATE

DESCENT ESTIMATOR

T O fully describe our method, we need to elaborate on the minimizations in (2.39) and
(2.40). Since the RSDPE has a very good robustness to imperfect PLE knowledge, ap-

plying a similar method to (2.38) might also result in a good robustness to imperfect
target location knowledge. Therefore, the idea behind our robust SDP-based block co-
ordinate descent estimator (RSDP-BCDE) is to utilize this method to update both the
location and the PLE. Considering that our method introduces two new auxiliary vari-
ables, next to the parameter vector θ, we introduce the slack variables t1, α1 and t2, α2

to update the target location estimate and the PLE estimate, respectively. Additionally,
two bounds ζ1 and ζ2 are also needed, which are both computed in the same way as the
RSDPE does for ζ.
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Figure 2.6: Performance of our proposed RSDP-BCDE under different noise conditions: the PLE is γ = 2; the
initial value of the PLE estimate is γ̂(0) = 4; k is the iteration number when the RSDP-BCDE stops the iterative
procedure.
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For updating the block [xT , ||x||22]T , we use(
[θ̂

(k+1)
]1:d+1, t̂ (k+1)

1 , α̂(k+1)
1

)
= arg min

[θ]1:d+1,t1,α1

t1

subject to (1−α1)IN−1 Φ̃
(k)

[θ]1:d+1 − ρ̃(k) 0

(Φ̃
(k)

[θ]1:d+1 − ρ̃(k))T t1 −ζ1[θ]T
1:d+1

0 −ζ1[θ]1:d+1 α1Id+1


º 0,[

Id×d [θ]1:d

[θ]T
1:d [θ]d+1

]
º 0,

(2.41)

where t̂ (k+1)
1 and α̂(k+1)

1 are respectively the estimates of t1 and α1 at the (k +1)-th iter-

ation, Φ̃
(k)

and ρ̃(k) are respectively the Φ and the ρ constructed by the imperfect PLE

estimate at the k-th iteration, i.e., [θ̂
(k)

]d+2.
For updating γ, we notice from (2.38) that ν=Γn and hence the covariance matrix of

ν is Σν =σ2
nΓΓ

T . Hence, the whitened model of (2.38) can be expressed as

Σ−1/2
ν π=Σ−1/2

ν λγ+Σ−1/2
ν ν (2.42a)

⇒ (ΓΓT )−1/2π= (ΓΓT )−1/2λγ+ (ΓΓT )−1/2ν (2.42b)

⇒ c = dγ+e, (2.42c)

where c , (ΓΓT )−1/2π, d , (ΓΓT )−1/2λ and e , (ΓΓT )−1/2ν. Note that now the covari-
ance matrix of e is Σe = σ2

n IN . Based on the whitened data model (2.42c), we update γ
as (

[θ̂
(k+1)

]d+2, t̂ (k+1)
2 , α̂(k+1)

2

)
= arg min

[θ]d+2,t2,α2

t2

subject to (1−α2)IN−1 c− d̃(k+1)[θ]d+2 0
(c− d̃(k+1)[θ]d+2)T t2 −ζ2[θ]T

d+2
0 −ζ2[θ]d+2 α2Id+1

º 0,

(2.43)

where t̂ (k+1)
2 and α̂(k+1)

2 are respectively the estimates of t2 and α2 at the (k +1)-th itera-

tion, d̃(k+1) is the d constructed by the imperfect target location estimate at the (k+1)-th

iteration, i.e., [θ̂
(k+1)

]1:d .
Finally, the optimization problems (2.41) and (2.43) are solved by CVX and the com-

plexity of the RSDP-BCDE after k iterations is O[kd 2N 2.5l n(1/ξ)].

2.4.4. NUMERICAL RESULTS

T O study the performance of the RSDP-BCDE, we have conducted an MC simulation.
We select the initial value of the PLE estimate as 4 considering that the PLE normally
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ranges from 2 to 6 [6]. In the simulation, the PLE is set to 2 and the rest of the MC simu-
lation settings are the same as before. The numerical results are shown in Fig. 2.6.

The RSDP-BCDE is studied for different iteration numbers k and compared against
one of the RSS-based estimators (J-RSS) from [31], which jointly estimates the unknown
transmit power and PLE. According to the simulation results, our proposed method out-
performs the J-RSS. As shown in Fig. 2.6(a), with more iterations, the performance of the
RSDP-BCDE becomes better and gradually approaches that of the RSDPE using a perfect
γ. The PLE estimate also becomes more accurate with an increasing iteration number
k, as shown in Fig. 2.6(b). We also notice that, after the first iteration, the performance
of the RSDP-BCDE is already very close to the CRLB with an unknown PLE or target lo-
cation due to a good initial value of the PLE. Then, with more iterations, the knowledge
of the target location and the PLE becomes better, thus improving the performance of
the RSDP-BCDE over the CRLB with unknown PLE or target location. Additionally, the
RSDP-BCDE converges quickly under a small measurement noise.

To end this section, we can conclude from the numerical results that even if the path-
loss model is unknown, the RSDP-BCDE is still able to obtain an accurate location esti-
mate. However, note that the SDP procedure has a very large complexity in each iter-
ation. Hence, if the PLE is already accurate enough, we can similarly replace the SDP
procedure with the A-BLUE or the LE to estimate the location such that the total com-
putational complexity can be greatly reduced.

2.5. CONCLUSIONS

A whitened model for DRSS-based localization has been introduced and studied. Based
on such a model, we have proposed and analyzed three different estimators for a

known path-loss model (i.e., the A-BLUE, the LE and the RSDPE), where the latter is ro-
bust against an imperfect PLE estimate or inaccurate anchor location information. We
have also proposed one robust iterative estimator for an unknown path-loss model (i.e.,
the RSDP-BCDE).

Simulation results have shown that, when the PLE is known, our three proposed es-
timators outperform an RSS-based joint estimator (SDP-RSS), which applies the SDP-
procedure on an `1-norm approximation, as well as a recent weighted least squares
estimator (WLS-DRSS), which requires perfect knowledge of the variance of the mea-
surement noise. The performance of our three proposed estimators for a known PLE is
studied under different noise conditions, different PLEs, imperfect PLE knowledge and
inaccurate anchor location information. Their computational complexities are also in-
vestigated. Each estimator has its own advantages: the A-BLUE has the lowest compu-
tational complexity; the LE yields the best performance for a small measurement noise;
and the RSDPE holds the best accuracy under a large measurement noise, an imperfect
PLE and inaccurate anchor location information. Besides, in case of an unknown PLE,
it is finally shown that, with more iterations, the performance of the RSDP-BCDE can
approach that of the RSDPE with a known path-loss model. In real-life, to meet different
practical demands when encountering different situations, different proposed estima-
tors are provided as options.
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2.6.1. RSS COLLECTION

A SSUME the received signal y(t ) with the time index t can be expressed as

y(t ) = x(t )?h(t )+n(t ), (2.44)

where ? denotes the convolution operator, x(t ) is the transmitted signal, h(t ) indicates
the channel response and n(t ) is the additive zero-mean white Gaussian noise. In most
literature, the RSS refers to the signal power after a successful demodulation. To be spe-
cific, if the signal y(t ) can successfully be demodulated, n(t ) is cancelled and hence we
can easily observe the signal envelope r (t ) , |x(t )?h(t )|, from which the RSS can be
computed. In [4, 5], real-life experiments have been conducted to collect RSS measure-
ments from demodulated signals, thereby demonstrating that the noise can be ignored.
Moreover, the case of no signal demodulation is also investigated therein, but we feel
this is beyond the scope of this paper.

To further explain the RSS collection procedure, we notice that r (t ) is affected by
small-scale fading. For simplicity, we will remove the time index t from now on to repre-
sent an instantaneous value. If the Nakagami-m distribution is considered, which actu-
ally characterizes the instantaneous signal envelope r , the instantaneous received power
p , r 2 is Gamma distributed as

P(p|Ω) = 1

Γ(m)

(m

Ω

)m
pm−1e−

mp
Ω . (2.45)

where m is the fading parameter and a small value of m indicates a severe fading. The
other parameter Ω, defined as Ω , E(p), is the RSS to collect, but expressed in watts.
Therefore, collecting RSS measurements corresponds to estimatingΩ.

DenotingΩi as theΩ associated with the i -th anchor, the maximum likelihood (ML)
estimate ofΩi is readily given by

Ω̂i = 1

K

K∑
k=1

p(k)
i , (2.46)

where p(k)
i ,∀k = 1, ...,K , represent K consecutive samples of p related to the i -th anchor.

Due to the fact that V ar (p) = Ω2

m , we can easily obtain

V ar (Ω̂i ) = Ω2
i

K m
, (2.47)

which indicates that the estimation error can be reduced by taking more samples. Obvi-
ously, the ML estimate Ω̂i is unbiased and, denoting Ω̂i =Ωi+∆Ωi ,∆Ωi is asymptotically

Normal distributed as ∆Ωi ∼N (0,σ2
∆Ωi

) with σ2
∆Ωi

= Ω2
i

K m .
Expressing the RSS estimate in dB and applying the first-order Taylor series expan-

sion w.r.t. ∆Ωi results in

P̂i = 10log10(Ω̂i ) = 10l og10(Ωi +∆Ωi ) ≈ Pi +∆Pi , (2.48)
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Figure 2.7: Performance of RSS collection under different sample sizes and different values of m andΩ.

where the estimation error of P̂i is denoted as∆Pi , 10
ln(10)

∆Ωi
Ωi

and hence∆Pi ∼N (0,σ2
∆Pi

)

with σ2
∆Pi

= 100
l n(10)2K m

. We notice that, compared withσ2
∆Ωi

, σ2
∆Pi

does not depend onΩi

any more, i.e., the RSS estimation error in dB is independent of the anchors. This means
that, even if not enough samples are collected, the impact of ∆Pi is still similar to that of
the shadowing effect χi . We have also conducted a simple simulation for RSS collection.
As shown in Fig. 2.7, the collection error decreases with a large m and more samples.
But more importantly, different values of Ω yield no significant impact on the collection
error if considered in dB. In a nutshell, we can assume the RSS is perfectly collected in
this paper without loss of generality.

2.6.2. DERIVATION FROM RSS-BASED MODEL

I N this appendix, we show that our whitened DRSS-based model can also be derived
from a properly whitened RSS-based model after orthogonally projecting out the un-

known P̄0.
To show that, let us first rewrite (2.1) as

||x−si ||22 =
P̄ ′

0∆P ′
0,i χ

′
i

P ′
i

, (2.49)

where P ′
i , 10

Pi
5γ , P̄ ′

0 , 10
P̄0
5γ , ∆P ′

0,i , 10
∆P0,i

5γ , χ′i , 10
χi
5γ and the reference distance is

again d0 = 1 m without loss of generality. For a sufficiently small noise and using the
first-order Taylor series expansion on (2.49), we obtain

||x||22 −2sT
i x+||si ||22 =

P̄ ′
0

P ′
i

[
1+ ln(10)

5γ
ni

]
, (2.50)

where ni =∆P0,i +χi . Then, we can formulate a linear model as

Bφ= h+ς (2.51)

where

B,


...

...
...

2sT
i −1 1/P ′

i
...

...
...

 ,
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φ, [x, ||x||22, P̄ ′
0]T , h, [· · · , ||si ||22, · · · ]T and ς, [· · · ,− ln(10)P̄ ′

0
5γP ′

i
ni , · · · ]T . Every element of ς,

say ςi , is a zero-mean Gaussian variable with variance
[ln(10)]2P̄ ′2

0 σ
2
n

25γ2P ′2
i

and hence the covari-

ance matrix ofς can be expressed asΣς = l n(10)2P̄ ′2
0 σ

2
n

25γ2 D′−2, where D′ = diag([P ′
1, · · · , P ′

N ]T )

with diag(·) a diagonal matrix with its argument on the diagonal.
Let us first describe the relation between the model in (2.4) and the RSS-based model

in (2.51). By recalling the definitions of p and h, we can easily observe that p = Ph, where
P ,

[
1(N−1)×1 diag([−P ′

2,1, · · · , −P ′
N ,1]T )

]=− 1
P ′

1
ΓD′, and similarly, PBφ=Ψθ and

Pς= ε.
Hence, before the whitening procedure, the DRSS-based model (2.4) can be viewed

as the RSS-based model (2.51), where we remove the influence of P̄ ′
0 by applying the

transformation matrix P. However, it is hard to judge at this point whether this operation
will cause a loss of information or not.

In order to do that, let us first whiten the RSS-based model (2.51), which leads to

Σ−1/2
ς Bφ=Σ−1/2

ς h+Σ−1/2
ς ς (2.52a)

⇒ D′Bφ= D′h+D′ς (2.52b)

⇒ B′φ= h′+ς′, (2.52c)

where B′ ,D′B, h′ ,D′h and ς′ ,D′ςwith the covariance matrix Σς′ = l n(10)2P̄ ′2
0 σ

2
n

25γ2 IN .

Now, to see the relation between our whitened DRSS-based model (2.7) and this
whitened RSS-based model (2.52), we can show thatΦθ = (ΓΓT )−1/2PBφ= P′B′φ, where
P′ ,− 1

P ′
1

(ΓΓT )−1/2Γ. So, after the whitening procedure, the whitened DRSS-based model

(2.7) can be viewed as the whitened RSS-based model (2.52), where we remove the influ-
ence of P̄ ′

0 by applying the transformation matrix P′. The crucial observation now is
that this transformation matrix P′ is a (scaled) unitary operator, i.e., P′P′T = 1

P ′2
1

IN×N ,

and hence by taking differences of RSSs to eliminate the unknown transmit power, our
whitened DRSS-based model does not entail any loss of information compared to the
whitened RSS-based model.

2.6.3. CRAMÉR-RAO LOWER BOUNDS

T O derive the Cramér-Rao lower bounds (CRLBs) used in this paper, we recall from
(2.2) that the vector of DRSS samples, sayπ, is Gaussian distributed asπ∼N (µ,Σπ),

where for i 6= 1 we haveπ, [· · · ,Pi ,1, · · · ]T ,µ= [· · · ,µi , · · · ]T withµi =−10γl og10

( ||x−si ||2
||x−s1||2

)
and according to (2.6), Σπ =σ2

nΓΓ
T .

To obtain the CRLB, the Fisher information matrix (FIM) can be computed as [56]

[J]n,m =
[
∂µ

∂θn

]T

Σ−1
π

[
∂µ

∂θm

]
+ 1

2
tr [Σ−1

π

∂Σπ

∂θn
Σ−1
π

∂Σπ

∂θm
], (2.53)

where depending on the scenarios θ = x, θ = [xT ,γ]T , or θ is the scaler θ = γ, and
∂µ
∂θn

, [· · · , ∂[µ]i
∂θn

, · · · ]T . Since Σπ does not depend on θ, we can simplify (2.53) as [J]n,m =
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[
∂µ
∂θn

]T
Σ−1
π

[
∂µ
∂θm

]
. Letting x = [x1, · · · , xd ]T and si = [si ,1, · · · , si ,d ]T , we obtain

∂[µ]i

∂xk
=− 10γ

l n(10)

(xk − si ,k )||x−s1||22 − (xk − s1,k )||x−si ||22
||x−si ||22||x−s1||22

,

k = 1, · · · ,d

(2.54)

and ∂[µ]i
∂γ =−10log10

( ||x−si ||2
||x−s1||2

)
.

CRLBs on Joint Location Estimate and PLE Estimate In this case, θ = [xT ,γ]T in Rd+1

and the CRLB for the location estimate is obtained as

C RLB1 =
√√√√ d∑

k=1

[
J−1

]
k,k ,

while the CRLB for the PLE estimate is obtained as

C RLB2 =
√[

J−1
]

d+1,d+1.

CRLB on Location Estimate with a Known PLE In this case, θ = x in Rd and the CRLB
for the location estimate with a known PLE is obtained as

C RLB3 =
√√√√ d∑

k=1

[
J−1

]
k,k .

CRLB on PLE estimate with a known location In this case, θ = γ and the CRLB for the
PLE estimate with a known location is simply given by

C RLB4 =
√

1/[J]1,1,

where we note that J is just a scaler here.
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3
ON A UNIFIED FRAMEWORK FOR

LINEAR NUISANCE PARAMETERS

Yongchang HU and Geert LEUS

Cease to struggle and you cease to live.

Thomas Carlyle

Estimation problems in the presence of deterministic linear nuisance parameters arise in
a variety of fields. To cope with those, three common methods are widely considered: 1)
jointly estimating the parameters of interest and the nuisance parameters; 2) projecting
out the nuisance parameters; 3) selecting a reference and then taking differences between
the reference and the observations, which we will refer to as "differential signal process-
ing". A lot of literature has been devoted to these methods, yet all following separate paths.

Based on a unified framework, we analytically explore the relations between these three
methods, where we particularly focus on the third one and introduce a general differential
approach to cope with multiple distinct nuisance parameters. After a proper whitening
procedure, the corresponding best linear unbiased estimators (BLUEs) are shown to be
all equivalent to each other. Accordingly, we unveil some surprising facts, which are in
contrast to what is commonly considered in literature, e.g., the reference choice is actually
not important for the differencing process. Since this paper formulates the problem in a
general manner, one may specialize our conclusions to any particular application. Some
localization examples are also presented in this paper to verify our conclusions.
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3.1. INTRODUCTION

T HE problem of estimating unknown parameters of interest x ∈RL×1 observed through
a linear transformation H ∈RN×L (N > L), and corrupted by additive noise n ∈RN×1,

has been well studied and considered in a wide variety of fields [1]. However, the ob-
servations y ∈ RN×1 are sometimes also influenced by unknown linear nuisance param-
eters, denoted by u ∈ RM×1 which enter y through the linear transformation G ∈ RN×M

(N > M). For instance, these nuisance parameters could be some common offsets such
as the transmit time, the clock bias and the transmit power in time-of-arrival (TOA) or re-
ceived signal strength (RSS) based localization [2], or they could represent some redun-
dant signals like the undesired signatures in hyperspectral imaging [3]. In fact, estima-
tion problem with linear nuisance parameters widely exist in many other fields such as
communications [4–6], source separation [7] and machine learning [8, 9]. Though, only
Bayesian approaches are generally studied in case of nuisance parameters [1, 10, 11]. In
this paper, we mainly adopt deterministic approaches, for which we first formulate our
general model with linear nuisance parameters as

y = Hx+Gu+n, (3.1)

where we assume that

1. the concatenation of H and G has full column rank, i.e., Rank([H G]) = L+M ;

2. the noise n is zero-mean, i.e., the expected value of n is E(n) = 0;

3. the noise n is white (e.g. after whitening), i.e., the covariance matrix Σn is (scaled)
identity Σn =σ2IN , where IN is the N ×N identity matrix.

Note the noise n does not have to be Gaussian distributed 1, although it is true for
many cases.
To cope with this kind of problem in case u is deterministic, three methods are of-

ten considered: 1) the joint estimation approach estimates the unknown x together with
the unknown nuisance term u (e.g., the location and the unknown clock bias in [13]);
2) the orthogonal subspace projection (OSP) approach projects out the nuisance term u
such that the resulting observation vector is only subject to x (e.g., the extraction of the
desired signature in [14]); 3) the differential signal processing approach firstly chooses a
reference and then estimates x from the differences between the reference and the obser-
vations [15–19]. Note that these methods obviously result in three distinct observation
sets with different signal-to-noise ratios (SNRs), which will greatly influence the estima-
tion performance. Therefore, a vast amount of research has been conducted on these
methods, though all following separate paths. Admittedly, some early results have been
reported bridging the first two methods. For instance, the famous OSP-based solution
using a matched filter to maximize the output SNR proposed in [20] was later on proven
to be equivalent to the least squares (LS) approach based on the joint estimation [21, 22].
However, the proposed differential approaches are still widely regarded as a common
but distinct way to cope with linear nuisance parameters. One of the most famous ap-
plications is time-based localization (TOA or time-difference-of-arrival (TDOA)), where

1For example, the noise n could also be uniform, Laplace or student’s t-distributed [12]
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many papers exist on selecting an optimal reference [23–25], constructing an optimal
observation subset [26–28], or just using the full observation set adopting each sample
as a reference [29–31]. All these issues never occur in the first two methods due to the
fact that they are free of a reference. In a nutshell, there still seems to be a huge and
inevitable gap between the differential approaches and the other two.

This paper analytically investigates the relations between all three methods, where
the corresponding best linear unbiased estimators (BLUEs) are presented and discussed.
Since the general framework in (3.1) is used throughout this paper, all the conclusions
apply to any kind of problem that can be written in this form, which is exactly the strength
of this paper. We also present some localization examples to verify our conclusions. To
summarize, the main contributions of this paper are listed below.

1. For the first time, we extend the differential signal processing approach to a more
general framework, which can cope with multiple nuisance parameters, whereas
most existing methods consider a single nuisance parameter.

2. Surprisingly, the BLUEs of the three considered methods are proven rigorously to
be identical to each other if an appropriate preprocessing step is used. This might
be expected or known w.r.t. the first two methods, but the equivalence with differ-
ential methods has never been reported before.

3. Compared with the joint estimation method, which directly utilizes all the original
observations, none of the other two methods suffers any information loss.

4. Although differential methods seem to rely on the selected reference, selecting the
right reference is not important since there is no actual trace of the selected ref-
erence in the corresponding BLUE. This is in sharp contrast to what is commonly
considered in literature.

5. As far as the differencing process is concerned, the differential observation set as-
sociated with a single reference already preserves the full data information.

The rest of this paper is organized as follows. Section 3.2 presents the relations be-
tween the three considered methods. Some examples of source localization are shown
and numerically studied to support our conclusions in Section 3.3. Finally, Section 3.4
summarizes this paper.

3.2. HANDLING LINEAR NUISANCE PARAMETERS

I N this section, we study the relations between the joint estimation, the OSP-based es-
timation and the differential estimation by investigating their corresponding BLUEs,

where for the first time a general differential approach is introduced coping with multi-
ple nuisance parameters.

3.2.1. JOINT ESTIMATION

T HE joint least squares (JLS) estimate of x and u, based on the model (3.1), is given by[
x̂jls

ûjls

]
=

([
HT

GT

][
H G

])−1 [
HT

GT

]
y, (3.2)
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where we have used the fact that the augmented matrix
[
H G

]
has full column rank.

Obviously, x̂jls is the BLUE, since n is zero-mean white noise, according to the Gauss-
Markov Theorem [1].

3.2.2. OSP-BASED ESTIMATION

I F we prefer to project out the nuisance term u, an orthogonal subspace projector can
be formulated [20] as

P⊥
G , IN −GG†, (3.3)

where [·]† indicates the pseudo-inverse which is given by G† , (GT G)−1GT , since G is
assumed to have full column rank. Applying P⊥

G to our original model in (3.1) results in a
new model

P⊥
G y = P⊥

G Hx+P⊥
G n, (3.4)

where the impact of the nuisance term u is eliminated. Due to the symmetry and the
idempotence of an orthogonal subspace projector, i.e., P⊥

G = P⊥T
G and P⊥

G = P⊥2
G , we ob-

tain the covariance matrix of the model noise in (3.4) asΣP⊥
G n =σ2P⊥

G P⊥T
G =σ2P⊥

G . Then,

following the OSP-based model (3.4), the corresponding LS optimization problem can
be formulated as

min
x

||P⊥
G y−P⊥

G Hx||22, (3.5)

which leads to the following OSP-based LS estimate Type I of x

x̂osp−1 = (HT P⊥T
G P⊥

G H)−1HT P⊥T
G P⊥

G y

= (HT P⊥
G H)−1HT P⊥

G y.
(3.6)

However, the model noise P⊥
G n in (3.4) is not white, i.e., ΣP⊥

G n is not a (scaled) iden-

tity. Moreover, the orthogonal subspace projector P⊥
G is obviously singular, which implies

that the covariance matrix ΣP⊥
G n is not invertible and hence can not be used to whiten

the model (3.4). Therefore, it is very difficult to decide at this point whether x̂osp−1 is the
BLUE or not.

To cope with that, we need to introduce another type of OSP-based LS estimator for
x. If this estimator can be shown to be the BLUE and can also be proven equivalent to
x̂osp−1, then we can conclude that both of them are the BLUE.

Assume that Un ∈ RN×(N−M) contains orthonormal basis vectors spanning the null
space of G. Then, the idea of this second OSP-based estimator is to adopt the null space
of G to remove the impact of u. More specifically, pre-multiplying UT

n on both sides of
our original model leads to

UT
n y = UT

n Hx+UT
n n. (3.7)

Note that (3.4) can be obtained from (3.7) by multiplying it on both sides with Un since
Un UT

n = P⊥
G [32], and hence these two models are basically equivalent. We can also see

that, since Un is an isometry, the model noise UT
n n remains white, i.e., the covariance

matrix of UT
n n is ΣUT

n n = σ2UT
n Un = σ2IN−M , which means that the LS estimate of this

model is the BLUE.
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Applying the LS criterion to the model (3.7) results in the optimization problem

min
x

||UT
n y−UT

n Hx||22, (3.8)

from which we can obtain the OSP-based LS estimate type II of x as

x̂osp−2 = (HT Un UT
n H)−1HT Un UT

n y. (3.9)

Due to the fact that Un UT
n = P⊥

G , we obtain the equivalence x̂osp−1 ≡ x̂osp−2 and hence
both estimators represent the BLUE. In the later simulations, these two OSP-based BLUEs
will be considered together for convenience.

Finally, to end this subsection, we would like to focus on the equivalence between
the joint estimation and the OSP-based estimation approaches. In fact, the equivalence
between x̂jls and x̂osp−1 is already known [21, 22, 33], but we found it useful to revisit this
result from a different viewpoint. To be explicit, applying the block-wise inversion to
(3.2), we can easily rewrite the joint LS estimate of x and u as

[
x̂jls

ûjls

]
=

[
MG −MGHT (G†)T

−MHGT (H†)T MH

][
HT

GT

]
y,

=
[

MGHT −MGHT (G†)T GT

MHGT −MHGT (H†)T HT

]
y,

=
[

MGHT P⊥
G

MHGT P⊥
H

]
y,

(3.10)

where MG , (HT P⊥
G H)−1 and MH , (GT P⊥

HG)−1 with P⊥
H , I−HH†. From (3.10), we can

directly observe that x̂jls = MGHT P⊥
G y and hence

x̂jls ≡ x̂osp−1 ≡ x̂osp−2,

where the equivalence between x̂jls and x̂osp−2 is an interesting observation that has
never been directly reported before, to the best of our knowledge.

3.2.3. DIFFERENTIAL SIGNAL PROCESSING

I N this subsection, we would like to examine differential approaches. This method
firstly selects a reference and then removes the impact of u by taking differences be-

tween the observations and the reference. To be specific, if the j -th observation y j is
selected as the reference, a new differential observation set can be constructed as

d j ,


...

yi − y j
...


(N−1)×1

=Γ j y, i 6= j , (3.11)

where

Γ j ,
[

I j−1 −1( j−1)×1 0
0 −1(N− j )×1 IN− j

]
(N−1)×N

(3.12)
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with 1 the all-one matrix (sizes are mentioned in subscript if needed) and the size of the
observation set is reduced to N − 1 since j is fixed for every element in d j . This type
of observation set is very popular and has wide applications in source localization and
many other areas. Clearly, it can only be used to remove a single nuisance parameter in
case G = 1N×1.

One may also suggest to select the average of the observations as the reference [17,
eq. (28)], thus leading to another kind of differential observation set, given by

davg ,


...

yi − ȳ
...


N×1

= P⊥
1N×1

y (3.13)

where P⊥
1N×1

, I−1N×11†
N×1 = IN − 1

N 1N×N . Sometimes, the use of this type of obser-
vation set to eliminate the nuisance parameters can be implicit[4], i.e., taking the aver-
age of the observations is not clearly pointed out. However, this case can obviously be
linked to the OSP-based estimation with a single nuisance parameter in case G = 1N×1.
Therefore, we are more interested in the simple differencing process of (3.11), where the
reference index j seems to play a significant role.

As already pointed out, (3.11) only eliminates one nuisance parameter. Nevertheless,
we would like to extend this to tackle multiple nuisance parameters, i.e., we would like
to relax the constraint G = 1N×1 to rank(G) = M ≥ 1. The idea we will adopt here is based
on eliminating the impact of the nuisance parameters one by one, which requires M
differencing steps.

To achieve that, we write G = [g1, · · · ,gM ] with gk the k-th column vector of G related
to the k-th nuisance parameter uk (1 ≤ k ≤ M). Thus, our original model in (3.1) can be
rewritten as

y = Hx+ g1u1 +·· ·+gM uM︸ ︷︷ ︸
M nuisance parameters

+n. (3.14)

We then eliminate the nuisance parameters recursively in the order of u1, · · · ,uM , al-
though the explicit ordering is not important. At the k-th iteration, when k −1 nuisance
parameters have already been canceled, the observation vector containing the remain-
ing nuisance parameters can be written as

d(k−1) = H(k−1)x+g(k−1)
k uk +·· ·+g(k−1)

M uM︸ ︷︷ ︸
M−k+1 nuisance parameters

+n(k−1), (3.15)

where the superscript (·)(k−1) indicates the variables after k −1 differencing steps, y(k−1),
g(k−1)

k , · · · ,g(k−1)
M ,n(k−1) ∈ R(N−k+1)×1 and H(k−1) ∈ R(N−k+1)×L . We also assume that, for

k = 1, d(0) = y and similarly H(0) = H,g(0)
k = gk and n(0) = n.

To cancel uk , we first notice that some elements of g(k−1)
k might be zero, i.e, uk yields

no impact on the corresponding observations in d(k−1) and hence these observations
should not be involved in the differencing process at this iteration. Without loss of gen-
erality, we assume that the first K elements of g(k−1)

k are zero, where 1 ≤ K ≤ N −k − 1
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(there should be at least 2 non-zero elements for executing the differencing process).
Then, among the remaining observations impacted by uk , we select the j -th element as
the reference, K +1 ≤ j ≤ N −k +1, and perform the following differencing step

d(k) =



[d(k−1)]1
...

[d(k−1)]K

[d(k−1)]K+1

[g(k−1)
k ]K+1

− [d(k−1)] j

[g(k−1)
k ] j

...
[d(k−1)] j−1

[g(k−1)
k ] j−1

− [d(k−1)] j

[g(k−1)
k ] j

[d(k−1)] j+1

[g(k−1)
k ] j+1

− [d(k−1)] j

[g(k−1)
k ] j

...
[d(k−1)]N−k+1

[g(k−1)
k ]N−k+1

− [d(k−1)] j

[g(k−1)
k ] j


(N−k)×1

=Γ(k)d(k−1), (3.16)

where Γ(k) ,

IK 0

0 Γ(k)
⊥ diag(

[
1

[g(k−1)
k ]K+1

, · · · , 1
[g(k−1)

k ]N−k−1

]T

)

 is the (N −k)×(N −k+1) dif-

ferencing operator for d(k−1) with

Γ(k)
⊥ ,

[
I j−K−1 −1( j−K−1)×1 0

0 −1(N−k− j+1)×1 IN−k− j+1

]
, (3.17)

and obviously Γ(k)g(k−1)
k = 0. Accordingly, the new differential observation vector d(k)

can be formulated as

d(k) =Γ(k)H(k−1)︸ ︷︷ ︸
H(k)

x+Γ(k)g(k−1)
k+1︸ ︷︷ ︸

g(k)
k+1

uk+1 +·· ·+Γ(k)g(k−1)
M︸ ︷︷ ︸

g(k)
M

uM

︸ ︷︷ ︸
M−k nuisance parameters

+Γ(k)n(k−1)︸ ︷︷ ︸
n(k)

,

(3.18)

where uk has been canceled.
We can see that (3.18) is similar to (3.15) with k −1 replaced by k. So it is clear that

this recursive process can remove all nuisance parameters. Note that the number of zero
values K as well as the reference index j could be different in every step, but for simplicity
we use the same notation in every step.

To understand the interaction of the successive differencing steps, let us introduce
the total differencing operator Γ=Γ(M) · · ·Γ(1), where obviously

rank(Γ(k)Γ(k−1)) = rank(Γ(k)) = N −k

and hence Γ has full row rank. Since it is clear that ΓG = 0, the final differential observa-
tion vector d(M) can be expressed as

d(M) =Γy =ΓHx+Γn, (3.19)
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where the covariance matrix of Γn is ΣΓn =σ2ΓΓT .
Observe that the model noise has become correlated ever since the first step of the

differencing process. Therefore, we need to whiten the model in (3.19) as

Σ−1/2
Γn d(M) =Σ−1/2

Γn ΓHx+Σ−1/2
Γn Γn,

=⇒ (ΓΓT )−1/2d(M) = (ΓΓT )−1/2ΓHx+ (ΓΓT )−1/2Γn,

=⇒ Py = PHx+Pn,

(3.20)

where the unknownσ2 is cancelled out at both sides of the equation and P, (ΓΓT )−1/2Γ

which exists since Γ has full row rank. Note that P, as well as Γ and d(k), depend on the
reference indices j that have been chosen in the successive differencing steps, although
this has not been explicitly stated.

Applying the LS criterion, the corresponding optimization problem is now obtained
as

min
x

||Py−PHx||22, (3.21)

which leads to the following BLUE for model (3.19)

x̂d = (HT PT PH)−1HT PT Py. (3.22)

Finally, to prove the equivalence of the estimate x̂d to the previous estimates, i.e., to
prove that

x̂jls ≡ x̂osp−1 ≡ x̂osp−2 ≡ x̂d,

we need to establish the relation PT P = Un UT
n = P⊥

G . To do that, we first recall that ΓG = 0
and that Γ has full row rank. Hence, Γ can always be written as Γ= QUT

n , where Q is an
(N −M)× (N −M) invertible matrix and Un has already been defined before as a basis
that spans the null space of G. The proof is completed by computing

PT P =ΓT (ΓΓT )−1Γ

= Un QT (QUT
n Un QT )−1QUT

n

= Un QT (QT )−1(UT
n Un)−1Q−1QUT

n

= Un UT
n = P⊥

G ,

(3.23)

where we surprisingly notice that, even though P and Γ are subject to possibly different
reference indices j , there is no trace of any j in PT P and hence in x̂d.

A Simple Illustrative Case: We would like to demonstrate these three different meth-
ods, particularly the differential signal processing, with a simple example. Given N = 3
samples, we only assume a single parameter of interest (L = 1), but with two linear nui-

sance parameters (M = 2). We also know that H = [
3 6 7

]T
and G =

[
3 5 2
2 4 8

]T

and hence the joint estimator in (3.2) results into

[
x̂jls

ûjls

]
=

−3.2 2 −0.2
2 −1 0

2.3 −1.5 0.3

y, where
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Table 3.1: Relations between the BLUEs related to the joint estimation, the OSP-based estimation and the
differential estimation.

Models BLUEs Equality Conditions
Original Model in (3.1) Joint Estimator in (3.2) [IL 0L×M ]a, P⊥

G , IN −GG†

OSP Model Type I in (3.4) OSP Estimator Type I in (3.6) P⊥T
G P⊥

G = P⊥
G

OSP Model Type II in (3.7) OSP Estimator Type II in (3.9) Un UT
n = P⊥

G
Differential Model in (3.19) Differential Estimator in (3.22) PT P = P⊥

G
or the Whitened One in (3.20)
a[IL 0L×M ] is used for extracting x̂jls in (3.22).

the parameter estimate of interest is given by x̂jls =
[−3.2 2 −0.2

]
y. Then, we calcu-

late P⊥
G =

 0.7171 −0.4482 0.0448
−0.4482 0.2801 −0.0280
0.0448 −0.0280 0.0028

 and Un = [−0.8468 0.5293 −0.0529
]T

such

that two OSP-based estimators in (3.6) and (3.9) can easily be carried out and proved to
be equal to x̂jls. We will not present more details for simplicity, but particularly focus on
the differential method. Since there exist two linear nuisance parameters, it would take
two steps for eliminating all of them:

1. In the first step (k = 1), we arbitrarily select the third element of y as the refer-

ence ( j = 3). Splitting G by columns, we have g(0)
1 = [

3 5 2
]T

g(0)
2 = [

2 4 8
]T

.
According to (3.16), the new differential observation vector can be obtained as

d(1) = [
y1/3− y3/2 y2/5− y3/2

]T = Γ(1)y, where Γ(1) =
[

1/3 0 −1/2
0 1/5 −1/2

]
. We

can observe from Γ(1)G =
[

0 −10/3
0 −16/5

]
that the impact of the first nuisance param-

eter u1 is already eliminated. Also g(1)
2 = Γ(1)g(0)

2 corresponds to the last column
and the next nuisance parameter u2.

2. In the second step (k = 2), the first element of d(1) is selected as the reference
( j = 1). The differential observation becomes a scalar as d(2) =− 5

16 (y2/5− y3/2)+
3

10 (y1/3 − y3/2) = Γ(2)d(1) = Γy, where Γ(2) = [
3/10 −5/16

]
and Γ = Γ(2)Γ(1) =[

1/10 −1/16 1/160
]
. Now, we can readily observe that all the nuisance param-

eters are eliminated, since ΓG = 0.

With a known Γ, we can easily whiten the model in (3.19) and obtain the differential
estimator in (3.22). Moreover, the equivalence of the differential estimation can also be
proved by observing PT P =ΓT (ΓΓT )−1Γ= P⊥

G .

3.2.4. DISCUSSION

W E have studied estimation problems in the presence of deterministic linear nui-
sance parameters based on a general model. Therefore, all the conclusions drawn

in this paper are applicable to any optimization problem with a data model that matches
our general model (3.1). The equivalences between the BLUEs of the joint estimation,
the OSP-based estimation and the differential estimation are summarized in Table. 3.1
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and also in Fig. 3.1. Some interesting observations from these equivalences are listed
below:

1. The joint estimation has to estimate both x and the nuisance term u while the
other two estimation approaches remove the impact of u before estimating x.

2. For the OSP-based estimation, in order to remove the impact of u, using P⊥
G ac-

tually colors the noise, but using UT
n keeps the model noise white. Interestingly

though, the corresponding LS estimates for those two models are theoretically
equivalent and hence they are both the BLUE.

3. In many applications, the differential processing is commonly considered as a sep-
arate and independent approach. But, in this paper, we have generally proven its
equivalence to the joint estimation and the OSP-based estimation. The differential
approach removes the impact of the nuisance parameters by taking differences be-
tween the reference and the observations. If one of the observations is selected as
a reference, the obtained differential observation set has to be properly whitened
in order to obtain the BLUE for this model.

4. From an information theoretic perspective, the joint estimation, which directly
utilizes the observations y, preserves the full data information, and any prepro-
cessing on the observations might cause an information loss. However, in this
paper, all the other BLUEs have been proven to be equivalent to the BLUE of the
joint estimation, which implies that neither the OSP-based estimation nor the dif-
ferential estimation suffers any information loss by removing the impact of the
nuisance parameters.

5. It is also worth noting that, for the differential approach, selecting which observa-
tion will function as a reference is not important, since the reference index j yields
no impact on the BLUE. This is in sharp contrast to what is commonly considered
in literature.

6. One might notice that, in the differencing process, N observations can generate
a maximum of N (N − 1)/2 distinct observation differences. In contrast, we only
study the estimation problem based on a subset, which is associated with a single
reference and corresponds to N − 1 observation differences. However, from the
above conclusions, it is clear that the considered subset already preserves all the
information (independent of the reference), which implies that the full set obtains
no more information than any subset does. Also this is a novel observation.
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3.3. LOCALIZATION EXAMPLES

B Y studying the relations between the BLUE of the joint estimation, the OSP-based
estimation and the differential estimation, the essence of this paper is to provide

some in-depth understanding of coping with unknown nuisance parameters. Some im-
portant underlying equivalences have been unveiled, especially the one related to the
differential method, since, in many applications, this approach is still considered as a
separate optimization problem. Owing to the generality of this paper, one may easily
apply our analyses and conclusions to some particular applications, if the data model
can be (re)formulated to match our general model (3.1). Some specific localization ex-
amples are detailed next.

3.3.1. TIME-BASED LOCALIZATION

B OTH TOA and TDOA based localization are called time-based localization[2], since
they both rely on time measurements (either the global time or the local time). The

essence of this kind of localization problem is how to accurately extract distance-related
information (e.g., the time of flight (TOF)). Directly using TOA measurements requires
not only perfect clock synchronization between the emitters and the receivers but also
the knowledge of the transmitting time[34]. In cooperative networks, where clock syn-
chronization is frequently carried out (because the inner clock might drift over time)
and the transmitting times are also piggybacked with the transmitted signals, one can
precisely calculate the TOFs from the TOA measurements and then localize the target
node. However, it is often very expensive to meet those requirements and most networks
are constrained by limited resources and capabilities. Therefore, in most cases, sensors
suffer from two linear nuisance parameters, i.e., the unknown clock biases to the global
time and the unknown transmitting times.

In this example, we assume N anchor nodes that are perfectly synchronized with the
global time and there exists only a clock bias in the target node, which broadcasts beacon
signals at unknown local transmit times. We denote xt ∈ Rd as the target location and
si ∈ Rd as the i -th anchor location. For convenience, a single unknown global transmit
time t0 is considered for the target node, instead of the local transmit time plus the clock
bias. Taking the speed of light c into account, we obtain the TOA measurements as

d = r(xt )+1N×1ro +n, (3.24)

where the element di of d indicates the TOA measurement from the i -th anchor, r(xt )
stacks ri , ||xt − si ||2, ro , ct0 and n is the vector of the measurement noise ni with
n ∼ N (0,σ2IN ). Note that, compared with more realistic scenarios, the model (3.24) is
simplified for convenience, but still adequate to make our point.

TAYLOR SERIES EXPANSION

O BVIOUSLY, the non-linearity of (3.24) is a very serious issue for localization, other
than the nuisance parameter. Many methods, especially those considering mobile

scenarios, directly linearize (3.24) by a Taylor series expansion (TSE) [35]. Note that this
kind of method is very similar to the Gauss-Newton (GN) method[36] and holds the max-
imum likelihood (ML) property. Since we can obtain the estimate of xt by iteratively up-
dating the previous iteration, we first have to apply the TSE to (3.24) around the target
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location estimate x̂(k−1)
t at the (k −1)-th iteration, thus resulting into

d = r(x̂(k−1)
t )+ ∂r

∂xT
t

∣∣∣∣∣
xt=x̂(k−1)

t

(xt − x̂(k−1)
t )+1N×1ro +n.

Then, we rearrange the above equation and present the TSE model for iteration step k as

d− r(x̂(k−1)
t )+ ∂r

∂xT
t

∣∣∣∣∣
xt=x̂(k−1)

t

x̂(k−1)
t = ∂r

∂xT
t

∣∣∣∣∣
xt=x̂(k−1)

t

xt +1N×1ro +n

⇒δ(k−1) =∆(k−1)xt +1N×1ro +n,

(3.25)

where δ(k−1) , d− r(x̂(k−1)
t )+∆(k−1)x̂(k−1)

t , and

∆(k−1) ,
∂r

∂xT
t

∣∣∣∣∣
xt=x̂(k−1)

t

=
[

. . . ,
(x̂(k−1)

t −si )T

||x̂(k−1)
t −si ||2

, . . .

]T

.

The localization problem at the k-th iteration boils down to estimating xt from (3.25)
to update the location estimate from the (k −1)-th iteration. The relation between the
TSE model and the general model (3.1) is presented in Table 3.2 on page 98. Note that
since the discussed approaches can directly be applied to the TOA measurements with
a single nuisance parameter (M = 1), the differential approach applied to the TOA mea-
surements actually corresponds to working with the TDOA measurements, i.e.,

...
di , j

...

=


...

di −d j
...


(N−1)×1

, i 6= j . (3.26)

However, to avoid any confusion with the TDOA methods we will discuss later on, we
will refer to this method as the differential approach applied to the TSE model of the
TOA measurements.

SQUARED DISTANCE

T HE TSE method highly relies on an appropriate initialization that is near the global
solution, otherwise it might converge to a local minimum. Thus, some closed-form

solutions were proposed to solve this non-convex problem, which requires squaring the
distance norm (SD) for linearization[37]. Unlike the TSE method, the SD method de-
pends on the type of measurements, since different modeling steps are carried out for
TOA and TDOA measurements.

TOA: Let us first focus on the SD method based on the TOA measurements which can
be expressed as

di = ||xt −si ||2 + r0 +ni . (3.27)
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Moving r0 to the other side and squaring both sides of the equation, we obtain

(di − ro)2 = (||xt −si ||2 +ni )2

⇒−2sT
i xt +||xt ||22 − r 2

0 −2di r0 = d 2
i −||si ||22 −2ri ni −n2

i ,
(3.28)

where r 2
0 is viewed as a new nuisance parameter. As a result, a linear model with two

nuisance parameters (M = 2) can be formulated as

z1 = A1θ1 +ε1, (3.29)

where A1 ,


...

...
...

−2sT
i 1 −2di

...
...

...

 , θ1 ,

 xt

||xt ||22 − r 2
0

r0

 , z1 ,


...

d 2
i −||si ||22

...

 and

ε1 ,


...

2ri ni +n2
i

...

≈


...

2ri ni
...

= 2D1n. (3.30a)

Here, we denote D1 = diag([r1, · · · ,rN ]T ) with diag(·) as a diagonal matrix with its argu-
ment on the diagonal, and hence Σε1 = 4σ2D2

1. This SD-TOA model is widely consid-
ered [38–42]. Some researchers apply the differencing process to remove the nuisance
parameters [25, 34, 43–46] while some others use the OSP method [17, 47]. Note that the
model noise in (3.30a) is still not white and hence an appropriate whitening procedure
is required. Assuming D1 is perfectly known, we can whiten the model (3.29) as

Σ−1/2
ε1

z1 =Σ−1/2
ε1

A1θ1 +Σ−1/2
ε1

ε1 (3.31a)

⇒ D′
1z1 = D′

1A1θ1 +D′
1ε1 (3.31b)

where D′
1 , D−1

1 and the covariance matrix of D′
1ε1 is now a scaled identity, i.e., ΣD′

1ε1
=

4σ2IN . In practice, a LS estimate based on the model (3.29) can first be used to construct
an estimate of D1 for carrying out the whitening. Then, the estimate of D1 can be repeat-
edly updated to approach the true D1 with a more accurate location estimate. In this
paper though, we only want to evaluate its best performance and hence directly use the
true D1. Finally, expressing A1 = [A′

1,A′′
1 ] with A′

1 and A′′
1 respectively containing the first

d and the remaining columns, the relation between the whitened SD-TOA model and
the general model (3.1) is presented in Table 3.2 on page 98.

TDOA: Directly applying the differencing process on the TOA observations d removes
the unknown nuisance parameter r0, resulting in the TDOA measurements

di , j = ||xt −si ||2 −||xt −s j ||2 +ni , j , i 6= j , (3.32)

where ni , j = ni −n j . Introducing r j = ||xt − s j ||2 as a new unknown parameter, we can
linearize (1.2) using the following squaring operation

(di , j + r j )2 = (||xt −s j − (si −s j )||2 +ni , j )2

⇒−2(si −s j )T xt −2di , j r j = d 2
i , j +||s j ||22 −||si ||22 −2ri ni , j −n2

i , j

. (3.33)
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As a result, a linear model with a single unknown nuisance parameter r j (M = 1) can be
formulated as

z2 = A2θ2 +ε2, (3.34)

where A2 ,−2


...

...
(si −s j )T di , j

...
...

 , θ2 ,
[

xt

r j

]
, z2 ,


...

d 2
i , j +||s j ||22 −||si ||22

...

 and

ε2 ,


...

2ri ni , j +n2
i , j

...

≈


...

2ri ni , j
...

= 2D2Γ j n. (3.35a)

Here, we denote D2 = diag([· · · ,ri , · · · ]T ), i 6= j and hence Σε2 = 4σ2D2Γ jΓ
T
j DT

2 . Also

this SD-TDOA model has been commonly adopted in literature [15, 34, 48–52]. Among
the TDOA localization techniques based on this model, the famous Chan algorithm [15],
from which many others stem, is actually equivalent to some earlier works [53–55], where
the unknown r j is simply removed by the OSP method. Again, note that the model noise
(3.35a) is not white. Assuming D2 is perfectly known (as already explained for D1, in
practice, D2 should be iteratively estimated), we can whiten the model (3.34) as

Σ−1/2
ε2

z2 =Σ−1/2
ε2

A2θ2 +Σ−1/2
ε2

ε2 (3.36a)

⇒ D′
2z2 = D′

2A2θ2 +D′
2ε2, (3.36b)

where D′
2 , (D2Γ jΓ

T
j DT

2 )−1/2 and the covariance matrix of D′
2ε2 is now a scaled identity,

i.e., ΣD′
2ε2

= 4σ2IN−1. Finally, we split A2 into A2 = [A′
2,A′′

2 ] with A′
2 and A′′

2 respectively
containing the first d and the remaining columns. The relation between the whitened
SD-TDOA model and the general model (3.1) is finally presented in Table 3.2 on page 98.

Numerical results: We have conducted a Monte Carlo simulation with 1000 trials to
verify our conclusions, where the BLUEs of the joint estimation, the OSP-based estima-
tion and the differential estimation are carried out for each one of the discussed time-
based models. Some LS estimators without a proper whitening process are also pre-
sented for comparison. The acronyms of all estimators used in the simulations are sum-
marized in Table 3.3 on page 98. We also calculate the Cramér-Rao lower bound (CRLB)
with an unknown r0 based on the original model (3.24) [1, Chapter 3], since the TSE,
SD-TOA and SD-TDOA models all lose some information by ignoring some high-order
terms. The root mean square error (RMSE) of the location estimate, which is defined
as

√
E [(x̂−x)2] in general, is used as a performance measure in this paper. From the

numerical results in Fig. 3.2, we can draw the following conclusions.

1. For each model, the corresponding BLUEs yield the same performance as expected.

2. Without a proper whitening, it can be observed that the performance of the LS esti-
mators deteriorates. The D-LS-TSE-TOA, J-LS-SD-TOA and J-LS-SD-TDOA clearly
perform worse than their corresponding BLUEs.
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3. The TSE model ignores O ((xt − x̂(k−1)
t )2) and accordingly suffers some information

loss in modeling. However, the information loss can be reduced with a more accu-
rate x̂(k−1)

t . Therefore, with more iterations, the BLUEs for the TSE model approach
the CRLB, which is in fact the essence of the ML property.

4. The SD-TOA model ignores n2
i ,∀i while the SD-TDOA model ignores n2

i , j ,∀i , i 6= j .

Ignoring these terms will cause an increasing information loss as the measurement
noise gets larger.

5. Even though the BLUEs of the SD-TOA model outperform those of the SD-TDOA
model in our simulation, we still cannot decide at this point which model is the
best. This is because an optimal localization problem for the SD models should
also include any dependence between the (nuisance) parameters, e.g., between xt

and ||xt ||22, and between r0 and r 2
0 in θ1, or between xt and r j in θ2, which explains

the huge gap between the CRLB and the BLUEs for the SD models. By contrast,
the TSE model obviously does not have this kind of issue. Nevertheless, includ-
ing these dependencies is beyond the scope of this paper and we will not further
consider this.

6. In practice, both the TSE and SD methods require iterations to obtain an accurate
location estimate. However, note that, even after serveral iterations, the estimators
based on the SD models still need to cope with the above mentioned dependency
issue. Therefore, in real-life, one often combines those two models, i.e., one uses
the TSE model with the J-LS-SD-TDOA or the J-LS-SD-TOA as an initialization.

7. For the SD-TDOA model, ignoring the terms n2
i , j ,∀i , i 6= j implies that the infor-

mation loss depends on the reference choice of the differencing process in (1.2).
However, this is only because of the SD modeling thereafter, not because of the dif-
ferencing process itself. Note that, for any other differencing process in this paper,
the reference index is not important as long as the model is properly whitened.
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BLUEs for the SD-TOA model

BLUEs for the TSE-TOA model

Figure 3.2: Performance of different time-based estimators: the target node is randomly placed in a 50× 50
field and 10 anchors are deployed with coordinates (50,50), (50,0), (0,50), (0,0), (25,7), (25,43), (12,33), (12,16),
(37,33) and (37,16).
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3.3.2. RECEIVED SIGNAL STRENGTH BASED LOCALIZATION

D UE to the simplicity of utilizing received signal strength (RSS) measurements, wire-
less networks with very constrained resources preferably rely on RSS-based local-

ization [2]. Therefore, it gradually became very popular in recent years and many efforts
have already been put on this topic[56–59].

RSS-based localization mainly suffers from the complicated radio propagation chan-
nel. As before, assume that the target node is located at xt and the i -th anchor at si .
Based on a large-scale log-normal fading model [60], the RSS measurement can then be
modeled as

Pi = P0 −10γl og10

( ||xt −si ||2
d0

)
+ni , i = 1,2, · · · , N , (3.37)

where P0 is the received power at the reference distance d0, γ is the path-loss exponent
(PLE), ni ∼N (0,σ2) is the shadowing effect and N is the number of anchor nodes. RSS-
based localization is aimed at estimating the target location xt from the RSS measure-
ments. However, in some military or hostile scenarios, the transmit power might be
unknown. Therefore, without loss of generality, we assume the reference distance d0

to be 1 m and then the problem of the unknown transmit power can be equivalently
converted into that of an unknown P0. Note that (3.37) also has the non-linearity issue
and, obviously, the iterative TSE model for RSS-based localization will be very similar to
that developed for time-based localization. Therefore, to save space, we do not consider
directly applying the TSE model, but only focus on the SD method here.

To construct a linear data model, we rewrite (3.37) as

||xt −si ||22 =
P ′

0n′
i

P ′
i

, (3.38)

where P ′
i , 10

Pi
5γ , P ′

0 , 10
P0
5γ and n′

i , 10
ni
5γ . Interestingly though, we still need to apply

the TSE to n′
i here2, such that (3.38) can further be approximated as

||xt ||22 −2sT
i xt +||si ||22 =

P ′
0

P ′
i

[
1+ ln(10)

5γ
ni

]
. (3.39)

Then, a linear SD-RSS model for localization can be formulated from (3.39) as

h = Fφ+ς (3.40)

2We use ax = 1+ xln(a)+ ·· ·+ (xln(a))n

n! + ·· · , −∞ < x <∞ [61]. Note that the right hand side of (3.39) is an
approximation, but it is regarded to be exact in this paper.
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where

F,


...

...
...

2sT
i −1 1/P ′

i
...

...
...


N×(d+2)

, (3.41a)

φ,

 xt

||xt ||22
P ′

0


(d+2)×1

, (3.41b)

h,


...

||si ||22
...


N×1

, (3.41c)

ς,


...

ln(10)P ′
0

5γP ′
i

ni

...


N×1

. (3.41d)

This model was firstly presented in [58, eq. (18)], but in the absence of the shadowing
effect. If we whiten the model (3.40) utilizing the covariance matrix of ς, i.e.,

Σς =
[l n(10)]2P ′2

0 σ
2

25γ2 D−2, (3.42)

where D = diag([P ′
1, · · · , P ′

N ]T ), we can obtain

Σ−1/2
ς h =Σ−1/2

ς Fφ+Σ−1/2
ς ς (3.43a)

⇒ Dh = DFφ+Dς (3.43b)

where the covariance matrix of Dς becomes a scaled identity matrix, i.e.,

ΣDς =
ln(10)2P ′2

0 σ
2

25γ2 IN .

Note that this whitening step simply corresponds to an appropriate scaling of every entry
of (3.40).

The whitened model (3.43b) is found to match our general model (3.1), since we no-
tice that DF can be split into

DF =


...

...
...

2sT
i P ′

i −P ′
i 1

...
...

...

= [
F′ 1N×1

]
, (3.44)

where F′ contains the first d +1 columns of DF. The relation between this model and the
general model (3.1) is presented in Table 3.2 on page 98. Note that we only consider a
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single nuisance parameter P ′
0 in this model (M = 1). Although we could consider both

||xt ||22 and P ′
0 as nuisance parameters (M = 2), which would lead to the same perfor-

mance after using the correct preprocessing steps, the reason why we take M = 1 here is
to connect this model to the existing literature. For instance, after removing P ′

0 using a
single differencing step, the model for Γ j Dh is equal to the SD-DRSS model used in [58,
eq. (22)]. However, without an appropriate whitening procedure, the LS estimators of
the SD-RSS and SD-DRSS models yield a different performance, which is why they were
treated and studied separately. Now, we realize that they actually are identical to each
other as long as the model noise is properly whitened.

Numerical results: A simulation has also been conducted to verify our conclusions
for this example. As before, the BLUEs of the joint estimation, OSP-based estimation,
and the differential estimation for the SD-RSS model are evaluated and compared with
some LS estimators without a proper whitening. Based on the original model in (3.37),
the CRLB with an unknown P0 is easy to calculate [1, Chapter 3]. From the numerical
results in Fig. 3.3, the critical observation is that all the BLUEs here yield exactly the
same performance as expected. Due to the colored model noise, the J-LS-SD-RSS and
the D-LS-SD-RSS are relatively worse. Finally, denoting R , ||xt ||22, we again point out
that neglecting the dependence between R and xt results in the gap between the CRLB
and the estimators presented here.

3.3.3. OTHER EXAMPLES

W E believe that there are many other examples with linear nuisance parameters for
our results. However, due to the limited space, we will only point out some of them.

Besides the aforementioned localization examples, if anchors are separated into groups
with different central clocks, multiple relative clock biases might exist in the TDOA mea-
surements for localization, which can be removed by the OSP method [62, eq. (3)]. In
cooperative localization, the multidimentional scaling (MDS) also uses the OSP-based
method to eliminate the unknown terms [63, eq. (3)]. An acoustic source localization
model, which also matches our general model (3.1), was presented in [64, eq. (6)]. In [4,
eq. (2)], the transmission times and clock offsets are the unknown nuisance parameters
for the considered clock synchronization problem. The authors claim that those un-
known parameters are systematically ML estimated before the synchronization. How-
ever, in fact, those nuisance parameters are equivalently removed by using respectively
the observations dav g in (3.13) or the OSP procedure. In hyperspectral imaging, OSP
is also a very common procedure to extract the desired signals[20]. And when track-
ing mobile targets, frequency-difference-of-arrival measurements are often measured
to cope with the Doppler effect[18, 19, 65, 66]. Furthermore, multiple-input-multiple-
output (MIMO) receiver design might be affected by some nuisance parameters like I-Q
imbalance and DC offset [5, eq. (7)]. In machine learning, a well-designed OSP is de-
sired for dimensionality reduction [8, 9]. Extracting and working on the signal space is a
strong need for signal separation [7] and underwater communication [6], which can be
facilitated by OSP. At last, the famous differential global positioning system (DGPS) intro-
duces a reference station on the ground and constructs a new differential observation set
for positioning [67], where even the double differencing process is considered [68–70].
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BLUEs for the SD-RSS model

Figure 3.3: Performance of different RSS-based estimators: the target node is randomly placed in a 50×50 field
and 10 anchors are deployed with coordinates of (50,50), (50,0), (0,50), (0,0), (25,7), (25,43), (12,33), (12,16),
(37,33) and (37,16). The transmit power is set to 10 dBm and the PLE is set to 2.
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3.4. CONCLUSIONS

I N this paper, we have introduced a general framework for estimation in the presence of
unknown linear nuisance parameters. Three different kinds of methods to cope with

the unknown nuisance parameters have been studied, i.e., the joint estimation, the OSP-
based estimation and the differential estimation. These approaches have been analyzed
by investigating their corresponding BLUEs, where a new differential method has been
introduced to cope with multiple nuisance parameters. We have discovered that, after
a proper whitening procedure, all the BLUEs are equivalent to each other. From this
interesting fact, one can draw some useful conclusions:

1. there only exists one unique BLUE for all these methods proposed to cope with
unknown nuisance parameters.

2. compared with the joint estimation, which directly utilizes all the original obser-
vations, none of the other two methods suffers any information loss.

3. for the differential approach, which requires selecting some references, the choice
of the references is not important since there is no actual trace of the selected ref-
erences in the corresponding BLUE.

4. In the differencing process, compared with the full differential observation set, any
subset related to a single reference already preserves the full data information.

The presented analyses of the general model can be projected onto many practi-
cal applications, e.g., hyperspectral imaging, source localization and synchronization.
Some localization examples have also been demonstrated, simulated and discussed to
verify our conclusions.
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SELF-ESTIMATION OF PATH-LOSS

EXPONENT IN WIRELESS

NETWORKS AND APPLICATIONS

Yongchang HU and Geert LEUS

Man errs as long as he strives.

Goethe

The path-loss exponent (PLE) is one of the most crucial parameters in wireless commu-
nications to characterize the propagation of fading channels. It is currently adopted for
many different kinds of wireless network problems such as power consumption issues,
modeling the communication environment, and received signal strength (RSS)-based lo-
calization. PLE estimation is thus of great use to assist wireless networking. However, a
majority of methods to estimate the PLE requires either some particular information of the
wireless network, which might be unknown, or some external auxiliary devices, such as
anchor nodes or the global positioning system (GPS). Moreover, this external information
might sometimes be unreliable, spoofed or difficult to obtain. Therefore, a self-estimator
for the PLE, which is able to work independently, becomes an urgent demand to robustly
and securely get a grip on the PLE for various wireless network applications.

This paper is the first to introduce two methods which can solely and locally estimate
the PLE. To start, a new linear regression model for the PLE is presented. Based on this
model, a closed-form total least squares method to estimate the PLE is firstly proposed,

Parts of this chapter have been published in Annalen der Physik.
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in which, without any other assistance or external information, each node can estimate
the path-loss exponent merely by collecting RSSs. Secondly, in order to suppress the es-
timation errors, a closed-form weighted total least squares method is further developed
having a better performance. Due to their simplicity and independence of any auxiliary
system, our two proposed methods can be easily incorporated into any kind of wireless
communication stack. Simulation results show that our estimators are reliable even in
harsh environments, where the PLE is high. Many potential applications are also explic-
itly illustrated in this paper, such as secure RSS-based localization, k-th nearest neighbor
routing, etc. Those applications detail the significance of self-estimation of the PLE.
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4.1. INTRODUCTION

I N wireless communications, the received instantaneous signal powers at receivers are
commonly modeled as the product of the large-scale path-loss and the small-scale

fading. The large-scale path-loss assumes that the attenuation of the average received
power is subject to the transmitter-receiver distance r as r γ, where γ is the path-loss
exponent (PLE). Due to the dynamics of the communication channel, the PLE varies
over different scenarios and different locations. At the same time, the small-scale fading
constitutes a rapid fluctuation around the average of the received powers and follows a
stochastic process. It is mainly due to the multi-path effect and changes over very small
distances and very small time intervals. However, it can generally be well-suppressed by
means of some special receiver designs and digital signal processing (DSP). Therefore,
the PLE becomes a key parameter to characterize the propagation channel, which sig-
nificantly determines power consumption, quality of a transmission link, efficiency of
packet delivery, etc.

It is of importance to accurately estimate the PLE so that the wireless communication
stack can be dynamically adapted to the PLE changes in order to yield a better perfor-
mance. For instance, a path with a relatively low PLE can be chosen to route messages
in order to save power. The PLE is also significant for some other applications. For in-
stance, to calculate the location of a target node in received signal strength (RSS)-based
localization, accurate PLE estimation is required, which is mostly provided by reference
nodes with known positions. However, in some cases, the reference nodes might be bro-
ken and cannot talk to the target node or the location information of the reference nodes
might be unreliable, or spoofed by an adversary. Then, accurately estimating the PLE will
become a difficult task.

Current methods to estimate the PLE either require some information of the wire-
less network, which is unknown in most cases, or the assistance from auxiliary systems.
Three algorithms are presented in [1]: firstly, when the network density is known, the
PLE can be estimated by observing RSSs during several time slots and by calculating the
mean interference; as regards to the other two algorithms, by changing the receiver’s
sensitivity, the PLE can be estimated either from the corresponding virtual outage prob-
abilities or from the corresponding neighborhood sizes. All three algorithms require the
knowledge of the network density or the receiver settings, and even require changing
them. Other methods to estimate the PLE mostly lie in the area of RSS-based localiza-
tion. As already mentioned, using the RSSs for localization requires an accurate esti-
mate of the PLE, which is tightly related with the transmitter-receiver distance. There-
fore, special reference nodes with known positions, namely anchor nodes, are strate-
gically pre-deployed with the purpose of calibrating the PLE [2]. Considering that the
transmitter-receiver distances between anchor nodes can be difficult or expensive to ac-
curately measure in some environments, the PLE can also be estimated by using received
power measurements and geometric constraints of anchor nodes to avoid the distance
calculation [3]. In the mean time, many efforts have been put to jointly estimate the lo-
cation and the PLE [4–6]. Some other methods start with an initial guess of the PLE to
approximate the location which is then used to update the PLE estimate [7, 8]. However,
all those methods basically rely on the information from anchor nodes or other auxil-
iary systems. Once such systems are attacked, unavailable or generate large errors, the
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impact on the whole system will be unimaginable. Furthermore, the above methods are
also not feasible for many kinds of wireless networks, in which communications and in-
formation exchanges might be highly restricted. Therefore, a new self-estimator of the
PLE is urgently required, which can solely and locally estimate the PLE without relying
on any external assistance. Such an estimator should not only be able to serve localiza-
tion techniques, but can also act as a general method which can be easily incorporated
into any kind of wireless network and any layer of the communication stack.

The rest of the paper is structured as follows. In Section 4.2, we present the system
model considered in this paper and discuss the problem statement. Some new param-
eters are introduced in Section 4.3 to build a linear regression model for the PLE. Sec-
tion 4.4 presents and discusses the derivation of our two proposed path-loss exponent
estimators. Simulation results are given and analyzed in Section 4.5. Many potential
applications are discussed in Section 4.6. Section 4.7 finally summarizes the paper.

4.2. SYSTEM MODEL

I N this section, we introduce some important system model concepts and additionally
describe the problem statement.

4.2.1. NODE DISTRIBUTION

D UE to the unknown topology of wireless networks, especially in wireless ad hoc net-
works, neighbors of a node are ideally considered randomly deployed within the

transmission range, indicated by W . In other words, a local random region around the
considered node is assumed. Therefore, the probability of finding k nodes in a subset
Ω⊂W is given by

P [k nodes inΩ] = n!

k !(n −k)!

(
µ(Ω)

µ(W )

)k (
1− µ(Ω)

µ(W )

)n−k

, (4.1)

where P denotes probability, n is the neighborhood size in W and µ(·) is the standard
Lebesgue measure. If we let Ω be a d-dimensional ball of radius r originating at the
considered node, µ(Ω) is the volume ofΩ and is given by µ(Ω) = cd r d , where

cd = πd/2

Γ(1+d/2)
, (4.2)

with Γ(·) the gamma function. When d = 1,2 or 3, cd = 2,π and 4
3π, respectively. For

example, wireless vehicular networks can be modeled in a 1-dimensional space, a flat-
earth model requires d = 2, and wireless unmanned aerial vehicle communications re-
quires d = 3. In this paper, all formulae are generalized in a d-dimensional manner for
the sake of theoretical consistency.

4.2.2. CHANNEL MODEL

T HE attenuation of the channel can be modeled as comprised of the large-scale fad-
ing, the shadowing effect and the small-scale fading. The large-scale fading indicates

that the empirical deterministic reduction in power density of an electromagnetic wave
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is exponentially associated with the distance when it propagates through space. We as-
sume that the transmitted power Pt is reduced through the propagation channel over a
distance r , such that the received signal strength Pr is given by

Pr =C1Pt

( r0

r

)γ
, (4.3)

where r0 ¿ r is the reference distance related to far-field and C1 is a non-distance-
related constant that depends on the carrier frequency, the antenna gain and the speed
of light. Pr and Pt are both expressed in Watts.

Depending on the environment, the path-loss exponent (PLE) γ ranges from 2 to
6 [9]. Obstacles, such as trees, buildings and so forth, cause the actual attenuation of the
received power to follow a log-normal distribution, also called the shadowing effect. As
such, (4.3) has to be changed into

∆P = 10γl og10(r )−10log10(C1)−10γlog10(r0)+χ, (4.4)

where ∆P = 10l og10( Pt
Pr

) in dB indicates the attenuation of the signal strength and χ

follows a zero-mean Gaussian distribution with standard deviation 2 < σ< 12. To serve
the following derivations, two severe consequences of the shadowing effect should be
mentioned:

1. The theoretical neighborhood size n is different from the actual neighborhood size
n̂ = n+∆n. As shown in Fig. 4.1 for d = 2, the dashed regular circle is the theoretical
transmission range of node A. In fact, packets can be successfully received under
the condition that Pr > Pthr es , where Pthr es is the receiver’s sensitivity. Due to the
shadowing effect, the actual transmission range is irregular, as indicated by the
solid line.

2. Another consequence caused by the shadowing effect is that after ranking all the
received powers at node A, the node with the î -th strongest received power Pr,î

corresponds to the i -th nearest neighbor at distance ri , where î = i +∆i .

When signals are being transmitted, scatterers and reflectors create several reflected
paths that reach the receiver, besides the line-of-sight (LOS). This is called the small-
scale fading, which is non-distance-related. The instantaneous received signal envelope
follows the Nakagami-m distribution [10] and the distribution of the instantaneous re-
ceived power p is hence given by

P(p) =
( m

E(p) )m pm−1e−
mp
E(p)

Γ(m)
, (4.5)

where m is the fading parameter and a small value of m indicates more fading. The
measured received power Pr can be obtained by taking the average over K consecutive
time slots of instantaneous received powers pk , i.e. Pr = 1

K

∑K
k=1 pk and thus, V ar (Pr ) =

[E(pk )]2

K m . When K is large enough, the impact of the small-scale fading can be greatly
eliminated. Additionally, a well-designed receiver is able to suppress the multi-path ef-
fect to a great degree by using special antenna designs such as a choke ring antenna,
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Figure 4.1: The impact of the shadowing effect on node A: n̂ is the estimate of the theoretical neighborhood
size n by counting the reachable neighbors, n̂ = n+∆n. By ranking the received powers at A, the corresponding
ranking numbers î are the estimate of the ranking numbers i of the ranges, where î = i +∆i .

a right-hand-circular polarized (RHCP) antenna, etc. Therefore, the power attenuation
model in this paper is mostly subject to the large-scale fading and the shadowing, and
hence we will rely on (4.4) in the rest of this paper.

4.2.3. PROBLEM STATEMENT

W E are now aiming at developing a new self-estimator of the PLE. The desired prop-
erties of the proposed estimator can be summarized as: simple, pervasive, local,

sole, collective and secure. Simple indicates that the proposed estimator should be easy
to implement and carry out. Pervasive signals that it can be incorporated into any kind
of network regardless of its design. Therefore, the only freedom left for us is to utilize the
received signal strength. Some kind of networks might not have any external auxiliary
system or access to external information and their mutual nodal cooperations might be
severely constrained. And even if there are no such constraints, adversaries can easily
tamper with or forge the exchanged critical information. This requires that the estima-
tor has to run solely on a single node by collecting the locally received signal strengths.
By this means, a path-loss exponent can be securely and locally estimated.

As is shown in (4.3), the path-loss exponent γ is strictly subject to the power attenu-
ation and the transmitter-receiver distance. Therefore, conventional estimators in wire-
less localization try to obtain the path-loss exponent by introducing anchor nodes to fix
the transmitter-receiver distance and by observing power attenuations. However, the
desired properties of the proposed estimator determine that it is not possible to fix or
to know exact transmitter-receiver distances of some of the collected received signal
strengths. As such, we can define the problem as “How can we estimate the path-loss
exponent γ without knowing transmitter-receiver distances, i.e., merely from the local
received signal strengths?”
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4.3. LINEAR REGRESSION MODEL FOR THE PATH-LOSS EXPO-
NENT

I N order to solve the earlier mentioned problem, we introduce some new parameters.
After estimating those parameters, a new linear regression model for the PLE is pre-

sented.

4.3.1. RANKING RECEIVED SIGNAL STRENGTHS

L ET us focus on a single node and denote Pr,î as the î -th strongest power received at

the considered node where î = 1,2, . . . , n̂, i.e., Pr,1 ≥ Pr,2 ≥ ·· · ≥ Pr,n̂ and ri as the i -
th closest range to the considered node, where i = 1,2, . . . ,n, i.e., r1 ≤ r2 ≤ ·· · ≤ rn . As
we mentioned earlier, î = i +∆i is considered as an estimate of i , where ∆i is called the
mismatch.

From (4.4), we can then write

∆P î = 10γl og10(ri )−C2 +χi , (4.6)

where χi ∼ N (0,σ2), ∆P î = 10log10(Pt /Pr,î ) and C2 = 10log10(C1)+ 10γlog10(r0) is a
constant. We assume that all neighboring nodes transmit signals with the same power Pt

such that the ordered values of Pr,î lead to the ordered values of∆P î , i.e., we can assume
that ∆P1 ≤∆P2 ≤ ·· · ≤∆Pn̂ . Admittedly, in a more realistic situation, the transmit power
Pt at each neighboring node might be different. But our proposed estimators can still
remain feasible in such a case and we will come back to this issue in Section 4.4.4.

4.3.2. LINEAR REGRESSION MODEL FOR THE PATH-LOSS EXPONENT

F ROM (4.6), we notice that∆P î is a function of Pt and C2, which are both unknown. But
these can be canceled by subtracting ∆P ĵ from ∆P î leading to ∆P î , ĵ = ∆P î −∆P ĵ =

10log10(Pr, ĵ /Pr,î ) which can further be written as

∆P î , ĵ = 10γl og10(ri )−10γlog10(r j )+χi , j

= 10γl og10

(
ri

r j

)
+χi , j

(4.7)

where χi , j ∼N (0,2σ2).
Now, we define Li = 10log10(ri ) as a logarithmic function of ri , and hence Li , j =

Li −L j = 10log10( ri
r j

). Thus (4.7) becomes

∆P î , ĵ = γLi , j +χi , j . (4.8)

It is already apparent that if Li , j can be estimated, a linear regression model for the path-
loss exponent can be constructed from (4.8). Let us denote L̂ î , ĵ as the estimate of Li , j

and εî , ĵ as the corresponding estimation error. The linear regression model is then given
by

∆P î , ĵ = γ(L̂ î , ĵ −εî , ĵ )+χi , j . (4.9)
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Figure 4.2: In 2-dimensional space when the shadowing effect does not impact the ranking, i.e. î = i , the solid
circle shows the transmit range of random node A, where A receives 12 signal strengths from its neighbors. Its
3th and 6th closest neighbors lie on the dotted circles which have r3 and r6 as radii, respectively. Therefore,
r3 has 3 nodes inside, while r6 has 6 nodes inside. Pr,3 and Pr,6 are respectively the 3th and the 6th strongest

received powers. ∆P3,6 = 10l og10(Pr,6/Pr,3) and L̂3,6 = 10
2 log10( 3

6 ) ≈ −1.505. Likewise, other pairs of ∆P î , ĵ

and L̂ î , ĵ can be obtained.

.

4.3.3. ESTIMATION OF Li , j

A S discussed in the problem statement, it is not possible to directly obtain the transmitter-
receiver distances if the estimating node solely and locally collects the received sig-

nal strengths. Therefore, the idea of ranking the received signal strengths is crucial to our
method.

By ranking the values of Pr,î , we obtain the ranking number î which will be further

used to estimate the ranking numbers i of the ranges, where we recall that î = i +∆i .
Additionally, it is obvious that i indicates the number of nodes within the ball of radius
ri , which can be further exemplified in Fig. 4.2. Therefore, the essence of the proposed
method is to use the rank numbers of î as new measurements to estimate the values of
Li , j .

Note that Li , j is a linear combination of Li and L j . We focus on estimating Li and the
estimate of L j can be obtained likewise.

Considering (4.1) and (4.2), the probability mass function of finding i nodes within
the d-ball of radius ri , which is parameterized by Li = 10log10(ri ), can be written as

P [i | Li ] = n!

i !(n − i )!

cd 10
dLi
10

µ(W )

i 1− cd 10
dLi
10

µ(W )

n−i

. (4.10)
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Based on (4.10), to find the maximum likelihood estimator L̂i , we need to force the
derivative of our likelihood function to zero by

∂ ln(P [i | Li ])

∂Li
= 0. (4.11)

Therefore, by solving (4.11), the maximum likelihood estimator L̂i can be easily obtained
as

L̂i = 10

d
l og10

(
iµ(W )

ncd

)
. (4.12)

Likewise, L̂ j can be obtained and the estimate of Li , j is hence given by

L̂i , j = 10

d
l og10

(
i

j

)
= Li , j +εi , j , (4.13)

where εi , j is the estimation error of L̂i , j . Plugging î = i +∆i and ĵ = j +∆ j into (4.13), we
have

L̂ î , ĵ =
10

d
log10

(
î

ĵ

)
= Li , j +εî , ĵ (4.14)

and

εî , ĵ = εi , j +∆εi , j , (4.15)

where ∆εi , j = L̂ î , ĵ − L̂i , j = 10
d l og10( i+∆i

i
j

j+∆ j ).

From (4.13) and (4.14), we even notice that µ(W ), n and cd disappear after subtrac-
tion. This makes the proposed estimators only subject to the received signal strengths
and the rank numbers in a d-dimensional space.

4.4. PATH-LOSS EXPONENT ESTIMATION

T O solve the linear regression model, the total least squares (TLS) method helps us
to obtain the estimate of the path-loss exponent γ. However, the general solution

to the total least squares method turns out to be time-consuming. Therefore, a closed-
form solution is provided saving computational time tremendously. Moreover, a closed-
form weighted total least squares method is further proposed to suppress the estimation
errors yielding a better performance.

4.4.1. TOTAL LEAST SQUARES SOLUTION

A S for the example in Fig. 4.2, node A computes ∆P î , ĵ and estimates L̂ î , ĵ for all pairs

of nodes within its range, i.e., î , ĵ = 1,2,3, · · · , n̂. However, from (4.9), we notice that
the received signal strengths are corrupted by the shadowing and the values of L̂ î , ĵ are
measured with errors. Therefore, the total least squares method is utilized to obtain our
estimate, γ̂t l s [11].

We assume that the considered node has n̂ neighbors and all RSSs from its neighbors
are ranked. Thus, we have a sample set of ∆P î , ĵ values whose size is N = (n̂

2

)
in total. We
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vectorize the collected samples of ∆P î , ĵ and the corresponding values of L̂ î , ĵ , which are

respectively represented by the N ×1 vectors ∆P and L̂. Then, (4.9) can be rewritten as

∆P = γ(L̂−E)+X, (4.16)

where E and X are respectively the N × 1 vectors obtained by stacking the estimation
errors εî , ĵ on L̂ î , ĵ and the shadowing parameters χi , j . The basic idea of the total least

squares method is to find an optimally corrected system of equations ∆Pt l s = γL̂t l s with
∆Pt l s :=∆P−Xt l s , L̂t l s := L̂−Et l s , where Xt l s and Et l s are respectively optimal perturba-
tion vectors. Therefore, the path-loss exponent estimate γ̂t l s for γ is the solution to the
optimization problem

{γ̂t l s ,Xt l s ,Et l s } := ar g mi n
γ,X,E

‖[X E]‖2
F (4.17)

subject to (4.16), where ‖·‖F is the Frobenius norm.
By changing (4.16) into

[
(L̂−E) (∆P−X)

][
γ

−1

]
= 0, (4.18)

we see that this is a typical low-rank approximation problem where the rank of the aug-
mented matrix [L̂∆P] should be optimally reduced to 1.

Therefore, we compute the singular value decomposition (SVD) of [L̂∆P] resulting in

[L̂∆P] = UΣVT

where V can be explicitly expressed as

V =
[

V11 V12

V21 V22

]
.

Based on the Eckart-Young theorem [12], the estimated path-loss exponent is then given
by

γ̂t l s =− 1

V22
V21. (4.19)

4.4.2. CLOSED-FORM TOTAL LEAST SQUARES ESTIMATION

T HE SVD-based method discussed in the previous section provides a general solution
to the total least squares problem. However, considering the complexity brought

by the SVD when processing a tremendous number of samples, a simplified method is
required.

Noting the linearity of (4.16) and the fact that the total least squares method mini-
mizes the orthogonal residuals, we can reformulate the TLS cost function as

Jt l s =
||∆P−γL̂||2

1+γ2 . (4.20)
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Figure 4.3: The computational time of the traditional solution and the closed-form solution.

By solving
∂Jt l s

∂γ
= γ2L̂T∆P+γ(L̂T L̂−∆PT∆P)− L̂T∆P

(1+γ2)2 = 0, (4.21)

we obtain two solutions, which are respectively given by

γ̂1 = η+
√

1+η2 > 0 (4.22)

and

γ̂2 = η−
√

1+η2 < 0, (4.23)

where

η= ∆PT∆P− L̂T L̂

2L̂T∆P
.

Actually, optimizing (4.20) can also be viewed as finding a linear curve with slope γ
through the origin, in which the values of P î , ĵ and the values of L̂ î , ĵ are respectively on
the y-axis and x-axis. Please also refer to [13] for some other total least squares solutions
to different modified linear regression models. Therefore, it is evident that two perpen-
dicular curves are obtained, i.e.,

γ̂1γ̂2 =−1.

One of the solutions minimizes Jt l s while the other maximizes it. Considering that γ̂t l s >
0, the total least squares path-loss exponent (TLS-PLE) estimate is obviously given by

γ̂t l s = γ̂1.

As far as the computational complexity is concerned, the SVD procedure on [L̂ ∆P]
requires a complexity of approximately 8N 2 to obtain U,Σ and V [14]. If only V is required
to estimate the PLE, the SVD-based method still has a complexity of approximately 16N .
However, our closed-form solution has only a complexity of approximately 3N .
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Compared with the SVD-based solution, we also measure the average computational
time when the transmission range is 200 m. The methods are implemented in Matlab
2012b on a Lenovo IdeaPad Y570 Laptop (Processor 2.0GHz Intel Core i7, Memory 8 GB).
As shown in Fig. 4.3, the computational time of the closed-form solution is greatly re-
duced especially when the sample size is increased.

4.4.3. CLOSED-FORM WEIGHTED TOTAL LEAST SQUARES ESTIMATION

F ROM the aforementioned analyses, we can conclude that there are three kinds of er-
rors impacting the path-loss exponent estimate:

1. The estimation error εi , j on L̂i , j is subject to the spatial dynamics of the node de-
ployment. Therefore, when increasing the actual density, such errors will be de-
creased.

2. The shadowing effect introduces a Gaussian error χi , j which will decrease when
the sample size is increased.

3. The last kind of error is the∆εi , j which represents the mismatch between the rank-
ing numbers of the received powers and the ranges. This kind of error is subject
not only to the shadowing but also to the spatial dynamics of the nodes. When the
actual density is increased and the nodes get closer to each other, the differences
of the received powers become relatively small which leads to a large impact of the
shadowing on the ranking.

We propose a weighted total least squares method targeting the suppression of the
∆εi , j . Plugging î = i +∆i and ĵ = j +∆ j into ∆εi , j , we have

∆εi , j = 10

d
log10

(
î

î −∆i

)
− 10

d
l og10

(
ĵ

ĵ −∆ j

)
. (4.24)

By using some bounds of the natural logarithm

1− î −∆i

î
≤ ln

(
î

î −∆i

)
≤ î

î −∆i
−1, (4.25)

where equality is obtained when ∆i = 0, bounds for ∆εi , j can be computed as

10ln(10)

d

(
2− î −∆i

î
− ĵ

ĵ −∆ j

)
≤∆εi , j ≤ 10ln(10)

d

(
î

î −∆i
+ ĵ −∆ j

ĵ
−2

)
. (4.26)

Considering that 1 ≤ î −∆i ≤ n̂ and 1 ≤ ĵ −∆ j ≤ n̂, we can further bound ∆εi , j as

10ln(10)

d

(
2− î − n̂

ĵ

)
≤∆εi , j ≤ 10ln(10)

d

(
n̂

î
+ ĵ −2

)
. (4.27)

From (4.27), we can finally find an upper bound of ∆ε2
i , j as

∆ε2
i , j ≤

100l n(10)2

d 2 max{

(
n̂

î
+ ĵ −2

)2

,

(
n̂

ĵ
+ î −2

)2

}. (4.28)
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Figure 4.4: The total least squares weights as a function of î for n̂ = 100 and ĵ = 50.

The idea is now to assign a large weight to a sample with a small upper bound of the
mismatch ∆ε2

i , j . Therefore, based on (4.28), the weights can be constructed by

ωi , j = 1

max{( n̂
î
+ ĵ −2)2, ( n̂

ĵ
+ î −2)2}

. (4.29)

We plot the weights when ĵ = 50 and n̂ = 100 in Fig. 4.4.
By stacking the values of ωi , j on the diagonal of a diagonal matrix in the same way

we stack the values of ∆P î , ĵ and the values of L̂ î , ĵ , we construct the N ×N weight matrix
W and then the weighted TLS cost function can be constructed by

Jw tl s =
(∆P−γL̂)T W(∆P−γL̂)

1+γ2 . (4.30)

As before, the closed-form weighted total least squares path-loss exponent (WTLS-PLE)
estimate is then easily given by

γ̂w tl s = η′+
√

1+η′2, (4.31)

where η′ = ∆PT W∆P−L̂T WL̂
2L̂T W∆P

.

4.4.4. DISCUSSIONS AND FUTURE WORKS

I N this section, we discuss some remaining theoretical problems and some possible
issues related to real-life environments. Meanwhile, we cast light on our future works.
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CRAMÉR-RAO LOWER BOUND

T HE Cramér-Rao lower bound (CRLB) is very difficult to obtain for this problem. This
is due to the fact that the estimation accuracy of the PLE is subject to the spatial

dynamics, the shadowing and the rank number estimate. They are all mutually related,
especially for the ranking number estimate which does not follow any known probability
density function (PDF). That is also why we selected a bound on the error to construct
the weights in order to suppress the mismatch of the ranking numbers.

In our future work, we are looking for one-step estimation methods which can di-
rectly utilize the RSSs without the ranking procedure. To achieve that, a PDF of the RSS
in an ad-hoc environment is required, which considers the spatial dynamics and the
shadowing. Based on such a PDF, a better estimator, such as the maximum likelihood
(ML) estimator, and the CRLB can be introduced.

DIFFERENT TRANSMIT POWERS

P REVIOUSLY, we assume the same transmit power Pt for all the neighboring nodes,
which might not be so realistic. But assume now that the transmit powers are differ-

ent. We then have to particularly estimate the transmit power Pt ,î from the î -th node
to calculate the path-loss ∆P î := 10log10(Pt ,î /Pr,î ) and further compute the ∆P î , ĵ :=
∆P î −∆P ĵ . Otherwise, if we still compute ∆P î , ĵ := 10log10(Pr, ĵ /Pr,î ), our estimators will
become worse yet still feasible. To see that, we firstly need to assume an unknown av-
erage transmit power P̄t and hence use 10log10(Pt ,î ) = 10l og10(P̄t )+∆Pt ,î , where ∆Pt ,î

is the deviation in dB of the transmit power from the î -th node. Then (4.9) has to be
changed into

∆P î , ĵ = γ(L̂ î , ĵ −εî , ĵ )+χi , j +∆Pt ,î , ĵ , (4.32)

where P̄t can still be cancelled and ∆Pt ,î , ĵ := ∆Pt ,î −∆Pt , ĵ . Obviously, although X in
(4.16) has to become the vector of χi , j +∆Pt ,î , ĵ values, our proposed estimators can still
estimate the PLE since the general form of (4.16) remains the same.

So if we assume that ∆Pt ,î , ĵ is Gaussian distributed, χi , j +∆Pt ,î , ĵ is still a zero-mean
Gaussian variable, which means that the different transmit powers can equivalently be
considered as a more severe shadowing impact. Therefore, for convenience, we still as-
sume the same transmit power in this paper.

DIRECTIONAL PLE ESTIMATION

A NOTHER practical problem is that the PLE sometimes varies over different directions
while we previously assume that the PLE is omni-directionally the same. To cope

with this problem, we discuss and can extend our proposed estimators with a directional
PLE estimation.

As shown in Fig. 4.5, we assume that only the RSSs from the nodes within the angular
window φ are subject to the same PLE. Hereby in (4.1), W has to become the actual
transmission range bounded by the angleφ, say Wφ, whileΩbecomes the corresponding
sector Ωφ with radius r . The volume of Ωφ then becomes µ(Ωφ) := cd ,φr d , where for
d = 1,2,3 we have c1,φ := 1, c2,φ :=φ/2 and c3,φ := 2π

3 (1− cosφ). Since the nodes are still
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Figure 4.5: The demonstration of the directional PLE estimation in R2: A is the considered node collecting the
RSSs from within the angle φ. Wφ is the actual transmission range bounded by φ and the shaded area Ωφ is
the corresponding sector with radius r .

.

randomly deployed within Wφ, compared with (4.10), we can hence similarly write

P [i | Li ] = n!

i !(n − i )!

cd ,φ10
dLi
10

µ(Wφ)

i 1− cd ,φ10
dLi
10

µ(Wφ)

n−i

. (4.33)

Even though the estimate of Li has to be changed into

L̂i = 10

d
log10

(
iµ(Wφ)

ncd ,φ

)
, (4.34)

the estimate of Li , j however remains the same, i.e., L̂i , j := L̂i − L̂ j , since µ(Wφ), n and
cd ,φ will be canceled. Therefore, the rest of the theoretical derivation remain the same
and our estimators are still feasible.

To achieve a directional PLE estimate, we only have to constrain the RSS sample set
within a certain angular window φ and our proposed estimators can estimate the PLE
for the given direction. Of course to achieve the same accuracy, the directional PLE es-
timator has to collect more samples than the omni-directional PLE estimator. Again in
this paper, for convenience, we still assume the same PLE for all directions.

4.5. SIMULATIONS

I N this section, we simulate our two proposed path-loss exponent estimators in a 2-
dimensional space and we leave real-life experiments as future work. Two simulations

are conducted to study their performance, with different shadowing impacts and with
different actual densities.

We also compare them with the path-loss exponent estimator based on the cardi-
nality of the transmitting set (C-PLE), proposed in [1]. The C-PLE requires changing the
receiver’s sensitivity from Pthr es1 to Pthr es2 and evaluating the corresponding cardinal-
ities n1, n2 of the transmitting set, namely the different theoretical neighborhood sizes.
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Figure 4.6: Demonstration of the C-PLE estimator: node A changes its receiver’s sensitivity from Pthr es1 to
Pthr es2. The solid circle and the dashed circle are respectively the transmission ranges related to Pthr es1 and
Pthr es2. The corresponding neighborhood sizes are n̂1 = 12 and n̂2 = 6 in this figure. The estimated path-loss
exponent can be obtained from (4.35).

.

Thus, considering the shadowing, C-PLE is given in a 2-dimensional space by

γ̂c = 2ln

(
Pthr es2

Pthr es1

)
/ln

(
n̂1

n̂2

)
, (4.35)

where n̂1 and n̂2 are the corresponding actual neighborhood sizes. Fig. 4.6 gives an ex-
ample of the C-PLE estimator. In our simulations, we set Pthr es2 = 2Pthr es1.

To avoid any border effect, our simulations take place in a very large area, where
nodes are randomly deployed. The estimated PLE is only considered for a single node
somewhere in the center of the network, rather than for every node in the wireless net-
work. The Monte Carlo method is used to generate the results by repeatedly deploying
nodes. The general settings are shown in Table 4.1.

The normalized root mean square error (RMSE) is adopted to present the accuracy of

the estimator. In this paper, the normalized RMSE is defined by

√
1

Ntr i al s

∑Ntr i al s
i=1

[
γ̂(i )−γ
γ

]2
,

where Ntr i al s is the number of simulation trials, γ̂(i ) is the estimate of the PLE in the i -th
trial, and γ is the actual PLE.

4.5.1. THE IMPACT OF THE SHADOWING

T HIS simulation is conducted when the actual density is set as 0.005 node/m2. Three
estimators are studied with an increasing standard deviation of the shadowing and

an increasing actual path-loss exponent. Observing Fig. 4.7, we can conclude the follow-
ing:

1. Our two proposed methods outperform the C-PLE estimator. This can be eas-
ily understood from the fact that our methods consider received powers from all
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Table 4.1: Values of the parameters used in the simulations.

Parameter Value

Dimension d = 2

Carrier frequency 2401 MHz

Receiver sensitivity For TLS-PLE and WTLS-PLE, Pthr es

is adjusted to have a theoretical

transmission range of 200 m.

For C-PLE, Pthr es1 = Pthr es and

Pthr es2 = 2Pthr es .

Number of trials 100

Figure 4.7: The performance of different PLE estimators with an increasing standard deviation of the shadow-
ing.

neighbors rather than only using two neighborhood sizes. Besides, the total least
squares procedure helps to minimize the three kinds of errors mentioned earlier.

2. When the shadowing effect becomes more severe, the accuracy of the three esti-



4

128
4. SELF-ESTIMATION OF PATH-LOSS EXPONENT IN WIRELESS NETWORKS AND

APPLICATIONS

Figure 4.8: The length of the arrow indicates the received signal strength reduction ∆P and the dashed rect-
angles show the shadowing effect χ. Considering the shadowing means that the arrows can end up anywhere
within the rectangles. The width of the rectangle indicates the severity of the shadowing. Under the same
transmitter-receiver distance, the arrow with a smaller path-loss exponent is shorter and thus easier to be im-
pacted by the shadowing effect. Therefore, under a high PLE, the matching between the ranking numbers of
the received powers and the ranges is not so easily disrupted in the TLS-PLE and the WTLS-PLE. Likewise, the
shadowing also becomes more tolerable when estimating the theoretical neighborhood size in the C-PLE.

Figure 4.9: The performance of three considered estimators with an increasing actual density.

mators decreases. For the C-PLE, the accuracy mainly depends on the absolute
deviation of the actual neighborhood size |∆n| = |n̂ −n|. The shadowing increases
such an absolute deviation thus leading to a worse accuracy. For our methods, the
shadowing impacts the accuracy by increasing |χi , j | and by disrupting the matches
between the rank numbers of the received powers and the ranges, i.e, by increasing
|∆εi , j |.

3. Surprisingly, the performance of the estimators becomes better in a hasher envi-
ronment, i.e, when the actual path-loss exponent is high. This is due to the fact
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that a high PLE causes relatively large differences between the received powers
which makes the shadowing effect more tolerable. It is better explained in Fig. 4.8.
To be specific for our methods, when the PLE is small, the accuracy is subject to
the three kinds of errors χi , j , εi , j and ∆εi , j . However, when the actual PLE is in-
creased, the matches of the rank numbers are more accurate, i.e, |∆εi , j | decreases.

4. The WTLS-PLE has a better performance than the TLS-PLE, especially under a
small PLE. Meanwhile, the improvement of the WTLS-PLE is not so obvious com-
pared with the TLS-PLE when the PLE is high. This is understandable from the fact
that the WTLS-PLE is especially targeted at suppressing ∆εi , j , the improvement is
hence insignificant when∆εi , j is decreased which has already been pointed out in
the previous conclusion.

4.5.2. THE IMPACT OF THE ACTUAL DENSITY

S INCE the estimation error εi , j of L̂i , j is related to the actual density, we are interested
in how the actual density impacts the accuracy in this section. The transmission

range is fixed at 200 m and a 12 dB standard deviation of the shadowing is considered.
From Fig. 4.9, we can see that, compared with the impact of the shadowing, the impact
of the actual density is relatively small. Additionally, when more samples are collected,
the WTLS-PLE has a larger improvement on the accuracy by suppressing ∆εi , j .

4.6. APPLICATIONS

T HE path-loss exponent plays a very significant role in many kinds of wireless net-
works. Due to the difficulties to locally and solely estimate the path-loss exponent

though, only a few techniques are able to utilize path-loss exponent measurements in
their designs. However, the proposed path-loss exponent estimation approaches tackle
such issues. In this section, we detail some applications and discuss the significance of
our path-loss exponent self-estimation schemes.

4.6.1. SECURE RSS-BASED LOCALIZATION

D UE to our PLE self-estimation schemes, either the reference node or the target node
can solely and independently estimate the PLE. Therefore, an adversary cannot

launch an attack on the PLE estimation by spoofing. For instance, as shown in Fig. 4.10,
even if there is a cheating reference node maliciously reporting its fake location, e.g.,
attacker C registering itself at fake C, the PLE can still be estimated accurately. Besides
making the RSS-based localization more robust to the spoofing attack, this also enables
every node to detect and locate the cheating reference node.

STRATEGY FOR DETECTING CHEATING REFERENCE NODES

T O explicitly illustrate the strategy, we firstly explain each one’s role and the detection
algorithm will be described afterward:

• Each reference node knows its own location and is skeptical to any reported loca-
tion from the other reference nodes.
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– It periodically broadcasts its own location and self-estimates the PLE simul-
taneously.

– It keeps listening to the messages broadcasted by the other reference nodes,
reading the RSSs and their corresponding reported locations.

– It detects the attackers according to the self-estimated PLE, the RSSs, the re-
ported locations and its own location. The detection algorithm will be dis-
cussed later. As soon as an attacker is detected, it will announce the detection
as well as the corresponding RSS from the attacker by broadcasting.

– In case some cheating reference nodes spoof the attacker announcement, an
announced attacker needs to be further confirmed as a true attacker. To be
confirmed as a true attacker, the announced attacker has to be announced
more than T times, where T depends on the total number of reference nodes
and the detection sensitivity. When the announced attacker is confirmed as a
true attacker, the corresponding announced RSSs from the attacker at at least
d +1 different reference nodes can further be used to locate the attacker.

• Each target node only listens and is invisible to the other nodes.

– It keeps listening to all information broadcasted by the reference nodes. In
the meantime, the PLE is self-estimated.

– It discovers the true attackers from the message broadcasted by the reference
nodes and discards the RSSs from the true attackers.

– Then, it can accurately and safely locate itself with the rest of the RSSs.

ALGORITHM FOR DETECTING CHEATING REFERENCE NODES

T O complete the strategy, the algorithm for detecting the cheating reference nodes is
essential. For an explicit demonstration, an example is shown in Fig. 4.10. Let us de-

note the locations of reference A, reference B, attacker C, fake C and target D respectively
as sA , sB , sC , sC ′ and sD . To detect attacker C, we need to test two hypotheses, which are
respectively defined as

H0 : sC and sC ′ are the same location. (4.36)

and
H1 : sC and sC ′ are different locations. (4.37)

The detection algorithm can be carried out with the following procedure:

1. Firstly, a reference RSS from the suspected reference node needs to be calculated
based on the self-estimated PLE, the reported location and the own location of the
detecting node. For example, recalling the definition of RSS, the reference RSS at
reference B from attacker C can be calculated in dB as

P ′
r,C ′B =C3 −10γ̂B log10(||sC ′ −sB ||), (4.38)

where
C3 = 10log10(Pt )+10log10(C1)+10γ̂B log10(r0)

and γ̂B is the self-estimated PLE at sB .
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Figure 4.10: Attacker C reports its fake location at fake C. Both reference nodes like reference A and reference
B and the target node target D can self-estimate the PLE. Based on the self-estimated PLE and the location
information, the shaded area can be constructed as the trust region for detecting an attacker, outside which
attacker C will be detected.

2. Secondly, the actual RSSs from the suspected reference node are recorded over
time to construct our observation set by subtracting the reference RSS. For exam-
ple, reference B records the observation at time i , which is given by

∆P i
r,C B = P i

r,C B −P ′
r,C ′B , (4.39)

where P i
r,C B is the actual RSS in dB at time i from attacker C and∆P i

r,C B ∼N (µB ,σ2).
If attacker C and fake C have the same range, then µB = 0, otherwise µB 6= 0.

Since only the range can be tested, we need two different hypotheses for range
testing, which are given by

H ′
0 :µB = 0. (4.40)

and

H ′
1 :µB 6= 0. (4.41)

Considering the fact that attacker C and fake C might also have the same range
to a reference node, e.g., to reference A in Fig. 4.10, we hence have the relations
H0 ⊂H ′

0 and H ′
1 ⊂H1. This means if H ′

1 is tested, attacker C is certainly detected
while if H ′

0 is tested, we might fail to detect the attacker. But, we now focus on
testing H ′

1 and the detection failure in H ′
0 will be discussed later.

3. Finally, by using the Neyman-Pearson lemma [15], H ′
1 can be tested from the av-

erage observation over I time slots. For example, the observation at reference B is
given by ρ = (

∑I
i=1∆P i

r,C B )/I . If we wish to test at 95% accuracy, the critical region
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for the observation is given by

C = {(P 1
r,C B ,P 2

r,C B , · · · ,P I
r,C B ) :

ρ ≤−1.96σ/
p

I ,ρ ≥ 1.96σ/
p

I }
(4.42)

Equivalently, we can also use the critical region

C = {(P 1
r,C B ,P 2

r,C B , · · · ,P I
r,C B ) : ρ2 ≥ 3.84σ2/I }, (4.43)

which considers the Chi-squared distribution with ρ2 as observation.

DISCUSSIONS

1. The shadowing deviationσ is required for the Neyman-Pearson test, which can be
obtained by empirical training.

2. The detection failure in H ′
0 can easily be noticed when reference nodes work in

a cooperative fashion according to the detection strategy. Since every reference
node detects and announces the attackers, such a detection failure can be some-
how corrected by listening to the announced information flooding in the network.
Therefore, the detection algorithm can be improved, by introducing a new cooper-
ative algorithm. For example, according to the observations from multiple nodes,
an attacker can still be detected even if such a detection failure in H ′

0 occurs.

3. Considering the shadowing, the complement of the critical region corresponds to
a trust region of the detecting node in space, in which the detected node will be
trusted. As shown in Fig. 4.10, two shaded areas respectively indicate the trust
regions of reference A and reference B. Attacker C resides outside the trust region
of reference B but inside that of reference A. Therefore, attacker C will be detected
by reference B but not by reference A. The size of the trust region depends on the
severity of the shadowing.

4. The cheating node can also jeopardize this system by maliciously announcing a
credible reference node as an attacker. In most cases, the credible reference nodes
outnumber the attackers. Hence, the attackers can still be smartly distinguished.
However, if the attackers have the majority, a more robust strategy might be re-
quired.

4.6.2. ENERGY-EFFICIENT ROUTING

S INCE the path loss over a channel exponentially increases with the distance, multi-
hop communications becomes a better option than single-hop to prolong the net-

work lifetime. Routing is hence aimed at finding an efficient path to the destination in
order to minimize the power consumption. It is well-known that a routing path is better
to be chosen through an area where the PLE is small. But alternatively, in this section,
we consider the k-th nearest neighbor routing protocol to illustrate the significance of
the PLE.
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Figure 4.11: The efficiency of single-hop communications: a small value indicates a smaller power cost by
increasing k, i.e., a high power efficiency.

From (4.1), if considering the local random region W around the considered node A
as a d-dimensional ball of radius R, i.e. µ(W ) = cd Rd , the distribution of the distance rk

to the k-th nearest neighbor is given by [16]

P(rk |k) = d

rk B(n −k +1,k)

(
r d

k

Rd

)k (
1− r d

k

Rd

)n−k

, (4.44)

where B(x, y) = ∫ 1
0 t x−1(1−t )y−1d t = Γ(x)Γ(y)

Γ(x+y) is the beta function. To avoid the singularity
issue of (4.3), the received power at the k-th nearest neighbor can also be given by

Pr,k = Pr,0

(
r0

rk

)γA

(4.45)

where Pr,0 is the received power at the reference distance r0 < rk ,∀k and γA is the PLE
at the location of node A. Let us denote the path-loss to the k-th nearest neighbor as

Lk := Pr,0
Pr,k

= r
γA
k

r
γA
0

. We commonly assume r0 = 1 m and thus Lk := r γA

k . From (4.44), we can

obtain the expectation of Lk for a single hop to the k-th nearest neighbor, which can be
given by

E(Lk ) = RγA B(k +γA/d ,n −k +1)

B(n −k +1,k)

= RγAΓ(n +1)

Γ(n +γA/d +1)

Γ(k +γA/d)

Γ(k)
.

(4.46)

From (4.46), we especially focus on ∂E(Lk )
∂k to study the efficiency of increasing k, which
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Figure 4.12: The numerical results of the k-th nearest neighbor routing in a 2-dimensional space.

is given by

∂E(Lk )

∂k
= RγAΓ(n +1)

Γ(n + γA
d +1)

Γ(k + γA
d )(ψ(k + γA

d )−ψ(k))

Γ(k)
, (4.47)

where ψ(x) = Γ′(x)
Γ(x) is the ploygamma function. We denote α = γA/d and plot the k-

related part of (4.47), i.e. f (k) = Γ(k+α)(ψ(k+α)−ψ(k))
Γ(k) in Fig. 4.11. When α < 1, ∂E(Lk )

∂k de-
creases with k, which means that it takes less extra power every time k is increased. As
a conclusion, a single long-hop communication link is more energy-efficient as long as
γA < d , which is also briefly pointed out in [16].

To be more realistic, we also conduct a numerical simulation for the k-th nearest
neighbor routing, in which the shadowing effect is also considered. We introduce the
average path-loss for a single link, denoted by Lk =Lk /k. A 2-dimensional space is con-
sidered with a density of 0.001 nodes/m2. As is shown in Fig. 4.12, as long as the PLE
is smaller than 2, the average path-loss decreases with k and a single long-hop link be-
comes energy efficient. Additionally, in the presence of log-normal shadowing, Lk be-
comes larger than when there is no shadowing. Such an increase also becomes larger
with a large PLE.

Many other interesting results have been obtained. However, due to the limited
space, no more tautology will be presented. It is already evident that the efficiency of
the k-th nearest neighbor routing protocol highly relies on the actual PLE. Therefore, the
principles for designing such a routing protocol should involve the PLE estimation. In a
nutshell, an accurate estimate of γA is hence necessary for designing an efficient routing
protocol.

4.6.3. OTHER APPLICATIONS

T O further illustrate some applications of the proposed PLE estimators, we need to
explicitly explain how the PLE affects the network operation. The PLE has a multidi-
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mensional effect on the performance of the whole system for wireless networking:

1. It determines the quality of the signals at the receivers and thus impacts the phys-
ical (PHY) layer. This is because the PLE controls not only the received signal
strength but also the interference the nodes create for the other receivers. Since
the signal-to-interference-plus-noise ratio (SINR) is decisive for the channel ca-
pacity and the performance of decoding, the PLE is essential for designing the PHY
layer.

2. It determines the transmission range and thus impacts the network (NET) layer
and the media access control (MAC) layer. The transmission range, together with
the neighborhood size, which is also determined by the PLE, affects the perfor-
mance of routing and the connectivity in the NET layer. When the number of
nodes within the transmission range of a node increases, the contention in the
MAC layer consequently becomes more severe and thus congestion of the network
will occur. As a consequence, the ability of delivering the packet will be affected.

3. It determines the energy consumption for transmission links and thus impacts the
lifetime of networking. In order to guarantee the efficiency of wireless networking,
the transmit power should be smartly controlled to compensate for the energy loss
on the transmission links. Considering the battery is strictly limited in e.g. wireless
sensor networks, the PLE is rather significant to those protocols aiming at prolong-
ing the network lifetime.

Based on the above mentioned reasons, some other applications can be listed:

1. Relay nodes are recently drawing much attention [17] and the mobile ones are even
more flexible and more convenient [18]. Since the path-loss exponent is one of the
key criteria for energy-efficient routing, relay nodes should be deployed or move
to the place where the path-loss exponent is relatively small. The relay nodes can
also benefit from the low PLE location to save the battery. Therefore, relay nodes
have to be able to estimate the PLE.

2. Energy harvesting relies on ambient sources such as solar, wind and kinetic activi-
ties, aiming at prolonging the network lifetime. Particularly, among those sources,
radio-frequency (RF) signals, can also be used to charge the battery of wireless
sensors [19]. Its application is also extended to cognitive radio in [20]. The PLE di-
rectly determines the efficiency of harvesting and the size of the harvesting zone.
The time slot for harvesting could be adaptive according to the PLE changes. There-
fore, the PLE estimation is very significant when the surrounding communication
environment is changing or the harvesting node is mobile.

3. Power control requires distributedly choosing an appropriate transmit power for
each packet at each node. This is because of the fact that the transmit power affects
the wireless networking in the same way as the PLE does [21]. Since the PLE is
different at different locations, an efficient power control scheme also needs to
distributedly and locally consider the PLE. Therefore, our proposed estimators can
be integrated into power control to yield a better performance.
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4.7. CONCLUSIONS

T WO self-estimators for the path-loss exponent are proposed in this paper, in which
each node can solely and locally estimate the path-loss exponent merely by collect-

ing the received signal strengths. They rely neither on external auxiliary systems nor on
any information of the wireless network. Their simplicity makes them feasible for any
kind of wireless network.

In order to better describe our estimators, a new linear regression model for the path-
loss exponent has been introduced. Our closed-form total least squares method can
solve this linear regression model. Compared with the SVD-based solution, our estima-
tor tremendously saves computational time. Moreover, a weighted total least squares
method is also designed to better suppress the estimation errors.

Simulations present the accuracy of our estimators and demonstrate that the shad-
owing effect dominantly influences the estimation error. By analyzing the performance
of the estimators, it is interesting to observe that the estimators work better in harsh
communication environments, where the path-loss exponent is high.

We have also discussed the significance of our PLE self-estimators by illustrating
some potential applications and have brought the dawn to some relevant future re-
searches.

REFERENCES
[1] S. Srinivasa and M. Haenggi, Path Loss Exponent Estimation in Large Wireless Wet-

works, in Information Theory and Applications Workshop (2009) pp. 124–129.

[2] N. Patwari, J. Ash, S. Kyperountas, A. Hero, R. Moses, and N. Correal, Locating
the Nodes: Cooperative Localization in Wireless Sensor Networks, Signal Processing
Magazine, IEEE 22, 54 (2005).

[3] G. Mao, B. D. O. Anderson, and B. Fidan, Path Loss Exponent Estimation for Wireless
Sensor Network Localization, Comput. Netw. 51, 2467 (2007).

[4] N. Salman, M. Ghogho, and A. Kemp, On the Joint Estimation of the RSS-Based Lo-
cation and Path-loss Exponent, Wireless Communications Letters, IEEE 1, 34 (2012).

[5] N. Salman, A. Kemp, and M. Ghogho, Low Complexity Joint Estimation of Location
and Path-Loss Exponent, Wireless Communications Letters, IEEE 1, 364 (2012).

[6] X. Li, RSS-Based Location Estimation with Unknown Pathloss Model, Wireless Com-
munications, IEEE Transactions on 5, 3626 (2006).

[7] M. Gholami, R. Vaghefi, and E. Strom, Rss-based sensor localization in the presence
of unknown channel parameters, Signal Processing, IEEE Transactions on 61, 3752
(2013).

[8] G. Wang, H. Chen, Y. Li, and M. Jin, On Received-Signal-Strength Based Localization
with Unknown Transmit Power and Path Loss Exponent, Wireless Communications
Letters, IEEE 1, 536 (2012).

http://dx.doi.org/10.1109/ITA.2009.5044933
http://dx.doi.org/10.1109/MSP.2005.1458287
http://dx.doi.org/10.1109/MSP.2005.1458287
http://dx.doi.org/ 10.1109/WCL.2012.121411.110059
http://dx.doi.org/ 10.1109/WCL.2012.12.120210
http://dx.doi.org/10.1109/TWC.2006.256985
http://dx.doi.org/10.1109/TWC.2006.256985
http://dx.doi.org/ 10.1109/TSP.2013.2260330
http://dx.doi.org/ 10.1109/TSP.2013.2260330
http://dx.doi.org/10.1109/WCL.2012.072012.120428
http://dx.doi.org/10.1109/WCL.2012.072012.120428


REFERENCES

4

137

[9] T. Rappaport, Wireless Communications: Principles and Practice, 2nd ed. (Prentice
Hall PTR, Upper Saddle River, NJ, USA, 2001).

[10] N. Nakagami, The m-distribution, a general formula for intensity distribution of
rapid fading, in Statistical Methods in Radio Wave Propagation, edited by W. G.
Hoffman (Oxford, England: Pergamon, 1960).

[11] I. Markovsky and S. Van Huffel, Overview of total least-squares methods, Signal Pro-
cess. 87, 2283 (2007).

[12] C. Eckart and G. Young, The Approximation of One Matrix by Another of Lower Rank,
Psychometrika 1, 211 (1936).

[13] I. Petras and D. Bednarova, Total Least Squares Approach to Modeling: A Matlab
Toolbox, Acta Montanistica Slovaca 15, 158 (2010).

[14] G. H. Golub and C. F. Van Loan, Matrix Computations (3rd Ed.) (Johns Hopkins Uni-
versity Press, Baltimore, MD, USA, 1996).

[15] P. Hoel, S. Port, and C. Stone, Introduction to statistical theory, Houghton Mifflin
research series (Houghton-Mifflin, 1971).

[16] S. Srinivasa and M. Haenggi, Distance Distributions in Finite Uniformly Random
Networks: Theory and Applications, Vehicular Technology, IEEE Transactions on 59,
940 (2010).

[17] S. Misra, S. D. Hong, G. Xue, and J. Tang, Constrained Relay Node Placement in Wire-
less Sensor Networks: Formulation and Approximations, Networking, IEEE/ACM
Transactions on 18, 434 (2010).

[18] A. Venkateswaran, V. Sarangan, T. La Porta, and R. Acharya, A Mobility-Prediction-
Based Relay Deployment Framework for Conserving Power in MANETs, Mobile Com-
puting, IEEE Transactions on 8, 750 (2009).

[19] T. Le, K. Mayaram, and T. Fiez, Efficient Far-Field Radio Frequency Energy Harvest-
ing for Passively Powered Sensor Networks, Solid-State Circuits, IEEE Journal of 43,
1287 (2008).

[20] S. Lee, R. Zhang, and K. Huang, Opportunistic wireless energy harvesting in cog-
nitive radio networks, Wireless Communications, IEEE Transactions on 12, 4788
(2013).

[21] V. Kawadia and P. Kumar, Principles and protocols for power control in wireless ad
hoc networks, Selected Areas in Communications, IEEE Journal on 23, 76 (2005).

http://dx.doi.org/ 10.1016/j.sigpro.2007.04.004
http://dx.doi.org/ 10.1016/j.sigpro.2007.04.004
http://dx.doi.org/10.1007/BF02288367
http://books.google.nl/books?id=6hPvAAAAMAAJ
http://dx.doi.org/10.1109/TVT.2009.2035044
http://dx.doi.org/10.1109/TVT.2009.2035044
http://dx.doi.org/10.1109/TNET.2009.2033273
http://dx.doi.org/10.1109/TNET.2009.2033273
http://dx.doi.org/10.1109/TMC.2008.174
http://dx.doi.org/10.1109/TMC.2008.174
http://dx.doi.org/ 10.1109/JSSC.2008.920318
http://dx.doi.org/ 10.1109/JSSC.2008.920318
http://dx.doi.org/ 10.1109/TWC.2013.072613.130323
http://dx.doi.org/ 10.1109/TWC.2013.072613.130323
http://dx.doi.org/ 10.1109/JSAC.2004.837354(410) 23




5
DIRECTIONAL MAXIMUM

LIKELIHOOD SELF-ESTIMATION OF

THE PATH-LOSS EXPONENT

Yongchang HU and Geert LEUS

We must accept finite disappointment, but we must never lose infinite hope.

Mattin Luther King

The path-loss exponent (PLE) is a key parameter in wireless propagation channels. There-
fore, obtaining the knowledge of the PLE is rather significant for assisting wireless com-
munications and networking to achieve a better performance. Most existing methods for
estimating the PLE not only require nodes with known locations but also assume an omni-
directional PLE. However, the location information might be unavailable or unreliable
and, in practice, the PLE might change with the direction.

In this paper, we are the first to introduce two directional maximum likelihood (ML) self-
estimators for the PLE in wireless networks. They can individually estimate the PLE in any
direction merely by locally collecting the related received signal strength (RSS) measure-
ments. The corresponding Cramér-Rao lower bound (CRLB) is also obtained. Simulation
results show that the performance of the proposed estimators is very close to the CRLB. Ad-
ditionally, also for the first time, the RSSs based on only a geometric path loss are found
to follow a truncated Pareto distribution in wireless random networks. This might be of
great help in the analysis of wireless communications and networking.

139



5

140
5. DIRECTIONAL MAXIMUM LIKELIHOOD SELF-ESTIMATION OF THE PATH-LOSS

EXPONENT

Figure 5.1: Example in R2 based on a spherical coordinate system: mobile users cluster in different separate
villages, but remotely connect to the BS; the PLEs to different villages are often different (e.g., some forests
might result in a large PLE).

5.1. INTRODUCTION

T HE path-loss exponent (PLE) is very crucial for efficiently designing wireless com-
munications and networking systems. For instance, the information-theoretic ca-

pacity of large ad hoc networks highly depends on the PLE, which might lead to different
routing strategies [1]. Source localization based on the received signal strength (RSS)
measurements requires the knowledge of the PLE to estimate the target location[2]. The
interference in wireless ad hoc networks is greatly affected by the PLE [3], which has a
strong impact on the quality of the transmission link. Therefore, the PLE needs to be
accurately estimated.

Current methods for estimating the PLE can mostly be found in the field of RSS-
based localization [4–6], where some nodes with known locations, i.e., anchors, are re-
quired. However, the anchors are sometimes not available and the location information
might also be unreliable, especially in military scenarios where adversaries can mali-
ciously sabotage wireless networks by spoofing some specific information. Some other
estimators of the PLE are presented in [7], which however require the network density
or the receiver sensitivity, and even require changing them. Besides, in practice, the PLE
might change with direction, as depicted in Fig. 5.1. Yet, all existing estimators assume
the PLE to be omni-directionally the same.

Therefore, a directional self-estimator, which can solely and individually estimate
the PLE merely by locally collecting the RSSs, is urgently required. Driven by this moti-
vation, two (weighted) total least squares self-estimators of this kind have already been
proposed in our previous work [8]. However, obtaining the maximum likelihood (ML)
solution and the Cramér-Rao lower bound (CRLB) still remains a problem. Additionally,
our previous work assumes a homogeneously random deployment of the surrounding
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nodes, i.e., a homogeneous random network (HRN), and such an assumption can easily
be violated, when nodes are clustered. For example, considering cellular networks, the
mobile users tend to cluster in different villages with different PLEs, as shown in Fig. 5.1.
In this case, all the aforementioned estimators become unfeasible and certainly cannot
estimate the PLE to every village. A possible solution is to consider the mobile users
in each village to be locally randomly deployed, i.e., those villages are viewed as sev-
eral locally random networks (LRNs), which remotely connect to the base station (BS).
Then, this issue can be well-resolved if we propose a self-estimator for the PLE based on
the RSS measurements from those LRNs. In fact, if considering a spherical coordinate
system, the LRN is more general (and includes the HRN), thus leading to more general
solutions.

The contributions of this paper can be listed as follows:

1. The RSSs based only a geometric path-loss are first found to follow a truncated
Pareto distribution. This is derived using properties of LRNs. This finding might
be of great help in the analysis of wireless communications and networking.

2. Based on the RSS distribution, two ML self-estimators of the PLE are derived, which
meet the mentioned requirements. Further, the CRLB for this kind of estimator is
computed.

3. The two proposed ML self-estimators are both close to the CRLB. For comparison,
we especially consider the case of a HRN and both our estimators outperform two
existing ones: one weighted total least squares estimator from our previous work
(WTLS-PLE) and another estimator based on the cardinality of the transmitting
set (C-PLE).

The rest of the paper is organized as follows. Section 5.2 introduces the truncated
Pareto distribution for the RSS in the wireless random networks. Based on this RSS dis-
tribution, the CRLB and the proposed directional ML self-estimators for the PLE are pre-
sented in Section 5.3. Numerical results are shown in Section 5.4 and finally we conclude
this paper in Section 5.6.

5.2. RSS DISTRIBUTION IN WIRELESS RANDOM NETWORKS

S INCE the self-estimation of the PLE only relies on the RSS measurements, it is obvi-
ously significant to obtain the RSS distribution in wireless random networks. How-

ever, this has never been studied before, to the best of our knowledge. If this distribution
can be found, it might not only help to obtain the CRLB as well as the ML solution for
the self-estimation of the PLE, but also lead to other insightful properties of wireless net-
works.

To begin, we first have to study the distribution of the nodal distance r for a ran-
dom node deployment. Two distributions for ordered nodal distances were already given
in [9, 10]. However, they were limited to (infinite) HRNs. Therefore, for the remote LRNs
depicted in Fig. 5.1, we actually need a more general distribution.

A random deployment of nodes implies that every node holds an equal chance ρ to
reside in a considered area. Therefore, if all the nodes are bounded by an LRN in Rm , we
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can obtain
ρ = 1/(cm,φ r m

max − cm,φ r m
mi n),

whereφ is the angular window, rmi n and rmax are considered the smallest and the largest
nodal distances, and for m = 1,2,3 we have c1,φ = 1, c2,φ = φ/2 and c3,φ = 2π

3 (1− cosφ).
Therefore, the cumulative density function (CDF) of r is given by

F(r ) = ρcm,φ(r m − r m
mi n) = r m − r m

mi n

r m
max − r m

mi n

,

for r ∈ [rmi n ,rmax ).

(5.1)

and hence the probability density function (PDF) of r can be obtained as

P(r ) = ∂ F(r )

∂r
= m r m−1

r m
max − r m

mi n

, for r ∈ [rmi n ,rmax ). (5.2)

Then, for the wireless propagation channel, we currently only consider the geometric
path loss[11], i.e., the RSS can be presented (in Watt) by

Pr =Cr−γ, (5.3)

where γ is the PLE and C ,Gt Gr Pt with Gt the transmitter antenna gain, Gr the receiver
antenna gain and Pt the transmit power. Admittedly, the shadowing effect is very impor-
tant, yet considering it will complicate the following derivations. Besides, the proposed
ML solutions are also very resilient to the shadowing effect if considered, which will be
discussed later on.

One may also consider the small-scale fading, which mainly decides the instanta-
neous received power. In fact, the instantaneous received signal envelope follows a Nak-
agami distribution [12] and accordingly the distribution of the instantaneous received
power p follows a Gamma distribution, which is given by

P(p) =
( d

E(p) )d pd−1e−
d p

E(p)

Γ(d)
, (5.4)

where d is the fading parameter and a small value of d indicates a stronger fading. Pre-
cisely speaking, the small-scale fading just causes the instantaneous power p to rapidly
fluctuate within a very small scale around the expectation that is determined by the RSS,
i.e., E(p) = Pr . Therefore, compared with the geometric path-loss, the impact of small-
scale fading is relatively small. In practice, the RSS Pr is obtained by taking the average
over K consecutive time slots of instantaneous received powers pk , i.e. Pr = 1

K

∑K
i=1 pk .

From (5.4), we have V ar (Pr ) = E(pk )2

K d , which implies that, when K is large enough, the
impact of the small-scale fading almost vanishes. Therefore, the term “received signal
strength (RSS)" does not consider the small-scale fading, i.e., the RSS in this paper refers
to Pr .

Obviously, the geometric path-loss in (5.3) follows the Zipf’s law, which enlightens
us that, in this case, the RSS in wireless random networks might be subject to one of
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I (γ) =− n

γ2 − 2mnl n(Pr,mi n)

γ3 + 2n

γ3

[(γ+ml n(Pr,max ))(
Pr,mi n
Pr,max

)
m
γ − (γ+ml n(Pr,mi n))]

(
Pr,mi n
Pr,max

)
m
γ −1

+
nm(

Pr,mi n
Pr,max

)
m
γ ln(

Pr,mi n
Pr,max

)[2γ(
Pr,mi n
Pr,max

)
m
γ −2γ−ml n(

Pr,mi n
Pr,max

)]

(1− (
Pr,mi n
Pr,max

)
m
γ )2γ4

(5.7)

the power-law distributions [13], e.g., the Pareto distribution, but this has never been
observed before. Note that this kind of distribution has rather wide applications in re-
search on the city population [14], the sizes of earthquakes [15], etc., yet so far not in the
field of wireless networks.

Based on (5.1) and (5.3), the CDF of the RSS can be obtained after a simple transfor-
mation of variables as

F(Pr |m,γ,Pr,mi n ,Pr,max )

=
{

1−(Pr,mi n /Pr )m/γ

1−(Pr,mi n /Pr,max )m/γ , for Pr,mi n ≤ Pr ≤ Pr,max ,

0, otherwise,

(5.5)

where Pr,mi n ,Cr−γ
max , and Pr,max ,Cr−γ

mi n in the LRN (rmi n À 0), or Pr,max , Pt in the
HRN to avoid the singularity issue in (5.3). And, the PDF can finally be obtained as

P(Pr |m,γ,Pr,mi n ,Pr,max ) = ∂F(Pr |m,γ,Pr,mi n ,Pr,max )

∂Pr

=
 m

γ

P
m/γ
r,mi n P

−m/γ−1
r

1−(Pr,mi n /Pr,max )m/γ , for Pr,mi n ≤ Pr ≤ Pr,max ,

0, otherwise,

(5.6)

which apparently follows a truncated Pareto distribution Type I [16].

5.3. DIRECTIONAL MAXIMUM LIKELIHOOD SELF-ESTIMATION

OF THE PLE

A FTER obtaining the distribution for the RSS measurements, we can introduce the
CRLB for the self-estimation of the PLE and our proposed ML solutions.

5.3.1. CRLB

I F n RSS samples are locally collected from an LRN, where the i -th sample is denoted
by Pi , the truncated Pareto distribution (5.6) directly leads to the CRLB for the self-

estimation of the PLE, which can be given by

C RLB(γ) = 1

I (γ)
,
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Figure 5.2: Demonstration of the convexity of the log-likelihood function L (γ) ,when the PLE is set to 4.

where

I (γ) =−E

[
n∑

i=1

∂2ln(P(Pi |m,γ,Pr,mi n ,Pr,max ))

∂γ2

]
is the Fisher information shown in (5.7) on the top of page. 143. As shown in Fig. 5.3(a),
the CRLB decreases with a large sample size or a small PLE. We also notice that, the
farther the LRN is located from the considered node, the larger the CRLB becomes.

5.3.2. TWO ML SELF-ESTIMATORS FOR THE PLE

N OW, let us focus on the ML solution to the self-estimation of the PLE. Based on the
truncated Pareto distribution in (5.6), the log-likelihood function can be expressed

as

L (γ) =
n∑

i=1
ln(P(Pi |m,γ,Pr,mi n ,Pr,max ))

= nln(
m

γ
)+ nm

γ
ln(Pr,mi n)− (

m

γ
+1)

n∑
i=1

l n(Pi )

−nln(1− (Pr,mi n/Pr,max )m/γ),

(5.8)

which is required to be convex to facilitate the proposed ML estimators. To prove that,
the derivative of L (γ) should be a strictly decreasing function. For convenience, it would
also be sufficient to prove the monotonicity of

f (γ), γ2 ∂L (γ)

∂γ
,∀γ : γ> 0,

which is what we will do next. Considering any two values of γ that satisfy ∀γ1,γ2 : γ1 >
γ2 > 0, we have

f (γ1)− f (γ2) =−n

(
γ1 −γ2 + γ1ln(t

m
γ1 )t

m
γ1

1− t
m
γ1

− γ2l n(t
m
γ2 )t

m
γ2

1− t
m
γ2

)
, (5.9)
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where t , Pr,mi n
Pr,max

. Finally, noticing that t
m
γ ∈ (0,1), we complete the proof of convexity by

using some bounds on the natural logarithm, i.e.,

1−1/t
m
γ ≤ l n(t

m
γ ) ≤ t

m
γ −1,

and observing that (5.9) is always negative as

f (γ1)− f (γ2) ≤−n
(
2γ1 −γ2 +γ2t

m
γ

)
< 0.

The convexity of L (γ) is also demonstrated in Fig. 5.2.
When Pr,mi n and Pr,max can be calculated based on some prior knowledge, the ML

self-estimate of the PLE can be obtained by forcing the derivative of L (γ) to 0, i.e., the
ML solution solves

nγ

m
−

n∑
i=1

(ln
Pi

Pr,mi n
)+

n(
Pr,mi n
Pr,max

)m/γln(
Pr,mi n
Pr,max

)

1− (
Pr,mi n
Pr,max

)m/γ
= 0. (5.10)

When Pr,mi n and Pr,max are unknown, we can rank the RSSs, leading to the following
set of ordered RSSs: P(1) < ·· · < P(n). We further notice that the log-likelihood function
in (5.8) is an increasing function of Pr,mi n for Pr,mi n ≤ P(1) and a decreasing function of
Pr,max for Pr,max ≥ P(n). Therefore, for a fixed γ, this log-likelihood function is maxi-
mized when Pr,mi n = P(1) and Pr,max = P(n).

By respectively using the weakest RSS P(1) and the strongest RSS P(n) to replace the
unknown Pr,mi n and Pr,max , this ML self-estimate of the PLE can be obtained by solving

nγ

m
−

n∑
i=1

(ln
Pi

P(1)
)+

n(
P(1)
P(n)

)m/γln(
P(1)
P(n)

)

1− (
P(1)
P(n)

)m/γ
= 0. (5.11)

Both (5.10) and (5.11) can be efficiently solved by a simple bisection method. In our
Matlab simulations, the function fzero helps us to calculate the solution.

Finally, it is worth noting that, even if the shadowing effect is considered, the term∑n
i=1 ln(Pi ), which is the only sample-related part in our proposed ML solutions, be-

comes
∑n

i=1 ln(Pi )+∑n
i=1 ξi , where ξi is a zero-mean Gaussian variable, i.e., the shad-

owing effect by definition. Obviously, compared to
∑n

i=1 ln(Pi ), the impact of
∑n

i=1 ξi is
relatively small, when the sample size n increases. Therefore, due to the limited space,
we will not consider the case of the shadowing effect in the following simulations.

5.4. NUMERICAL RESULTS

W E have conducted two simulations to evaluate the performance of our two pro-
posed ML estimators. The first simulation assumes an LRN and our two ML esti-

mators are compared with the CRLB. Since no existing method is capable to estimate the
PLE in an LRN, we decide to conduct the second simulation for an HRN, where our two
ML estimators can be compared with two existing methods: our previously proposed
weighted total least squares estimator (WTLS-PLE) of [8] and the estimator based on the
cardinality of the transmitting set (C-PLE) of [7] (see also the Appendix). The two node
deployments are shown in Fig. 5.3(b). The mean square error (MSE) is adopted to deter-
mine the accuracy of the estimators.
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(a) CRLB for the self-estimation of the PLE in R2. (b) The first simulation considers in an LRN, which is
shown on the left side. The second simulation consid-
ers in an HRN, which is shown on the right side. Note
that the HRN is a special case of the LRN.
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when the PLE is set to 4.
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Figure 5.3: The simulations assume a 2-dimensional space, where nodes are randomly deployed. The carrier
frequency is 2.4 G H z. The transmit power is 1 W at t . The antenna gains Gt and Gr are both 1. For the first
simulation, rmi n = 50 m, rmax = 100 m and φ=π/6. For the second simulation, rmax = 100 m.
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5.4.1. FIRST SIMULATION

T HE numerical results are shown in Fig.5.3(c) and Fig.5.3(d), from which we can ob-
serve that both proposed ML self-estimators yield a very good performance that is

very close to the CRLB. Even without the exact knowledge of Pr,mi n and Pr,max and using
P(1) and P(n) instead, our ML estimator barely suffers any notable decrease in accuracy.
Additionally, the performance of our two proposed estimators becomes better with a
high node density and a small PLE.

5.4.2. SECOND SIMULATION

F OR comparison, the HRN, a special case of the LRN, is considered in this simula-
tion to allow the use of existing estimators. In this case, Pr,max is set to the transmit

power Pt for our proposed ML self-estimators. As shown in Fig. 5.3(e) and Fig. 5.3(f),
our ML self-estimators remarkably outperform the WTLS-PLE and the C-PLE. This can
be explained by the fact that the WTLS-PLE requires ranking the RSSs, which adopts the
rank numbers as a new set of observations. This incurs an extra impact on the estima-
tion quality. The C-PLE, on the other hand, requires changing the receiver sensitivity.
However, it simply depends on only two observations, i.e., the neighborhood size before
and after the receiver sensitivity change, which makes this estimator very inaccurate and
vulnerable.

5.5. APPLICATIONS AND FUTURE WORKS

D UE to their simplicity, the proposed ML self-estimators can be incorporated into
any kind of wireless network. Hence, adapting existing wireless networking and

communication designs to this change in PLE might lead to a better performance. We
have already elaborated on many applications in [8]. Also note that the proposed self-
estimators in this paper can also deal with the case when there exist node clusters, which
might lead to broader applications. For example, as shown in Fig. 5.1, the BS can direc-
tionally adjust the transmit power to different remote villages according to the estimated
PLEs such that the coverage of the signal or the energy efficiency can be guaranteed.

In this paper, the shadowing effect is ignored for convenience. To be more realistic, if
it is considered, then the RSSs in wireless random networks are log-normally distributed
with the expectation subject to the truncated Pareto distribution of (5.6). Therefore, if
we intend to propose ML self-estimators for the PLE over log-normal shadowing fad-
ing channels, first a new distribution of the RSSs has to be obtained by blending the
truncated Pareto distribution of (5.6) with the log-normal distribution, which might be
mathematically very difficult and complicated.

5.6. CONCLUSION

T WO directional ML self-estimators for the PLE are proposed: one with known Pr,mi n

and Pr,max and another one using P(1) and P(n) instead. The CRLB is also obtained.
Only by locally collecting the RSSs, this kind of estimator can solely and individually es-
timate the PLE without any external information. Superior to all existing estimators, our
two proposed ML self-estimators not only have a very good performance but are also fea-
sible when nodes appear in clusters (all the existing methods assume a homogeneously
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random node deployment). Two simulations have been conducted: the first one shows
that the performance of our two proposed ML self-estimators is very close to the CRLB;
the second one shows that they outperform two existing methods, i.e., our previously
proposed WTLS-PLE and the C-PLE.

Most importantly, it is the first time that the RSSs based only a geometric path-loss
in wireless random networks are found to follow a truncated Pareto distribution, which
might be of great help for the analysis of future wireless networking and communication
systems.

5.7. APPENDIX

T HE PLE estimator based on the cardinality of the transmitting set (C-PLE) is proposed
in [7], and requires changing the receiver sensitivity for a successful communica-

tion. More specifically, when the SINR of a nodal link at the considered receiver exceeds
a certain thresholdΘ, i.e.,Θ≤ Pr

I+N0
where I is the interference and N0 is the background

noise, this communication link can be determined successful. The cardinality of the
transmitting set is simply the number of successful communication links, which is also
called the neighborhood size.

By changing the receiver sensitivity fromΘ1 toΘ2, the transmission range of the con-
sidered receiver changes and hence the cardinality of the transmitting set also varies
from NT,1 to NT,2. Then, in R2, the PLE can be estimated by

γ̂C-PLE = 2ln(Θ2/Θ1)

l n(NT,1/NT,2)
. (5.12)

The C-PLE is only feasible for the HRN, where Θ1 and Θ2 are respectively calculated
when the transmission ranges are 50 m and 100 m.
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6
CONCLUSIONS AND FUTURE WORK

In this chapter, we conclude this thesis and provide some suggestions for future work.

6.1. CONCLUSIONS

T HIS thesis is comprised of two lines of research: signal strength (SS) based local-
ization and path-loss exponent (PLE) self-estimation in wireless networks. At first

glance, these two research lines do not seem to relate to each other. Nevertheless, the
PLE is a critical parameter of radio propagation channels, which is generally unknown.
Therefore, estimating the unknown PLE is rather significant for SS-based localization.
In practice, either the PLE is accurately estimated before the localization phase, or SS-
based localization techniques have to jointly estimate the unknown PLE and the target
location. However, the ultimate goal is nothing but obtaining an accurate location esti-
mate. This is actually the main reason why we set these two lines for our research since
they all stem from that same single purpose.

Furthermore, since scientific research should never be limited and innovations al-
ways originate from an open mind, we have also extended the PLE estimation towards a
more general use in wireless networks, rather than only in the field of localization. Obvi-
ously, getting a grip on the PLE, a key parameter of radio propagation channels, is ben-
eficial for designing more efficient wireless communication techniques and networking
protocols. Therefore, this kind of method should be designed as an independent and
self-driven entity, which can easily be incorporated into any kind of wireless network.
This is also the reason why we use the term “self-estimation” for our second research
line and note that we are the first to initiate this topic.

6.1.1. SS BASED LOCALIZATION

T HE first research line has been discussed in Part II. In Chapter 1, we have explained
the practical advantages of using the SS measurements (including the received signal

strength (RSS) and the differential received signal strength (DRSS)) for localization. In
short, employing SS measurements is very convenient for any wireless device in real-life.

153
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Unlike other measurements such as time-of-arrival (TOA) and angle-of-arrival (AOA), SS
based localization does not rely on any external system like clock synchronization or an
antenna array. Furthermore, we select the DRSS measurements for localization, which
can be viewed as analogous to time-difference-of-arrival (TDOA) based localization. In
doing so, we not only eliminate the unknown transmit power by taking differences be-
tween SS measurements, but also gain the independence of the signal transmitter for
localization. Other merits have also discussed in Chapter 1.

In Chapter 2, in order to construct the optimization problem for DRSS-based lo-
calization, we have first introduced a whitened linear model, which can be linked to
a whitened RSS-based model through an orthogonal operator, thus suffering no infor-
mation loss comparatively. Next, we have coped with the non-convexity issue and pre-
sented three different kinds of methods. They are the advanced best linear unbiased
estimator (A-BLUE), the Lagrangian estimator (LE) and the robust semi-definite pro-
gramming estimator (RSDPE). For the latter, we also considered the impact of the in-
accurate anchor location information and the inaccurate PLE estimate, which actually
results into model uncertainties for our localization problem. Hence, the RSDPE is par-
ticularly designed to be robust against those model uncertainties. Then, to study these
three methods, we have not only conducted numerical simulations under different kinds
of impacts but also fully compared them in a general context. Finally, when the PLE is
totally unknown, we have also proposed a robust SDP-based block coordinate descent
estimator (RSDP-BCDE) for DRSS-based localization.

When solving the localization problem, two conflictive facts kept haunting us: a)
in SS-based localization, taking differences between measurements seems to cause no
information loss as already indicated above; b) there exists a lot of TDOA localization
literature studying the impact of the differencing processing, which implies otherwise.
Therefore, in order to unveil the underlying truth, we make a further step to particularly
study the differencing process. In Chapter 3, we have extended our study to a general
case of multiple linear nuisance parameters, for which we present a unified framework
and introduced a general differential method that can cope with that. We have com-
pare the general differential method with the other two methods that can also tackle
multiple linear nuisance parameters: joint estimation and the orthogonal subspace pro-
jection (OSP) estimation. Their corresponding best linear unbiased estimators (BLUEs)
were used to bridge them. We noticed that, regardless of the complicated procedure
of the differential method, the three BLUEs are actually equivalent to each other after
a proper preprocessing. Considering the fact that the joint estimation directly uses the
measurements and preserves the full data information, the differencing process hence
causes no information loss, which coincides with the first fact mentioned earlier. To ex-
plain the second fact, we dug into some particular localization cases and pointed out that
the modelling process actually causes the information loss. In some TDOA localization
cases, this information loss may be subject to the reference choice in the differencing
process, which is why the differencing process seems to be responsible for that. More
importantly, this finding leads to many other interesting conclusions. For instance, the
differential observation set associated with a single reference preserves the full data in-
formation, while many literature still tries to collect more differential observations with
multiple references.
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6.1.2. PLE SELF-ESTIMATION IN WIRELESS NETWORKS

T HE second research line is discussed in Part III. Although this research line originated
from the SS based localization, the significance of estimating the PLE is not merely

limited to this particular case, but impacts a broader field. In fact, the PLE is so crucial
and decisive for radio propagation channels that any kind of wireless network must get
a grip of it for smart self-adaptation according to dynamically changing environments.
Therefore, in order to do that, the PLE estimation cannot come with many constraints,
but with a great freedom to be pervasively adopted. However, as a trade-off, that will lead
to many difficulties when designing the desired PLE estimation method. In Chapter 1,
we have elaborated on the motivations, the related work and our expected features for
the PLE self-estimation.

In Chapter 4, we have initiated a new research topic: PLE self-estimation, which is
merely based on the locally collected SS measurements. In order to cope with the un-
known distance issue, we rank the SS measurements and introduce the rank indices as
new observations that also contain the desired distance information. Next, a distance-
related intermediate parameter is introduced and ML estimated using those rank indices
such that we can formulate a total least squares (TLS) optimization problem for PLE self-
estimation. This requires a low-rank approximation and hence the traditional solution
can be obtained using the singular value decomposition (SVD). However, the SVD pro-
cedure results into a high computational complexity, which could be practically incon-
venient. To cope with that, we have also proposed a closed-form solution that greatly
reduces the computational time. We have further noticed the fact that the ranking pro-
cedure mentioned earlier could be disturbed due to some wireless channel effects. In
other words, the SS rank might not exactly map the distance rank because of the shad-
owing effects, thus resulting into some mismatches in the rank indices. To eliminate
the impact of those mismatches, we have further proposed a weighted closed-form so-
lution. After that, we have elaborated on the potential applications of using this kind of
collective PLE self-estimation.

Although the PLE self-estimation methods mentioned above yield a good perfor-
mance, there still exist many unresolved issues such as the CRLB and the full ML so-
lution. Obviously, all those issues can be attributed to one single obstacle, the unknown
observation distribution, where the observation refers to the SS measurement. The prob-
lem is that the SS measurement is not only impacted by the wireless channel effects but
also subject to the spatial dynamics (a random node placement). Unfortunately, there is
no distribution that suffices to fully characterize the SS measurement. In Chapter 5, we
start with a simple case that only considers the geometric path-loss of wireless channels.
Surprisingly, we discover that the SS measurement now is Pareto distributed, which has
never been reported before. Based on that, we obtain two ML solutions and the CRLB.
More importantly, this might open a new perspective of studying wireless communi-
cation and networking, since the SS yields a multi-faceted influence such as on energy
consumption, signal coverage and the signal-to-interference-plus-noise ratio (SINR).

6.2. SUGGESTIONS FOR FUTURE WORK
Here, we discuss some directions for the future work and hope that they could be of any
help to those who are interested.
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6.2.1. LOCALIZATION
• Mobile Scenarios: So far, our work in Chapter 2 only considers a stationary local-

ization network. However, if we want to track a moving target (even with mobile
anchors) using SS measurements, the whole optimization problem would become
rather different. In mobile scenarios, the tracking problems are often formulated
using the Taylor expansion, the first solution to the non-linearity issue discussed
in Chapter 1. Due to the advantages of using SS measurements, the SS-based mo-
bile localization problem is worthy of a deep investigation. In particular, not only
the target location but also the target speed can be estimated. And, some unex-
pected external impacts require attention, e.g., sudden link disconnections and
weak localization signals.

• A Better Linearization? Undoubtedly, the non-linearity issue widely exists in many
fields. In Chapter 1, we have discussed two solutions for the localization case: Tay-
lor expansion and unfolding the distance norm. Here, we would like to present an-
other method that can deal with the non-linearity, the unscented transformation
(UT) [1]. The UT is widely used and the most famous case is the unscented Kalman
filter (UKF) [2], which yields a very good performance especially in a highly non-
linear situation. Considering the severe non-linearity issue in SS based localiza-
tion, the UT might be a good choice and there are already some applications [3, 4].
However, the number of studies on this topic are still far from enough. For in-
stance, the impact of an inaccurate PLE estimate and inaccurate anchor location
information has not been studied yet for this kind of method. Additionally, the UT
is also applicable in the mobile scenarios discussed above.

• Cooperative Localization with Multiple Targets: In this thesis, we have only con-
sidered non-cooperative localization, where the SS measurements are only col-
lected between the anchors and a single target. Nonetheless, if there exist multiple
targets, SS measurements between these targets can also be used for localization,
which is called cooperative (or collaborative) localization. The multidimensional
scaling (MDS) method is the conventional solution for this case [5], but it removes
all terms of the form Ri , ||xi ||2 using the orthogonal subspace projection (OSP),
where xi is the i -th target node location. As already pointed out in both Chapter 2
and Chapter 3, this is equivalently to assuming that Ri and xi are independent
unknowns. However, we know that all the relations between Ri and xi should be
taken into account for a better localization performance. Anyway, there still exists
a large room for improvement in this area, where the breakthroughs are certainly
not limited to the one mentioned above.

• Optimal TDOA based Localization: The idea of this direction mainly stems from
the localization example in Chapter 3. As already concluded, the modelling pro-
cess drops some high-order reference-dependent noise terms, thus causing an in-
formation loss as well as making the performance of most TDOA based localiza-
tion methods rely on the reference selection. In other words, by studying the ref-
erence choice, engineers actually try to minimize the information loss. However,
the conclusions in Chapter 3 have clearly pointed out that the differencing pro-
cess that generates the TDOA measurements does not cause any information loss.



6.2. SUGGESTIONS FOR FUTURE WORK

6

157

This implies that if we can somehow well compensate the information loss from
the modelling process or just not drop those terms, the TDOA based localization
should be free of the impact of the reference choice and might reach its optimal
performance.

• New SS Measurements with Background Noise: As indicated in Section 1.1.3 of
Chapter 1, the SS measurements used in this thesis are assumed to be obtained
after successful demodulation and segregation of the background noise (BGN).
However, if we consider hostile military scenarios, the signal demodulation might
be very difficult or expensive. In this case, an alternative solution is obtaining new
SS measurements by integrating the received power, i.e., 1

T

∫ |y(t )|2d t , which obvi-
ously includes the impact of the BGN. A reliable model for this kind of SS measure-
ment has been introduced in [6, eq. (17)]. However, the study of localization based
on this kind of SS measurement has still been left almost blank. Moreover, the
same holds for the PLE self-estimation, though we will not mention this direction
later on.

6.2.2. PLE SELF-ESTIMATION
• Applications of the PLE Self-Estimation: Some potential applications of the PLE

self-estimation have been carefully elaborated on in Section 4.6 of Chapter 4 and
Section 5.5 of Chapter 5. Still, due to the significance of the PLE in wireless com-
munications and networking, the uses of the PLE self-estimation are obviously far
more than what we have listed. For instance, the PLE estimate can be used to
improve the communication quality for the patient monitoring process in clinical
environments [7]. The environmental sensing system can also detect the chang-
ing PLE to discover a good communication area [8], which is particularly helpful
in military scenarios.

• Impact of the Shadowing Effect: Although the ML solutions derived in Chap-
ter 5 are obviously robust against the shadowing effect, this has not been studied
numerically. The impact might still be considerable under a large shadowing ef-
fect. For instance, if the two parameters Pr,mi n and Pr,max are not known a priori,
P(1) and P(n) might not be good estimates respectively, since the shadowing effect
would disturb the ranking procedure. Furthermore, in this case, it is questionable
that the proposed estimators are still ML solutions.

• Applications of the Pareto Distribution: In our second research line, the finding
of the SS being Pareto distributed in simplified wireless channels (with only a ge-
ometric path-loss) is viewed to be as significant as the new PLE self-estimation
topic itself. This is the reason why we kept emphasizing that this might be of great
help for studying wireless communications and networking. Due to the fact that
this may go beyond the scope of this thesis, we will only list some potential fields
that can benefit from this finding:

1. Interference: Most literature about the interference in wireless networks as-
sumes a homogeneous random node placement. Yet, the Pareto distribution
we offered in Chapter 5 can also cope with node clusters. Coupled with other
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wireless channel effects such as the small-scale fading, the Pareto distribu-
tion can be used to study the interference in the presence of node clusters,
which has never been done before.

2. Energy Consumption: The Pareto distribution actually models the main power
loss on the transmission link in random wireless networks. Accordingly, we
have a new perspective for studying the energy consumption for propagation
and the topology could be optimized or adjusted to minimize the total power
loss for networking.

3. Routing: Optimal routing must be energy-efficient, though most power is
consumed for propagating the message. Therefore, every hop should be care-
fully designed. For instance, assume we can particularly point out a certain
area, where the next hop would be. The nodes in this area can be consid-
ered as a node cluster and hence we can easily use the Pareto distribution to
calculate the expected power loss for jumping to this area.

• Realistic distribution of the SS measurements including the shadowing effect:
This direction has been frequently mentioned in Chapter 1, Chapter 4 and Chap-
ter 5. Obtaining a more realistic distribution would be rather mathematically dif-
ficult, since it involves blending the Pareto distribution with the log-normal distri-
bution. Even if it can be done, using this distribution would become the next prob-
lem, since the form might be very complicated. On the other hand, we should also
notice the potential benefits of doing so. More realistic ML solutions and CRLBs
for the PLE self-estimation could be obtained. The impact caused by the ranking
procedure might be removed once and for all. Finally and more importantly, all
the directions discussed above for the Pareto Distribution can be studied or solved
more realistically and accurately.
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