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ARTICLE INFO ABSTRACT

Dataset link: https://github.com/gmpal/Dynam
icThermalRating

Dynamic Thermal Rating (DTR) enhances grid flexibility by adapting line capabilities to weather conditions.
For this purpose, DTR-based technologies require reliable and continuous measurement of the conductor
temperature along the line route, which could hinder their wide-scale deployment due to the prohibitively
high number of required sensors. Existing machine learning-based DTR methods infer conductor temperature
from weather variables avoiding using complex and expensive measurement techniques, but their estimation
accuracy greatly relies on the availability of a comprehensive set of measured data. To face these issues, this
paper proposes the usage of transfer learning, a data-driven technique allowing the reduction of the number
of sensors by transferring knowledge from a single calibrated source sensor to many target sensors. To the best
of the author’s knowledge, at the time of writing, the proposed approach is the first application of Transfer
Learning in the domain of DTR which is validated on real transmission lines data. Experimental results from
several real transmission lines equipped with self-organizing sensors-based DTR architecture show that transfer
learning enhances the conductor temperature estimation reliability and accuracy of machine learning-based
DTR techniques, suggesting the potential for practical applications, and reducing costs without losing accuracy
for practitioners and system operators.
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1. Introduction

The integration of renewable power generators (RPGs) in modern
power systems brings environmental and social benefits such as reduc-
ing climate-changing emissions. However, their hosting capacity relies
on the grid’s ability to handle large power flows within strict line rating
limits. Indeed, the uncertain generation profiles of RPGs can signifi-
cantly perturb grid loading, inducing complex side effects. For instance,
sudden wind speed increases in regions with many wind generators
can congest lines, resulting in wind power generation curtailment. On
the other hand, higher wind speeds can lower conductor temperature,
raising overhead line capability. This extra capability is often neglected
since systems operators adopt Static Thermal Rating (STR) policies,
where line capabilities are assessed by considering worst-case weather

conditions updated seasonally. This led to the development of Dynamic
Thermal Rating (DTR) techniques, modeling dynamic conditions for
line ampacity determination. Particularly, [1] shows the line ampacity
estimated via DTR is 30% higher compared to STR (and remains 15%
higher for more than 80% of the operating time). Hence, DTR is seen
as a promising technology to enhance grid flexibility and RPG hosting
capacity.

According to a recent comprehensive review [2], DTR technology
could enable: (i) the estimation of the conductor temperature over time,
(ii) the assessment of the load capability curve, and (iii) the prediction
of the line ratings on several time horizons.

Particularly, several technologies and methodologies have been pro-
posed in the literature for addressing task (i), which is recognized
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as the most critical process in DTR since its performance directly
affects the accuracy and reliability of the computed thermal ratings. In
particular, the conductor temperature of an overhead line (OHL) can be
obtained through direct or indirect techniques. The former deploy con-
ductor temperature sensors, whereas the latter employ analytic/data-
driven-based estimation algorithms in the task of inferring the mapping
between the conductor temperature and a set of easily measurable
variables. Although direct methods are more accurate than indirect
ones, the costs of the conductor temperature sensors, as far as the
complexity of installing and maintaining these sensors, can hinder
their widespread application in large-scale networks (more details are
available in Section 2.2). These limitations have stimulated the research
for data-driven-based indirect techniques, which aim at estimating
the conductor temperature at specific line spans by processing the
operation data (e.g. line current) and the weather variables measured
along the OHL route (e.g. wind speed/direction).

Various techniques address the critical DTR process task (i) for de-
veloping effective DTR tools. Direct methods use sensors, while indirect
ones employ estimation algorithms to relate conductor temperature to
measurable variables. Direct methods are accurate but expensive and
complex for large networks. Indirect methods estimate temperature us-
ing operational data and weather variables along the route, overcoming
sensor limitations (details in Section 2.2). These limitations have stim-
ulated the research for data-driven-based indirect techniques, which
aim at estimating the conductor temperature at specific line spans
by processing the operation data (e.g. line current) and the weather
variables measured along the OHL route (e.g. wind speed/direction).
In particular, data-driven algorithms emulate conductor temperature
sensors by inferring the unknown mapping between measured variables
(input) and conductor temperatures (output). Once this mapping is
learned, sensors can be removed, and temperatures estimated using
input data.

An alternative approach in indirect DTR tools uses data-driven tech-
niques to enhance the accuracy of physical thermal models (e.g. IEEE
standard [3]). Measured temperature profiles calibrate model param-
eters or improve accuracy through adaptive correction (e.g. grey-box
modeling) [4]. Unfortunately, traditional machine learning-based DTR
techniques require long-term installation of conductor temperature sen-
sors to gather comprehensive data, often limited by economic factors.
Hence, training a large number of local machine-learning models may
be unfeasible due to the need to deploy a large number of conduc-
tor temperature sensors, whose availability is often constrained by
economic issues.

To address this problem, this paper proposes transfer learning (TL)
to enhance distributed DTR models using knowledge from a limited
sensor dataset. Particularly, to the best of the authors’ knowledge,
this is the first TL application in this field. TL spreads trained model
knowledge to uncalibrated models on various spans, identifying hidden
relationships between distributed sensor data. This approach aims to
reduce the required number of temperature sensors for accurate spatial
temperature assessment. The expected benefits of using these tech-
niques include: (i) improving the performance of data-driven models
for DTR of transmission lines, particularly when the amount of data
available for training the new model is limited or when the new task
is related to the original task; (ii) reducing the costs associated with
collecting data for machine learning-based DTR by potentially requiring
fewer measured data to be collected and processed.

The proposed methods have been deployed for the DTR assessment
of 11 spans of 7 transmission lines located in the south of Italy, which
are frequently congested due to the widespread use of wind power gen-
erators. The analyzed lines are currently installed with a self-organizing
sensors-based DTR architecture [5], equipped with weather stations
measuring several environmental variables. Obviously, the indirect
estimation of the sun irradiance is affected by strong uncertainties,
which are mainly due to the sun position estimation errors and the
approximation of the atmosphere reflectance properties [6]. Hence,

Electric Power Systems Research 229 (2024) 110206

the Authors’ idea is to estimate the worst-case instances of these en-
dogenous uncertainties by the proposed learning-based techniques. The
effectiveness of this indirect estimation approach is confirmed by the
good accuracy obtained during the experimental studies. Particularly,
the proposed Parameter-based Transfer Learning approach offers po-
tential cost savings by efficiently leveraging information from a source
sensor, thereby reducing the need for extensive target sensor data
collection and associated costs. Its superior predictive accuracy, evident
when sufficient target data is available, can lead to better system main-
tenance scheduling, mitigating unexpected repairs and contributing to
operational savings. Additionally, improved temperature predictions
facilitate more efficient power transmission, reducing energy losses and
enabling more cost-effective energy management. Moreover, the tech-
nique’s adaptability across various sensors reduces the requirement for
multiple, individual sensor models, minimizing development and tun-
ing resources. Hence, the proposed approach presents a cost-effective,
accurate solution for temperature estimation in power transmission
systems.

The rest of the paper is organized as follows: Section 2 reviews the
state-of-the-art to provide context for the proposed TL-based method-
ology, Section 3 discusses the proposed methodology of TL-based OHL
conductor temperature estimation, while Sections 4 and 5 analyzes
the case study and the conducted experiments, respectively. Finally,
Section 6 presents the main conclusions.

2. Related works
2.1. Enabling technologies for DTR

The reliable temperature estimation along the line route by using
direct/indirect methods is a crucial aspect in DTR-based tools [7].
Direct methods use sensing systems for conductor temperature, tension,
or sag variation [8]. Sag variation monitors safe clearance at the max-
imum allowable temperature, while conductor tension helps estimate
sag and average temperature via state change equation [9]. Strategies
include vibration, inclination, and target monitoring [9-11]. These
sensors provide localized data, suited for limited spans. To reliably
estimate conductor thermal state, multiple sensors across the line route
are essential [8,12,13].

Though direct methods measure key variables for line thermal
ratings, sensor costs, and complexities limit large-scale use. This led
to research on indirect DTR methods, estimating conductor tempera-
ture using mathematical models with easily measured variables. One
promising approach uses synchrophasor data processing for average
line temperature estimation [14]. While synchrophasor data is widely
available, it estimates average temperature without ensuring maximum
temperature compliance. Alternative methods estimate conductor tem-
perature using a dynamic heat transfer model, leveraging line current
and weather variables. Unlike synchrophasor-based methods, these
estimate specific locations, typically critical spans with high conductor
temperature.

Particularly, choosing between direct and indirect methods for DTR
assessment involves a trade-off between accuracy and costs [7]. In-
direct DTR tools using weather data have lower costs and their ac-
curacy depends on adopted mathematical models. Distributed sensors
offer higher accuracy but come with higher purchase, installation, and
maintenance costs. Recent data-driven thermal modeling advancements
improve the accuracy of indirect DTR tools, making them suitable for
practical scenarios [15], motivating their deployment in this paper.

The optimization of transmission line ratings has been a key re-
search focus in recent studies. The authors of [16,17] explored DLR
forecasting methods like quantile regression, ensemble means, RNN,
and CNN, suggesting ensemble forecasting is effective with low error
rates. They proposed an algorithm to predict DLR, maintaining energy
source balance. Moreover, the application of information and com-
munication technology (ICT) has further enhanced the reliability and
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efficiency of the power grid as demonstrated by [18,19] through the
employment of synchrophasor-based DTR and m integrity protection
schemes (SIPS). Furthermore, [20] presented a data-driven method to
assess real-time power system states. On the other hand, the authors
of [21] addressed extreme weather risks with a multi-state model for
resilient transmission systems against short-circuit faults. Furthermore,
they also explored 5G-enabled switched fault current limiters (FCLs) for
novel FCL allocation [22].

In light of these research contributions, transfer learning-based
methodologies offer a promising direction for enhancing the efficiency
and reliability of the dynamic thermal rating of transmission lines.
Leveraging knowledge from a limited set of conductor temperature
sensors, these methodologies could provide significant improvements
in data-driven models for DTR, potentially reducing the need for data
collection and thus the associated costs.

2.2. Indirect methods for DTR assessment

The authors of [23] used an Extended Kalman Filter-based dynamic
state model to estimate conductor temperature considering uncertain
weather variables which showed good performance in a controlled lab
on a small conductor segment. [24] used a finite-element model for
temperature estimation, challenging to apply in real-time. Furthermore,
distributed field measurements and decentralized processing enabled
the deployment of data-driven techniques for DTR assessment [15].

Particularly, data-driven algorithms learn the mapping between
input weather/operating variables and conductor temperature, emu-
lating sensor behavior. Post-training, sensors can be removed, and
temperature estimated using input data alone. Methods can work in-
dependently (black-box) or combined with physical models (grey-box)
for better accuracy. For example, data-driven models can fine-tune
IEEE-standard-based thermal model parameters [3] to improve ac-
curacy [25]. Grey-box models combine physical and data-driven ap-
proaches, reducing estimation errors [4], where hybrid methods show
promise for digital twin development.

In all these applications, collecting a comprehensive data set of
input/output observations is necessary to characterize the conductor’s
thermal behavior under different thermal exchange conditions. Conse-
quently, many conductor temperature sensors should be installed on
the monitored lines for long time periods, which could be a limiting
issue for the large-scale deployment of data-driven DTR methods.

3. Transfer learning based conductor temperature estimation

TL [26] is a machine learning technique that leverages knowledge
learned from one task to improve performance on a related but different
task. It has been recently applied in the task of solving complex
power system operation problems, such as load modeling [27], wind
power forecasting [28-30], and dynamic security assessment [31,32].
Particularly, four categories are commonly used to classify TL-based
approaches [26] such as (i) Instance-based transfer [33], which in-
volves reusing labeled data from the source domain to improve the
performance of a model in the target domain; (ii) Feature-based trans-
fer [34], which involves finding an appropriate feature representation
that reduces the difference between the source and target domains; (iii)
Parameter-based transfer [35], which focuses on adapting the model
parameters to better suit the target domain; (iv) Relational knowl-
edge transfer [36], which involves building a mapping of relational
knowledge between the source and target domains.

Another relevant classification of TL-based approaches is task adap-
tation, which refers to the transfer of knowledge from one task to an-
other related task, and domain adaptation, which describes the transfer
of knowledge from one domain to another related domain [37].

Particularly, this paper proposes the application of instance-based
and parameter-based TL for DTR assessment considering the advan-
tages linked to the TL deployment. Instance-based TL can increase the
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accuracy of thermal models by assigning higher weights to samples
that are most relevant to the target task. With this approach, even
when limited data is available, its informative content can be leveraged
to improve the prediction of dynamic thermal behavior. Similarly,
parameter-based TL can be an effective DTR solution by adapting an
existing thermal model to new limited data. A pre-existing thermal
model can be fine-tuned using the limited new data, leading to an
improved model that can handle the dynamic thermal behavior. Hence,
the proposed approaches belong to the domain adaptation category, as
the knowledge is being transferred from one related domain to another.

3.1. Proposed methodology

Let us denote with K the set of spatial positions along a transmission
line where the conductor temperature will be estimated. The term
“spatial” implies that these points have a physical location along the
transmission line route. The evolution of the conductor temperature
¥, at a specific spatial location k¥ € K can be modeled by a first-
order discrete-time thermal model f, such as those proposed in the
IEEE 738 standard Appendix. This model maps the current value of
the temperature at the kth position y,[i], the weather variables and the
line current at time i to the next temperature value y,[i + 1], where
x,[i] is the input vector containing the weather variables and the line
current observable at the ith instant. Such a white-box model can be
used to perform an iterative (or recursive) forecasting [38] returning
the predicted one-step-ahead value j,[i + 1] based on the previous
estimate. An iterative forecasting is required since, after the algorithm
initialization, the actual value of the conductor temperature is unknown
due to the absence of an installed sensor on the line when indirect
methods are used.

An alternative to the white-box approach consists of adopting a sta-
tistical learning algorithm .4 to learn from data the mapping between
current and future values. Once denoted with £, the learned mapping,
the black-box forecasting approach consists of iterating

Peli + 1= fGelilxi il ), k=1,...,]1K]| €))

where a, = A(Dy) is a compact way to denote the model family,
the hyperparameters and the parameters returned by the learning
algorithm A on the basis of a training dataset Dy of size N.

It is common to set the problem of learning the input-output
mapping f, as a regression problem with M inputs and to adopt con-
ventional machine learning algorithms (e.g. neural network, random
forest, local learning) to learn the regression model from data [38].
This approach consists of first embedding the observed dataset in an
input-output matrix format where the dataset Dy = [X,,y,] is the
concatenation of the input matrix X, and the output vector y,. Given
the nonparametric nature of the machine learning model, a training and
test split procedure is typically adopted by the algorithm A to select the
best set of hyperparameters (e.g. number of hidden nodes in a neural
network). In the following, J,,,, indicates the portion of target data that
is hold-out from the learning procedure to assess the performances of
the model.

Although the use of machine learning-based techniques for esti-
mating conductor temperature has shown promising results [4], their
extensive application is limited by the large amount of data required
to train an effective model.

The problem is exacerbated when the number of measured points
K| (and consequently of learned models) is large. To reduce the
training data collection time (TDCT), the simultaneous installation of
many temperature sensors will be necessary, which would negate the
cost-effectiveness of indirect methods. Therefore, the challenge is to
find strategies that can reduce the TDCT while maintaining a high level
of accuracy.

A possible strategy for reducing the TDCT of machine learning mod-
els for conductor temperature estimation is by using Transfer Learning
(TL). This involves defining two points in different transmission lines,
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called s (source) and ¢ (target) (s, € [1,...,|K|l, s # 1) when
estimating the conductor temperature. Let us denote the number of
collected data by the source and target hot spot with N, and N,,
respectively, with N, < N,. In a traditional machine learning approach,
two different models f, and f, would be built for the source and the
target, respectively.

However, the limited number of collected data in the target dataset
may not be sufficient to train an accurate f, model. To overcome this
issue, TL-based methods can be deployed to improve accuracy. This pa-
per focuses on two specific TL strategies: instance-based and parameter-
based. Instance-based TL is the process of transferring knowledge from
a source domain to a target domain by reusing source instances in
the target domain. This means that the learning algorithm A takes
advantage of both the training sets Dy, Dy _ to learn the one-step-
ahead target mapping parametrized by a, = A([Dy,. Dy, ]). Examples
are Kernel Mean Matching [39], Nearest neighbor-based importance
weighting [40], TrAdaBoost.R2 [41]. These approaches usually perform
a weighting of the source data points to increase the similarity between
the source and target distributions.

On the other hand, parameter-based TL is the process of transferring
knowledge from a source domain to a target domain by reusing learned
parameters from the source domain. The target learning process «, =
A(Dy,) is either initialized or regularized by the set of parameters a; =
A(DNA). Examples include RegularTransferNN [42], TransferTreeClas-
sifier [43], linear interpolation [44]. These methods are model specific:
for example, RegularTransferNN trains a neural network on the target
data using an objective function that is regularized by the Euclidean
distance between the parameters of the source and target (i.e. the
weights of the network). On the other hand, TransferTreeClassifier
modifies a source Decision Tree on a target dataset, by adapting its
shape and its parameters.

In order to cover the most widely applied categories in the TL-
domain, the two approaches tested in this paper are TrAdaBoost.R2 and
RegularTransferNN.

TrAdaBoost.R2 is an instance-based TL method that combines the
strengths of AdaBoost [45] and a base model. Its main idea is to train
a base model on the source data and then use a boosting approach
(AdaBoost) to weight the instances from the source data based on their
relevance to the target data. The weighted source instances are then
used as additional information to train a base model on the target task
data. On the other hand, RegularTransferNN is the parameter-based
TL implementation adopted. It adapts the parameters of a pre-trained
source neural network using a small amount of labeled target data to
obtain a good target estimator.

3.2. Postprocessing

The data-driven models presented aim to predict the one-step-ahead
sample by relying on the learned historical information. However, such
a procedure does not necessarily account for the physical constraints
guiding the conductor’s thermal behavior (e.g. the maximum feasible
temperature increment in a single time step, given the actual boundary
conditions), resulting in potentially noisy predictions.

To mitigate this issue, a post-processing filtering step is applied to
the predicted values J,,,,. Several filtering approaches, conventionally
applied in the domain of time series forecasting have been compared:
moving averages, exponential moving averages, and weighted moving
averages. Experimentation on a reduced sample of data showed that
there were no significant differences among the tested approaches.
We eventually selected a simple moving average filter (2) due to its
simplicity and interpretability, while still providing an adequate level
of noise reduction for the task at hand.

The filtered prediction y is computed as follows:

M
~ ) 1 . .
Yeest il = M mgl Viest [i —ml, (2)
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where M is the number of previous samples considered in the smooth-
ing process.

It is important to note that the application of the smoothing fil-
ter was not the critical factor enabling the Parameter-based Transfer
Learning method to outperform the IEEE 738 standard. We performed
preliminary experiments where the Parameter-based Transfer Learning
method was applied without any post-processing. These experiments
demonstrated that this method was still superior to the IEEE 738
standard, even in the absence of the moving average filter. The primary
reason for employing the smoothing filter is to carry out noise reduction
for improved consistency in the conductor temperature estimates.

4. Testing and validation methodologies

The validation of the proposed approach follows a conventional
machine learning approach: the raw data (described in Section 4.1) is
pre-processed in a suitable format for the subsequent learning process
(presented in Section 4.2). Then, to ensure a fair and accurate com-
parison among the various TL methods, the data is split into training
and testing set. A two-month dataset serves as the basis for the setup:
the first month being used for training, while the second month is
selected as test and transfer set to provide a consistent comparison
of the results obtained from each method. Finally, the models under
study (presented in Section 4.3) are trained on the available data, and
their performance are validated according to the experimental setup
described in Section 4.4. The following experimental setup is repre-
sentative of a real-life operational situation where, due to economical
constraints, the temperature measurement sensors can be only setup on
the overhead lines for a limited amount of time on a limited amount
of lines, therefore requiring the temperature estimations on novel lines,
without the availability of sensors.

4.1. Data features

One of the distinctive features of this work is the employment of
real-time data from a self-organizing sensors network for DTR com-
posed of eleven computing nodes [6] installed at 4 m above ground [5].
Particularly, the demo area is located in a 150 kV grid in South Italy,
and it was identified under Working Package 5 (WP5) of the “Optimal-
System mix of Flexibility Solutions for European electricity” (OSMOSE)
H2020 project [46]. This WP was led by Terna, the Italian TSO, and was
focused on the role of Dynamic Thermal Rating Systems in enhancing
flexibility services. The DTR systems, which were developed under
this project, were installed on 11 spans of 7 power lines of a 150
kV grid and was adopted in the task of dynamically computing the
load capability curves of seven high voltage overhead lines, which are
frequently congested due to the large pervasion of generators in the
served area. Unfortunately, further details about line installation are
confidential information and cannot be shared.

The cooperative DTR sensors are deployed along the line route at
5 m from the ground and at distances ranging from 5 to 12 km, depend-
ing on the radio network coverage. Strategically placing these sensors
along the line route is a complex issue, which has been addressed by
the TSO considering the site orography. Each computing node includes
a weather station, which measures air temperature [°C], wind speed
[m/s], wind direction degrees, and sun irradiance [W/m]. Particularly,
the time resolution of the data is 1 min and the collection period is two
months, resulting in around 86 000 samples per sensor. The period of
data acquisition is the period between September and November 2019.

The measurement of sun irradiance avoids the estimation of this
quantity from the knowledge of shades, sun position, and atmosphere
reflectance properties by using the equations reported in the IEEE
738 standard. Particularly, the distributed nodes have been equipped
with sun irradiance sensors (please refer to [5,46] for further details),
therefore the latter inputs have been neglected.
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Fig. 1. Measured air temperature by each self-organizing sensor weather station.

Moreover, the conductor temperature (the target variable to pre-
dict) is directly measured through a dedicated sensor, mounted around
the conductor line.

It should be noted that the direct temperature sensors are primarily
utilized for data collection to train the machine learning models and
are not available during real-time operation. In this context, TL meth-
ods can offer an accurate and real-time alternative for estimating the
conductor temperature without relying on the constant presence (and
the corresponding economical cost) of the sensor.

While the raw data provides a comprehensive picture, further pro-
cessing is necessary to accurately capture the actual environmental con-
ditions at the conductor’s height, which is roughly 30 meters above the
ground. A wind shear model [47] is employed to adjust the measured
variables, providing a more realistic representation of the environment
surrounding the conductor.

The data acquired by the self-organizing sensor weather stations are
broadcasted in real-time to a central server, where they are combined
with the line current measurement for each ith sample and linked to
the corresponding measured conductor temperature acquired from the
Italian TSO Energy Management System. Hence, since this study uses
the real operating conditions of the lines, simulations of the electrical
system are not necessary.

The set of Figs. 1-4 shows the temporal profiles for some of the
input variables of the addressed forecasting problem. Fig. 1 displays
the air temperature evolution, a key factor influencing line conduc-
tor cooling. The trend indicates decreasing temperatures with similar
patterns. However, an increasing spread between temperature profiles
is observable from the end of the second observed day. Fig. 2 shows
wind speed profiles, exhibiting considerable variability with no easily
identifiable similar observed patterns. Sun irradiance heat flow (Fig. 3)
shows the greatest pattern similarities across the self-organizing sensor
weather stations. However, a detailed analysis reveals the variability of
sun irradiance heat flow due to its dependence on local cloud coverage,
which can rapidly change the measured heat flow. Fig. 4 presents
the current flow for each line with a self-organizing sensor weather
station installed. As observable, each line seems to have its own current
profile.

The available data are gathered from the southern-east portion
of the Italian HV transmission grid during the test of a real self-
organizing sensors network DTR architecture [5], however, to preserve
the integrity of the study and to respect confidentiality agreements, the
exact locations of the self-organizing sensor weather stations used in
this study are not disclosed.

4.2. Preprocessing
Before conducting the experiments, further pre-processing steps

are applied to ensure their quality and integrity. The detection of
abnormal behaviors in the data was performed through a combination
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Fig. 2. Measured wind speed by each self-organizing sensor weather station.
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Fig. 4. Current flow for each line monitored by the corresponding self-organizing
sensor weather station.

of visual inspection and rule-based categorization, guided by expert
knowledge. After the pre-processing phase, a limited number of data
points (less than 100) were identified as affected by measurement error
and removed from the data set. This extensive preprocessing process
is performed to ensure an adequate data quality standard (especially
concerning labeling accuracy and missing value removal) for the subse-
quent predictive steps. More precisely, transfer Learning methods, and
in particular the Parameter-based Transfer methods, strongly benefit
from accurate, well-labeled data from the target domain for effective
training.

4.3. Analyzed methods

The Parameter-Based Transfer and Instance-Based Transfer methods
presented in Section 3 are compared with multiple baselines: Source
Only, Target Only, Source and Target, and IEEE 738.

Source Only is a method in which the model is trained only on
data from the source task and then tested on data from the target task.
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This method serves as a baseline to compare the performance of other
methods and is based on the idea that a model trained on the source
task data alone can provide a good representation of the target task.
Target Only is a method in which the model is trained only on data
from the target task. This method serves as a baseline to compare the
performance of other methods and is based on the idea that a model
trained on the target task data alone can provide a good representation
of the target task.

Source and Target is a method in which the model is trained on data
from both the source and target tasks, but no transfer of knowledge
from the source task to the target task is attempted. This method serves
as a baseline to compare the performance of other methods and is based
on the idea that training a model on both source and target task data
can provide an improved representation of the target task.

IEEE 738 is an estimation method for conductor temperature based
on the thermal model proposed in the IEEE 738 standard. This method
is used as a baseline for comparison with other methods, as it is a
widely used industry standard for conductor temperature estimation.

The workflow of their training process is shown in Fig. 5. Particu-
larly, this figure shows the amount of data used for target and source
DTR stations and their path between the models. A null data amount
means no training data are necessary (e.g. IEEE 738).

4.4. Experimental setup

This section outlines the experimental setup implemented for eval-
uating the proposed TL approach on sensor data.

4.4.1. Model parameters

The default regression model from the Adapt TL library [48] has
been employed. It consists of a feed-forward neural network with an
input layer of 5 units, corresponding to the measured variables (air
temperature [°C], conductor current [A], wind speed [m/s], wind
direction [°], and sun irradiance [W/m]), two hidden layers of 10 units
each, and an output layer of a single neuron, representing the predicted
actual conductor temperature [°C]. All the layers are fully connected.

The choice of activation function is critical in defining the model’s
ability to learn and generalize. For the hidden layers, we employed
the Rectified Linear Unit (ReLU) activation function. The adoption of
ReLU, which returns the input if it is positive and zero otherwise, can
efficiently mitigate the vanishing gradient problem that can impede
learning during the backpropagation phase. The output layer, designed
to predict the actual conductor temperature, employs a linear activation
function, typical in regression tasks.

The model is trained using the mean squared error (MSE) loss func-
tion and it has been used for both parameter-based and instance-based

Table 1
Main parameter settings of TL-based methods.

Target data available (days)
Corresponding percentage

5, 10, 15, 20, 25
17%, 33%, 50%, 66%, 83%

Test Set Size (days) 30
Number of Epochs 15
Batch Size 32
Number of Estimators for TrAdaBoost.R2 20
Moving Average Samples (M) 15

TL. In parameter-based TL, the weights of the model are fine-tuned on a
new task using a small amount of labeled data from the new task, while
in instance-based TL, copies of the model are trained on an iteratively
re-weighted dataset that consists of both labeled data from the new task
and labeled data from a related task.

4.4.2. Experimental hyperparameters

In this experimental analysis, five main parameters have been con-
sidered: the number of available days from the target sensor data,
the number of test days from the target sensor data, the number of
epochs used during the model training process, the batch size used
during the model training process, and the number of estimators used
in the TrAdaBoost.R2 instance-based approach. These parameters and
their respective values are summarized in Table 1. The batch size and
number of epochs are determined based on a limited parameter tuning
performed on a specific sensor pair. The number of estimators for the
TrAdaBoost.R2 instance-based approach was set to the default value
specified in [48].

Experiments are repeated for each sensor couple s, t (with s # 1), to
provide a comprehensive evaluation of the proposed TL approach, for
a total of 110 couples. This approach provides valuable insights into
the strengths and limitations of the TL methods across different sensor
configurations.

The metric adopted is the root mean squared error (RMSE, (3)). In
the equation, N,,,, indicates the size of the test set.

N’CYI 2
Y Frestalil = Yrerli) ®)

test j—1

RMSE =
5. Experimental results

The results presented in Fig. 6 and Tables 2, and 3 reveal that both
Parameter-based Transfer and IEEE 738 methods exhibit relatively low
root mean squared error (RMSE) values for all couples of the target sen-
sor DTR stations. Particularly, the comparison between RMSE and MAE
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Fig. 6. Visualization of RMSE boxplot for each considered model across considered couple ‘target’

- ‘source’ DTR station. Each panel shows the results for a different amount of

training data collection time (TDCT). In each panel, the methods are sorted by the median.

Table 2
Comparison of RMSE [°C] for the compared approaches.
Methods Target data available d (days)
5 10 15 20 25
u 1.27 1.14 1.09 0.95 0.93
Parameter-based TL | 0.38 0.28 0.29 020  0.16
u 1.74 171 2.88 1.62 2.16
Instance-based TL o 0.64 0.47 1.27 034  0.90
u 1.13 111 1.38 111 111
Source Only o 0.24 0.23 0.36 0.23 0.23
u 1.74 1.78 1.78 1.35 1.28
Target Only o 0.77 0.65 0.63 041 028
Source & Tareet 1.18 1.23 1.43 1.09 1.07
8 0.24 0.33 0.39 0.23 0.20
u 1.02
IEEE 738 . 030
Table 3
Comparison of MAE [°C] for the compared approaches.
Methods Target data available d (days)
5 10 15 20 25
u 0.98 0.85 0.81 0.67 0.66
Parameter-based TL | 0.94 0.81 0.82 070  0.69
u 1.40 1.40 2.53 1.34 1.85
Instance-based TL o 1.28 117 1.93 1.05 1.49
Source On u 0.80 0.79 1.05 0.80 0.79
y o 0.83 0.82 1.00 0.82 0.81
P 1.41 1.28 1.48 1.07 0.99
Target Only - 1.31 1.37 1.20 0.90 085
u 0.83 0.91 0.99 0.76 0.74
T
Source & Target v 0.83 0.89 1.08 077 075
" 0.72
IEEE 738 . 078

tables seems to show model performance coherence by considering
different metrics.

The Parameter-based Transfer method has an RMSE that is lower
than the IEEE 738 method when the number of days available for the
target sensor is sufficient (d > 20). The mean and standard deviation of
the RMSE values for the former decrease as the number of target days
increases, indicating that the available target data plays a significant

role in enhancing the accuracy and stability of the TL-based method.
Additionally, the Parameter-based Transfer method consistently out-
performs the Instance-Based Transfer method and is competitive with
respect to the Source Only and Target Only methods when the amount
of target data is limited. The best performance is achieved using 20
and 25 available target days. It should be noted that, the advantage
of the chosen Parameter-based technique is twofold: in both accuracy
and computational time. In fact, Parameter-based TL only requires a
single fitting of the model (to adapt the weights of the base model)
whereas the chosen Instance-based technique requires multiple model
fittings (as part of the boosting procedure, depending on a controllable
hyperparameter).

On the other hand, the performance of the IEEE 738 method does
not change with the number of target sensor days. Its mean RMSE is
1.02 and its standard deviation is 0.30, making it competitive with all
the other data-driven approaches.

The non-transfer methods, Source Only, Target Only, and Source &
Target, exhibit similar average performance. However, their behavior
changes according to the amount of available target training data. As
expected, Source Only is not affected by the amount of data, with only
minor variations due to randomness in the training phase, while Target
Only presents improved results with increasing data availability.

Source & Target follows this trend and reaches the performance of
the IEEE 738 method when 20 days of target data are available and
outperforms it with 25 days available. It emerges as a very promising
method, considering its simplicity. It would also be possible to classify
this method as a naive form of TL, which consists simply of exposing a
model to information from both the source and target sensors.

The underperformance of the Instance-based Transfer method in
our study can be attributed to multiple interrelated factors. Firstly, the
varied and complex influences on the thermal behavior of electrical
conductors may hinder the effective transfer of source instances to the
target task. Secondly, the use of reverse boosting in conjunction with
a neural network model might cause overfitting, potentially leading to
the devaluation of key source instances. This devaluation could result
in a selection of instances for the target sensor that do not accurately
represent its real conditions, thereby generating unrealistic predictions.

Additionally, the differing statistical characteristics between source
and target tasks are likely to have impacted the method’s effectiveness.
Each sensor’s exposure to unique environmental and operational con-
ditions can lead to distinct data distributions, which in turn, challenge
the efficacy of directly transferring instances between tasks.



G.M. Paldino et al.

Electric Power Systems Research 229 (2024) 110206

Parameter-Based TL

Instance-Based TL

Source Only ‘

24
224
O
o .
© 201
=
=1
= 184
i
[}
o
% Target Only Source & Target IEEE 738 ‘
H ooy
o
Q
g 22+
<
g 20
o

184

i ' ! F ' ! F i ! i
0 500 1000 1500 0 500 1000 1500 0 500 1000 1500

Time [1 min]

— Actual Conductor Temperature

Fig. 7. Visualization of estimated and actual (black colored curve) conductor temperature profiles.

Parameter-Based TL

Instance-Based TL

Source Only

Target Only ‘ ‘

Source + Target

IEEE 738

Prediction Error [°C]

P T
0 500 1000 1500 0 500

i
1000 1500 0 500 1000 1500

Time [1 min]

Fig. 8. Visualization of conductor temperature estimation error profiles.

Furthermore, the weighting system designed to signify the rele-
vance of each instance to the target task may not provide meaningful
information, considering the aforementioned factors. Instances with
high weights might not necessarily contribute relevantly to the target
task, adversely affecting performance. To address these issues, future
research could focus on developing more refined strategies for instance
weighting and selection, or explore methodologies that exhibit greater
resilience to variations between domains.

Fig. 7 displays a comparison of the estimated conductor temperature
profile of each model with the actual one (represented by the black
curve) for an example reference time window. Parameter-based TL pro-
files are closer than those produced by Instance-based TL, which returns
an unrealistic profile. It is interesting to note that the Parameter-based
TL profile adheres more to the actual profile than non-TL-based data-
driven methods and IEEE 738 standards. The superior quality of the
Parameter-based TL method compared to other methodologies is more
evident in Fig. 8, which shows the error profiles. It is noteworthy that
the Parameter-based TL method does not show any bias, while IEEE
738 overestimates the conductor temperature in this time window.

In conclusion, the results of this study suggest that TL can be a
valuable technique for reducing forecasting error when transferring
knowledge from a source sensor to a target sensor. Among the dif-
ferent TL methods considered, the Parameter-based approach is the
most effective in terms of reducing the RMSE. Moreover, the perfor-
mance of this method can be further improved by making appropriate
hyperparameters tuning. With the chosen TL-based model, the hyper-
parameters play a crucial role in the learning phase of the model, and
their optimization can lead to improved accuracy and stability of the
model.

In the context of the experiments conducted, it was observed that TL
was able to effectively improve model performance when the amount
of target data available surpassed 15 days. This finding highlights the
importance of having a sufficient amount of target data when applying
TL techniques to a specific problem. The results of these experiments
suggest that having a greater amount of target data can contribute to
the effectiveness of TL and that this threshold may vary based on the
particular problem, model, and data in use. Statistical analyses were
carried out to enhance the robustness of our study’s findings. Upon
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Table 4

Paired t-test (¢ = 0.05) to compare the mean of the “Parameter-based TL” approach
against several other approaches. The alternative hypothesis is that the mean of
“Parameter-based TL” is less than the mean of the other approaches. Results for 25
available target days.

Competitor t-statistic p-value p-value < «
Instance-based TL —1.0e+01 4.0e-18 True
IEEE 738 —-3.7e+00 1.7e-04 True
Source Only —8.0e+00 6.0e—13 True
Target Only —-9.5e+00 3.2e-16 True
Source + Target —-5.8e+00 3.0e—-08 True

rigorous statistical testing, it was shown that for 20 and 25 target days
available, as shown in Table 4, the transfer learning (TL) methods statis-
tically outperformed other methods, including the IEEE 738 standard,
in predicting conductor temperature. However, while using less than
20 available target days, while TL methods did outperform the IEEE
738 standards, the difference was not statistically significant. This leads
to an insightful observation: even in preliminary stages, TL algorithms
can match or potentially surpass the performance benchmarks set by
the long-standing IEEE 738 standards. Yet, the amount of available
target data plays a crucial role. This highlights an opportunity for more
meticulous optimization of the TL algorithms.

6. Conclusions

Dynamic Thermal Rating (DTR) technology enables the reliable
exploitation of renewable energies by adapting the load capability of
transmission lines to the actual weather and loading conditions. How-
ever, widespread DTR application is hindered by the need for numerous
sensors required to reliably estimate the hot-spot line temperature (in
case of direct and data-driven methods) or the usage of less reliable
indirect estimation methods. Machine Learning (ML) techniques can
be used enhance indirect methods but would require large amounts of
sensor data for accurate training.

To address this challenge, this paper explored the potential for TL
as a novel approach in DTR to improve the quality of the temperature
estimation process, while limiting the number of required datapoints.
The experimental results highlight the potential of TL in making the
application of machine learning in DTR applications feasible. Future
research will focus on two main directions. Firstly, this study focused
on a specific transfer learning base model, therefore further analysis on
role and impact on the results of the base model needs to be examined.
Secondly, a comparative analysis with more complex based models as
well as a deeper analysis of the trade-off between computational costs
and predictive power could further support the application of TL in
DTR.
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Appendix. IEEE 738 standard

The IEEE 738 standard [3] calculates the relationship between bare
overhead electrical conductor temperature and steady/time-varying
electrical currents and weather conditions. The model’s dynamic nature
necessitates multiple applications over short time spans to assume
parameter constancy due to input parameter fluctuations. The next-step
estimation of the temperature is achieved by summing the previously
estimated temperature 7, with the change in conductor temperature
dT,,, over the time interval dt. dT,,, is computed using the non-steady-
state heat balance (A.1). The numerical integration of this equation
over a time interval A leads to (A.2). It is important to note that this
method does not require any training data: the conductor temperature
is a time-varying quantity that depends on the current in the line, the
weather conditions, the conductor characteristics as well as the starting
temperature.

T,,

4. +q,+m-C,- d“:g =g+ 17 R (Tpy ) (A1)
I’ R(T, +q;—q. —q,

AT, = ( “”g'lc S Y A.2)

P

In (A.1) and (A.2), g, [W/m] is the convection heat loss rate per
unit length, ¢, [W/m] is the radiated heat loss rate per unit length,
mC, [J/(m °C)] is the total heat capacity of conductor, Tove [°C] is the
average conductor temperature, g, [W/m] is the heat gain rate from the
sun, I [A] is the conductor current, R(T,,,) [©/m] is the AC resistance
of conductor at temperature T,,,.
(1) can be rewritten using (A.2) as follows:

12 Ry li) + 45 — q. — 4,

mC,

yeli + 11 =y [i1 + At (A.3)
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