
 
 

Delft University of Technology

Optimisation of heat recovery from low-enthalpy aquifers with geological uncertainty using
surrogate response surfaces and simple search algorithms

Babaei, Masoud; Norouzi, Amir Mohammad; Nick, Hamidreza M.; Gluyas, Jon

DOI
10.1016/j.seta.2021.101754
Publication date
2022
Document Version
Final published version
Published in
Sustainable Energy Technologies and Assessments

Citation (APA)
Babaei, M., Norouzi, A. M., Nick, H. M., & Gluyas, J. (2022). Optimisation of heat recovery from low-
enthalpy aquifers with geological uncertainty using surrogate response surfaces and simple search
algorithms. Sustainable Energy Technologies and Assessments, 49, 1-19. Article 101754.
https://doi.org/10.1016/j.seta.2021.101754
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.seta.2021.101754
https://doi.org/10.1016/j.seta.2021.101754


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



Sustainable Energy Technologies and Assessments 49 (2022) 101754

Available online 19 November 2021
2213-1388/© 2021 Elsevier Ltd. All rights reserved.

Optimisation of heat recovery from low-enthalpy aquifers with geological 
uncertainty using surrogate response surfaces and simple search algorithms 

Masoud Babaei a,*, Amir Mohammad Norouzi a, Hamidreza M. Nick b,c, Jon Gluyas d 

a The University of Manchester, Department of Chemical Engineering and Analytical Science, Manchester, UK 
b The Danish Hydrocarbon Research and Technology Centre, Technical University of Denmark, Lyngby, Denmark 
c Department of Geoscience & Engineering, Delft University of Technology, Delft, Netherlands 
d Department of Earth Sciences, Durham University, Durham, UK   

A R T I C L E  I N F O   

Keywords: 
Doublets 
Well spacing 
Low-enthalpy geothermal systems 
Optimisation 
Coefficient of performance 

A B S T R A C T   

Optimisation of doublet well spacing in low-enthalpy geothermal systems is addressed by defining a novel 
objective function that is based on the Coefficient of Performance (CoP) and energy sweep efficiency. The 
definition of objective function that separates performance-based criteria from economic factors, allows us to 
better observe the effects of heterogeneity on optimisation. A checkerboard pattern of two doublets (two in-
jection wells diagonally placed and two production wells diagonally placed over corners of a rectangle) is 
considered for a range of homogeneous to heterogeneous (spatially correlated and fluvial) synthetic low enthalpy 
reservoirs. Optimal length and width of this rectangle are sought in order to (a) maximise heat recovery from a 
conventionally-chosen licence area around the rectangular domain, (b) minimise heat recovery from outside this 
licence area, and (c) maximise CoP. We define fixed (15 years and 30 years) and varying life times of operation 
(between 15 and 30 years). For optimisation, in addition to a simple-search procedure of optimisation across a 
mesh of simulation nodes, we also utilise a surrogate response surface model to computationally solve the 
optimisation problem. Our results consistently show that for a fixed life time of 15 years and a discharge rate of 
250 m3/hr, 400 m is the optimal well/doublet spacing. Increasing the life time and the discharge rate will in-
crease the optimal well/doublet spacing. The results show while CoP is sensitive to the heterogeneity, adding 
energy sweep to the objective function makes the distances found for the homogeneous cases also consistent 
solutions for the heterogeneous cases.   

1. Introduction 

1.1. Optimization of geothermal heat recovery 

Optimization of geothermal doublet systems in terms of their spacing 
in heterogeneous aquifers has only been focused on recent studies [1,2]. 
In fact, in the review of Pandey et al. [3] on the geothermal reservoir 
modeling, there is no mention of optimisation of doublet systems. There 
are only few publications that studied doublet spacing optimization 
[4–11]. An early work by Sauty et al. [4], focused on lifetime optimi-
zation of doublets for the Parisian Basin Dogger by optimizing well 
spacing. Tselepidou and Katsifarakis [5] examined optimization of low 
enthalpy geothermal aquifer by accounting for the costs of annual 
pumping and amortization of the pipe network carrying the hot water 
from the wells to a water tank. Smit et al. [6] used gradient-based 

optimization for determining the best doublet spacing to maximise the 
Net Present Value (NPV) of doublets. While the authors considered 
heterogeneity of the system, the use of gradient-based optimization 
means that certain gradients must be calculated numerically (and iter-
atively) which can be a computationally prohibitive process. Ansari et al. 
[7] used Particle Swarm Optimization to select locations for 4 produc-
tion and 4 re-injection geothermal wells out of a set of 11 existing 
abandoned wells in the US Gulf Coast. Kong et al. [8] used homogeneous 
geothermal reservoirs for doublet placement optimization. The authors 
used an economic analysis to define the objective function as the cost of 
reservoir exploitation (made up of the cost of electricity due to hydraulic 
head drawdown in the production well and the cost of thermal break-
through). The model of the geothermal system employed was homoge-
neous and as such it was unrealistic. Jiang et al. [9] focused on doublet 
spacing optimization for low enthalpy geothermal systems accounting 
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for density-driven flow in confined aquifers. The authors found that 
depending on the regimes of flow and heat transport (free/forced/mixed 
convection and conduction), the operator can choose an optimum 
configuration (depth-wise and side-wise) for the doublets. Nonetheless, 
the results are derived only for homogeneous aquifers. 

Willems and Nick [10] considered a large-scale numerical 
simulation-based planning to exploit Hot Sedimentary Aquifer (HSA) 
from the West Netherlands Basin. Various data were combined from 
different sources. The projection of heat recovery from a currently 
practiced scenario on a large geothermal aquifer in the Netherlands was 
shown to be very inefficient by the authors. In fact, the authors 
demonstrated that only 1% of the recoverable heat will be recovered if a 
currently and conventionally applied “first-come, first-served” based 
operation is implemented for geothermal energy exploitation. Therefore 
a “master plan” is required to design optimum well placement in doublet 
systems. A recent work by Liu et al. [11] proposed a new well pattern of 
cluster-layout and examined its performance in heterogeneous porous 
geothermal reservoir models based on the Dezhou geothermal field, 
China. The authors concluded that the proposed cluster-layout is an 
efficient pattern for maximising heat recovery, and the heat recovery is 
susceptible to inherent heterogeneity of the geothermal fields. However, 
the authors did not consider the well/doublet spacing, rather their focus 
was on well patterns. Heterogeneity has been considered in optimising 
geothermal heat extraction by recent studies of [1,2]. Schulte et al. [1] 
considered optimization of geothermal heat extraction using multi- 
objective particle swarm optimization. The authors used a subsection 
of Watt Field. The focus was on the top surface, net-to-gross, and fault 
model uncertainties and heterogeneities. While the authors emphasised 
on the importance of considering heterogeneity in the geothermal 
model, their approach of defining the optimisation function differs from 
this study. Blank et al. [2] showed that taking into account 

heterogeneous permeability structures may drastically affect the results 
in an optimal multi-well configuration around a major fault damage 
zone at the geothermal site Heiz-kraftwerk Süd in the Schäftlarnstraße 
(Munich). The permeability of the complex was based on values 
assigned for fault vs. elsewhere, and as such the heterogeneities 
considered in this work are distinctly different. 

We note that there are various optimization studies carried out on 
high enthalpy deep Enhanced Geothermal Systems (EGS). However, due 
to significant technical differences between EGS and low enthalpy 
geothermal systems, we have not included them in this literature study. 

1.2. Surrogate modelling for geothermal applications 

The implementation of surrogate-based optimization and uncer-
tainty quantification in the context of subsurface flow processes have 
been shown to be an effective tool to save computational expenses [12]. 
In the context of geothermal heat recovery, Vogt et al. [13] used kriging 
to address uncertainty in thermal conductivity of geothermal rocks. Due 
to computational cost of running multiple realizations, the stochastic 
modelling could produce a raw estimate of probability for temperature 
distribution. For this instance surrogate modelling could have served the 
purpose of reducing computational expenses of forward modelling. 
Chen et al. [14] used a multivariate adaptive regression spline technique 
to determine the optimal design of geothermal production operation in 
USA. Ansari et al. [15] used polynomial and kriging response surfaces, 
and they showed that the proxy models can be efficiently used to 
construct produced energy distribution from the geothermal parame-
ters; distributions. Also for EGS, surrogates have been employed by Asai 
et al. [16] to determine optimal well placement. The authors found that 
this parameter is the most important one in the design of heat recovery 
from EGS. Pollack et al. [17] accounted for subsurface uncertainty by 
optimizing an EGS given an ensemble of reservoir models. The authors 
showed ignoring subsurface uncertainty and heterogeneity leads to 
over-optimistic NPV forecasts. Schulte et al. [1] used multi-objective 
particle swarm optimization to an ensemble of response surface 
models that were built using Gaussian process regression. A trade-off 
surface for the competing objective functions (maximizing heat pro-
duction vs. minimizing the energy required for pumping) was obtained. 

1.3. This study 

Here we focus on optimization of well/doublet spacing for synthetic 
heterogeneous and fluvial geothermal systems with varying degrees of 
heterogeneity. We specifically focus on non-economic factors/outputs 
for which the operation of geothermal heat extraction should be opti-
mized. For example, we purposely do not consider net present value 
(NPV), or the cost of drilling, and so on, for optimisation. Rather, we 
define the objective function solely based on the performance of the 
operation from fluid flow and heat transfer points of view. In doing so, 
we define an objective function that maximises heat recovery from a 
conventionally-defined licensed area around the doublet (a rectangle of 
size twice the well/doublet spacing), and maximises well performance 
through Coefficient of Performance. This is a novel approach for defining 
the objective function of the optimisation as it allows decoupling eco-
nomic factors for heat recovery and allows to analyse effects of reser-
voir’s heterogeneity on optimisation process separate from economic 
analyses. In comparison to [1], we have combined their multiple 
objective functions into one, but also added the emphasis of maximizing 
heat recovery from a target licensed area to ensure a sustainable heat 
extraction strategy by minimising interference to the surrounding li-
cense regions. The minimisation of interference is crucial in preserving 
the heat from neighbouring resources as discussed by [18]. 

In implementing the optimisation, we consider two algorithms 
(simple-search and advanced). For the first algorithm, we simply 
construct a surface based on the input variables (well and doublet 
spacings) over a structured mesh, and then by looking at the surface, the 

Fig. 1. The doublets configuration and the license-boundary control region of 
the subsurface system used in this study. 

Table 1 
The statistical properties of the homogeneous case and the heterogeneous cases 
used in this study.  

Case Mean (ϕ), 
mean (K[mD])  

Min (ϕ), min 
(K[mD])  

Max(ϕ), max 
(K[mD])  

Std (ϕ), std 
(K[mD])  

Homogeneous 0.15, 139.46 0.15, 139.46 0.15, 139.46 0, 0 
Het. case 1 0.17, 613.4 0.01, 6.5×

10− 4  
0.34, 4,454 0.04, 667 

Het. case 2 0.17, 606.2 0.01, 6.5×

10− 4  
0.35, 4,909 0.04, 658 

Het. case 3 0.17, 605.2 0.01, 6.5×

10− 4  
0.34, 4,445 0.04, 655 

Het. case 4 0.17, 607.2 0.01, 7.5×

10− 4  
0.34, 4,743 0.04, 661  
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Fig. 2. (a to g) Process of constructing realisations of braided channels in x-direction based on the Piecewise Cubic Hermite Interpolating Polynomial method. (h) 20 
realisations of braided channels in y-direction. Each panel is 120 by 120 in resolution. Black represents channels, (i) 5 first (out of 20) realisations of braided channels 
with 45◦ orientation, (j) 5 first realisations of braided channels with − 45◦ orientation, and (k) Waimakariri river in New Zealand, an example of the braided pattern. 
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optimal location is identified. Of course, this method is computationally 
time-consuming. For the second approach, we use surrogate response 
surface modelling. This method is more computationally efficient than 
the basic algorithm. 

Based on the above, the present study has the following novelty 
aspects:  

• Definition of a geothermal objective function that is based on a 
licence area rather than a whole domain;  

• Consideration of various forms of heterogeneity through multiple 
realisations (8 for correlated heterogeneity and 20 for fluvial 
settings); 

• Employing surrogate surfaces for efficient optimisation and com-
parison with a simple search for extrema; 

The paper is presented in the following sections. In Section 2, the 
synthetic heterogeneous geothermal model to be used is defined, and 
rock and fluid properties are presented. In Section 3, the surrogate 
modelling is briefly presented, optimisation state variables and objective 
functions are defined, the optimisation algorithm is presented and 
simulation runs are introduced. In Section 4, the results are presented. 
The conclusions and future works are presented in Section 5. 

2. Geothermal models 

2.1. Geometry, initial conditions, and meshing 

We use two sets of models in this work. The first one is a 3D model of 
homogeneous and heterogeneous (with spatial correlation) of low- 
enthalpy aquifers, as described in the following. 

2.1.1. Spatially correlated model (3D) 
The domain is a 3D rectangle with the size of 3 km × 3 km × 500 m in 

x, y, and z directions, with an overburden of 200 m thickness, an aquifer 
of 100 m thickness, and an underburden of 200 m thickness. We use 
uniform 120 × 120 mesh laterally. For vertical direction, the overburden 
and underburden are represented each with one layer only. The aquifer 
has 10 layers. Overall, there are 12 layers and 172,800 gridblocks in the 
model. The top of the model is 2,250 m deep. pinit is 200 bar (initial 
pressure), and Tinit is 67.5 ◦C (initial temperature) at top of the reservoir 
with 3 ◦C/100 m temperature gradient. The boundaries are close to flow 
around all the sides. For an illustration of model geometry, we refer to 
our previous publication [19] (Fig. 1). 

The rock’s properties are set as: thermal conductivity 0.91 W/m/K, 
density 2650 kg/m3, specific heat capacity 2,000 J/kg/K, and 

Fig. 3. The flowchart of the surrogate-based optimisation algorithm.  

Table 2 
Simulation cases defined for this study. We note that nr for 3D is 8, and for 2D is 20.  

Sim. case Q [m3/hr]  Case Run format Life-time [years] Number of simulations 

I 250 3D Homogeneous Simple-search LT  = 15 10 × 10  
II 250 3D Homogeneous Simple-search LT  = 30 10 × 10  
III 250 3D Homogeneous Simple-search 15 <LTP1 <30  10 × 10  
IV 250 3D Heterogeneous Simple-search LT  = 15 4 het. cases × 10 × 10 × nr  

V 250 3D Heterogeneous Simple-search LT  = 30 Het. cases 1 and 2 × 10 × 10 × nr  

VI 250 3D Heterogeneous Optimisation 15 <LTP1 <30  4 het. cases × nfval × nr  

VII 150 3D Homogeneous Simple-search LT  = 15 10 × 10  
VIII 150 3D Homogeneous Simple-search LT  = 30 10 × 10  
IX 400 3D Homogeneous Simple-search LT  = 15 10 × 10  
X 400 3D Homogeneous Simple-search LT  = 30 10 × 10  
XI 150 3D Heterogeneous Optimisation 15 <LTP1 <30  4 het. cases × nfval × nr  

XII 400 3D Heterogeneous Optimisation 15 <LTP1 <30  4 het. cases × nfval × nr  

XIII 250 2D braided in y-direction Simple-search LT  = 15 10 × 10 × nr  

XIV 250 2D braided in y-direction Simple-search LT  = 30 10 × 10 × nr  

XV 250 2D braided 45◦ orientation  Simple-search LT  = 15 10 × 10 × nr  

XVI 250 2D braided − 45◦ orientation  Simple-search LT  = 15 10 × 10 × nr   
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compressibility 4.93×10− 5 bar− 1 at 250 bar. Overburden/underburden 
porosity and permeability are 0.01 and 0.001 mD, respectively. An 
available code [20] is used to generate spatially correlated porosity 
fields with different lateral correlation lengths. The method utilizes the 
Fourier-transform of the covariance function as the power spectral 
density function of all realizations. Random autocorrelated fields are 
generated by creating random phase spectra meeting the conditions of 
real numbers in the physical domain. The realizations are then con-
verted by back-transformation of the power- and phase-spectrum into 
the physical domain [20]. 

The porosity fields have a mean of 0.17, and a variance of σ2 = 0.04. 
The correlation lengths in lateral directions (here cx denotes the x-di-
rection correlation length and cy denotes the y-direction correlation 
length) are: (1) cx = 100 m, cy = 100 m; (2) cx = 1000 m, cy = 200 m; (3) 
cx = 100 m, cy = 1000 m rotated 45 ◦ anticlockwise; and (4) cx = 100 m, 
cy = 1000 m rotated 45 ◦ clockwise. Here by cx = 100 m, we mean the 
correlation length in x direction is 100 m which corresponds to 4 grid-
blocks in our model. In other words for cx = cy = 100 m, we expect 
correlated permeability circles with radius of 100 m throughout the 
domain. Eight realisations are generated for each case. The following 

Fig. 4. The outputs for simulation case I, (a) Enet, (b) CoP, (c) S, (d) Ein, (e) Eout, and (f) production ΔT at fixed life time of 15 years.  
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relationship based on Delft Sandstone aquifers in the Netherlands [21] is 
used to derive permeability from porosities: 

K = − 2.03 × 10− 7ϕ5 + 2.55 × 10− 5ϕ4 − 1.04 × 10− 3ϕ3 + 8.91

× 10− 3ϕ2 + 3.58 × 10− 1ϕ − 3.21 × ϕ0 (1) 

Similar realizations are depicted in Babaei and Nick [19] (Fig. 3). In 
addition to the heterogeneous 3D cases above, we define a 2D homo-
geneous case for comparison. For this case ϕ= 15%, and K = 139 mD 
(based on Eq. 1) everywhere in the domain. The statistics of all real-
isations are presented in Table 1. 

2.1.2. Fluvial models (2D) 
In order to test a more challenging system in terms of porosity and 

permeability distribution, channelised fluvial systems are considered in 
2D. Specifically, braided channels are generated in the y-direction, 45◦

and − 45◦ orientations. Braided channels exhibit numerous channels that 
split off and rejoin each other to give a braided appearance [22]. In order 
to make realistic representations of channels, we start by placing few 
random points in an elongated subsection of the image domain 
(Figs. 2,3a). Then using a fitting technique named Piecewise Cubic 
Hermite Interpolating Polynomial (PCHIP) [23], points are replaced 
with a curve (Fig. 2b). By applying moving average on the fitted curve, 
pointy corners will become smoother to imitate the shape of a natural 
channel (Fig. 2c). Afterward, we voxelized the line point and apply 
image dilation transform to add thickness to the created channel image 
(Fig. 2d). By repeating this process more channels are added to the 
image (Fig. 2e). It is also possible to select a random size for the dilation 

structural element and create channels with different thicknesses. Then, 
in order to add some irregularities to the image, we add it to an array of 
smoothed white noise (Fig. 2f) and perform thresholding and cropping 
the margins to reach the final binary map of the channel texture 
(Fig. 2g). 

The maps of braided channels for 20 realisations in the x-direction 
are shown in Fig. 2(h). The domain is 3 km × 3 km × 100 m (no over-
burden or underburden). The size of the mesh is 120 × 120 × 1. The 
porosity is designated as 0.05 for non-channel areas, vs. 0.5 for chan-
nelled areas. The permeability is designated as 10 mD for non-channels 
areas vs. 4000 mD for channelled areas. All other properties (thermal 
conductivity of rock, rock density, rock specific heat capacity, and rock 
compressibility) are the same as the 3D model. The top surface of the 
aquifer is 2450 m deep, the initial pressure is 200 bar, and the initial 
temperature is 75 ◦C. 

2.2. Other modelling remarks 

Two doublets with a checkerboard pattern similar to [18] are used 
for heat extraction. The injection wells (I1 and I2), and the production 
wells (P1 and P2) are positioned so that the distance between each 
doublet is L, and the distance between the two doublets is dx. I1 is 
positioned always at x = 750 m and y = 750 m. Whereas, I2, P1, and P2 
will be positioned according to L and dx. The temperature of the injected 
water is 30 ◦C. The maximum permissible (upper limit) bottomhole 
pressure of the injection wells is set to 260 bar. In case of nearing this 
value, the injection rate is decreased automatically. Cold water is 

Fig. 5. (a) The objective function distribution for simulation case I, (b) the objective function distribution for simulation case II, (c) the objective function distri-
bution for simulation case III, and (d) LTP1 (life time when there is 1 ◦C drop at wells obtained for a simulation without fixing or restricting the life times). 

M. Babaei et al.                                                                                                                                                                                                                                 



Sustainable Energy Technologies and Assessments 49 (2022) 101754

7

injected using the well injection rate of Q. For 3D, the wells are perfo-
rated only into the aquifer (10 layers), and for 2D there is obviously only 
one perforation. 

Local thermal equilibrium was assumed for each gridblock, meaning 
that heat efficiently and instantly is conducted from solid to fluid, 
making the Biot number much smaller than 1. As such, we can assume 
the temperature of the solid and fluid phases in each gridblock is iden-
tical [24]. All simulations of this study are carried out by ECLIPSE E300 
simulator [25]. The governing equations are described in detail in 

Fig. 6. The objective function distribution for simulation case IV for (a) heterogeneous realisations of case 1, (b) heterogeneous realisations of case 2, (c) hetero-
geneous realisations of case 3, (d) heterogeneous realisations of case 4, (e) objective function values vs. L = dx, and (f) CoP values vs. L = dx. 

Table 3 
Optimisation results for simulation case IV.  

Simulation 
case 

Heterogeneity 
case 

Optimal L 
[m]  

Optimal dx 
[m]  

Optimal obj. 
function value 

IV 1 400 400 34 
IV 2 400 400 30 
IV 3 400 400 48 
IV 4 400 400 36  
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[25,19]. 

3. Methodology 

3.1. Optimisation state variables and objective function 

The optimisation problem is defined based on a set of state variable 
or variables (x) and objective or objectives (u), so that u(x) is optimised. 
The state variables in this study are the well/doublet spacing (L,dx) as 
shown in Fig. 1. The minimum and maximum spacing are set to be 100 m 
and 1300 m, respectively. That is, while the position of the well I1 is 
fixed (750 m in x and y directions from the top left corner of the 
domain), P1 and P2 can be positioned anywhere between 850 m and 

2050 m from the top left corner. The position of I2 is correspondingly 
changed with respect to the positions of P1 and P2. 

A single objective function is defined based on the well and reservoir 
behaviour (i.e., no economic model is integrated into the optimisation). 
The optimisation function should be defined in such a way that it in-
cludes and accounts for the performance measures of the geothermal 
system. To define the objective function based on these objectives, 
several definitions are required as follows. 

Licensed region’s boundary: this is the shell-like lateral inner boundary 
blocks of the license area. The license area is taken as the 2L× 2dx×
10-layer rectangle around the wells as shown in Fig. 1. 

Average temperature of production wells 

Fig. 7. Box plots of simulation results vs. L = dxfrom case IV with 8 realisations (objective function and CoP separately calculated for each realisation). (a) Het-
erogeneous realisations of case 1, (b) heterogeneous realisations of case 2, (c) heterogeneous realisations of case 3, (d) heterogeneous realisations of case 4. (e) <
ΔpBH1 > vs. time for L = dx = 400 m, and (f) < ΔpBH2 > vs. time for L = dx = 400 m. 
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< Tt
W >=

∫ 10
k=1 qprd,t

W,k Tt
ijk

∫ 10
k=1 qprd,t

W,k

(2)  

where qprd,t
W,k is the production rate of water at layer k for well W, at time t. 

Tt
ijk is the temperature of gridblock ijk at time t. The denominator is 

constant Qprd,W =
∫ 10

k=1 qprd,t
W,k . 

Life time based on (average) production: LTP1 is defined as the time (in 

years) when < Tt
P >=

<TWt
P1>+<TWt

P2>

2 drops 1 ◦C compared to the initial 
condition. As it can be the case that for small Land dxvalues, the value of 
life time becomes too small (from operational point of view) and 
conversely for large Land dxvalues, the value of life time becomes too 
large, we have set the constraint that 15 years <LTP1 <30 years. 

Life time fixed: Life time is a fixed 15-year or 30-year of operation 
regardless of the temperature drop in the wells. We can determine the 
production temperature drop at any LTP including the fixed 15-year or 

Fig. 8. The pressure distribution at the end of the operation (year 50) across the top layer of (a) the homogeneous case, (b) the heterogeneous case 1, (c) the 
heterogeneous case 2, (d) the heterogeneous case 3, and (e) the heterogeneous case 4. 
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30-year life time. 
Coefficient of Performance is a dimensionless property defined as: 

CoP =
Eprod

Epump
, (3a)  

Eprod = (ρC)wQ
∫ LTP

t=0

( 〈
Tt

W > − Tinj
)
dt, (3b)  

Epump =
Q
ε

∫ LTP

t=0

( 〈
pinj − pprd >

)
dt (3c)  

where Eprod is the produced energy and Epump is the pump energy losses 
based on [26]. ε is the pump efficiency (%60), and < pinj − pprd > is an 
averaged pressure difference of two doublets: 

〈pinj − pprd〉 =
〈pBH,I1 − pBH,P1〉 + 〈pBH,I2 − pBH,P2〉

2
, (4)  

where pBH,W refers to the bottomhole pressure of well W, so that 
〈pBH,I1 − pBH,P1〉 is the averaged over all realisations of bottom-hole 
pressure differences between well I1 and P1. 

Net Energy defined as: 

Enet = Eprod − Epump, (5) 

Energy Sweep indicates how efficiently heat is extracted. This is 
defined as: 

S =
Eprod

ER
, (6a)  

ER =

∫ Nb

i=1
(ρwCwϕi + ρrCr(1 − ϕi))

(
Tinit,i − Tinj

)
dVbi. (6b)  

where ER is the reservoir energy of the license area (2L × 2dx × 10layers 

surrounding the doublets), Vbi is the volume of gridblock i in the license 
area, Nb is the number of gridblocks in the license area, and Eprod is the 
geothermal energy recovered by the doublets during the lifetime of the 
operation. 

The optimisation algorithm attempts to maximise the following 
dimensionless objective function with state variables L and dx, and for 
various rates of injection at a life time (either LTP1 or fixed LTP) as: 

f = (Ein − Eout) × CoP, (7)  

where Einis the average (over all the realisations) of the thermal deple-
tion inside the licence area of the reservoir at the lifetime divided by ER: 

Ein =

∫ Nb
i=1(ρwCwϕi + ρrCr(1 − ϕi))

(
Tinit,i − TLTP,i

)
dVbi

ER
, (8)  

whereas Eoutis the average (over all the realisations) of the thermal 
depletion outside the licence area of the reservoir at the lifetime divided 
by ER: 

Eout =

∫ Nout
i=1 (ρwCwϕi + ρrCr(1 − ϕi))

(
Tinit,i − TLTP,i

)
dVbi

ER
. (9)  

where Nout is the number of gridblocks outside of the licence region. 
Defining the objective function based on Eq. 7 dictates that Ein must 

be maximised while Eout must be minimised, at the same time CoP 
(which is based on the well performance) should also be maximised. 
With this definition, no economic constraint or variable is needed for 
optimisation and the solution is optimised merely based on the perfor-
mance over the domain and wells in the geothermal aquifer system. Also 
as it is dimensionless, the performance of different systems can be 
compared with each other. 

Fig. 9. The low permeability distribution in the domain (K< 10 mD) for realisations of the heterogeneous case 2 (the first 8 subfigures), and the heterogeneous case 3 
(the second 8 subfigures). 
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Fig. 10. The objective function distributions for simulation case V for (a) heterogeneous realisations of case 1, and (b) heterogeneous realisations of case 2. 
Comparing results of simulation case IV (life time fixed 15 years) and V (life time fixed 30 years) for (c) objective function of heterogeneous case 1, (d) objective 
function of heterogeneous case 2, (e) Ein − Eout of heterogeneous case 1, and (f) Ein − Eoutof heterogeneous case 2. 

M. Babaei et al.                                                                                                                                                                                                                                 



Sustainable Energy Technologies and Assessments 49 (2022) 101754

12

3.2. Surrogate modelling 

In this work, surrogate modelling is carried out by the Modularized 
Surrogate Model toolbox [27], developed in MATLAB. Between various 
surrogate models, we use cubic Radial Basis Functions (RBF), as Babaei 
and Pan [28] showed that RBF is consistently the best and computa-
tionally the most efficient surrogate model. This conclusion has been 
made for complex hydrocarbon recovery optimization using surrogate 
modelling comparing the performance of cubic RBF with Gaussian 
kriging and Multivariate Adaptive Regression Splines. The results 
demonstrated that the radial basis function is reliable consistently for 
optimization problems in subsurface engineering. 

3.3. Optimisation algorithm using surrogate modelling 

By writing the objective function as u(x), where ucan be the objective 
function of Eq. 7, and x can be Lor dx, the surrogate-based optimisation 

algorithm of [29] (Fig. 6) is employed. Here we have, u(x) =

∑n
i=1

ui(x)
nr

, 
where iis realisation number from 1 to nr, where nis the number of 
realisations that in this study nr = 8. 

The components of the optimisation algorithm include sampling by 
Latin Hypercube Sampling (LHS) scheme (Step 1), construction of the 
initial surrogate model (Step 2), using CAND (Candidate Point Strategy) 
to find the minimum value of − u(x) (maximum of u(x)) (Step 3), and 
updating the surrogate model based on new candidate point function 
evaluations (Step 4). These are shown in the flowchart of Fig. 3. 

The algorithm generates an experimental design using LHS. We need 
at least nLHS = nx +1 initial design sites for building the surrogate model 
[30], where nx is the number of state variables. The number of sampling 
points by Latin hypercube sampling is denoted by nLHS. The maximum 
allowable number of function evaluations, nfval, is specified by the user. 
Using Candidate Point Strategy [31], the sampling points are perturbed 
and different groups of candidate sampling points are obtained. The 

perturbation mechanism generates integer feasible sampling points for 
well/doublet spacing and continuous feasible sampling points for in-
jection rate. 

3.4. Simulation runs 

Overall we define the simulation runs summarised in Table 2 using 
2D and 3D models defined in Section 2.1. In this table, by simple-search 
for running the simulations we mean simulations are carried out in a 
mesh of 10 by 10 locations for L and dx, where 100 m < L < 1000 m, and 
100 m < dx < 1000 m. For the optimisation runs we assign nLHS = 8, and 
nfval = 20. The simple-search format will incur more computations. 
Nevertheless, the advantage is that the surfaces for the objective func-
tion and other outputs of simulations can be constructed over an even 
mesh. 

4. Results 

4.1. Cases I, II, and III (3D Homogeneous cases, effects of life time 
variation) 

In Fig. 4 we have shown all the outputs of simulation case I. The 
figure shows that with increase in Land dx until L = dx = 600 m, Enet [J] 
and CoP increase (the latter through increase in Eprod). This is expected 
as a larger area is available for production in a fixed 15-year production 
life time. Enet plateaus for larger values of Land dxas within a fixed life 
time of 15 years, it is not possible to produce more energy. In contrast, 
by increase in L and dx, S, Ein and Eout decrease steeply. S decreases 
because ERincreases much more than Eprodincreases for a larger domain 
of heat extraction. Similarly, based on Eqs. 8 and 9, the numerators 
increase less than the denominator (ER) does, so that the ratios of heat 
extraction from inside and outside of the license area decrease over 
larger domains. Combining Ein, Eout and CoP (all dimensionless) results 

Fig. 11. Box plots of simulation results vs. L = dx from case V with 8 realisations (objective function and CoP separately calculated for each realisation). (a) 
Heterogeneous realisations of case 1, (b) heterogeneous realisations of case 2, (c) heterogeneous realisations of case 3, and (d) heterogeneous realisations of case 4. 
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in the objective function that is maximised at L = dx = 400 m as shown 
in Fig. 5,6(a). Fig. 4(f) shows the temperature drop at production wells 
at the fixed life time of 15 years. As expected, we observe a significant 
temperature drop for short well/doublet spacing that operationally 
renders the thermal extraction process unappealing. 

Fig. 5 shows the objective function distributions for the simulation 
cases I, II, and III. We have used interpolation between data points 
(shown with triangles in the surfaces) to make full surfaces over the 
range of Land dxvalues used in the simulations. For simulation cases II, 
the optimal solution is occurring at L = dx = 600 m. The only difference 
in the two surfaces obtained between simulation cases I and III as shown 
in Fig. 5, is for high Land dx. This is because as shown in Fig. 5(c) only 
for this region the life time obtained for simulation case III (LTP1) is not 
15 years. The figure also shows that there is a steep shift between LTP1 
of 15 years (set as the minimum) and LTP1 of 30 years (set as the 

maximum). Without the constraint of 15 years ⩽LTP1 ⩽30 years, the life 
time would look similar to Fig. 5(d) where the life time smoothly 
changes between 1 and 50 years. However, geothermal heat pump 
systems have an average 20+ year life expectancy for the heat pump 
itself [32]. Therefore we have set a minimum of 15 years for the life 
time, assuming that the temperature drops of further than 1 ◦C is 
acceptable by the operator. 

4.2. Cases IV and V (Effects of correlated heterogeneity) 

Fig. 6(a to d) show the surfaces obtained for the objective function by 
conducting simulation cases IV. The optimal solution is occurring 
consistently at L = dx = 400 m as reported in Table 3 regardless of 
heterogeneity. Also, the injectivity of the model is sustainable 
throughout simulations, meaning that the flow rate can be achieved in 
the injection wells without nearing the maximum permissible bottom-
hole pressure of 260 bar. This is the observation for all other simulation 
cases using the 3D model. 

Fig. 6(e) and (f) show, respectively, the objective function and CoP 
values obtained from simulations with respect to L = dx values (that is 
the diagonals of the surfaces in Fig. 6(a to d)). Also for comparison the 
objective function and CoP values of the homogeneous case from 
simulation case I are added to Fig. 6(e and f). The objective function 
values for heterogeneous cases are higher than the homogeneous case. 
This is because the CoP for heterogeneous cases is higher than the ho-
mogeneous case. The homogeneous case has a lower average value for 

Fig. 12. Main plots: the objective function for each function evaluation (nfeval = 20) in optimisations of simulation case VI, for (a) heterogeneous case 1, (b) het-
erogeneous case 2, (c) heterogeneous case 3, and (d) heterogeneous case 4. Insets: the surfaces for objective function generated using all the function evaluations of 
optimisation. 

Table 4 
Optimisation results for simulation case VI.  

Simulation 
case 

Heterogeneity 
case 

Optimal L 
[m]  

Optimal dx 
[m]  

Optimal obj. 
function value 

VI 1 425 425 38 
VI 2 400 400 30 
VI 3 375 400 43 
VI 4 475 475 35  
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permeability than the heterogeneous cases, therefore, the pressure dif-
ferences are higher for the homogeneous case compared with the het-
erogeneous case. 

The definition of the objective function has masked the differences 
between heterogeneous cases. While CoP values and optimal locations 
for highest CoPs are different between the heterogeneous cases, the 
multiplication of Ein − Eout into CoP makes the optimal location consis-
tently happening at 400 m. This is shown further in Fig. 7, where we 
have run the case IV simulations for each individual realisations of four 
heterogeneous cases separately. It is clear that CoP has different optimal 
values for L and dxfor different heterogeneity cases. For example by 
examining the median of box plots for CoP in Fig. 7 (coloured boxes), 
heterogeneity case 1 has an optimal value of 700 m for CoP, heteroge-
neity case 2 shows a steady increase in CoP as the distances increase, 
heterogeneity case 3 has an optimal value of 400 m for CoP, and het-
erogeneity case 4 has an optimal value of 800 m for CoP. Also, we 
observe larger variations in CoP values at each L or dx for heterogeneity 
case 2 compared with other cases. This shows large pressure difference 
variations between different realisations at a fixed life time of 15 years 
for heterogeneity case 2. As also shown in Fig. 6, the black boxes for the 
objective function show a consistent 400 m optimal location for all 
different heterogeneity cases. Therefore it is clear that the definition of 
objective function has put emphasis on optimising heat recovery from 
within the license area and as such, the differences between different 
heterogeneity cases with respect to the optimal well/doublet spacing 

have been minimised. 
The reason why the heterogeneity case 2 shows increasing CoP with 

increasing L and dx, is that for this case pressure difference between 
wells remains high throughout the simulations, therefore, the higher 
distances alleviate the pressure difference leading to improved CoPs. 
This is not the case for other heterogeneity cases. We have chosen L = dx 
= 400 m as an example to report the average well pressure differences 
over time as shown in Fig. 7(e and f) for 〈pBH,I1 − pBH,P1〉 and 
〈pBH,I2 − pBH,P2〉. Also in this figure, we can see higher average well 
pressure differences for heterogeneous case 2 compared with other 
heterogeneous cases. Shown visually in Fig. 8, we plotted the pressures 
retained in the system after 50 years of operation. Heterogeneous case 2 
has more pressure and has a higher pressure difference between the 
wells than other heterogeneous cases. This is an interesting phenomenon 
because heterogeneous case 2 has similar average permeability as other 
heterogeneous cases (Table 1). To investigate this phenomenon, we 
filtered out low permeability cells of all realisations of heterogeneous 
case 2 and case 3 as shown in Fig. 9. It is evident from the figure that the 
impermeabilities in case 2 are more predominant than in case 3. 
Therefore, we can conclude that the distribution and variation of 
permeability affect CoP, even if the average permeability is the same 
between different domains. 

Moving on to simulation case V, where we did the simulations of case 
IV for life time fixed at 30 years, the simulations for two heterogeneous 
cases 1 and 2 show that the optimal solutions shift to L = dx = 600 m as a 

Fig. 13. Comparison between the results of simulation cases VII to X with simulation cases I and II, (a) objective function values with respect to diagonal values of 
the simple-search format for L and dx, (b) CoP, (c) Ein − Eout for cases I, VII and IX, and (d) Ein − Eout for cases II, VIII and X. 
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result of extending the life times as shown in Fig. 10(a and b). This is 
supported by Fig. 10(c and d) where the objective function values of 
simulation cases IV and V are compared. The trend of increase in optimal 
solution is affected by shift in Ein − Eoutas shown in Fig. 10(e and f). These 
figures show Ein − Eout optima occur at about L = dx = 500 m to 600 m as 
a result of an extended time (30 years compared with 15 years) to extract 
energy from the license region. 

In terms of CoP, similar to Fig. 7, in Fig. 11 we show the results of 
conducting individual realisations-based simulations of case V. Hetero-
geneity case 1 has an optimal value of 700 m for CoP, heterogeneity case 
2 shows a steady increase in CoP as the distances increase, heterogeneity 
case 3 has an optimal value of 700 m for CoP, and heterogeneity case 4 
has an optimal value of 800 m for CoP. Therefore, except for hetero-
geneity case 1, the other cases have the same CoP trend vs. L and dx 
compared with simulation case IV. 

4.3. Case VI (surrogate-assisted optimisation on 3D heterogeneous cases) 

Our first set of surrogate-assisted optimisation, using the methodol-
ogy briefly explained in Section 3.3, is simulation case VI. The profiles of 
sorted (from low to high) objective function values are presented in 
Fig. 12. We have sorted the values as the optimisation algorithm tries to 

construct the surfaces as shown in the subsets of Fig. 12 through 
candidate points, so the actual plots of objective function values with 
respect to function evaluation will be unsorted from low to high values. 
The optimal solutions obtained for Land dxfor each heterogeneous case 
are reported in Table 4. We should note that due to significantly higher 
than 1 ◦C production temperature drop, the life time for most of the 
function evaluations will be 15 years. That is, the life time is restricted to 
not be lower than 15 years so that if a temperature drop of 1 ◦C happens 
earlier than 15 years, the simulation automatically chooses 15 years as 
the life time. There are only a few cases that the function evaluation lead 
to life times larger than 15 years. Therefore the results of optimisation 
for this simulation case should be compared with the results of simula-
tion case IV in Table 3 and Fig. 6(e). It is clear that the optimisation 
algorithm has been mostly successful to locate the optimal points within 
only 20 function evaluations (compared with 100 for the simple-search 
format for simulations). Even for heterogeneous case 1, L = dx = 425 m 
obtained by optimisation has led to higher value for objective function 
than L = dx = 400 m obtained by simple-search format of simulations 
(38 compared with 34). This is the opposite for heterogeneous case 3. 
For heterogeneous case 4, the surrogate-based optimisation has 
converged to the second optimal peak (see Fig. 6(d) at L = dx = 475 m). 

Fig. 14. Objective function surfaces for simulation cases XI (a to d for heterogeneous cases 1 to 4, respectively).  

M. Babaei et al.                                                                                                                                                                                                                                 



Sustainable Energy Technologies and Assessments 49 (2022) 101754

16

4.4. Cases VII, VIII, IX, and X (effects of discharge rate on 3D 
homogeneous cases) 

These simulation cases are defined to investigate the effect of 
discharge rate on the optimal location and placement of doublets, as 
well as the outputs of optimisations and simulations. Fig. 13 shows the 
objective function, CoP, Ein − Eout for simulation cases VII, VIII, IX, and X, 
compared with simulation cases I and II. The following can be deducted 

from the figure:  

• The lower discharge rate of 150 m3/hr (simulation cases VII and VIII) 
has increased the objective function values by increasing CoP 
(lowering pressure difference between injection and production 
wells) compared with simulation cases I and II,  

• The higher discharge rate of 400 m3/hr (simulation cases IX and X) 
has decreased the objective function values by decreasing CoP 
compared with simulation cases I and II,  

• The lower discharge rate of simulation case VII has shifted the 
optimal L and dxto 300 m compared with simulation case I with 
optimal values of 400 m. Similarly, simulation case VIII has optimal 
values of L and dxfor 100 m to 200 m lower than simulation case II. 
Therefore, decrease in discharge rate leads to decrease in optimal L 
and dx.  

• The higher discharge rate of simulation case IX has shifted the 
optimal L and dx to 500 m compared with simulation case I with 
optimal values of 400 m. Similarly, simulation case X has optimal 
values of L and dx for 100 m higher than simulation case II (700 m 
compared with 600 m). Therefore, increase in discharge rate leads to 
increase in optimal L and dx. 

Fig. 15. Objective function surfaces for simulation cases XII (a to d for heterogeneous cases 1 to 4, respectively).  

Table 5 
Optimisation results for simulation cases XI and XII.  

Simulation 
case 

Heterogeneity 
case 

Optimal L 
[m]  

Optimal dx 
[m]  

Optimal obj. 
function value 

XI 1 325 325 61 
XI 2 300 400 41 
XI 3 325 325 82 
XI 4 325 325 66 
XII 1 575 575 24 
XII 2 450 575 16 
XII 3 475 525 26 
XII 4 575 575 25  
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• Ein − Eout shows the same trend of decrease in discharge rate leading 
to decrease in optimal L and dx, and increase in discharge rate 
leading to increase in optimal L and dx 

4.5. Cases XI and XII (Effects of discharge rate on correlated 
heterogeneous cases using surrogate-assisted optimisation) 

The results of the last two sets of simulations using the surrogate- 
based optimisation are presented here (Figs. 14 and 15). The optimal 
solutions obtained for L and dx for each heterogeneous case are reported 
in Table 5. When we compare L and dx of this table with those of Table 4 
for surrogate-assisted optimisation of base case discharge rate, we can 
observe that on average the optimal values of L and dx have decreased 
by ∼100 m by the lower discharge rate of 150 m3/hr, and increased by 
∼100 m by the higher discharge rate of 400 m3/hr. 

It is interesting that some of the surfaces feature prominent spikes 
over the optimal location. This is because for such cases both compo-
nents of the objective function (Ein − Eout and CoP) are synchronously 
maximised at the optimal location. This shows that the objective func-
tion defined in our work can be used with confidence to optimise the 
performance of variously heterogeneous geothermal aquifers under 
different operating conditions (discharge rate and life time). The defi-
nition is robust against spatially correlated heterogeneity of various 
correlation lengths. 

4.6. Cases XIII, XIV, XV, and XVI (Braided model: effects of channels in 
the 2D domain) 

Using 20 realisations of 2D fluvial braided channels as shown in 
Fig. 2(h), simulation cases XIII and XIV are conducted. A major differ-
ence between this model with the 3D model in terms of process per-
formance is the poorer injectivity of this model due to impermeabilities 
around the channels. Therefore, the target injection rate of 250 m3/hr 
could not be achieved for some realisations throughout the operation life 
time. Despite these complexities, Fig. 16(a and b) for objective function 
and CoP vs. L = dx = 100 to 1000 m, show that the objective function is 
optimised again around 300 m to 400 m for LT  = 15 years (simulation 
case XIII) and LT  = 30 years (simulation case XIV), respectively. CoP, 
however, displays extreme variabilities for different simulations, but 
overall, due to the unfavourable permeability distribution and the 
pressure build-up in the domain, the values of CoP are lower than the 3D 
case. The trend of CoP vs. L = dx = is positive until 900 m, but at 1000 m 
there is a decline in CoP, showing no strong optimality with respect to 
CoP values. 

In Fig. 17, we showed the temperature distributions of 10 fluvial 
braided model realisations at life time of 15 years (simulation case XIII) 

for L = dx = 100 m (Fig. 17a), 400 m (Fig. 17 and 1000 m (Fig. 17c). 
Also, we have shown for each realisation, the licensed area (hashed cyan 
line), wells (blue and red circles), and values of Ein and Eout (white text). 
It is visually, as well as quantitatively, clear that L = dx = 400 m is 
producing the optimal coverage of the licensed area. If the well/doublet 
spacings are decreased, Eout increases, and if the well/doublet spacings 
are increased, Ein decreases. Either of these renders the heat recovery 
processes suboptimal in terms of the heat extraction efficiency from the 
licensed region. 

Finally, Fig. 18 shows the results of simulation case XV and simula-
tion case XVI. The following points are observed about these figures. 
Firstly, the ranges of variations (the size of the bars in box plots) of the 
objective function and CoP for case XV are larger than those for case XVI. 
This is due to the orientation of braided channels that are in the I1-I2 
orientation for case XV and are in the P1-P2 orientation for case XVI. 
Therefore, for case XV depending on whether the line connecting I1 and 
I2 is inside or outside the channels, the results of the simulations vary 
rather significantly. If the I1-I2 line is inside the channels, the injected 
cold water is diverted from production wells. Also, in this case, the 
pressure difference between the wells remains low, and as such CoP is 
higher compared with case XVI. This happens more emphatically for L =

dx = 100 m. Therefore, while for case XV the maximum CoP happens at 
for L = dx = 100 m, for case XVI, L = dx = 900 m is optimal for CoP. 
Higher CoP of case XV leads to higher objective functions as well 
compared with case XVI. However, the optimal well/doublet spacing for 
both cases again happens at 300 m to 400 m. 

5. Conclusions and future works 

Using a series of homogeneous and uncertain heterogeneous (with 
spatial correlation in porosity/permeability and channelised porosity/ 
permeability) porous media, we investigated the optimal locations of 
wells and doublet spacing. We defined a novel objective function that 
maximises heat recovery from the licence region, minimises heat re-
covery from outside of the license region, and maximises the Coefficient 
of Performance. Our results showed:  

• Based on a fixed life time of 15 years, we found that the optimal well/ 
doublet spacing of checkerboard pattern is 400 m for the discharge 
rate of 250 m3/day. This spacing consistently produces optimal 
values for the objective functions for homogeneous and heteroge-
neous cases.  

• The optimal solution comprising the multiplication of “Coefficient of 
Performance” into “heat recovery from the license region minus heat 
recovery from outside the license region”, can be predominantly 
optimal for the heterogeneous cases with low discharge rate where 

Fig. 16. Box plots of simulation results vs. L = dx from case XIII and XIV with 20 realisations (objective function and CoP separately calculated for each realisation), 
for (a) case XIII, and (b) case XIV. 
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both components of the objective function are synchronously opti-
mised at the optimal solution.  

• Increase in life time will lead to a higher optimal spacing of 600 m for 
the homogeneous case and heterogeneous cases for the discharge 
rate of 250 m3/day.  

• Increase in rate also increases the optimal well location and spacing.  
• Surrogate response surfaces are successfully used to obtain the 

optimal solutions in a computationally efficient way (20 simulations 
compared with 100 simulations without the surrogate-based opti-
misation algorithm).  

• The distribution of permeability and in particular the correlated 
heterogeneity clusters affect the values of CoP (more than the 
objective function defined in this work). Therefore, the mean and 
standard deviation of permeability alone cannot be considered as the 
sole parameters to determine the performance of heat recovery from 
geothermal sources. Our results show that for complex heteroge-
neous media, 700 m to 900 m produce relatively the best CoPs for 
various cases of heterogeneity in porosity and permeability. 

Our future studies will include multiple patterns of wells (not just 
checkerboard), addition of CO2, and geochemical interaction of working 

Fig. 17. Temperature profile at life time of 15 years for 10 realisations of braided model in y-direction for (a) L = dx = 100 m, (b) L = dx = 400 m, and (c) L = dx =
1000 m. 
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fluid and rock into the optimisation processes. Moreover, we assumed 
rock density, heat capacity ad thermal conductivity as homogeneous, 
whereas in reality, these properties are also heterogeneous. 

Also, the fractured networks models can be incorporated into the 
existing model to investigate the effects of fractures on optimal well/ 
doublet spacing. In this work, we only had two state variables of dx and 
L. Many other operational variables can be added if we consider multiple 
doublets and various well patterns in heat extraction. Also, as a result of 
varying the patterns, the definition of license area will have to be 
updated or impacts of its conventional definitions on heat recovery, CoP, 
and Energy Sweep should be tested, 
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[30] Müller J, Piché R. Mixture surrogate models based on Dempster-Shafer theory for 
global optimization problems. J Global Optim 2011;51(1):79–104. 

[31] Regis RG, Shoemaker CA. A stochastic radial basis function method for the global 
optimization of expensive functions. INFORMS J Comput 2007;19(4):497–509. 

[32] DoE, Guide to Geothermal Heat Pumps. URL:https://www.energy.gov/sites/prod/ 
files/guide_to_geothermal_heat_pumps.pdf. 

-20

-15

-10

-5

0

5

10

15

O
bj

. f
un

ct
io

n

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

-20

-15

-10

-5

0

5

10

15

O
bj

. f
un

ct
io

n

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Fig. 18. Box plots of simulation results vs. L = dx from case XV and XVI with 20 realisations (objective function and CoP separately calculated for each realisation), 
for (a) case XV, and (b) case XVI. 
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