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The use of a simple composite element to describe the creep
properties of fibre reinforced composites

..by..

M. Dootson, B.Sc.(Eng.)

SUMMARY

The stress-strain relationchip for a composite material is dependent
on both the geometry and the stress~-strain relationships of the component
phases.

This note describes a technique by which the stress-strain relationship
can be calculated for any fibre reinforced composite where the matrix has
linear viscoelastic properties and the fibres are linearly elastic. The
distribution of fibres within the composite is assumed to be macroscopically
homogeneous but the distrlbution of fibre orientation can take any configurations.
The problem is solved initially for the case where both phases are linearly
elastic. A simple composite element from which a composite can be built up
is defined and the stress-strain relationship for this element is calculated
using variational methods By summing these elements assuming either
uniform stress or unlform strain throughout the composite, upper and lower
bounds to the stiffness matrix of the composite are obtained. Using the
correspondence principle these bounds for the purely elastic case are trans-
fomed to give the bounds for the viscoelastic case.

The theoretical answers obtained using this method are compared with
those obtained using a more simple model for the mode of combination of the
two phases.
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Nomenclature

Cijkl - elastic stiffnesses Tensor notation where

Sijkl elastic compliances i,Jj,k,1 are integers taking
1J

€ - strain (tensor)

13

C - elastic stiffnesses Matrix notation

g,

Sqr - elastic compliances

g - cstress

where q,r are integers

taking the values 1,2,3,4,5,6.

o - gtress }- the values 1,2,3.

€ - strain (engineering)

o]

E - Young' s modulus

v - Poisson's ratio

G - shear modulus

X - bulk nodulus

v - volume fraction

aij - direction cosine; i,J take values 1,2,3.
., 61 - Fourier coefficients; i are integers.
£(6) - distribution of fibre orientation

t - time

P - transformed variable

Si - magnitudes of discrete retardation spectra
7, - retardation times

c - stiffnees matrix

S - compliance matrix




guffixes

i - fibrous phase

m - matrix phase

Shitel i

U - upper limit of compliance
L - lover limit of compliance

A tilde, ~, below a letter denotes a matrix

A circumflex, A, above a letter denotes a Laplace transfomm.



Introduction

The stiffness of a composite material depends both on the geometry
of the structure of the material and on the stiffness of the component
phases. The composite materials under consideration here are fibre
reinforced linear viscoelastic materials and consequently any analysis
of their stress-strain characteristics must take the geometry and
orientation of the fibrous phase into account as well as the time-dependence
of the matrix.

Cox (1952) has analysed a mat of ideal fibres, assuming that these
fibres have no flexural stiffness and that in consequence they can only
transmit loads in tension. He characterises the orientation of the
fibres in the mat by a distribution function. This represents the number
of fibres at a given angle to a specified direction in a unit width per-
pendicular to their axial direction. The assumptions made by Cox seem
valid in the context of a mat with no means of interconnection between the
fibres. Using this analysis Arridge (1963) has combined an ideal fibrous
mat with an elastic matrix by assuming that the strains in the two phases
are equal. These principles of Cox and Arridge have been extended to allow
for the matrix material being linearily viscoelastic by Dootson (1968) who
has obtained Volterra integral equations relating the creep compliance of
a composite to the geometry and stiffness of the two phases. These
equations have been solved using several techniques (see Mikhlin (1964))
and the calculated compliances compared with the experimentally obtained
compliances of several glass fibre and polyester resin systems.

In a composite material it seems likely that, due to the connection
between the fibres, the fibres affect the stiffness of the whole other
than axially. Bishop (1966) has tried to allow for this by introducing
two hypothetical lateral fibres to act in conjunction with each fibre.
While this artifice can be used empirically to improve predictions of the
machanical properties of the composite, it is not very satisfactory from a
theoretical point of view.

In this note it is intended to use a more rigorous elastic analysis,
baced on the variational principles used by Hashin and Rosen (1964), to
calculate the five elastic stiffnesses required to characterise a simple
composite element. Summing these using a distribution function in the
same vay as Cox has done, the elastic solution for a fibre reinforced
composite can be obtained.

Using the correspondence principle proved by Biot (1954), associating
elastic and viscoelastic problems, this elastic solution can be used tc yield
the viscoelastic solution required. This technique is explained by Williams
(1964) who suggests that the complicated transform inversion involved can be
bypassed by an approximation method such as the collocation method proposed
by Schapery (1962).




Moduli of a representative composite element
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In order to analyse the elastic behaviour of a composite material it
is necessary to assume a mode of combination of the component phases.
Arridge (1963) has assumed that a composite formed from a mat of
continuous fibres embedded in a homogeneous isotropic matrixz can be
adequately represented by considering the two phases to undergo equal
strains and to have no interaction with each other. After Cox (1952)
he assumes that the fibres have no flexural stiffness and can consequently
only tranemit loads in tension. It would be expected that the errors
incurred by these assumptions are small in calculations of the stiffness
of the composite parallel to the fibre axis, as neither the interaction
between the phases nor the flexural stiffness of the fibres will have much
effect on this.  Conversely, the shear stiffness and the stiffness normal
to the fibre axis, calculated for the composite, would be expected to
contain large errors.

To eliminate these errors it is necessary to consider both phases
to be isotropic and homogeneoug and to take the streses distribution in
the two phases into account. However, to calculate the stress distribution
for each configuration of fibres and applied stress field would be an extra=-
ordinarily lengthy procese. As an alternative we can consider a composite
of this kind as being formed from a number of representative composite
elements. Each of these is composed of many, infinitely long, parallel
fibres in a cylinder of the matrix material with its axis parallel to the
Tibre axes. The fibres are assumed to be placed randomly in this element
and the element is assumed to be large enough to be macroscopically
homogeneous. Both phases are assumed to be isotropic and homogeneous.
This representation of a composite allows for interaction between the
phasesg, and the fibres may be taken to contribute to the stiffness of the
composite both in shear and in deformation normal to their axes in addition
to their contribution to the stiffness parallel to their axes. The elastic
constants of such an element may be calculated from the constants of the
individual phases and the elastic constants of any fibre reinforced composite
may be obtained by a suitable combination of these elements.

Hashin and Rosen (1964) have derived expressions for the macroscopic
elastic moduli of composite materials where the reinforcement takes the form

of parallel cylindrical fibres. They acsume the composite material to be
macroscopically homogeneous and that it can therefore be split into repre-
sentative subregions of the type already described here. Their analysis

takes the form of a variational method which calculates bounds for the moduli by
the use of the theorems of minimum potential and complementary energy. For
random fibre placement a geormetric approximation is involved and thus the
resulting bounds are only approxipate. They show that in this case the

bounds are coincident.

Hashin and Rosen define the axis of their element as the l-axis with
the 2~ and 3-axes mutually perpendicular in the transverse plane. The
first modulus calculated is defined as the plane strain bulk modulus and is




assgclated with the volume change due to a plane strain system in the 2195
plane. In terms of the elastic stiffnesses of the element this modulus
is (cpztess)/2 and so from Hashin and Rosen's analysis we obtain

1 b3
5(022+023) = Km o 1, _'m (1)
Kqum Kﬁ+Gm

Similarly, considering the shear modulus associated with a pure shear
strain in the 2,3 plane we obtain

1 i
Caa = 5(022-023) e 1 Vo t2G ) (2)

Gf-Gm 26 (K +G )

From the modulus associated with a pure shear strain in either the 1,2 or
1,3 planes we obtain

G (1+v ) + G s
Ces = G -{G % T 0 (1+v ) (3)

If we consider the element to be subjected to a longitudinal stress only,
then the longitudinal Young's modulus can be calculated as well as the
associated Poisson's ratio. These two give the relations
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respectively. From these five equations we can calculate the five elastic
constants, C11, Coz, Cgg, Ci2, Co3, needed to characterise this transversely
isotropic element. These equations have been written in termms of G, X, E, V,
of which only two are required to describe each isotropic phase, in order to
simplifly the resulting expressions. As this element is transversely isotropic,
the stress-strain relationship can be written as




- T = A
01 Ciz Ciz2 Ci2 €,
Oz Ci2 Caz Co3 €s
O3 Ciz Cz3 Ca2 €x
04 = (Coa=Ca3)/2 | G4 (6)
Os | Ces €g
Og | Ces Bg
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in matrix notation. It should be noted that in equation (4) the last
term on the right hand side is small and can in general be ignored as,

for the range of values expected of the variables, it docs not exceed

1% of the total. With this term eliminated the 'law of mixtures' usually
quoted for the longitudinal Young's modulus remains.

Extension to a complete composite

The elastic constants of the representative composite element relate
the components of one second rank tensor (stress) to those of another
(strain). They are therefore a fourth rank tensor and on transforming
from one set of axes to another

l ——
Cijkl B aim'ajn'ako‘alp'cmnop (7)

as 1 described by Hearmon (1961). For a rotation through an angle ©
from the l-axis towards the 2-axis about the 3-axis the direction cosines,
8,42 are

Q11 =M, 830 =1, 81 = =1, 8o =N (3)
(]

an3 = 831 = az2 = 0

1, a1z

ass

where m = cosf and n = sirf. Consequently, if we rotate the composite
element described through an angle © about the 3-axis, then the stiffness
matrix becomes

C(®)11 C(8)1iz C(8)13 C(®)1e
C(@)12 C(@)2z C(O)2z I CHPR
C(8)13 C(8)ax C(0)33 COER
ce) = C(0)sa C(O)as (9)
C(6)es C(6)ss
c(@)1e C(0)as C(0)s6 ¢(9)ss




where

C(6)11 = C1im* + C15 2m®n® + Cpp n* + Cgg Lm®n?

C(6)12 = C1ym®n? + Cyo(m*™n*) + Coom®n® - Cgg Um3n

C(6)1s = = C1im®n + Cip(w’n = mn?) + Coomn® + Cgg.2(m®n - mn®)
C(6)az = Cyyn* + C1z 2m2n2 + Cpom® + Cgg lm®n2

C(6)26 = = Caymn” + Cip(mn®-w’n) + Coon’n + Ceg.2(mn-n’n)
C(6)gs = C11m®n? = C1p 20°n2 + Cpom®n? + Cgg(n-n?)2

C(0)13 = C1zom® + Cozn? (10)
C(6)23 = C12n2 + 023m2

C(6)sg = - Cyomn + Cosmn

C(6 )44 = (Caa=Caoz)m3/2 + Cggn®

C(8)ss = (C22-Ca3)n?/2 + Cgen®

C(8)ss = (C22~Ca3)un/2 - Cegmn

C(8)s5 = C33

The stress-strain relationship for a representative composite element with
its axis oriented at an angle € to the l-axis in the 1,2 plane is thus given

by

Cox (1952) described the distribution of orientation of the axial directions

of the fibres in a mat by a distribution function, f(€), which represents

the number of fibres at a given angle to a specified direction in a unit

width perpendicular to their axial direction. Using f(€) to describe the
distribution of the axial directions of representative composite elements and
assuming that the strains throughout the ccmposite are uniform gives the stress-
strain relationship for the composite as

g =fﬁg(9)-f(9)d6 . £ (12)

The alternative assumption that the stresses throughout the composite are
uniform gives this relationship as

, 7
& =f SHe)se)® - g (13)

Consequently we can write the stiffness matrix of the composite as either

- [e).z0)8 (1)

o




or
b1
(@)= [ ¢ro).e)s (15)
o}

depending on which assumption is made. These two assumptions should
give upper and lower bounds to the stiffness matrix of the composite.

The distribution function, f(6), is periodic with a period of % and it
can consequently be written as a Fourier series

f(0) = 1 + GycosP + Qocosld + ....
(16)
+ Bysin®® + Bosinld + ...

Since equation (10), representing the rotation of the element through an
angle €, is concerned with powers of trigonometrical functions no higher
than the fourth, further terms do not effect the stiffness matrix of the
composite. By expanding the powers of cos® and sirf to give (@) or
C-l(q) in multiangular form and integrating we obtain the non-zero elements

~

of C” as

C;& = (C11(6+ly402) + C15.2(2-05) + Coo(6-M01405) + Cgg.4(2.02)}/16
C}; = {C11(2-02) + C12.2(64p) + Con(2-0ta) = Ceg.4(2-05)} /16

C%% = (= C11(281#B2) + C12.B5 + Coo(PB1-B5) + Cgg.4B2)/16

Coz = (C11(6-l0y40s) + C10.2(205) + Con(6Hi1405) + Cog.h(2-05)}/16
C%% = {= C112(2B1-B2) = C12.2B2 + Coo(2P1#85) - Cee 4B} /16

Ces = (C11(2<2) = C12.2(2-05) + Coa(2Q2) + Cgg.4(2402)1/16

C}g = {C1a(240y) + Caz(2-0y)}/L

05 = (Cpa(20y) + Can(240y)} /b (17)

C%% = {C12.81 + CozB1}/k i

Cea = {(Caz=Caz)(2421)/2 + Cgg(2-21)} /L i
Css = ((Caz=Cas)(201)/2 + Cgg(241)} /1
C;L = {(Cp2=Ca3)B1/2 - Cgg B}/
U
Cs3 = Can

and, similarly, for the lower bound case



S%l = {S11(6+hoy4z) + S12.2(205) + S50(6-101405) + Sgg(2-02)} /16
SEZ = {812(202) + 812.2(64Q2) + S22(202) - Sgg(200)}/16

S%s = {- 811 2(2B14B2) + S12.482 + S22 2(B;-Bo) + Sgg B2}/16

522 = {812(6-104%2) + 812 2(202) + S22(6+M01405) + Sge(205)}/16
Sgs = {- 811 2(2B1-B2) - S12 B2 + Szz 2(2B1485) -~ Sg¢ B2)/16 “

866 = (Sll )4(2-052) - SJ_2 8(2-@2) 1r S22 14-(2-02) <+ S66 L"(WQ)]/lé

S13 = (812(24y) + S25(2<1)} /M
823 = {S12(20;) + 823(2<1)}/b (18)
Sgs = {812 281 + 823 B,}/4
324 = {2(822-823) (2101 ) + Sgg(201)} /Y
Sos = (2(S22-523)(2-01) + Seg(240)} /b
325 = {2(822-823)B1 - SecB1l/t
Sg3 = S22 '
where
S11 = Coo + Cox s S12 = = Cio
C11(C22+C23) - 2015 215 - C11(C22*+C23)

Oaslon o Ca %
522 = 211 59 192 -
C11(C25-Co5) - 2C15(C2n=Ca3)

g;g - 211093 ”
C11(C23 = C23) = 2C13(Caz = Ca23)

Sa3 =

1 2
See = g_» 2(S22-823) = 5=y (19)
L Ly= . X L . : ;
and S~ repredents (C°) *. By inverting § , obtained in equation (18), we
thus obtain the lower bound for the stiffness matrix. We therefore know
both the upper and lower bounds of the stiffness matrix of the composite
material. The limits within which the behaviour of the composite must lie

are therefore given by the two equations

= goe (20)

Q

and
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Due to the conditions of stress and strain to which Hashin and Rosen
assume their element to be subjected, these two bounds to the behaviour
of the composite only coincide for a uniaxially reinforced composite.

Laplace transformation solution for the stress-strain relationship of a

e e o s e e (e b e o S0 ) e e e o 0 By o v o s o e ot

Biot (195h) has proved for the general anisotropic case that any
viscoelastic problem can be associated with the corresponding problem
where all the components are elastic.

Williame (1964) in his review on the structural analysis of viscoelastic
materials, discusses this correspondence rule and the techniques used in
its application. The method depends on transforming the equilibrium,
compatibility, and boundary conditions with respect to time and thus
obtaining a set of associated equations in the transform plane in terms of
the transformed variable, p. Having solved these associated equations,
the final step involves the inversion of the transformed solution back to
real time.

Before obtaining this solution it is necessary to define the time-
dependent behaviour of the matrix material in general terms. Dootson (1968)
has discussed the general accuracy of two different methods of describing
the creep compliance of a viscoelastic material. The first of these is
of a simple power law relationship with time of the type suggested by
Findley (1962)

e () = (a+bt").0_ (21)

This is often a good approximation but it is limited to a small range of
shapes of creep curve. A more complicated approximation is that obtained
by the use of a discrete spectrum for retardation times:

€m(t) =-{s0 + zil Si(l-e-t/yii} o (22)

i=1

This approximation is capable of fitting a large range of creep curves to

a high degree of accuracy and as it is a more general method it will be used
here. In order to complete the description of the time-dependence of the
isotropic matrix it is necessary to define the Poisson's ratio. Turner
(1966) has suggested that the assumption that the Bulk modulus of the material
remaine constant often provides an acceptable approximation to the Poisson's
ratio, and this approximation will be used here.

Equation (20) describes the upper and lower bounds of the behaviour of
the elastic composite and so to obtain the solution for the viscoelastic
composite we must replace all time-dependent variables by their Carson
transforms. This gives the general relationship as
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3(p) = p.L(p) . £(p) (23)

]

- . . . A
where @(p) is known in terms of the transformed modulus, Em(p), and the
FIA - . .
transformed Poisson's ratlo,vm(p), of the matrix material. These are

glven by

n = |
» 5 (p) = {So O <1ip71>} o

i=1

and

) =21 -8 ) (25)

If we wish to calculate the strain response to a given stress input we

must first invert the matrix of the transformed stiffnesses and then take

the inverse transform of the resulting expression. To invert the transform
exactly requires either the use of transform tables or of a formal inversion
using

1 [a t _
£(t) = 53 fﬁ(p).ep -ap (26)

both of which are liable to be difficult in general.

Let us consider how we may invert the transform numerically for the
particular cage of the creep of the composite vhere the stress is applied
as a step input. For this case equat on (23) can be written in the form

. 800) = () " | (27)

It has already been described how a series of exponential terms describes
the creep compliance of the matrix accurately, and it seems reasonable %o
agsume that the same form of approximation can be used to describe the creep

behaviour of the composite. Thus we assume that
€(t) =8'(t) . g (28)
where
‘ 1 % 1 -t/yi.}
= qQ
Se _{so % Z 5{(1-e ), (29)
i=1 qr

describes the creep behaviour of the composite. Transforming this to the p
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plane we obtain

p £(p) = p-ﬁi(p) - g (30)

gélr = {S; + 281' <1+:1L371>} . (31)

Using either the collocation method suggested by Schapery (1962) or a
linear regression technique we can calculate the values of (S ) that

where

give the best fit of @' to the elements of the inverted matrlx of transformed
stiffnesses. Coneequently we can substitute these values of S into equations

(28) and (29) to give us the creeep behaviour of the composite.

In order to ascertain the merits of the elemental method for describing
the time=-dependence of fibre reinforced materials it is necessary to compare
the resultes obtained from it with those obtained by some other method. Here
the comparison will be made with the simplified fibre method, originally
suggested by Cox (1952) and Arridge (1963) for the elastic case and extended
to the time dependent case by Dootson (1968).

So that these methods can be compared it was necessary to write a
computer program capable of using the method described in this note. The
language in which the program was written is Algol and the program has been
developed and run on the Cranfield Computing Centre's ICT 1905 computer.
The flow diagram of the program showing the order of the steps used in the
calculation of the bounds to the compliance is chown in Fig. 3.

The most direct comparison between the two methods can be obtained by
considering the angular variation of compliance for a unidirectionally
reinforced composite. As for this particular case there is both stress and
strain compatibility between the elements the upper and lower bounds to the
solution coincide. In Fig. 1 the angular variation of the compliance for an
isophthalic polyester resin reinforced unidirectionally by 'E' glass having
a volume fraction of 0.24, is shown as predicted by the two methods.

Parallel to the direction of the fibres it can be seen that the two models
yield the same result, both for the initial compliance and the time-dependent
compliance which is represented here by the 1,000 min. curve. As the angle
between the line of action of the applied stress and the fibre axis increases,
the elemental model gives rise to a stiffer composite than does the simplified
fibre model. This ie due to the simplified fibre model assuming that the
fibres only have stiffness along their axes while the elemental model assumes
them to be isotropic.

It is interesting to note that the compliance predicted by the simplified
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fibre model exceeds that of the unreinforced resin at angles greater than
36° from the fibre axis. This is due to the fact that the model
congiders the fibres to have no stiffness normal to their axes and
consequently to act as voids in this direction. The elemental model, as
it allows fibre contribution normal to the fibre axis, isstiffer than the
unreinforced resin.

Both models predict that the compliance is maximum at about 60° from
the fibre axis. This is due to the stiffening effect of the Poisson's
ratio of the fibres normal to their axis. For the fibres to be able to
gstiffen the composite in this way they must be capable of taking a com~
pressive load. It is likely that in practice the fibres may tend to
buckle under compressive loads even though they are embedded in a cone
gtraining medium and that this stiffening effect at 90° may be less
noticeable.

The second set of calculations that have been made using the elemental
model is for the case of a random distribution of fibres in the plane of
the composite. This is to show the difference between the bounds predicted,
assuming either stress or strain compatibility, when the fibres are not all
parallel. The upper and lower bounds predicted by the elemental method
for an isophthalic polyester resin reinforced with randomly orientated 'E’
glass fibres are shown in Fig. 2. For this particular case the bounds
differ by about 30% for low values of time and 50% for high velues of time.
These bounds are compared with the simplified fibre prediction which is
equivalent to a lower bound of the compliance.

In conclusion to this comparison between the two methods it should be
noted that without any experimental results to compare these predictions with,
no abesolute value can be placed on the merits of either method. The
elemental model used in this note seems the more realistic and the Laplace
transform method of solution is certainly superior to the Integral Equation
Techniques used previously. To improve the model suggested here it would
appear that it is necessary to decrease the distance apart of the bounds
for the non-parallel fibre case by improving the stress and strain
compatibility.
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Figre 1.  Angulor wariation of complionce for a unidirectionally

reinforced Figure 2. Tensile creep curves predicted for a randomly reinforced
polyester resin. vg=0-24 polyester resin. vs = 0:215.
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¢ INPUT i

slo:n] ) describes time dependence i
) cl1:n] of matrix (egn. 22) 3
§ A1,A2,B1,B2 describe fibre orientation (egn. 16) f
' VF,VM volume fractions of phases |
i EF,NUF Young' s modulus and Poisson's ratio of fibres |,
e oMM B Instantaneoug Poisson's ratio of matrix i

eqns. 24 and 25!
L N

‘ -multlplled Laplace Trancforms of Young's modulus and P01sson ratio
; of the maurlx

0 o =
eqne. 1,2,3,4,5]

; P-multipllcd Laplace Trancform of the °t1ffness matrlx of a comp051te f
element _— R 5
goeqn. 17 eqn. 19 %-(inversion)
‘ ‘ - ve
i Upfcr bo“nd of P-multlplled ?-multiplied Laplace Transform 3
3 Laplace Transform of the iof the compliance matrix of a i
{ stiffness matrix of the i composite element ,
i_com P_?S.lt - R D .
I .
(inversion)i eqn 18 jf

i P~mult1plled Laplace Trancform i )P-multlplled Laplace Traanorm of tne
i of the compliance matrix of the | .compliance matrix of the composite g
P compos;te for Upper bound vtlffnecé ‘for Lower bound stiffness {

i
i

B S ¥

" Linear regression to f£ind the best fit of equation (31) to each of the
elements of the p-multiplied Laplace Transform of the compliance matrix of
_the compogite
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2 OUTPUT S[O N,_.6 1:6] deccr1be= the tlme-deyendence of the compllance
! matrix for the upper and lower bounds of the stiffness of the
f composite
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