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Abstract

Data analysis is a rising �eld of interest for computer science research due to the
growing amount of information that is digitally available. This increase in data has
as direct consequence that any analysis is signi�cantly complex. By using structured
representations for the data sets, like graphs, the analysis becomes feasible, but is still
time-consuming. In this project, the focus is on the reduction of the computational
time for data analysis, with the introduction of accelerators. Accelerators are specialized
hardware components that assist the general processing unit in performing (parts of)
the task at hand. In particular, we focus on the use of General Purpose Graphical
Processing Units (GPGPU) to help speedup the analysis. GPUs are speci�cally designed
for representing and manipulating graphical data which invoke the processing of large
chunks of data, GPUs are designed with large numbers of concurrent processing units
and thus have a high potential of improving performance.

In this project, we show the impact of using GPGPUs for both simple and more
complex analysis, varying from small to large data sets, with the use of a programming
model called OpenCL. We compare the performance of using accelerators against the
traditional CPU-based implementation. Due to the inter-platform portability of the
OpenCL model, such comparison can be performed without having to alter the algo-
rithm.

The use of accelerators is expected to become bene�cial for analysis that require large
computational power. For example, search algorithms (that require little to no compu-
tation) are not expected to pro�t from accelerators, while the more complex, centrality
analysis is expected to have signi�cantly more bene�t from accelerators. Our results
clearly shows this shift of performance improvement when algorithms further utilize the
potential of accelerators, because the analysis grows in size and/ or complexity. We
conclude that the use of accelerators in graph processing is promising, despite the large
variation in performance improvement and its strong dependency on data, algorithm
and hardware.
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Chapter 1

Introduction

Many real systems and structures in our lives can be regarded as complex networks.
For example, decision making can be mapped onto a network of choices, where every
choice leads to a set of follow-up choices, eventually leading to a decision. Our social
environments can also be mapped on a network of connections of friends, friends of
friends and so on. With the digitalization of many systems (like social life is digitalized
in social media), the �eld of data analysis experienced a signi�cant growth in interest.
Because of the large size and data dependencies, a substantial level of complexity is
invoked in the analysis, making structured data representations a nontrivial step towards
feasible data analysis. Graphs are an example of a structured data representation that
is often used for its �exibility and abstraction over complexity. A graph representation
consists of a set of actors in the network, and a set of relations between these actors. For
example, in social networks the set of actors is the population and the relations can vary
from friendship, work-relation, to a common interest or shared place of residence. Such a
data structure eases the complexity of an analysis, still the increasing size of the available
data collections require extensive computations times for any type of analysis. For
example, �nding the most important person in a social network has a ω(n3) bottleneck
(where n is the number of persons in the network), when using a traditional single-
core processor. [14] Increasing the size of the network will increase the response time
signi�cantly. Thus, sequential approaches to data analysis are not feasible performance
wise.

The introduction of parallel systems helped in reducing the time-complexity of this
type of data analysis signi�cantly. Instead of having a single large and complex processor
to perform the task, parallel systems use multiple smaller processors, that work together
in solving the task at hand. In this way, performance improves and power consumption is
more controllable (processors that are no longer needed can be placed in stand-by to save
power). This increased performance comes at the cost of complexity and scalability: the
data and the operations often have dependencies that require communication between
the processors to exchange information. By introduction of redundancy (i.e. additional
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operations), the dependencies can be reduced, consequently increasing the complexity.
In other words, parallel systems will improve performance of an algorithm, but this
improvement is typically not linear with the increase in the number of processors (unless
the data and the operations are both completely independent).

In the �eld of parallel systems, a growing trend is using accelerators � specialized
hardware components that assist the general processing unit in performing (parts of) the
task at hand � for general purpose scienti�c computing. An accelerator is a device with
a high level of parallelism: it, typically, has a large number of simple processors that
can be scheduled to work together on a single task. A frequently used accelerator is a
Graphical Processing Unit (GPU). A GPU has a large amount of processing units, that
are designed to work concurrently on the processing of large amounts of data. GPUs are,
traditionally, designed solely for representing and manipulating graphical data: many
graphical computations consists of a large number of simple operations, not requiring
sophisticated processing units to perform the task at hand. Recent GPU designs show
a large improvement in the capacity of the processing units, making them suitable for
performing scienti�c programming as well. Due to the �ne-grained level of parallelism
in GPUs, they show great potential in improving performance of scienti�c computing
workloads.

This trend of using accelerators also starts to appear in performing graph analysis
(i.e. data analysis, with the data represented as graphs). Because graphs � data sets that
can be represented as relationship networks � tend to be very irregular in structure, the
performance di�ers from that of scienti�c computing applications, which are generally
regular and computation-driven. Therefore, a parallel system that works well for general
purpose scienti�c computing, does not necessarily work well for graph analysis. In this
project we focus on the use of GPUs to accelerate graph analysis, and prove by example
the positive impact these accelerators have on graph analysis, when compared with
sequential and traditional parallel systems.

1.1 Motivation

With the rapidly increasing availability and size of knowledge bases (an information
repository for data and relations of that data to other data), we expect the need for
graph analysis to show a growth at least linear to this increase. In the same time,
the graph representing the knowledge base explodes in time and complexity, making
each graph analysis very time consuming. This further motivates the need for more
parallel computing. As accelerators become vitally important in the �eld of parallel
computing, either as stand-alone solution or as part of a heterogeneous cluster of parallel
systems, it is essential to understand how these two opportunities � large scale complex
graph analysis and increasingly powerful accelerators � can be made to successfully work
together.
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From the range of possible accelerators, we choose to use (general purpose) GPUs,
for their �ne-grained parallel structure and relatively high performance of the individual
processors. Furthermore, GPUs are commercially available, and are easily integrated
in an existing system. For the implementation of accelerated graph analysis, we use
a general programming model OpenCL. This model allows the use of various systems,
without the need to alter the design. Thus, OpenCL allows us to have a comparison
between di�erent parallel systems (multi-CPU and accelerated). This thesis only limits
to GPU accelerators, since we believe that many other accelerators require additional
research before they can be used for general purpose scienti�c computing. For exam-
ple, Altera one of the big vendors of FPGAs, only recently (August 2012) published a
newsletter claiming to successfully map programs from the OpenCL language onto its
FPGAs, allowing these FPGAs to be used as accelerators with OpenCL [16].

1.2 Research Questions

With large-scale graphs (i.e. large data sets), any analysis will have the problem of
consuming large amounts of time to �nish. Parallel computing helps in reducing this
execution time, making the graph analysis more feasible. In parallel computing, the
traditional approach is to use an arbitrary number of complex general purpose CPUs
and send each of these a big chunk of the problem. Recent trends show a more hetero-
geneous approach for parallel systems, where various types of processors collaborate on
the task at hand. The problem with using heterogeneous systems, is exactly the part
where the processors di�er from the 'traditional' CPUs (i.e. they di�er in computa-
tional complexity and power, making them perform at di�erent speeds). In this thesis,
we study the behavior of heterogeneous systems that use graphical cards to accelerate
parallel computing for graph analysis and try to get a better insight on the impacts
these accelerators have on performance.

By intuition, the introduction of more parallelism is better for performance (i.e. the
sequences of work are reduced, which should lead to less time to execute). However,
the improvements rarely follow a linear behavior due to dependencies of both data and
computations, which are application and/ or algorithm dependent. Not just the depen-
dencies prevent more parallelism to be e�ective, but also the architecture of the parallel
system has a major impact. For example, shared memory can help improving perfor-
mance, if the data in the memory can be used by all the processes, but can also decrease
performance, if all the processes want di�erent data to be placed in the shared memory.
In this thesis, we address the problem of data dependency and data accesses from the
perspective of the in�uence of graph representation on performance. In other words:
how can we change the graph representation such that the performance improves?
Furthermore, since the data dependencies and access patterns in�uence the performance,
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the data itself has a major impact on the performance. Each graph (i.e., data set) has
certain properties with respect to the structure of the relations between nodes (e.g.,
the number of relations each nodes has, or the average number of relations). There-
fore, matching graph properties with the performance of the graph analysis on a speci�c
parallel system is highly desirable. But can we really predict the performance of graph
analysis based on graph density and structure?

To summarize, this thesis focuses on the following research questions:

• What is the impact on performance when accelerating graph analysis using graph-
ical processing units (GPUs)?

• Do graph representations impact the performance of graph analysis?

• Can we predict the performance gain of graph analysis based on graph density and
structure?

1.3 Approach

This thesis focuses entirely on the performance of (accelerated) graph analysis. We use
three levels of complexity to examine the performance of three di�erent parallel systems:
one multi-core CPU and two GPU accelerated systems. Our three applications represent
three di�erent levels of complexity. We start with a fairly simple graph analysis that
constructs a search tree from the graph. Next, we increase the complexity by conducting
a large number of searches on the same graph, each resulting in an individual search
tree. Thus, we reuse our �rst algorithm, and increase the workload complexity. Finally,
we introduce additional reasoning to each individual search: the search tree is used to
retrieve statistical information on the centrality of nodes.

Our approach is intended to understand how the di�erent complexity levels impact
performance and, more speci�c, how are the GPU accelerated platforms reacting on
these changes. Therefore, our studies do not focus on peak performance (i.e. we do
not search for the absolute best achievable execution time). Instead, by reusing the
algorithms in more complex settings, we look for patterns in the performance. We use
a range of a few thousand to a few million nodes (actors or information nodes in the
network) to provide a better overview of the behavior of the various systems. With
the use of a programming model called OpenCL, we compare the performance of multi-
core CPUs against the use of accelerators. Due to the inter-platform portability of the
OpenCL model we can do this without altering the algorithm.

For the implementation, we are not looking for the maximum achievable perfor-
mance, but aim at a fair comparison between the various systems (accelerated and
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non-accelerated). Note that the di�erent systems have completely di�erent architec-
tures, making it impossible to have a completely fair comparison (i.e. each architecture
will most likely react slightly di�erent on a speci�c sequence of operations). Although
OpenCL provides numerous of optimization techniques for speci�c systems, we choose
to use only those techniques, which will lead to a fair comparison.

To summarize: in this thesis, attempts are made to compare three di�erent parallel
systems on their performance on graph analysis. Both algorithm complexity and data
set complexity (i.e., graph size, density, and other properties) are taken into account.
E�ort is made to keep the implementations on the di�erent machines similar, at the cost
of achieving peak performance.

1.4 Thesis Structure

As this thesis intends to study the suitability of graph analysis on accelerated systems
and to compare their performance against traditional parallel systems, knowledge of
graph analysis and the implementation architecture is required. Chapter 2 outlines a
brief introduction to graph analysis, presents a preliminary reasoning on the expected
behavior, and describes the important aspects of the OpenCL model for programming
heterogeneous systems. In Chapter 3, prior research is listed on the topics related to
our study. In the list, we brie�y address representing work and how it di�ers from
or in�uences our work. In Chapter 4, a �rst graph analysis application is presented,
with various experiments we conducted to evaluate our design choices and their impacts
on performance. A more complex and time consuming graph analysis is described in
Chapter 5. This chapter addresses the power of accelerators and its limitations by using
examples of designs that are not feasible because of insu�cient resources. These bound-
aries are analyzed and visualized in the experimental section of the chapter. Chapter
6 presents a more exhaustive graph analysis, on which a similar boundary analysis is
applied. Each chapter contains a small discussion on the measured di�erences in per-
formance of the systems. These discussions are further extended in Chapter 7, where
we analyze in more depth the behavior of the di�erent systems as the complexity of the
algorithms increases. Chapter 8 provides our conclusions, the main limitations we found
in this study, and promising directions for future research.
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Chapter 2

Background

2.1 Large-scale Graphs

For interpreting and processing large amounts of data, a clear representation is de-
sired. Graphs are such structures, widely used for representing interrelated data in
communication networks, computational biology, circuit modeling, social networks and
transportation networks. A graph consists of collections of two distinctive elements: (i)
vertices, holders of the actual information in the system, and (ii) edges, relationship indi-
cators between pairs of vertices. The systematic approach of distinguishing information
and relation allows graphs to be very �exible to changes in the data.

Since a graph has no prede�ned structure, in the sense that it consists of an arbitrary
number of vertices that are connected using an arbitrary number of edges, graphs are
categorized based on the connectivity of the di�erent vertices. The speci�cation of a
graph does no have any notion on whether each vertex should have an (in)direct connec-
tion to all other vertices, hence a �rst distinction is between connected and unconnected
graphs. An unconnected graph is a collection of various connected graphs, where con-
nected refers to each vertex having an (in)direct connection to all other vertices (See

(a) Unconnected graph (b) Connected undirected graph (c) Connected directed graph

Figure 2.1: Common characterizations of graphs.
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Figure 2.1a and 2.1b, respectively). Another common categorization is the direction of
edges: if a relation exists between A and B, does this imply that there is the same rela-
tion between B and A? For example, in a road network with an edge A→ B, cars can
travel from A to B and will collide when traveling from B to A (over this road), unless
a road is always considered to have lanes for both directions (i.e. the edge is directed
or undirected, respectively). On top of the basic categories, many types of graphs are
de�ned by their structure. Sparse graphs, dense graphs, line structured graphs, mesh
structured graphs are all categories based on statistical information from the graph (e.g.
the ratio of vertex connections and the regularity of the structure). Such groups can be
useful for improving the behavior of algorithms, at the expense of generality. For our
research, we will only consider the connectivity and density of graphs.

2.1.1 Representation

A graph can represent in�nite complex structures in data sets, by placing more informa-
tion inside a single edge or vertex. One often used extension of complexity to a graph is
assigning an intensity or weight to an edge. For example in road networks, a weight can
indicate the maximum speed, or maximum throughput in cars per second. For simplic-
ity, in this thesis, we assume the vertices to be single identi�ers and the edges to only
contain a source and a target vertex identi�er (and have no weights).

To store data in a graph, a large range of representations can be used. The choice for
a representation strongly depends on the use of the data (e.g., if the data is very dynamic,
a complex representation would be impractical). The big variety of representations, can
be split into two main groups: vertex-based and edge-based.

Vertex-based representation

For the implementation of graph processing algorithms, a vertex-based representation is
often preferred. A vertex-based representation has to keep a list of all the information
related to a vertex clustered, so the algorithms (that are often vertex oriented) have
quick access to all the desired information. An example of a vertex-based representation
is an adjacency-list, a list of vertices and the collection of neighboring vertices to that
vertex (e.g. A{B,C}, B{C}, means edges A → B, A → C and B → C exist in the
network). In this representation, all edges leaving a vertex are directly accessible, hence
the number of (accessible) neighbors is easily calculated. However to store undirected
graphs in this representation, each edge is duplicated (since searching the adjacency list
based on a target node will become signi�cantly complex). The overhead of duplicating
edges is relatively small, since this representation reduces the set of edges from the ver-
tex, to the source vertex with a collection of target vertices (see Figure 2.2b). Various
formats are based on the principle ideas of adjacency lists. For example, the adjacency
array is basically an adjacency list mapped on to a 'computer-friendly' structure. Mean-
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A→ B
A→ C
A→ D
B → C
D → B
D → C

(a)

A {B,C,D}
B {C}
C {}
D {B,C}

(b)

A 0 3
B 3 1
C 4 0
D 4 2

B
C
D
C
B
C

(c)

Figure 2.2: Vertex-based graph representations: (a) the list of edges between vertices,
(b) an adjacency list representation, and (c) an adjacency array representation.

ing, the adjacency array removes the dynamic sizes of a vertex description � the vertex
information plus adjacent vertices � which makes mapping to computer memory easier.
The adjacency array uses a vector of vertices and a separate vector of adjacent vertices
(i.e. a simpli�ed edge list ordered by the source vertex that contains only the target
vertices). The vector of vertices has a reference for each vertex that points to its �rst
adjacent vertex (in the adjacency vector) and it keeps a counter of the number of con-
nections. (This representation is used in Rodinia [45], a reference implementation used
in the evaluation of our work.)

Vertex-based representations have clear structures that can help increase the per-
formance of an algorithm. However, adjustments to the graph structure become more
complex, as all a�ected adjacency lists have to be updated. For example, the adjacency
array requires both arrays to be entirely changed whenever additional edges connect the
�rst vertex to any other vertex.

Edge-based representation

A di�erent approach of representing a graph focuses on the connections in the graph.
Typically, such edge-based graphs contain only the list of edges in the graph, as shown
in Figure 2.2a. This list of edges can be arranged according to comparative edge in-
formation, or it can contain the edges in no speci�c ordering. While this approach (in
particular the unordered list) reveals little of the actual structure of the graph, it is very
tolerant to changes to this structure, which makes it suitable for dynamic graphs.

In edge-based graphs the main focus is on the relationship between nodes in the
graph, i.e. information is stored on connections rather than on the vertices, hence little
information is kept on actual vertices. The problem of not having information on the
vertices can be solved by using both an edge list and a vertex list to represent the graph.
Such hybrid solutions are used when the graph is rich in information on individual edges
and vertices. For example, the Game Trace Archive [53] uses an edge list to represent
an encounter in a gaming environment. Such encounters can mean various things (e.g.
the players are rivals in a game, they formed a team, they had a chat conversation,
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etc.) and this information is important for the context of a graph. Also such encounters
can have a duration or a winner. All this information is stored in the representation of
an edge. Now, for instance, if the vertices represent players, a lot of information can
also be kept to store players. The Game Trace Archive uses a separate list to store the
information of vertices and for the edges. From the algorithmic perspective this hybrid
solution can be approached as an edge-based graph, since all the relations in the graph
are stored edge-based. However, a graph can also be created without considering the
edge list. For example, a graph can be constructed before any encounters occurred (i.e.
no edges are yet available).
In our research, we use graphs that are represented as edge lists.

2.1.2 Data set

To provide a good overview of the performance of our algorithms, we use multiple
data sets from di�erent graphs, varying in size, structure, connectivity, and density. In
this section we discuss the di�erences between these data sets and provide behavioral
expectations of the graphs. We use graphs from the SNAP repository [32], the Rodinia
benchmark [45] data sets, and statistical modeled graphs (stats). The SNAP repository
provides subsets of real-world data sets from environments like social networks, web
graphs, communication networks, and road networks. These data sets are very irregular
in structure and are (in all our cases) unconnected graphs. The Rodinia data sets
provide synthetic graphs, generated using random number generators. These graphs
all satisfy a certain probabilistic model, that forces an average number of neighbors
for the vertices in the graph, hence are regularly structured, and are connected. The
stats graphs are graphs that, based on a model, form a theoretical upper or lower bound
performance metric. All stats data sets are connected and have a systematical structure.
In our experiments we use two statistical data sets called chain and star. These graphs
represent two speci�c classes of graph structures that have the theoretical lower and
upper bounds performance in graph traversals, respectively. The chain is a path that
contains all the vertices of the graph and has no cycles in the graph. In other words, all
vertices in the chain can be placed on a single uninterrupted line, as shown in Figure
2.3a. The star data set has an opposite structure, here all vertices have a connection
to a single 'center' vertex and have no connections to other vertices (shown in Figure
2.3b).

Table 2.1 lists the graphs we use, together with some characteristic values: the
number of vertices, number of edges, the average connectivity of vertices in the graph,
a maximum connectivity in the graph and the diameter of the graph. The graphs vary
from thousands to millions of vertices and from tens of thousands to millions of edges.
The average connectivity is calculated by dividing doubled the number of edges (i.e.
edges to a vertex and from a vertex both count as connected to that vertex) by the
number of vertices. Based on the di�erences in the average and maximum connectivity,
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(a) Chain graph (b) Star graph (c) Cluster of stars

Figure 2.3: An example visualization of statistics graphs: chain and star. And a more
complex graph that is more likely to occur in a network: nodes are clustered in a star-like
structure.

Graph name Name Vertices Edges AVG MAX Repository
Wikipedia Talk Network WT 2,394,385 5,021,410 4.19 100,032 SNAP
California Road Network CR 1,965,206 5,533,214 5.63 24 SNAP
Graph 1M 1M 1,000,000 5,999,970 12.00 36 Rodinia
Stanford Web Graph SW 281,903 2,312,497 16.41 38,626 SNAP
EU Email Communication EU 265,214 420,045 3.17 7,636 SNAP
Chain 100K CH 100,000 99,999 2.00 2 stats
Star 100K ST 100,000 99,999 2.00 99,999 stats
Epinions Social Network ES 75,879 508,837 13.41 3,079 SNAP
Graph 64K 64K 65,536 393,216 12.00 48 Rodinia
Wikipedia Vote Network WV 7,115 103,689 29.15 1,167 SNAP
Graph 4K 4K 4,096 24,576 12.00 38 Rodinia

Table 2.1: Collection of data sets used in the experimentation. Where the data sets
from the SNAP repository are real-world graphs, all others are synthetic graphs. With
AVG,MAX be the average and maximum number of connections going to/ coming from
a vertex, respectively.

it can be veri�ed that the structure of real-world graphs is more irregular than that of
synthetic graphs (varying from a few connections to a few thousand connections), with
the exception of the California road network (expected since junctions in a road network
can only physically support a limited number of connecting roads).

Although the average and maximum connectivity of vertices give a rough overview
of the regularity of a graph, they do not provide any insight on the expected behavior
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Figure 2.4: Histograms of the vertex connectivity in the di�erent data sets. Note that
the connectivity is de�ned as the sum of incoming edges and outgoing edges for each
individual vertex.



Large-scale Graphs 13

of various algorithms. In order to provide a better overview of the structure in the
di�erent data sets, Figure 2.4 shows histograms with the probabilistic values of the
di�erent connectivity counts. The histograms only show the range between 0 and 50
connections, hence the probability shown at 50 connection is actually the probability
of having 50 or more connections. In Figure 2.4 some interesting characteristics can be
observed. For example, the graphs from Rodinia have similar connectivity models and
therefore are expected to have similar performance behavior. Note that the histograms of
the Rodinia graphs only have values for even number of connections (i.e. the graphs are
undirected). The graphs Wikipedia Talk and EU Email Communication have a similar
histogram that indicate most vertices only have a few connections and only very few
vertices have a high degree of connections. In other words, these graphs are clusters of
star-like structures (see Figure 2.3c). The graphs Epinions Social Network andWikipedia
Vote Network also contain a large number of vertices with a few connections. However,
there are more densely connected vertices, meaning that the clusters of vertices are
smaller, and there are more connections between clusters.

Based on the observations from Figure 2.4 and the information from Table 2.1,
patterns in the performance of di�erent algorithms are expected to appear between
the Rodinia data sets, between the WT and EU data sets, and between the ES and
WV. Because the star structure has a theoretical upper bounded performance for graph
traversals (all the algorithms in our research are based on graph traversals) and graphs
WT and EU have larger clusters of star-like structures, we expect a better relative
performance compared with graphs ES and WV (i.e. an increase is expected when
performance is made relative to size of the graph). Similar to the Rodinia graphs, the
CR data set is also undirected, but (in contrast to the Rodinia graphs) this graph has
a small window of vertex connectivity variation (i.e. over 99% of the vertices have
between 2 and 8 connections). A smaller connectivity rate means the fan out per vertex
is smaller, resulting in a dispersed set of vertices, hence a larger traveling time between
the ends of the graph. In other words, the relative performance of traversal algorithms
for the CR data set should be worse than that of the Rodinia data sets. For the SW
data set the histogram shows a large variety of connection counts per vertex, where 75%
of the vertices have between 1 and 12 connections and little over 10% of the vertices
have more than 30 connections. These statistics suggest the graph to be dense, making
the traversal fast and the expected performance better than that of the Rodinia data
sets.

For completeness, the Star 100K and Chain 100K histograms appear identical, but
actually they represent the best and worst case expected performance. The histogram
of the ST data set show a peak at 1 connection per vertex, which is the expected best
case performance, where the histogram of CH show a peak at 2 connections per vertex,
this is the expected worst case performance.
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2.2 Programming Models

With the size of the data set increasing, the analysis complexity increases, leading to an
explosion of the execution time. In particular, if the data sets tend to change rapidly
in structure and size, a serious increase in execution time can be catastrophic for the
analyst (i.e. before the analysis is �nished the results are out-dated). By introducing
parallel programming we try to reduce the execution time to make an analysis applicable
to more dynamic and larger data sets.

To support parallel execution of the di�erent parts of an analysis, we require a model
to de�ne the levels of concurrency, the communication used between concurrent compo-
nents, and the dependencies between parts of the analysis. Manually applying all these
design settings becomes extremely complex as the level of concurrency increases. Thus,
we use a high-level programming model (i.e. a model with a high level of abstraction) to
ease the design. The level of abstraction helps in writing and parallelizing algorithms,
but it also introduces limitations: high-level programming models are designed to map
speci�c instructions onto a detailed con�guration in concurrent systems. As di�erent
systems require di�erent con�gurations, programming models typically focus on a lim-
ited set of concurrent systems. Common used high-level programming languages are
listed in [3]. For example, OpenMP and Pthread, both designed on top of the sequential
C language, are used to facilitate the programming of shared memory machines (i.e.,
multi-core or multi-CPU). When we use accelerators such as GPUs (Graphical process-
ing Units), CUDA [48] or CTM [21] are the languages of choice. However, these models
are not only limited to GPUs, but also to a speci�c manufacturer: NVIDIA Corporation
and ATI Technologies Inc., respectively. The OpenCL programming model [43], on the
other hand, provides the option of abstracting an implementation over a larger range of
hardware platforms. That is, the model allows the algorithms to be executed on CPUs
or accelerators without having to alter the implementation.

In our research, we are interested in the performance impact of using accelerators
for graph analysis. And since the OpenCL model allows us to have the same implemen-
tation for di�erent hardware environments (at least at the abstraction level on which
we implement), OpenCL provides the means for examining the impact of accelerators.
In this section, we discuss the structure of the OpenCL model, the mapping of levels of
concurrency to hardware and the memory model used.

2.2.1 OpenCL

OpenCL (Open Computing Language) is an open (royalty-free) standard for parallel
programming of heterogeneous systems, managed by the Khronos Group1. OpenCL

1The Khronos Group is known for the standardization of the graphical framework called OpenGL
and consists of members from companies like Altera, AMD, Apple, ARM, IBM, Intel, NVIDIA, Texas
Instruments, Xilinx, which are all well-known processor vendors and/or multi-core software vendors.
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supports a wide range of applications, ranging from embedded and consumer software
to HPC solutions, through a low-level, high-performance, portable abstraction. By
creating an e�cient, programming interface with abstracted hardware designs, OpenCL
will form the foundation layer of a parallel computing ecosystem of platform-independent
tools, middleware and applications. [36]

OpenCL Architecture

The goal of the standardization is to ultimately be able to program any combination of
processors, such as CPU, GPU2, FPGA, DSP, CellBE, using a single model. Combining
this heterogeneous collection of processors into a single framework requires an architec-
ture that is generic enough to be applicable on the di�erent processors and at the same
time is speci�c enough to utilize the processors for good performance. OpenCL de�nes a
speci�c platform model, to which the used system is mapped. An important generaliza-
tion in the model is: there must always be a control processor and one or more compute
processors (host and OpenCL devices, respectively). The host, typically a single pro-
cessor, initiates execution and controls the distribution of tasks / instructions over the
OpenCL devices. As an example, if an OpenCL implementation is executed on a system
with multiple CPUs and a GPU, one CPU can be used a host and the remaining CPUs
as well as the GPU are included in performing the computations in parallel.

The platform model further divides the OpenCL devices into one or more com-
pute units, which are divided into one or more processing elements as shown in Figure
2.5a. This model shows great resemblance with the architecture of GPUs. The GPU
architecture speci�es a hierarchical structure of the device having multiple streaming
multiprocessors(SM), each with a set of scalar processors(SP), which are equivalent to
the OpenCL device, compute units and processing elements, respectively. Hence the
model is very e�ciently mapped to GPUs. However, processors with di�erent architec-
tures experience overhead from this �ne granularity of processing elements. For instance
CPUs can have multiple cores. To satisfy the �ne-grained parallelism of the OpenCL
model, the processing elements are emulated using time-shared software blocks (called
�bers) as seen in Figure 2.5b. These di�erences in the hardware architectures make
designers often choose for speci�c processors, even though a single implementation can
be used for heterogeneous systems. However, we are interested in the impacts, these
di�erences in hardware architectures have on the performance of applications.

Application Structure

OpenCL is an extended version of C to allow parallel programming of heterogeneous
architectures. In other words, an OpenCL application is written in the C language and

2With GPUs, we refer to General-Purpose GPUs that support use of OpenCL
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Figure 2.5: (a) Platform model of OpenCL, with one host, one or more compute devices,
each with one or more compute units, each with one or more processing elements. (b)
Terminology used for di�erent models: Platform model of OpenCL, GPU architecture,
CPU architecture, and application structure of OpenCL.

contains additional instructions for initialization of processing elements and commu-
nication to the OpenCL devices. From the perspective of the application, an OpenCL
environment consist of two parts: (i) a host program, that runs on the host and is required
for the orchestration of the algorithm execution, and (ii) kernels, the (sub)applications
scheduled by the host to run on a device. Note that multiple kernels can be scheduled
to run sequentially on a single device.

Applications written in OpenCL use an index space for the collection of available
processing elements and assigns kernels to a speci�c range of indices. Thus, an instance
of the kernel is assigned to each index. Such kernel instances are called work-items. The
index space also has a coarse decomposition into work-groups, where the work-items in
a given work-group execute concurrently on the processing elements of a single compute
unit (see Figure 2.5b for the mapping for platform terminology to that of the applica-
tion). These indices (at di�erent levels of granularity) are used by the host program to
invoke processing elements and by the work-items, for instance, for data selection in data
parallel programs (i.e. programs where the parallelism is realized by splitting the data
sets rather than splitting the instructions). Furthermore, the indices of work-items are
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Figure 2.6: The memory structures accessible by the kernel, as speci�ed in the OpenCL
model.

used as identi�ers, to provide the ability of communicating with other work-items. That
is, a work-group is the collection of work-items located on a single compute unit, thus
they are physically grouped together and by de�nition share resources and connections
(see Figure 2.5a). Di�erent work-groups can be located on di�erent compute units and
are assumed not to have any communication between them. In other words, work-items
within a work-group can be synchronized, but a synchronization of all the work-items
on a OpenCL device is not supported by default.

A single application consists of one or more kernels, each kernel is executed by one
or more work-items. For the execution of the kernels, a queue is used on which the host
program pushes the job of executing a kernel (with a speci�ed number of work-items)
and the jobs are scheduled to execute on the available work-items. This scheduling is
either in-order or out-of-order (i.e. the jobs are executed in the order of queuing them,
or they execute as soon as the required resources become available).

Memory Structure

In the range of OpenCL devices, many di�erent structures should be considered by
the OpenCL model. For the memory structure, a distinction is made based on the
access policies of the memory. Again the OpenCL model shows great resemblance with
the GPU architecture, which has memory components at each level of the hierarchical
platform model (i.e., GPU, SM and SP). The OpenCL memory model, as shown in
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Figure 2.6, includes four memory components: (i) global memory, (ii) constant memory,
(iii) local memory, and (iv) private memory. Global memory is by far the largest in size,
but also has the highest latency, while private memory is the smallest in size and has
the lowest latency.

A work-item has a certain amount of private memory: typically, a set of registers that
are visible only in a speci�c work-item. A work-item also has access to local memory, a
shared memory block that is accessible by all the work-items in the same work-group.
The global and constant memory is visible and accessible to all the work-items on the
device, with the di�erence that constant memory cannot be altered by the kernel and has
a smaller access time. Note that the physical locations of the memory types depend on
the platform, hence the assumed di�erences in latencies might not hold for all platforms.
For example, if the OpenCL device is a multi-core CPU, all four memory types will be
located in the main memory of the CPU and the access times will (in theory) be equal.
However, for generality reasons, the OpenCL model requires an explicit speci�cation of
the used memory types. Another important di�erence between the memory types, is
the accessibility of the memory by the host. The host can only read and write data to
the global and constant memories.

2.2.2 Using OpenCL

In our research, we employ OpenCL for the comparison of graph analysis on homoge-
neous systems � systems with multi-core CPUs � and heterogeneous systems � systems
using GPU accelerators and a CPU host. For the implementation of these algorithms,
we use a single type of kernel that follows a data parallel structure, that is, the paral-
lelism of the algorithm is exposed by concurrent data evaluation rather than by splitting
the work in di�erent tasks.

In Table 2.3 can be observed that the data sets have a signi�cant number of vertices
and edges. To place the initial edge-list data set on the memory of the OpenCL device,
we require at least two integer values (i.e. the source and destination identi�ers) for
each edge and, for a result, at least one integer value is required for each vertex. We
choose to place this large chunk of edge information on the global memory of the GPUs,
leaving the local memory and private memory available for storing intermediate values
of the algorithms.

To perform our experiments, we use a wide-area distributed system, called DAS-
4 [18]. A collaboration between a number of Dutch universities host the DAS-4 system.
The goal of DAS-4 is to provide a common computational infrastructure for researchers.
The DAS-4 system has support for various programming model, including OpenCL, and
it allows us to test di�erent systems (di�erent GPUs and multi-CPU systems).
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Figure 2.7: The total execution times of three data sets, each ran on three di�erent
parallel systems, with three di�erent algorithms. Note that for clarity the execution
times only show up to 25 seconds.

Execution time as metric

We use OpenCL for our research, because it allows the mapping of one algorithm onto
various parallel systems. One of the costs of having a parallel system is the part before
the actual execution, where the initial data must become available to each individual
processor. In OpenCL, the model speci�es use of a host and one or more devices, so the
information needs to be copied from the host to the devices. Also, the devices require
to be initialized/ reserved to ensure the device to be ready to execute the task at hand.

So, we divide the complete execution of an algorithm on a parallel system into
di�erent parts:

1. Reading the input, which refers to reading the data set that is stored in the system.
We consider this as an isolated part (i.e. a so called 'one-time overhead'), as it is
a constant part of the execution (i.e. it can be read once for execution of multiple
algorithms). We note, however, that this can become a serious bottleneck for
very large graphs. Despite this, optimizing this process is out of the scope of our
research.

2. OpenCL initialization, which includes a combination of the initialization of the
OpenCL framework, the preparation of the devices, copying the initial values to/
from the various devices, and releasing the reservation of the devices after the
execution is �nished.

3. Kernel execution time (or algorithm time), which is the actual execution of the
algorithm at hand. In Figure 2.7, the impact of the three di�erent parts on the
execution is shown for three sizes of data sets (the three sub-�gures) and three
di�erent algorithms. Note the di�erences in the reading and initialization, and
their relation to the algorithm (grouped per system). For clarity, the execution



20 Background

times in the �gure are limited to 25 seconds. Figure 2.7 shows that the overhead
of OpenCL and the reading of the input are large for simple algorithms, but less
important with respect to the overall performance for larger data sets and more
complex algorithms. Also note that there is a signi�cant di�erence for the device
initialization of the various systems (the initialization of the Intel Xeon takes
signi�cant less time that the GPUs, where the Tesla is slightly faster in initializing
than the GTX).

The total execution time is a relevant metric for the end-user, but it includes the large
OpenCL overhead; therefore, when we look to understand the impact of the accelerating
algorithms with a GPU, we will not look at the total time, but rather at the kernel time.
The kernel time is the actual time the algorithm requires to �nish, and it is easier to
analyze in isolation. This will be used along this thesis as our main performance metric.
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Chapter 3

Related Work

In this chapter, we discuss existing related work, starting with related research on graph
analysis, then work on parallel programming is addressed, with the extension of graph
analysis on parallel systems. We end the chapter with an overview of work on accelera-
tors (again extended with graph analysis on these systems).

Many studies use graph analysis to �nd patterns in data. In [30,35], the authors were
interested in �nding paths through various networks (i.e. mazes or electrical circuits,
respectively) and, in particular, in �nding the shortest paths. These studies are generic,
in the sense that they consider all connections to be equal (i.e. breadth �rst search,
BFS). In [2, 5, 13, 41, 50], the path �nding is more speci�c for a type of graph (i.e.
a graph in which connections are weighted), but they still �nd a path using a single
starting point (i.e. single-source shortest path, SSSP). This approach is also used for
image processing, where the image is represented as a graph of pixels and the graph
analysis forms decision models, used in an image segments recognition, e.g. [6, 20, 33].

Other studies speci�cally focus on social networks, and in particular on the in�u-
ences of individuals within these networks (BC) [7, 11, 14, 39]. Based on the position of
individuals in a social network, a centrality value is calculated and used as a hypotheti-
cal in�uence rate within a group. Which in turn is based on an extended version of the
path �nding (APSP), where all shortest paths in a network are considered to provide
routing information [12,23].

These studies on shortest paths (BFS and SSSP), all-pair shortest paths (APSP) and
centrality, prove there is a wide range of applications for graph analysis. Also, they rep-
resent di�erent gradations in time-complexity and algorithmic-complexity, while having
great resemblance (i.e. centrality is based on an all-pair shortest path operation, which
in turn is based on �nding shortest paths). In our research, we are interested in this
resemblance and we try to extrapolate a performance boundary for the more complex
analysis using that of the simplistic analysis. Speci�cally, we exploit the resemblance
of these algorithms by reusing the most simple analysis (BFS) in the construction of
more complex algorithms (APSP and BC). This 'iterative' approach of increasing the



22 Related Work

complexity of the analysis allows us to study the scalability of the system (hardware,
software and data) with regard to di�erent parameters.

As graph problems grow larger in scale and more ambitious in their complexity, they
easily outgrow the computation and memory capacities of single processors. Given the
success of parallel computing in many areas of scienti�c computing, parallel processing
appears to be necessary to solve the resource limitations of single processors. Unfor-
tunately, the algorithms, software, and hardware that have worked well for developing
mainstream parallel scienti�c applications (like the algorithms used in [9, 33, 52]) are
not necessarily e�ective for large-scale graph problems. Because graph problems have
some inherent characteristics (like data-driven computations, irregular structures, and
poor locality, listed in [4]), they are poorly matched to current computational problem-
solving approaches. Therefore, work a parallel graph processing stands out by its speci�c
approaches.

For example, in [51], an attempt is made to improve the throughput of graph searches
on parallel systems by data partitioning and message compression. They suggest a 2D
partitioning scheme, that increases throughput while maintaining the scalability of the
system, and applying this to a BFS. In [31], the authors propose to replace the queueing
of reached positions in the graphs (also in BFS) with a more e�cient parallel approach
called bags � a mechanism that manages splitting and merging of queued operations
such that they can operate in parallel. For a centrality algorithm, [25] describes a dif-
ferent technique to gain e�ciency in parallel systems: they replace the SSSP algorithm,
that is used to calculate the pair-dependencies for all pairs, with a BFS algorithm (as
suggested in [7]). But they track the successor nodes instead of the predecessor nodes �
to compute the centrality values, back-propagation is used for the accumulation of the
in�uential ratio on various paths �, which turns out to have a signi�cant in�uence on
performance. These algorithms and frameworks depend on an underlying programming
model. In [22], a comparison is made between two common used models for multi-cores,
that show the importance of understanding and tuning the programming model, based
on the available parallel system and application.

In recent years, the �eld of parallel computing is extended by an increasing interest
in the use of accelerators, due to their high performance and high power-e�ciency (i.e.
they consume relative little power with respect to their computational power). Until
recently, the capacity of GPUs was not considered su�cient for general purpose sci-
enti�c computing, but the rapidly growing technology of graphical cards changed this
view. Current research more often focuses on the use of GPUs (i.e. General-Purpose
GPUs) to accelerate general purpose scienti�c computing, e.g., [9,42,44,45]. In [42,44],
a comparison is made between the performance of multi-core CPU and GPU for vari-
ous algorithms, where the GPU shows promising performance for the larger data sets.
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The authors of [46], [29] and [24] push this comparison a step further by looking at
multi-CPU, GPU, CellBE, and FPGA (i.e. two additional hardware accelerators). Un-
fortunately, for the latter two accelerators only little research is conducted, hence pro-
gramming models and reference implementations are scarce, making the comparison
limited and di�cult to verify.

On top of the mentioned research on accelerated scienti�c computing, for a few
years, graph analysis is subjected to accelerators. In [34], an overview is sketched on the
challenges of adapting graph analysis to heterogeneous systems. In [19,49], comparisons
are made between graph analysis running on a single CPU (i.e. running sequentially) and
those accelerated with a GPU. For these comparisons, di�erent graph analysis algorithms
are used, for which the GPU shows signi�cant performance improvement. In [26, 47],
e�orts are made on adapting graph algorithms to the hardware structure of GPUs: the
instructions and the data are ordered such that they better �t the GPU architecture,
without any loss of correctness.

A large portion of the research on accelerated graph analysis, focuses on speci�c
cases where they aim at improving an algorithm for speci�c environment. However, for
our research, we are interested in a solution that gives a good estimate on the impact
of using accelerators, without limiting us to a single hardware platform (or single accel-
erator, for that matter).

With the increasing data sizes and computational complexity, parallel computing helps
in reducing the execution time, but brings along additional complexity in programming,
which leads to an urge for generic frameworks for assisting in the development of par-
allel (graph) algorithms. For example, Parallel Boost Graph Library (Parallel BGL,
formerly known as the Generic Graph Component Library [28]) is a library of parallel
graph algorithms and data structures. In the attempt of making a generic framework
for programming graph algorithms, many studies extend and improve this Parallel BGL
framework, e.g., [4, 17,37,38].

Another approach is to assist the programmer by introducing abstraction levels (i.e.,
use higher level programming models). A widely studied programming model is the
Bulk Synchronous Parallel model (BSP) [10,52]: a bridging model for parallel computa-
tion that uses a step-wise execution of algorithms, with a synchronization layer between
the di�erent steps. This model is specialized for graph processing in: CGMGraph [8],
Pregel [15], MEDUSA [54], and TOTEM [1]. CGMGraph, is a library of graph algo-
rithms designed in a message passing environment. CGMGraph divides the algorithms
in computation steps, and uses a synchronization layer between these steps to handle
message exchanges. This message passing is required because algorithms are performed
on distributed data, located on an arbitrary number of processors. Pregel uses a similar
message passing technique, but more e�ort is put in addressing fault tolerance: with
the introduction of checkpoints, a long running algorithm does not have to start from
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scratch in case of system failures (in a cluster). Also, the authors put more emphasis on
the fact that the distribution is not necessarily only data-driven, but can also be driven
from the computational perspective. From the approach of Pregel, the authors of [54]
designed a graph processing framework, called MEDUSA, that emphasizes the use of
one or more GPU accelerators. TOTEM is a slightly di�erent framework which allows
GPU accelerators to assist in the graph processing, rather than the graph processing
being completely preformed on GPUs (as is the case in MEDUSA).

In our research, we merely focus on the performance of accelerators in graph analysis.
For now, we use custom implementations of graph algorithms to compare the scalability
of the performance on more �ne-grained hardware and more complex algorithms. In
our research we encountered limitations to this approach, hence a logical next step for
our future research would be to add dedicated graph processing programming models
to build a more thorough comparison. For example, the MEDUSA or TOTEM models
show promising features for using multiple accelerators for a single graph analysis.
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Chapter 4

Breadth First Search

Graph analysis often requires the retrieval of characteristics of a provided graph (e.g.,
the density of the graph). By traversing through the graph in a structured manner,
algorithms are able to retrieve viable information with relative little e�ort, from the
point of view of the analyst.

Graph traversals are used in computer science for solving a big variety of problems.
Due to their systematic approach of visiting all vertices and performing computations
on each of them, a single algorithm could be used for a large set of di�erent applications.

Widely studied graph traversal algorithms are Breadth First Search [30,35] and Depth
First Search [40]. Possible uses of such algorithms include �nding the distance of a ver-
tex to any other vertex in the graph or generate the minimal spanning tree [41] from
the source graph. Characteristics as such could help the analyst in �nding an appro-
priate algorithm to further analyze the graph. However as graphs tend to grow large,
traversal algorithms become very time consuming, and are likely to outgrow computa-
tion and memory capacities of traditional processors [4]. In this chapter we present an
approach to implement a Breadth First Search, a parallel implementation programmed
using OpenCL, and a study on the impact of the Graphical Processing Unit (GPU) on
the BFS performance.

4.1 Sequential Breadth First Search

Studies on the Breadth First Search (BFS) started 50 years ago with the independent
discovery by Moore [35] and Lee [30], while studying the problem of �nding paths
through mazes, and routing wires on circuit boards, respectively.

The strength of the BFS lies in its simplicity, as it is one of the simplest algorithms for
searching a graph. The BFS explores a graph level by level. Given a graph G = (V,E),
where V is the collection of vertices and E is the collection of edges in the graph, there
is a source vertex s which forms the top level (level 0). Now BFS traverses all edges
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Figure 4.1: Breadth First Search traversal sequence, loop problem solved using vertex
coloring.

outgoing from vertex s and places the destination vertex in level 1 (i.e. Vlevel1 = {v ∈
V |es→v ∈ E}). Next it traverses all outgoing edges from each of the vertices at level 1,
to place the newly discovered vertices at the next level. The algorithm �nishes when no
new vertex is discovered. In a general sense breadth �rst search systematically explores
edges outgoing from vertices at level i and place the destination vertex in level i + 1,
given that the vertex has not yet been discovered in prior levels, resulting in a tree of all
the (in)directly connected vertices of s. Note that, the algorithm requires some coloring
to distinguish discovered vertices from undiscovered vertices to prevent in�nite loops as
illustrated in �gure 4.1.

Because of the continue need for characteristic analysis on graphs and the relative
straightforward nature of the BFS, a lot of e�ort has been put on enhancing this algo-
rithm. Prim's minimum-spanning-tree algorithm [41], Dijkstra's single-source shortest-
paths algorithm [37,50] and the Bellman-Ford algorithm [5,13] are widely known exam-
ples of algorithms with ideas similar to those in BFS. Many other studies apply changes
to the structure of the BFS in order to make the search dedicated to the �eld of inter-
est [20]. This wide range of research merely illustrates the adaptability of BFS. For the
sake of clarity, only the general BFS algorithm, as listed in Algorithm 1, is considered
here.

Edge-based Breadth First Search

Thus far the discussion has been focussed on how the BFS algorithm traverses the graph,
neglecting the fact that graphs can be represented in various ways. The majority of the
above mentioned research on BFS assumes the graphs to be represented in a vertex-
based adjacency list, since this is considered to be ideal with respect to algorithmic
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Algorithm 1 A general implementation of the Breadth First Search, graph G = (V,E).
Using a graph that is represented in an adjacency list. Where s is start vertex, N is
number of vertices, M is number of edges

1: function BFS_AdjacencyList(V , s)
2: Q← ∅
3: for j = 1→ N do

4: Vj ← UNV ISITED
5: end for

6: add(Q0, Vs)
7: Vs ← V ISITED
8: i← 0
9: while Qi ̸= ∅ do
10: for v ∈ Qi do

11: for e ∈ v.edgeList() do
12: if getSource(e) = UNV ISITED then

13: add(Qi+1, getDestination(e))
14: depth[getDestination(e)]← depth[v] + 1
15: inc(v, out_count)
16: inc(getDestination(e), in_count)
17: getSource(e)← V ISITED
18: end if

19: end for

20: end for

21: i← i+ 1
22: end while

23: end function

complexity and size. But a graph can also be represented as an unordered edge list
(as discussed in section 2.1.1). In this case, algorithms are likely to require additional
pre-processing steps on the input graph. As graphs (e.g. graphs of social networks) are
rapidly growing in size and density, this pre-processing is no longer a one time cost,
making edge-based algorithms interesting for our research.

When shifting from a vertex-based BFS (Algorithm 1) to an Edge-Based BFS (Al-
gorithm 2), the following graph property suggests a degradation of the performance:

• For any connected graph, M = xN, x ≥ 1, M=number of edges, N=number of
vertices. With one exception, namely a graph that is a single line of vertices
(M = N − 1).

Even so, this approach can be very useful, due to its potential of having a high level of
parallelism as we will show in the next section.
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Algorithm 2 Edge-based Breadth First Search implementation, graph G = (V,E).
With start vertex s, the number of vertices N and the number of edges M

1: function BFS_EdgeBased(E, s)
2: Q← ∅
3: for j = 1→M do

4: Ej ← UNV ISITED
5: end for

6: add(Q, Vs)
7: changed← 1
8: while changed = 1 do
9: changed← 0
10: for e ∈ E do

11: if e = UNV ISITED then

12: if getSource(e) ∈ Q then

13: add(Q, getDestination(e))
14: e← V ISITED
15: depth[getDestination(e)]← depth[getSource(e)] + 1
16: inc(getSource(e), out_count)
17: inc(getDestination(e), in_count)
18: changed← 1
19: end if

20: end if

21: end for

22: end while

23: end function

In a BFS that accepts an edge list as input, the iteration over the entire set of
edges is required. By a simple check on the source vertex of an edge, the algorithm can
determine which edges to traverse, hence which vertex to place in the next level of the
resulting tree. Or more generally, ∀e ∈ E|esource ∈ Qi add edestination to collection Qi+1,
where E is the collection of edges in the graph and Qi is the collection of queued vertices
at level i. Note that coloring is still required to prevent in�nite loops.

A �rst expected degradation in performance can be found in the �rst part the al-
gorithm, i.e. the initialization of the labels (coloring). Second, in the body of the loop
which systematically traverses the graph, a similar performance degradation is expected
to arise.
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4.2 Parallel Breadth First Search

Both Algorithm 1 and Algorithm 2 are designed in a sequential fashion, i.e. a single
processor is used to perform all operations in order, starting at line 1. For this reason,
even though Algorithm 2 has a larger number of iterations, increasing the speed of the
processor executing the algorithm can lead to a shorter execution time compared to
that of Algorithm 1. One might argue whether this is still a fair comparison, but this
merely illustrates the high correlation of the performance of a single processor with the
speed of a sequential algorithm. In order to outgrow this limitation, the introduction of
additional processors, to split the workload, should result in a reduction of the overall
execution time.

The BFS algorithm requires a list of vertices to discover neighbors for the next
level. However, the vertices in the queue of level i are not known before level i − 1
is processed. Hence, when splitting the workload over an arbitrary number of work-
items, communication and synchronization are required between levels. Relaxing the
synchronization between levels leads to an improvement of the execution time, but will
also violate the basic BFS speci�cations from [30, 35]. For example, there are two
work-items WI1 and WI2, where WI1 is slightly faster than WI2. When WI1 �nished
processing its share of the workload for level i, it will start at level i + 1 while WI2 is
still processing level i. If WI1 now discovers a node X it will place it on level i + 1,
but there is the possibility this should actually be a node at level i that still had to
be discovered by WI2. Although this graph traversal is not a traditional BFS, it is
capable of retrieving certain graph invariants, like in- and out-edge ratio or connected
component sizes. Due to less synchronization, this relaxed version of BFS is expected
to traverse the graph faster than a traditional BFS. In the experimental section we will
evaluate the performance of this Relaxed-BFS.

Various techniques can be applied to implement synchronization. We distinguish
here two types: (i) host-based synchronization, where the host assigns a single level of
the BFS to work-items, after the work-items are done, it determines if a next level is
required, and assigns the work-items to the next level or �nishes the algorithm, and
(ii) kernel synchronization, where the host assigns the entire task to work-items, hence
communication is required between di�erent work-items to determine when to continue
to the next level in the algorithm [34]. Since no additional reasoning is required in
between two levels, kernel synchronization is a suitable technique for our implementa-
tion. This requires communication between the di�erent work-items, to wait for all the
items to �nish the current level and some controls that determine whether a next level
exists (since this is not known a-priori). These next level control signals also exist in
the sequential version, only now they have to be communicated throughout the system.

To facilitate the di�erent work-items with an equal amount of work, we need to an-
alyze the algorithm and �nd chunks of operations (i.e. kernels) that can be executed



30 Breadth First Search

concurrently, with the least amount of dependencies between them. Our choice is to
split the edge list over the work-items since edges have no direct dependencies between
one another. The iteration over edges is the core part of the BFS algorithm and has to
be performed on each level of the BFS. As a result, there is a high correlation between
the performance of BFS and the diameter of the data set (i.e. the maximum number of
levels required for a BFS).

As Algorithm 3 illustrates, BFS is a memory bound algorithm (the body of the
algorithm mainly consists of memory read and write operations rather than arithmetic
operations).

Because all work-items use shared memory (i.e. a shared queue with all the vertices
of the current level and a queue for the next level), accesses to the memory must be
controlled to ensure correctness, meaning only a single work-item can read or write a
memory block at the time to prevent overwriting of data. The use of atomic operations
can ensure such mutual exclusiveness, where atomic operations enforce the work-items
to wait for exclusive rights for reading or writing to a single memory block. However,
since the goal of the traversal is to retrieve viable information from vertices in the graph
(e.g. depth in tree, in- and out-edge ratio), such information is kept in the structure.
Because a structure is likely to be located on various blocks of memory, atomic operation
are not su�cient to enforce mutually exclusive rights. For this we use additional signals
(locks) to indicate if the structures are used by other work-items. Because the lock
signal can be controlled using atomic operations, the use of such a locking mechanism
still ensures mutual exclusiveness.

Algorithm 3 describes our parallel BFS that uses synchronization barriers and ex-
clusive memory operations, where "atom_xchg(a, x)" is an atomic exchange between
variable a and x, "atom_cmpxchg(a, x, y)" is an atomic compare/exchange which com-
pares a is equal to x and, if true, exchanges y with a, and "barrier()" is an memory
barrier to synchronize the BFS levels (for a more extensive description of these opera-
tions, please check the OpenCL guide [36]). Note that the locking mechanism is applied
with the atomic operations on lines 8 and 14.

OpenCL Utilization

The OpenCL architectural model, as described in section 2.2.1, has two distinctive levels
of parallelization. In local parallelization, an arbitrary number of work-items in a single
work-group are used, these can communicate to each other and share the work-group
resources. In global parallelization, a list of work-groups is used; these are physically
located on di�erent parts of the device. Both the work-items and the work-groups work
in parallel to complete the task at hand. Our parallel BFS implementation requires
communication between work-items for synchronizing between the di�erent BFS levels.
Since the OpenCL model does not allow direct communication between work-groups,
only local parallelization can be applied to this implementation, which is a major lim-
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Algorithm 3 Parallel BFS implementation in OpenCL, for graph G = (V,E). Where
s is start vertex, Ethread ⊆ E equals the edge list assigned to this thread (PU).

1: function Kernel_BFS(E, s)
2: Qi ← {Vs}
3: hasNextLevel← 1
4: i← 0 ◃ Set Current Level
5: while hasNextLevel = 1 do
6: for e ∈ Ethread do

7: if e = UNV ISITED & getSource(e) ∈ Qi then

8: while (atom_cmpxchg(getDestination(e)→ locked, 0, 1)) ◃ Lock
9: add(Qi, getDestination(e))
10: e← V ISITED
11: depth[getDestination(e)]← depth[getSource(e)] + 1
12: inc(getSource(e), out_count)
13: inc(getDestination(e), in_count)
14: atom_xchg(getDestination(e)→ locked, 0) ◃ Unlock
15: atom_xchg(hasNextLevel, 1)
16: end if

17: end for

18: i← i+ 1 ◃ Increase Level
19: barrier() ◃ Level Synchronization
20: end while

21: end function

itation to the degree of parallelism. For the synchronization steps in the prior BFS,
we use build-in mechanisms called barriers (i.e. a barrier is an operation that forces
each work-item within a group to hold until all work-items have reached it). However
because these barriers are only possible within a single group, adding groups would lead
to partial synchronization, hence potential violations of the BFS speci�cations.
To solve the synchronization between groups, we propose an extended barrier mech-

Algorithm 4 Inter-group synchronization signaling.

1: barrier()
2: if get_local_id() = 0 then
3: atom_inc(inter_SM)
4: while (atom_cmpxchg(inter_SM, group_count, 0) ! = 0)
5: end if

6: barrier()

anism, illustrated in Algorithm 4. By using inter-group synchronization signals on the
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Type Name Clock Fre-
quency

Memory
Size

Memory
Bandwidth

Multiprocessors

CPU Intel Xeon CPU
E5620

2458 MHz 24 GB 25.6 GB/s 16

GPU Nvidia Tesla C2050 /
C2070

575 MHz 3 GB 144 GB/s 14

GPU Nvidia GeForce
GTX480

700 MHz 1.5 GB 177.4 GB/s 15

Table 4.1: Speci�cation of hardware platform used in the experimentation.

global memory of the device, we are able to emulate communication between di�erent
groups. However, since the number of work-items can be over a thousand per group,
raising the inter-group signals is likely to cause serious delays. Therefore, we decided
to combine the existing barrier mechanism with the inter-group signals, resulting in a
single outgoing signal per group after a �rst barrier and a second barrier to wait until
all groups raised their inter-group signal. This approach requires a single work-item per
group to be responsible for the inter-group signal and veri�cation of the groups rais-
ing their signal (we use the build-in function get_local_id() to make sure only a single
work-item will claim this responsibility). In the experimental section of this chapter
(section 4.3), we show that using more groups to perform a single BFS has a signi�cant
performance impact.

4.3 Experiments and results

For the evaluation of the BFS implementations introduced in this chapter, we require
a hardware environment supporting parallel executions. For the sake of clarity, we
choose to use a single type of CPU for the sequential algorithm, the CPU-based parallel
implementation and for the host of the GPU-based implementation. We perform our
experiments on the DAS-4 system, we use this system because it enables us to run tests
for di�erent con�gurations under similar circumstances (i.e., DAS-4 allows for isolation
of tasks, avoiding situations where machines would be running di�erent task). On the
system we ran tests using the con�gurations listed in Table 4.1. Note that both Nvidia
Tesla and Nvidia GeForce con�gurations use as a host processor the Intel Xeon CPU.

Data sets

As mentioned in the previous section, BFS is a data-dependent algorithm, i.e. graph
properties like the number of edges, the number of vertices, diameter, and in/out edge
ratios signi�cantly in�uence its performance. In our experiments we use two kinds



Experiments and results 33

of graphs, (i) synthetic graphs, i.e. randomly generated graphs with predetermined
properties like probabilistic in/out ratios and (ii) real world graphs, i.e. subsets of exist-
ing networks like road networks, social media networks, and email exchange networks.
Speci�cally, in the experiment we use three synthetic data sets from the Rodinia bench-
mark [45] and six real world data sets from the SNAP repository [32]. On top of these,
we examine two synthetic data sets based on statistical models that re�ect the theoret-
ical worst case and best case performance of the BFS: a chain of vertices where all but
the �rst and last vertices have two neighbors connected and a star � one center vertex
with n − 1 connections and all other vertices with a single connection to this center
vertex.

Local parallelization

First, we present an experiment based on Algorithm 3. In this experiment we evaluate
the performance impact of distributing the BFS computation over an arbitrary number
of work-items located in a single work-group. At this level of parallelization, work-items
have shared resources and communication between each other, making atomic operations
su�cient for ensuring correctness of the results (as described in section 4.2). Recall
that in the CPU architecture such a �ne-grained level of parallelism is not supported
(section 4.2), hence the multi-core CPU implementation uses (time-shared) �bers to
emulate parallelization and the performance is expected to be (almost) constant for this
experiment.

Figure 4.2 shows the performance of BFS for the di�erent data sets, when varying the
number of work-items (increasing logarithmic from 1 to 1024). The presented execution
time is the median value of a total of 15 runs, to eliminate any irregular behavior (all
these times are kernel execution times, see Section 2.2.2).1

From Figure 4.2, we can clearly see the di�erence in processor complexity: the
individual processors in GPUs are much more simplistic and less powerful than that
of the CPU. The �gure also shows is a signi�cant performance improvement for the
GPUs with the introduction of more work-items. However, for most data sets, the
GPUs only approaches the time of the sequential algorithm (not clearly visible in this
�gure, but this will become more clear in the next experiments). As expected, Figure
4.2 shows an almost constant execution time for the Intel Xeon CPU, for all data sets.
Furthermore, the execution times for the CPU, both sequential and parallel, indicate
similar performance (in this �gure close to the zero lines, due to the large execution
times of the GPUs with a few work-items). We can conclude that the use of �bers has
insigni�cant in�uence on the performance in this experimental setup.

1Because of the large variety of size of data sets, there is also a large di�erence in execution times
show in the di�erent sub-�gures.
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Figure 4.2: Performance of local parallelization using OpenCL, with increasing number
of work-items. Note that the time scale di�ers signi�cantly between data sets.
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Global parallelization

To further increase the parallelism available for the BFS, we make use of multiple work-
groups (as described in section 4.2). Since the maximum number of work-groups varies
between our three test environments (listed in Table 4.1 are the maxima for each). We
use a range from 1 to 14 groups (to accommodate the smallest platform). Each group
consists of 1024 work-items for both GPU implementations and the Intel Xeon CPU (as
concluded from Figure 4.2, varying the number of work-items per work-groups has no
performance impact on a CPU).

Figure 4.3 shows the performance of BFS for the di�erent graphs from Table 2.1. We
plot the execution times of our implementations (CPU and two GPU implementations)
while increasing the number of used work-groups. Note that here, we also show the
performance when using the OpenMP library [27] to parallelize our BFS implementation,
as well as the sequential execution times.
As the sequential execution does not use any threads, this reference line (the black line
in the plots) is merely used to illustrate the performance gain/ loss for the parallel
implementations. In Figure 4.3, some unexpected behavior appeared. For the Intel
Xeon CPU, the execution of the BFS on a single work-group is in most cases faster than
the execution using multiple groups. We expect this to be the cause of memory access
patterns: since BFS is data dependent and more parallelism leads to more arbitrary
data requests, introducing parallelism can degrade performance. The implementation
using OpenMP shows a sudden peak at 12 work-groups, it is unclear to us what exactly
happens here. But the �gure also shows the performance improvements of GPUs with
more work-groups. In some cases, the GPUs can even outperform the parallel CPU
version. However, in general, this application seems not to have extensive pro�t from
parallelism (i.e. the parallel implementations do not perform signi�cantly better than
the sequential).

Random input

In Chapter 2.1, we claim that graphs (in particular large-scale social graphs) are rapidly
growing in size and density. This growth consists of introduction of additional edges to
the edge list, resulting in an unordered list of edges. In other words, the list of edges that
represents the graph has no systematic ordering, with respect to source or destination
vertices. To evaluate the impact of such an unordered input, we execute our algorithm
using di�erent forms of orderings of the edge lists.

First we measure a reference execution time on edge lists that have a speci�c ordering:
based on the source of an edge, and on the destination of an edge. Further, we use a
set of 10 di�erent shu�es for a more accurate analysis. Of this set of 10 shu�es, 9 use
an ordering generated using a pseudo-random generator (the default random number
generator implemented in the C language). For the last data set we try to minimize the
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Figure 4.3: Impact on performance for the parallel BFS, when utilizing an increasing
portion of the platforms capacity. Evaluated on three di�erent platforms.
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Figure 4.4: The E�ects the ordering of input edges has on the BFS performance. On
the horizontal axis, from left to right, are (i) the original input order, (ii) edges ordered
based on the source, (iii) edges ordered based on the destination, (iv) edge lists shu�ed
nine time using a pseudo-random generator.

caching abilities in the algorithm. This cache unfriendly shu�e scatters the edges from
source x over the list of edges, and applies this for each x ∈ V .

Figure 4.4 illustrates the impacts of shu�ing on the di�erent systems, with each sub-
�gure showing the full collection of data sets. The �gure shows (almost) no changes in
performance for any of the pseudo-random shu�ed lists, and only shows a performance
improvement for the Stanford Web Graph and California Road Network, when ordering
the edge list according to the source or destination vertex of the edges. So with the
exception of these two data sets, the graphs are insensitive to the (re)ordering of the
edge list. Thus, applying pre processing on an edge list to gain performance is not worth
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Figure 4.5: Relaxed BFS, a single input graph could result in various search trees with
di�erent heights. Where the iterations are separated by the horizontal lines. Note that
these di�erences are either a result of the �uctuations in the timing of threads or of a
shu�ing of the input edge list.

the e�ort.

Relaxed BFS

When describing the parallel implementation of our BFS, we encountered a technique of
relaxing the BFS rules to gain performance (Relaxed-BFS ). In this paragraph we validate
this assumed improvement by comparison against the parallel BFS implementation. We
also show that such an implementation is signi�cantly more sensitive to input ordering.
In a BFS algorithm, the performance is bounded by d (i.e. the depth of the resulting
search tree), where d is at most equal to the diameter of the graph. Our Relaxed-BFS,
on the contrary, is bounded by d′ ≤ d. In other words, BFS requires d iterations over
the list of edges and Relaxed-BFS requires only d′ iterations, as illustrated in Figure
4.5, where Result 1 has d′ = d = 4 iterations and Result 2 has d′ = 3 < d iterations.
As the �gure also shows, the resulting search tree could give a false depth perception.
However, we are still able to correctly retrieve various graph statistics.

A Relaxed-BFS is highly sensitive to input ordering, meaning, a change in the order
of edges will lead to a change of d′. In a optimistic case the new d′ will approach 1 and
in pessimistic case it will reach d.

To show the impact of relaxing the BFS structure, we ran experiments with the
same collection of data sets (from Table 2.1). Figure 4.6 illustrates the speed up gained
by relaxing the synchronization. The �gure shows that, the �ne-grained parallelism of
GPUs can lead to signi�cant speed up of the Relaxed-BFS over BFS. The Intel Xeon
shows no speed up, and can even show degradation of performance. We believe this
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Figure 4.6: Relaxed BFS, a single input graph could result in various search trees with
di�erent heights. Where the iterations are separated by the horizontal lines. Note that
these di�erences are either a result of the �uctuations in the timing of threads or of a
shu�ing of the input edge list.

comes from the way the system is scheduling the �bers and from this get less e�cient
memory access patterns. This experiment on Relaxed-BFS also shows the impacts of
level synchronization. We will not continue experimenting with the Relaxed-BFS, since
our following algorithms (all-pair shortest path and betweenness centrality), require the
level-based BFS.

The Rodinia benchmark

As described in section 2.1.2, we use a set of graphs from the repository of Rodinia.
This repository is much richer than just collections of data sets, as its main purpose is a
benchmark for heterogeneous systems [45]. For our research, this benchmark is a source
for evaluating our BFS design: it uses the same programming model (i.e. OpenCL),
hence it is applicable to both CPU-based and GPU-accelerated systems, but they make
a di�erent choice for graph representation (they use a vertex-based representation).
Rather than arguing which representation is best, we can measure the actual behavior
of the di�erent representations under the exact same conditions. We use the hetero-
geneous test environments described in the prior sections � one CPU-based and two
GPU-accelerated hardware platforms (Intel Xeon, Nvidia Tesla and Nvidia GeForce, re-
spectively). Although the Rodinia benchmark uses only synthetic data sets, we expand
the experiments with real world data sets from the SNAP repository (see Table 2.1 for
the full list of data sets).
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Figure 4.7: Comparison of the performance of BFS, for an edge-based versus a vertex-
based graph representation: Our implementation, and the implementation from the
Rodinia benchmark, respectively.

Figure 4.7 shows the results of our comparison, in terms of execution time, for the
various data sets. Note that for the sake of clarity, the data sets are labeled using the
abbreviations from the Table 2.1. From Figure 4.7 can be concluded that the choice
of a representation will not automatically result in a better performance for any data
set. In other words, there is a correlation between the structure of a data set, the data
representation and the performance.
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Chapter 5

All-Pair Shortest Path

Graph traversals can have various shapes and sizes. Depending on the goal, a speci�c
algorithm can be picked to achieve this. In this chapter, we consider the problem
of �nding the minimal distance between all pairs of nodes in a graph, called All-Pair
Shortest Path(APSP). Finding all shortest paths is a time consuming analysis. The
APSP algorithm gets a graph G = (V,E) and �nds, for each pair of vertices u, v ∈ V ,
the shortest path from u to v. The length of a path is the sum of its constituent edges.

An APSP algorithm can be used to determine the diameter of a graph, an useful
invariant, which can be used to predict the behavior of an application. The diameter is
the maximum number of nodes that need to be passed when going from a vertex to any
other vertex in that graph, excluding any path that contains backtracks, takes de-tours
or has loops. In other words, the maximum of the found minimal distances between each
pair of nodes, is equivalent to the diameter of the given graph. Another application could
be the creation of a road atlas: in a graph that represents a road network (where the
di�erent nodes represent cities), �nding the minimum distances between cities would
lead to a clear indication of the travel time.

Johnson's APSP algorithm [23] is an example of a widely used APSP. This algorithm
assumes the graph to have directed edges and no cycles. By using the Bellman-Form
algorithm [5,13], all negative weighted edges are converted to become positive, allowing
Dijkstra's algorithm [37, 50] to be used for �nding the shortest paths. A di�erent ap-
proach of solving the APSP, is using a dynamic programming methodology instead of
single source algorithms. This methodology tends to solve the problem by decompos-
ing it in independent subproblems, that are much simpler. A widely known of such an
implementation, is the Floyd-Warshall algorithm and was developed in 1962 by Robert
Floyd [12]. This algorithm compares the possible paths in the graph to �nd the shortest
between any pair of vertices.

All the above mentioned techniques, however require a speci�c graph representation
(i.e. vertex-based adjacency list or matrix). In Chapter 2.1, the discussion on an useful
graph representation concluded in a choice of edge-based input. Hence, for an implemen-
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tation of APSP based on Floyd-Warshall or Johnson's algorithm we require signi�cant
changes in the algorithm. Instead, we want to reuse our prior study of implementing
the BFS algorithm. By decomposing the algorithm into a set of subproblems, we can
conveniently separate the APSP problem in a collection of single source shortest path
problems (i.e. we can use our BFS implementation).

5.1 All-Pair Shortest Path using Breadth First Search

Our previous research on a BFS traversal focussed on �nding a shortest path from a
source vertex to any connected vertex. Hence, a BFS can provide the minimal distance
information from a single node to any other node in the graph. This information can be
used as a �rst step towards the APSP, because an APSP problem is the collection of V
shortest path problems, where V is the number of vertices in the graph. By systemat-
ically performing a BFS traversal, using di�erent source vertices, the combined results
will be equivalent to an APSP.

We can use the implementation of our Edge-Based BFS (described in detail in Chapter

Algorithm 5 An All-Pair Shortest Path implementation, by using a BFS to gather
minimal distance for any pair of vertices. With D be the resulting collection of distances
between pairs of vertices.

1: function APSP_Using_BFS(V )
2: D ← ∅
3: for v ∈ V do

4: BFS(V, v)
5: for u ∈ V do

6: if v ̸= u then
7: Add(D,Distance(v, u))
8: end if

9: end for

10: end for

11: end function

4), by collecting all depths in the search tree, which correspond to the minimal distance
to the source vertex s. Iterating over the list of vertices in the graph and assigning each
of these vertices as source of the BFS, will be lead to a solution to the APSP problem.
Algorithm 5 describes this process of reusing the BFS for an APSP. Due to the many
invocations of the BFS algorithm, small performance improvements in this BFS, lead to
signi�cant improvements for the APSP. Furthermore, this many-BFS solution for APSP
increases the bulk parallelism of the application, making it a better match for massively
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parallel architectures. For instance, if the performance of a single BFS is improved with
only one second on a graph with a million vertices, the performance of the entire APSP
will be 11 days faster. Recall that the BFS algorithm is used to �nd di�erent kinds of
heuristics of a given graph (e.g. in- and out-ratio of edges, distance to a source vertex,
the size of connected components). In the APSP, we are only interested in the distances
from the source vertex. Hence, stripping the BFS algorithm from any unused invariant
will reduce memory use and, more importantly, is likely to gain speed.

5.2 Parallel All-Pair Shortest Path

To accelerate the APSP algorithm, we apply parallelism by using multiple threads.
Making use of multiple threads requires splitting the complete task of APSP into smaller
(preferably equally sized and/ or self contained) sub-tasks. The core part of an APSP
algorithm is �nding the shortest path between a pair of vertices, and in our algorithmic
choice this means performing a BFS traversal. By using the implemented Parallel-BFS
suggested in Chapter 4, we have a �rst parallel APSP.

Although applying a parallel version of BFS should lead to good performance. But,
as shown in Chapter 4, there is a turning point where adding more threads has little to
no impact on performance. In other words, this APSP approach does not exhibit any
increase in parallelism. In fact, the parallelism remains limited to the parallelism of a
single BFS, which in turn is highly dependent on the input data set (in terms of size,
density, and diameter).

There is another possible approach of parallelizing the APSP: a thread i can perform a
complete BFS traversal (with source si), while the next thread concurrently executes a
BFS with source si+1. This way each thread will have its own BFS assigned and with
T threads, the algorithm can execute T BFS traversals concurrently. Note that not all
BFS traversals require the exact same execution time, so in this case the time slot we
mention is that of the longest traversal.

Such an approach could theoretically result in the entire APSP to �nish in the time
of a single sequential BFS. Thus, assigning a BFS to each individual thread is an in-
teresting option because it will allow high level of parallelism for APSP (especially for
large graphs). In practice, there are hardware that make such an implementation infea-
sible. For example, the Nvidia GeForce GTX480 (used for the evaluation) supports 15
groups of work-items, where each group can contain 1024 work-items, leading to a total
of over 15, 000 work-items. But the hardware only has a capacity of 3GB of memory,
which means 0.2MB per thread. Is this going to be enough for large graphs? We can
estimate this by simplifying BFS, and only consider coloring (i.e. one byte is required to
distinguish undiscovered and discovered vertices). With our given memory per thread,
we can store 0.2 million colored vertices. This already excludes half of our test graphs.
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And we have not even bothered storing any input edge list.
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1BFS per work-item

Coarse Grained

N work-items per BFS

APSP implementation

Figure 5.1: Range of parallel implementations of the APSP. Going from �ne to coarse
grained parallelization. The marker indicates our implementation choice.

Both solutions we proposed so far where unfeasible due to either too low parallelism
or too high resource requirements. In Figure 5.1, we show these two extreme cases as
the boundaries of a range of possible implementations, with the coarse grained, high
latency approach on the far right side and the �ne grained, high throughput on the
far left side. We choose an implementation that combines both to get a better parallel
implementations, feasible for our test systems.

The OpenCL architecture has two distinct layers of parallelism: (i) local and (ii) global.
Local parallelization uses an arbitrary number of work-items in a single work-group
that contribute on the task at hand. Each work-item is able to have direct communica-
tion with any other work-item, and this can be used for synchronization of the system.
Global parallelization tends to combine an arbitrary number of local parallelizations,
called work-groups, to contribute in the task. Communication between work-groups
is not directly supported. This communication limitation requires additional tricks to
enforce synchronization (see Section 4.2).
For the APSP algorithm, we can use these two layers of parallelism to gain speedup
by applying local parallelization to each BFS, and global parallelization (i.e., multiple
work-groups) to concurrently perform di�erent BFS traversals. This design choice will
signi�cantly reduce the complexity of BFS synchronization since each group has inter-
nal communication possibilities. Given the large number of work-groups supported by
the hardware (14 is the minimum for our test platforms), this approach will increase
the amount of parallelism in our solution. Furthermore, resource-wise, we can a�ord to
allocate around 200 MB per BFS traversal, which is enough for all our test graphs.

After the assignment of work-items and a choice for the work division, the next
step is to orchestrate the APSP by combining the di�erent traversals to construct a
result. In the choice of scheduling the di�erent traversals, there could be two types
of setups. (i) In Host-based scheduling, the host CPU will send a traversal task to
each group, this task is executed and the results are fed back to the host. The host
will process the results and assign a next traversal to this group. Ultimately, the host
collects all results from the di�erent groups and combines them into a �nal result. (ii) In
Kernel-based scheduling, the host CPU will assign the entire APSP task to the device.
Now each work-group will pick a di�erent task and will place resulting values on a
dedicated location in memory. After �nishing a traversal task, the group will continue
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to a next. Kernel-based scheduling requires a mechanism that ensures the execution of
each individual task and a switching mechanism that assigns mutual exclusive collections
of tasks to the di�erent groups. When using host-based scheduling, such a switching
mechanism is not needed. The host can just assign a traversal task to a free group, in a
sequential fashion. When a group �nishes its task, the host assigns the next BFS to it
and this way ensures the completeness of the results. However, this requires additional
communication between host and device, plus the device will remain idle when awaiting
a new task assignment from the host, with large negative e�ects on performance. We
choose therefore for kernel-based scheduling, as we estimate the switching mechanism will
be less of a problem than the repeated communication between the host and device. For
the scheduling we use a simple iteration over the collection of traversals that, by using
G sized steps, and uses an unique identi�er per work-group to select a speci�c traversal
task (G is the number of groups used to perform the APSP algorithm). Of course,
this simple scheduling method can lead to lower utilization of the platform and/or low
performance. As not all BFS trees (i.e. the resulting tree of a BFS traversal) have the
same depth, this work distribution might lead to load imbalance: a group i can end
up having to execute traversals with only a minimal depth, while group j will have a
similar amount of traversals in its queue, but these traversals will all be diameter-deep.
In this case, group i will be idle waiting for group j to �nish. To solve this imbalance
(that leads to low platform utilization), two solutions are possible: (i) use more logical
work-groups than physically available cores, resulting in the hardware scheduler striving
to give more work to idle hardware (which depends entirely on the platform and its
infrastructure), and (ii) design and implement heuristics for data partitioning such that
not all long traversals end up in the same work-group (which is di�cult because this
di�erence in depth is not known a priori, and might lead to a slow scheduler). Both
these options are interesting ideas for future work.

For the implementation of our APSP algorithm, as described in Algorithm 6, we
use the BFS design from Chapter 4.2 and make some minor modi�cations. First, all
invariant related operations are stripped o�, to have a BFS that solely consist of a
coloring and depth computation block. Note that the coloring is always required to
ensure the correctness of the output. Next, we introduce the scheduler, an iterative 'for'
statement that selects the root nodes of the BFS traversals at hand (see lines 2, 3 and
20 of Algorithm 6). Note that the root node is used to place the depth values in the
resulting distance matrix. This matrix D will collect the distances between any pair of
nodes in the graph.

5.3 Experiments and results

For the evaluation of our APSP algorithm, we compare the OpenCL implementations
on both CPU-based and GPU-accelerated systems against a sequential implementation.
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Algorithm 6 Parallel APSP implementation in OpenCL, for graph G = (V,E). Where
D is the resulting distance matrix and Ethread ⊆ E the edge list assigned to this work-
group.

1: function Kernel_APSP(E, V )
2: r ← getGroup()
3: for r ∈ V do

4: Qi ← {Vs}
5: hasNextLevel← 1
6: i← 0 ◃ Set Current Level
7: while hasNextLevel = 1 do ◃ Begin BFS
8: for e ∈ Ethread do

9: if e = UNV ISITED & getSource(e) ∈ Qi then

10: add(Qi+1, getDestination(e))
11: e← V ISITED
12: D[r][getDestination(e)]← depth[getSource(e)] + 1
13: atom_xchg(hasNextLevel, 1)
14: end if

15: end for

16: i← i+ 1 ◃ Increase Level
17: barrier() ◃ Level Synchronization
18: end while ◃ End BFS
19: barrier()
20: r ← r + getGroupCount()
21: end for

22: end function

Given a graph with N nodes, the sequential APSP implementation uses our sequential
edge-based BFS, executed in a loop that runs N times (with N di�erent root nodes).

On top of this, we compare the performance of our parallel algorithm against a
predicted execution time (Expected) and the theoretical performance on a system with
enough resources for the �ne grained implementation of APSP (i.e. all BFS traversals
are performed concurrently), referred to as ∞ processors. For the prediction of our
APSP, we use the execution time of our prior implemented BFS and multiply it with
the number of traversals that would be assigned to each of the G groups (see Equation
5.1).

Tpredict = TBFS ·
⌈N
G

⌉
(5.1)

We do not expect this simpli�ed prediction model to lead to very accurate predictions,
since we assume the time required for calculating the various invariants is equivalent
to the overhead of scheduling. But the prediction should give a good indication on the
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1M 3:41:06.257 9:16:33.593

SW 0:09:46.029 0:49:27.121

EU 0:02:03.445 0:04:24.596

CH 0:00:15.725 0:00:32.032

ST 0:00:12.797 0:00:26.828

ES 0:00:33.766 0:00:56.097

64K 0:00:23.698 0:00:46.705

WV 0:00:00.613 0:00:00.891

4K 0:00:00.088 0:00:00.249

Figure 5.2: As result of the �ne-grained OpenCL model, CPU-based systems use �bers
that causes mayor impact on performance. By using a single work-item per work-group
the performance of CPU-based systems improve.

actual performance gain/loss. For the ∞ processors, we estimate the execution time
by using the sequential BFS execution time, because the ∞ processors implementation
re�ects the parallel design where we have the capacity of concurrently performing all
BFS traversals. Thus, the execution time of the APSP would be equal to the worst case
execution of a single sequential BFS (i.e. the BFS traversal where the resulting tree has
the diameter as depth).

We use the same experimental setup as the one for BFS, described in Section 4.3.

In our initial experiments, the CPU-based system shows unexpected behavior: in
all cases the actual performance is signi�cantly worse than our calculated expected
performance. For some data sets, the performance of the sequential implementation
outperformed our parallel implementation (a behavior which we did not expect to hap-
pen for this algorithm). The reason for this behavior was due to the way CPUs emulate
work-items by using �bers. As these �bers are sharing resources, when too many of
them are actively executing, they will not be able to run concurrently, and will be seri-
alized. In our experiment on BFS (see Section 4.3), the overhead caused by these �bers
was close to zero and we assumed it to be negligible. However, as shown in �gure 5.2,
the overhead of �bers when executing an APSP algorithm becomes signi�cantly large,
causing this unexpected behavior. So we altered our experimental setup by changing
the number of work-items per work-group to 1 (for the CPU only).

Figure 5.3 shows the performance of our APSP implementation and the above ex-
plained reference values (sequential, expected, and ∞ processors execution times), with
each sub-�gure showing the execution times (of all our test data sets) on a di�erent
system. Note the logarithmic scale of the execution time.
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Figure 5.3: Performance of All-Pair Shortest Path using OpenCL. The vertical axis
shows the execution time in a logarithmic scale.

A signi�cant performance improvement on the GPU accelerated systems (Figure 5.3c
and 5.3d) compared with the sequential implementation can be observed, with an almost
constant di�erence between the two GPUs. The GTX performs better, because it has
both a higher clock frequency and a higher memory bandwidth than the Tesla. On the
other hand, Tesla has more memory and more cores (i.e., streaming multiprocessors),
which means it could support higher application parallelism to achieve better perfor-
mance. Thus, since we aim for a generic implementation for all systems, and one limited
by the smallest of these systems, Tesla is slightly disadvantaged. The CPU-based system
(Figure 5.3a) also shows signi�cant improvement compared with the sequential version,
but both GPUs perform better for all data sets. The achieved speedups are between 1.4
and 11.4 for GTX, and between 1.2 and 6.8 for Tesla (with an average of 6.66 and 4.28,
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respectively).

From our experiments, we can conclude that the performance of our APSP on CPUs is
as expected: it shows a linear increase when increasing the number of BFS traversals.
For the GPU, we note that the performance we achieve is much better than the one
expected, because our assumptions when using the worst case scenario for the perfor-
mance of BFS is too pessimistic. The execution time is also much worse than the one
predicted for in�nite processors, mainly because the gap between this ideal platform
(using N processing units, where N can be as large as a few millions) and the real hard-
ware (with only a few hundreds processing units) is very large. More realistic bounds
are required for a real performance prediction. Still, the current predictions are suitable
as worst-case scenarios, and show that our implementation is far from these extreme
cases.

The behavior of both types of systems, however, is in a sense as expected: recall
that in our design choices we used an approach that maximized the granularity while
staying within the resource limitations, making the GPUs pro�t from their �ner-grained
parallelism and the CPU su�er from the more coarse-grained architecture (i.e. the
CPU is limited to parallelism through work-groups). Furthermore, we note that our
incremental increase of complexity (i.e., from BFS to APSP) has delivered the expected
results as well: the amount of parallelism the problem exhibits has increased signi�cantly,
leading to a signi�cant improvement in the performance of the parallel platforms over
the sequential ones. Finally, for this APSP implementation, we note that the "more
parallel" architectures (i.e., the GPUs) seem to win the performance battle, especially
for larger graphs.
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Chapter 6

Betweenness Centrality

In the analysis of graphs, algorithms like BFS and APSP are used to retrieve some global
statistics of the graph, like diameter or density. Such statistics give a rough overview
of the graph, but they show no insight on its actual structure. Centrality analysis is a
technique that provides more detailed information of the individual vertices in the graph.
With a centrality analysis, we measure the in�uence a vertex has on the connectivity of
the graph. BFS can also be used for a simple centrality analysis, namely degree centrality.
This analysis measures, in some sense, the popularity of a vertex (i.e. it measures the
in- and out-degree of each vertex). Another centrality index, closeness centrality, can
be found using APSP. Closeness centrality focusses on the distances between all pairs
of vertices, hence the length of the shortest paths from any vertex to any other vertex
in the graph.

In this chapter we focus on the betweenness centrality (BC), a measure of the ratio
of shortest paths passing through a vertex. For example, given a graph that represents a
road network, the betweenness centrality can provide insight at which junctions/ roads
tra�c jams are likely to occur.

A widely used BC algorithm, proposed by Freeman [14], searches for all the shortest
paths between any two vertices and assigns a degree of betweenness (between 0 and 1)
to the intermediate vertices. An intermediate vertex has a degree of 1 if and only if all
the shortest paths between two other vertices pass through it, and 0 if no shortest path
passes through it. The BC index of a vertex v is the sum of degrees of betweenness for
all pairs of vertices (see equation 6.1). Here, σst denotes the total number of shortest
paths between s and t, and σst(v) the count of shortest paths that pass through v.

BC(v) =
∑

s ̸=t̸=v∈V

σst(v)

σst

(6.1)

Figure 6.1 illustrates an example graph in which the BC indices are calculated. For
simplicity, only a single source vertex is considered in the �gure. The image shows that
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Figure 6.1: Betweenness Centrality, the ratio of shortest path travelling through a vertex
on the route from source to each of the other vertices. Note that the values shown are
based on a single source vertex to reduce complexity.

the BC indices are based on the paths (i.e. the dotted lines). These paths do not have
to travel from source to the bottom most vertex, all intermediate vertices are also valid
end points that need to be included in the BC index. For instance: the right most vertex
is part of a fourth of the paths from the source to the bottom most vertex, is on all the
paths to the vertex beneath it and is on no other path. So the BC index of this vertex
(based on the single source) is 11

4
.

To compute the exact BC score for every vertex, an all pair shortest path problem
needs to be solved, which makes this a time consuming task. To reduce time and com-
plexity, simpler indices have been proposed to obtain approximations of the betweenness
centrality, like in [11]. Here the algorithm is changed by simplifying the graph into an
ego network (i.e., a graph that is originated from the perspective of a single vertex)
and using the betweenness centrality based on this simpli�ed perception of the graph.
In [7], the focus is on reordering the steps in the betweenness algorithm to reduce the
overall time complexity. The time complexity is reduced from Θ(n3) to O(nm) for un-
weighted graphs. This approach is used and extended by [25] to make it run in a parallel
environment.

We choose to extend our existing APSP algorithm to integrate betweenness centrality
in OpenCL. To extend the APSP, with limited additional computational time, we apply
the techniques proposed in [7] and [25].
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6.1 Betweenness Centrality using All-Pair Shortest Path

To calculate the BC of graph, we have to compute the number of shortest paths between
pairs of vertices, remember the vertices on each of these paths, and determine the ratio
of shortest paths passing through each vertex in the graph. Note that the paths are not
considered to pass through the start and end vertices, hence they will always get a 0
pair-dependency (as de�ned in [7]). This procedure is repeated for all pairs of vertices
in the graph, with (s, t) = (t, s), and the pair-dependencies are accumulated per vertex.

From this description of BC, we can distinguish a set of three steps: (i) a traversal
to get the total number of shortest paths for a pair of vertices, (ii) computing all ratios
of (shortest) paths passing each vertex for a pair of vertices, and (iii) adding the derived
pair-dependencies (i.e., the ratios of shortest paths) for each vertex to its BC value.
This sequence of steps is repeated for computing pair-dependencies of all vertices for
the di�erent pairs of vertices. We can implement this repetition using the exact same
switching mechanism as for APSP (see Section 5.1): a basic iterator over the di�erent
root vertices, that calls a BFS for each root vertex. In the case of BC, we replace the
BFS with steps (i), (ii) and (iii) described above.

Even though we replace the BFS, we do not discard it completely. For deriving the
total number of shortest paths for a pair of vertices (i.e. the �rst step), we apply a BFS
traversal from a speci�c source vertex and rather than a measure of the depth in the
tree we track the number of (shortest) paths for each vertex. The number of paths to a
vertex equals the sum of paths leading to its parent vertices. In contrast to a traditional
BFS, this traversal will include all vertices in level i, as parent of a vertex in level i+1 if
an edge between them exists, resulting in a nontree structure: a search graph. Note that
each vertex in the search graph forms a pair with the source vertex, hence will provide
a pair-dependency that needs to be added to the BC index of each vertex in the graph.

Now we have the total path counts for any vertex pair (s, t), with s being the source
vertex and t being any other vertex in the graph. Based on the technique presented
in [7], the ratio of these counts can be computed for the intermediate vertices. This
problem is solved using a reversed order BFS traversal (i.e., bottom-up BFS ). For this,
we start with the bottom level vertices and look for vertices located in the level above.
This repeats until the source vertex of the search graph is found. At each step of the
bottom-up BFS, the score δs•(v) of vertex v is computed. First, a ratio of the subpath
is computed by dividing the path count at vertex v with the path count at the child
of v. Second, this ratio is multiplied with the score of the child plus one. The "plus
one" is introduced since the child is not only a intermediate vertex for the remainder of
the graph, but also an end point of the subgraph. δs•(v) is the accumulated score of all
individual children of v, see Equation 6.2.

δs•(v) =
∑

c:v∈Parent(c)

σsv

σsc

· (δs• + 1) (6.2)
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In the �nal step of BC, we look for the pair-dependency values assigned to the vertices
in the previous step and add them all to compute the �nal BC value of each vertex.

To summarize, our implementation uses an APSP that include 2 ·N BFS traversals,
allowing us to build upon the existing implementation of these kernels.

6.2 Parallel Betweenness Centrality

In the implementation of a parallel BC, we have similar choices as described in Section
5.2. An implementation that performs a pair-dependency computation, concurrently for
each source vertex, requires massive amounts of resources. Such an approach is infeasible
in our test environment. And an implementation that iteratively executes a concurrent
pair-dependency computation for each individual vertex, will su�er from synchroniza-
tion overhead. We choose to use a level of parallelism similar to that of our APSP
implementation: a single work-group is assigned a pair-dependency computation, and
the di�erent work-groups concurrently process such a computation for di�erent source
vertices. Other than in APSP, the content of the BC computation has three distinctive
steps, each depending on its predecessor. Hence, synchronization is required between
the di�erent steps. However, because of the BFS-like structure of the intermediate steps
(see Section 6.1), their own synchronization provides a natural separation between the
steps. Thus, we can re-use the synchronization from the BFS implementations and add
no extra synchronization mechanisms.

For computing the total number of shortest paths from a source to all other vertices,
we use a BFS structure to traverse the graph. This BFS allows multiple incoming edges
per vertex, given that the edge-source is on the level prior to that of the edge-destination.
If an edge is found, the path count σ[v] of the edge-source is added to that of the edge-
destination (as described on lines 9-20 of Algorithm 7). Now the vector σ[·] will have
the count of shortest paths from the source to every vertex. And while σ[v] is the total
number of paths to v, it is also the number of paths passing through v on the route to t, if
one such path exists. On lines 22-31 of Algorithm 7, we calculate the pair-dependencies
δ[·] by reverse traversing the search graph and computing the ratio of passing shortest
paths for the di�erent vertices. Finally, the δ values are added to the BC index for each
vertex. To prevent unwanted stalling of work-groups, this functionality is separated from
calculating the pair-dependency. A δ value is the sum of pair-dependencies between the
source and every other vertex, hence it requires N − 1 additions for a graph with N
vertices. This means that, although the pair-dependency could directly be added to the
BC index when it is computed, it will result in up to N changes of the BC index (by
a single work-group), hence major read and write con�icts and stalling of work-items.
By splitting the update of the BC indices and the calculation of δ values, only a single
change per work-group is made to the BC index of each vertex.
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Algorithm 7 Parallel betweenness centrality implementation in OpenCL, for graph
G = (V,E). With BC be the resulting vector containing the BC scores of all the
vertices in G. Note that r is used to schedule the subtasks to the di�erent groups.

1: function Kernel_BC(E, V )
2: r ← getGroup()
3: for r ∈ V do

4: Qi ← {Vs}
5: σ ← ∅ ◃ Path Count
6: δ ← ∅ ◃ Pair-Dependency
7: hasNextLevel← 1
8: i← 0 ◃ Set Current Level
9: while hasNextLevel = 1 do ◃ Step II
10: for e ∈ Ethread do

11: if e = UNV ISITED & getSource(e) ∈ Qi then

12: add(Qi+1, getDestination(e))
13: e← V ISITED
14: σ[getDestination(e)]← σ[getDestination(e)] + σ[getSource(e)]
15: atom_xchg(hasNextLevel, 1)
16: end if

17: end for

18: i← i+ 1 ◃ Increase Level
19: barrier() ◃ Level Synchronization
20: end while

21: i← i− 2
22: while i > 1 do ◃ Step III
23: for e ∈ Ethread do

24: if getSource(e) ∈ Qi & getDestination(e) ∈ Qi+1 then

25: delta← σ[getSource(e)]
σ[getDestination(e)]

· (δ[getDestination(e)] + 1)

26: atom_add(δ[getSource(e)], delta)
27: end if

28: end for

29: i← i− 1
30: barrier() ◃ Level Synchronization
31: end while

32: for v ∈ V do ◃ Step IV
33: if v ̸= r then
34: atom_add(BC[v], δ[v])
35: end if

36: end for

37: r ← r + getGroupCount()
38: end for

39: end function
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6.3 Experiments and results

For the evaluation of our BC algorithm, we use a similar approach as for the APSP. We
compare the OpenCL implementations on both CPU-based and GPU-accelerated sys-
tems against a sequential implementation, against a predicted execution time (Expected)
and the theoretical performance on a system with enough resources for the �ne-grained
implementation of BC (i.e. computations of all the pair-dependencies are performed
concurrently), referred to as ∞ processors. For the prediction of our BC, we use the
execution time of computing the δ value of a single source vertex and multiply it with
the number of traversals that would be assigned to each of the G groups (see Equation
6.3).

Tpredict = Tδ ·
⌈N
G

⌉
(6.3)

This simplistic prediction is not very accurate, since we do not include the accumulation
of the pair dependencies to construct the eventual betweenness centrality. But the
prediction should give a good indication on the actual performance gain or loss. For the
∞ processors, we use the execution time of computing the single δ value. Because the
∞ processors implementation re�ects the parallel design where we have the capacity of
concurrently performing pair-dependency calculation of di�erent source vertices. Thus,
the execution time of the BC would be equal to the worst case execution of such single
δ computation.

We use the same experimental setup as the one for BFS, described in Section 4.3.
In Figure 6.2, we show the results of our experiments (the measured execution time),

as well as the expected, and ∞ processors execution times. Note that the plots present
the data sets in a descending order of size, and the execution time in logarithmic scale.
Figure 6.2a shows a reduction of execution time on the Intel Xeon for all data sets,
compared with the expected performance. Because the time scale is logarithmic, this
improvements seem insigni�cant, but the actual performance is on average 4.6 time bet-
ter than expected. For the GPUs (Figure 6.2c and 6.2d), the expected value is in most
cases a very good prediction of the actual execution time. In some cases the expected
time is less than the actual time (e.g., CR, 1M, 64K), other cases (e.g., SW, EU, WV)
the actual time is slightly better. Overall, our simple predictor works well for the GPU
performance, and can be used as worst-case scenario execution time for the CPU per-
formance.

Finally, we note the performance results in themselves are very interesting. Because
the CPU approaches the sequential execution for a few data sets, where other data sets
show signi�cant improvements. This variation shows that di�erent graph structures can
be more or less CPU-friendly when it comes to the BC computation. On the other hand,
GPUs outperform the sequential execution for all graphs, though the gap is not constant
(thus, there is some dependency on the graph structure here as well). We believe this
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Figure 6.2: Performance of Betweenness Centrality using OpenCL.

behavior on GPUs shows again that by increasing the parallelism and/ or complexity
of the computation, GPUs can become very important in accelerating large scale graph
analysis.
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Chapter 7

Discussion

In this thesis we chose our three applications following an incremental complexity ap-
proach. We start with the design of BFS, which is a structured traversal of a graph, and
we choose a parallel approach that takes into account the edge-based representation for
the graphs. However, we show that the level of the parallelism is strictly limited by the
graph itself (see Chapter 4 for more detail on both the algorithm and the results). For
the design of APSP, we reuse our BFS implementation to traverse the graph starting
from each vertex, hence it shows more parallelism than a single BFS (see Chapter 5).
Because our APSP consists of multiple BFS traversals, we expect our implementation
to re�ect both the performance of the parallel BFS, but also the increased parallelism
the application exhibits. In other words, APSP is a combination of concurrent execu-
tions of the BFS, with each BFS being also parallelized. For our BC algorithm (see
Chapter 6), we reuse the APSP design to compute the shortest path in the graph, and
add computations to calculate the centrality values. This reuse of APSP suggests the
performance of BC to be relative to the APSP, hence relative to the BFS.

In Chapters 4, 5, and 6, we have analyzed each application in isolation, showing its
preferences for one platform or another, and for one data set or another. In this chapter,
we present two di�erent ways to look at performance. First, we analyze all three appli-
cations on each platform, aiming to understand what is the impact of our incremental
complexity choice for applications. Next, we also present our results using edges per
second, a di�erently normalized metric used for most graph processing applications as
an equivalent to the FLOPs in HPC [25, 51]. Finally, we also include a discussion on
the sizes of supported data sets and future solutions to improve the scale of graphs our
analyzes can be run for.

Figure 7.1 shows a comparison between the execution times of each application,
grouped per data set and platform. Figure 7.1a represents the performance of a parallel
CPU platform. These results show that the increase in complexity leads to an increase
in execution time for the parallel CPU platform. Not surprisingly, the APSP takes a lot
longer than the BFS, given the scale of the graphs and the limited core-level parallelism
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Figure 7.1: Performance of our three graph analysis applications. Note that the execu-
tion time are shown in a logarithmic scale.

that the CPU o�ers (a total of 16 parallel threads). Furthermore, the BC shows a
doubling of the execution time as compared with APSP � as expected, given the double
reuse of APSP inside the BC algorithm. Note that the di�erences in performance are not
the same between data sets, since they di�er in sizes and structure. For the Nvidia Tesla
C2050 (Figure 7.1c), a large �uctuation can be observed in the performance di�erences
of the three applications. For example, for the CR data set, the fraction of the increase
in the execution time between BFS and APSP is similar to that between APSP and BC.
However, for theWT data set, the di�erence between BFS and APSP is much large than
that between APSP and BC. These results show, once again, that the GPUs are much
more sensitive to the structure of the data set. The other GPU platform we use, Nvidia
GeForce GTX480 (Figure 7.1d), behaves similarly with the Nvidia Tesla, while showing
a slightly improved performance for all algorithms (due to more processing power, see
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Figure 7.2: Million edges per second for the BFS, APSP, and BC algorithms, grouped
per data set. Note that the execution time are shown in a logarithmic scale.

Table 4.1). Finally, we note that the GPU performance gap between the APSP and
BC is in general very large. We believe this is an e�ect of the dependencies in data for
the BC values calculations: the ratios of each of the shortest paths needs to be derived
and accumulated for all vertices (i.e., each ratio depend on the ratios of the neighboring
vertices, see Section 6.2).

7.1 Another View on Performance

Along this thesis we have used execution time as the main performance metric for our
applications. In this section, we o�er a di�erent perspective on performance, using the
edges per second (EPS) metric de�ned by Graph5001. This metric is a normalized view
of performance, as it implicitly takes into account the size and the structure of the graph:
the size is taken into account in the formula itself, while the e�ects of the structure are
visible in the execution time (as also seen in Figure 7.1, for example).

1http://www.graph500.org/
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An accurate measurement of the number of edges traversed in total would require
the addition of several counters inside the algorithms, which might in turn change the
algorithm behavior. Therefore, we choose to estimate the EPS for each of the algorithm
by using the theoretical number of edges they will traverse (i.e., based on the algorithm
itself).
For our BFS, we multiply the diameter of the graph (D) with the number of edges (M)
and divide this with the execution time of the BFS (TBFS):

EPS =
D ·M
TBFS

(7.1)

For our APSP, we use multiple BFS searches, hence we can use a similar approach for
computing the EPS: we multiply the diameter of the graph (D) with the number of
edges (M) and with the number of shortest path searches (N), this is then divided by
the execution time of the APSP (TAPSP ):

EPS =
D ·M ·N
TAPSP

(7.2)

For our BC, the metric is more di�cult to calculate (i.e. it uses an APSP and additional
computations to derive the centrality values). In section 6.1, we see that the compu-
tations for the centrality values require backtracking of the shortest paths, making it
similar to traversing the search tree, in terms of traversal steps. Hence, for simplicity,
we can reduce this to an APSP to �nd the shortest paths in the graph and an APSP
to backtrack these shortest path in deriving the centrality values. This simpli�cation
allows us to derive a formula for the eps of BC: we multiply the diameter of the graph
(D) with the number of edges (M) and with the number of shortest path searches (N),
this is divided by the execution time of the BC (TBC). This value is then multiplied by
two, resulting in:

EPS = 2 · D ·M ·N
TBC

(7.3)

In Figure 7.2, the million EPS are shown for the data sets, where each sub-�gure rep-
resent a di�erent platform. The overall winner in EPS is the APSP algorithm, regardless
of the platform or data set. This is because the algorithm we have chosen for APSP is
a massively parallel one, and, in combination with the edge-based representation of the
graph, it is suitable for the chosen parallel platforms. In the case of BC, the number
of edges traversed/ processed per second is lower, due to the additional complexity of
the computation performed to determine the BC coe�cients. For the GPUs, a very
large gap exist between the performance in EPS of the APSP and the other two algo-
rithms. We believe this gap is caused by the large potential of parallelism of our APSP
design (i.e., G parallel BFS traversals can run concurrently, where G is the number of
work-groups, see Section 5.2), for the CPU however, this is signi�cantly smaller due to
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Platform Algorithm 3 Neighbors 12 Neighbors 24 Neighbors
Intel Xeon (24 GB)

BFS 858,993,459 306,783,378 165,191,050
APSP 169,538,183 58,567,736 31,274,034
BC 97,612,893 46,684,427 27,531,842

Nvidia Tesla (3 GB)
BFS 107,374,182 38,347,922 20,648,881
APSP 21,192,273 7,320,967 3,909,254
BC 12,201,612 5,835,553 3,441,480

Nvidia GeForce (1.5 GB)
BFS 53,687,091 19,173,961 10,324,441
APSP 10,596,136 3,660,483 1,954,627
BC 6,100,806 2,917,777 1,720,740

Table 7.1: The capacity for our three di�erent platform, in terms of maximum graph
sizes per algorithm. We present three types of graphs, with increasing average neighbor
counts.

coarser level of parallelism in the system. An exception to this gap phenomenon, is the
BC algorithm running on the ST data set. We believe this is caused by the structure
of the ST, that allows a �ne-grained parallelism also for the BC algorithm.

It is not entirely clear to us why EPS is such a commonly used metric for graph
processing. In our experience, it does indeed show a normalized version of performance,
but we believe it is still not indicative enough on the impact of the data set structure.
The only real advantage one can see here is to compare di�erent implementations of the
same algorithm for the same data sets. However, this is not very useful for our case,
because EPS does not include any notion of the platform.

7.2 Data Sets and Memory Use

In this thesis, the sizes of our data sets are limited to a few million nodes with a few
million edges. With this limitation only small changes where required for our designs
to be feasible on GPUs. Larger graphs, however, require more changes in the designs
or simply do not �t in the memory of the device. To estimate the boundaries of our
design, with respect to data set size, we compute the memory space required to store
the (intermediate) information of an algorithm. For completeness, we use three graph
structures, with di�erent numbers of average neighbors per vertex (i.e., 3, 12, 24 average
neighbors per vertex).
For our BFS, we store the list of edges and the list of vertices, where each edge has

an identi�er for its source and target vertex, and a color variable (i.e. if the edge is
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visited in the traversal or not yet). Each vertex has a depth, in-degree, and out-degree
variable. Note that we use the depth for the queuing of vertices (in Algorithm 3) to save
space, since it can indicate at what depth it is placed on the queue, hence if it is already
queued. To map the variables into memory, we use 4 bytes (i.e. an integer value) for
each variable. Thus, our BFS requires 12 bytes for each edge and 12 bytes for each
vertex. Our APSP executes G BFS traverses concurrently (where G is the work-group
count), each requiring a list to keep track of the queues and a list for coloring. But the
BFS used do no need in- and out-degree variables. Thus, our APSP algorithm requires,
for 14 work-groups: 64 bytes per edge (one source, one target, and a color for each
work-group) and 56 bytes per vertex (a depth variable per work-group). For our BC
implementation, we also require a list for the vertex depths at each work-group, but we
also need additional variables for counting the number of shortest paths passing through
that vertex and for the centrality values (see Section 6.2). Also a separate list is required
for the resulting BC values. Thus, our BC algorithm requires 64 bytes per edge (same
as APSP), and 168 bytes per vertex (a list for depth, path count, and centrality values
for each work-group).
The resulting capacities of our platforms (see Table 4.1) are listed in Table 7.1.

According to Graph500, these are graphs in the scale 21 (i.e., the data set has 221

vertices) or less, which makes our approach suitable for small to moderate graphs, but
leaves room for improvement for truly large-scale graphs.

7.3 Multiple GPUs

As seen in Section 7.2, one of the limitations of our current approach is the shear size of
the graphs it can handle. To address larger graphs, one solution that should be taken
into account is to use multiple GPUs. Consequently, we discuss here the di�culties this
approach will encounter.

The �rst important question for such a multi-GPU architecture is on how to di-
vide the input data set (and therefore the computation itself) between GPUs. Current
multi-GPU architectures allow no low-penalty communication between these platforms.
Therefore, ideally, the data set will have to be processed on di�erent GPUs without any
communication among them. In this case, one can think of di�erent ways to distribute
data: equal chunks � independent of the data itself �, connection-based � trying to group
connected vertices on the same computing node �, or load-based � trying to separate
vertices with a high in-/out-degree on di�erent computing nodes. Research needs to
be performed for further evaluation of these strategies, but we suspect there will be
no straightforward winner: depending on the data set and the application, di�erent
strategies might be required.

Furthermore, a second di�cult problem is merging the separately computed fractions
of the graph: how and where should the results be gathered. Of course, this operation



Multiple GPUs 65

depends on the algorithm itself. For example, for BFS, this is a non-trivial problem: the
merging of two di�erent BFS trees. We suspect that this problem will be easier to solve
by the CPU, due to the sparse structures of these trees, and the predicted memory-
boundness of the process itself. Furthermore, the complexity of this tree merging might
result in new re�nements of the data distribution.
At the �rst glance, our APSP design is completely insensitive to single- or multi-GPU
platforms, due to its separate, independent parallelization over each BFS. However, this
assumes that all GPUs will have access to the entire data set, which in turn brings us
back to the problem of memory capacity. When the graph is distributed, a reduction
phase of combining the APSP distances should be performed by the GPUs, and will
eventually require inter-GPU communication. In any case, for distributed graphs, the
merging of partial APSP analysis is still non-trivial.
Finally, for BC, both the BFS and the APSP discussion remain valid. Furthermore, in
this case, multiple reductions might be needed: after the forward APSP, and a second
for the �nal results. Still, the same strategies should be applied, but the overhead will
be increased.

To conclude, we believe moving this graph analysis case studies to the multi-GPU
problem requires more fundamental research in two directions: optimal data partitioning
and merging of partial results. The �rst step in this direction would be a thorough study
of the out-of-memory graph processing algorithms. We believe this is an interesting next
step for future research.
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Chapter 8

Summary and Conclusions

The goal of this thesis was to compare the performance of parallel and accelerated
parallel graph analysis, where acceleration is achieved with the use of graphical cards.
In this chapter we summarize the insights we have gathered from this comparison, and
draw a set of conclusions. We further sketch several future work directions.

8.1 Summary

For the interpretation and processing of large amounts of data, graphs are used as an ef-
fective data structure. But for large-scale graphs, analysis is extremely time-consuming.
By applying parallelism, we reduce the execution time of graph analysis. Introducing
more parallelism can lead to better performance, but also increases complexity. In this
thesis, we focus on two types of parallel systems: a coarse-grained system with powerful
processors and a �ne-grained system with more simplistic processors. We consider the
coarse-grained system to be a more traditional approach to parallelization, that is con-
structed out of multiple CPUs. The �ne-grained system is an accelerated system, which
uses a graphical processor (GPU) for massive parallelization. The graphical processor
consists of a large set of processors that work in a concurrent fashion. We note that the
major di�erences are related to the number of cores, core capacities, memory model,
and overall parallelism. Speci�cally, CPUs have relative few but powerful processors
and a large amount of memory, while the GPUs have a large number of less powerful
processors and access to a relative small amount of memory.

We studied three di�erent graph analysis applications to get a rough estimate on
the impacts of the di�erent parallel systems on their performance. We followed an
incremental complexity iteration process for de�ning our applications. Thus, we start
with a simple application and extend this towards a complex graph analysis. The �rst
analysis is a search algorithm that traverses the graph a single time, while gathering
di�erent kinds of invariants.
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With this �rst algorithm (i.e., a BFS [35]), we found a large variation in performance.
With a low level of parallelism, the algorithm seem to favor the CPUs. However, as we
increase the level of parallelism (introduce more processors), the GPU approaches the
performance of the multi-CPU and for special graphs (i.e. star or star-like structures),
GPUs can o�er a slight advantage.

Our choice for the next graph analysis application shows much more parallelism,
as the analysis involves the execution of a large number of BFS operations. All-Pair
Shortest Path (APSP) [23] is an application, we implement by simply running our
BFS for every vertex. This approach allows large amounts of parallel operations, by
running one BFS per thread. However, during the design stage, we encountered serious
limitations for the accelerated system: the GPU is very limited in memory. Thus, we
changed our design to require less memory, where threads are grouped each running
one BFS. Since the granularity of GPUs is much �ner than that of CPUs, the groups of
threads can be much larger, hence better performance is expected on GPUs (based on the
experimentations of our BFS with the increasing level of parallelism). Our experiments
shows the performance gain of the more �ne-grained parallelism of GPUs compared to
the multi-CPU.

Our simple structure of APSP also allows us to build a simple model for predicting
the performance boundaries of our implementation. Our performance boundary model
shows an accurate performance indication on the multi-CPU and an upper bound per-
formance prediction on the GPUs. The simplicity of this performance boundary makes
it very useful in practice, to help choosing between parallel systems.

The third algorithm, betweenness centrality [14], is a more complex computation that
aims to establish the importance of vertices in the graph by counting their participation
in the shortest paths in the graph. In our third algorithm, we use a similar prediction
for the performance boundary. The third algorithm is a more complex algorithm that
measure the in�uence of the individual vertices, on the distances of the shortest in
the graph (i.e. betweenness centrality). Our design reuses the implementation of our
APSP, and uses additional traversal steps to backtrack the shortest paths to compute
the centrality values. Again, the level of parallelism is limited by our smallest GPU. For
the betweenness centrality, our performance boundary is similar to that of the APSP:
we use the time of a single computation of centrality values and multiply it with the
centrality computations a single group of threads will perform. Our predicted boundary
gives an upper bound performance for the multi-CPU and an accurate estimation on
the performance of GPUs.

On top of our main research on the impact of accelerators to parallel graph anal-
ysis, we also conducted a few experiments on the data set structure, and its relation
to performance. We use graphs represented by lists of edges. This choice hides any
global overview of the graph from the algorithm, but allows the graph to be insensitive
to changes and makes the algorithms applicable to dynamic graphs. In this thesis, we
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examine the list of edges through a series of tests that apply di�erent ordering mecha-
nisms and �nd there is little sensitivity to ordering in our algorithms. However, there is
some performance gain from ordering the edge list according to its source vertex. But
we believe this gain does not compensate the additional time required for preprocessing
the edge list. Also, we conducted a comparison of our 'edge-based' approach against an
implementation of the same algorithms that uses a vertex-based graph representation (a
list of vertices with its adjacent vertices) from the Rodinia benchmark [45]. In this com-
parison, we saw both performance degradation and performance improvement for our
edge-based approach, depending on the data set. So, if we consider the pre-processing
of our edge list into a vertex-based representation, we might not only lose time on pre-
processing, but also on performance in the execution. Therefore, we believe that graph
representation plays an important role in the performance of the analysis, and it should
be regarded as a parameter of the data set.

We also performed a performance study based on the histograms of the data sets.
In this part of our research, we try to extrapolate the structure of a graph based on the
probabilities a vertex has of having a particular number of neighboring vertices. With a
theoretical upper bounded graph structure, we try to categorize our experimental data
sets based on their expected relative performance. Here we make a distinction between
star-like and better balanced graphs, where star-like means that the majority of the
vertices have very few neighbors and a hand full of vertices are heavily connected (like a
star), and in better balanced graphs each vertex has about the same number of neighbors.
We �nd that these simple approaches are not su�cient to predict performance. An
interesting property we did encounter is that GPUs perform better on data sets we
labeled to be star-like and we assume this is caused by the �ner-grained parallelism
of GPUs (compared to a multi-CPU). We believe this preference of GPUs for star-like
graphs is as expected, since the fan out in a star is much larger making it more suitable
for massive parallelism.

8.2 Conclusions

The use of GPUs as accelerators for graph analysis shows promising performance. How-
ever, it is not superior to the multi-CPU for all algorithms, nor for all data sets. There
is a large dependency between algorithm, data set, design choices, and the actual per-
formance, making a selection very di�cult. In this research, we show a simplistic per-
formance boundary that can help in the selection of a system for a speci�c task, with
only little calculations required. We also conclude that the graph representation impacts
performance, but this impact is not necessarily signi�cant and/ or positive, making pre-
processing unwanted and unnecessary. The ordering of the data set shows close to no
di�erence, hence is unnecessary as well. Finally, we show that GPUs have a better per-
formance with data that is clustered in a star-like structure, which we attribute to the
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large parallelism of the GPU hardware.

8.3 Future Work

One of the main limitation we encountered in our research is the limited capacity of
the GPUs. For the more complex algorithms, the limited resources force us to change
the design and reduce parallelism. As future research, the use of multiple GPUs seems
like the logical next step. This will bring the advantage of larger graphs (more than the
2.4M vertices in this thesis) at the cost of more complex data partitioning.
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