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Abstract

Vascular calcification, the deposition of calcium in the vessel wall, is associated with several vascular dis-
eases, including atherosclerosis, diabetes mellitus, and hypertension. Fluid-structure interaction (FSI) is
recommended to simulate blood flow incorporating vascular calcification. However, FSI applied to a three-
dimensional (3D) model takes several days to simulate. To reduce the computational complexity, 1D reduced
order models (ROMs) are often used instead.

Reduced order modeling decreases the computational complexity of a model by removing dimensions of the
coordinate system within a model. The cylindrical coordinate system is used in hemodynamics, especially
in ROMs. The 1D ROM for hemodynamics is obtained by removing the azimuthal dimension (accomplished
by assuming axial symmetry for all properties within arteries) and the radial dimension (accomplished by
applying a predefined velocity profile to blood flow) from the 3D model. However, incorporating vascular
calcification can make the geometry of arteries and flow within arteries asymmetric. A 2D ROM can increase
the accuracy of the 1D ROM by including one of the two removed dimensions. Research regarding 2D blood
flow mainly focuses on including the radial dimension, which cannot implement asymmetric calcification
since axisymmetry is assumed.

This study obtains a 2D ROM for blood flow by removing the dimension corresponding to the radial distance
from the three-dimensional model and by assuming that axial velocity is continuous in the neighborhood
near the artery’s origin. The 2D ROM obtains axisymmetric velocity by only allowing a single velocity profile.
However, enabling a family of velocity profiles can make flow within arteries asymmetric. Hence, this study
contributes to hemodynamics by studying blood flow that allows a family of velocity profiles.

A non-physiological steady-state solution has been obtained analytically, in which the volumetric flow rate
vanishes, and numerical methods are developed to simulate the 2D ROM, which incorporates dimensional
(Godunov) splitting, linear approximate solvers, and high-resolution methods. Jump-discontinuities within
the mechanical properties of the vascular walls are smoothened for the 2D simulations. Numerical methods
for the 2D ROM yield significant errors within the smoothening region for simulations with coarse grids. The
numerical method obtains the non-physiological steady-state solutions for arteries without calcification and
has a relative error of O (∆x1.500) for arteries with axisymmetric calcification. The 2D ROM cannot numeri-
cally obtain the non-physiological steady-state solution for arteries with asymmetric calcification due to the
numerical errors within the smoothening range.

3D and 2D numerical simulations with pulsatile blood flow are compared. The 3D simulation without calci-
fication has a significantly higher diastolic pressure, larger inner wall radii, and larger volumetric flow rates
than the 2D simulation. The differences in blood flow observed between pulsatile blood flow without calcifi-
cation and with calcification match decently between the 3D simulations and the 2D simulations, except for
locations within the smoothening region.

Keywords: 2D blood flow, asymmetric blood flow, vascular calcification, reduced order model
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1
Introduction

Vascular calcification, the deposition of calcium in the vessel wall, is associated with several vascular dis-
eases, including atherosclerosis (narrowing of blood vessel walls due to plaque), diabetes mellitus, hyperten-
sion (high blood pressure), and more [29]. Vascular calcification is categorized depending on where calcium
is deposited in the vessel wall [11].

A blood vessel consists of the vessel wall and lumen (the area where blood flows). The vessel wall consists
of three layers (see Figure 1.1), namely the tunicas intima, media and externa (which is also referred to as tu-
nica adventitia) [14], [16]. The tunica externa holds the vessel in its relative position. The tunica media mainly

Figure 1.1: Structure of the vessel walls [14].

consists of smooth muscle cells, which enable vasoconstriction (narrowing the vessel’s lumen) and vasodila-
tion (enlarging the vessel’s lumen). The tunica intima mainly consists of the endothelium, which serves as the
boundary between the lumen and the vessel wall and releases chemicals that constrict (narrow) the smooth
muscle cells [14]. The sizes and elasticity of these layers depend on the location of the blood vessels [14].

Vascular calcification in arteries occurs in the tunica intima and tunica media [29] and are classified as in-
timal arterial calcification and medial arterial calcification, respectively. The exact molecular mechanisms
that contribute to the development of vascular calcification are still unknown [11], [10], and yet some papers
plaque growth in their model [8].

1



1.1. Preliminaries 1. Introduction

Computational simulations have been used for several years to aid research in medicine [15]. There are two
branches of numerical methods to simulate blood flow in arteries, which are computational fluid dynamics
(CFD) and fluid-structure interaction (FSI) [9]. FSI combines CFD and finite element analysis (FEA), in which
CFD simulates fluid flow, and FEA simulates the vessel wall. Due to the added computational complexity of
the deformable wall, FSI takes significantly longer to simulate than CFD. As simulated in Brown et al. [2], a
3D CFD simulation of the aorta took 6.6 hours, while a 3D FSI simulation took 145 hours [15]. FSI is recom-
mended to simulate blood flow with atherosclerosis [9].

There are many ways to reduce the computational time of a simulation, such as improving the algorithm
incorporated in the numerical method, upgrading the software of the machine, and simplifying the mathe-
matical model. One way to simplify the model is to apply assumptions to reduce the problem’s dimensions,
known as reduced-order modeling, reduced-dimensional modeling, or reduced modeling (not to be confused
with reduced-order modeling applied in scientific computing). A 2D reduced order model (ROM) can be ob-
tained by assuming axial symmetry [3], which can be further reduced to a 1D ROM by applying a predefined
velocity profile [18].

An issue with the aforementioned 2D and 1D ROMs denoted in [3] and [18] is that these models assume axial
symmetry. The addition of vascular calcification can make the geometry of arteries and flow within the artery
asymmetric. One way of obtaining a 2D ROM that does not break axial symmetry is to apply a predefined
velocity profile. However, no papers are found that research this 2D ROM for blood flow. Once calcification
is applied asymmetrically, this 2D ROM should be less computationally complex than the 3D problem and
more accurate than the 1D ROM.

This study obtains a 2D reduced order model (ROM) for blood flow that can model medial calcification asym-
metrically by studying the following research questions:
1) What is the mathematical expression for the 2D ROM that can model blood flow asymmetrically?

a) Does the 2D the ROM have steady-state solutions?
2) How to develop a numerical method for the 2D ROM?

a) When is the numerical method stable?
b) How accurate is the numerical method?

3) How well do 2D simulations compare with 3D simulations?

This study is split into four chapters. The current chapter provides preliminary information regarding known
mathematical definitions and theorems, blood flow in three dimensions, reduced order modeling, and finite
volume methods. Chapter 2 ‘Method’ describes the problem, studies the 2D ROM, and discusses how the 3D
model is simulated. Chapter 3 ‘Results’ discusses the results obtained from simulations. This study ends with
Chapter 4 ‘Conclusion.’

1.1. Preliminaries
This section discusses the mathematical definitions, theorems, and lemmas used in this study and the cylin-
drical coordinate system.

1.1.1. Definitions, theorems, and lemmas
Preliminary theorems and lemmas will not be proven in this study.

Definition Injective mapping. A mapping f : A → B is injective if for all x ∈ A and y ∈ A, f has the identity:

x ̸= y =⇒ f (x) ̸= f (y). (1.1.1)

Definition Surjective mapping. A mapping f : A → B is surjective if for every y ∈ B there exists an x ∈ A such
that f (x) = y .

Theorem Mean value theorem. Let f : [a,b] → R be a continuous mapping on the closed interval [a,b] and
differentiable on the open interval (a,b). Then there exists a ξ ∈ (a,b) such that

f ′(ξ) = f (b)− f (a)

b −a
. (1.1.2)

2



1.1. Preliminaries 1. Introduction

Definition Lipschitz continuity. A mapping f : R→ R is Lipschitz continuous on an interval I ⊆ R if there
exists an L > 0 such that for every x ∈ I and y ∈ I we have

| f (x)− f (y)| < L|x − y |. (1.1.3)

Definition Metric space. Let X be a nonempty set and d : X × X → R be a metric (or distance function) that
satisfies the following properties for all x, y, z ∈ X :
1) d(x, y) ≥ 0 and d(x, y) = 0 ⇐⇒ x = y ;
2) d(x, y) = d(y, x);
3) d(x, y) ≤ d(x, z)+d(z, y).
The pair (X ,d) is called a metric space.

Definition Uniform continuity. Let (X ,d) and (Y ,ρ) be metric spaces, and let f : X → Y be mapping. f is
uniformly continuous function if for every ε> 0 there exists a δ> 0 such that

d(x, y) < δ =⇒ ρ( f (x), f (y)) < ε. (1.1.4)

Theorem Gauss’ divergence theorem. LetΩ⊆Rd be open and f : U → Rd be a continuously differential vector
field. Let V ⊂Ω be a closed, bounded region with piecewise-smooth boundary surface Γ. Then∫

V
∇· fdΩ=

∫
Γ

f ·ndΓ, (1.1.5)

where n is the outward-pointing unit normal vector to Γ.

Theorem Reynolds transport theorem. Let Ωt ⊂ Rd be a region that depends on time, I be an interval, and
f (t ,x) : I ×Ωt →R be a continuously differentiable function with respect to both t ∈ I and x ∈Rd . Then,

∂t

∫
Ωt

f dx =
∫
Ωt

(
∂t f +∇· ( f u)

)
dx. (1.1.6)

Definition Cover. Let X be a nonempty set, A ∈ X be nonempty, and let F = {Ai }i∈I be a family of sets. F

covers A if A ⊂⋃
i∈I Ai .

Definition Compact set. Let (X ,d) be a metric space and A ⊂ X . A is compact if every open cover of A has a
finite subcover.

Definition Almost everywhere. Let Ω⊆ Rd be a measurable set with a measure µ. An assertion holds almost
everywhere or, a.e. on Ω if there exists a set A ⊆Ω such that the assertions holds everywhere on A and
µ(Ω\ A) = 0.

Definition Lp -spaces. Let (S,A ,µ) be a measure space and p ∈ [1,∞]. For a measurable function f : S → R,
∥ f ∥Lp (S) is defined as

∥ f ∥Lp (S) =


(∫
S | f |p dµ

) 1
p for p ∈ [1,∞)],

esssup
s∈S

| f (s)| for p =∞,
(1.1.7)

where esssups∈S | f (s)| = inf{r : | f | < r a. e.}. Sometimes the notation ∥ f ∥p is used instead of ∥ f ∥Lp (S).

Definition Jordan measurable. A bounded set S is Jordan measurable if ∥1∥L1(S) is bounded.

Theorem Change of variables theorem. Let R,S ⊆Rn be closed, bounded, and Jordan measurable. Let g : S →
R be a continuous subjective mapping such that
1. g is continuously differentiable and injective on the interior of S (int(S)).
2. The determinant of g′(s) (Jg(s)) is non-zero for all s ∈ int(S).
Then for every continuous function f : R →R, we have∫

R
f (x)dx =

∫
S

f (g(s)) · |Jg(s)|ds. (1.1.8)

3



1.1. Preliminaries 1. Introduction

Lemma Fundamental lemma of variational calculus. LetΩ⊂Rd be open and let f ∈ L1(K ) for every compact
set K ⊂Ω. If for all test functions φ ∈C∞

c (Ω) ∫
Ω

f φd x = 0, (1.1.9)

then f = 0.

Lemma Lagrange [27]. Let f be a continuous function defined on an interval [A,B ]. If it holds that∫ b

a
f (x)d x = 0 (1.1.10)

for each subinterval [a,b] ⊂ [A,B ], then f (x) = 0 for x ∈ [A,B ].

Definition Hyperbolic equation. The partial differential equation ∂t q+A(q)∂x q = 0 is said to be hyperbolic if
the A is diagonalizable with real eigenvalues.

1.1.2. Cylindrical coordinate system
The cylindrical coordinate system is often used in reduced order models (ROMs) for blood flow within ar-
teries. This study uses the cylindrical coordinate system (x,ϕ,r ) ∈ R× [0,2π)× [0,∞), where x is the axial
coodinate, ϕ is the azimuth and r is the radius. This section covers several transformations between Carte-
sian coordinates coordinates (x, y, z) ∈R3 and cylindrical coordinates.

Transformating coordinates
Let (x,ϕ,r ) be a point within the cylindrical coordinate system. (x,ϕ,r ) is mapped into the Cartesian coordi-
nate system (x, y, z) by the mappingΦ :R× [0,2π)× [0,∞) →R3 expressed as

Φ(x,ϕ,r ) = (x,r cosϕ,r sinϕ). (1.1.11)

The mappingΦ is invertible if (y, z) ̸= (0,0). For (y, z) ̸= (0,0), (x, y, z) in Cartesian coordinates is mapped into
cylindrical coordinates by incorporating the mapping

Φ−1(x, y, z) =
(

x,θ(y, z),
√

y2 + z2

)
, (1.1.12)

where

θ(y, z) =



arctan
(

z
y

)
for y > 0 and z ≥ 0,

1
2π for y = 0, z > 0,

arctan
(

z
y

)
+π for y < 0

3
2π for y = 0, z < 0,

arctan
(

z
y

)
+2π for y > 0 and z < 0.

(1.1.13)

The mapping Φ is surjective, but not injective since for r = 0, and ϕ1 ̸= ϕ2 we have Φ(x,ϕ1,0) = Φ(x,ϕ2,0).
However, injectivity is lost only for r = 0, which is located at the boundary of [0,∞). The Jacobian ofΦ is equal
to

∂Φ

∂(x,ϕ,r )
=

∣∣∣∣∣∣
1 0 0
0 −r sinϕ r cosϕ
0 cosϕ sinϕ

∣∣∣∣∣∣=−r (sin2ϕ+cos2ϕ) =−r. (1.1.14)

Thus the change of variables theorem can be applied for every closed, bounded, and Jordan measurable sets
R ⊂ R3 and S ⊂ R× [0,2π)× [0,∞) (provided that Φ(S) = R) and for every continuous function f : R → R to
obtain ∫

R
f (x)dx =

∫
S

f (Φ(s)) · r ds. (1.1.15)

Transformating vector field
A vector field f = ( fx , fy , fz ) is transformed from Cartesian components to cylindrical components by fx

fϕ
fr

=
1 0 0

0 −sinϕ cosϕ
0 cosϕ sinϕ

 fx

fy

fz

 . (1.1.16)

The proof of this transformation will not be given.
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1.2. Blood flow in three dimensions 1. Introduction

Transforming Laplace operator
Let f : R3 → R be a twice continuously differentiable function. The Laplace operator ∆ f is used to describe
blood flow. ∆ f physically represents the diffusion of f . The Laplace operator is expressed in Cartesian coor-
dinates as

∆ f = ∂2
x f +∂2

y f +∂2
z f . (1.1.17)

The Laplace operator is expressed in cylindrical coordinates as

∆ f = ∂2
x f + 1

r 2 ∂
2
ϕ f + 1

r
∂r (r∂r f ). (1.1.18)

1.2. Blood flow in three dimensions
Blood flow through arteries is considered a fluid-structure interaction (FSI) problem. As the name suggests,
FSI consists of three parts, each of which will be discussed in their section. This section starts by discussing
the movement of the vascular wall in Section 1.2.1, is followed by hemodynamics in Section 1.2.2, and ends
with discussing the interactions between blood and the vascular wall in Section 1.2.3.

1.2.1. Deformations of vascular walls
In the introduction, we have already discussed the three different layers and their functions of the arterial
wall, but we have not discussed how the deformations of the walls are modeled. The arterial wall’s deforma-
tion, or strain, depends on the amount of stress exerted on it.

Strain (ε) is the relative displacement, with respect to its reference configuration, a material undergoes while
deforming. Stress (σ) is the intensity of the force applied across an area. In some deformation models applied
to vascular walls, stress is related with the absolute displacement such that the total radius of the vascular wall
can be rewritten as R(t ,x) = R0(x)+η(t ,x), where R0 is the radius in reference configuration, η is the absolute
displacement and R is the internal radius [3], [19]. For an in-depth explanation of strains and stresses, see
[16, ch. 4].

Deformation models used within blood flow can be generalized by solid elastic models and viscoelastic mod-
els. Viscoelastic models are dynamic models in which the duration that a certain force is applied to the vas-
cular walls affects how the wall will be deformed. The Kelvin-Voigt model is a viscoelastic model, which is
suggested to be applied to model deformations of the arterial wall [22] and is used in [3] to compute the dis-
placement of the arterial wall in their 2D axially symmetric model.

In solid elastic models, such as the linear elastic model, strains and stresses are related by a function. How-
ever, linear elasticity models can only be applied if the strains a material undergoes are small. In a general
setting, stress and strain are related in a linear elastic model as

σi j =−λ(ε11 +ε22 +ε33)δi j +2Gεi j (1.2.1)

where the δi j is the Kronicker delta, λ is the bulk modulus of the material and G is the shear modulus of the
material [22]. The bulk and shear modulus of a material are computed as [16],

G = E

2(1+ν)
and (1.2.2)

λ= E

3(1−2ν)
(1.2.3)

where ν is the material’s Poisson ratio and E is the material’s Young’s elastic modulus.

1.2.2. Hemodynamics
The fluid part of FSI covers hemodynamics, the study of blood flow. Blood is very complicated. Its rheology
is still being researched. This section mainly follows van Groesen’s book [27].1

1Van Groesen’s explanation is followed with the adjustment that the walls surrounding the fluid are not rigid.
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1.3. Reduced order modeling 1. Introduction

Fluid flow within a medium can be obtained by satisfying the conservation of mass and balance of momen-
tum equations. Both equations are derived from the transport equation

d

d t

∫
V (t )

f(t ,x) dx =−
∫
∂V (t )

Q ·n dx+
∫

V (t )
S dx, (1.2.4)

where V ⊂R3 is the volume element which changes in time, ∂V is the boundary of V , f is the density of some
property, Q is the flux density corresponding to f, n is the outwards pointing normal vector, and S corresponds
to sources and sinks. The conservation of mass equation is obtained by taking the density of blood (ρ) as f,
momentum (ρv) as Q, and no sources and sinks, which by incorporating Gauss’s divergence theorem leads to

∂t

∫
V (t )

ρ dx+
∫

V (t )
∇· (ρv) dx = 0, (1.2.5)

where v is the velocity of blood. The balance of momentum equation is obtained by taking momentum (ρv)
as f, by taking the dyadic product ρ(v⊗v) as Q, and by taking stresses exerted on the fluid within V as sources
and sinks. The dyadic product has the identities (v⊗v)i j = vi v j and

∇· (v⊗v) = v(∇·v)+∇v ·v. (1.2.6)

There are two different stresses exerted on the fluid. These are body forces fb , typically due to gravity for blood
flow, and contact forces fc , generated from stress acting on the arterial wall. Body forces are generally omitted
in hemodynamics. Contact forces are split into isotropic stress −pI , where p is the hydrostatic pressure and
I is the identity matrix, and extra stress σe , which is computed as

σe =∇· (µ(∇v+ (∇v)T )) (1.2.7)

where µ is the viscosity of blood. The balance of momentum equation becomes

∂t

∫
V (t )

ρv dx+
∫

V (t )
ρv(∇·v)+ρ∇v ·v dx =

∫
V (t )

∇· (µ(∇v+ (∇v)T ))−∇p dx. (1.2.8)

Hemorheology shows that blood is a shear-thinning (pseudoplastic) fluid, a non-Newtonian fluid in which
shear stress decreases exponentially with increasing shear rates. However the non-Newtonian properties of
blood are only noticeable in micro-circulation where the internal tube diameter is smaller than 1000 µm [6],
[16]. Our research will be limited to flow in arteries whose diameters exceed 1000 µm. So, blood is considered
as a Newtonian fluid within this study.

1.2.3. Interface conditions
The last part of the FSI problem is coupling the blood flow and the artery’s movement with interface (or
coupling) conditions. According to Canic et al. [3], there are two coupling conditions applied to FSI for blood
flow, which are known as kinematic coupling condition and dynamic coupling condition. Kinematic coupling
condition satisfies the continuity of velocity, where the fluid velocity adjacent to the inner wall is equal to the
movement of the inner wall. Dynamic coupling condition satisfies the balance of contact forces, i.e., the
contact forces exerted by blood are balanced with the contact forces exerted by the inner wall.

1.3. Reduced order modeling
Reduced order modeling decreases the computational complexity of a model by removing dimensions within
a model. In hemodynamics, reduced order modeling has been applied to reduce blood flow into 1D and 2D
axially symmetric models. Many papers describe different methods to obtain a 1D reduced order model
(ROM) for blood flow. This study mainly refers to Quarteroni and Formaggia’s paper [18] for the 1D ROM
since they clearly state their assumptions. Their 1D ROM is a fluid-structure interaction model in which the
radial and azimuthal dimensions have been removed from the three-dimensional model.

This section discusses the general idea regarding reduced order modeling, proceeds with the assumptions
used to obtain the 1D ROM, continues with the linear deformation model, and ends by discussing the 1D
ROM for blood flow.
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1.3. Reduced order modeling 1. Introduction

1.3.1. General idea regarding reduced order modeling
A couple of claims will be introduced before discussing the general idea of reduced order modeling. Let
Ω=ΩR ×E ⊆Rd , whereΩ is the original dimension,ΩR ⊆Rn is the reduced dimension, and E ⊆Rd−n contain
the dimensions which will be removed to obtain a reduced order model. Let x = (y,z) ∈ Ω with y ∈ ΩR and
z ∈ E . Let D be a differential operator, f :Ω→R be a sufficiently smooth vector function such that D[f] ∈ L1(K )
for every compact set K ⊂Ω, and let for all test functions φ ∈C∞

c (Ω)∫
Ω
φD[f]d x = 0. (1.3.1)

The fundamental lemma of variational calculus can be applied to obtain D[f] = 0.

The general idea regarding reducing a model is to restrict the test functions to

φ(x) =φR (y), (1.3.2)

where φR ∈C∞
c (ΩR ). With the restricted test functions, equation (1.3.1) is reduced into∫

Ω
φD[f]dx =

∫
ΩR

(∫
E

D[f]dz
)
φR dy =

∫
ΩR

φR DR [fR ]dy = 0, (1.3.3)

where DR = ∫
E D[f]dz is the differential operator for the reduced model and fR is a reduced vector function.

Additional assumptions are necessary to relate fR to f to ensure that DR [fR ] ∈ L1(KR ) for every compact set
KR ⊂ΩR . After these assumptions are applied, the fundamental lemma of variational calculus can be applied
in equation (1.3.3) to obtain DR [fR ] = 0 . In summary, one must integrate D[f] over E and apply meaningful
assumptions to obtain a ROM.

1.3.2. Assumptions 1D blood flow
Quarteroni and Formaggia use the following assumptions to obtain the 1D ROM for blood flow [18].

Assumption 1 Axial symmetry.
All quantities are independent of the angular coordinate ϕ.

Assumption 2 Radial displacement.
The walls of the arteries only change along the radial coordinate r .

Assumption 3 Constant pressure.
Pressure is constant within a cross-section. Thus, it will only depend on longitudinal coordinate x and
time.

Assumption 4 No body forces.
The inclusion of gravity will be neglected.

Assumption 5 Dominance in axial velocity.
The velocity components orthogonal to the axial component x are neglected. With v = (vx , vϕ, vr ) the
velocity in 3D, we have that

vx (t , x,ϕ,r ) = u(t , x)s

(
r

R(t , x)

)
(1.3.4)

in which u is the mean velocity in its cross-section and s ∈C 2([0,1]) is the velocity profile which satisfies

s(1) = 0, (1.3.5)∫ 1

0
y s(y)d y = 1

2
. (1.3.6)

Property (1.3.5) reflects the no-slip boundary condition, which, in conjunction with Assumption 2 (ra-
dial displacement), satisfies the kinematic coupling condition. Property (1.3.6) ensures that the mea-
sure is normalized. The velocity profile s(y) = γ+2

γ (1− yγ) is used to reduce axial velocity, where γ is a
strictly positive dimensionless variable which influences the shape of the velocity profile. γ is deter-
mined in advanced. γ= 9 is used to study 1D ROMs in [18] and [25] while a flat velocity profile is used
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1.3. Reduced order modeling 1. Introduction

to study inviscid flow in (γ→∞) in [28] and [23]. Some 1D ROM also impose the viscous axisymmetric
flow [25]

∂r vx |r=0 = 0, (1.3.7)

which is satisfies for γ> 1.

Assumption 6 Neglect the derivative w.r.t. the axial coordinate for the viscous term.
The variation of vx along the axial direction is small compared to the other terms. This assumption
is not listed by Quarteroni and Formaggia but is applied to obtain their 1D ROM while deriving the
viscous terms.

1.3.3. Linear elastic deformation model
Applying the linear elastic model to the walls of homogeneous, incompressible, isotropic, and longitudinally
tethered arteries (tethered so that the artery cannot move longitudinally) leads to thin-wall or thick-wall theo-
rems. The thin-wall model can be obtained by balancing the tension generated inside the wall with the stress
exerted on its surfaces, which leads to the law of Laplace [22]

T = PR (1.3.8)

where T is the tension, P is the pressure and R is the inner wall radius. The thin wall model is described as

ηr = 3

4

∆PR2

Eh
, (1.3.9)

where ηr is the absolute displacement, ∆P = Pi −Po is the pressure difference between pressure at the inner
wall (Pi ) and pressure at the outer wall (Po), R is the vessel radius and h is the thickness of the wall [22]. The
thin-wall model is used in papers such as [28] and [23], and will also be applied to the 2D ROM due to its
simplicity.

1.3.4. 1D reduced order model for blood flow
The conservation of mass (1.2.5) and balance of momentum (1.2.8) equations in 3D are not in the form de-
noted in equation (1.3.1), the derivative ∂t is in front of some integrals. By incorporating the assumption
denoted in section 1.3.2 in conjunction with Reynolds transport theorem, Quarteroni and Formaggia obtain
the integral form (or strong form) of the reduced mass and momentum equations∫

I
(∂t A+∂xQ)φd x = 0, (1.3.10)∫

I

(
∂t Q +α∂x

(
Q2

A

)
+ A

ρ
∂x P +Kr

Q

A

)
φd x = 0, (1.3.11)

where I = [0,L], in which L is the length of an artery, A =πR2 is the cross-section area, Q = u A is the flow rate,
α= ∫ 1

0 y s2(y)d y = γ+2
γ+1 is known as a momentum-flux correction term, Kr =−2πµ

ρ s′(1) is a friction parameter,
P is the pressure within the cross-section and φ is a test function. The integral forms of the reduced mass
and momentum equations are not satisfied for all test functions φ ∈C∞

c (I ), but for test functions of the form
φ=1[x1,x2](x), where [x1, x2] ⊂ I and

1S (x) =
{

1 for x ∈ S,

0 for x ∉ S.
(1.3.12)

Consequently, the fundamental lemma of variational calculus cannot be applied to obtain the differential
form of the reduced mass and momentum equations. But by applying the mean value theorem, Quarteroni
and Formaggia obtain the differential form of the reduced mass and momentum equation, depicted as

∂t A+∂xQ = 0, (1.3.13)

∂t Q +α∂x

(
Q2

A

)
+ A

ρ
∂x P +Kr

Q

A
= 0. (1.3.14)

Pressure is obtained from the vascular wall’s deformation model. Quarteroni and Formaggia derive their
own viscoelastic model. A linear elastic deformation model can be obtained from their viscoelastic model by
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1.4. Finite volume methods for hyperbolic equations 1. Introduction

eliminating all derivatives from their model, which yields

P = P0 +
p

A−p
A0

A0
β (1.3.15)

where

β= 4

3

p
πEh (1.3.16)

is contains the mechanical properties of the wall. The linear elastic deformation model is identical to the thin-
wall model denoted in (1.3.9) by substituting P = Pi , P0 = Po ,

p
A −p

A0 =
p
πηr and A0 = πR2. Substituting

(1.3.15) into (1.3.14), leads to the momentum of balance equation [18]

∂t Q +∂x

(
α

Q2

A
+ β

3ρA0
A3/2

)
+Kr

Q

A
= 0. (1.3.17)

Quarteroni and Formaggia also performed characteristic analysis. Blood flow in 1D can be rewritten in the
quasi-linear form

∂t q+H(q)∂x q+S(q) = 0 (1.3.18)

where

q =
[

A
Q

]
, (1.3.19)

H =
[

0 1
β
p

A
2ρA0

−α
(

Q
A

)2
2αQ

A

]
, and (1.3.20)

S =
[

0

Kr
Q
A

]
. (1.3.21)

In their studies, they showed that H has real eigenvalues computed as

λ± =αQ

A
±

√
β
p

A

2ρA0
+ Q2

A2 α(α−1). (1.3.22)

Blood flow under physiological configurations is sub-critical, i.e., λ1 < 0 <λ2. This indicates that one bound-
ary condition will be applied at the inlet and the outlet. Quarteroni and Formaggia specify pressure at the
inlet and the non-reflective boundary condition [18]

l1(qout)
(
∂t qout +S(qout)

)= 0 (1.3.23)

at the outlet. Both area and flow rate must be defined on each boundary to develop numerical methods. This
is done by incorporating compatibility conditions, defined in [18] as

l1(q)
(
∂t q+H(q)∂x q+S(q)

)= 0 for x = 0, (1.3.24)

l2(q)
(
∂t q+H(q)∂x q+S(q)

)= 0 for x = L, (1.3.25)

where lp is the left eigenvector corresponding to λp .

1.4. Finite volume methods for hyperbolic equations
Finite volume methods are well-known numerical methods that can simulate systems of non-linear hyper-
bolic equations. Finite volume methods are obtained by discretizing the domain in finite control volumes
(or cells) and updating cell averages based on fluxes at cell interfaces. This section summarizes key concepts
about finite volume methods discussed by Leveque [12] to develop numerical methods for blood flow in 1D
and 2D.
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1.4. Finite volume methods for hyperbolic equations 1. Introduction

1.4.1. Godunov method for one dimension
The Godunov method is a well-known method to develop finite volume methods for conservative equations.
The Godunov method comes in the three stages reconstruct, evolve, average [12, p. 76].

Reconstruct
The Godunov method begins with the reconstruction stage. In this stage, a piecewise polynomial func-
tion will reconstructed from the cell averages. We will mainly focus on reconstructing cell averages into
piecewise constant functions, leading to an upwind method.

Evolve
The second stage of the Godunov method is the evolution stage. In this stage, the hyperbolic equation
will be simulated using the piecewise polynomial function as initial data to obtain a solution after a
certain duration. Simulating piecewise constant functions leads to solving Riemann problems at each
cell interface. A Riemann problem at the cell interface located at x = xi is denoted as

∂t q+H(q)∂x q = 0,

{
q = ql for x < xi ,

q = qr for x > xi ,
(1.4.1)

where q ∈Rm is a vector function and A ∈Rm×m is a flux function.

Average The Godunov method ends with the averaging stage, in which cell averages will be obtained from
the simulated solution.

1.4.2. 1D Riemann problem for linear hyperbolic equation
Solutions to equation (1.4.1) for a linear hyperbolic system are mainly piecewise constant, where the loca-
tion of the discontinuities are propagated from the discontinuity in the initial solution. Propagations of these
discontinuities are known as shock waves. The speed of the shock waves depends on the eigenvalues of H .
Riemann solutions to an m×m system of linear hyperbolic equations yield m+1 states and m shock waves if
the system is strictly hyperbolic. A linear system is strictly hyperbolic if all eigenvalues are real and distinct.

Solutions to the Riemann problem for a strictly linear hyperbolic system are well known. The jump qr −ql

can be decomposed into the eigenvectors of A. This is done by finding a vector a ∈ Rm that satisfies

Ra = qr −ql , (1.4.2)

where R contains eigenvectors of H . The jump across the pth shock wave W p is equal to

W p = ap rp , (1.4.3)

where rp is the eigenvector corresponding to λp . Once all of the jumps are known, the solution to the Rie-
mann problem is evaluated as

q(t , x) = ql +
m∑

p=1
Hv (x −λp t )W p (1.4.4)

where Hv (x) is the Heaviside function

Hv (x) =
{

1 for x > 1,

0 for x < 0.
(1.4.5)

1.4.3. 1D Riemann problem for non-linear hyperbolic equation
Blood flow for the 1D ROM is a non-linear system of hyperbolic equations. Applying Godunov’s method for
the 1D ROM leads to solving Riemann problems for a 2×2 system of non-linear hyperbolic equations. Solving
non-linear Riemann problems is much more complicated than solving its linear counterpart, and its compu-
tational complexity is also higher. For a non-linear Riemann problem, each state is separated between either
shock waves and rarefaction waves. A rarefaction wave leads to a continuous transition between two states.
Solving a non-linear Riemann problem analytically is out of the scope of this master’s thesis. Toro and Siviglia
have studied analytical solutions for blood flow in 1D with discontinuous mechanical properties [26], and
high-order numerical methods for a similar problem have been developed by Pimentel-García et al. [17].
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Additionally, Riemann problems for non-linear hyperbolic equations can be solved approximately, which
are known as approximate Riemann solvers. Approximate Riemann solvers linearizes the matrix H(q) into Ĥ
and compute jumps across shock waves as denoted in section 1.4.2. Linearized Riemann solvers are easier to
solve than the analytical solution, and their computational complexity is also lower. The drawback is that the
approximated Riemann solver might not yield physically correct waves.

For the remainder of this section, we will assume that a compact form exists for the Riemann problem. That
is, there exist a flux-function f :Rm 7→Rm such that the Riemann problem (1.4.1) is identical to

∂t q+∂x f(q) = 0,

{
q = ql for x < xi ,

q = qr for x > xi .
(1.4.6)

According to Leveque, the linearized Riemann solver has to satisfy the conditions

1) Ĥ is diagonalizable with real eigenvalues,

2) Ĥ → f′(ql ) as ∥ql −qr ∥→ 0.

The first condition is important such that the approximated Riemann problem

∂t q+ Ĥ∂x q = 0,

{
q = ql for x < xi ,

q = qr for x > xi ,
(1.4.7)

remains hyperbolic, whereas the second condition ensures that the linearized Riemann problem is consistent
with (1.4.6) if q is continuous. To ensure that the linearized Riemann solver is conservative, the linearized
matrix Ĥ needs to satisfy

Ĥ(qr −ql ) = f(qr )− f(ql ). (1.4.8)

An easy-to-implement linearized Rieman solver is to apply the simple linearization

Ĥ = f′(q̂), where q̂ = qr +ql

2
. (1.4.9)

Condition 2) is always satisfied for the simple linearization, whereas condition 1) depends on the flux func-
tion f. The simple linearization denoted in (1.4.9) does not always satisfy (1.4.8).

Roe’s linearization is a linearization technique that satisfies (1.4.8) and can yield easy-to-compute lineariza-
tion. Roe originally developed this technique to linearize the Euler equations [21]. This is done by introducing
an invertible parametrization vector z(q) and by introducing the parametrization

w(ξ) = z(ql )+ (z(ql )−z(ql ))ξ.

Remark that flux function f can be expressed by z as f(q(z)). With these parametrizations, Leveque shows that
[12]

f(qr )− f(ql ) = f(q(w(1)))− f(q(w(0))) = Ĉ (z(ql )−z(ql )), (1.4.10)

where Ĉ = ∫ 1
0 f′(z(ξ))dξ, and

qr −ql = q(w(1))−q(w(0)) = B̂(z(ql )−z(ql )). (1.4.11)

where B̂ = ∫ 1
0 q′(z(ξ))dξ. If B̂ is invertible, we can show from equations (1.4.10) and (1.4.11) that equation

(1.4.8) is satisfied if
Ĥ = Ĉ B̂−1 (1.4.12)

The challenge to incorporate this linearization is finding an invertible parametrization vector z(q) for the flux
function f.

1.4.4. 1D Numerical schemes for hyperbolic equations
This section discusses three well known numerical schemes: the upwind method, second-order accurate
methods, and high-resolution methods. This section assumes that H is a 2x2 matrix and that λ1 < 0 <λ2.
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Upwind method
By developing numerical methods based on the Godunov method described in 1.4.1, cell averages are up-
dated as [12]

qn+1
i = qn

i − ∆t

∆x

(
A +

i−1/2 +A −
i+1/2

)
, (1.4.13)

where
A +

i−1/2 =λ2W 2
i−1/2 and A −

i+1/2 =λ1W 1
i+1/2 (1.4.14)

are known as fluctuations. Fluctuations can be seen as how much the cell averages change due to the fluxes
at adjacent cell interfaces. The numerical scheme denoted in (1.4.13) is known as the upwind method and is
first-order accurate. The leading order error of first-order accurate methods leads to numerical diffusion.

Second-order accurate methods
According to Leveque, applying a piecewise linear reconstruction to the Godunov’s method yields second-
order numerical schemes. One of those numerical schemes is known as the Lax-Wendroff method. The nu-
merical scheme for the Lax Wendroff method can also be obtained with W p obtained from either the linear
Riemann problem or by applying the approximated Riemann solver to the non-linear Riemann problem.
Second-order numerical schemes can be described as

qn+1
i = qn

i − ∆t

∆x

(
A +

i−1/2 +A −
i+1/2

)− ∆t

∆x
(Fi+1/2 −Fi−1/2) , (1.4.15)

where Fi+1/2 is a higher-order correction term. The Lax-Wendroff method has the following higher-order
correction term [12]

Fi+1/2 = 1

2

2∑
p=1

∣∣λp
i+1/2

∣∣(1− ∆t

∆x

∣∣λp
i+1/2

∣∣)W
p

i+1/2. (1.4.16)

The leading order error of the Lax-Wendroff methods leads to numerical dispersion. Numerical dispersion
can lead to oscillatory behavior and waves lagging behind the analytical solution.

High-resolution method
The idea behind high-resolution methods is to apply a high-order accurate method while using the low-order
accurate method, where the dispersive error from the second-order accurate method is expected to be signif-
icant. Effectively, the high-order accurate method are limited by incorporating a limiter function, hence

F̃i+1/2 = 1

2

2∑
p=1

∣∣λp
i+1/2

∣∣(1− ∆t

∆x

∣∣λp
i+1/2

∣∣)W
p

i+1/2φ(θp
i+1/2), (1.4.17)

where F̃i+1/2 is the limited second order correction term, φ is a limiter function and θ
p
i+1/2 influences how

much each wave is limited. There are many limiter functions available, such as the van Leer limiter

φ= θ+|θ|
1+|θ| . (1.4.18)

How much the wave W
p

i+1/2 should be limited depends on the magnitude and the direction of the wave behind

it. For the linear case, θp
i+1/2 is computed as

θ
p
i+1/2 =

ap
I

ap
i

, I =
{

i −1 if λp
i+1/2 > 0,

i +1 if λp
i+1/2 < 0,

(1.4.19)

where ap
i+1/2 is the magnitude of wave W

p
i+1/2. For a non-linear hyperbolic problem, one also needs to take

care of the direction of the eigenvectors since the eigenvectors rp
i+1/2 and rp

I+1/2 do not have to be collinear.

This can be done by projecting the wave W
p

I+1/2 onto the wave W
p

i+1/2, thus

θ
p
i+1/2 =

W
p

i+1/2 ·W
p

I+1/2

W
p

i+1/2 ·W
p

i+1/2

, I =
{

i −1 if λp
i+1/2 > 0,

i +1 if λp
i+1/2 < 0.

(1.4.20)

For more in-depth information about limiters and high-resolution methods, readers are advised to read [12].
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1.4.5. Finite volume methods for higher dimensions
Different strategies exist to develop finite volume methods for two (or higher) dimensions. Three methods
discussed by Leveque are [12][ch 19]:

Fully discrete flux-differencing methods
Similar to flux-differencing methods discussed in section 1.4.1, fluxes will be determined for all cell
interfaces. Cell averages for a new timestep can be obtained by differencing the fluxes based on Taylor
approximations.

Semidiscrete methods
For semidiscrete methods, the multidimensional problem will be turned into a system of ordinary dif-
ferential equations (ODEs). Each ODE is solved numerically by a high-order accurate method, such as
the Runge-Kutta method.

Dimensional splitting
For dimensional splitting, the multidimensional problem is split into sequences of sub-problems for a
single time step. Usually, each sub-problem only deals with one dimension of the multi-dimensional
problem. This splitting procedure can lead to a splitting error.

Splitting error
In dimensional splitting, the order of the splitting error depends on the splitting procedure and whether sub-
problems commute or not. Splitting a problem into two subsequent sub-problems does not yield an error
if these sub-problems commute. Two subsequent sub-problems commute if the order of solving the subse-
quent sub-problems does not influence the solution.

Godunov splitting and Strang splitting are two well-known splitting procedures to split a problem into two
sub-problems [12][ch. 17]. For a Godunov splitting procedure, all sub-problems will be solved sequentially in
a specific order. The Strang splitting procedure is more complicated, which leads to a higher computational
complexity than the Godunov splitting procedure. According to Leveque [12], Godunov splitting is first-order
accurate O (∆x) whereas Strang splitting is second-order accurate if the two sub-problems do not commute.
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2
Method

This section will discuss the first two main research questions, which concern the mathematical expressions
and numerical methods for the 2D ROM, while making preparations to discuss the last main research ques-
tion, which concerns comparing the 2D and 3D simulations. This section explains the problem within a
three-dimensional framework in Section 2.1 to discuss these research questions. This problem will be dis-
cussed in a two-dimensional framework in Section 2.2 to discuss the first two research questions. The finite
element software package FEBIO used to obtain simulations in three-dimensions is discussed in Section 2.3
in preparation to discuss the last research question.

2.1. Problem description
This study focuses on blood flow within a longitudinal tethered artery without curvature and bifurcations,
i.e. branching of arteries. Cylindrical coordinates will be used to describe the geometry of the artery (see
Figure 2.1). The domain where blood flows within the artery in three dimensions is defined as Ω3D(t ) =
(xin, xout)× (0,2π)× (0,R(t , x,ϕ)), where R : [0,∞)× [xin, xout]× [0,2π] → (0,∞) is the inner wall radius. Blood
flow is governed by conservation of mass (1.2.5) and balance of momentum (1.2.8) equations. Blood is con-
sidered a Newtonian fluid with viscosity of 0.003 Pa·s and a density of 1.060 g/cm3 [16].

Figure 2.1: 3D representation of the domain without calcification where R is the inner wall radius.

The artery has a reference radius of 2.5 mm (reference radius of the internal carotid artery [4]), and the thick-
ness of the vascular wall is 0.5 mm. The total length of the artery is chosen to be 15 mm. The elastic properties
of the vascular walls are based on the study by Benitez et al. [1]. In their study, they performed a 3D simula-
tion of the common carotid artery, in which the vascular walls were modeled as a linear elastic model. Tissues
have a Poisson’s ratio of 0.48. The healthy part of the artery has a Young’s modulus of 0.6 MPa, while the cal-
cified part has a Young’s modulus of 10 MPa.

Two different sets of boundary conditions will be studied within this paper. Periodic boundary conditions
will be prescribed for both sets of boundary conditions, i.e., all properties within blood flow are 2π-periodic
on the azimuthal domain (e.g. R|ϕ=0 = R|ϕ=2π). The first set of boundary conditions prescribes pressure at the
inlet and applies a non-reflective boundary condition at the outlet (similar to (1.3.23)). This set of boundary
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conditions lead to a non-physiological steady-state solution where blood flow vanishes (which will covered
be in Section 2.2.5), and will mainly be used to study how accurate the numerical method for the 2D ROM
obtains steady-state solutions.

The second set of boundary condition represents blood flow that is more physiologically relevant on a longer
time scale. This set of boundary conditions prescribes a parabolic velocity profile at the inlet and incorporates
a fluid resistance boundary condition at the outlet. Figure 2.2, which is measured near the carotid bifurca-
tion [7], depicts the velocity prescribed at the inlet. The diastolic mean axial velocity of 8.41199 cm/s will be
prescribed at the inlet for researching steady-state solutions.

Figure 2.2: Mean axial velocity applied at the inlet for pulsatile flow.

The fluid resistance boundary condition is denoted as

Pout = Pres +QoutRres (2.1.1)

where Pout is the pressure at the outlet, Pres is a pressure offset, Qout is the flow rate at the outlet, and Rres is the
flow resistance at the outlet. Pres and Qres are user defined parameters. The fluid resistance boundary condi-
tion will be used at the outlet because this boundary condition is one of the available boundary conditions
in FEBio (which is used to simulate blood flow in 3D), and because values of Pres and Rres can be specified to
match a predetermined pressure range. This study aims to match maximum and minimum pressure of 16.00
kPa (120 mm Hg) and 10.67 kPa (80 mmHg) respectively, representing systolic and diastolic blood pressure
within a healthy artery.

2.2. 2D Reduced order model
For the two-dimensionsal reduced-order model (ROM), the dimension corresponding to the radial distance
r will be eliminated from the three-dimensional domain to obtain the two-dimensional model. As a conse-
quence, the three-dimensional domain Ω3D(t ) and the two-dimensional domain Ω are related by Ω3D(t ) =
Ω× (0,R(t , x,ϕ)). The two-dimensional domain Ω = (xin, xout)× (0,2π) is a rectangular domain depicted in
Figure 2.3. The 2D domain has the four boundaries, which are Γin, Γout, Γw1 and Γw2 . Γin represents the in-

Figure 2.3: Domain of the 2D ROM
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2.2. 2D Reduced order model 2. Method

flow boundary, where blood enters the 2D domain, and Γout denotes the outflow boundary, where blood exits
the 2D domain. Γw1 and Γw2 are connected by periodic boundary conditions, i.e., all properties within blood
flow have the same value on Γw1 as in Γw2 (e.g. R|ϕ=0 = R|2π).

The 2D ROM is discussed in five sections. Section 2.2.1 discusses the assumptions incorporated to obtain
the 2D ROM. Two attempts are made to obtain the 2D ROM, referred to as the axisymmetric flow model and
the asymmetric flow model. The first attempt is discussed in Section 2.2.2 and leads to an ill-posed model
unless R becomes independent of ϕ, resulting in axial symmetry. The second attempt is discussed in Section
2.2.3, which allows a family of velocity profiles that eventually enables asymmetric flow. Section 2.2.4 dis-
cusses numerical methods for the 2D ROM in, and Section 2.2.5 ends with obtaining steady-state solutions
for the 2D ROM.

2.2.1. Assumptions
The assumptions for the 2D ROM are almost identical to those for the 1D ROM defined in Section 1.3.2. The
main difference will be that the assumption ‘axial symmetry’ will be replaced by a boundary condition. The
assumptions applied to the 2D ROM are:

Assumption 1 Radial displacement.
The vascular walls can only be displaced radially over time. They have no longitudinal or circumferen-
tial motion.

Assumption 2 Linear elastic deformation model.
Pressure is obtained from the 1D deformation model:

P = P0 + R −R0

R2
0

β (2.2.1)

where P is the pressure at the inner wall, P0 is pressure at the outer wall, R0 is the reference radius
and β = 4

3 Eh, in which E is the artery’s Young’s elastic modulus and h is the wall thickness. P0 is set
to 0 Pa within this study. This model is derived from the linear elastic deformation model (1.3.15) ap-
plied in the 1D ROM by substituting A = πR2 and A0 = πR2

0 . Remark that a 1D model is applied in a
two-dimensional setting, hence some terms are neglected. The relevance of these neglected terms are
unknown in a 2D framework.

Assumption 3 No body forces.
The inclusion of gravity will be neglected.

Assumption 4 Dominance in axial velocity.
The velocity components orthogonal to the axial component ‘x’ are neglected under the assumption
that the axial velocity is much larger than its orthogonal components. With v = (vx , vϕ, vr ) the velocity
of blood in 3D, the axial velocity is reduced as

vx (t , x,ϕ,r ) = u(t , x,ϕ)s

(
r

R(t , x,ϕ)

)
(2.2.2)

in which u is the mean velocity and s : [0,1] → [0,∞) is the velocity profile mapped as

s(y) = γ+2

γ
(1− yγ), (2.2.3)

where γ> 0 is chosen in advance. This velocity profile is used in the 1D ROM and satisfies the properties

s(1) = 0, (1.3.5)∫ 1

0
y s(y)d y = 1

2
. (1.3.6)

γ influences the shape of the velocity profile. γ = 2 represents Poiseuille flow whereas γ = 9 is used
for the viscous term in large arteries [18]. Velocity profiles for γ = 2 and γ = 9 are shown in Figure 2.4.
Velocity profiles within blood flow change over time. However, the velocity profiles are constant within
1D ROMs. This study aims for velocity profiles close to γ= 2, as γ= 2 and γ→∞ are the only velocity
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2.2. 2D Reduced order model 2. Method
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Figure 2.4: Velocity profiles for γ= 2 and γ= 9.

profiles prescribed in FEBio1. γ→∞ can only be studied by neglecting the viscous source term, which
will be included in this study.

Assumption 5 Continuous axial velocity in a neighborhood near the artery’s origin.
One of the drawbacks of transforming cylindrical coordinates into Cartesian coordinates is that the
mapping is not injective. Transforming cylindrical coordinates to Cartesian coordinates is done by
the transformation function Φ(x,ϕ,r ) = (x,r cosϕ,r sinϕ). This transformation is not injective since
Φ(x,ϕ1,0) = Φ(x,ϕ2,0) for ϕ1 ̸= ϕ2. Hence, there are many ways to refer to the origin (r = 0) in cylin-
drical coordinates. Remark that the boundary r = 0 is an artificial boundary within the cylindrical
coordinate system since radial distances are positive. The transformation from cylindrical coordinates
to Cartesian coordinates yields physiological results by adding the boundary condition

∂ϕvx |r=0 = 0. (2.2.4)

This boundary condition is referred to as the continuity condition since it ensures that axial velocity is
continuous in a neighborhood near the artery’s origin. The assumption ‘axial symmetry’ used in the
1D ROM automatically satisfies the continuity condition (2.2.4), whereas (2.2.4) does not always satisfy
axial symmetry.

Assumption 6 Neglect the derivative w.r.t. the axial coordinate for the viscous term.
The variation of vx along the axial direction is small compared to the other terms.

Importance of Assumption 5
As described in section 1.3.1, the 2D ROM can be obtained by integrating the conservation of mass and bal-
ance of momentum equation over [0,R(t , x,ϕ)]. Completely removing the assumption ‘axial symmetry’ from
the 1D ROM introduces an integral to the momentum of balance equation (1.3.11), identical to∫ R

0

1

r
∂2
ϕvx dr. (2.2.5)

This integral is unbounded if ∂2
ϕvx |r=0 ̸= 0. This integral becomes bounded if |∂2

ϕvx | is asymptotic to Mr k for

strictly positive M and k in the neighborhood of r = 0, and if ∂2
ϕvx is continuous. In this case, for 0 < δ≪

1It is technically possible to apply any velocity profile in FEBio by manually applying velocities to each node.
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2.2. 2D Reduced order model 2. Method

infR(t , x,ϕ), there exists a M > 0 such that |∂2
ϕvx | is bounded by Mr k for r < δ. The integral∫ R

0

1

r
∂2
ϕvx dr ≤

∫ R

0

∣∣∣∣1

r
∂2
ϕvx

∣∣∣∣ dr

=
∫ δ

0

∣∣∣∣1

r
∂2
ϕvx

∣∣∣∣ dr +
∫ R

δ

∣∣∣∣1

r
∂2
ϕvx

∣∣∣∣ dr

<
∫ δ

0
Mr k−1 dr +

∫ R

δ

∣∣∣∣1

r
∂2
ϕvx

∣∣∣∣ dr

<
∫ δ

0
Mr k−1 dr +

∫ R

δ

1

δ

∣∣∣∂2
ϕvx

∣∣∣ dr

≤ M

k
δk + 1

δ

∫ R

0

∣∣∣∂2
ϕvx

∣∣∣ dr

is bounded since |∂2
ϕvx | is continuous. Integral (2.2.5) is unbounded if |∂2

ϕvx | is approximate to Mr k for
M > 0 and k ≤ 0 in the neighborhood of r = 0. In this case, integral (2.2.5) is unbounded since for 0 < δ≪
infR(t , x,ϕ) we have ∫ δ

0
Mr k−1 dr =

{
M(lnδ− ln0) →∞ for k = 0,

M(δk −0k ) →∞ for k < 0.

The approximation r k for k > 0 is continuous around r = 0 and equals 0 for r = 0. However, for k < 0, r k is not
continuous in the neighborhood of r = 0 because r k →∞ as r ↓ 0.

Smoothness requirements for ∂2
ϕvx can be obtained with the following lemma to ensure that

∫ R
0

1
r ∂

2
ϕvx dr

is bounded.

Lemma 2.1. For f : [0,R] → R bounded, f = 0 for r = 0, and f is Lipschitz continuous in a neighborhood
around r = 0, there exist an M > 0 and k > 0 such that | f | is bounded by Mr k .

Proof This proof is trivial for f ≡ 0 . Let f be a bounded function (with sup | f | > 0), f = 0 for r = 0, and f is
Lipschitz continuous in a neighborhood around r = 0. Choose δ ∈ (0,min{1,R}) such that f is Lipschitz
continuous on [0,δ] with a Lipschitz constant L > 0. Let M1 = L and k1 = 1. For 0 ≤ r ≤ δ we have

| f (r )− f (0)| ≤ L|r −0| =⇒ | f (r )| ≤ Lr = M1r k1 .

Let M2 = sup | f |+1 and k2 = 1
lnδ ln

(
sup | f |

sup | f |+1

)
. We have for r ∈ [δ,R]

M2r k2 ≥ M2δ
k2

= (sup | f |+1)δk2

= (sup | f |+1)exp(k2 lnδ)

= (sup | f |+1)exp

(
1

��lnδ
ln

(
sup | f |

sup | f |+1

)
��lnδ

)
=((((((sup | f |+1)

(
sup | f |

�����sup | f |+1

)
= sup | f |.

Hence, | f | is bounded by Mr k by taking M = max{M1, M2} and k = min{k1,k2}.

Lipchitz continuity ensures that f does not have a jump discontinuity at r = 0. Given that ∂2
ϕvx is continuous

on the closure ofΩ3D , to ensure boundedness, ∂2
ϕvx is differentiable w.r.t r , to ensure Lipshitz continuous in

the neighborhood around r = 0, and by incorporating the boundary condition ∂2
ϕvx |r=0 = 0, Lemma 2.1 can

be used to ensure that
∫ R

0
1
r ∂

2
ϕvx dr is bounded.

By integrating the boundary condition ∂2
ϕvx |r=0 = 0 twice with respect to ϕ, the boundary condition is equal

to
vx (t , x,ϕ,0) = v0(t , x)+ϕv1(t , x).
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2.2. 2D Reduced order model 2. Method

where v1(t , x) = 0 due to periodic boundary condition [vx (t , x,ϕ,r ) = vx (t , x,ϕ+2π,r )]. Thus, axial velocity
within the artery’s origin is independent of ϕ, or rather, the continuity condition (2.2.4) should be satisfied.

The dimension corresponding to r will be removed in the 2D ROM. The requirement that ∂2
ϕvx has no jump-

discontinuity at r = 0 will be satisfied by incorporating the reduced axial velocity (2.2.2). By incorporating
the reduced axial velocity, the continuity condition ∂2

ϕvx |r=0 = 0 becomes a partial differential equation that

needs to be satisfied for all t ≥ 0. If the continuity condition is not satisfied, ∂2
ϕvx |r=0 = 0 no longer holds

and
∫ R

0
1
r ∂

2
ϕvx dr becomes unbounded. The mathematical expression for the continuity condition for the 2D

ROM depends on which velocity profiles are allowed in the 2D ROM.

The following subsections show that
∫ R

0
1
r ∂

2
ϕvx dr is bounded by incorporating the reduced axial velocity

(2.2.2) in conjunction with the continuity condition (∂ϕvx |r=0 = 0) (and sufficient smoothness requirements).

2.2.2. Axisymmetric flow model
By incorporating all assumptions denoted in Section 2.2.1, blood flow in two dimensions will be obtained
in this section. The continuity condition (2.2.4) from Assumption 5 states that the axial velocity in the origin
vx (t , x,ϕ,0) is independent ofϕ. Due to the simplicity of velocity profile, s(0) is independent ofϕ and s′(0) = 0.
Applying the continuity condition shows that ∂ϕu(t , x,ϕ) = 0, meaning that u(t , x,ϕ) is independent of ϕ.
This is why this model is called the axisymmetrical flow model. The temporal and spatial coordinates of
R(t , x,ϕ), vx (t , x,ϕ,r ), u(t , x,ϕ) and s(y) (or s(r /R(t , x,ϕ)) will sometimes be omitted in this section.

Compute problematic integral

Before obtaining the axisymmetric flow model, we will verify that the integral
∫ R

0
1
r ∂

2
ϕvx dr is bounded given

that ∂ϕu = 0. Applying equation (2.2.2), the substitution r = yR, ∂ϕu = 0, and u is independent of y yields∫ R

0

1

r
∂2
ϕvx dr =

∫ R

0

1

r
∂2
ϕ

(
us

( r

R

))
dr =

∫ 1

0

1

y
∂2
ϕ

(
us(y)

)
d y =

∫ 1

0

1

y
u∂2

ϕ

(
s(y)

)
d y = u

∫ 1

0

1

y
∂2
ϕ

(
s(y)

)
d y. (2.2.6)

From the rescale r = yR, we obtain y(t , x,ϕ) = r /R(t , x,ϕ), so y depends on ϕ through R. With the chain rule,
we obtain the first-order derivative

∂ϕs(y) = ∂s

∂y

∂y

∂ϕ
.

With the chain rule and product rule, we obtain the second-order derivative

∂2
ϕs(y) = ∂2s

∂2 y

(
∂y

∂ϕ

)2

+ ∂s

∂y

∂2 y

∂ϕ2 (2.2.7)

With the chain rule and product rule, we obtain the derivatives of y

∂y

∂ϕ
=− r∂ϕR

R2 =− y∂ϕR

R
, (2.2.8)

∂2 y

∂ϕ2 = r
2(∂ϕR)2 −R∂2

ϕR

R3 = y
2(∂ϕR)2 −R∂2

ϕR

R2 . (2.2.9)

Substituting equation (2.2.7), and equations (2.2.8) and (2.2.9) into equation (2.2.6) yields∫ R

0

1

r
∂2
ϕvx dr = u

∫ 1

0

1

y

∂2s

∂2 y

(
∂y

∂ϕ

)2

+ 1

y

∂s

∂y

∂2 y

∂ϕ2 d y

= u
∫ 1

0
y s′′

(∂ϕR)2

R2 + s′
2(∂ϕR)2 −R∂2

ϕR

R2 d y

= u
(∂ϕR)2

R2

∫ 1

0
y s′′ d y +u

2(∂ϕR)2 −R∂2
ϕR

R2

∫ 1

0
s′ d y. (2.2.10)

By applying integration by parts and equation (1.3.5) we have∫ 1

0
y s′′(y)d y = s′(1)−

∫ 1

0
s′(y)d y = s′(1)− s(0) (2.2.11)
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2.2. 2D Reduced order model 2. Method

Substituting equation (2.2.11) into (2.2.10) yields∫ R

0

1

r
∂2
ϕvx dr = us′(1)

(∂ϕR)2

R2 −us(0)
(∂ϕR)2 −R∂2

ϕR

R2

= u

(
s′(1)

[(∂ϕR)2 +R∂2
ϕR]−R∂2

ϕR

R2 − s(0)
[(∂ϕR)2 +R∂2

ϕR]−2R∂2
ϕR

R2

)

= u

(
s′(1)

2

(∂2
ϕ(R2)

R2 − s′(1)
∂2
ϕR

R
− s(0)

2

∂2
ϕ(R2)

R2 +2s(0)
∂2
ϕR

R

)

= u
(
2s(0)− s′(1)

) ∂2
ϕR

R
−u

s(0)− s′(1)

2

∂2
ϕ(R2)

R2 . (2.2.12)

Applying the velocity profile s(y) = γ+2
γ (1− yγ) yields

∫ R

0

1

r
∂2
ϕvx dr = u

(γ+2)2

γ

∂2
ϕR

R
−u

(γ+1)(γ+2)

2γ

∂2
ϕ(R2)

R2 . (2.2.13)

The integral is bounded if ∂2
ϕR is bounded.

Final model
The axisymmetric flow model is obtained with 3 steps. Control volumes are defined in the first step as

Vx1,x2,ϕ1,ϕ2 = {(x,ϕ,r ) : x ∈ (x1, x2),ϕ ∈ (ϕ1,ϕ2),r ∈ [0,R(t , x,ϕ)]}, (2.2.14)

where xin < x1 < x2 < xout and 0 <ϕ1 <ϕ2 < 2π. The shape of each control volume depends on x1, x2,ϕ1, and
ϕ2, as we only want to include the axial and azimuthal dimensions in the 2D ROM. The union of all possible
control volumes covers the three-dimensional domain Ω3D. The conservation of mass equation (1.2.5) and
the balance of momentum equation (1.2.8) are satisfied for all control volumes in the second step. The third
step involves obtaining the differential form by applying lemma Lagrange (2D). The second and third steps
are done in Appendix A. The following equations govern the axisymmetric flow model:

∂t (R2)+∂x (uR2) = 0 for (t , x,ϕ) ∈ (0,T )×Ω, (2.2.15)

ρ∂t (uR2)+ργ+2

γ+1
∂x (u2R2) =µγ+2

γ
u

(
−2γ+2(γ+2)

∂2
ϕR

R

−(γ+1)
∂2
ϕ(R2)

R2

)
− R2∂x R

R2
0

β−R2 R −R0

R2
0

∂xβ for (t , x,ϕ) ∈ (0,T )×Ω, (2.2.16)

∂ϕu = 0. for (t , x,ϕ) ∈ (0,T )×Ω (2.2.17)

Equation (2.2.15) conserves mass within the artery, equation (2.2.16) balances momentum within the artery,
and (2.2.17) satisfies the continuity condition (2.2.4). These three equations only have two unknown func-
tions u ∈C 1(0,T )×C 2(Ω) and R ∈C 1(0,T )×C 2(Ω).

To determine if the axisymmetric flow model is well-posed, we will determine if the continuity condition
(2.2.17) is superfluous given that the conservation of mass equation (2.2.15) and the balance of momentum
equation (2.2.16) holds. Applying ∂t (R2) =−∂x (uR2) (from (2.2.15)) into the balance of momentum equation
yields

∂t u =−
(
α− 1

2

)
∂x (u2)− (α−1)u2 ∂x (R2)

R2 − ∂x R

ρR2
0

β− R −R0

ρR2
0

∂xβ

+µ
ρ

γ+2

γ

u

R2

(
−2γ−2γ(∂x R)2 +2(γ+2)

∂ϕ(R2)

R2 − (γ+1)
∂2
ϕ(R2)

R2

)
, (2.2.18)

whereα= γ+2
γ+1 . In the axisymmetric flow model, u is independent ofϕ. Thus, ∂t u should also be independent

of ϕ. However, (2.2.18) clearly shows that ∂t u depends on ϕ since R depends on ϕ. The axisymmetric flow
model turns into the 1D ROM once R and u are independent of ϕ. The continuity condition (2.2.17) is not
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2.2. 2D Reduced order model 2. Method

superfluous if R still depends on ϕ. For example, applying the initial conditions u(0, x) = 0, R(0, x,ϕ) = 2+
sin(x +ϕ) and β(x,ϕ) =β0 > 0 shows that

∂t u =−cos(x +ϕ)

ρR2
0

β0

is dependent on ϕ. This model should be avoided because the number of equations exceeds the number of
unknown independent functions.

2.2.3. Asymmetric flow model
The axisymmetric flow model becomes either axisymmetric since the velocity profile does not depend onϕ in
the artery’s origin or ill-posed since the two unknown functions u and R cannot always satisfy three equations.
To resolve both issues, we propose to extend the velocity profile by letting γ(t , x,ϕ) : [0,T ]×Ω→ (0,∞) also
depends on t , x and ϕ, and by extending the velocity profile

s(y,γ) = γ+2

γ
(1− yγ) (2.2.19)

to allow a family of velocity profiles into the 2D ROM. This proposal equalizes the number of equations with
the number of unknown functions while extending the velocity profile to enable asymmetric mean velocities
(see Figure 2.5). The model obtained by including this proposal is called the asymmetric flow model. With
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Figure 2.5: Different velocity profiles that satisfy ∂ϕvx |r=0 = 0

this proposal, the continuity condition (2.2.4) becomes by substituting

∂ϕ
(
vx (t , x,ϕ,0)

)= ∂ϕ (
u(t , x,ϕ)s(0,γ(t , x,ϕ)

)= ∂ϕ (
u(t , x,ϕ)

γ(t , x,ϕ)+2

γ(t , x,ϕ)

)
= 0. (2.2.20)

The temporal and spatial coordinates of R(t , x,ϕ), vx (t , x,ϕ,r ), u(t , x,ϕ) and γ(t , x,ϕ) will sometimes be
omitted in this section.

Compute problematic integral

Before obtaining the asymmetric flow model, we will first verify if the integral
∫ R

0
1
r ∂

2
ϕvx dr is bounded given

that equation (2.2.20) holds. Applying equation (2.2.3), the rescale r = R y , and applying the extended velocity
profile (2.2.19) yields∫ R

0

1

r
∂2
ϕvx dr =

∫ R

0

1

r
∂2
ϕ

(
us

( r

R
,γ

))
dr =

∫ 1

0

1

y
∂2
ϕ

(
us(y,γ)

)
d y =

∫ 1

0

1

y
∂2
ϕ

(
u
γ+2

γ

(
1− yγ

))
d y (2.2.21)

The continuity condition (2.2.20) indicates that u γ+2
γ should be independent of ϕ. As a consequence, we

obtain

∂2
ϕ

(
u
γ+2

γ

(
1− yγ

))= u
γ+2

γ
∂2
ϕ

(
1− yγ

)
. (2.2.22)
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Substituting (2.2.22) into (2.2.21) yields∫ R

0

1

r
∂2
ϕvx dr =

∫ 1

0

1

y
u
γ+2

γ
∂2
ϕ(1− yγ)d y = u

γ+2

γ

∫ 1

0

1

y
∂2
ϕ(1− yγ)d y (2.2.23)

since u and γ are independent of y . The derivative ∂2
ϕ(1−yγ) needs to be computed. From the rescale r = yR,

we obtain y(t , x,ϕ) = r /R(t , x,ϕ), so y depends on ϕ through R. From the chain rule and product rule, we
obtain the first-order derivative

∂ϕ
(
1− yγ

)= ∂y

∂R

∂R

∂ϕ

∂

∂y
(1− yγ)+ ∂γ

∂ϕ

∂

∂γ
(1− yγ),

and the second-order derivative

∂2
ϕ

(
1− yγ

)= (
∂y

∂R

∂R

∂ϕ

)2 ∂2

∂y2

(
1− yγ

)+ ∂2 y

∂R2

(
∂R

∂ϕ

)2 ∂

∂y

(
1− yγ

)+ ∂y

∂R

∂2R

∂ϕ

∂

∂y

(
1− yγ

)
+2

∂y

∂R

∂R

∂ϕ

∂γ

∂ϕ

∂2

∂y∂γ

(
1− yγ

)+(
∂γ

∂ϕ

)2 ∂2

∂γ2

(
1− yγ

)+ ∂2γ

∂ϕ2

∂

∂γ

(
1− yγ

)
. (2.2.24)

Substituting (2.2.24) into (2.2.23) yields

∫ R

0

1

r
∂2
ϕvx dr = u

γ+2

γ

∫ 1

0

1

y

( i︷ ︸︸ ︷(
∂y

∂R

∂R

∂ϕ

)2 ∂2

∂y2

(
1− yγ

)+
ii︷ ︸︸ ︷

∂2 y

∂R2

(
∂R

∂ϕ

)2 ∂

∂y

(
1− yγ

)+
iii︷ ︸︸ ︷

∂y

∂R

∂2R

∂ϕ

∂

∂y

(
1− yγ

)
+2

∂y

∂R

∂R

∂ϕ

∂γ

∂ϕ

∂2

∂y∂γ

(
1− yγ

)
︸ ︷︷ ︸

iv

+
(
∂γ

∂ϕ

)2 ∂2

∂γ2

(
1− yγ

)
︸ ︷︷ ︸

v

+ ∂2γ

∂ϕ2

∂

∂γ

(
1− yγ

)
︸ ︷︷ ︸

vi

)
d y. (2.2.25)

A couple of intermediate results will be computed to evaluate
∫ R

0
1
r ∂

2
ϕvx dr . y has the first- and second-order

partial derivatives

∂y

∂R
=− r

R2 =− y

R
, (2.2.26)

∂2 y

∂R2 = 2r

R3 = 2y

R2 , (2.2.27)(
1− yγ

)
has the first- and second-order partial derivatives

∂
∂y

(
1− yγ

)=−γyγ−1,
∂2

∂y2

(
1− yγ

)=−γ(γ−1)yγ−2,
∂
∂γ

(
1− yγ

)=−yγ ln y,
∂2

∂γ2

(
1− yγ

)=−yγ(ln y)2,
∂2

∂y∂γ

(
1− yγ

)=−yγ−1 −γyγ−1 ln y.

By applying L’Hôpital’s rule, we can show that for γ> 0 that

lim
y↓0

yγ ln y = lim
y↓0

ln y

y−γ = lim
y↓0

− 1

γ
yγ = 0, (2.2.28)

and that

lim
y↓0

yγ(ln y)2 = lim
y↓0

(ln y)2

y−γ =− 2

γ
lim
y↓0

ln y

y−γ = 0. (2.2.29)

With (2.2.28) and integration by parts, the integral
∫ 1

0 yγ ln y d y is for γ>−1 is equal to∫ 1

0
yγ ln y d y = ln1

γ+1
− 1

γ+1

∫ 1

0
yγd y =− 1

(γ+1)2 . (2.2.30)
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With integration by parts and the previous two equations, the integral
∫ 1

0 yγ(ln y)2 d y is for γ>−1 is equal to∫ 1

0
yγ(ln y)2d y = (ln1)2

γ+1
− 2

γ+1

∫ 1

0
yγ ln y d y = 2

(γ+1)3 . (2.2.31)

By incorporating (2.2.26), (2.2.27), (2.2.30), and (2.2.31), the integrals i−vi within equation (2.2.25) are com-
puted as 

i =−γ(γ−1)
(∂ϕR)2

R2

∫ 1
0 yγ−1d y =−(γ−1)

(∂ϕR)2

R2 ,

ii =−2γ
(∂ϕR)2

R2

∫ 1
0 yγ−1d y =−2

(∂ϕR)2

R2 ,

iii = γ ∂
2
ϕR

R

∫ 1
0 yγ−1d y = ∂2

ϕR

R ,

iv = 2
∂ϕR

R ∂ϕγ
∫ 1

0 (yγ−1 + yγ−1γ ln y)d y = 2
∂ϕR

R
γ−1
γ2 ∂ϕγ,

v =−(∂ϕγ)2
∫ 1

0 yγ−1(ln y)2d y =−2 1
γ3 (∂ϕγ)2,

vi =−∂2
ϕγ

∫ 1
0 yγ−1 ln yd y = 1

γ2 ∂
2
ϕγ.

With these results, we obtain∫ R

0

1

r
∂2
ϕvx dr = u

γ+2

γ

(
−γ (∂ϕR)2

R2 +
R∂2

ϕR − (∂ϕR)2

R2 +2
γ−1

γ2 ∂ϕγ
∂ϕR

R
− 2

γ3 (∂ϕγ)2 + 1

γ2 ∂
2
ϕγ

)
= u

γ+2

γ

(
(γ+2)

∂2
ϕR

R
− γ+1

2

∂2
ϕ(R2)

R2 +2
γ−1

γ2 ∂ϕγ
∂ϕR

R
− 2

γ3 (∂ϕγ)2 + 1

γ2 ∂
2
ϕγ

)
, (2.2.32)

See (2.2.12) for the intermediate computations. The integral is bounded if the partial derivatives ∂ϕR, ∂2
ϕR,

∂ϕγ and ∂2
ϕγ are bounded.

Final model
The asymmetric flow model is obtained by first satisfying the conservation of mass (1.2.5) and balance of
momentum (1.2.8) equations for the control volumes depicted in (2.2.14), and then by applying lemma La-
grange (2D) (see Appendix B for the entire computation). The following equations govern the asymmetric
flow model:

∂t (R2)+∂x (uR2) = 0, (2.2.33)

ρ∂t (uR2)+ργ+2

γ+1
∂x (u2R2) = u2R2 5γ+4

2γ(γ+1)2 ∂xγ+2µu
γ+2

γ

(
−γ+ (γ+2)

∂2
ϕR

R

−γ+1

2

∂2
ϕ(R2)

R2 +2
γ−1

γ2 ∂ϕγ
∂ϕR

R
− 2

γ3 (∂ϕγ)2 + 1

γ2 ∂
2
ϕγ

)
− R2∂x R

R2
0

β−R2 R −R0

R2
0

∂xβ, (2.2.34)

∂ϕ

(
γ+2

γ
u

)
= 0, (2.2.35)

where u, R, and γ are once differentiable with respect to time and twice with respect to space. Equation
(2.2.33) is the continuity equation, which preserves mass in the artery, equation (2.2.34) balances momentum
within the artery and equation (2.2.35) ensures that axial velocity within the artery’s origin is axisymmetric.

The asymmetric flow model (which will be referred to as the 2D ROM) is quite similar to the 1D ROM. Both
the 1D ROM and the 2D ROM have the continuity equation. By removing every blue-colored term from the
2D balance of momentum equation (2.2.34), i.e., all terms that have a derivative of γ and every term with a
derivative w.r.t. ϕ, the 1D balance of momentum equation is obtained. All these terms vanish if γ is a con-
stant within an axisymmetric setting (∂ϕu = 0 and ∂ϕR). The continuity condition (2.2.35) is also satisfied
under these conditions. Some 1D ROM also imposes viscous axisymmetric flow (∂r vx |r=0 = 0). Smoothness
conditions of axial velocity in a neighborhood near the artery’s origin must be added to the 2D ROM to obtain
a condition similar to the viscous axisymmetric flow 1.3.7. Continuity of axial velocity is satisfied in the 2D
ROM, but axial velocity in the neighborhood of the artery’s origin does not need to be smooth.

The asymmetric flow model can be written into the quasi-linear form

∂t q+H(q,γ;β)∂x q = s(q,γ), (2.2.36)

∂ϕ(g (q,γ)) = 0, (2.2.37)
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where

q =
[

R2

uR2

]
=

[
A
Q

]
,

H =
[

0 1p
Aβ

2ρA0
− Q2

A2
γ+2
γ+1 2 Q

A
γ+2
γ+1

]
,

s(q,γ) =
[

0
sx + sϕ

]
,

sx =−2(γ+2)
µ

ρ

Q

A
+ Q2

A

5γ+4

2γ(γ+1)2 ∂xγ− A

p
A−p

A0

ρA0
∂xβ,

sϕ = 2
µ

ρ

γ+2

γ

Q

A

(
− γ+2

4

(∂ϕA)2

A2 + 1

2

∂2
ϕA

A

+ (γ−1)∂ϕγ

γ2

∂ϕA

A
− 2

γ3 (∂ϕγ)2 + 1

γ2 ∂
2
ϕγ

)
and

g = γ+2

γ

Q

A
.

Equation (2.2.36) represents the 2D Navier-Stokes equation, and equation (2.2.37) represents the continuity
condition. A is referred to as area since it has a dimension of cm2, but within the context of the 2D ROM A is
a substitution for R2. The area of a cross section, computed as∫ 2π

0

∫ R

0
r dr dϕ=

∫ 2π

0

1

2
R2 dϕ= 1

2

∫ 2π

0
A dϕ,

shows that A should have been substituted with 1
2 R2, not R2. Hence, the actual flow rate within a cross sec-

tion is computed as 1
2

∫ 2π
0 Q dϕ.

H can be diagonalized by LHR =Λ, where

R =
[

1 1
λ1 λ2

]
, Λ=

[
λ1 0
0 λ2

]
and L = R−1 = 1

λ2 −λ1

[
λ2 −1
−λ1 1

]
.

The asymmetric flow model will be applied with periodic boundary conditions{
q(t , x,0) = q(t , x,2π),

γ(t , x,0) = γ(t , x,2π),

an axisymmetric velocity at the inlet

Q(t , xin,ϕ) = vi n(t )A(t , xin,ϕ) (2.2.38)

and the fluid resistance boundary condition at the outlet

P (t , xout,ϕ) = Pres +Q(t , xin,ϕ)Rres. (2.2.39)

For testing the numerical accuracy of the model, we will also apply an axisymmetric pressure at the inlet

P (t ,0,ϕ) = Pin(t ), (2.2.40)

and a non-reflective boundary condition at the outlet [18]

l1(q)

(
∂t q−

[
0

sx + sϕ

])
= 0 for x = xout (2.2.41)

where l1 is the left eigenvalue of H corresponding to λ1 < 0.
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2.2.4. Numerical methods
Finite volume methods will be applied to develop numerical methods for the 2D ROM the asymmetric flow
model. Finite volume methods are based on Leveque’s book [12]. The two-dimensional domain (Figure 2.3)
is discretized in a structured mesh with nx number of columns (or discretized cross-sections) and nϕ number
of rows (or cells within a cross-section). Each cell has a width of ∆x = 1.5/nx cm and a height of ∆ϕ= 2π/nϕ.
Cell Ci , j refers to the i -th row and j -th column (see Figure 2.6). An

i , j refers to the average area across cell Ci , j

at time t = n∆t , where ∆t is the time step size.

Figure 2.6: Two-dimensional structured mesh. nx refers to the number of discretized cross-sections (or columns), and nϕ refers to the
number of cells within a cross-section (or rows).

To develop a numerical method for the asymmetric flow model, equations (2.2.36) and (2.2.37) will be solved
separately. Separating these equations leads to a splitting error. Dimensional splitting will be applied to de-
velop numerical methods for equation (2.2.36) since the numerical method already has a splitting error. By
applying Godunov splitting, the full problem is split into the sub-problems

Problem A:

∂t q =
[

0 sϕ
]T

,

∂tγ= 0,

Problem B:

∂t q+H(q;γ,β)∂x q =
[

0 sx
]T

,

∂tγ= 0,

Problem C: ∂ϕg (q) = 0.

Each problem will be solved within one iteration. An iteration starts by simulating Problem A, proceeds by
solving Problem B analytically, and ends by changing γ to satisfy Problem C. Problem A uses the values of
q and γ at the beginning of the time step, Problem B uses the value of q and γ after simulating problem A,
and Problem C uses the value of q and γ after solving Problem B. Each of these problems will be discussed
separately.

Problem A
In this problem, flow rate for the first intermediate state (Qn+1/3

i , j ) will be obtained by performing a ϕ-sweep.

Problem A is identical to 
∂t A = 0,

∂t Q = sϕ = h(A,γ)Q,

∂tγ= 0,

(2.2.42)

where

h = 2
µ

ρ

γ+2

γA

(
− γ+2

4

(∂ϕA)2

A2 + 1

2

∂2
ϕA

A
+ (γ−1)∂ϕγ

γ2

∂ϕA

A
− 2

γ3 (∂ϕγ)2 + 1

γ2 ∂
2
ϕγ

)
.

25



2.2. 2D Reduced order model 2. Method

Since A and γ do not change in time within this problem, h can be considered a constant, and this problem
has the analytical solution

Qn+1/3
i , j =Qn

i , j eh∆t . (2.2.43)

The solution of this problem depends on the discretization of ∂ϕA, ∂2
ϕA, ∂ϕγ and ∂2

ϕγ. Central difference
approximations are applied, which yields

∂ϕ fi , j =
− fi , j−1 + fi , j+1

2∆ϕ
, (2.2.44)

∂2
ϕ fi , j =

fi , j−1 −2 fi , j + fi , j+1

∆ϕ2 , (2.2.45)

where f can be substituted with either A or γ.

Problem B
In this problem, area and flow rate for the second intermediate state qn+2/3

i , j will be obtained by performing

an x-sweep. Problem B is identical to

∂t q+H(q;γ,β)∂x q = [
0 sx]T

, (2.2.46)

where both γ and β are independent of t . A high-resolution method will be applied. Cell averages for the next
intermediate step are computed as

qn+1
i , j = qn

i , j −
∆t

∆x

(
A +

i− 1
2 , j

+A −
i+ 1

2

)
− ∆t

∆x

(
F̃i+ 1

2 , j − F̃i− 1
2 , j

)
+∆t sx

i , j

where A +
i+ 1

2 , j
and A −

i+ 1
2 , j

are fluctuations, F̃i+ 1
2 , j limited second-order correction terms, and

sx
i , j = sx (An

i , j ,Qn
i , j ,γn

i , j )

is the discretized source term. Both fluctuations and second-order correction terms are obtained by lineariz-
ing the matrix H at the cell interface (x,ϕ) = (xi+1/2,ϕ j ). At an internal cell interface, H is linearized as

Ĥi+ 1
2 , j =

 0 1

R̂i+ 1
2 , j

β̂
i+ 1

2 , j

2ρA0
− α̂(ûi+ 1

2 , j )2 2α̂i+ 1
2 , j ûi+ 1

2 , j


where the averages are evaluated as

ûi+ 1
2 , j =

Qi+1, jp
Ai+1, j

+ Qi , jp
Ai , j√

Ai+1, j +
√

Ai , j
,

R̂i+ 1
2 , j =

2

3

Ai+1, j +
√

Ai+1, j Ai+1, j + Ai , j√
Ai+1, j +

√
Ai+1, j

,

β̂i+ 1
2 , j =

βi+1, j +βi , j

2
,

α̂i+ 1
2 , j =

γi+1, j +γi , j +4

γi+1, j +γi , j +2
.

This linearization is identical to Roe’s linearization ifβ andγ are constant (see Appendix C). Roe’s linearization
cannot be applied if either β or γ is not a constant since equation (2.2.46) does not have a compact form.
After linearizing H into Ĥ at cell interfaces, the jump discontinuities W p

i+ 1
2 , j

are computed as described in

equation (1.4.3). Fluctuations are computed according to the upwind method (1.4.14). Lax-Wendroff (1.4.17)
in conjunction with van Leer limiter (1.4.18) is applied for the limited second-order correction term.

26



2.2. 2D Reduced order model 2. Method

Fluxes at the boundary
Dealing with fluxes at the inlet and outlet slightly differs from internal fluxes. The values of A, Q and γ are
known at each boundary and used to linearize H . Ghost cells are incorporated to store the values of q outside
the domain. Only one ghost cell is necessary outside each boundary. Ghost cells left of the inlet is evaluated
as

qn
iin− 1

2 , j
= 2qn

iin, j −qn
iin+ 1

2 , j

and right of the outlet as
qn

iout+ 1
2 , j

= 2qn
iout, j −qn

iout− 1
2 , j

.

W p at each boundary are evaluated identical to internal cell interfaces (see (1.4.3)) once ghost cells are eval-
uated and H is linearized. The upwind method is forced for waves entering and leaving the domain.

Values at the boundary must be updated every timestep. An axisymmetric velocity boundary condition is
applied at the inlet (2.2.38) and the fluid resistance boundary condition (2.1.1) is applied at the outlet. Com-
patibility conditions at the inlet (1.3.24) and outlet (1.3.25) are applied to obtain both the flow rate and area
at each boundary. The eigenvalues and eigenvectors from the previous timestep will be used since the matrix
H is linearized, which yields the compatibility conditions

l1(qn−1
iin, j )

(
∂t qn

iin, j +λ1(qn−1
iin, j )∂x qn

iin, j −
[

0 sx (qn
iin, j )

]T
)
= 0 for x = xin, (2.2.47)

l2(qn−1
iout, j )

(
∂t qn

iout, j +λ2(qn−1
iout, j )∂x qn

iout, j −
[

0 sx (qn
iout, j )

]T
)
= 0 for x = xout. (2.2.48)

By applying forward discretization for both temporal and spatial derivatives, the inlet compatibility condition
is discretized as

λ2(qn−1
iin, j )An+1

iin, j −Qn+1
iin, j =

[
λ2(qn−1

iin, j ) −1
][

An
iin, j

Qn
iin, j +∆t sx (qn

iin, j )

]
−2

λ1(qn−1
iin, j )∆t

∆x

An
iin, j − An

iin+ 1
2 , j

Qn
iin, j −Qn

iin+ 1
2 , j

 (2.2.49)

By substituting the velocity boundary condition
(
Qn+1

iin, j = vn+1
j An+1

iin, j

)
, area for the new time step is computed

as

An+1
iin, j =

1

λ2(qn−1
iin, j )− vn+1

j

[
λ2(qn−1

iin, j ) −1
][

An
iin, j

Qn
iin, j +∆t sx (qn

iin, j )

]
−2

λ1(qn−1
iin, j )∆t

∆x

An
iin, j − An

iin+ 1
2 , j

Qn
iin, j −Qn

iin+ 1
2 , j


By applying forward discretization for time and backward discretization for space, the outlet compatibility
condition is discretized as

λ1(qn−1
iout, j )An+1

iout, j −Qn+1
iout, j = c1, (2.2.50)

where

c1 =
[
λ1(qn−1

iout, j ) −1
][

An
iout, j

Qn
iout, j +∆t sx (qn

iout, j )

]
−2

λ2(qn−1
iout, j )∆t

∆x

An
iout− 1

2 , j
− An

iout, j

Qn
iout− 1

2 , j
−Qn

iout, j

 .

Substituting the fluid resistance boundary condition into the linear elastic deformation model (1.3.15) yields

An
iout, j =

(√
A0 + (P n

iout, j −P0)
A0

βiout, j

)2

=
(√

A0 + (Pres −P0)
A0

βiout, j
+Qn

iout, j Rres
A0

βiout, j

)2

= a2

(
Qn

iout, j

)2 +b2Qn
iout, j + c2, (2.2.51)

where

a2 =
(
Rres

A0

βiout, j

)2

,

b2 = 2Rres
A0

βiout, j

(√
A0 + (Pres −P0)

A0

βiout, j

)
,

c2 =
(√

A0 + (Pres −P0)
A0

βiout, j

)2

.
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Substituting (2.2.51) into (2.2.50) leads to the quadratic equationλ1a2(Qn+1
iout, j )2+(λ1b2−1)Qn+1

iout, j+λ1c2−c1 = 0.

This equation has two solutions. The solution

Qn+1
iout,j

= (1−λ1b2)−
√

(λ1b2 −1)2 −4λ1a2(λ1c2 − c1)

2λ1a2

gives physiological results and is used to update the flow rate at the outlet.

The 2D ROM will also be precribed with pressure at the inlet (2.2.40) and the non-reflective boundary con-
dition at the outlet for testing purposes. These boundary conditions must also be discretized and connected
with the compatibility conditions. From the linear deformation model (1.3.15), we obtain

An+1
iin, j =

(
A0

β
Pin((n +1)∆t )+

√
A0

)2

. (2.2.52)

Qn+1
iin, j is obtained by substituting (2.2.52) into (2.2.49). The non-reflective boundary condition is for Problem

B identical to

l1(q)

(
∂t q−

[
0
sx

])
= 0 for x = xout (2.2.53)

By applying forward discretization for the time derivative, the non-reflective boundary condition is discretized
as

Qn+1
iout, j =Qn

iout, j +λ2(qn−1
iout, j )

(
An+1

iout, j − An
iout, j

)
+∆t sx (qn−1). (2.2.54)

Substituting (2.2.54) in (2.2.50) yields

An+1
iout, j = An

iout, j −
2λ2(qn−1

iout, j )∆t

(λ2(qn−1
iout, j )−λ1(qn−1

iout, j ))∆x

[
−λ1(qn−1

iout, j ) 1
]An

iout, j − An
iout− 1

2 , j

Qn
iout, j −Qn

iout− 1
2 , j

 .

Discretization of ∂xγ and ∂xβ

∂xβ and ∂xγ need to be discretized for the source terms for Problem B. ∂xβ is set to its analytical value. ∂xγ

is discretized with central difference approximation (2.2.44) for cells that are not located at the boundary or
not adjacent to the boundary. ∂xγ is discretized at the inlet with the first-order forward discretization

∂xγ
n
1
2 , j

= 2
γn

1
2 , j

−γn
1, j

∆x
,

and discretized at the outlet with the first-order backward discretization

∂xγ
n
nx+ 1

2 , j
= 2

γn
nx , j −γn

nx+ 1
2 , j

∆x
.

These discretizations are first-order accurate and do not incorporate ghost cells. For the cell adjacent to the
inlet, ∂xγ is discretized as

∂xγ
n
1, j =

−4γn
1
2 , j

+3γn
1, j +γn

2, j

3∆x

where γn
1
2 , j

is γ at the inlet. For the cell adjacent to the outlet ∂xγ is discretized as

∂xγ
n
nx , j =

−γn
nx−1, j −3γn

nx , j +4γn
nx+ 1

2 , j

3∆x

where γn
nx+ 1

2 , j
is γ at the outlet. These discretizations are second-order accurate and do not incorporate

ghost cells. Ghost cells are avoided for the discretization of ∂xγ since the continuity condition (2.2.37) is not
satisfied for ghost cells.
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Problem C
In this problem, the continuity condition (2.2.4) will be satisfied at the end of each iteration after simulating
the Navier-Stokes equation in 2D. Problem C is identical to

∂ϕ

(
γ+2

γ

Q

A

)
= 0.

Problem C does not have a unique solution. By integrating both sides with respect to ϕ, we obtain

γ+2

γ

Q

A
= D

where D = vx |r=0 does not depend on ϕ. Our approach to satisfy the continuity condition is to first decide a
value for D within each cross section and then correct γ as

γi , j =
2ui , j

Di −ui , j
(2.2.55)

where ui , j =Qi , j /Ai , j . Three different ways to compute D have been considered.

1) Averaging D is computed as the average

Di = 1

nϕ

nϕ∑
j=1

Di , j , Di , j := γavg +2

γavg
ui , j , (2.2.56)

where γavg is determined in advance. γn
i , j = γavg leads to an axisymmetric velocity profile. Since a

parabolic velocity profile is applied at the inlet, γavg is set to 2 within this study. From studying the 2D
ROM numerically by averaging D , the following was observed:

• Averaging applied to an axial velocity close to 0 m/s leads to negative values for γ if calcification is
incorporated.

• γ can obtain negative values if the range of axial velocity within a cross-section is extensive.

2) Maximizing D is computed as the maximum

Di = max
j

Di , j , Di , j := γi , j +2

γi , j
ui , j , (2.2.57)

Maximizing D has the following properties:

• γ remains strictly positive if axial velocity within a cross-section is strictly positive.

• γ cannot increase if axial velocity within a cross-section is strictly positive.

These two properties are verified from equation (2.2.55). If axial velocity within a cross-section is strictly
positive (or strictly negative), sgn(Di , j ) = sgn(ui , j ), and if |Di , j | < |ui , j | (to ensure that γ is strictly posi-
tive), we obtain

γi , j =
2ui , j

Di , j −ui , j
≥ 2ui , j

max
j

{Di , j }−ui , j
> 0.

These properties were observed by simulating the 2D ROM with calcification and can lead to infinites-
imal axial velocity if the calcification is too severe. As a result, obtaining D by maximizing should be
avoided.

3) Minimization D is obtained by minimizing

fi :=∑
j

∥∥∥vc
i , j (y)− vi , j (y)

∥∥∥
L2(0,1)

where vc
i , j (y) is the corrected velocity profile

vc
i , j (y) = Di (1− y

γc
i , j ), γc

i , j =
2ui , j

Di −ui , j
> 0,
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and

vi , j (y) = γi , j +2

γi , j
ui , j (1− yγi , j )

is the velocity profile before correcting γ. Essentially, γ will be corrected by minimizing the distance
between the current velocity profiles and the corrected velocity profiles that satisfy the continuity con-
dition.

This minimization problem is solved by using mathlab’s built-in function fmincon. fmincon severely
increased the simulation time. The minimization problem was avoided as a consequence. Obtaining D
from solving the minimization problem could be used if terms obtained from the problematic integral
(2.2.32) could be neglected.

The 2D numerical method cannot deal with zero velocity. Updating γ according to equation (2.2.55) leads
to γ = 0 when the velocity is zero within a cross section. γ = 0 is not within the solution space since the 2D
Navier-Stokes equation (2.2.36) and the continuity condition (2.2.37) are singular for γ = 0. Remark that the
normalization property

∫ 1
0 y s(y,γ)d y = 1

2 cannot even be satisfied for γ ↓ 0 since lim
γ↓0

s(y,γ) ≡ 0.

Problem C is being solved heuristically. Problem C is akin to conserving mass for the 3D Navier-Stokes equa-
tion within a rigid body. Only satisfying the balance of momentum equation leads to velocity that does not
conserve mass. A pressure-correction method can be applied for the 3D Navier-Stokes equation [5] to satisfy
the conservation of mass equation. Predictor-corrector methods, similar to the pressure-correction method
for the Navier-Stokes equations, should more accurately simulate the 2D ROM.

Dealing with discontinuities
The described numerical methods cannot properly deal with discontinuities in β. However, medial calcifica-
tion will be modeled as

β=
{
βC for (x,ϕ) ∈ IC ,

βH for (x,ϕ) ∉ IC ,

where IC = [x1, x2]× [ϕ1,ϕ2] ⊂Ω is a rectangular calcified region and βC /βH contains mechanical properties
of calcification/healthy artery respectively. A modeling error is made by smoothing the discontinuity to sim-
ulate blood flow with medial calcification. This smoothing process is done one-way, by letting the smooth
transition only occur in the healthy region of the artery. Let ∆ξ be the length of the smooth transition, and let

d(x, IC ) = min
(y,θ)∈IC

√(
x − y

ξx

)2

+
(
ϕ−θ
ξϕ

)2

be a mapping that measures the distance between x ∈Ω and IC , in which ξx and ξϕ are strictly positive scalars
determined in advanced. For every (x,ϕ) ∈Ω, there exist a unique (xmin,ϕmin) ∈ IC such that

d(x, IC ) =
√(

x −xmin

ξx

)2

+
(
ϕ−ϕmin

ξϕ

)2

. (2.2.58)

Furthermore, xmin and ϕmin
1 are determined as

xmin =


x1 for x ≤ x1,

x for x1 < x ≤ x2,

x2 for x2 ≤ x,

and ϕmin =


ϕ1 for ϕ≤ϕ1,

ϕ for ϕ1 <ϕ≤ϕ2,

ϕ2 for ϕ2 ≤ϕ.

The one-way smooth transition βT : [0,∆ξ] → [βH ,βC ] is the decreasing mapping

βT(ξ) = βH +βC

2
− βH −βC

2
cos

(
πξ

∆ξ

)
. (2.2.59)

1ϕmin is determined without caring about wrapping. This only works if calcification in placed in the center of the azimuthal domain.
Due to periodic boundary conditions, ϕ can always be translated to centralize the calcification.
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Calcification with the one-way smooth transition error is evaluated as

β(x) =


βC for d(x, IC) = 0,

βT(d(x, IC)) for 0 < d(x, IC) <∆ξ,

βH for d(x, IC) ≥∆ξ,

(2.2.60)

and has the derivative

∂xβ(x) =


0 for d(x, IC) = 0,

(ξx )−2 x−xmin
d(x,IC )

π
∆ξ

βH−βC
2 sin

(
πd(x,IC )
∆ξ

)
for 0 < d(x, IC) <∆ξ,

0 for d(x, IC) ≥∆ξ.

(2.2.61)

Except for unique cases ∆ξ will be set to 1. The smoothening area depends on the variables ξx and ξϕ. β(x) is
sketched in Figure 2.7.

Figure 2.7: Sketch of β(x) by smoothening the jump discontinuity. The dotted line shows the boundary of the calcified area IC and the
dashed line is parameterized by d(x, IC ) = 1. βH , βT , and βC contain mechanical properties of the artery within the healthy, smoothen-
ing, and calcified regions, respectively.

2.2.5. Steady-state solutions
The last course of action for the 2D ROM is investigating steady-state solutions. A system of differential equa-
tions is said to be steady if time does not affect the system’s state. Hence, the asymmetric flow model is steady
if ∂t A = ∂t Q = ∂tγ = 0. The steady-state solution depends on the boundary condition applied at the sys-
tem. Two steady-state problems will be investigated for the asymmetric flow model since two sets boundary
conditions are studied.

Prescribe pressure at the inlet
By applying pressure at the inlet and the non-reflective boundary condition at the outlet, the asymmetric flow
model has the following steady-state problem:
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Find A ∈C 2(Ω), Q ∈C 1(Ω) and γ ∈C 2(Ω) such that

H(q,γ;β)∂x q =
[

0

sx + sϕ

]
,

∂ϕ(g (q,γ)) = 0,

A =
(p

A0 + (Pin −P0) A0
β

)2
for x = 0,

sx + sϕ = 0 for x = xout,

q|ϕ=0 = q|ϕ=2π,

γ|ϕ=0 = γ|ϕ=2π.

(2.2.62)

The conservation of mass equation is steady if ∂xQ = 0, and the non-reflective boundary condition is steady
if Q = 0 for x = xout. Combining these two equations leads to a vanishing volumetric flow rate for the steady
state problem (2.2.62). For Q = 0, the balance of momentum equation is steady if ∂x P = 0. By applying the
linear elastic deformation model, a steady-state solution is found for (2.2.62) if Q = 0 and

A(x,ϕ) =
(√

Ain(ϕ)
β(0,ϕ)

β(x,ϕ)
+

√
A0

(
1− β(0,ϕ)

β(x,ϕ)

))2

. (2.2.63)

This steady-state solution is not unique within the solution space, since this steady state solution is satisfied
for all γ ∈C 2(Ω). However, the shape of the velocity profile does not affect blood flow for Q = 0.

Prescribe velocity at the inlet
By prescribing mean axial velocity at the inlet and the fluid resistance boundary condition (2.1.1) at the outlet,
the asymmetric flow model has the following steady-state problem:

Find A ∈C 2(Ω), Q ∈C 1(Ω) and γ ∈C 2(Ω) such that

H(q,γ;β)∂x q =
[

0

sx + sϕ

]
,

∂ϕ(g (q,γ)) = 0,

Q = vin A for x = 0,

P0 +
p

A−pA0
A0

β= Pres +QRres for x = xout,

q|ϕ=0 = q|ϕ=2π,

γ|ϕ=0 = γ|ϕ=2π.

(2.2.64)

A steady state solution can be obtained for (2.2.64) if ∂xβ= 0 within an axisymmetric setting, i.e. A, Q, γ and
β are independent of ϕ. In these settings and by taking γ= 2, equation (2.2.64) is reduced into

∂xQ = 0,(
β
p

A

2ρA0
− 4

3

Q2

A2

)
∂x A =−8

µ

ρ

Q

A
, (2.2.65)

A = Ain(Q) := Q

vin
for x = xin, (2.2.66)

A = Aout(Q) :=
(√

A0 + (Pres −P0)
A0

β
+QRres

A0

β

)2

for x = xout. (2.2.67)

An analytical expression for the steady-state problem of the balance of momentum equation (2.2.65) can be
found by applying separation of variables, which yields∫ x

0

(
β

2ρA0
A

3
2 − 4

3

Q2

A

)
∂x A d x =−

∫ x

0
8
µ

ρ
Q d x

=⇒ β

5ρA0

(
A

5
2 (x)− A

5
2
in(Q)

)
− 4

3
Q2 (ln A(x)− ln Ain(Q)) =−8

µ

ρ
Qx. (2.2.68)
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Satisfying (2.2.68) for x = xout yields

β

5ρA0

(
A

5
2
out(Q)− A

5
2
in(Q)

)
− 4

3
Q2 (ln Aout(Q)− ln Ain(Q)) =−8

µ

ρ
Qxout. (2.2.69)

Q is the only unknown in (2.2.69), however Q cannot be obtained analytically. Once if Q is known, A(x) can be
obtained numerically from (2.2.68). The steady-state solution of the balance of momentum equation (2.2.68)
will be used to determine the numerical error.

Steady-state solutions are obtained numerically with A0 = 0.0625 cm2 (R0 = 0.25 cm), ρ = 1.060 g/cm3, µ =
0.03 P (0.003 Pa·s), vin = 8.41199 cm/s, P0 = 0 kPa, Pres = 9330 Pa and Rres = 1.358 E9 Pa s / m3, β = 4

3 Eh,
h = 0.05 cm and E = 0.6 MPa. Incorporating matlab’s built in function ‘vpasolve’ to solve (2.2.68) and (2.2.69)
numerically yields two real solutions. One steady-state solution leads to a volumetric flow rate of 1398 cm3/s
and inner wall radii larger than 27500 cm. This non-physiological solution has been neglected from this study.
The other steady-state solution has a volumetric flow rate of 0.5982 cm3/s. It is depicted in Figure 2.81. The
physiological steady-state solution is obtained with a maximum error of 5.392E-13.

Figure 2.8: Steady-state solutions without calcification by prescribing mean axial velocity at the inlet. A = R2 corresponds to the steady-
state solution in the 2D framework.

2.3. 3D simulations
Simulations in 3D will be used as a benchmark to determine the accuracy of the 2D ROM. The open-source
finite element software package FEBio (version 2.8.1) [13] is utilized to conduct 3D FSI simulations. FEBio
incorporates biphasic-theory, that allows for flow within a porous medium. As a consequence, fluids used for
FSI simulations within FEBio have a fluid and a solid component, leading to fluid and solid meshes. How-
ever, FEBio only includes the solid mesh. The fluid mesh is related with the solid mesh by incorporating a
fluid ‘bulk modulus’. Readers interested in FEBio are advised to read [13] and [24].

This section describes the process of constructing an FSI model and performing simulations in FEBio.

2.3.1. Mesh
The artery consists of two parts: the lumen and the vascular wall. Both parts are discretized as structured
meshes. The lumen is created as a cylinder with a radius of 0.25 cm and a height of 1.5 cm. A wedge-centered
mesh is constructed with a ratio of 0.5, 12 slices (azimuthal domain is split into 48 parts), 15 segments (radial
domain is split into 15 parts), 120 stacks (axial dimension is split into 120 parts), a z-bias of 1 (all stacks
have an equal size), and an r-bias of 1 (all segments have an equal size). The mesh is shown in Figure 2.9a.
The vascular wall has a thickness of 0.05 cm and is split into three segments (see figure 2.9b). No sensitivity
analysis has been conducted on this mesh. Hence, results from the 3D simulations should be taken with a
grain of salt.

1Values within the steady-state solutions are given within the context of the 2D ROM.

33



2.3. 3D simulations 2. Method

(a) Lumen (b) Vascular wall

Figure 2.9: Mesh used in FEBio

2.3.2. Calcification
Calcification is applied for z ∈ [0.5,1]1, which is located in the middle of the artery. If calcification is applied,
it is either applied axially (see Figure 2.10a) or locally for ϕ ∈ [ 3

4π, 5
4π] (see Figure 2.10b). Only the tunica

media is calcified for medial calcification, whereas all layers within the vascular wall are calcified within the
2D and 3D models. The 3D model calcifies all layers because the 2D ROM cannot apply Young’s modulus
across different layers in the vascular wall.

(a) Axisymmetric calcification (b) Local calcification

Figure 2.10: Calcification of vascular wall. Yellow and purple colored elements are vascular tissue and calcification.

2.3.3. Materials
Blood in FEBio is configured identically to Ramya’s study [20]. Blood is modeled as a fluid-FSI material, con-
taining a solid and fluid parts. The solid part of blood is modeled as a Neo-Hookean model, with a density of
0 kg/m3, a Young’s modulus of 1e-15 Pa, and a Poison ratio of 0. The fluid part of blood has a density of 1060
kg/m3 and a bulk modulus of 2.2e9 Pa. Its viscosity is modeled as a Newtonian fluid, with a bulk viscocity of
0 Pa s, and a shear viscosity of 0.0035 Pa s.

The linear elastic model will be used to model the three dimensional deformations due to its simplicity while
also being used to research calcification [1]. The vascular wall is modeled as a linear isotropic elastic material.
Both healthy tissue and calcification have a density of 1000 kg/m3 and a Poisson’s ratio of 0.48. Healthy tissue
has a Young’s modulus of 0.6 MPa whereas calcification has a Young’s modulus of 10 MPa [1].

1The z-axis is the axial coordinate in FEBio. The 2D and 1D ROM described in this paper uses the x-axis as axial coordinate.
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2.3.4. Boundary conditions
A parabolic velocity profile will be applied at the inlet and a fluid resistance boundary condition will be ap-
plied at the outlet. The load curve

l (t ; tstart, tend, ystart, yend) =


ystart for t < 0,
yend+ystart

2 − yend−ystart
2 cos

(
π t−tstart

tend−tstart

)
for tstart < t < tend,

yend for t > tend,

(2.3.1)

where tstart = 0, tend = 0.2, ystart = 0 and yend = 1 is applied to Pres and Rres. This load curve is multiplied with
Pres and Rres to ensure that Pres(t ) and Rres(t ) are slowly increasing, which prevents elements to become non-
physiological.

The kinematic and dynamic coupling conditions also need to be implemented. Applying a non-slip bound-
ary condition is sufficient for the kinematic coupling condition. A zero fluid velocity boundary condition is
applied to every node that is an element of both lumen and the vascular wall. The dynamic coupling condi-
tion is applied as a fluid-FSI tranction load to every faces that is an element of both lumen and the vascular
wall.

Assumption 1 Radial displacement will also be implemented. This is done by adding a zero y-displacement to
every node in the vascular wall with an x position of 0 and a zero x-displacement to every node in the vascular
wall with a y position of 0.

The last set of boundary conditions are incorporated to ensure that the 2D mesh can be reconstructed with
the 3D mesh. This is done by adding a zero z-displacement to all nodes and a zero x-displacement and a zero
y-displacement to every node within the artery’s origin, i.e., every node with an x-position and a y-position of
zero.

2.3.5. Simulation
The simulation has a time step size of 0.001s. All remaining properties are identical to FEBio’s default setting.
The following tables depict all simulation configurations.

Table 2.1: Common control parameters

Parameter Value
analysis DYNAMIC
time_steps 2592
step_size 0.001 s
adaptor_resolve 1
Auto time stepper (none)

Table 2.2: Common solver parameters

Parameter Value
dtol 0.001
vtol 0.001
ftol 0.001
etol 0.01
rtol 0.001
rhoi (none)
predictor 0
min_volume_ratio 0
order 2
linear_solver (none)
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Table 2.3: Linear system parameters

Parameter Value
matrix format preferred
equation_scheme default
optimize_bw false

Table 2.4: Line search parameters

Parameter Value
lstol 0.9
lsmin 0.01
lsiter 5
ls_check_jacobians false

Table 2.5: Nonlinear solver parameters

Parameter Value
max_refs 5
check_zero_diagonal false
zero_diagonal_tol 0
force_partition 0
reform_each_rime_step false
reform_augment false
diverge_reform false
min_residual 1e-20
max_residual 1e20

Table 2.6: Quasi-Newton solver parameters

Parameter Value
Quasi-Newton method Broydon
max_ups 50
max_buffer_size 0
cycle_buffer true
cmax 1e5
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3
Results

This chapter uses three different calcification models to discuss the 2D and 3D simulation results. Unless
stated otherwise, all calcification models have identical properties except for the location of calcification (IC ).
All arteries have a length of 1.5 cm and a reference radius of 0.25 cm (A0 = 0.0625 cm2). Their walls have a
thickness of 0.05 cm, a Poisson’s ratio of 0.48, and a Young’s modulus of either 0.6 MPa if (x,ϕ) ∉ IC or 10 MPa
if (x,ϕ) ∈ IC . IC depends on the calcification model. This study focuses on the following three calcification
models:

Model 1 No calcification: IC =∅.

Model 2 Axisymmetric calcification: IC = [0.5,1]× [0,2π].

Model 3 Local calcification: IC = [0.5,1]× [ 3
4π, 5

4π
]

.

This chapter starts by investigating 2D simulations without pulsatile flow, in which each calcification model
is discussed in a separate section. It then proceeds to compare 2D and 3D simulations with pulsatile flow.

3.1. Simulations without calcification
This section focuses on 2D simulations without calcification and without a pulsatile flow. The 2D model be-
comes axisymmetric once the inlet and calcification models are axisymmetric. The 1D theory will be applied
to determine how well the 2D numerical method solves a 1D problem.

3.1.1. Upwind, Lax-Wendroff, and high-resolution methods
The x-sweep is simulated by a high-resolution method, which combines the upwind method as a lower-order
method and Lax-Wendroff as a higher-order correction (see Problem B in Section 2.2.4). In this section, we
will verify if the three methods yield the expected results from theory. The numerical methods for the upwind
and Lax-Wendroff are obtained by applying the high-resolution method while fixing the limiter function to 0
or 1, respectively.

Theory dictates that the upwind method is first-order accurate and that the Lax Wendroff is second-order
accurate, which leads to numerical diffusion for the upwind method and numerical dispersion for the Lax-
Wendroff method. These traits also occur for the 2D simulations with the following specifications:
- nx = 60 ·2r and ∆x = 1.5/nx = 0.025 ·2−r cm where r ∈ {0,1,2,3,4,5,6}.
- ∆t = 17.5 ·2−r µs where r ∈ {0,1,2,3,4,5,6}.
- nϕ = 24.
- Initial solution: A|t=0 = A0 and Q|t=0 = 0 cm3/s.
- A pressure block pulse at the inlet described as

Pin(t ) =
{

10 kPa for 0 ≤ t < 0.3 ms,

0 kPa for t ≥ 0.3 ms.
(3.1.1)
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Figures 3.1 shows the simulation at t = 0.46 ms and Figure 3.2 shows the simulation at t = 1.3 ms. The pulse
block wave propagates from the inlet towards the outlet for all simulations. The speed of the pulse block is
identical across the three numerical schemes. For the upwind method, the pulse block diffuses. The diffusion
is less noticeable for larger values of nx than lower values. The pulse block wave shows numerical dispersion
for the Lax-Wendroff; wiggles are formed on the left side of each jump discontinuity since the pulse block
wave is moving right. The magnitude of these wiggles increases as nx increases. The high-resolution method
will be used for all future simulations. This numerical scheme diffuses less than the upwind method without
showing signs of wiggles.

(a) nx = 60

(b) nx = 120

(c) nx = 240

(d) nx = 480
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(e) nx = 960

(f) nx = 1920

(g) nx = 3840

Figure 3.1: Simulations for the upwind, Lax-Wendroff, and high-resolution method at t = 0.46ms. nx denotes the total number of discrete
cross-sections.

3.1.2. Numerical stability
Theory dictates that the high-resolution method applied to a linear hyperbolic problem is stable if the Courant
number is smaller than or equal to 1 [12]. In this section, we will study the stability of the high-resolution
method applied to the 2D ROM without calcification. The following numerical specifications are used:
- A|t=0 = A0 and Q|t=0 = 0 as initial solution.
- A pressure of 10 kPa at the inlet and non-reflective boundary conditions at the outlet.
- nx = 60 (∆x = 0.25 mm).
- nϕ = 1 (since the system is axisymmetric).
- 10µs ≤∆t ≤ 40µs, with a step-size of 0.1 µs.
- Simulated for 8 ms. This is enough time for the wave from the inlet to propagate to the outlet, back to the
inlet, and then back to the outlet.

Figure 3.3 shows how the maximum observed Courant number depends on ∆t . The numerical method re-
mains stable if ∆t ≤ 23.2µs, which leads to a Courant number less than or equal to 0.999. The maximum
observed Courant number depends linearly on∆t for∆t ≤ 21.5µs. The maximum observed Courant number
oscillates for ∆t between 21.5 µs and 23.2 µs. The numerical method was unstable for ∆t ≥ 23.3µs.

The discretization of the boundary and compatibility conditions at the inlet leads to an oscillating right-
going wave if ∆t is too large (see Figure 3.4a). However, the amplitude of this oscillating wave reduces if the
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Courant number is smaller than 1 (see Figure 3.4b) and increases if the Courant number is significantly larger
than 1 (see Figure 3.5). The right-going wave did not oscilate for ∆t ≤ 1.5µs (see Figure 3.6). Oscillations in
maximum Courant number (see in Figure 3.3 for∆t between 21.5 µs and 23.2 µs) most likely occur due to the
right-going oscillating waves not being damped before reaching the outflow boundary condition. In those
cases, the maximum observed Courant number depends on how the oscillating wave reaches the outflow
boundary condition.

3.1.3. Steady-state solutions
Lastly, we will verify if the numerical method for the 2D ROM can obtain a steady-state solution and how
accurate the steady-state solution is obtained. Steady-state solutions are numerically obtained by simulating

(a) nx = 60

(b) nx = 120

(c) nx = 240

(d) nx = 480
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(e) nx = 960

(f) n=1920

(g) nx = 3840

Figure 3.2: Simulations for the upwind, Lax-Wendroff, and high-resolution method at t = 1.3ms. nx denotes the total number of discrete
cross-sections.

Figure 3.3: Maximum observed Courant number dependent on timestep size (no calcification).

the time dependent problem until the margin of error is small enough. Numerical steady-state solutions
are studied for two different sets of boundary conditions. The first set of boundary conditions combines a
fixed pressure of 10 kPa at the inlet with a non-reflective boundary condition at the outlet. The second set of
boundary conditions prescribes a fixed mean axial velocity of 8.41199 cm/s at the inlet and a fluid resistance
boundary condition (2.1.1) at the outlet with Pres = 9330 Pa and Rres = 1.358 E9 Pa s / m3. A mean axial velocity
of 8.41199 cm/s is used since this velocity is the minimum prescribed velocity for simulations with pulsatile
flow (see Figure 2.2). The following numerical specifications are used:
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(a) 15th iteration

(b) 30 iteration

Figure 3.4: Blood flow without calcification simulated with a time step size of 22.5 µs.

(a) 15th iteration

(b) 30 iteration

Figure 3.5: Blood flow without calcification simulated with a time step size of 24.5 µs.

- A|t=0 = A0 and Q|t=0 = 0 as initial solution.
- nx ∈ {30,60,90,120,150,180,210,240}.
- nϕ = 1 (since the system is axisymmetric).
- ∆t = 22 ·60/nx µs (such that the Courant number is independent of nx ).
- Simulations stops if four stopping criteria have been satisfied with ε= 10−4. The first three stopping criteria
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Figure 3.6: The 15th iteration of blood flow without calcification simulated with a time step size of 15 µs.

are denoted as

max
i , j

{∣∣∣∣∣ An
i , j − An−1

i , j

An−1
i , j

∣∣∣∣∣
}
< ε, (3.1.2)

max
i , j

{∣∣∣Qn
i , j −Qn−1

i , j

∣∣∣}< ε, (3.1.3)

∆ϕ

2

∣∣∣∣∣∑
j

Qin, j −
∑

j
Qout, j

∣∣∣∣∣< ε. (3.1.4)

The first two stopping criteria ensure that the simulation has reached numerical convergence. The third
criterion ensures that mass is preserved within the artery. In the 2D ROM A has been substituted with R2, not
1
2 R2. Hence, flow rate within a cross-section is computed as

∑
j ∆ϕ

1
2 ui , j R2

i , j =
∆ϕ

2

∑
j Qi , j . The fourth stopping

criterion depends on which boundary conditions are applied since the steady-state solution depends on the
boundary condition. With the first set of boundary conditions, the fourth stopping criterion becomes

max

{∣∣∣∣∣∆ϕ2 ∑
j

Qin, j

∣∣∣∣∣ ,

∣∣∣∣∣∆ϕ2 ∑
j

Qout, j

∣∣∣∣∣
}
< ε. (3.1.5)

With the second set of boundary conditions, the analytical expression for the steady-state solution (2.2.68) is
applied to obtain the fourth stopping criteria

max
i

{
β

5ρA0

(
(An

i )
5
2 − (An

in)
5
2

)
− 4

3
(Qn

i )2 (
ln An

i − ln An
in

)+8
µ

ρ
Qn

i xi

}
< ε. (3.1.6)

Stopping criterion (3.1.6) is only valid if β is constant across the artery. Hence, it can only be applied to
steady-state solutions without calcification. Stopping criteria (3.1.3), (3.1.4) and (3.1.5) are computed with an
absolute error since flow rate vanishes for the analytical steady-state solution.

Prescribed pressure at inlet
Independent of the choice of nx , A(x) is constant across the artery (with an inner wall radius of 0.2516 cm)
in the numerical steady-state solution if no calcification is present. The numerical steady-state solution is
identical to the analytical solution (2.2.63).

Prescribed velocity at inlet
Steady-state solutions without calcification and with a prescribed fixed mean velocity at the inlet are depicted
in Figure 3.7. Like the analytical steady-state solution shown in Figure 2.8, the numerical steady-state solu-
tion of A is a decreasing function. The steady-state solution of Q should be a constant. However, due to
the stopping criteria, the numerical methods have been stopped before Q is constant. Hence, the numerical
steady-state solution has an error of ε= 10−4.

These simulation starts with an initial area A|t=0 = A0 and an initial flow rate of Q|t=0 = 0 cm3/s, while pre-
scribing a pressure of Pres = 9330 Pa at the outlet (due to the fluid resistance boundary condition). An initial
area of A0 leads to a pressure within the artery lower than the pressure prescribed at the outflow boundary
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(a) Area

(b) Flow rate

Figure 3.7: Steady-state solution without calcification with a mean velocity of 8.412 cm/s is prescribed at the inlet. nx is the number of
discrete cross-sections .

condition. These simulations start with a left-going wave at the outlet with a positive displacement and a
negative flow rate since pressure differences propagate blood flow (see Figure 3.8). The left-going wave with
a negative flow rate is irrelevant to the steady-state solution without calcification. However, it influences how
the steady-state solution with local calcification is obtained (see Section 3.3).

3.2. Simulations with axisymmetric calcification
The 2D ROM with axisymmetric calcification, axisymmetric inflow, and axisymmetric outflow leads to ax-
isymmetric blood flow, where A and Q are independent of ϕ. Hence, 2D simulations with these settings are
effectively 1D simulations. By incorporating axisymmetry, there is a jump discontinuity in β. The numeri-
cal method deals with this discontinuity by smoothing the discontinuity across several cells (see Figure 2.7).
However, the 2D ROM does not have a compact form within those smoothening regions, which leads to nu-
merical errors. The error of the numerical steady-state solution can depend on the smoothening length ( ξx

for axisymmetric calcification) and the number of cells within the smoothening length (ξx /∆x for axisym-
metric calcification).

This section focuses on how well the high-resolution method can deal with axisymmetric calcification. The
section starts by discussing issues by prescribing a fixed pressure at the inlet, proceeds by investigating how
accurately the high-resolution method obtains the steady-state solution of blood flow with axisymmetric cal-
cification, and ends by examining when the numerical method is stable.

3.2.1. Simulations with fixed inlet
The high-resolution methods, which are applied to simulate the x-sweep, should be able to deal with discon-
tinuities in A and Q. However, the 2D numerical method fails to converge with the following specifications:
- A|t=0 = A0 and Q|t=0 = 0 as initial solution.
- nx = 60 and nϕ = 1.
- ∆t = 6.25µs.
- A fixed pressure of 10 kPa at the inlet and the non-reflective boundary condition at the outlet.
- β(x,ϕ) set as (2.2.60) with ∆ξ = 1 and ξx = 1/4. ξϕ does not affect the metric d (2.2.58) in an axisymmetric
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(a) Area

(b) Flow rate

Figure 3.8: Simulation at t = 176µs with a mean velocity of 8.412 cm/s is prescribed at the inlet.

setting.

Both A and Q oscillate during this simulation due to wave reflections from the inlet and when the right-going
wave reaches the calcified area. The amplitude of these oscillations increases and eventually leads to a neg-
ative area (see Figure 3.9). Oscillations in the 2D numerical methods are prevented by applying a load curve
(2.3.1). The location where A becomes negative lies within the region where the discontinuity in the artery’s
Young’s modulus is smoothing out. Error within the 2D simulations are mainly located in this smoothening
region.

The 2D numerical methods is convergent by changing the boundary conditions to a fixed mean velocity (uin)
of 8.41199 cm/s and a fluid resistance boundary condition (2.1.1), with Pres = 9330 Pa and Rres = 1.358 E9 Pa
s / m3. However, steady-state solutions with axisymmetric calcification can be obtained faster by applying a
load curve to Pres and uin. These steady-state solutions will be studied in the following section.

3.2.2. Steady-state solutions
This section investigates how well the high-resolution method deals with axisymmetric calcification by inves-
tigating numerical steady-state solutions. Steady-state solutions are numerically obtained by simulating the
time dependent problem until the margin of error is small enough. Steady-state solutions will be obtained for
two different sets of boundary conditions. The first set of boundary conditions prescribes pressure at the inlet
and applies a non-reflective boundary condition at the outlet. The second set prescribes a mean axial veloc-
ity of 8.41199 cm/s at the inlet and incorporates the fluid resistance boundary condition (2.1.1) at the outlet,
with Pres = 9330 Pa and Rres = 1.358 E9 Pa s / m3. Except for the choice of boundary conditions, steady-state
solutions with axisymmetric calcification have been obtained with the following numerical specification:
- A|t=0 = A0 and Q|t=0 = 0 as initial solution.
- nx = 30 · r for r ∈ {1,2,3,4,5,6,7,8}.
- nϕ = 1 (since the system is axisymmetric).
- ∆t = 6.25 ·60/nx µs (such that the Courant number is independent of nx ).
- β(x,ϕ) set as (2.2.60) with ∆ξ= 1 and ξx either 1/4 or 5∆x.
- The stopping criteria depend on the boundary conditions applied on the 2D ROM. The stopping criteria
(3.1.2), (3.1.3) and (3.1.4) are always applied independent of the choice of boundary condition. The stopping
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(a) Area

(b) Flow rate

Figure 3.9: Negative area obtained from simulation with axisymmetric calcification and a fixed pressure of 10 kPa at the inlet.

criterion (3.1.5) is added if pressure is prescribed as an inlet boundary condition.

Discontinuous Young’s modulus
Simulations with a discontinuous Young’s modulus are done by fixing ∆ξ to 0; in all other cases, ∆ξ is set to
1. Similar to the simulations without calcification, the numerical method obtains a steady state where A is
constant (with Ai ≈ 6.328 mm2). However, this numerical steady-state solution is incorrect (see Figure 3.10).
The analytical solution shows that A should be lower in the calcified region. The numerical method cannot
obtain correct solutions if β is discontinuous. ∂xβ = 0 for the numerical method in the discontinuous case
since ∂xβ is set to its analytical value at the center of the cells. Consequently, the numerical method cannot
deal with the jump discontinuity at cell interfaces. We advise the reader to study the papers of Toro and
Siviglia [26] and Pimentel-García et al. [17] for numerical methods for blood flow that deal with discontinuous
mechanical properties of arteries.

Continuous Young’s modulus and prescribing pressure at the inlet
The numerical steady-state solutions with ξx = 1

4 and a pressure boundary condition of 1 kPa are depicted in
Figure 3.11. For nx = 30 · r , the number of cells that fit into the smoothening region of 0.25 cm is precisely 5r
cells. The choice of nx does not significantly affect A within the numerical steady-state solution (see Figure
(3.11a)). Q is constant for the analytical steady-state solution. However, Q is not constant for the numerical
steady-state solution (see Figure 3.11b). The numerical steady-state solution shows visible bumps and dents
where the artery’s elasticity is not constant. Errors within the numerical solutions in the smoothening region
can be expected since the 2D ROM has no compact form in those regions. The size of these humps and dents
decreases as ∆x decreases.
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(a) Area

(b) Flow rate

Figure 3.10: Analytical and numerical steady-state solutions with discontinuous E and 1 kPa pressure as inlet boundary condition.

(a) Area

(b) Flow rate

Figure 3.11: Steady-state solutions with axisymmetric calcification, ξx = 1
4 and 1 kPa pressure applied at the inlet. nx is the number of

discrete cross-sections.

For the numerical analysis, error will be computed as
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εQ = max
i , j

Q −min
i , j

Q, (3.2.1)

ε2 =
∥A− ASteady∥2

∥ASteady∥2
, and (3.2.2)

ε∞ = ∥A− ASteady∥∞
∥ASteady∥∞

, (3.2.3)

where AStead y the analytical steady-state solution (2.2.63) corresponding to Q = 0. These numerical errors are
depicted in Figure 3.12 and Table 3.1. The least squares method yields that ε2 =O (∆x1.500), ε∞ =O (∆x0.9386),
and εQ = O (∆x1.374). Figure (3.12) indicates that ε2, ε∞ and εQ are well approximated. Regression analysis
shows that the approximation of ε2, ε∞, and εQ have a correlation coefficient of 0.9990, 0.9840, and 0.9961,
respectively. All errors are well approximated since these correlation coefficients are close to 1.

(a) Error = ε2 (b) Error = ε∞ (c) Error = εQ

Figure 3.12: Numerical error in log scale from simulations with a fixed smooth transition length and prescribed pressure at the inlet.

Table 3.1: Numerical error with a fixed smooth transition length and applying pressure at the inlet.

nx ε2 ε∞ εQ

30 143.9 E-6 37.37 E-5 39.48 E-2
60 55.75 E-6 15.57 E-5 13.82 E-2
90 30.62 E-6 9.207 E-5 6.827 E-2

120 20.17 E-6 8.586 E-5 4.938 E-2
150 14.62 E-6 7.866 E-5 3.760 E-2
180 10.53 E-6 6.624 E-5 3.076 E-2
210 8.064 E-6 5.470 E-5 2.607 E-2
240 6.352 E-6 4.522 E-5 2.273 E-2

Table 3.1 and Figure 3.12c show that the approximated error is not a very good fit even though εQ is ap-
proximated with a correlation coefficient of 0.9961. εQ roughly decreases three-fold by doubling nx from 30
to 60, whereas εQ roughly decreases two-fold by doubling nx from 120 to 240. Hence, approximated error εQ

cannot be extrapolated for large values of nx . Table 3.1 might indicate that εQ = O (∆x) for small values for
∆x. However, additional simulations are needed to confirm this.

Steady-state solutions will be investigated by setting ξx = 5∆x and increasing the pressure at the inlet to 10
kPa. For nx = 30, the smoothening region has a size of ξx = 5∆x = 1

4 cm, identical to the smoothening region
corresponding to the steady-state solutions depicted in Figure (3.11). The steady-state solutions are depicted
in Figure (3.13) and their numerical errors are depicted in Table 3.2.

The steady-state solutions clearly show that area and flow rate are constant outside of the smoothening area,
while they are not constant inside of the smoothening area. Table 3.2 shows that εQ and ε∞ are independent
of∆x, indicating that εQ and ε∞ depend on the number of cells in the smoothening area. ε2 still decreases as
∆x decreases, but clearly less the error with fixed ξx . Regression analysis shows that ε2 has a numerical error
of O (∆x0.3011) with a correlation coefficient of 0.9924.
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(a) Area

(b) Flow rate

Figure 3.13: Steady-state solutions with axisymmetric calcification, ξx = 5∆x and 10 kPa pressure applied at the inlet. nx is the number
of discrete cross-sections.

Table 3.2: Numerical error with ξx = 5∆x and applying pressure at the inlet.

nx ε2 ε∞ εQ

30 13.29 E-4 3.325 E-3 4.199
60 10.18 E-4 3.324 E-3 4.199
90 8.925 E-4 3.324 E-3 4.199

120 8.230 E-4 3.324 E-3 4.199
150 7.786 E-4 3.324 E-3 4.199
180 7.475 E-4 3.324 E-3 4.199
210 7.246 E-4 3.324 E-3 4.199
240 7.069 E-4 3.324 E-3 4.199

Decrease error in flow rate
All steady-state solutions in the preceding section are applied with the non-reflective boundary condition.
The analytical steady-state solution with the non-reflective boundary condition should have a flow rate of 0
cm3/s. However, Q is non-zero within the smoothening region for the numerical steady-state solutions (see
Figure (3.11b) and Figure (3.13b)). One possibility to decrease εQ is to change the smooth transition function
βT (2.2.59). βT (ξ) becomes an odd function after applying the transformation

ξ 7→βT

(
ξ− 1

2
∆ξ

)
−βT

(
1

2
∆ξ

)
= βH −βC

2
sin

(
πξ

∆ξ

)
,

whereβH andβC contain mechanical properties of a healthy artery and calcification. However, Figure (3.11b)
and Figure (3.13b) shows that the error in Q is larger near the healthy region of the artery than the calcified
region of the artery. Changing the smooth transition function βT such that the change within βT (ξ) is more
significant near the calcified region (ξ= 0) than the healthy region (ξ=∆ξ) could lower the error in εQ .

Continuous Young’s modulus and prescribing velocity at the inlet
In this section we will study the steady-state solution by smoothing out the discontinuity in the artery’s
Young’s modulus across several cells, by prescribing a mean axial velocity of 8.41199 cm/s at the inlet, and
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by applying the fluid resistance boundary condition (2.1.1) at the outlet, with Pres = 9330 Pa and Rres = 1.358
E9 Pa s / m3. The analytical steady station solution for this problem is not known. However, mass is conserved
if Q is constant across the artery. Hence, this section will only focus on the numerical error εQ (3.2.1). The
numerical steady-state solutions with ξx = 1

4 are shown in Figure 3.14, and with ξx = 5∆x are shown in Figure
3.15, whereas Table 3.3 depicts the error εQ .

(a) Area

(b) Flow rate

Figure 3.14: Steady-state solutions with axisymmetric calcification, ξx = 1
4 and 8.412 cm/s mean velocity applied at the inlet. nx is the

number of discrete cross-sections.

The numerical steady-state solution has many similar properties to the steady-state solution that prescribes
pressure at the inlet. Area and flow rate are (nearly) constant where ∂xβ = 0, and there are clear humps and
dents in flow rate where ∂xβ ̸= 0. For ξx = 1/4, A is independent of the choice of nx . εQ clearly decreases for
ξx = 1/4, while it remains relatively constant for ξx = 5∆x. The only clear difference between these steady-
state solutions and those obtained by pressure prescribed at the inlet is that blood flows for this numerical
steady-state solution. The least squares method for ξx = 1/4 even approximates the error εQ similar with
εQ = O (∆x1.374). Table 3.3 also indicates that the approximated error εQ is not a good fit. εQ for ξx = 1/4
roughly decreases three-fold by doubling nx from 30 to 60, whereas εQ roughly decreases two-fold by dou-
bling nx from 120 to 240. Hence, approximated error εQ cannot be extrapolated for large values of nx .

3.2.3. Numerical stability
Lastly, we will investigate how the Courant number influences the stability of the high-resolution method by
simulating blood flow with axisymmetric calcification. Numerical stability is studied by prescribing a mean
axial velocity uin of 8.41199 cm/s at the inlet and by applying the fluid resistance boundary condition (2.1.1)
at the outlet, with Pres = 9330 Pa and Rres = 1.358 E9 Pa s / m3. uin and Pres are multiplied with the load curve
l (t ;0, tend,0,1) (2.3.1), with tend = 8 ms, to prevent oscillations. The simulations are done with the following
numerical specifications:
- A|t=0 = A0 and Qt=0 = 0 as initial solution.
- nx = 60 (∆x = 0.25 mm).
- nϕ = 1.
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(a) Area

(b) Flow rate

Figure 3.15: Steady-state solutions with axisymmetric calcification, ξx = 5∆x and 8.412 cm/s mean velocity applied at the inlet. nx is the
number of discrete cross-sections.

- 1µs ≤∆t ≤ 10µs, with a step-size of 0.1 µs.
- β(x,ϕ) set as (2.2.60), with ∆ξ= 1 and ξx = 1

4 . ξϕ does not affect the metric d for axisymmetric calcification.
- Simulated until the stopping criteria (3.1.2), (3.1.3) and (3.1.4) are satisfied with ε= 10−3, or t > 0.5 s.

Figure 3.16: Maximum observed Courant number with axisymmetric calcification.

Figure 3.16 shows that the maximum observed Courant number depends linearly on the time step size. The
high-resolution method converges numerically if ∆t ≤ 7.3µs, and is unstable for ∆t ≥ 7.4µs. Courant num-
bers larger than 1 are observed with ∆t ≥ 6.9µs. The numerical method can still converge despite having
Courant numbers slightly larger than 1. This happens because the Courant number is much higher in the
calcified area, which is located in the middle of the artery. Once they leave the calcified area, the oscillating
waves are damped, stabilizing the numerical method for Courant numbers slightly larger than 1.
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Table 3.3: Numerical error from steady-state simulation by prescribing the velocity at the inlet.

nx εQ (ξx = 1/4) εQ (ξx = 5∆x)
30 4.259 4.259
60 1.515 4.266
90 0.7457 4.265

120 0.5362 4.264
150 0.4092 4.264
180 0.3330 4.250
210 0.2835 4.250
240 0.2464 4.251

3.3. Simulations with local calcification
Simulations with local calcification are asymmetrical. The continuity condition applied to the 2D ROM
(2.2.35) will affect blood flow with local calcification. This equation was superfluous for blood flow without
calcification and blood flow with axisymmetrical calcification since blood flow was axisymmetric. Several
issues can occur with the continuity condition by simulating blood flow with local calcification. This sec-
tion addresses the issues surrounding the continuity conditions and proceeds with investigating steady-state
solutions with local calcification.

3.3.1. Issues with continuity condition
The continuity condition ∂ϕvx |r=0 = 0 is satisfied if axial velocity within the artery’s origin does not depend on
ϕ. However, while simulating the 2D ROM with local calcification, it is possible that the continuity condition
cannot be satisfied. Recall that the 2D ROM only includes the family of velocity profiles s(y,γ) = γ+2

γ (1− yγ),
where y ∈ [0,1] is the rescaled radius and γ(t , x,ϕ) is a strictly positive function that influences the shape of
the velocity profile. By reducing axial velocity with these velocity profiles, the continuity condition is identical
to

vx |r=0 = u
γ+2

γ
, (3.3.1)

where vx |r=0 is independent of ϕ and u(t , x,ϕ) is the mean axial velocity. The continuity condition (3.3.1)

cannot be satisfied if |u| is larger than
∣∣∣vx |r=0

∣∣∣ or if sign of u is different than the sign of vx |r=0.

Example 1: pressure prescribed at the inlet and non-reflective boundary condition at the outlet
Simulating the 2D ROM with local calcification, A|t=0 = A0, Q|t=0 = 0, γ|t=0 = γ|x=0 = 2, P |x=0 = Pin > 0, and
non-reflective boundary condition at the outlet will be unable to satisfy the continuity condition after a cer-
tain amount of time. Simulations under these conditions start with a right-going wave at the inlet, while
there is no left-going wave at the outlet (see Figure 3.6). The speed of the right-going wave is identical to the
corresponding eigenvalue, which is larger within the calcified region than in the healthy region. This leads
to a cross-section with non-zero axial velocity within the calcified region and zero axial velocity within the
healthy region. The continuity condition (3.3.1) cannot be satisfied within this cross-section. Velocity pro-
files that have their maximum not located within the origin need to be included in the 2D ROM to simulate
this problem.

This problem can be alleviated by starting the simulation with a strictly positive volumetric flow rate and
applying a load curve (2.3.1) to Pin. However, the steady-state solution cannot be obtained by incorporat-
ing these fixes. Similar to simulations with axisymmetric calcification (see Figure 3.11b), simulations with
local calcification will also have humps and dents within the smoothening region. Q vanishes for the ana-
lytical steady-state solution with a non-reflective boundary condition at the outlet (2.2.63). As the numerical
method approaches the steady-state solution, axial velocity within the dents becomes negative, resulting in
cross-sections with positive and negative axial velocity. The continuity condition (3.3.1) cannot be satisfied
for these cross-sections. Velocity profiles that allow backflow need to be included in the 2D ROM to obtain
this steady-state solution numerically.
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Example 2: velocity prescribed at the inlet and fluid-resistance boundary condition at the outlet
Simulating the 2D ROM with local calcification, A|t=0 = A0, Q|t=0 = 0, γ|t=0 = γ|x=0 = 2, u|x=0 = uin = 8.41199
cm/s, and the fluid-resistance boundary condition (2.1.1), with Pres = 9330 Pa and Rres = 1.358 E9 Pa s / m3,
fails to satisfy the continuity condition (3.3.1) after a certain amount of time. This simulation starts with a
right-going wave with a strictly positive axial velocity at the inlet and a left-going wave with a strictly negative
axial velocity at the outlet (see Figure 3.8b). The location where these waves hit depends on the eigenval-
ues within the system since the speed of each wave depends on their corresponding eigenvalue. These waves
meet each other earlier within the calcified region than within the healthy region since eigenvalues within the
calcified region have larger magnitudes than within the healthy region. This leads to cross sections with pos-
itive and negative axial velocities, which cannot be satisfied with the velocity profiles included in the 2D ROM.

This problem can be alleviated by prescribing a load curve to uin and Pres, and by starting with a strictly pos-
itive volumetric flow rate to keep Q strictly positive at all times. The arduous task of finding a suitable load
curve and initial flow rate depends on the parameters of the fluid-resistance boundary conditions, which is
why we use a different strategy to obtain a steady-state solution with local calcification.

3.3.2. Steady-state solutions
Steady-state solutions for the 2D ROM are only obtained by prescribing a mean axial velocity at the inlet and
a fluid-resistance boundary condition at the outlet. Steady-state solutions for local calcification are numer-
ically obtained by taking the steady-state solution without calcification as an initial value and slowly adding
calcification. Calcification is added to the system by applying a load curve to β as

β(t , x,ϕ) = l (t ;0, tend,βWC(x,ϕ),βLC(x,ϕ)), (3.3.2)

where tend = 80 ms, βWC and βLC specify the mechanical properties without calcification and with local cal-
cification, respectively, and

l (t ; tstart, tend, ystart, yend) =


ystart for t < 0,
yend+ystart

2 − yend−ystart
2 cos

(
π t−tstart

tend−tstart

)
for tstart < t < tend,

yend for t > tend.

(2.3.1)

Remark that β depends on time does not affect the 2D ROM denoted in (2.2.36) and (2.2.37) and ∂tβ = 0 for
t > tend.

With this approach, the steady-state solution can be obtained numerically, given that the velocity profiles
incorporated in the 2D ROM can replicate the analytical steady-state solution. The numerical steady-state
solution without calcification has a strictly positive flow rate (see 3.7b). The numerical steady-state solution
with axisymmetric calcification has a negative flow rate if ξx /∆x (the number of cells within the smoothening
region) is less than or equal to 10 (see 3.14b). The numerical method fails to obtain a steady-state solution
with local calcification if ξx /∆x ≤ 10. It fails because cross-sections within the numerical steady-state solu-
tion have positive and negative axial velocity; thus, the continuity condition (3.3.1) cannot be satisfied.

In this section will only focus on obtaining steady-state solutions with the following specifications:
- Mean axial velocity of 8.41199 cm/s prescribed at the inlet.
- Pres = 9330 Pa and Rres = 1.358 E9 Pa s / m3 (see fluid-resistance boundary condition (2.1.1)).
- nx = 120 and nϕ ∈ {12,24,36,48,60,72,84,96}.
- βLC set as (2.2.60), with ξx = 1

4 and ξϕ either 1
2π or 3∆ϕ. Remark that for nϕ = 12, 3∆ϕ= 3 ·2π/12 = 1

2π.
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- The simulation stops once the following stopping criteria are satisfied with ε= 10−4:

max
i , j

{ |An
i , j − An−1

i , j |
|An−1

i , j |

}
< ε, (3.1.2)

max
i , j

{ |Qn
in, j −Qn−1

inj |
|Qn−1

in, j |

}
< ε, (3.3.3)

max
i , j

{ |Qn
out, j −Qn−1

outj |
|Qn−1

out, j |

}
< ε, (3.3.4)

∆ϕ

2

∣∣∣∣∣∑
j

Qin, j −
∑

j
Qout, j

∣∣∣∣∣< ε. (3.1.4)

The stopping criteria (3.1.2) and (3.1.4) have also been applied to obtain steady-state solutions without cal-
cification and with axisymmetric calcification. The stopping criteria (3.3.3) and (3.3.4) have replaced the
stopping criterion (3.1.3). Criterion (3.1.3) is not satisfied within the smoothening region for some simula-
tions, so we currently only satisfy its relative counterpart at the inlet and the outlet.

Table 3.4 shows how the error εQ (3.2.1) depends on ξϕ and nϕ. This table indicates that ξϕ/∆ϕ should be as
small as possible to minimize εQ . By fixing ξϕ to π/2, εQ obtains its minimum if nϕ = 12, while it increases
and decreases as nϕ increases. For ξϕ = 3∆ϕ, εQ oscillates between 0.5349 and 0.5448. For nϕ divisible by 24,
the calcification area IC = [0.5,1]×[ 3

4π, 5
4π

]
is well meshed, i.e. the boundary of the calcified region is located

at cell interfaces. While for nϕ mod 24 = 12, the boundary of the calcified region goes through the center of
some cells. As a consequence, βwithin the smoothening region is significantly different between nϕ divisible
by 24 and nϕ mod 24 = 12, which explains the oscillatory behavior for ξϕ = 3∆ϕ. εQ with ξϕ = 3∆ϕ is slightly
smaller for nϕ mod 24 = 12.

Table 3.4: Numerical error from steady-state simulation with local calcification. nϕ is the number of cells within a cross-section, ∆ϕ =
2π/nϕ is the height of a cell, and ξϕ is a parameter that influences the smoothening region (see Figure 2.7).

nϕ εQ (ξϕ =π/2) εQ (ξϕ = 3∆ϕ)
12 0.5349 0.5349
24 0.6933 0.5447
36 0.8052 0.5349
48 0.6657 0.5448
60 0.6230 0.5350
72 0.6928 0.5448
84 0.7423 0.5350
96 0.7775 0.5448

Surprisingly, for ξϕ = π/2 εQ does not decrease as ∆ϕ decreases. It can very well be that εQ depends sig-
nificantly more on ξx /∆x than ξϕ/∆ϕ. However, Table 3.4 only gives minor information about the numer-
ical steady-state solutions. The analytical steady-state solutions are not even known for these simulations.
Steady-state solutions for ξϕ =π/2, for (ξϕ,nϕ) = (3∆ϕ,84), for (ξϕ,nϕ) = (π/2,96), and for (ξϕ,nϕ) = (3∆ϕ,96)
are depicted in Figure 3.17, Figure 3.18, Figure 3.19, and Figure 3.20 as heatmaps to study the numerical
steady-state solutions more appropriately.

Figure 3.17 shows the inner wall radius within the numerical steady-state solutions. The inner wall radius
is (nearly) constant within the healthy and calcified regions. Its maximum is located in the healthy region,
and its minimum is in the calcified region. The inner wall radius increases in the smoothening region as the
distance d (2.2.58) increases.

Figure 3.18 shows the volumetric flow rate within the numerical steady-state solutions. Q is nearly constant
where ∂xβ= 0, i.e., in the healthy region, the smoothening region where x ∈ (0.5,1), and the calcified region.
At the same time, it has a dent in the smoothening region for x < 0.5 and a hump in the smoothening region
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(a) nϕ = 12 ξϕ =π/2. (b) nϕ = 84 ξϕ = 3∆ϕ.

(c) nϕ = 96 ξϕ =π/2. (d) nϕ = 96 ξϕ = 3∆ϕ.

Figure 3.17: Inner wall radius within steady-state solutions with local calcification. nϕ is the number of cells within a cross-section,
∆ϕ= 2π/nϕ is the height of a cell, and ξϕ is a parameter that influences the smoothening region (see Figure 2.7).

(a) nϕ = 12, ξϕ =π/2. (b) nϕ = 84, ξϕ = 3∆ϕ.

(c) nϕ = 96, ξϕ =π/2. (d) nϕ = 96, ξϕ = 3∆ϕ.

Figure 3.18: Volumetric flow rate within steady-state solutions with local calcification. nϕ is the number of cells within a cross-section,
∆ϕ= 2π/nϕ is the height of a cell, and ξϕ is a parameter that influences the smoothening region (see Figure 2.7).
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(a) nϕ = 12, ξϕ =π/2. (b) nϕ = 84, ξϕ = 3∆ϕ.

(c) nϕ = 96, ξϕ =π/2. (d) nϕ = 96, ξϕ = 3∆ϕ.

Figure 3.19: γ within steady-state solutions with local calcification. nϕ is the number of cells within a cross-section, ∆ϕ= 2π/nϕ is the
height of a cell, and ξϕ is a parameter that influences the smoothening region (see Figure 2.7).

(a) nϕ = 12, ξϕ =π/2. (b) nϕ = 84, ξϕ = 3∆ϕ.

(c) nϕ = 96, ξϕ =π/2. (d) nϕ = 96, ξϕ = 3∆ϕ.

Figure 3.20: Pressure within steady-state solutions with local calcification. nϕ is the number of cells within a cross-section, ∆ϕ= 2π/nϕ
is the height of a cell, and ξϕ is a parameter that influences the smoothening region (see Figure 2.7).
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for x > 1. Information obtained from simulations without calcification and with calcification can be extended
to explain this. For ϕ< 3

4π−ξϕ and ϕ> 5
4π+ξϕ, ∂xβ= 0 and thus flow rate without calcification shows that

Q is nearly constant for the numerical steady-state solutions without calcification (Figure (3.7b)). The solu-
tions behave similarly to the solution with axisymmetric calcification for ϕ ∈ ( 3

4π−ξϕ, 5
4π+ξϕ). That is, Q is

constant where ∂xβ= 0, while has dents where ∂xβ> 0 and humps where ∂xβ< 0.

Figure 3.19 displays γ within the numerical steady-state solutions. Since R and Q are known, γ is computed
with R and Q by equations (2.2.55) and (2.2.56), where γavg = 2. γ is (nearly) constant in cross sections with-
out calcification, i.e., x < 0.5− ξx and x > 1+ ξx , since R and Q are constant within those cross sections.
For 0.5 < x < 1, γ is only dependent R since Q is nearly constant. γ attains its largest value where R is large
(healthy region), whereas it attains its smallest value where R is small (calcified region). For 0.5−ξx < x < 0.5
and 1 < x < 1+ξx γ is heavily affected by the humps and dents in Q. For 0.5−ξx < x < 0.5, Q has a dent within
the smoothening region, which leads to lower values of γ within the smoothening region and higher values
of γ in the healthy region. For 1 < x < 1+ξx , Q has a hump within the smoothening region, which leads to
higher values of γ within the smoothening region and lower values of γ in the healthy region.

Figure 3.20 displays pressure within the numerical steady-state solutions computed by (2.2.1), with P0 = 0
Pa and R0 = 0.25 cm. Pressure seems nearly constant inside the calcified and healthy area, with a higher value
inside the calcified area than inside the healthy area. Pressure within the smoothening region is dubious. For
ϕ ∈ ( 3

4π−ξϕ, 5
4π+ξϕ), β is independent on ϕ, and the artery has a pressure drop in the smoothening region

adjacent to the healthy region. These pressure drops are most likely linked to the humps and dents in flow
rate since blood flow is propagated through pressure differences.

Figure 3.20d shows that pressure undergoes oscillation within the smoothening regions despite the inner
wall radius and β being smooth. This oscillatory behavior could be linked to how the 2D numerical method
performs the ϕ-sweep. The ϕ-sweep solves the problem analytically (see (2.2.43)), however the analytical so-
lution still depend on ∂ϕA and ∂ϕγ. Within finite volume methods, it is advised to incorporate fluxes to deal
with first-order derivatives [12]. However, the analytical solution is used since theϕ-sweep yields a triple-zero
eigenvalue. It is more likely that β within the smoothening region should be computed differently to prevent
these oscillations.

From the simulations performed, the simulation with nϕ = 84 and ξϕ = 3∆ϕ should be used to emulate blood
flow with local calcification. The smoothening region is relatively small, while oscillations do not occur. How-
ever, simulations with ξx = 3∆ϕ for nϕ = 84 and nϕ = 96 include an artifact in pressure. There is a clear spike
in pressure in certain regions within the healthy area (see Figure 3.20d and Figure 3.21).

Figure 3.21: Pressure adjacent to the inlet for steady-state solutions with local calcification, nϕ = 96 and ξϕ = 3∆ϕ.
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3.4. Simulations with pulsatile flow
In the previous section, we only looked into simulations where velocity or pressure is fixed (after a certain
amount of time) at the inlet. This section will study and compare 2D- and 3D simulations for a pulsatile flow.
The parabolic mean axial velocity prescribed at the inlet is shown in Figure 3.22.

Figure 3.22: Mean axial velocity applied at the inlet for pulsatile flow.

The 2D and 3D simulations are performed differently. Their key differences are depicted in Table 3.5. The
3D simulations are performed with FEBio, which uses finite element methods in their simulation, while the
2D ROM is simulated with finite volume methods. The type of simulation affects the time step size. The 2D
ROM incorporates an explicit time integration scheme, which has to satisfy the CFL condition. FEBio incor-
porates an implicit time integration scheme that allows for a time step size of 1 ms, the time step size for the
data shown in Figure (3.22). Linear interpolation is used to obtain the mean axial velocity between two data
points for the 2D simulation.

Table 3.5: Differences between 3D- and 2D simulation set up.

Simulation 3D 2D
Numerical solver Finite element methods Finite volume methods

Time integration method Implicit Explicit
Time step size 1000 µs 3.125 µs

Pres 9330 Pa 7205.2 Pa
Qres 1.358 E9 Pa s / m3 5.7817 E9 Pa s / m3

Change in Young’s modulus Discontinuous Smooth
Velocity applied at inlet (for t < 0) See Figure 3.22 Obtain steady-state solution

The properties of the fluid resistance boundary condition are set up differently between the two simula-
tions. The fluid resistance boundary condition is set up such that the systolic pressure should be 120 mmHg
(≈ 16.00 kPa) and the diastolic pressure should be 80 mmHg (≈ 10.67 kPa). For the 3D simulation Pres and Rres

chosen identically to [20]. The 2D simulations have lower volumetric flow rates than 3D simulations. Due to
the fluid resistance boundary condition, a lower flow rate leads to a lower pressure range within the simula-
tion. Values of Pres and Qres have been fitted for the 2D ROM to match systolic and diastolic pressure of 16.00
kPa and 10.67 kPa.

The most significant difference between the 3D and 2D simulations is modeling the artery’s Young’s modu-
lus. The 3D model has jump discontinuity in the artery’s Young’s modulus. This jump discontinuity has been
smoothed out for the 2D model. The smoothening process is computed by (2.2.60), where ∆ξ = 1, ξx = 1/4
and ξϕ = 3

8π. Remark that these simulations were performed before the research within Section 3.3. A differ-
ent choice for ξϕ would better match the 3D simulations.

The least significant difference is how the initial value (state at t = 0) is obtained. The 3D simulation ap-
plies a load curve (2.3.1) to Rres, Qres and incorporates a mean axial velocity depicted in Figure 3.22. The 2D
ROM starts the simulation with pulsatile flow by taking the steady-state solution as an initial condition.
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This section starts with studying the simulations without calcification and proceeds to simulations with ax-
isymmetric calcification and local calcification. These simulations focus on the results of 15 different cells,
where i ∈ {1,39,61,82,120} and j ∈ {4,15,25} (see Figure 2.6 for the 2D mesh). i = 1 and i = 120 are the columns
neighboring the inlet and outlet. i = 61 is the column in the middle of the calcified area (if present). There is
only one column between i = 39/i = 82 and the calcified area (if present). The rows are only relevant for the
local calcification model. j = 25 is a row in the middle of the calcified area, j = 15 is located in the middle of
the smooth transition, and j = 4 is far outside the calcified area.

3.4.1. No Calcification
Simulation of blood flow without calcification are shown in Figure (3.23), Figure (3.24) and Figure (3.25).
Pressure within the last periodic cycle is between the range of 16.09 kPa and 12.03 kPa for the 3D simulation
(see Figure 3.23a) and between 15.88 kPa and 10.66 kPa for the 2D simulation (see Figure 3.23b). The 3D
simulation overshoots the diastolic pressure by 1.36 kPa. The diastolic pressure for the 2D simulation and
systolic pressure are sufficiently close to the specified target. The pressure difference across the artery seems
neglectable. The maximum pressure difference is 43.59 Pa for the 3D simulation and 39.52 Pa for the 2D sim-
ulation.

(a) 3D (b) 2D

Figure 3.23: Pressure observed for the 3D and 2D simulations without calcification.

(a) 3D (b) 2D

Figure 3.24: Inner wall radius observed for the 3D and 2D simulations without calcification.

The inner wall radius for the 3D simulation is about 70 µm higher during the 2D simulation. The inner
wall radius has a range between 0.2822 cm and 0.2740 cm for the 3D simulation (see Figure 3.24a) and a
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range between 0.2748 cm and 0.2677 cm for the 2D simulation (see Figure 3.23b). The maximum observed
fluctuation radius (for a fixed time) is 0.8342µm for the 3D simulation and is 0.7056µm for the 2D simulation.

Velocity profiles are shown Figure 3.25 at three different times. The maximum velocity at the inlet occurs at
t = 1.692 s, the second local minimum (for the third periodic cycle) occurs at t = 1.884 s, and the simulation
ends at t = 2.393 s. Figure 3.25a and Figure 3.25b indicates that information travels faster in the 2D simu-
lation. These figures show that the velocity profile across the artery is nearly identical to the 2D simulation.
Meanwhile, 3D simulations have different velocity profiles across the artery. The larger the distance between
the measured cells and the inlet, the more each velocity profile lags behind the inlet. At time t = 2.393 s, the
inlet has been constant for enough time that all velocity profiles are nearly identical.

(a) t = 1692 ms (b) t = 1884 ms

(c) t = 2393 ms (d) legend

Figure 3.25: Velocity profile observed for the 3D and 2D simulations without calcification.

Table 3.6 shows the volumetric flow rate at each cross section i for the 3D and 2D simulation. The volu-
metric flow rate in the 3D simulation is numerically obtained with Matlab’s ‘trapsz’. The volumetric flow rate
within for 2D simulation is evaluated as 1

2

∑
j

Qi , j , since A has been substituted with R2 (not 1
2 R2). The vol-

umetric flow rate is about 5% higher in the 3D simulation. Mass within the artery seems to be conserved at
time t = 2.393 s for both simulations.

Figure 3.26 shows the relative error (in 2-norm) between the velocity profile from the 3D simulation and
its closest velocity profile included in the 2D ROM (see (2.2.2) where u is computed with the least squares
method). Figure 3.26a and Figure 3.26b clearly show that not all velocity profiles in the 3D simulations
are parabolic. For t = 1.692 the 3D velocity profiles becomes more flat (γ→ ∞) as i increases, whereas for
t = 1.884 they become more linear (γ ↓ 1) as i increases. For t = 2.393 s, all 3D velocity profiles are parabolic.
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Table 3.6: Flow rate Q(t , xi ) in cm3/s observed from the 3D and 2D simulation without calcification.

t (in s) Simulation i = 1 i = 39 i = 61 i = 82 i = 120

1.693
3D 4.959 4.954 4.950 4.945 4.936
2D 4.725 4.721 4.719 4.716 4.711

1.884
3D 2.754 2.756 2.758 2.760 2.763
2D 2.622 2.624 2.625 2.626 2.628

2.393
3D 1.974 1.974 1.974 1.974 1.974
2D 1.879 1.879 1.879 1.879 1.879

(a) t = 1692 ms (b) t = 1884 ms

(c) t = 2393 ms (d) Legend

Figure 3.26: Relative error measured between the velocity profiles obtained from the 3D simulations without calcification and its closest
velocity profile allowed in the 2D ROM.

3.4.2. Axisymmetric Calcification
Simulation of blood flow with axisymmetric calcification are shown in Figure 3.27, Figure 3.28 and Figure
3.29. Pressure has a range between 16.10 kPa and 12.00 kPa for the 3D simulation (see Figure 3.27a) and a
range between 16.21 kPa and 10.66 kPa (see Figure 3.27b). For the 3D simulation, the arterial pressure ob-
served with axisymmetric calcification is comparable to that without calcification. The 2D simulation with
axisymmetric calcification overshoots pressure near and in the calcified area. Pressure near the inlet and out-
let is comparable to pressure without calcification. This phenomenon most likely occurs since the 2D model
smooths the jump discontinuity of the artery’s Young’s modulus over 10 cells. The pressure difference (at a
fixed time during the third cycle) is 56.07 Pa and 244.0 Pa for the 3D and 2D simulations. The pressure dif-
ference is much higher for the 2D ROM since the 2D simulation overshoots pressure in and near the calcified
area.

The inner wall radius of the 3D and 2D simulations are depicted in Figure 3.28. The radii at the inlet and
outlet with axisymmetric calcification are comparable with radii without calcification for both simulations.
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(a) 3D (b) 2D

Figure 3.27: Pressure observed for the 3D and 2D simulations with axisymmetric calcification.

The inner wall radius inside the calcified area is significantly smaller (with a maximum fluctuation of 52.31
µm) than the inner wall radius near the calcified area for the 3D simulation. However, for the 2D simulation,
the inner radius inside of the calcified area is slightly lower (with a maximum fluctuation of 0.22 µm) than the
radius near the calcified region. This difference between the 3D and 2D simulation is a direct consequence of
different Young’s modulus near the calcified region between the 3D model and the 2D ROM.

(a) 3D (b) 2D

Figure 3.28: Inner wall radius observed for the 3D and 2D simulations with axisymmetric calcification.

The velocity profile for each cell is depicted in Figure 3.29 at three different times, and their corresponding
flow rate is depicted in Table 3.7. The 2D velocity profiles are parabolic; the inlet and outlet velocity profiles
are comparable and have a lower mean axial velocity than those near and in the calcified area. For the 3D sim-
ulation, the velocity at the artery’s origin is always higher near and in the calcified region. Counterintuitive
to our judgment, the volumetric flow rate at the inlet is lower at t = 1.693 s and (slightly) higher at t = 1.884 s
to the volumetric flow rate at the outlet. They are both similar at t = 2.393 s, indicating that mass is (almost)
conserved within the artery at the end of the simulation. Remark that the 2D simulation always has dents
in the volumetric flow rate before the calcified region and humps after the calcified region. The actual flow
rate at i = 39 and i = 82 should be higher and lower than the simulated flow rate. Flow rates within the 3D
simulation are about 1.89% ∼ 6.69% larger than flow rates within the 2D simulation.

Relative error (in 2-norm) between the velocity profile obtained in the 3D simulation and its closest approx-
imated velocity profile included in the 2D ROM are shown in Figure 3.30. These figures show that not all
velocity profiles within the 3D simulation are parabolic. The velocity profiles in and near the calcified area

62



3.4. Simulations with pulsatile flow 3. Results

(a) t = 1692 ms (b) t = 1884 ms

(c) t = 2393 ms (d) legend

Figure 3.29: Velocity profile observed for the 3D and 2D simulations with axisymmetric calcification.

have become more flat (γ→∞). The velocity profile at the outlet becomes more flat at t = 1.692 s and more
linear (γ ↓ 1) at t = 1.884 s and t = 2.393 s. The velocity profiles at the inlet are parabolic since a parabolic
velocity profile is prescribed at the inlet.

3.4.3. Local Calcification
Simulation of blood flow with local calcification is shown in figures 3.31 - 3.35. Pressure within the 3D sim-
ulation with local calcification (see Figure 3.31) is similar to pressure without calcification (see Figure 3.23).
For the 2D simulation, pressure is only similar to the pressure without calcification if the artery’s Young’s
modulus is equal to the Young’s modulus of a healthy artery. In cases where the artery’s Young’s modulus is
higher than a healthy artery’s Young’s modulus, pressure either is too high ( j = 25, i ∈ {39,61,82}) or too low
( j = 15, i ∈ {39,61,82}). Remark that for the 2D simulation, pressure for j = 4 is similar to pressure without
calcification, and pressure for j = 25 is identical to pressure with axisymmetrical calcification.

From section 3.3.2 we know that pressure can have oscillations in the smoothening region where ϕ ∈ ( 3
4π−

Table 3.7: Flow rate Q(t , xi ) in cm3/s observed from the 3D and 2D simulation with axisymmetric calcification.

t (in s) Simulation i = 1 i = 39 i = 61 i = 82 i = 120

1.693
3D 4.916 4.917 4.922 4.929 4.939
2D 4.730 4.675 4.743 4.811 4.755

1.884
3D 2.731 2.724 2.726 2.728 2.728
2D 2.621 2.567 2.617 2.667 2.613

2.393
3D 1.959 1.957 1.958 1.960 1.960
2D 1.879 1.835 1.879 1.924 1.879
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(a) t = 1692 ms (b) t = 1884 ms

(c) t = 2393 ms (d) t = 2393 ms

Figure 3.30: Error measured between the velocity profiles obtained from the 3D simulations with axisymmetric calcification and its
closest velocity profile allowed in the 2D ROM.

ξϕ, 3
4π)∪ ( 5

4π, 5
4π+ ξϕ) if ξϕ/∆ϕ is larger than 3. For this simulation, ξϕ/∆ϕ = 9 is significantly larger than

3; thus, oscillations can be expected. The pressure drop seen for j = 15, i ∈ {39,61,82} occurs due to these
oscillation. Consequently, pressure within the 2D simulation within these ranges cannot be trusted.

Inner wall radius for the 2D and 3D simulations are depicted in Figure 3.32. The inner wall radius at the
inlet and outlet are similar to the inner wall radius without calcification. For the 3D simulation, the inner wall
radius near and in the calcified region (i ∈ {39,61,82}) is slightly increased compared to the inner wall radius
at the inlet/outlet for j = 4, whereas it is significantly decreased for j ∈ {15,25}. For the 2D simulation, the
inner wall radius near and in the calcified region is similar to the inner wall radius at the inlet/outlet for j = 4,
while it is significantly lower than the inlet/outlet for j ∈ {15,25}.

Velocity profiles for the 3D and 2D simulations are depicted in Figure 3.33, Figure 3.34, and Figure 3.35 at
t = 1.692 s, t = 1.884 s, and t = 2.393 s. Their corresponding volumetric flow rate is shown in Table 3.8 for the
3D simulation and in Table 3.9 for the 2D simulation. Axial velocity within the artery’s origin (vx |r=0) has the
same value for j ∈ {4,15,25} within each cross-section, indicating that Assumption 5 (Continuous blood flow
at the origin of the artery), which is added to the 2D ROM, should also hold for the 3D simulation. However,
more data points are needed to validate this assumption. The velocity profiles for j = 15 and j = 25 are similar
for the 2D simulation but not for the 3D simulation. This difference most likely occurred because the artery’s
Young’s modulus has different values near the calcified area between the 3D and 2D models.

Flow rate within the 3D simulation is -3.67% ∼ 12.17% larger than flow rate within the 2D simulation. The
2D simulation has a higher flow rate for t = 2.393 s and i ∈ {39,61}. Mass within the artery is almost conserved
at t = 2.393 s for the 2D simulation; 2.620 E-5 cm3/s more blood flows out of the domain than into the domain.
Due to insufficient data points, it is impossible to validate if the 3D simulation conserves mass at t = 2.393 s.
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(a) j = 4 (3D) (b) j = 4 (2D)

(c) j = 15 (3D) (d) j = 15 (2D)

(e) j = 25 (3D) (f) j = 25 (2D)

Figure 3.31: Pressure observed for the 3D and 2D simulations with local calcification.

γ from the 2D ROM is depicted in Figure 3.36. γ within the 2D ROM is obtained by averaging the velocity
profile around γ = 2. Figure 3.36b, Figure 3.36c and Figure 3.36d shows that the velocity profiles become
more flat (γ→∞) in and near the calcified region and more linear (γ ↓ 1) in the healthy region of the artery.
The velocity profiles adjacent to the inlet are parabolic since a parabolic velocity profile is prescribed at the
inlet (see Figure 3.36a). Velocity profiles adjacent to the outlet remain relatively close to the parabolic velocity
profile.

The 3D simulations without calcification and simulations with axisymmetric calcification already show that
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(a) j = 4 (3D) (b) j = 4 (2D)

(c) j = 15 (3D) (d) j = 15 (2D)

(e) j = 25 (3D) (f) j = 25 (2D)

Figure 3.32: Inner wall radius observed for the 3D and 2D simulations with local calcification.

velocity profiles are not always parabolic, indicating that averaging around γ= 2 does not yield the most ac-
curate velocity profiles. More data points in the 3D simulations are necessary to determine the validity of
obtaining γ by averaging. However, for the cross section i = 61 we can clearly see that γ for j ∈ {15,25} is
larger than γ for j = 4 (see Figure 3.37g, Figure 3.37h and Figure 3.37i). This also hold true for cross section
i = 39 (see Figure 3.37d, Figure 3.37e and Figure 3.37f), but not for i = 82 (see Figure 3.37j, Figure 3.37k and
Figure 3.37l). Averaging γ within cross-section i = 82 in the 2D ROM leads to different behavior than velocity
profiles shown within the 3D velocity profiles.
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(a) i = 1 (b) i = 39

(c) i = 61 (d) i = 82

(e) i = 120 (f) Legend

Figure 3.33: Velocity profile observed for the 3D and 2D simulations with local calcification at t = 1.692 s.
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(a) i = 1 (b) i = 39

(c) i = 61 (d) i = 82

(e) i = 120 (f) Legend

Figure 3.34: Velocity profile observed for the 3D and 2D simulations with local calcification at t = 1.884 s.
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(a) i = 1 (b) i = 39

(c) i = 61 (d) i = 82

(e) i = 120 (f) Legend

Figure 3.35: Velocity profile observed for the 3D and 2D simulations with local calcification at t = 1.884 s.
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Table 3.8: Flow rate Q(t , xi ,ϕ j ) in cm3/s observed from the 3D simulation with local calcification.

j t (in s) i = 1 i = 39 i = 61 i = 82 i = 120

4
1.692 0.1039 0.1075 0.1103 0.1098 0.1043
1.884 0.0577 0.0593 0.0605 0.0603 0.0585
2.393 0.0413 0.0426 0.0434 0.0432 0.0416

15
1.692 0.1026 0.1016 0.1004 0.1008 0.1024
1.884 0.0570 0.0565 0.0560 0.0562 0.0568
2.393 0.0409 0.0405 0.0401 0.0403 0.0408

25
1.692 0.1030 0.0990 0.0963 0.0965 0.1022
1.884 0.0572 0.0555 0.0544 0.0544 0.0565
2.393 0.0410 0.0397 0.0389 0.0390 0.0407

Table 3.9: Flow rate Q(t , xi ,ϕ j ) in cm3/s observed from the 2D simulation with local calcification.

j t (in s) i = 1 i = 39 i = 61 i = 82 i = 120

4
1.692 0.0984 0.0984 0.0983 0.0983 0.0982
1.884 0.0546 0.0547 0.0547 0.0547 0.0547
2.393 0.0392 0.0392 0.0392 0.0392 0.0392

15
1.692 0.0985 0.0973 0.0988 0.1003 0.0991
1.884 0.0546 0.0534 0.0545 0.0557 0.0544
2.393 0.0392 0.0382 0.0392 0.0402 0.0392

25
1.692 0.0985 0.0974 0.0988 0.1002 0.0991
1.884 0.0546 0.0535 0.0545 0.0556 0.0544
2.393 0.0392 0.0382 0.0392 0.0401 0.0392

(a) i = 1 (b) i = 39 (c) i = 61

(d) i = 82 (e) i = 120 (f) legend

Figure 3.36: Simulated γ for the 2D ROM with local calcification.
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(a) i = 1, t = 1692 ms (b) i = 1, t = 1884 ms (c) i = 1, t = 2393 ms

(d) i = 39, t = 1692 ms (e) i = 39, t = 1884 ms (f) i = 39, t = 2393 ms

(g) i = 61, t = 1692 ms (h) i = 61, t = 1884 ms (i) i = 61, t = 2393 ms

(j) i = 82, t = 1692 ms (k) i = 82, t = 1884 ms (l) i = 82, t = 2393 ms

(m) i = 120, t = 1692 ms (n) i = 120, t = 1884 ms (o) i = 120, t = 2393 ms

Figure 3.37: Error measured between the velocity profiles obtained from the 3D simulations with local calcification and its closest ve-
locity profile allowed in the 2D ROM. The blue solid line, orange dashed line, and black dotted line represent j = 4, j = 15, and j = 25,
respectively.
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Validating Assumption 4
Assumption 4 (dominance in axial velocity) has been included in the 2D ROM since axial velocity was ex-
pected to be much larger than its orthogonal components. This section quantifies how dominant axial veloc-
ity is within the 3D ROM.

The 3D simulations with pulsatile flow had no backflow. Every element within the 3D simulations had a
strictly positive axial velocity for t ≥ 0. Rescaling velocity as u = v/vx quantifies how dominant axial velocity
is. max{ur } within the 3D simulation with local calcification is shown in Table 3.10 for different locations,
and max{uϕ} is shown in Table 3.11. These tables show that maxur = 0.16928 and maxuϕ = 0.09734, making
Assumption 4 (dominance in axial velocity) reasonable.

Table 3.10: The maximum rescaled velocity maxur at different locations from the 3D simulation with local calcification.

maxur (t , xi ,ϕ j ) i = 1 i = 39 i = 61 i = 82 i = 120
j = 4 0.09734 0.06283 0.05729 0.05552 0.16738

j = 15 0.08353 0.05830 0.03282 0.06876 0.16896
j = 25 0.08325 0.13079 0.02148 0.13044 0.16928

Table 3.11: The maximum rescaled velocity maxuϕ at different locations from the 3D simulation with local calcification.

maxuϕ(t , xi ,ϕ j ) i = 1 i = 39 i = 61 i = 82 i = 120
j = 4 0.09851 0.01988 0.01221 0.03265 0.01697

j = 15 0.00368 0.05722 0.02103 0.08699 0.03672
j = 25 0.00023 0.00368 0.00126 0.00505 0.00273
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Conclusion

This study obtains a 2D reduced order model (ROM) for blood flow that can model asymmetric calcification
by studying the following research questions:
1) What is the mathematical expression for the 2D ROM that can model blood flow asymmetrically?
2) How to develop a numerical method for the 2D ROM?
3) How well do 2D simulations compare with 3D simulations?

The 2D ROM is acquired by removing the dimension corresponding to the radial distance ‘r ’ from the 3D
model. The 2D ROM applies the same assumptions as the 1D ROM except for the assumption of ‘axial sym-
metry.’ This assumption is replaced by the boundary condition ∂ϕvx |r=0 = 0, where vx is the axial velocity of

blood. This paper contributes to hemodynamics by allowing a family of velocity profiles s(y,γ) = γ+2
γ (1− yγ)

within the ROM, where y ∈ [0,1] is a rescaled radius and γ > 0 is dimensionless and influences the shape of
the velocity profile. This velocity profile is used in the 1D ROM by predetermining γ in advance. The 2D ROM
lets γ depend on the temporal and spatial coordinates. The following equations govern the 2D ROM

∂t (R2)+∂x (uR2) = 0, (2.2.33)

ρ∂t (uR2)+ργ+2

γ+1
∂x (u2R2) = u2R2 5γ+4

2γ(γ+1)2 ∂xγ+2µu
γ+2

γ

(
−γ+ (γ+2)

∂2
ϕR

R

−γ+1

2

∂2
ϕ(R2)

R2 +2
γ−1

γ2 ∂ϕγ
∂ϕR

R
− 2

γ3 (∂ϕγ)2 + 1

γ2 ∂
2
ϕγ

)
− R2∂x R

R2
0

β−R2 R −R0

R2
0

∂xβ, (2.2.34)

∂ϕ

(
γ+2

γ
u

)
= 0, (2.2.35)

where u(t , x,ϕ) (mean axial velocity), R(t , x,ϕ) (inner wall radius) and γ(t , x,ϕ) are the unknown functions,
ρ is the density of blood, µ is the viscosity of blood, and β(x,ϕ) is a dimensionless function which contains
the mechanical properties of the vascular wall. All terms written in black are incorporated in the 1D ROM,
whereas those written in blue are added to the ROM to account for asymmetric flow. Equation (2.2.33) con-
serves mass within the artery, equation (2.2.34) balances momentum within the artery, and equation (2.2.35)
satisfies the boundary condition ∂ϕvx |r=0 = 0. The boundary condition ∂ϕvx |r=0 = 0 is changed into the dif-
ferential equation (2.2.35) since the radial dimension is removed from the 2D ROM.

Numerical methods for the 2D ROM are obtained by incorporating dimensional splitting, which simulates
the 2D ROM by solving a sequence of sub-problems numerically. Equation (2.2.35) is satisfied at the and of
each iteration by fixing u while computing γ by incorporating a weighted average. Equations (2.2.33) and
(2.2.34) are simulated by incorporating Godunov splitting, which leads to a ϕ-sweep and an x-sweep. The
ϕ-sweep is solved analytically, while the x-sweep is solved numerically by linearizing the problem at each
cell interface and incorporating a high-resolution method.

Jump-discontinuities inβ (due to calcification) are smoothened out since the x-sweep cannot deal with these
jump-discontinuities. The numerical steady-state solution of the 2D ROM admits a numerical error within
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the smoothening range of β. More specifically, the volumetric flow rate has humps and dents within the
numerical steady-state solution where ∂xβ ̸= 0. The numerical method obtains the analytical steady-state
solutions for arteries without calcification. It has a relative error of O (∆x1.500). The 2D ROM cannot numeri-
cally obtain the non-physiological steady-state solution for arteries with asymmetric calcification due to the
numerical errors within the smoothening range.

Simulations with pulsatile flow are done by prescribing a mean axial velocity at the inlet and a fluid resis-
tance boundary condition at the outlet. The 3D and 2D simulations need different parameters for the fluid
resistance boundary condition to match a systolic and diastolic pressure of 16.00 kPa (120 mm Hg) and 10.67
kPa (80 mm Hg) without calcification since the 2D ROM leads to lower volumetric flow rates. These parame-
ters are well fitted for the 2D ROM, while the 3D ROM significantly overshoots the diastolic pressure by 1.36
kPa. The 3D simulation without calcification also has a higher inner wall radius than the 2D simulation, and
their velocity profiles are not exactly parabolic. The differences in blood flow observed between pulsatile
blood flow without calcification and with calcification match decently between the 3D simulations and the
2D simulations, except for locations within the smoothening region.

Limitations and future research
Calcification within the 2D ROM (and 3D model) is applied to all layers within the vascular wall. However,
only the medial layer is calcified for medial calcification, so the 2D ROM does not accurately model medial
calcification. Future research could more accurately model medial calcification for the 2D ROM by only cal-
cifying the medial layer.

The thin wall model is applied in the 2D ROM as an assumption to relate pressure with the inner wall ra-
dius. The thin wall model neglects terms in a 2D framework since the thin wall model is constructed within
a 1D framework. It is currently unknown how relevant these terms are for blood flow where calcification is
applied asymmetrically.

Numerical error within the 2D ROM mainly occurs where the jump-discontinuity within the artery’s mechan-
ical properties are smoothened. This numerical error occurs because the 2D ROM applies dimensional split-
ting, which solves a linearized Riemann problem for the x-sweep. The linearized Riemann problem cannot
deal with discontinuities in the artery’s mechanical properties. Future research could implement a numerical
method that solves the non-linearized Riemann problem.

Dimensional splitting solves the differential equation (2.2.35) heuristically at the end of each iteration. This
differential equation on its own has multiple solutions. The 2D ROM obtains one solution by fixing u and up-
dating γ by incorporating a weighted average within each cross-section. Predictor-corrector methods, similar
to the pressure-correction method for the Navier-Stokes equations, should simulate the 2D ROM more accu-
rately.

The 2D ROM incorporates different velocity profiles to deal with asymmetric flow and to ensure that ve-
locity within the artery’s origin is continuous. However, the velocity profiles incorporated in the 2D ROM
cannot deal with cross sections with strictly positive and negative axial velocity or cross sections where the
mean velocity (for a specific angle) is higher than the velocity within the cross section’s origin. The numerical
steady-state solution with local calcification cannot approximate the analytical steady-state solution where
the volumetric flow rate vanishes since the numerical error leads to cross sections with strictly positive and
negative mean velocities. Additionally, blood flow within a curved geometry can lead to velocity profiles
where the mean velocity (for a specific angle) is higher than the velocity within a cross section’s origin. Future
research could include more or different velocity profiles for the 2D ROM to handle these limitations. These
velocity profiles should be complemented by incorporating the smoothness of axial velocity at the artery’s
origin.
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A
The Axisymmetric Flow Model

This appendix obtains the axisymmetric flow model by incorporating all assumptions denoted in section
2.2.1, by conversing mass and balancing momentum within control volumes denoted in equation (2.2.14),
and by applying lemma Lagrange (2D). The axisymmetric flow model obtains axisymmetric velocity (∂ϕu = 0)
from the continuity condition (∂ϕv(t , x,ϕ,0) = 0) due to the simplicity of the velocity profile.

This appendix starts by conserving mass in section A.1, proceeds by balancing momentum in section A.2
and ends by obtaining the diffential form in section A.3.

A.1. Conservation of mass
This section will obtain the integral form of the conservation of mass equation within control volumes de-
picted in (2.2.14). By incorporating Assumption 4 into the conservation of mass equation (1.2.5), mass is
conserved in the control volume if

∂t

∫
V (t )

ρdx+
∫

V (t )
∂x

(
ρvx

)
dx = 0 for t ∈ (0,T ). (A.1.1)

Transforming into cylindrical coordinates yields

ρ∂t

∫ x2

x1

∫ ϕ2

ϕ1

∫ R

0
r dr dϕd x +ρ

∫ x2

x1

∫ ϕ2

ϕ1

∫ R

0
r∂x vx dr dϕd x = 0 for t ∈ (0,T ). (A.1.2)

Applying the rescale r = yR yields

ρ∂t

∫ x2

x1

∫ ϕ2

ϕ1

R2
∫ 1

0
y d y dϕd x︸ ︷︷ ︸

I

+ρ
∫ x2

x1

∫ ϕ2

ϕ1

R2
∫ 1

0
y∂x vx d y dϕd x︸ ︷︷ ︸

II

= 0 for t ∈ (0,T ). (A.1.3)

Integrals I and II will be computed separately. Integral I is evaluated as

I = ρ

2
∂t

∫ x2

x1

∫ ϕ2

ϕ1

R2dϕd x. (A.1.4)

Assuming R is smooth enough leads to

I = ρ

2

∫ x2

x1

∫ ϕ2

ϕ1

∂t R2dϕd x. (A.1.5)

By incorporating (2.2.2), integral II is equal to

II = ρ
∫ x2

x1

∫ ϕ2

ϕ1

R2
∫ 1

0
y∂x (us)d y dϕd x

= ρ
∫ x2

x1

∫ ϕ2

ϕ1

R2∂x u
∫ 1

0
y s d y dϕd x +ρ

∫ x2

x1

∫ ϕ2

ϕ1

uR2
∫ 1

0
y
∂s

∂y

∂y

∂R

∂R

∂x
d y dϕd x

= ρ
∫ x2

x1

∫ ϕ2

ϕ1

R2∂x u
∫ 1

0
y s d y dϕd x −ρ

∫ x2

x1

∫ ϕ2

ϕ1

uR∂x R
∫ 1

0
y2s′ d y dϕd x. (A.1.6)
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By applying partial integration and property (1.3.5), we obtain∫ 1

0
y2s′d y =−2

∫ 1

0
y sd y. (A.1.7)

By applying (A.1.7) and property (1.3.6), integral II is equal to

II = ρ

2

∫ x2

x1

∫ ϕ2

ϕ1

R2∂x u +2uR∂x R dϕd x

= ρ

2

∫ x2

x1

∫ ϕ2

ϕ1

∂x (uR2)dϕd x (A.1.8)

By adding (A.1.5) and (A.1.8), mass is conserved if∫ x2

x1

∫ ϕ2

ϕ1

∂t (R2)+∂x (uR2)dϕd x = 0 for t ∈ (0,T ). (A.1.9)

A.2. Balance of momentum
This section will obtain the integral form of the balance of momentum equation within control volumes de-
picted in (2.2.14). By incorporating Assumption 4 into the balance of momentum equation (1.2.8), momen-
tum is balanced in the control volume if

∂t

∫
V (t )

ρvx dx︸ ︷︷ ︸
III

+
∫

V (t )
2ρvx∂x vx dx︸ ︷︷ ︸

IV

=
∫

V (t )
µ(∂2

x vx∆vx )dx︸ ︷︷ ︸
V

−
∫

V (t )
∂x P dx︸ ︷︷ ︸
VI

for t ∈ (0,T ).

Each of the integrals III, IV, V, and VI will be computed separately.

Integral III
Transforming into cylindrical coordinates and applying the rescale r = yR yields

III = ρ∂t

∫ x2

x1

∫ ϕ2

ϕ1

R2
∫ 1

0
y vx d y dϕd x.

By incorporating (2.2.2) and the normalization property (1.3.6), III is equal to

ρ

2
∂t

∫ x2

x1

∫ ϕ2

ϕ1

uR2 dϕd x.

Assuming that uR2 is smooth enough yields

III = ρ

2

∫ x2

x1

∫ ϕ2

ϕ1

∂t (uR2)dϕd x. (A.2.1)

Integral IV
Transforming into cylindrical coordinates and applying the rescale r = yR yields

IV = 2ρ
∫ x2

x1

∫ ϕ2

ϕ1

R2
∫ 1

0
y vx∂x vx d y dϕd x.

By incorporating vx (t , x,ϕ,R y) = u(t , x)s(y), we have

IV = 2ρ
∫ x2

x1

∫ ϕ2

ϕ1

R2
∫ 1

0
yus∂x (us)d y dϕd x

= 2ρ
∫ x2

x1

∫ ϕ2

ϕ1

u∂x (u)R2
∫ 1

0
y s2 d y +u2R2

∫ 1

0
y s
∂s

∂y

∂y

∂R

∂R

∂x
d y dϕd x

= 2ρ
∫ x2

x1

∫ ϕ2

ϕ1

u∂x (u)R2
∫ 1

0
y s2 d y −u2R∂x R

∫ 1

0

1

2
y2∂y (s2)d y dϕd x
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where ∂y (s2) = 2ss′. By applying partial integration and property (1.3.5), we obtain∫ 1

0

1

2
y2∂y (s2)d y =−

∫ 1

0
y s2d y. (A.2.2)

Applying (A.2.2) into IV yields

IV = ρ
∫ x2

x1

∫ ϕ2

ϕ1

α[u∂x (u)R2 +u2R∂x R]dϕd x
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α∂x (u2R2)dϕd x, (A.2.3)

whereα= 2
∫ 1

0 y s2d y is known as the momentum-flux correction term. By applying the velocity profile s(y) =
γ+2
γ (1− yγ), α is evaluated as

α= 2
∫ 1

0
y s2(y)d y = (γ+2)2

γ2 2
∫ 1

0
y(1− yγ)2d y = γ+2

γ+1
(A.2.4)

where ∫ 1

0
y(1− yγ)2 d y =

∫ 1

0
y −2yγ+1 + y2γ+1d y

= 1

2

(
1− 4

γ+2
+ 1

γ+1
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2

(γ+1)(γ+2)−4(γ+1)+γ+2
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= 1

2
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(γ+1)(γ+2)
. (A.2.5)

α is plotted in Figure A.1.
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Figure A.1: Plot of momentum-flux correction coefficient.

Integral V
Transforming into cylindrical coordinates yields

V =µ
∫ x2

x1

∫ ϕ2

ϕ1

∫ R

0
2r∂2

x vx︸ ︷︷ ︸
Va

+ 1

r
∂2
ϕvx︸ ︷︷ ︸

Vb

+ ∂r (r∂r vx )︸ ︷︷ ︸
Vc

d y dϕd x,
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where Va is be neglected by Assumption 6,

Vb = µ

2

∫ x2

x1

∫ ϕ2

ϕ1

2u
(γ+2)2

γ

∂2
ϕR

R
−u
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γ
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ϕ(R2)

R2 dϕd x (A.2.6)

has already been computed in section 2.2.2. By incorporating vx (t , x,ϕ,R y) = u(t , x)s(y), we obtain

Vc =µ
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=−µ
2
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ϕ1

2u dϕd x. (A.2.7)

Integral VI
Transforming into cylindrical coordinates and applying the rescale r = yR yields

VI =
∫ x2

x1

∫ ϕ2

ϕ1

R2∂x P
∫ 1

0
y d y dϕd x = 1

2

∫ x2

x1

∫ ϕ2

ϕ1

R2∂x P dϕd x.

The expression for P can be obtained by satisfying the dynamic coupling condition, in which pressure exerted
on the inner arterial wall is balanced by the pressure generated in the blood. By incorporating the deforma-
tion model depicted in (2.2.1), we obtain

VI = 1

2

∫ x2

x1

∫ ϕ2

ϕ1

R2∂x R

R2
0

β+R2 R −R0

R2
0

∂xβdϕd x (A.2.8)

A.3. Differential form
The integral form of the balance of momentum equation becomes∫ x2

x1

∫ ϕ2

ϕ1

ρ∂t (uR2)+ργ+2

γ+1
∂x (u2R2)dϕd x =

∫ x2

x1

∫ ϕ2

ϕ1

µ
γ+2

γ
u

(
−2γ (A.3.1)

+2(γ+2)
∂2
ϕR

R
− (γ+1)

∂2
ϕ(R2)

R2

)
− R2∂x R

R2
0

β−R2 R −R0

R2
0

∂xβdϕd x for t ∈ (0,T ).

The integral form of the conservation of mass (A.1.9) and the balance of momentum equations hold for every
open rectangle I = (x1, x2)× (ϕ1,ϕ2) ⊆ Ω = (0,L)× (0,2π) where 0 < x1 < x2 < L and 0 < ϕ1 < ϕ2 < 0. By
assuming that R ∈C 1(0,T )×C 2(Ω) and u ∈C 1(0,T )×C 2(0,L), lemma Lagrange (2D) is applied to obtain the
differential form for the axisymmetric flow model

∂t (R2)+∂x (uR2) = 0 for (t , x,ϕ) ∈ (0,T )×Ω, (A.3.2)

ρ∂t (uR2)+ργ+2

γ+1
∂x (u2R2) =µγ+2

γ
u

(
−2γ+2(γ+2)

∂2
ϕR

R

−(γ+1)
∂2
ϕ(R2)

R2

)
− R2∂x R

R2
0

β−R2 R −R0

R2
0

∂xβ for (t , x,ϕ) ∈ (0,T )×Ω, (A.3.3)

∂ϕu = 0, (A.3.4)
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B
The Asymmetric Flow Model

The asymmetric flow model aims to obtain a model that allows asymmetric mean velocity within the artery.
As seen in the axisymmetric flow model, the velocity profile is too simple, such that the continuity condition
leads to a mean axisymmetric velocity. To obtain asymmetric mean velocity, we propose to extend the velocity
profile by letting γ(t , x,ϕ) : [0,T ]×Ω 7→ (0,∞) also depends on t , x and ϕ. This proposal models blood flow in
2D by allowing more velocity profiles

s(y,γ) = γ+2

γ
(1− yγ) (B.0.1)

since γ is no longer fixed. From the continuity condition (2.2.4) we can show that for γ> 0

lim
r↓0

∂ϕvx (t , x,ϕ,r ) = lim
y↓0

∂ϕ[u(t , x,ϕ)s(y,γ)]

= γ+2

γ
∂ϕu −2u

∂ϕγ

γ2

= ∂ϕ
(
γ+2

γ
u

)
= 0. (B.0.2)

where yγ ln y → 0 as y → 0 (see (2.2.28)). By integrating (B.0.2) over ϕ, we obtain

D = u
γ+2

γ
=: vx (t , x,ϕ,0) (B.0.3)

where D(t , x) is an unknown function independent of ϕ. D represents the axial velocity at the artery’s origin,
which attains the maximum velocity within the artery’s cross-section (due to the applied velocity profile).

This appendix is split into three parts. B.1 conserves mass within control volumes, B.2 balances momentum
within control volumes and B.3 obtains the differential form by applying lemma Lagrange (2D).

B.1. Conservation of mass
This section will obtain the integral form of the conservation of mass equation within control volumes de-
picted in (2.2.14). By taking identical steps as the axisymmetric flow model, mass is conserved if

ρ∂t

∫ x2

x1

∫ ϕ2

ϕ1

R2
∫ 1

0
y d y dϕd x︸ ︷︷ ︸

I

+ρ
∫ x2

x1

∫ ϕ2

ϕ1

R2
∫ 1

0
y∂x vx d y dϕd x︸ ︷︷ ︸

II

= 0 for t ∈ (0,T ). (B.1.1)

Since I does not have the derivative of vx , similar steps can be taken as in the axisymmetric flow model to
obtain I = ρ

2

∫ x2
x1

∫ ϕ2
ϕ1
∂t (R2)dϕd x. With the partial derivative

∂vx

∂x
= ∂us

∂x
= ∂u

∂x
s +u

∂s

∂x
= ∂u

∂x
s +u

(
∂s

∂y

∂y

∂R

∂R

∂x
+ ∂s

∂γ

∂γ

∂x

)
, (B.1.2)
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B.2. Balance of momentum B. The Asymmetric Flow Model

II is equal to

II = ρ
∫ x2

x1

∫ ϕ2

ϕ1

IIaxi︷ ︸︸ ︷
R2∂x u

∫ 1

0
y s d y +uR2

∫ 1

0
y
∂s

∂y

∂y

∂R

∂R

∂x
d y +R2

∫ 1

0
y
∂s

∂γ

∂γ

∂x
d y dϕd x

= ρ
∫ x2

x1

∫ ϕ2

ϕ1

1

2
∂x (uR2)+R2∂xγ

∫ 1

0
∂γs d y dϕd x, (B.1.3)

where IIaxi = ρ
2

∫ x2
x1

∫ ϕ2
ϕ1
∂x (uR2)dϕd x has already been computed in the axisymmetric flow model. The inte-

gral
∫ 1

0 y∂γs d y is evaluated as∫ 1

0
y∂γs d y =− 2

γ2

∫ 1

0
y − yγ+1d y − γ+2

γ

∫ 1

0
yγ+1 ln yd y

=− 2

γ2

(
1

2
− 1

γ+2

)
+ 1

γ(γ+2)

=− 2

γ2

γ

2(γ+2)
+ 1

γ(γ+2)
= 0, (B.1.4)

where for
∫ 1

0 yγ+1 ln yd y =− 1
(γ+2)2 (see (2.2.30)). The conservation of mass equation for the asymmetric flow

model becomes
ρ

2

∫ x2

x1

∫ ϕ2

ϕ1

∂t (R2)+∂x (uR2)dϕd x = 0. (B.1.5)

The conservation of mass equation is identical to the continuity equation, even if γ is no longer a constant.

B.2. Balance of momentum
This section will obtain the integral form of the balance of momentum equation within control volumes de-
picted in (2.2.14). Similar to the axisymmetric flow model, momentum is balanced if

∂t

∫
V (t )

ρvx dx︸ ︷︷ ︸
III

+
∫

V (t )
2ρvx∂x vx dx︸ ︷︷ ︸

IV

=
∫

V (t )
µ(∂x +∆vx )dx︸ ︷︷ ︸

V

−
∫

V (t )
∂x P dx︸ ︷︷ ︸
VI

for t ∈ (0,T ). (B.2.1)

Integrals III and VI are identically obtained as the axisymmetric flow model, evaluated as

III = ρ

2

∫ x2

x1

∫ ϕ2

ϕ1

∂t (uR2)dϕd x, (A.2.1)

and

VI = 1

2

∫ x2

x1

∫ ϕ2

ϕ1

R2∂x R

R2
0

β+R2 R −R0

R2
0

∂xβdϕd x (A.2.8)

where β= 4
3 Eh. Integrals IV and V need further investigation.

Integral IV
Transforming into cylindrical coordinates and applying the rescale r = yR yields

IV = ρ
∫ x2

x1

∫ ϕ2

ϕ1

R2
∫ 1

0
y vx∂x vx d y dϕd x. (B.2.2)

With the partial derivative

∂vx

∂x
= ∂u

∂x
s +u

(
∂s

∂y

∂y

∂R

∂R

∂x
+ ∂s

∂γ

∂γ

∂x

)
, (B.2.3)
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B.2. Balance of momentum B. The Asymmetric Flow Model

IV is identical to

IV =

IVaxi︷ ︸︸ ︷
ρ

∫ x2

x1

∫ ϕ2

ϕ1

u∂x (u)R2
∫ 1

0
y s2 d y +u2R2

∫ 1

0
y s
∂s

∂y

∂y

∂R

∂R

∂x
d y dϕd x

+ρ
∫ x2

x1

∫ ϕ2

ϕ1

u2R2
∫ 1

0
y s
∂s

∂γ

∂γ

∂x
d y dϕd x

=ρ
2

∫ x2

x1

∫ ϕ2

ϕ1

γ+2

γ+1
∂x (u2R2)+2α2u2R2∂xγdϕd x, (B.2.4)

where α2 =
∫ 1

0 y s∂γs d y . IVaxi has already been computed in the axisymmetric flow model and α2 consists of
integrals already computed in (A.2.5) and (2.2.30). α2 is evaluated as

α2 =−2
γ+2

γ3

∫ 1

0
y(1− yγ)2 d y − (γ+2)2

γ2

∫ 1

0
yγ+1 ln y − y2γ+1 ln y d y

=−2
γ+2

γ3

γ2

(γ+1)(γ+2)
+ (γ+2)2

4γ2

(
4

(γ+2)2 − 1

(γ+1)2

)
=− 2

γ(γ+1)
+ 3γ+4

4γ(γ+1)2 =− 5γ+4

4γ(γ+1)2 (B.2.5)

and is plotted in Figure B.1.
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Figure B.1: Plot of α2.

Integral V
Transforming into cylindrical coordinates yields

V =µ
∫ x2

x1

∫ ϕ2

ϕ1

∫ R

0
2r∂2

x vx︸ ︷︷ ︸
Va

+ 1

r
∂2
ϕvx︸ ︷︷ ︸

Vb

+ ∂r (r∂r vx )︸ ︷︷ ︸
Vc

d y dϕd x, (B.2.6)

where Va is be neglected by Assumption 6,

Vb =µ
∫ x2

x1

∫ ϕ2

ϕ1

u
γ+2

γ

(
(γ+2)

∂2
ϕR

R
− γ+1

2

∂2
ϕ(R2)

R2 +2
γ−1

γ2 ∂ϕγ
∂ϕR

R
− 2

γ3 (∂ϕγ)2 + 1

γ2 ∂
2
ϕγ

)
dϕd x (B.2.7)

has been computed in section 2.2.3, and

Vc =−µ
2

(γ+2)
∫ x2

x1

∫ ϕ2

ϕ1

2u dϕd x. (A.2.7)

has been computed in the axisymmetric flow model.
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B.3. Differential form B. The Asymmetric Flow Model

B.3. Differential form
The integral form of the balance of momentum equation becomes∫ x2

x1

∫ ϕ2

ϕ1

ρ∂t (uR2)+ργ+2

γ+1
∂x (u2R2)−u2R2 5γ+4

2γ(γ+1)2 ∂xγdϕd x

=
∫ x2

x1

∫ ϕ2

ϕ1

2µu
γ+2

γ

(
−γ+ (γ+2)

∂2
ϕR

R
− γ+1

2

∂2
ϕ(R2)

R2 +2
γ−1

γ2 ∂ϕγ
∂ϕR

R
(B.3.1)

− 2

γ3 (∂ϕγ)2 + 1

γ2 ∂
2
ϕγ

)
− R2∂x R

R2
0

β−R2 R −R0

R2
0

∂xβdϕd x.

The integral form of the conservation of mass (B.1.5) and the balance of momentum equations hold for t ∈
(0,T ) and for every open rectangle I = (x1, x2)×(ϕ1,ϕ2) ⊂Ω= (0,L)×(0,2π) where 0 < x1 < x2 < L and 0 <ϕ1 <
ϕ2 < 0. By assuming that R ∈C 1(0,T )×C 2(Ω), u ∈C 1(0,T )×C 2(Ω) and γ ∈C 1(0,T )×C 2(Ω), lemma Lagrange
2D can be applied to obtain the differential form for the asymmetric flow model. The equations govern the
asymmetric flow model

∂t (R2)+∂x (uR2) = 0, (B.3.2)

ρ∂t (uR2)+ργ+2

γ+1
∂x (u2R2) = u2R2 5γ+4

2γ(γ+1)2 ∂xγ+2µu
γ+2

γ

(
−γ+ (γ+2)

∂2
ϕR

R

−γ+1

2

∂2
ϕ(R2)

R2 +2
γ−1

γ2 ∂ϕγ
∂ϕR

R
− 2

γ3 (∂ϕγ)2 + 1

γ2 ∂
2
ϕγ

)
− R2∂x R

R2
0

β−R2 R −R0

R2
0

∂xβ (B.3.3)

∂ϕ

(
γ+2

γ
u

)
= 0. (B.0.2)
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C
Roe’s Linearization to 1D Blood Flow

Roe’s linearization can be applied to inviscid flow for the 1D ROM (equations (1.3.13) and (1.3.17), where
Kr = 0). By choosing the parameter vector

z = qp
A

, =⇒ z =
[

z1

z2

]
=

[p
A

Qp
A

]

we obtain its inverse [12]

q(z) =
[

(z1)2

z1z2

]
=⇒ ∂q

∂z
=

[
2z1 0
z2 z1

]
and the flux function

f(z) =
[

z1z2

α(z2)2 + (z1)3 β
3ρA0

]
=⇒ ∂f

∂z
=

[
z2 z1

(z1)2 β
ρA0

2αz2

]
.

Since ∂f/∂z and ∂q/∂z only contains polynomials of zp for p ∈ {1,2}, Roe’s linearization will yield easy to
compute averages. By setting

zp (ξ) = Z p
i−1 +

(
Z p

i −Z p
i−1

)
ξ for p ∈ {1,2}

we obtain in the limit of Z p
i −Z p

i−1 → 0

B̂i−1/2 :=
∫ 1

0

dq(z(ξ))

dz
dξ=

[
2Z̄ 1 0
Z̄ 2 Z̄ 1

]
and Ĉi−1/2 :=

∫ 1

0

df(z(ξ))

dz
dξ=

[
Z̄ 2 Z̄ 1

Z̃ 1 β
ρA0

2αZ̄ 2

]

where

Z̄ p :=
∫ 1

0
zp (ξ)dξ= 1

2

(Z p
i )2 − (Z p

i−1)2

Z p
i −Z p

i−1

= 1

2
(Z p

i +Z p
i−1)

and

Z̃ p :=
∫ 1

0
(zp (ξ))2dξ= 1

3

(Z p
i )3 − (Z p

i−1)3

Z p
i −Z p

i−1

= 1

3
((Z p

i )2 +Z p
i Z p

i−1 + (Z p
i−1)2).

Roe’s linearization yields

Ĥi−1/2 = Ĉi−1/2(B̂i−1/2)−1 =
[

0 1
R̂β

2ρA0 −αū2 2αū

]
where ū = Z̄ 2/Z̄ 1 and R̂ = Z̃ 1/Z̄ 1.
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D
Lemma Lagrange (2D)

The following lemma will be proven in this appendix.

Lemma Lagrange (2D). LetΩ be a open subset of Rd , f :Ω→R be continuous inΩ and let
∫

V f (x)dx = 0 for
every open rectangle V ⊆Ω, then f (x) = 0 inΩ.

This lemma is extended from Lemma 2.2a (Lagrange) [27]. The following mathematical definitions will be
applied to prove this lemma.

Definition Continuity. LetΩ⊂R2 be open and f :Ω→R be a mapping. The mapping f is continuous inΩ if
for every x ∈Ω, y ∈Ω and ε> 0 there exist a δ> 0 such that ∥x−y∥2 < δ implies | f (x)− f (y)| < ε.

Definition Interval. I ⊂R is called an interval if there exist an x1 < x2 such that I = [x1, x2].

Definition Rectangle. I ⊂ Rd is called a rectangle in Rd if there exist intervals I1, I2, . . . , Id such that I = I1 ×
I2 × . . .× Id .

Definition Open ball. Br (x) ⊂ Rd is called an open ball centered at x ∈ Rd with a radius of r > 0 defined as
Br (x) = {y ∈ R2 : ∥x − y∥2 < r }, where ∥x∥2 denotes the euclidean norm. Furthermore, let B∞

r (x) be an
open set defined as B∞

r (x) = {y ∈R2 : ∥x − y∥∞ < r }, where ∥x∥∞ denotes the maximum norm max
i

|xi |.

With these definitions, lemma Lagrange (2D) will be proven.

Proof Lemma Lagrange (2D). Let there be an x0 = (x1, x2) ∈ Ω such that f (x0) > 0. Choose r > 0 such that
f (x) > 0 for x ∈ Br (x0) ⊂ Ω and let ρ = rp

2
. B∞

ρ (x0) ⊂ Br (x0) since for y ∈ R2, ∥y∥2 ≤ p
2∥y∥∞. The set

B∞
ρ (x0) is equal to the open rectangle I = (x1 −ρ, x1 +ρ)× (x2 −ρ, x2 +ρ). Since f is strictly positive on

I ⊂ Br (x0), an open rectangle I is found such that
∫

I f (x)dx > 0. This however contradicts
∫

V f (x)dV = 0
for every open rectangle V ⊂Ω, so there does not exist an x0 ∈Ω such that f (x0) > 0. Since assuming
that there exists an x0 ∈Ω such that f (x0) < 0 leads to a contradiction by taking similar steps, the proof
is concluded.

In hindsight, this proof is trivial since the vector norms ∥ ·∥2 and ∥ ·∥∞ are equivalent norms on R2.
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