
ADAPTIVE BACKSTEPPING CONTROL
AND SAFETY ANALYSIS FOR

MODERN FIGHTER AIRCRAFT



ISBN 978-90-8570-735-6
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SUMMARY

There exist many examples of aircraft incidents in which the pilots have success-
fully used the remaining control authority over an aircraft to save the airframe and
its passengers and cargo from apparently hopeless failure conditions. Unfortu-
nately, the opposite is also true. Several accidents happened in which the crew
was not able to save the aircraft, although post-flight analysis showed that it was
possible with alternative, perhaps unconventional, control strategies. These aircraft
accidents indicate that there is a potential benefit of fault tolerant flight control
(FTFC) techniques, which are able to accommodate changes in the aircraft’s dynam-
ics due to damage to the aircraft and failures of its systems. From an aeronautical-
technical point of view some accidents that happened over the last decades possibly
could have been prevented with such FTFC control techniques.

Generally speaking FTFC can be classified into two types: passive and active. The
passive methods result in fixed controllers that are designed to be robust against a
class of presumed faults. However, any controller with a large enough robustness
radius to encompass most failure situations will very likely be unnecessarily con-
servative in many cases, including the nominal case. Additionally, there is no guar-
antee that unanticipated and multiple simultaneous failures can be handled, or that
such a controller even exists. In contrast to the passive methods, the active methods
react to the system failures actively by reconfiguring the control actions such that
stability and acceptable performance of the entire system can be maintained even
in the presence damage and failures.

The current state of technology still indicates some remaining problems and
limitations of fault tolerant flight control systems. The passive fault tolerant ap-
proaches are limited to restricted failure cases, and therefore an active approach
has more potential when unknown failures and a large combination of possible and
simultaneous failures has to be considered. Only a limited number of approaches
yields control designs that are valid over a large operating range, and especially
estimation of the dynamical model is very often only performed at or around the
current flight condition. No globally valid model is built by these methods and
estimated models are not stored for later re-use when the same flight condition
is revisited. Direct adaptive control approaches tune the controller parameters to
achieve the desired performance and do not estimate a model of the system. Many
of the neural network based approaches suffer from convergence problems, and
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simultaneously rely on a black-box structure which reduces the transparency of the
aircraft models estimated through these designs. In this research an approach is
taken based on the knowledge of flight dynamics and therefore all quantities and
variables appearing in the estimated models have a physical meaning, leading to
transparent models and additionally these models can be used for on-line failure
diagnosis as well as reconfiguration.

Loss-of-control (LOC) incidents do not only happen to aircraft with failures.
Some reports claim that LOC has contributed to more fatal commercial airliner acci-
dents and related fatalities than any other factor during the last ten years of world-
wide operations. At this point, the industry has not yet incorporated widespread
LOC prevention. Flight envelope protection is a first and necessary step that is
taken by aircraft designers towards LOC prevention. Knowledge of the safe flight
envelope is very important to prevent LOC accidents and still allow aircraft to
operate at the edges of their performance envelope. In post-failure flight conditions
one would like to know the region of the envelope in which the aircraft can still
maneuver safely, to continue the mission and make a safe (crash) landing possible.
This area has not received a lot of attention yet by the aerospace research commu-
nity, not even for aircraft without any faults or failures.

The research described in this dissertation therefore has the following objectives.

• Development of a control scheme which achieves the desired performance
characteristics over the whole flight envelope of the aircraft, even in the pres-
ence of faults and failures.

• Since modern aircraft have many different and redundant control effectors,
the desired control effect has to be distributed over the available effectors.
This distribution is performed optimally with respect to a cost criterion and
takes the individual control effector characteristics into account. Stability of
the control law with control allocation can be shown.

• Aircraft failures or damage influence the dynamics of the system, which need
to be identified on-line to allow active reconfiguration of the control design
and restore control performance. Severe failures cause changes in the re-
quired structure , for example asymmetric damage contributes to the com-
plexity of the required model structure. When the model structure and esti-
mated parameters match the underlying physics of the system, the estimated
model can be used for fault diagnosis and derivation of the post-failure safe
flight envelope. Development of on-line model structure selection methods is
required and the estimated model has to be stored efficiently onboard.

• Especially for highly maneuverable aircraft and aircraft with faults and fail-
ures the aircraft dynamics pose important constraints on the safe maneuver-
ing space. In post-failure flight conditions knowledge of the safe envelope can
be the difference between an inevitable accident or safe (crash) landing. Thus,
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a method has to be developed which calculates the safe envelope, based on a
available model of the aircraft, and takes input constraints and disturbances
into account.

Adaptive backstepping is a recursive, Lyapunov-based, nonlinear design method
which makes use of parameter update laws to deal with parametric uncertainties in
the system. The main idea of backstepping is to design the control law recursively
by considering some of the state variables as “virtual control inputs”, and designing
stabilizing functions for these. With the inclusion of command filters, the backstep-
ping design is applicable to non lower triangular systems and the whole design is
simplified considerably as the need for analytic derivatives of the “virtual control
inputs” is removed.

Different parameter update laws can be designed, resulting in the integrated,
modular, and composite update law designs. The integrated design employs a
Lyapunov based update law, while the modular update law allows the use of a
recursive least squares identifier. However, nonlinear damping terms are required
in the control law to achieve the modularity between the controller and identifier.
The composite update law combines the integrated and modular designs, and has
the best parameter convergence properties of all three designs.

In a comparison between the integrated and modular approaches, both resulted
in an improvement of performance in post-failure flight conditions over a non-
adaptive control design. The tracking performance and parameter estimation char-
acteristics of the modular design were better than for the integrated design.

Control allocation can be integrated within the backstepping framework by
designing update laws for the optimizing control effector signals from a Lyapunov
perspective. In this design, the control effector commands continuously converge
to the optimal solution instead of explicitly solving the control allocation problem
exactly at each time instant.

The full envelope estimation problem is approached by partitioning the com-
plete flight envelope into smaller regions called hyperboxes. In each hyperbox a
locally valid linear in the parameters model is identified. The output of the local
models is interpolated using B-splines to obtain the output over the full envelope.
Since the B-splines have local support, only a limited amount of partitions is active
for each flight condition, reducing the computational load.

The model structure required to model aerodynamic failures is not known a-
priori, inclusion of too many regressors leads to over-fitting and decreases extrap-
olation capabilities. An on-line structure selection method based on orthogonal
least squares is developed which can be used in combination with the adaptive
backstepping control design. The structure selection procedure recursively selects
a regressor from the set of candidates which achieves the largest reduction of the fit
error until a stopping criterion is satisfied.

The adaptive backstepping control design with control allocation, flight enve-
lope partitioning and structure selection is tested on the over-actuated, nonlinear
ADMIRE aircraft model. The proposed control design shows excellent performance
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for a variety of simulated fault and failure cases ranging from a simple change in
the aerodynamic coefficients, to actuator failures and center of gravity shifts. When
the failure is in the space spanned by the set of available regressor candidates, the
correct model structure can be identified, and the correct parameter values are
estimated if a persistency of excitation condition is satisfied. Even if the failure
cannot be completely characterized by the available set of regressor candidates,
tracking performance can be very good as long as the residual error between the
estimated model and the true behavior is small.

Application of adaptive flight control techniques has shown that it may be possible
to stabilize a damaged aircraft for a variety of faults and failures, it is still unclear
what maneuvers are still possible and how much the performance of the aircraft
has degraded due to these faults and failures.

Future research on fault tolerant flight control should include realistic aerody-
namic failure models, and test-flights with UAV and research aircraft. The interac-
tion between adaptive control designs and the pilot has to be investigated. Before
application of FTFC in production aircraft is possible, guidelines and requirements
for validation and verification have to be developed.

The safe flight envelope is defined as the region in the state space for which safe
operation of the aircraft, and safety of its cargo and passengers, can be guaranteed
while externally posed constraints are not violated. This region in the state space
can be described by the intersection between the dynamical, structural and environ-
mental envelopes. The safe dynamical envelope can be determined by evaluating
the forwards and backwards reachable sets for a given set of safe states, for example
trim conditions. These reachable sets are be obtained through evolution the initial
or target set using a model of the system dynamics by the level set approach, for
which different solution methods exist. Based on a comparison of simple examples
the semi-Lagrangian approach was selected as the most promising for application
to the safe flight envelope determination problem of nonlinear aircraft dynamics
with control inputs and disturbances. The proposed method is applied to the
longitudinal dynamics of an F-16 aircraft model. The shape of the forwards and
backwards reachable sets matches with what is expected from flight dynamics. At
higher altitude the aircraft becomes less maneuverable for the same airspeed due
to reduction of dynamic pressure. When the center of gravity is shifted backwards
in longitudinal direction, the aircraft becomes more unstable, resulting in greater
maneuverability, but at the cost of greater difficulty to get the aircraft back to a trim
condition. In the case of a loss in hydraulic pressure, resulting in more stringent
constrained horizontal stabilizer deflections, the maneuvering capabilities of the
aircraft severely degrade at low airspeeds.

Further research on this subject is required, for example by splitting the full
envelope problem into slow and fast dynamics by means of time-scale separation
arguments. Furthermore, if the solution speed can be improved, on-line applica-
tions can be attempted.
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INTRODUCTION

This chapter forms the introduction to the dissertation. First some examplatory
accidents and incidents are described to provide a setting for the problems
addressed by the research presented. Then, a brief overview of the research
already performed in this field is given and the research goals are formulated.
Finally, an overview of the contributions and contents of the dissertation is
given.

1.1 Background

On the first of May, 1983, a simulated dogfight training took place between two F-
15Ds, and four A-4N Skyhawks over the skies of the Negev desert. At some point
one of the F-15Ds collided with one of the Skyhawks. The pilot did not realize it was
a collision and afterwards explained that it felt like flying through the jet stream of
one of the other aircraft. The A4 exploded upon collision and the pilot of the F-
15 found himself trying to control a spinning aircraft with a thirty degrees nose
down attitude. Instead of ejecting from the aircraft, he engaged the afterburner
and the rolling motion of the aircraft stopped. Then, he was able to bring the nose
up and establish level flight. When the pilot asked a wingman to come and inspect
his aircraft, a large spray of fuel hid the true damage to the aircraft: the F-15 is
so badly damaged in the collision that the aircraft is flying on just one wing. The
pilot was able to prevent stalling and maintain control because of the lift generated
by the large horizontal surface area of the fuselage, the stabilators and remaining
wing area. The pilot approached the airfield at a speed roughly twice the normal
landing speed, the emergency landing tailhook was torn off completely during
the landing and the aircraft stopped just 20 ft before the end of the runway. The

1
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McDonnell Douglas company, designer of the aircraft, attributes saving the aircraft
to the amount of lift generated by the engine intake and fuselage, and “a hell of a
good pilot”.

Another example of a pilot saving a large part of his passengers and aircraft is
United Airlines Flight UA-232. On July 19, 1989, the Douglas DC-10 suffered an
uncontained engine failure of its tail mounted engine. Shrapnel was hurled from
that engine with enough force to penetrate the hydraulic lines of all three of the
aircraft’s hydraulic systems. The hydraulic fluid rapidly drained from all systems,
and this resulted in none of the conventional flight controls working except the
thrust levers of the two remaining engines. Using differential thrust, the pilot crew
was able to control the aircraft to some extent and was able to make a crash landing
on the runway.

There exist more examples of aircraft incidents in which the pilots have success-
fully used the available control authority over an aircraft to save an airframe, its
passengers and cargo from apparently hopeless failure conditions. Unfortunately,
the opposite is also true. Several accidents happened in which the crew was not
able to save the aircraft, although post-flight analysis showed that it was possible
with alternative or unconventional control strategies. A notable example of such
an accident would be El Al Flight 1862. On October 4, 1992, a Boeing 747 cargo
plane crashed into two apartment buildings in the Bijlmermeer neighborhood of
Amsterdam, near Schiphol Airport. Engine number three separated from the right
wing of the aircraft shortly after take-off, damaging the wing flaps, and struck en-
gine number four which also separated. Analysis showed that the aircraft still had
marginal controllability left in severely restricted flight envelope [161]. Simulator
experiments using different fault tolerant flight control approaches have shown
that landing the aircraft would have been possible [98, 178]. However, the aircraft
did not have such a fault tolerant control system, and perhaps even more impor-
tantly, the pilots did not have any knowledge about the restricted flight envelope of
the aircraft and when they tried to reduce the speed for landing the aircraft banked
sharply to the right without any chance of recovery.

The described aircraft accidents show that there is a potential benefit of fault
tolerant flight control techniques, which are able to accommodate large changes
in the aircraft’s dynamics due to severe damage to the aircraft and failures of its
systems. From an aeronautical-technical point of view these accidents and many
more that happened over the last decades could possibly have been prevented [45].

Loss-of-control (LOC) incidents do not only happen to aircraft with failures.
Some reports claim that LOC has contributed to more fatal commercial airliner
accidents and related fatalities than any other factor during the last ten years of
worldwide operations [15, 145]. At this point, the industry has not yet incorpo-
rated widespread LOC prevention. Flight envelope protection, whether by hard
constraints (for example Airbus) or soft constraints (for example Boeing), is a first
and necessary step taken by aircraft designers towards LOC prevention, trying to
enhance safety. All aircraft have physical limits that should not be exceeded. For
example, when the airspeed is too low, the aircraft may stall, if the airspeed is
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(a) F-15D aircraft damage [20] (b) El-Al flight 1862 damage [161]

Figure 1.1: Left wing missing after a mid-air collision of an F-15D aircraft 1.1(a).
Indication of the damage to El-Al Flight 1862 sustained after separation of engines
three and four in 1.1(b).

too high or a maneuver too demanding, excessive loads on the airframe can be
generated with the risk of damaging the structure.

1.2 Fault Tolerant Flight Control

The work presented in this dissertation is by no means the only research that has
been done on fault tolerant control for aircraft, nor does it try to address and solve
all problems related to safe flight control. Related and overlapping approaches
in research projects conducted at the Faculty of Aerospace Engineering of Delft
University of Technology are Lombaerts [96], Sonneveldt [163].

Before discussing fault tolerant flight control, first the entities within the pilot-
aircraft system are introduced. The cockpit is the interface between the pilot and the
aircraft, through the displays the pilot obtains information about the aircraft and
flight computer state. Sensors measure aircraft and environmental state variables
such as airspeed, outside air temperature, and fuel flow to the engine. The flight
computer uses this sensor information to translate the commands by the (auto)pilot
to actuator commands, and sends processed information to the cockpit displays for
interpretation by the pilot. The relations between the different elements of the pilot-
aircraft system are shown in figure 1.2.
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1.2.1 Types of Fault-Tolerant Control Systems

Generally speaking, Fault Tolerant Control Systems (FTCS) can be classified into
two types: passive and active. The passive methods result in fixed controllers that
are designed to be robust against a class of presumed faults [51]. The approach
does not require fault-detection schemes nor controller reconfiguration and results
in satisfactory performance if the faults fall within the robustness radius of the
controller. However, any controller with a large enough robustness radius to en-
compass most failure situations will very likely be unnecessarily conservative in
many cases. Additionally, there is no guarantee that unanticipated or multiple
simultaneous failures can be handled, or that such a controller even exists.

In contrast to the passive methods, the active methods react to the system fail-
ures actively by reconfiguring the control actions such that stability and acceptable
performance of the entire system can be maintained. Often, degraded performance
may have to be accepted [13, 138, 174] since the system with faults cannot achieve
the same levels as performance as the nominal system. To achieve a successful
control system reconfiguration, the active approach relies heavily on real-time fault
detection and diagnosis (FDD) schemes using measurements to provide informa-
tion about the status of the system.

1.2.2 Objectives and Structure of Active FTCS

Typically, an active FTCS method is composed out of four sub-systems:

• a reconfigurable controller,

• an FDD scheme,

• a controller reconfiguration mechanism, and

• a command/reference governor,

which results in the general structure of active FTCS as shown in figure 1.3. First
of all the information measured by the sensors is combined, processed and filtered
to reconstruct the actual state of the aircraft. The anomaly detection scheme can
use on-board models of the aircraft, sensors and actuators to detect and diagnose
faults and failures. This information is sent to the reconfiguration mechanism
and to the command governor units. The reconfiguration mechanism is able to
handle (parametric) changes in the system dynamics and possibly restructure the
control allocation scheme. The control laws in combination with the command and
reference governor should compensate for the fault-induced changes in the system
so that stability and acceptable performance can be maintained in an operational
envelope which is as large as possible.
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pilot

actuators

aircraft

sensors

flight computer(s) cockpit

Figure 1.2: Overview of the interaction between the pilot, cockpit, flight control
computer, actuators, sensors and the aircraft.
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State Reconstruction Anomaly Detection Envelope Determination

Reconfiguration

Mechanism

Control Law(s)

Fault Tolerant Control

Fault Detection and Diagnosis

Figure 1.3: General structure of an active FTCS

1.2.3 Overview of Reconfigurable Flight Control

An extensive overview of active FTCS is given in an excellent bibliographical re-
view by Zhang and Jiang [210], which includes over 300 references and different
classifications of FTCS. In this section a condensed overview of active FTCS and
research programs is given, with focus on flight control.

The idea of control reconfiguration can be traced back through the history of
manned-flight in many cases where pilots have exploited the remaining control
authority over aircraft with degraded control performance. Thus, man itself can
be considered as the first RFC system. In the early days of automatic RFC most
studies were based on backup flight control effectors, which would compensate
for failure of a primary control surface. Many of these are still very relevant for
control reconfiguration. The earliest detailed study showing the value of control
reconfiguration was performed by the Grumman Aerospace Corporation for the
United States Air Force [16] and was followed by a study for the United States Navy
[65]. These studies demonstrated the importance of considering reconfiguration
already during the design process.

Research in the area of reconfigurable flight control (RFC) really started in the
1980s, and has remained a important research topic since. Since then an enormous
amount and variety of research has been published. This overview is limited to
RFC methods which have been demonstrated in flight or high-fidelity simulation,
methods that only handle sensor failures and/or switch between redundant hard-
ware will be omitted. Most of the RFC methods developed in the 80s required a
separate system for failure detection, isolation and estimation (FDIE). An important
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example of this approach was developed by General Electric where an extended
Kalman filter was used to perform FDIE. The information from the FDIE was sub-
sequently used to generate the same accelerations of the degraded aircraft as the
nominal aircraft. Quite a few research programs and benchmarks have since been
performed. Below some of the important and large research programs are listed in
chronological order.

Self-repairing flight control systems (1984 - 1990) The research focused on control
reconfiguration after faults or failures of one of the actuators [50].

Automatic redesign for restructurable control systems (1984 - 1987) A fault toler-
ant approach using fault detection and optimal control design was developed
and applied to a Boeing-737 aircraft simulation model [100].

Self-designing flight control (1993-1996) An indirect-adaptive control law using
Modified Sequential Least Squares and a Receding Horizon Optimal Con-
troller was designed to build a mathematical model of the aircraft dynamics
in flight and then use this information to generate control gains in real time
that compensate for the failure [118].

RESTORE by the US Air Force (1996-2000) An adaptive neural network was inte-
grated with a dynamic inversion controller to accommodate actuator failures
for the X-36 tailless aircraft [17]. The two test flights that were completed
helped validation of simulation results.

ACTIVE and IFCS at NASA (1996-2004) The ACTIVE and later IFCS flight tests
used on-board algorithms to identify changes in aerodynamic characteristics
using Neural Networks and the flight control system used this information to
generate additional open-loop commands [42].

Fault-tolerant control by GARTEUR (2004 - 2008) In this research project different
FDI and RFC methods were tested on benchmark scenarios and in a piloted
moving-base simulator experiment. This provided supporting information
on the practical and operational implications of advanced flight control sys-
tems integration from a human factors perspective [45].

The increase in computational power in the 1990s led to an explosion in the
number and types of approaches applied to the RFC problems [173]. This opened
the door to experiment with more complex nonlinear design approaches. Further-
more, there had been considerable theoretical advances in the areas of adaptive and
nonlinear control methods during the 1980s and early 1990s. Among the popular
advanced control design methods are model-based control techniques such as Non-
linear Dynamic Inversion (NDI) [78, 159], adaptive backstepping [88], Model Ref-
erence Adaptive Control (MRAC) [92, 93, 120] and variable structure control (VSC)
[46, 83]. Some examples of such methods applied to full envelope flight control
include NDI with Recursive Least Squares (RLS) estimation of aerodynamic deriva-
tives of a linearized single flight condition model [97], NDI in combination with
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Neural Networks (NN) [21, 110, 153, 156], backstepping using B-spline networks
to approximate the aerodynamic derivatives [57, 164], backstepping in combina-
tion with NN approximation [137, 150, 151]. Hybrid combinations of these control
techniques are possible, for example the combination of NDI and MRAC Nguyen,
Krishnakumar, Kaneshige, and Nespeca [127], direct adaptive control with NN [82,
179], and variable structural control for single flight condition models [2, 154].

1.2.4 Reconfigurable Flight Control in Practice

In 1999 the Boeing F/A-18 E/F Super Hornet was the first military production
aircraft delivered with a reconfigurable control law [47]. The aircraft uses reconfigu-
ration only for a single stabilator failure mode, which is designed to fail in a locked
neutral position. Excellent handling qualities are maintained following the failure.
As can be seen, real-world applications are very limited. One explanation for this
has been the difficulty in certifying these approaches for safe flight, especially since
no requirements for adaptive flight control methods exist. There has been some
progress in developing tools for analyzing RFC such as the use of linear matrix
inequality techniques [25, 203]. Progress was made for more advanced control laws
by Buffington, Tallant, Crum, et al. [18], describing some validation and verification
techniques for adaptive and intelligent control approaches. A different approach
would be to implement reconfigurable control laws that are easier to certify. An ex-
ample would be an adaptive element that does not change the baseline control law
and hence should be interpreted as an autopilot mode or stability augmentation
system during certification [119, 204].

1.3 Research Goals and Approach

The overview of performed research in the previous section still shows some re-
maining problems and limitations of fault tolerant flight control systems. The pas-
sive fault tolerant approaches are limited to restricted failure cases, and therefore an
active approach has more potential when unknown failures and a large combina-
tion of possible failures has to be considered. Only a limited number of approaches
yields control designs that are valid over a large operating range, and especially
estimation of the dynamical model is very often only performed at or around the
current flight condition. No globally valid model is built by these methods and
estimated models are not stored for later re-use when the same flight condition
is revisited Direct adaptive control approaches tune the controller parameters to
achieve the desired performance and do not estimate a model of the system. Many
of the neural network based approaches suffer from convergence problems, and
simultaneously rely on a black-box structure which reduces the transparency of the
aircraft models estimated through these designs. In this research an approach is
taken based on the knowledge of flight dynamics and therefore all quantities and
variables appearing in the estimated models have a physical meaning, leading to
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transparent models and additionally these models can be used for on-line failure
diagnosis as well as reconfiguration.

An area that has not received a lot of attention yet by the aerospace research
community is the problem of safe flight envelope determination, not even for air-
craft without any faults or failures. Knowledge of the safe flight envelope is very
important to prevent loss-of-control accidents and still allow aircraft to operate
at the edges of their performance envelope. In post-failure flight conditions one
would like to know the region of the envelope in which the aircraft can still maneu-
ver safely, and make a safe (crash) landing.

The research described in this dissertation therefore has the following objec-
tives:

• Damaged Aircraft Control A control scheme has to be developed which achieves
the desired performance characteristics over the whole flight envelope of the
aircraft. Additionally, in the presence of faults and failures in the system,
the control law has provable stability and state boundedness characteristics.
Combined with on-line model identification the control design clearly en-
hances performance and survivability in post-failure flight conditions.

• Control Allocation Modern aircraft have many different control effectors. While
this property allows on-line reconfiguration as it provides redundancy, it poses
an additional problem in the control design since the desired control effect
has to be distributed over the available control effectors. This distribution is
performed optimally with respect to a cost criterion and takes the individual
control effector characteristics into account. Stability of the control law with
control allocation can be shown.

• Damaged Aircraft Identification Aircraft failures or damage influence the dy-
namics of the system, which need to be identified on-line to allow active
reconfiguration of the control design and restore control performance. Se-
vere failures cause changes in the required model structure, and addition-
ally, asymmetric damage contributes to the complexity of the required model
structure. When the model structure and estimated parameters match the
underlying physics of the system, the estimated model can be used for fault
diagnosis and derivation of the safe flight envelope post-failure. Therefore,
development of on-line model structure selection methods is required and
the estimated model has to be stored efficiently onboard.

• Flight Envelope Determination Especially for highly maneuverable aircraft and
aircraft with faults and failures the aircraft dynamics pose important con-
straints on the safe maneuvering space. In post-failure flight conditions knowl-
edge of the safe envelope can be the difference between an inevitable accident
or safe (crash) landing. Thus, a method has to be developed which calculates
the safe envelope, based on a available model of the aircraft, and takes input
constraints and disturbances into account.
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1.4 Contributions

A part of the work presented in this dissertation is taken from the following journal
publications and conference papers, in chronological order:

E. R. van Oort, L. Sonneveldt, Q. P. Chu, and J. A. Mulder. “Modular Adaptive
Input-to-state Stable Backstepping of a Nonlinear Missile Model”. In: AIAA Guid-
ance, Navigation, and Control Conference and Exhibit. Hilton Head, South Carolina,
USA, Aug. 2007

L. Sonneveldt, E. R. van Oort, Q. P. Chu, and J. A. Mulder. “Comparison of Inverse
Optimal and Tuning Functions Designs for Adaptive Missile Control”. In: Proceed-
ings of the AIAA Guidance, Navigation, and Control Conference and Exhibit. 2007

E. R. van Oort, L. Sonneveldt, Q. P. Chu, and J. A. Mulder. “A Comparison of
Adaptive Nonlinear Control Designs for an Over-actuated Fighter Aircraft Model”.
In: AIAA Guidance, Navigation, and Control Conference and Exhibit. Honolulu, Hawaii,
USA, Aug. 2008

T. J. J. Lombaerts, E. R. van Oort, Q. P. Chu, J. A. Mulder, and D. A. Joosten. “Online
Aerodynamic Model Structure Selection and Parameter Estimation for Fault Toler-
ant Control”. In: Journal of Guidance, Control, and Dynamics 33.3 (2010), pp. 707–723

E. R. van Oort, Q. P. Chu, and J. A. Mulder. “Safe Flight Envelope Determination by
Reachability Analysis”. In: Proceedings of the ICNPAA 2010 World Congress: 8th Inter-
national Conference on Mathematical Problems in Engineering, Aerospace and Sciences.
São José dos Campos, Brazil, 2010

E. R. van Oort, L. Sonneveldt, Q. P. Chu, and J. A. Mulder. “Full Envelope Modular
Adaptive Control of a Fighter Aircraft using Orthogonal Least Squares”. In: Pro-
ceedings of the AIAA Guidance, Navigation, and Control Conference. 2010-7857. AIAA.
Toronto, Ontario, Canada, Aug. 2010

E. R. van Oort, L. Sonneveldt, Q. P. Chu, and J. A. Mulder. “Full Envelope Modular
Adaptive Control of a Fighter Aircraft using Orthogonal Least Squares”. In: Journal
of Guidance, Navigation and Dynamics 33.5 (2010), pp. 1461–1472

E. R. van Oort, Q. P. Chu, and J. A. Mulder. “Maneuver Envelope Determiniation
through Reachability Analysis”. In: Proceedings of the CEAS EURO GNC 2011 confer-
ence. Accepted, to be presented. 2011

E. R. van Oort, Q. P. Chu, and J. A. Mulder. “Safe Dynamic Flight Enevelope Deter-
mination with Application to an F-16 Model”. In: Journal of Guidance, Control, and
Dynamics (2011). Under review.

E. R. van Oort, Q. P. Chu, and J. A. Mulder. “Adaptive Dynamic Control Allocation
and Backstepping Design”. In: Proceedings of the AIAA Guidance, Navigation, and
Control Conference. Under review. 2011
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E. R. van Oort, L. Sonneveldt, Q. P. Chu, and J. A. Mulder. “Adaptive Dynamic
Control Allocation and Backstepping Design”. In: Journal of Guidance, Control, and
Dynamics (2011). To be submitted.

1.5 Outline

The dissertation consists of four parts: Part I: Backstepping and Model Identification Theory,
Part II: Modular Backstepping Flight Control, Part III: Safe Flight Envelope, and Part IV:
Conclusions and Recommendations. Each of the first three starts with an introductory
chapter which introduces the subject, important concepts and definitions used in
the respective part, and relates the part to the dissertation as a whole. The structure
of the individual parts is described below.

Part I: The first part of the dissertation contains theory on nonlinear control, and
especially on the backstepping approach. Chapter 2 introduces the concept
of feedback control and gives an overview of control methods that have been
widely applied in aircraft control. In chapter 3 the theory related to back-
stepping for systems with known dynamics is introduced. This theory is
extended in chapter 4 to systems with unknown, constant parameters. Using
the theory in the adaptive backstepping chapter, control laws can be designed
which achieve boundedness of the closed-loop system, placing the burden of
tracking performance on the model identification part. The theory introduced
in this part is applied to the tracking control design for a simple longitudinal
missile model to illustrate the differences and improvements of the various
control designs.

Part II: The second part applies the theory introduced in the first part to fault toler-
ant aircraft control. Chapter 5 introduces the reader to aircraft dynamics and
important reference frames. It also includes a discussion of the variables that
can be controlled. Chapter 6 compares three adaptive backstepping designs
with different control allocation methods on a simple aircraft model with
constant model parameters. The control allocation part is included in the Lya-
punov design in chapter 7. In chapter 8 the modular backstepping approach
is used for full flight envelope fault tolerant control of an F-16 aircraft model.
Chapter 9 presents the results of a composite adaptive backstepping design
together with full envelope parameter estimation, model structure selection
and control allocation for fault tolerant control of the ADMIRE aircraft model.

Part III: In the third part, the safe flight envelope problem is addressed. Chap-
ter 10 gives in introduction to the concept of flight envelope, and discusses
why knowledge of this flight envelope is so valuable. Additionally, a survey
of methods to analyze the behavior of nonlinear aircraft dynamics is given.
Chapter 11 introduces the implicit surface description for sets, as well as the
level set method. Then it discusses selected solution methods of the level set.
At the end of this chapter some examples of reachability analysis for relatively
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simple systems are presented. In chapter 12 the results of application of a
semi-Lagrangian level set method to the safety analysis of the longitudinal
F-16 model are presented.

Part IV: Chapter 13 presents and summarizes the conclusions drawn from the work
presented in the dissertation. Finally recommendations and future research
directions are formulated.
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PART

I
BACKSTEPPING

AND

MODEL IDENTIFICATION THEORY

In this part of the dissertation theory is introduced to support the applications
to aircraft fault tolerant control in Part II. First, a short introduction to control
in general, and its applications in aviation is given. Then, one of the main
subjects is introduced: backstepping. In the last chapter the backstepping
method is extended to be applicable to systems with unknown parameters. A
simple longitudinal missile model is used to illustrate the different approaches
through the whole part.
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2
INTRODUCTION TO ADAPTIVE

NONLINEAR CONTROL

In this chapter first an introduction to the basic concepts of feedback and control
is given. An overview of control methods used for flight control design is
presented. Adaptive control methods extend the control concepts to systems
with large uncertainties and unknown dynamics. An introduction to different
modeling techniques is given.

2.1 What is Feedback Control

A dynamical system is a system whose behavior changes over time, often in response
to external influence. The term feedback refers to a situation in which two or more
dynamical systems are connected together such that each system influences the
other, and their dynamics are therefore coupled. The term control has many mean-
ings, and varies between different communities and its context. In this dissertation,
control is defined as the theory and algorithms which deal with influencing the
behavior of dynamical systems. Typically, control systems are designed such that
the influenced system follows some desired reference input, while achieving some
level of disturbance rejection. An example of control in this sense is the cruise con-
trol of a car: a control system designed to maintain a constant vehicle speed despite
variations in road slope. Feedback control is also the mechanism that keeps home-
ostasis in the human body [201]. Alfred Wallace, the often omitted co-discoverer of
the theory of evolution, and Charles Darwin suspected that feedback over longer
time periods is responsible for the evolution of species [32]. The standard feedback
control loop block diagram is shown in figure 2.1. This shows the interconnection
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u y
System 1 System 2

Figure 2.1: Standard feedback system block diagram.

between the outside world, the system itself, and the control system influencing the
system.

Automatic control systems already date back to the ancient Greeks and Arabs
who designed fluid-level regulators. The Industrial Revolution in Europe sparked
the desire for self-driven machines, thereby introducing the requirement for au-
tomatic control systems. Control theory began to acquire its language by James
Maxwell in 1868 through his work on automatic governors [109]. Other events
resulting in large interest and developments in automatic control were the Second
World War and the space-race between the United States and the Soviet Union.
Nowadays, it is hard to imagine a life without automatic control: it can be found in
nearly every system around us.

Most of the systems encountered in practice are inherently nonlinear meaning
that the relation between the input and the output of the system is not simply a
linear mapping but rather some nonlinear combination of the input and the system
states. Linear control design methods can sometimes be applied to nonlinear sys-
tems over limited operating regions. However, problems with a sufficiently large
operation region or highly nonlinear dynamics may require that the nonlinearities
in the system are directly addressed in the control system design to achieve the
desired level of performance. Modern fighter aircraft are notable examples of such
systems; they are designed for large operating envelopes, inherently unstable and
highly nonlinear. A wide range of methods exists in literature addressing various
types of nonlinearity and the way the nonlinearity affects the system. In the next
section some of these methods are discussed.

2.2 Flight Control Approaches

This section contains a brief overview of some methods which have been applied in
aircraft control design, either in industry or academia. First of all the small-signal
linearization and gain-scheduling approaches are discussed. Second, the feedback
linearization and nonlinear dynamic inversion schemes are presented. Finally, a
brief introduction to the backstepping design method is given.
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2.2.1 Small-signal Linearization

The name small-signal linearization is used to characterize the fact that a linear model
is a good representation of the true nonlinear system if the system trajectory x(t)
remains close to some equilibrium point xe or to some nominal trajectory x⋆(t). Ad-
ditionally, this name also distinguishes this type of linearization from the feedback
linearization method discussed below.

If the nonlinear system is linearized around the equilibrium (x, u) = (0, 0), then
the resulting linear model is described by

ẋ = Ax + Bu (2.1)

where the matrices A ∈ R
n×n and B ∈ R

n×m are given by

A =
∂ f

∂x
(x, u)

∣
∣
∣
x=0,u=0

B =
∂ f

∂u
(x, u)

∣
∣
∣
x=0,u=0

. (2.2)

Linear control design approaches can now be used to design a feedback controller
for the system, for example proportional-integral-derivative controllers and H∞-
synthesis.

If a tracking controller is designed based on a linearization valid at some oper-
ating point, then as the reference moves away from the equilibrium point, the state
x(t) will try to follow it. As the distance between the actual state and the equi-
librium increases, the linear approximation becomes increasingly less accurate. As
the accuracy of the approximation decreases, the designed linear controller might
become unsuitable causing a degradation of performance and stability. Instead
of linearizing around a fixed equilibrium point, linearization around a reference
trajectory xr(t) and associated nominal control signal u⋆ known a-priori is a possi-
bility. This methods yields similar results as linearizing around a single operating
point. The main difference is that linearizing around a trajectory generally results
in a time-varying linear model for which other linear control design methods exist.

2.2.2 Gain-scheduling

In the section above a linearization method suitable for systems which stay rela-
tively close to a desired operating point or nominal trajectory has been described.
The gain-scheduling approach is an extended version of the small signal linearization
around multiple operating points. For each linear model a feedback controller is
designed, creating a family of feedback control laws. Each of these control laws
is applicable in the neighborhood of a specific operating point. The family is com-
bined into a single control law whose parameters are varied by a scheduling scheme
usually based on the system state and reference signal.

Intuitively, if for each linearization point the region of attraction with the control
law is larger than the scheduled operating region corresponding to the point, the
resulting gain-scheduled control system will be stable. Unfortunately, deriving
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formal stability results is very complex for this approach (see e.g. [148, 149]). An-
other limitation of the method is that the designed controller is fixed, therefore
any mismatch between the model and the true system due to disturbances and
uncertainty will cause performance degradation. Additionally, the selection of
the number of linearization points and the individual controller tuning is still a
cumbersome and labor intensive process since each linearization point has to be
handled individually, and afterwards the complete system performance has to be
evaluated. However, it has been used successfully and very frequently in flight
control, see for example [76, 111, 128, 171, 172, 176].

2.2.3 Feedback Linearization

Feedback linearization (FBL) can be described as an approach to transform a non-
linear system to an equivalent linear system through a combination of state or
output feedback and a coordinate transformation. The technique is one of the most
powerful and common techniques found in nonlinear control. Consider the n-th
order system in companion form

ẋ1 = x2
...

ẋn−1 = xn
ẋn = f (x) + g(x)u.

(2.3)

The nonlinearities f (x) and g(x) in this system can be canceled by designing a
feedback linearizing control law of the form

u = g−1(x) [ν − f (x)]

which results in a chain of n integrators from the virtual control input ν to the
state x1. Not all systems are in this basic form. The class of systems which can be
transformed into the companion form by a nonlinear coordinate transformation,
called diffeomorphism, is called feedback linearizable. The diffeomorphism to
transform the system into the companion form can be found systematically using
Lie-derivatives.

The major drawback of feedback linearization is that it relies on exact cancel-
lation of the nonlinearities in the system. If one of the functions, for example
f (x), is uncertain, exact cancellation of the nonlinearities becomes impossible. For
uncertainties that are relatively small, robust control techniques can be used to
design controllers with adequate performance. However, when the uncertainties
become large, a different approach is required: adaptive control. Another problem
of the feedback linearization method is that not all systems can be transformed to a
linearizable form. The backstepping technique introduced in the following section
can be applied to a class of systems which is larger than feedback linearizable
systems, and allows for more flexibility in the design.
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2.2.4 Backstepping

The name backstepping originates from the fact that it is a recursive design method
which steps back toward the control inputs starting with the differential equations
which are separated from them by the largest number of integrators [88]. The de-
sign procedure is in some ways very similar to feedback linearization and nonlinear
dynamic inversion. However, instead of first transforming the system into the
companion form directly, a stabilizing feedback is constructed for each subsystem
by considering a combination of states appearing one integrator step later as a
virtual control input. This process is repeated until a stabilizing control law for
the actual control inputs can be defined.

The approach is best illustrated by giving a simple example, chapters 3 and 4
discuss the backstepping method in much more detail. Consider a second order
system

ẋ1 = x2
ẋ2 = f (x1, x2) + g(x1, x2)u,

(2.4)

with g(x1, x2) 6= 0 for some operating envelope. The control objective is to track
a differentiable reference signal xr(t). The key idea of backstepping is that the
tracking problem is solved if the control input u could force the state x2(t) to satisfy

x2 = −c1(x1 − xr) + ẋr, c1 > 0. (2.5)

In that case, x1 satisfies ẋ1 = −c1(x1 − xr) + ẋr, implying that x1(t) converges to
xr(t) and then tracks the reference signal. This notion is equivalent to treating x2
as a virtual control input for the x1 subsystem. Thus, define an virtual control law
α(x1, xr, ẋr), defined as

α(x1, xr, ẋr) = −c1(x1 − xr) + ẋr.

Now introduce a change of coordinates

z1 = x1 − xr
z2 = x2 − α(x1, xr, ẋr),

which will be referred to as the error system. The dynamics of the error system
become

ż1 = −c1z1 + z2

ż2 = ν = f (x1, x2) + g(x1, x2)u − ∂α

∂x1
ẋ1 −

∂α

∂xr
ẋr −

∂α

∂ẋr
ẍr

The control law for u can now be designed using a control Lyapunov function (CLF)

defined as V(z1, z2) = 1
2 (z

2
1 + z2

2). The Lyapunov function can be considered as
some measure of the energy in the error system. The derivative of the CLF is given
by

V̇ = −c1z2
1 + z1z2 + z2v
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u y

System

Controller

Figure 2.2: Direct adaptive control scheme.

from which we design the modified control input

u = g−1(x1, x2)

[

−c2z2 − f (x1, x2)− z1 +
∂α

∂x
ẋ1 −

∂α

∂xr
ẋr −

∂α

∂ẋr
ẍr

]

, c2 > 0

to render the CLF derivative negative definite

V̇ = −c1z2
1 − c2z2 ≤ 0,

dissipating the “energy” in the error system.

2.3 Adaptive Control

There is a long and rich history of attempts to invent, design and build systems
capable of controlling systems with uncertainties and/or unpredictable changes in
their dynamics. It can be argued that this even dates back to the first feedback sys-
tems, since even the most elementary feedback loops can often tolerate significant
uncertainties. Adaptive control can be interpreted as dynamic feedback: controllers
with a higher order to be able to adapt themselves to changes in the controlled
system. Mainly two types of adaptive control exists, distinguished by whether the
tuning gains of the controller are adapted, or that the model of the system to be
controlled is estimated. These control approaches are called direct adaptive control
and indirect adaptive control respectively. This dissertation is focused on indirect
adaptive control since this control approach can yield an accurate model of the
system, which can be extremely valuable for failure diagnosis.

2.3.1 Direct Adaptive Control

In the direct adaptive control approach the identifier acts simultaneously as a con-
troller. The adaptation mechanism is designed to adjust the identifier to match
some unknown nonlinear controller that will stabilize the system, and make the
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Figure 2.3: Indirect adaptive control scheme.

closed-loop system meet the desired performance objectives. The scheme is called
direct since the system itself is not identified, but the parameters of the controller
are directly updated. This controller architecture is shown in figure 2.2.

2.3.2 Indirect Adaptive Control

An indirect approach to adaptive control is made up of an identifier which is used to
identify the unknown system dynamics by estimating some model parameters, and
a certainty equivalence control scheme in which the system the controller is designed
assuming that the parameter estimates are their true values. This adaptive control
architecture is shown in figure 2.3. If the estimated model is a good approximation
of the true system, then it is easier to meet the control objectives. If on the other
hand the system does not react as expected or predicted, the estimated model is
incorrect and therefore should be adjusted to match the true system behavior.

2.4 System Identification

The name system identification is a general term to describe the mathematical tools
and algorithms to build dynamical models for systems from measured data. In
technical terms, system identification is defined by Zadeh [208] as ”the determina-
tion on the basis of input and output, of a system (model) within a specified class
of systems (models), to which the system under test is equivalent (in terms of a
criterion)”. From this definition it follows that three entities are involved in system
identification: measurement data, a set of models, and a criterion.

In this dissertation only models that are linear in their parameters are consid-
ered, that is, models of the form

ŷ = ϕT(x, u)θ̂ (2.6)

where ŷ is the estimated model output, x is the system state, u is the system input,
ϕ(x, u) defines the model structure and is often called the regressor function, and
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θ̂ is the model parameter estimate or parameter vector. Note that the function ϕ can
depend nonlinearly on the state and input variables of the system.

Many different methods of theoretical modeling ranging from first principles
to empirical modeling based only on measurement data can be pursued. Basically,
three different modeling approaches can be distinguished:

White-box models are fully derived by first principles, i.e. physical, chemical,
biological, economical, etc. laws. All equations and parameters can be de-
termined by theoretical modeling. Typically, models whose structure is com-
pletely derived from first principles are placed under white box models even
when some parameters are estimated from data.

Black-box models are solely based on measurement data. Both the model struc-
ture and parameters are determined from experimental modeling. For build-
ing black box models, little or no prior knowledge is exploited, and the esti-
mated model does not have a direct relationship to first principles.

Gray-box models are a combination of white and black box models. They are
characterized by the integration of various kinds of information that is avail-
able about the system. Often, the model structure candidates rely on prior
knowledge and the parameters are determined through measurement data.
The model structure can also be determined from collected measurement
data.

All three model types can be used in indirect adaptive control schemes. The model
identification task for on-line system identification is composed out of two tasks:

1. selecting a model structure, and

2. determining the model parameters.

In black box modeling these two tasks can be tackled simultaneously, while for
white box models only the second task has to be performed. Structure selection
is especially important for gray box models to avoid over- and underfitting the
measured data. These two tasks will be discussed in more detail below.

2.4.1 Model Parameter Optimization

If the cost criterion for a particular model structure is selected as the sum of squares
of the output errors, and the model output is linear in the unknown parameter, a
quadratic optimization problem is obtained. This type of optimization problem has
the following properties

• a unique optimum exists,

• the surface of the cost function is a hyper-parabola,

• a recursive formulation is possible,
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• the computational cost is low.

which makes it very attractive for on-line applications. When the parameter opti-
mization problem to be solved is defined as

min
θ(t)

∫ t

0

(

y(τ)− ϕT(τ)θ(τ)
)2

dτ = min
θ

∫ t

0
ε(τ)2dτ (2.7)

then the gradient descent algorithm

˙̂θ = γϕε, γ > 0 (2.8)

updates the parameter estimate in the direction of the steepest descent direction of
the cost function with respect to the error. The gradient update law (2.8) can be
considered as a first-order approximation of the cost function.

Faster convergence of the estimate to the optimal value can be achieved by
taking the second order derivative of the cost function into account (Newton’s
method). By introduction of the notation

〈x, yT〉 =
∫ t

0
x(τ)yT(τ)dτ (2.9)

and the correlation matrix N = 〈ϕ, ϕT〉, the problem (2.7) can be rewritten as

min
θ̂(t)

〈y, y〉 − 2〈y, ϕT〉θ̂ + θ̂T Nθ̂.

After differentiation with respect to the parameter estimate the normal equation is
obtained

Nθ̂(t) = 〈ϕ, y〉.
where N can be interpreted as the second order derivative of the cost function
with respect to the parameter estimate. The optimization problem can be solved

recursively by tracking the inverse of Γ = N−1 and the estimate θ̂ and the recursive
least squares filter is obtained

˙̂θ = Γϕǫ (2.10a)

Γ̇ = −ΓṄΓ = −ΓϕϕT
Γ (2.10b)

2.4.2 Model Structure Selection

Model structure selection deals with selecting an appropriate model structure such
that the actual system can be approximated as good as possible within the set
of allowable model structures. An over-parameterized model structure can lead
to unnecessarily complicated computations for finding the parameter estimates
and for using the estimated model. An under-parameterized model can be too
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inaccurate. Therefore, often Occam’s razor is often applied for model structure
selection, stating that “the simplest solution is usually the correct one” or “the
simplest explanation that covers all the facts is usually the best”.

The matrix ϕ in (2.6) for gray and black box models can defined in different
ways, and combinations of the methods below are possible.

Taylor Expansion A Taylor expansion is taken around an operating point up to a
certain order. The parameter vector then determines how the different con-
tributions of the Taylor expansion terms are weighted. If a first order Taylor
expansion model is made, the model will be at best a tangent hyperplane to
the true system. It is fairly easy to extract information about the actual system
from the Taylor expansion model structure. For example, in aircraft control
the sign of the dependence of the pitch moment coefficient on the angle of
attack determines the aircraft’s static stability and in the Taylor model this is
easily observed from the sign of parameter multiplying the angle of attack.

Basis Functions and Neural Networks These two techniques are more appropri-
ate for the black-box approach, since no model structure is assumed a-priori.
The coefficients multiplying the basis functions are estimated and depending
on the number of basis-functions any function can be approximated accu-
rately.

2.5 Conclusions

In this chapter a brief overview of important concepts in feedback control was
given. Some approaches used in the flight control domain to handle the nonlinear
behavior of aircraft were introduced. The concept of adaptive control and two of
its flavors, indirect and direct, were discussed. One of the key aspects in indirect
adaptive control is system identification which is composed out of model struc-
ture determination and parameter estimation. Since aircraft, and especially fighter
aircraft, are nonlinear systems with large operating regimes, a nonlinear control
method with a lot of flexibility is selected for further research: the backstepping
approach.
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3
BACKSTEPPING CONTROL DESIGN

Lyapunov theory is a very important tool for both linear as well as nonlinear
control. One of the main difficulties in the early days of nonlinear control was
the problem of finding a Lyapunov function for a given system. The invention
of constructive control tools for nonlinear control design, like backstepping, has
been well received in the control community. Along with a Lyapunov function
to prove stability of the closed-loop system, a control law stabilizing the system
is designed.

In this chapter first of all important design tools based on Lyapunov functions
are introduced. These tools are then used to introduce the backstepping design
procedure, starting with simple systems and extending to the class of block-
strict feedback systems. Then, several extensions and modifications of the
backstepping method are introduced which can handle a larger class of systems.

3.1 Stability Concepts for Nonlinear Systems

Stability plays a crucial role in system theory and control engineering, and has been
researched quite extensively in the past century. Some of the most fundamental
concepts of stability were introduced by the Russian mathematician and engineer
Alexandr Lyapunov [107]. The work of Lyapunov was extended and brought to
the attention of the control engineering and applied mathematics communities by
LaSalle, Krasovskii and many others.

31
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3.1.1 Stability Properties

Note that stability is a property of an equilibrium, not of a system as a whole. Often
however, the system will be referred to as stable if all of its equilibrium points are
stable. Consider the time-varying system

ẋ = f (x, t) (3.1)

where x ∈ R
n, and f : R

n × R+ → R
n is a piecewise continuous function in t and

locally Lipschitz in x. The solution of (3.1) which starts from the point x0 at time
t0 ≥ 0 is denoted as x(t; x0, t0) with x(t0; x0, t0) = x0. Lyapunov concepts describe
continuity properties of x(t; x0, t0) with respect to x0. If the initial condition is
perturbed to x̃0, then, for stability, the resulting perturbed solution x(t; x̃0, t0) is
required to stay close to x(t; x0, t0) for all t ≥ 0. In addition, for asymptotic stability,
the error x(t; x̃0, t0)− x(t; x0, t0) is required to vanish as t → ∞. Summarizing, the
solution x(t; x0, t0) of (3.1) is

bounded if there exists a constant B(x0, t0) > 0 such that

|x(t; x0, t0)| < B(x0, t0), ∀t ≥ 0, (3.2)

stable if for each ǫ > 0 there exists a δ(ǫ, t0) such that

|x̃0 − x0| < δ ⇒ |x(t; x̃0, t0)− x(t; x0, t0)| < ǫ, ∀t ≥ 0, (3.3)

attractive if there exists an r(t0) > 0 and, for each ǫ > 0, a T(ǫ, t0) such that

|x̃0 − x0| < r ⇒ |x(t; x̃0, t0)− x(t; x0, t0)| < ǫ, ∀t ≥ t0 + T, (3.4)

asymptotically stable if it is both stable and attractive, and,

unstable if it is not stable.

When the constants defined above are not dependent on t0, the corresponding
properties are called uniform. Note that this is the case when the system itself is
time invariant: ẋ = f (x). For the adaptive control designs of the next chapter,
uniform stability is more desirable than just stability. An even more desired property
is uniform asymptotic stability (UAS). The solution x(t; x0, t0) is UAS if it is uniformly

stable and uniformly attractive. This interpretation of stability is illustrated in R
2

in figure 3.1. All trajectories starting from the inner disc remain in the outer disc
and are therefore bounded by the outer circle.

The set of initial conditions D =
{

x0 ∈ R
n|x(t0) = x0 and |x(t)| → ∞ as t → ∞

}

is the domain of attraction of the origin. If D is equal to R
n, then the origin is said to

be globally asymptotically stable. A globally stable equilibrium point implies that xe
is a unique equilibrium point, thus all solutions converge to this point independent
of their starting point. In some cases it is not possible to prove stability of the
equilibrium point xe, yet it may still be possible to use Lyapunov analysis to show
boundedness of the solution [83].
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Figure 3.1: Lyapunov stability illustrated in R
2

3.1.2 Lyapunov’s Direct Method

To be of practical interest, the stability condition should not require that the ordi-
nary differential equation (3.1) is solved explicitly; in general it is not possible or
not straightforward to find analytical solutions. A different method was introduced
by Lyapunov [107] to prove stability: Lyapunov’s Direct Method. The method can
be interpreted as a generalization of the idea that there exists some measure of the
energy in a system. The rate of change of the energy in the system provides a way
to investigate stability of an equilibrium point. Formally, let B(r) be a ball of size r
around the origin: B(r) =

{
x ∈ R

n||x| < r
}

.
A continuous function V(x) is

positive definite on B(r) if V(0) = 0 and V(x) > 0, ∀x ∈ B(r) such that x 6= 0,

positive semi-definite on B(r) if V(0) = 0 and V(x) ≥ 0, ∀x ∈ B(r) such that
x 6= 0,

negative (semi-)definite on B(r) if −V(x) is positive (semi-)definite, and

radially unbounded if V(0) = 0, V > 0 on R
n/ {0} and V(x) → ∞ as x → ∞.

A continuous function V(x, t) is

positive definite on B(r)R if there exists a positive definite function α(x) on B(r)
such that

V(0, t) = 0, ∀t ≥ 0 and V(x, t) ≥ α(x), ∀t ≥ 0, x ∈ B(r),

radially unbounded on B(r) if V(0) = 0 and V(x) ≥ 0, ∀x ∈ B(r) such that x 6= 0,

V(0, t) = 0, ∀t ≥ 0 and V(x, t) ≥ α(x), ∀t ≥ 0, x ∈ R
n,
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decrescent on B(r)×R if there exists a positive definite function α(x) on B(r) such
that

V(x, t) ≤ α(x), ∀t ≥ 0, x ∈ B(r)

Using these concepts, the following method can be used to determine the stability
of an equilibrium point of a system by studying an appropriate Lyapunov function
V(x, t). The time derivative of V(x, t) is taken along the trajectories of the system
(3.1)

V̇(x, t)
∣
∣
ẋ= f (x,t)

=
∂V

∂t
+

∂V

∂x
f (x, t)

Theorem 3.1 (Lyapunov’s Direct Method). Let V(x, t) : D × R+ → R+ be a contin-
uously differentiable and positive definite function, where D is an open region containing
the origin.

• if V̇(x, t)
∣
∣
ẋ= f (x,t)

is negative semi-definite for x ∈ D, then the equilibrium xe = 0 is

stable;

• if V(x, t) is decrescent and V̇(x, t)
∣
∣
ẋ= f (x,t)

is negative semi-definite for x ∈ D, then

the equilibrium xe = 0 is uniformly stable;

• if V̇(x, t)
∣
∣
ẋ= f (x,t)

is negative definite for x ∈ D, then the equilibrium xe = 0 is

asymptotically stable;

• if V(x, t) is decrescent and V̇(x, t)
∣
∣
ẋ= f (x,t)

is negative definite for x ∈ D, then the

equilibrium xe = 0 is uniformly asymptotically stable;

• if there exist three positive constants c1, c2 and c3 such that c1|x|2 ≤ V(x, t) ≤
c2|x|2 and V̇

∣
∣
ẋ= f (x,t)

≤ −c3|x|2 for all t ≥ 0 for all x ∈ D, then the equilibrium xe

is exponentially stable.

Proof. The proof can be found in chapter 4 of Khalil [83].

The requirement that the time derivative of the Lyapunov function is negative
definite is quite stringent. In some cases it is still possible to conclude asymptotic
convergence when it is only negative semi-definite using LaSalle’s invariance the-
orem, see Khalil [83]. This theorem is only valid for autonomous systems, for non-
autonomous systems Barbalat’s lemma can be applied to show convergence.

Lemma 3.2 (Barbalat’s Lemma). If the differentiable function φ(t) tends to a finite limit
as t → ∞ and if φ̇ is uniformly continuous (or φ̈ is bounded), then

lim
t→∞

φ̇(t) = 0.

Combination of this lemma with Lyapunov’s direct method leads to the powerful
theorem due to LaSalle and Yoshizawa
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Theorem 3.3 (LaSalle-Yoshizawa). Let xe = 0 be an equilibrium point of (3.1) and
suppose that f is locally Lipschitz in x and uniformly in t. Let V : R

n × R+ → R+ be a
continuously differentiable function V(x, t) such that

γ1(|x|) ≤ V(x, t) ≤ γ2(|x|) (3.5)

V̇ =
∂V

∂x
(x) f (x, t) ≤ −W(x) ≤ 0 (3.6)

∀t ≥ 0, ∀x ∈ R
n, where γ1, γ2 are class K∞ functions, and W is a continuous function.

Then, all solutions of (3.1) are globally uniformly bounded and satisfy

lim
t→∞

W(x(t)) = 0. (3.7)

In addition, if W(x) is positive definite, then the equilibrium point x = 0 is globally
uniformly asymptotically stable (GUAS).

Proof. The proof is given in appendix A of Krstić, Kanellakopoulos, and Kokotović
[88].

The main feat of Lyapunov’s direct method is that it can be applied without
explicitly solving the differential equation (3.1). Unfortunately, theorem 3.3 does
not provide any means of constructing the Lyapunov function V(x, t). The theorem
only gives sufficient conditions, and hence it can be difficult to find a Lyapunov
function.

Another important stability concept used in this dissertation is that of input-to-
state stability (ISS), introduced by Sontag [167].

Definition 3.4 (Input-to-State Stability). The system ẋ = f (t, x, u) where f is piecewise
continuous in t and locally Lipschitz in x and u, is said to be ISS if there exists a class
KL function β and a class K function γ, such that, for any x(0) and for any input u(·)
continuous and bounded on [0, ∞) the solution exists for all t ≥ 0 and satisfies

|x(t)| ≤ β(|x(t0)|, t − t0) + γ

(

sup
t0≤τ≤t

|u(τ)|
)

for all t0 and t such that 0 ≤ t0 ≤ t.

The function γ(·) is often referred to as an ISS-gain for the system. This definition
implies that an ISS system is bounded-input bounded-state stable and has a GUAS
equilibrium at x = 0 when u(t) = 0.

3.2 Control Lyapunov Functions

The objective of designing a control system is to create a closed-loop system with
desirable stability properties, rather than just analyzing the properties of a given
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system. Therefore, an extension of the Lyapunov function, introduced in the previ-
ous section, the control Lyapunov function (CLF) is used.

Consider a system

ẋ = f (x, u), x ∈ R
n, u ∈ R, f (0, 0) = 0 (3.8)

where the goal is to design a feedback control law α(x) for the control variable u
such that the equilibrium x = 0 of the closed loop system

ẋ = f (x, α(x)) (3.9)

is globally asymptotically stable. It is possible to pick a V(x) as a Lyapunov func-
tion candidate, and require that its derivative along the solutions of (3.9) satisfies
V̇(x) ≤ W(x), where W(x) is a positive definite function. Therefore, an α(x) has to
be found which guarantees that for all x ∈ R

n

∂V(x)

∂x
f (x, α(x)) ≤ −W(x), ∀x ∈ R

n. (3.10)

A stabilizing control law for the system (3.8) may exist, but due to a (poor) choice
of V(x) and W(x) may fail to satisfy (3.10). A system for which a good choice of
V(x) and W(x) exists is said to possess a CLF. More precisely, the definition of a
CLF is given below.

Definition 3.5 (Control Lyapunov Function (CLF)). A smooth positive definite and
radially unbounded function V : R

n → R+ is called a CLF for (3.8) if

inf
u∈R

{
∂V(x)

∂x
f (x, u)

}

< 0, ∀x 6= 0. (3.11)

The existence of a CLF is equivalent to global asymptotic stabilizability [4]. The use
of CLFs in control design is illustrated by a very basic scalar example.

Example 3.1 (Scalar system example)
Consider a the system

ẋ = −x3 + cos(x) + u (3.12)

for which the task is to design a feedback control law which creates and globally
stabilizes the equilibrium at x = 0. Using the concept of nonlinear dynamic inver-
sion and feedback linearization it is quite straightforward to design the control law

u = x3 − cos(x)− x (3.13)

which cancels both the nonlinearities, and replaces them with −x, such that the
resulting feedback system is linear: ẋ = −x. Taking

V(x) =
1

2
x2 (3.14)
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Figure 3.2: Comparison of the two CLF based designs. One based on feedback
linearization, the other one “smart”.

as a CLF for (3.12), the control law satisfies the requirement (3.10) with W(x) = x2.

It is possible to design a better control law which does not cancel the x3 non-

linearity. For stabilization at x = 0 the negative feedback term −x3 is helpful,

especially for large values of |x|. Simultaneously, the presence of x3 in the control
law is potentially harmful since it can lead to large control input signals u, and can
easily cause destabilization when there is small uncertainty in the system. Thus, a

new control law is designed which avoids cancellation of the x3 term as

u = − cos(x)− x (3.15)

which meets the requirement (3.11) with W(x) = x2 + x4.

The example shows one of the strengths of constructive Lyapunov-based de-
signs: they are very flexible in the choice of control law. The different control
designs are compared in figure 3.2. Two initial conditions are shown x = 2 and
x = −1. The control input for the smart controller is much lower for the first
initial condition, as was expected. Additionally, the transient response of the smart
controller design is faster than the FBL design. The major deficiency of the CLF
concept as a design tool is that for most nonlinear systems a CLF is not known. The
task of finding an appropriate CLF may be as complex as designing a stabilizing
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feedback law. For some classes of nonlinear systems, these two tasks are solved
simultaneously by the backstepping procedure.

An extension of the CLF for systems with uncertainties is the ISS-CLF. Existence
of an ISS-CLF is a necessary and sufficient condition for input-to-state stabilizabil-
ity.

Definition 3.6 (ISS-CLF). A smooth function V : R
n × R+ → R+, positive definite

and radially unbounded in x for each d, is called an ISS-control Lyapunov function for

ẋ = f (x, t) + wT(x, t)d + g(x, t)u if there exists a class K∞ function ρ such that the
following implication holds for all x 6= 0 and all d:

|x| ≥ ρ (|d|) ⇒ inf
u∈R

{
∂V

∂x
[ f (x) + g(x, t)u] +

∂V

∂x
w(x)d

}

< 0. (3.16)

3.3 Backstepping Design

In this section the backstepping design is introduced. The previous section has
shown how to use a CLF as a design tool. The backstepping approach extends
this idea from scalar systems to systems with integrators. First, the backstepping
procedure for scalar systems which are extended with a single integrator is given.
Then, using this integrator backstepping approach, a recursive design procedure
for strict feedback systems is defined.

3.3.1 Integrator Backstepping

Consider the system (3.12) extended with an integrator

ẋ1 = −x3
1 + cos(x1) + x2 (3.17a)

ẋ2 = u. (3.17b)

The design objective is the regulation of x1(t) to zero: x1(t) → 0 as t → ∞, for all
x1(0), x2(0). Naturally, x2(t) must remain bounded. The only equilibrium of the
system (3.17) with x1 = 0 is at (x1, x2) = (0, 1). To construct a CLF for the system
(3.17) the fact that a CLF for the x1 subsystem is already known, from the previous
example, will be used. If x2 really were the control input, then the corresponding

CLF and control law would be V(x1) =
1
2 xT

1 x1 and x2 = −c1x1 − cos(x1). However,
x2 is just a state variable and not a control input. In the backstepping design the
variable x2 is interpreted as an intermediate control input, and its desired value can
be described by

x2,des = −c1x1 − cos(x1) , α(x1). (3.18)

Now, introduce z as the deviation of x2 from its desired value

z = x2 − x2,des = x2 − α(x1) = x2 + c1x1 + cos(x1) (3.19)
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The state x2 can be interpreted as a virtual control input, and its desired value α(x1)
as a stabilizing function. The variable z is the corresponding error variable. Now,
apply a change of coordinates to (x1, z) coordinates such that the system is in a more
convenient form. In the new coordinates, the system dynamics can be expressed as

ẋ1 = −x3
1 + cos(x1) + x2

= −x3
1 + cos(x1) +

(
z + x2,des

)

= −c1x1 − x3
1 + z (3.20a)

ż = ẋ2 − α̇(x1) = ẋ2 + (c1 − sin(x1))ẋ1

= u + (c1 − sin(x1))
(

c1x1 − x3
1 + z

)

. (3.20b)

Now a CLF for the system (3.17) has to be selected. First try constructing the CLF
by augmenting V(x1) with a quadratic term in the error variable z

Va(x1, z) =
1

2
xT

1 x1 +
1

2
zTz. (3.21)

The derivative of this CLF candidate along the solutions of the system (3.20) is

V̇a(x1, z, u) = xT
1

[

−c1x1 − x3
1 + z

]

+zT
[

u + (c1 − sin(x1))
(

c1x1 − x3
1 + z

)]

= −c1x2
1 − x4

1

+zT
[

x1 + u + (c1 − sin(x1))
(

−c1x1 − x3
1 + z

)]

.

(3.22)

Now, the control u can be chosen to make V̇a negative definite both in x1 and z such
that the CLF requirement (3.10) holds. For this reason, the cross term x1z is grouped
together with the control input. The simplest way to make V̇a negative definite is
to set the bracketed part of (3.22) equal to −c2z, where c2 > 0

u = −c2z − x1 − (c1 − sin(x1))
(

−c1x1 − x3
1 + z

)

(3.23)

This is just one way of achieving negative definiteness of the augmented CLF deriva-
tive, many more options are available. The design procedure used in this example
is formalized by the integrator backstepping procedure.

Integrator backstepping as a design tool is based on the following assumption.

Assumption 3.7. Consider a system

ẋ = f (x) + g(x)u, f (0) = 0, (3.24)
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where x ∈ R
n is the state, and u ∈ R is the control input. There exist a continuously

differentiable feedback control law

u = α(x), α(0) = 0, (3.25)

and a smooth, positive definite, radially unbounded function V : R
n → R+ such that

∂V

∂x
(x) [ f (x) + g(x)α(x)] ≤ −W(x) ≤ 0, ∀x ∈ R

n, (3.26)

where W : R
n → R is positive semidefinite.

Under this assumption, the control (3.25) applied to the system (3.24) guarantees
global boundedness of x(t), and, via the LaSalle-Yoshizawa theorem, the regulation
of W(x(t)) to zero.

Lemma 3.8 (Integrator Backstepping [88]). Let the system (3.24) be augmented with an
integrator

ẋ1 = f (x1) + g(x1)x2 (3.27a)

ẋ2 = u, (3.27b)

and suppose that (3.27a) satisfies assumption 3.7 with x2 ∈ R as its control.

• If W(x1) is positive definite then

Va(x1, x2) = V(x1) +
1

2
[x2 − α(x1)]

2 (3.28)

is a CLF for the full system (3.27), that is, there exists a feedback control u =
αa(x1, x2) which renders x1 = 0, x2 = 0 the GAS equilibrium of (3.27). One
such a control law is

u = −c(x2 − α(x1)) +
∂α

∂x1
(x1) [ f (x1) + g(x1)x2]−

∂V

∂x1
(x1)g(x1) (3.29)

with c > 0.

• If W(x1) is only semidefinite, then there exists a feedback control which renders
V̇a ≤ −Wa(x1, x2) ≤ 0, such that Wa(x1, x2) > 0 whenever W(x1) > 0 or
x2 6= α(x1). This guarantees global boundedness and convergence of the state to the
largest invariant set Ma contained in the set

Ea =

{[
x1
x2

]

∈ R
n+1
∣
∣
∣W(x1) = 0, x2 = α(x1)

}

.

Proof. The proof is given in chapter 2 of Krstić, Kanellakopoulos, and Kokotović
[88]
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3.3.2 Recursive Backstepping Design

The backstepping procedure has been demonstrated on a second order system with
a simple integrator. The same procedure can be applied recursively to higher order
systems. The only difference is that there are more “virtual states” to step through.
The method starts with the state separated from the actual control input by the
largest number of integrators, and each step of the backstepping technique can be
divided into three parts.

1. Introduce a virtual control and error state variable. Rewrite the current state
equation in terms of these variables,

2. Choose a CLF for the system, treating it as if it were the final stage,

3. Choose a stabilizing feedback term for the (virtual) control that makes the
CLF stabilizable.

Nonlinear strict-feedback systems are of the form

ẋ1 = f1(x1) + g1(x1)x2
ẋ2 = f2(x1, x2) + g2(x1, x2)x3

...
ẋi = fi(x1, x2, . . . , xi) + gi(x1, x2, . . . , xi)xi+1

...
ẋn = fi(x1, x2, . . . , xn) + gn(x1, x2, . . . , xn)u

(3.30)

where xj ∈ R, u ∈ R and gj 6= 0 ∀x. The control objective is to let y = x1

asymptotically track a reference signal yref(t) whose first n derivatives are assumed
known and bounded. The backstepping starts by defining the tracking errors

zi = xi − αi−1 (3.31)

where α0 = yref. and rewrite the dynamics of the error system as

żi = fi(x1, · · · , xi) + gi(x1, . . . , xi)xi+1 − α̇i−1 (3.32)

where xn+1 = u. Then, for each subsystem a CLF function Vi(z1, . . . , zi) is con-
structed as

Vi(z1, . . . , zi) = Vi−1(z1, . . . , zi−1) +
1

2
zT

i zi, (3.33)

where αi is a stabilizing feedback law that satisfies (3.26) for the xi−1-subsystem.
Such intermediate control laws are called stabilizing functions or virtual control laws.
Now, the derivative of Vi with respect to time has to made non-positive when
xi+1 = αi. A possible feedback control that achieves this is

αi(x1, . . . , xi) = g−1
i

(

−cizi − fi + α̇i−1 − gT
i−1zi−1

)

(3.34)

with gains ci > 0.
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Theorem 3.9 (Recursive Backstepping Design for Tracking). If Vn is radially un-
bounded and gi 6= 0 holds globally, then the closed-loop system consisting of the tracking
error dynamics (3.32) and the feedback control laws (3.34) has a globally asymptotic equi-
librium at (z1, . . . , zn) = 0, and zi → 0 as t → ∞. Since the tracking errors go to zero,
this means that global asymptotic tracking is achieved:

lim
t→∞

z1 = lim
t→∞

(x1 − yref) = 0. (3.35)

Proof. The time derivative of Vn along the solutions of (3.32) is

V̇n = −
n

∑
i=1

zT
i cizi

which shows that the equilibrium (z1, . . . , zn) = 0 is globally, uniformly stable.
Additionally, by theorem 3.3 it can be shown that indeed zi → 0 as t → ∞.

3.3.3 Time-scale Separation NDI versus Backstepping

A control law derived through time-scale separation (TSS) NDI can be viewed as
“poor man’s” version of backstepping [184], since the TSS-NDI control law can be
obtained from the backstepping design by dropping terms in each step. In the
first step of the design, the control law is defined identical to the backstepping
design. In the second and subsequent steps, the time derivatives of the preceding
virtual control laws are neglected. The missing time derivative terms are important
for stability and performance of the closed-loop. When there is sufficient time
separation between the different loops, the subsystems of the system, the time
derivative terms are small compared to the the other terms in the virtual control
laws, and stability of the closed-loop system can be shown.

3.3.4 Missile Example

In this section the backstepping design will be applied to a simplified model of
a surface-to-air missile. A second order nonlinear pitch-dynamics model was ob-
tained from [74, 84]. The approximations are valid for the flight envelope −10◦ ≤
α ≤ 10◦ and 1.8 ≤ M ≤ 2.6. The nonlinear equations of motion in the pitch plane
are given by

α̇ = q +
q̄S

mVT
[Cz(α, M) + bz(M)δ]

q̇ =
q̄Sd

Iyy
[Cm(α, M) + bm(M)δ]

(3.36)
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where d is a reference length. The aerodynamic coefficients of the model are ap-
proximated by

Cz(α, M) = ϕT
11(α, M)θ

Cm(α, M) = ϕT
21(α, M)θ

bz(M) = ϕT
12(M)θ

bm(M) = ϕT
22(M)θ

where

ϕT
11(α, M) =

[

α3 α|α| α α|α|M αM 01×9
]

,

ϕT
21(α, M) =

[

01×7 α3 α|α| α α|α|M αM 01×2
]

,

ϕT
12(α, M) =

[

01×5 M 1 01×7
]

,

ϕT
22(α, M) =

[

01×12 M 1
]

,

and θ ∈ R
14 is a vector of constant parameters.

Before the backstepping procedure can be started, it has to be noted that the
missile model is not in lower triangular form. Therefore, the assumption is made
that the control surface δ is a pure moment generator. This assumption is often
made in flight control design, e.g. in Etkin and Reid [52], and Härkegård [68].

First the dynamics are rewritten in a more convenient form

ẋ1 = x2 + f1(x1, M) + g1(M)u

ẋ2 = f2(x1, M) + g2(M)u
(3.37)

with
x1 = α, x2 = q,

f1(x1, M) = C1 ϕT
11(x1, M)θ, f2(x1, M) = C2 ϕT

21(x1, M)θ,

g1(M) = C1 ϕT
12(M)θ, g2(M) = C2 ϕT

22(M)θ,

C1 =
q̄S

mVT
, C2 =

q̄Sd

Iyy
.

Define the tracking errors
z1 = x1 − yref

z2 = x2 − α1

where yref is the reference signal, and α1 is the virtual control to be designed in the
first design step. Step 1: the z1 dynamics satisfy

ż1 = x2 + f1 − ẏref = z2 + α1 + f1 − ẏref. (3.38)

Consider the CLF candidate V1 for the z1-subsystem

V1(z1) =
1

2
zT

1 z1.
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The derivative of V1 along the solution of (3.38) is given by

V̇1 = zT
1 ż1 = zT

1 [z2 + α1 + f1 − ẏref + g1u] .

The virtual control law α1 is selected as

α1 = −c1z1 − f1 + ẏref, c1 = cT
1 > 0 (3.39)

which renders the derivative V̇1 negative definite if z2 = 0 and g1u is ignored. The
remaining cross-term will be dealt with in the second design step.
Step 2: the z2-dynamics are defined by

ż2 = f2 + g2u − α̇1 (3.40)

where

α̇1 =
∂α1

∂z1
ż1 +

∂α1

∂ẏref
ÿref

= −c1 (x2 + f1 − ẏref)−
∂ f1

∂x1
(x2 + f1) + ÿref.

The CLF V1 is augmented with an additional term to penalize the tracking error z2
as

V2(z1, z2) = V1(z1) +
1

2
zT

2 z2.

The derivative of V2 along the solutions of (3.38) and (3.40) satisfies

V̇2 =− zT
1 c1z1 + zT

1 g1u + zT
1 z2 + zT

2 [ f2 + g2u − α̇1]

=− zT
1 c1z1 + zT

1 g1u + zT
2 [z1 + f2 + g2u − α̇1] .

A control law for u can now be defined to cancel all the indefinite terms

u = g2
−1 [−c2z2 − z1 − f2 + α̇1] , c2 = cT

2 > 0. (3.41)

If g1u = 0, by theorem 3.3 the tracking errors z1, z2 → ∞ as t → ∞, meaning that the
reference signal yref is asymptotically tracked. If g1u 6= 0 the derivative V̇2 becomes

V̇2 = −zT
1 c1z1 − zT

2 c2z2 + zT
1 g1u.

If g1u is bounded then V̇2 is negative outside a compact ball around the origin of
the tracking error system. The size of this ball can be reduced by increasing the
gains c1, c2. In this example, the presence of g1 results in a closed-loop system with
a steady state offset. An approach common in linear control design to reduce the
size of this ball, or reduce the steady state offset, is by introducing integral action
in the control law. Introduce a state variable that integrates the z1 error

λ1 =
∫ t

0
z1dt
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and augment the first intermediate control

α1 = −c1z1 − k1λ1 − f1 + ẏref (3.42)

where k1 = kT
1 > 0 is the integral action gain matrix. The resulting closed loop

(λ, z1)-subsystem dynamics become

λ̇1 = z1

ż1 = −c1z1 − k1λ1 + g1u

which show an equilibrium at (k1λ1 = g1u, z1 = 0). Define an augment CLF
candidate

V1,int(z1, λ1) =
1

2
zT

1 z1 +
1

2

(

λ1 − k−1
1 g1u

)T
k1

(

λ1 − k−1
1 g1u

)

Assuming that g1u is constant, the time derivative of this augmented CLF candidate
along the solution (3.38) becomes

V̇1,int = −zT
1 c1z1 + zT

1 g1u − zT
1 k1λ1 +

(

λ1 − k−1
1 g1u

)T
k1z1

= −zT
1 c1z1

which is only negative semi-definite. By means of Barbalat’s lemma it can be shown
that the equilibrium of the closed-loop system for the controller with integrator is
asymptotically stable.

Numerical simulations for both the designed controllers have been performed
using MATLAB/Simulink

c©. Figure 3.3 shows these simulation results for different
settings of the gains. The simulations labeled simple have no integral actions, and
relatively low gains c1 = 1, c2 = 2. These simulation clearly show the effect
of neglecting the g1u term in the control design. The high gain simulations have
(very) high settings for the proportional control part, c1 = 10, c2 = 20. Finally, the
lines labeled PI shows the results of the controller with normal proportional gain
settings, and integral control, c1 = 1, c2 = 2, k1 = 5. The last two controllers
clearly reduce or counteract the effect of the neglected dynamics. However, the
first approach does this using “brute-force”, while the second approach can be
interpreted as a simple form of adaptive control. This missile example system
will be used throughout the remaining part of the dissertation to illustrate the
modifications and extensions of the backstepping method.

3.4 Backstepping with Uncertainty

The full power of backstepping only emerges when systems with uncertain non-
linearities or unknown parameters are considered. First, the concept of nonlinear
damping will be introduced which is used as a tool to counteract uncertainty. Then
robust backstepping for systems with uncertainties is discussed.
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Figure 3.3: Angle of attack response (top), control surface deflection (middle), and
bias dynamics (bottom) for the missile example for three backstepping controllers
with different gains.

3.4.1 Nonlinear Damping

The concept of nonlinear damping is introduced using a very simple, scalar exam-
ple. Consider a system

ẋ = u + ϕ(x)∆(t) (3.43)

where ϕ(x) is a smooth, known, nonlinearity and ∆(t) is a bounded, unknown
function of t. Ignoring this uncertainty in the control design can have disastrous
consequences. A linear controller is designed as u = −cx which results in the
closed loop system

ẋ = −cx + ϕ(x)∆(t)

Suppose that the uncertainty is an exponentially decaying function in time ∆(t) =

∆(0)e−kt, and that ϕ(x) is a smooth nonlinear function with faster than linear growth,

for example ϕ(x) = x2. Then, it is easily shown that the system will escape in finite
time for certain combinations of initial conditions x(0) and ∆(0) independently of
the chosen gain c and the decay rate k.
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By adding a nonlinear damping term to the control law this problem can be
overcome, and boundedness of x(t) for all bounded ∆(t) can be guaranteed

u = −cx − s(x)x (3.44)

where the damping function s(x) is left to be designed. Assume a quadratic func-

tion V(x) = 1
2 x2 whose derivative is

V̇ = xu + xϕ(x)∆(t)

= −cx2 − x2s(x) + xϕ(x)∆(t)
(3.45)

The objective of guaranteeing boundedness of the solutions can be expressed as
rendering V̇ negative outside a compact region. This can for example be achieved
wit the choice

s(x) = κϕ2(x), κ > 0, (3.46)

yielding the control law

u = −cx − κxϕ2(x) (3.47)

and the derivative

V̇ = −cx2 − κx2 ϕ2(x) + xϕ(x)∆(t)

= −cx2 − κ

[

xϕ(x)− ∆(t)

2κ

]2

+
∆

2(t)

4κ

≤ −cx2 +
∆

2(t)

4κ
.

(3.48)

From this derivative it is easy to see that V̇ is negative whenever |x(t)| > |∆(t)|
2
√

κc
.

Lemma 3.10 (Nonlinear Damping [88]). Let the system (3.24) be perturbed as in

ẋ = f (x) + g(x)
[

u + ϕT(x)∆(x, u, t)
]

(3.49)

where ϕ(x) is a (p × 1) vector of known, smooth, nonlinear functions, and ∆(x, u, t) is
a (p × 1) vector of uncertain nonlinearities which are uniformly bounded for all values of
x, u, t. If Assumption 3.7 is satisfied with W(x) positive definite and radially unbounded,
then the control

u = α(x)− κ
∂V(x)

∂x
g(x)|ϕ(x)|2, κ > 0, (3.50)

when applied to (3.49), renders the closed-loop system ISS with respect to the disturbance
input ∆(x, u, t) and hence guarantees global uniform boundedness of x(t) and convergence
to the residual set

R =

{

x : |x| ≤ γ−1
1 ◦ γ2 ◦ γ−1

3

(

‖∆‖2
∞

4κ

)}

, (3.51)
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where γ1, γ2, γ3 are class K∞ functions such that

γ1(|x|) ≤ V(x) ≤ γ2(|x|) (3.52)

γ3(|x|) ≤ W(x). (3.53)

Proof. See Krstić, Kanellakopoulos, and Kokotović [88, Ch. 2]

3.4.2 Robust Backstepping

The concept of nonlinear damping can be used recursively in the backstepping
design, yielding the robust backstepping procedure. First of all the formal exten-
sion of backstepping for systems with uncertainty is given. Then, the procedure is
generalized.

Lemma 3.11 (Boundedness via Backstepping). Suppose that there exists a stabilizing
feedback law u = α1(x) for the system (3.49) that renders x(t) globally uniformly bounded.
Now consider the augmented system

ẋ1 = f1(x1) + g1(x1)x2 + ϕT
1 (x1)∆1(x1, u, t)

ẋ2 = u + ϕT
2 (x1, x2)∆2(x1, x2, u, t),

(3.54)

where ϕ1(x1) and ϕ2(x1, x2) are vectors of known, smooth nonlinear functions, ∆1(x1, u, t)
and ∆(x1, x2, u, t) are vectors of uncertain nonlinearities which are uniformly bounded for
all values x1, x2, u, t. For this system, the feedback control

u =− c2 (x2 − α1) +
∂α1

∂x1
( f1 + g1x2)− gT

1
∂V

∂x1

−
(

ϕT
2 κ2 ϕ2 +

(
∂α1

∂x1
ϕ1

)T

µ2
∂α1

∂x1
ϕ1

)

(x2 − α1)

(3.55)

guarantees global uniform boundedness of x1(t) and x2(t) with any c2 > 0, and κ2 >

0, µ2 > 0.

Now consider the class of robust-strict-feedback systems

ẋ1 = f1(x1) + g1(x1)x2 + ϕT
1 (x1)∆1(x, u, t)

...

ẋn = fn(x1, . . . , xn) + gn(x1, . . . , xn)u + ϕT
n (x1, . . . , xn)∆(x, u, t)

(3.56)

where gi 6= 0, ∀x ∈ R
n, and ϕ(x1, . . . , xi) is a (p × 1) vector of known smooth

nonlinear functions, and ∆(x, u, t) is a (p × 1) vector of uncertain nonlinearities
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which are uniformly bounded for all values x, u, t. Then state x(t) of the system
(3.56) is globally, uniformly bounded if the control is chosen as

zi = x1 − αi−1

αi = g−1
i

(

−cizi − fi +
i−1

∑
k=1

∂αi−1

∂xk
( fk + gkxk+1)− gT

i−1zi−1

+
i−1

∑
k=1

∂αi−1

∂y
(k−1)
ref

y
(k)
ref − ϕT

i κi ϕizi

−
(

i−1

∑
j=1

∂αi−1

∂xj
ϕj

)T

µi

(
i−1

∑
j=1

∂αi−1

∂xj
ϕj

)



(3.57)

with α0 = yref, u = αn, xn+1 = u and ci, κi, µi positive definite design matrices.
Using the derivative of the Lyapunov function it can be shown that z(t) is globally
uniformly bounded, and that the tracking errors z converge to the compact set

n

∑
i=1

zT
i cizi ≤

1

4

n

∑
i=1

∆
Tκ−1

i ∆ +
1

4

n

∑
i=1

∆̇
Tµ−1

i ∆̇ (3.58)

3.4.3 Robust Backstepping Example

In this section the missile example is revisited to illustrate robust backstepping. In
this case, the term g1δ is taken into account in the control design, by designing a
control law which counteracts the disturbance by means of nonlinear damping. To
cast the missile model into the form handled by the robust backstepping procedure,
the assumption is made that δ can be bounded. This is a realistic assumption since
the real control surface is mechanically constrained to certain deflection limits.

The missile dynamics are rewritten as

ẋ1 = x2 + f1(x1) + wT(x1)∆1(u)

ẋ2 = f2(x1) + g2(x1)u
(3.59)

where w(x1) = g1 and ∆1(u) = u. Using the robust backstepping design procedure
(3.57) the following (intermediate) control laws are designed

α1 = −c1z1 − f1 + ẏref − wT
1 κ1w1z1

u = g−1
2

(

−c2z2 − f2 +
∂α1

∂x1
(x2 + f1) +

∂α1

∂ẏref
ÿref

−
(

∂α1

∂x1
w1

)T

µ2

(
∂α1

∂x1
w1

)

z2

)

(3.60)
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Figure 3.4: Response (top), tracking error (middle) and commanded control input
(bottom) for the robust and standard backstepping designs applied to the missile
example.

where c1, c2, κ1, µ2 > 0 are design constants. Suppose that the control surface
deflection δ is limited to 15◦ to either side, hence |∆(t)| ≤ 15◦. The performance
requirements are that the angle of attack response is kept within 1◦ of the reference
command. Using (3.58) and the gains for the normal backstepping controller c1and
c2 the required nonlinear damping gains can be calculated by solving

zTc0zT ≤ 1

4
∆

Tκ0∆

for κ−1
0 = κ−1

1 + µ−1
2 , c0 = min(c1, c2) = 1 and the given bound on the tracking

error and disturbance. This results in the choice κ1 = µ2 = 450. In figure 3.4 the
response for the robust design with these nonlinear damping gains is compared to
the standard backstepping controller as designed earlier in section 3.3.4. From the
figure it can be observed that the robust control design indeed keeps the tracking
error well within the prescribed limits.

3.5 Command Filtering

The backstepping method requires the derivatives of the intermediate stabilizing
functions α. These derivatives can be derived analytically easily for simple systems.
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When the order of the system increases, or the complexity of the system itself,
analytic derivation becomes a tedious process. This becomes even more so for
adaptive control systems. Command filters, often referred to as dynamic surface
control [206, 207], can be introduced in the backstepping method to reduce the com-
plexity. An additional advantage of these command filters is that the backstepping
procedure can be applied to systems that are not in triangular form, such as for
example aircraft dynamics. Finally, the command filters can be used to incorporate
magnitude and rate constraints on the control input and intermediate states [55, 57,
58, 140], and remove the effect of these constraints from the tracking errors. In this
section the command filtered backstepping approach is presented and the missile
example is revisited.

3.5.1 Command Filtering Backstepping

Consider a non-triangular, feedback passive system

ẋ1 = f1(x) + g1(x)x2

ẋ2 = f2(x) + g2(x)u,
(3.61)

where x = (x1, x2) ∈ R
2. The control objective is to track a reference signal yref

with derivative ẏref. The functions gi 6= 0 ∀x. First define the tracking errors

z1 = x1 − yref

z2 = x2 − x2,c

(3.62)

where x2,c will be defined through the backstepping design. Let

α1(z1, ẏref) = g−1
1 [− f1 − c1z1 + ẏref] (3.63)

with c1 > 0 be a smooth feedback control, and define a positive definite function

V1(z1) =
1
2 zT

1 z1 such that

∂V1

∂z1
[ f1 + g1α1 − ẏref] = −W(z1) (3.64)

where W(z1) = zTc1z1 is positive definite in z1. The tracking problem is now solved
by first defining

x0
2,c = α1(z1, ẏref)− ξ2

ξ̇1 = −c1ξ1 + g1

(

x2,c − x0
2,c

) (3.65)

where ξ2 will be defined later in the design. The signal x0
2,c is filtered to produce

the command signal x2,c and its derivative ẋ2,c. By design of the filter, the signal

(x2,c − x0
2,c) is bounded and small. Therefore, as long as g1 is bounded, then ξ1
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is bounded since it is the output of a stable linear filter. Define the compensated
tracking errors

z̄i = zi − ξi. (3.66)

and define

u0
c = g−1

2

(

−c2z2 + ẋ2,c − f2 − gT
1 z̄1

)

ξ̇2 = −c2ξ2 + g2

(

uc − u0
c

) (3.67)

with c2 > 0, u0
c is filtered to produce uc and u̇c. The actual control signal applied to

the system is u = uc. Again, by design the signal (u0
c − uc) is small and bounded;

therefore, if g2 is bounded, then ξ2 is bounded because it is the output of a stable
linear filter. The variables z̄i represent compensated tracking errors, obtained after

removing the corresponding unachieved portion of x0
2,c and u0

c
The tracking error system dynamics can be written as

ż1 = f1 + g1x0
2,c − ẏref + g1(x2,c − x0

2,c) + (g1x2 − g1x2,c)

= f1 + g1α1 − ẏref − g1ξ2 + g1(x2,c − x0
2,c) + (g1x2 − g1x2,c)

= −c1z1 − g1ξ2 + g1(x2,c − x0
2,c) + g1(x2 − x2,c)

= −c1z1 + g1z̄2 + g1(x2,c − x0
2,c)

ż2 = f2 + g2u0
c − ẋ2,c + g2(uc − u0

c )

= −c2z2 − gT
1 z̄1 + g2(uc − u0

c )

(3.68)

and the augmented tracking error dynamics are

˙̄z1 = ż1 − ξ̇1

= −c1z̄1 + g1 x̄2

˙̄z2 = −c2z̄2 − gT
1 z̄1

(3.69)

Consider the Lyapunov function candidate

V(z̄1, z̄2) =
1

2

(

z̄T
1 z̄1 + z̄T

2 z̄2

)

. (3.70)

The time derivative of this CLF along the solution of (3.69) becomes

V̇ = z̄T
1 (−c1z̄1 + g1z̄2) + z̄T

2

(

−c2z̄2 − gT
1 z̄1

)

= −z̄T
1 c1z̄1 − z̄T

2 c2z̄2

(3.71)

which shows that the origin of the compensated tracking error system (z̄1, z̄2) is
exponentially stable. Intuitively it follows that if χ1, χ2 are small, then the origin of
the tracking error system (z1, z2) is attractive.
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3.5.2 Missile Example

The introduction of the non-adaptive backstepping method is concluded with an-
other visit of the missile example. Instead of using the analytic derivative of the
first control law with respect to time, now the filtered versions will be used. Ad-
ditionally, the use of the filters allows addressing the g1δ term appearing in the α
subsystem directly.

The control design is very similar to the standard backstepping design with
integrator action. The tracking errors are defined as

z1 = x1 − yref

z2 = x2 − x2,c

where x2,c is the output of a command filter. The virtual control laws are defined as

α1 = −c1z1 − k1λ1 − f1 − g1uc + ẏref

α2 = g−1
2

(
−c2z2 − z̄1 − f2 + ẋ2,c

) (3.72)

where the compensated tracking errors are defined as

z̄i = zi − ξi.

The signals

x0
2,c = α1 − ξ2 (3.73)

u0
c = α2 (3.74)

are filtered by the command filters to produce x2,c, ẋ2,c and uc. The effect of these
command filters is measured by

ξ̇1 = −c1ξ1 + (x2,c − x0
2,c) (3.75)

ξ̇2 = −c2ξ2 + g2(u − u0). (3.76)

In this example second order filters were applied. Using the filters, the command
surface deflection is limited to [−15, 10] degrees to show the effect of constraining
the input on the filters and the closed-loop response. The bandwidth and damping
of the filters were chosen as ωα1

= 80 rad/s, ζα1
= 0.7, ωu = 100 rad / s, and ζu =

0.7. Figure 3.5 shows the response of the closed-loop system with the command
filtered backstepping design with c1 = 1, c2 = 2. No integral action has been used
in the controller, k1 = 0.

3.6 Non-affine in Control Backstepping

A final modification of the backstepping method is done to be able to handle sys-
tems which are non-affine in the control variable. These systems occur very fre-
quently in practice, aircraft are notable examples.
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Figure 3.5: Response (top), tracking error (middle) and commanded control input
(bottom) for the command filtered backstepping design applied to the missile
example.

3.6.1 Singular Perturbation Theory

Instead of the analytical approach taken by Krstić, Kanellakopoulos, and Kokotović
[88] to handle non-affine systems, a different route will be taken by using singular
perturbation theory. This approach results in slightly worse tracking characteris-
tics, however it is able to design controllers for systems which do cannot be inverted
analytically. Consider a singularly perturbed nonlinear system with the following
state space description:

Σ0 :

{
ẋ = f (t, x, u, ε) x(0) = ξ(ε)

εu̇ = g(t, x, u, ε) u(0) = η(ε)
(3.77)

where ε is a small positive parameter, ξ : ε → ξ(ǫ) and η : ǫ → η(ǫ) are smooth. As-
sume that f and g are continuously differentiable in their arguments for (t, x, u, ε) ∈
[0, ∞] × Dx × Du × [0, ε0], where Dx ⊂ R

n, Du ⊂ R
m are domains, ǫ0 > 0. In

addition, let Σ0 be in standard form, i.e. 0 = g(t, x, u, 0) has k ≥ 1 isolated real roots
u = hi(t, x), i ∈ {1, . . . , k} for each (t, x) ∈ [0, ∞]× Dx. Pick one particular i, which
is fixed. Let v(t, x) = u − h(t, x). In singular perturbation theory, the system given
by

Σ00 : ẋ(t) = f (t, x, h(t, x), 0), x(0) = ξ(0), (3.78)
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is called the reduced system, the system given by

Σb :
dv

dτ
= g(t, x, v + h(t, x), 0), v(0) = η0 − h(0, ξ0) (3.79)

is the boundary layer system, where η0 = η(0) and ξ0 = ξ(0), (t, x) ∈ [0, ∞) × Dx
are treated as fixed parameters. The new time scale τ is related to the original time
t via the relationship τ = t

ε . Then the following result is due to Tikhonov [83, p.
434].

Theorem 3.12 (Tikhonov’s Theorem). Consider the singular perturbation system Σ0
given in (3.77) and let u = h(t, x) be an isolated root of g(t, x, u, 0). Assume that the
following conditions hold for all (t, x, u − h(t, x), ǫ) ∈ [0, ∞) × Dx × Dv × [0, ε0] for
some domains Dx ∈ R

n and Du ∈ R
m, which contain the corresponding origins.

1. On any compact subset of Dx × Dv the function f , g, their first partial derivatives
with respect to (x, u, ǫ), and the first partial derivative of g with respect to t are

continuous and bounded, h(t, x) and
∂g
∂u (t, x, u, 0) have bounded first derivatives

with respect to their arguments,
∂ f
∂x (t, x, h(x)) is Lipschitz in x uniformly in t, and

the initial conditions for ξ and η are smooth functions of ǫ.

2. The origin is an exponentially stable equilibrium point of the reduced system Σ00
(3.78). There exists a Lyapunov function V : [0, ∞)× Dx → [0, ∞) that satisfies

W1(x) ≤ V(t, x) ≤ W2(x),

∂V(t, x)

∂t
+

∂V(t, x)

∂x
f (t, x, h(t, x), 0) ≤ −W3(x)

for all (t, x) ∈ [0, ∞)× Dx, where W1, W2, and W3 are continuous positive definite
functions on Dx. Let c be a nonnegative number such that {x ∈ Dx|W1(x) ≤ c} is
a compact subset of Dx.

3. The origin is an equilibrium point of the boundary layer system (3.79), which is
exponentially stable uniformly in (t, x).

Let Rv ∈ Dv denote the region of attraction of the autonomous system

dv

dτ
= g(0, ξ0, v + h(0, ξ0, 0)

and let Ωv be a compact subset of Rv. Then for each compact set
Ωx ⊂ {x ∈ Dx|W2(x) ≤ ρc, 0 < ρ < 1}, there exists a positive constant ǫ∗ such that for
all t ≥ 0, ξ0 ∈ Ωx, η0 − h(0, ξ0) ∈ Ωv and 0 < ǫ < ǫ∗., Σ0 has a unique solution xǫ on
[0, ∞) and

xǫ(t)− x00(t) = O(ǫ)

holds uniformly for t ∈ [0, ∞), where x00(t) denotes the solution of the reduced system
(3.78).
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3.6.2 Non-affine Backstepping Design

Suppose that a stabilizing feedback control law for the final step has to be designed
for the system

ż1 = z2

ż2 = z3

. . .

ẋn = f (x1, . . . , xn, u)

(3.80)

and a desired value αn(z1, . . . , zn) is known for f . Then the following equation has
to be solved

f (x1, . . . , xn, u) = αn(z1, . . . , zn)

to obtain the desired properties of the closed-loop system. Since this equation
cannot (in general) be solved explicitly for u, an approximation of the dynamic
inversion controller is constructed by introducing the following fast dynamics

ǫu̇ = − sgn

(
∂ f

∂u

)

q(t, z, u), u(0) = u0 (3.81)

where
q(t, x, u) = f (t, x, u)− αn.

Then, application of Tikhonov’s theorem 3.12 shows exponentially stability of the
origin of (3.81). Additionally, it shows that for each compact subset Ωz ∈ Dz there
exist a positive constant ǫ∗ and T > 0 such that for all t > 0, z0 ∈ Ωz, u0 − h(0, z0) ∈
Ωv, and 0 < ǫ < ǫ∗, the system (3.80), (3.81) has a unique solution xǫ(t) on [0, ∞)
and

xǫ(t) = yref(t) + O(ǫ)

holds uniformly for t ∈ [T, ∞).

3.6.3 Example

Consider the system

ẋ1 = x1 + x2 +
x2

2

5

ẋ2 = x1x2 + u +
u3

7
,

(3.82)

for which the control objective is to let x1 track a smooth reference signal yref. First
the system needs to be transformed by means of a nonlinear mapping to feedback
linearizable form. A straightforward diffeomorphism to apply is

η1 = x1

η2 = x1 + x2 +
x2

2

5

(3.83)
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which transforms the system into the desired form

η̇1 = ẋ1 = η2

η̇2 = ẋ1 + ẋ2

(

1 +
3x2

2

5

)

= x1 + x2 +
x3

2

5
+

(

x1x2 + u +
u3

7

)(

1 +
3x2

2

5

)

= f (x, u).

(3.84)

The tracking errors are defined as

z1 = η1 − yref

z2 = η2 − α1

and the virtual control law α1 as

α1 = −c1z1 + ẏref.

The control law for u has to be found using dynamic inversion. The desired value of
f (x, u) is the result of applying the standard backstepping procedure to the (z1, z2)
subsystem

α2 = −c2z2 − z1 + α̇1.

In this case it is possible to analytically invert the equation f (x, u) = α2 to ob-
tain u, and the result will be used to show that the approximate controller yields
approximately the same tracking performance as claimed by theorem 3.12. The
approximate inverse controller is defined by

ǫu̇ = − sgn

(
∂ f

∂u

)

( f (x, u)− α2)

where ǫ is the time-scale constant. In figure 3.6 the response, tracking error and
control input for the approximate inverse controller and the analytical controller are
shown. The designed controllers are able to achieve excellent tracking performance
when the time-scale constant is sufficiently small.

3.7 Conclusions

In this chapter the theory for designing backstepping controllers which can achieve
global asymptotical stability of the origin of the error system when the dynamics of
the system are known or achieve input-to-state stability of systems with bounded
uncertainties. Extensions and tools for the design and analysis of robust designs
which can handle uncertainty in the system to be controlled to a certain extent
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Figure 3.6: Output (top), tracking error (middle), and control input (bottom) for
backstepping controllers with different time-scale-gain.

are presented. A method to avoid the tedious computation of virtual control law
time derivatives was introduced by using command filters. An additional benefit
of these filters is the backstepping method now can handle non-triangular system
and can incorporate constraints in the control design. Finally, an extension of
backstepping to non-affine in control systems has been presented.

In this chapter only systems with known dynamics or with relatively small
uncertainties have been considered. The control designs presented in this chapter
achieve good performance for such systems. However, when the uncertainties in
the system become larger, the closed-loop performance will degrade and possibly
can result in an unstable closed-loop system. In the next chapter control designs
are presented which extend the backstepping approach such that systems with
unknown constant parameters can be controlled.
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ADAPTIVE BACKSTEPPING CONTROL

DESIGN

In the preceding chapter control designs were presented which guarantee that
in the presence of unknown bounded nonlinearities the closed-loop states re-
main bounded. In this chapter, and in the remainder of the dissertation, these
uncertainties are more specific: they are constant parameters which appear
linearly in the system equations. In the presence of such parametric uncer-
tainties, both boundedness of the closed-loop system states and convergence of
the tracking error to zero is achieved by means of the adaptive backstepping
approach.

4.1 Dynamic Feedback Control

The main difference between static and dynamic (adaptive) feedback designs is
illustrated by means of a simple nonlinear system. The scalar system from example
3.1 is revisited.

Example 4.1 (Unknown scalar system)
Consider the system

ẋ = θx3 + cos(x) + u (4.1)

where θ ∈ R is an unknown, constant parameter. If a bound on θ is known, a
control law can be designed which guarantees global boundedness of x(t) using
the robust backstepping design. The interval to which x(t) converges can be made
arbitrarily small by increasing the gains of this controller. However, this approach
increases the system bandwidth which is undesirable. Therefore, a control design

59
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is made which achieves asymptotic convergence of x(t) → 0 as t → ∞ without in-
creasing the controller gains. A dynamic feedback controller is designed. Suppose
that θ were known, then the control

u = −θx3 − cos(x)− c1x (4.2)

would render the derivative of V0(x) = 1
2 x2 negative definite. Since θ is not known,

the certainty-equivalence form can be used, which replaces θ by its estimate θ̂

u = −θ̂x3 − cos(x)− c1x. (4.3)

Substitution of the control law (4.3) into the dynamics (4.1) gives

ẋ = θ̃x3 − c1x (4.4)

where θ̃ is the parameter estimation error, defined as

θ̃ = θ − θ̂. (4.5)

The derivative of V0(x) now satisfies

V̇0 = −c1x2 + θ̃x4.

Since the second term is indefinite due to the presence of θ̃, no conclusions can be
drawn about the stability of (4.4). The idea now is to extend the control law with
an update law for θ̂, making the controller dynamic. To design this update law, V0
is augmented with a quadratic term in the parameter estimation error θ̃,

V1(x, θ̃) =
1

2
x2 +

1

2γ
θ̃2, (4.6)

where γ > 0 is the adaptation gain. The derivative of this function is

V̇1 = xẋ +
1

γ
θ̃ ˙̃θ

= −c1x2 + θ̃x4 +
1

γ
θ̃ ˙̃θ

= −c1x2 + θ̃

[

x4 +
1

γ
˙̃θ

]

.

(4.7)

The second part is still indefinite and contains θ̃ as a factor. However, the dynamics
˙̃θ = − ˙̂θ are available to cancel the indefinite part. Choose the update law

˙̂θ = γx4 (4.8)

which yields

V̇1 = −c1x2 ≤ 0.
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Since V̇1 ≤ 0, the equilibrium x = 0, θ̃ = 0 of the resulting closed loop system is
globally stable. Additionally, by theorem 3.3, the desired regulation property x → 0
as t → ∞ holds.

The resulting adaptive control system consists of the parameter update law (4.8)
and the control law (4.3). Note that this is a dynamic controller. It may seem that
the adaptive design for the example is so simple because it is a first order system.
In fact, it is due to the matching condition: the terms containing the unknown
parameters in (4.1) can be directly canceled by u when θ is known.

4.2 Adaptive Backstepping

In the previous section the parametric uncertainty was in the span of the control.
A more general case is extended matching, where the parametric uncertainty enters
the system one integrator step before the control does. This approach will yield
the adaptive integrator backstepping method. Recursive application of adaptive
integrator backstepping results in the adaptive backstepping method.

4.2.1 Adaptive Integrator Backstepping

Consider the second order system

ẋ1 = x2 + ϕT(x1)θ

ẋ2 = u.
(4.9)

where ϕ1(x1) is a vector function, θ ∈ R
p a vector of p unknown constant param-

eters. If θ were known, integrator backstepping can be used to design a stabilizing
function for x2

α1(x1, θ) = −c1x1 − ϕT
1 (x1)θ. (4.10)

Consider the Lyapunov function

V0(x1, x2, θ) =
1

2
zT

1 z1 +
1

2
zT

2 z2

where z1 = x1, z2 = x2 − α1, the CLF derivative is rendered negative definite by the
control design

u = −c2z − x1 +
∂α1

∂x1

(

x2 + ϕT
1 (x1)θ

)

.

Since θ is unknown, the integrator backstepping design cannot be applied because
of the dependence of α1 and u on this unknown parameter. However, the main
idea of integrator backstepping can still be used. Step 1. If x2 were the control, an
adaptive controller for the x1 subsystem is given by

α1(x1, θ1) = −c1x1 − ϕT
1 (x1)θ̂1

˙̂θ1 = Γ1 ϕ1(x1)x1

(4.11)
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where θ̂1 is the first estimate of θ. The derivative of the Lyapunov function

V1(z1, θ̂1) =
1

2
zT

1 z1 +
1

2

(
θ − θ̂1

)T
Γ
−1
1

(
θ − θ̂1

)
(4.12)

along the solutions of (4.11) is

V̇1 = zT
1 ż1 −

(
θ − θ̂1

)T
Γ
−1
1

˙̂θ1

= zT
1 z2 − zT

1 c1z1 +
(
θ − θ̂1

)T
(

ϕ1z1 − Γ
−1
1

˙̂θ1

)

= zT
1 z2 − zT

1 c1z1.

Step 2. The derivative of z2 is now expressed as

ż2 = ẋ2 − α̇1 = u − ∂α1

∂x1
ẋ1 −

∂α1

∂θ̂1

˙̂θ1.

Now an augmented Lyapunov function can be constructed

V2(z1, z2, θ1) = V1(z1, θ1) +
1

2
zT

2 z2

with derivative

V̇2 = −zT
1 c1z1 + zT

2

[

z1 + u − ∂α1

∂x1
x2 −

∂α1

∂x1
ϕT

1 θ − ∂α1

∂ϑ1
Γ1 ϕ1z1

]

for which a control u should be designed. However, it is clear that there is no design
freedom left to cancel the term depending on θ. Therefore, a new estimate θ̂2 of θ is
introduced, and the Lyapunov function is augmented to

V2(z1, z2, θ̂1, θ̂2) = V1(z1, θ̂1) +
1

2
zT

2 z2 +
1

2

(
θ − θ̂2

)T
Γ
−1
2

(
θ − θ̂2

)
. (4.13)

The derivative of V2 is

V̇2 =V̇1 + zT
2 ż2 −

(
θ − θ̂2

)T
Γ
−1
2

˙̂θ2

=− zT
1 c1z1 + zT

2

[

z1 + u − ∂α1

∂x1
x2 −

∂α1

∂θ̂1

Γ1 ϕ1z1

]

−
(
θ − θ̂2

)T
Γ
−1
2

(

Γ2 ϕ1
∂αT

1

∂x1
z2 +

˙̂θ2

)
(4.14)

for which the control law and update law

u = −z1 − c2z2 +
∂α1

∂x1
x2 +

∂α1

∂θ1
Γ1z1 ϕ1 +

∂α1

∂x1
ϕT

1 θ̂2

θ̇2 = −Γ2 ϕ1
∂αT

1

∂x1
z2

(4.15)

yields

V̇2 = −c1z2
1 − c2z2

2 ≤ 0.
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4.2.2 Recursive Adaptive Backstepping

Repeated application of adaptive integrator backstepping generalizes the approach
to nonlinear systems which can be transformed through a diffeomorphism into
parametric strict-feedback form

ẋ1 = x2 + f1(x1) + ϕT
1 (x1)θ

ẋ2 = x3 + f2(x1, x2) + ϕT
2 (x1, x2)θ

...

ẋn−1 = xn + fn−1(x1, . . . , xn−1) + ϕT
n−1(x1, . . . , xn−1)θ

ẋn = fn(x) + g(x)u + ϕT
n (x1, . . . , xn)θ,

(4.16)

where g(x) 6= 0 for all x ∈ R
n, f represents the known dynamics, and θ ∈ R

p is
a vector of unknown constant parameters. For these systems, n design steps are
required which is equal to the relative degree of the system. At each step, an error
variable zi, a stabilizing function αi, and a parameter estimate θi are generated.
Therefore, if a system has p unknown parameters, the controller has to estimate
p × n parameter estimates.

A controller for the system (4.16) can be designed which achieves tracking of a
differentiable reference signal yref. Introduce the tracking errors

zi = xi − αi−1(x1, . . . , xi−1, yref, . . . , y
(i−1)
ref , θ̂1, . . . , θ̂i−1) (4.17)

with α0 = yref, z0 = 0. Then, the stabilizing functions αi are defined by

αi =− cizi − zi−1 − fi −
(

ϕi −
i−1

∑
j=1

∂αi−1

∂xj
ϕj

)T

θ̂i

+
i−1

∑
j=1

[

∂αi−1

∂xj

(

xj+1 + f j+1

)

+
∂αi−1

∂θ̂j

Γj

(

ϕj −
j−1

∑
k=1

∂αj−1

∂xk
ϕk

)

zj

]

. (4.18)

The control law for u and parameter update laws for each θ̂i are defined by

u =g−1(x)αn(x, yref, . . . , y
(n)
ref , θ̂1, . . . , θ̂n) (4.19)

˙̂θi =Γi

(

ϕi −
i−1

∑
j=1

∂αi−1

∂xj
ϕj

)

zi (4.20)

where Γi = Γ
T
i > 0 is the adaptation gain matrix, ci > 0 are the controller gains.

The controller design (4.18)-(4.20) guarantees global boundedness of x(t), θ̂1(t),
. . . , θ̂n(t), and regulation of z(t) to zero. Consider then simple quadratic Lyapunov
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function

Vn(z1, . . . , zn, θ̂1, . . . , θ̂n) =
1

2

n

∑
i=1

[

z2
i + (θ − θi)

T
Γ
−1
i (θ − θi)

]

(4.21)

to prove this. Its derivative using the adaptive backstepping control design is

V̇n = −
n

∑
i=1

zT
i cizi. (4.22)

Convergence of the parameter estimates θ̂i is guaranteed, yet they do not necessar-
ily converge to the true value θ.

4.3 Command Filtered and Tuning Functions Design

The overparameterization in the adaptive backstepping design can be solved in
two different methods. The design of the parameter update law can be delayed to
the final step, resulting in the tuning function adaptive backstepping design [88,
Ch. 4]. The tuning function design requires the analytic derivative of the stabiliz-
ing function, resulting in a rather complex design process. The command filters
introduced in section 3.5 can also be used to reduce the complexity of the adaptive
backstepping design and remove the overparameterization. Additionally, in this
section the adaptive backstepping design is extended to systems with unknown
(virtual) control gains.

4.3.1 Constrained Adaptive Backstepping (CABS)

Consider a non-triangular, feedback passive system

ẋi = fi(x) + gi(x)xi+1, i = 1, . . . , n − 1

ẋn = fn(x) + gn(x)u
(4.23)

where x = (x1, . . . , xn) is the state, and u the control signal. The functions fi, gi are
(partly) unknown. The sign of all gi(x) is known, and gi(x) 6= 0 for all x ∈ Dx. The
assumption is made that these unknown functions can be split into a known and
unknown part as

fi(x) = f 0
i (x) + ϕT

fi
(x)θ,

gi(x) = g0
i (x) + ϕT

gi
(x)θ.

(4.24)

The tracking errors are defined as

zi = xi − xi,c (4.25)

where xi,c will be defined by the backstepping control method.
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Step 1. This step is identical to the standard adaptive backstepping procedure. The
first stabilizing function α1 is defined as

α1 =
(

g0
1 + ϕT

g1
θ̂
)−1 (

−c1z1 − f 0
1 − ϕT

f1
θ̂ + ẋ1,c

)

, c1 > 0. (4.26)

Instead of using this stabilizing function directly, a new signal x0
2,c is defined as

x0
2,c = α1 − ξ2 (4.27)

where ξ2 will be defined in the next step. The signal x0
2,c is filtered to produce x2,c

and its derivative ẋ2,c. Magnitude and rate constraints can be be incorporated in
this filter. The effect of filtering on the tracking error z1 is estimated by the stable,
linear filter

ξ̇1 = −c1ξ1 +
(

g0
1 + ϕT

g1
θ̂
) (

x2,c − x0
2,c

)

. (4.28)

Introduce the compensated tracking errors which remove the effect of filtering the
stabilizing functions from the tracking error

z̄i = zi − ξ1. (4.29)

Select the first CLF V1 as a quadratic function of the compensated tracking error z̄1
and the estimation error

V1 =
1

2
z̄T

1 z1 +
1

2
θ̃T

Γ
−1θ̃ (4.30)

whose derivative is

V̇1 = z̄T
1

[

f 0
1 + ϕT

f1
θ +

(

g0
1 + ϕT

g1
θ
)

x2 − ẋ1,c − ξ̇1

]

+ θ̃T
Γ
−1 ˙̃θ

= z̄T
1

[

f 0
1 + ϕT

f1
θ +

(

g0
1 + ϕT

g1
θ̂
)

(z2 + x2,c)− ẋ1,c + c1ξ1

−
(

g0
1 + ϕT

g1
θ̂
) (

x2,c − x0
2,c

)

+ ϕT
g1

θ̃x2

]

+ θ̃T
Γ
−1 ˙̃θ

= z̄T
1

[

f 0
1 + ϕT

f1
θ̂ +

(

g0
1 + ϕT

g1
θ̂
)

α1 − ẋ1,c + c1ξ1
(

g0
1 + ϕT

g1
θ̂
)

z̄2

]

− θ̃T
Γ
−1
(

˙̂θ − Γϕ f1
z̄1 − Γϕg1

x2z̄1

)

= −z̄T
1 c1z̄1 + z̄T

2

(

g0
1 + ϕT

g1
θ̂
)

z1 − θ̃T
Γ
−1
(

˙̂θ − Γϕ f1
z̄1 − Γϕg1

x2z̄1

)

(4.31)

where the actual design of the parameter update law is postponed until the final
step.
Step i = 2, . . . , n - 1. These steps are very similar to the first step. The stabilizing
functions are defined as

αi =
(

g0
i + ϕT

gi
θ̂
)−1

(

−cizi −
(

g0
i−1 + ϕT

gi−1
θ̂
)T

z̄i−1 − f 0
i − ϕT

fi
θ̂ + ẋi,c

)

, ci > 0.

(4.32)
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The command filter inputs are defined similarly as before

x0
i,c = αi−1 − ξi (4.33)

and the effect of filtering the stabilizing functions on the tracking errors is estimated
by the linear filter

ξ̇i = −ciξi +
(

g0
i + ϕT

gi
θ̂
) (

xi+1,c − x0
i+1,c

)

. (4.34)

The derivative of the CLF Vi = Vi−1 +
1
2 z̄T

i z̄i becomes

V̇i = −
i

∑
k=1

z̄T
k ck z̄k + z̄T

i+1

(

g0
i + ϕT

gi
θ̂
)T

z̄i

+ θ̃T
Γ
−1

(

˙̂θ −
i

∑
k=1

Γϕ fk
z̄k + Γϕgk

xk+1z̄k

) (4.35)

Step n. The final step yields the actual control signal u by filtering

u0 = αn =
(

g0
n + ϕT

gn
θ̂
)−1

(

−cnzn −
(

g0
n−1 + ϕT

gn−1
θ̂
)T

z̄n−1 − f 0
n − ϕT

n θ̂ + ẋn,c

)

(4.36)
where the effect of filtering the commanded signal on the tracking error zn is esti-
mated by

ξ̇n = −cnξn +
(

g0
n + ϕT

gn
θ
) (

u − u0
)

. (4.37)

Consider the final stage Lyapunov function quadratic in the compensated tracking
error and the parameter estimation error

Vn =
1

2

n

∑
i=1

z̄T
i z̄i + θ̃T

Γ
−1θ̃ (4.38)

whose derivative along the closed-loop solutions becomes

V̇n =−
n

∑
i=1

z̄T
i ci z̄i − θ̃T

Γ
−1

(

˙̂θ −
n

∑
i=1

Γϕ fi
z̄i + Γϕgi

xi+1z̄i

)

(4.39)

where xn+1 = u. The only design freedom left to cancel the indefinite terms is the

parameter update law ˙̂θ. The parameter update law additionally has to be chosen
such that gi 6= 0 for all x. This can be guaranteed by applying parameter projection.
Suppose that a convex region Π defined as

Π =
{

θ̂ ∈ R
p|P(θ̂) ≤ 0

}
(4.40)
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where P is a smooth, convex function. The projection operator is defined as

Proj(τ) =







τ, θ̂ ∈ Π
0 or ∇θ̂P

Tτ ≤ 0

(

I − γ
∇θ̂P∇θ̂P

T

∇θ̂P
Tγ∇θ̂P

)

τ θ̂ ∈ ∂Π and ∇θ̂Pτ > 0

(4.41)

where Π
0 is the interior of Π, ∂Π is the boundary of Π, and γ is a positive definite

matrix. If the parameter estimate θ̂ is inside the desired region Π, then the adap-
tation law is implemented directly. If θ̂ is on the boundary of Π and the update is
directed outwards of the region, then the update is projected onto the hyperplane
tangent to the boundary. Therefore, the projection keeps the parameter estimate
within the desired region Π for all time. Thus, the parameter update law is defined
using the projection operator as

˙̂θ = Proj

(
n

∑
i=1

Γϕ fi
z̄i + Γϕgi

xi+1z̄i

)

(4.42)

to cancel the indefinite terms in the CLF derivative (4.39). The resulting derivative
is

V̇n = −
n

∑
k=1

z̄kck z̄k (4.43)

which shows that the origin of the compensated tracking error is globally asymp-
totically stable when the parameter estimate and its update are within the specified
convex region. Additionally, since z̄ is bounded and ξ is small when the filter
settings are chosen appropriately, the real tracking error z will converge to zero,
resulting in global asymptotic tracking of the reference signal yref. A rigorous proof
based on singular perturbations and Tikhonov’s theorem 3.12 is given by Farrell,
Polycarpou, Sharma, and Dong [56].

4.3.2 CABS Missile Example

To illustrate the benefits of adaptive backstepping for systems with parametric
uncertainties, the missile example is revisited once more. The aerodynamic coef-
ficients appearing the missile dynamics are considered to be unknown. The as-
sumption is made that the sign of the function g2 is known. Since the command
filtered backstepping approach is chosen, the g1δ term in the missile dynamics can
be taken into account in the design.

Recalling (3.36), the system is defined as

α̇ = q +
q̄S

mVT
[Cz(α, M) + bz(M)δ]

q̇ =
q̄Sd

Iyy
[Cm(α, M) + bm(M)δ]
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which is rewritten in the form used by the CABS backstepping procedure as

ẋ1 = x2 + f 0
1 (x1, x2, u, M) + ϕT

f1
(x1, x2, u)θ

ẋ2 = f 0
2 (x1, x2, M) + ϕT

f2
(x1, x2) +

(

g0
2(x1, x2) + ϕT

g2
(x1, x2)θ

)

u.
(4.44)

where the unknown constant parameter vector θ ∈ R
8 for a given Mach number.

The regressor functions are defined as

ϕT
f1
(x1, x2, u) = C1

[

x3
1 x1|x1| x1 u 01×4

]

ϕT
f2
(x1, x2) = C2

[

01×4 x3
1 x1|x1| x1 0

]

ϕT
g2
(x1, x2) = C2

[

01×7 1
]

with

C1 =
q̄S

mVT
, C2 =

q̄Sd

Iyy
.

The known, or a-priori model part of the missile dynamics (for example through

wind-tunnel experiments) referred to as the on-board model is defined by f 0
1 , f 0

2 ,

and g0
2. Effectively, the controller should estimate a deviation from the a-priori

missile model through an incremental model parameter θ ∈ R
8. The control task is

to let the angle of attack track a reference signal yref. The tracking errors are defined
as

z1 = x1 − yref

z2 = x2 − x2,c

where x2,c is the filtered virtual control. The stabilizing functions are defined as

α1 = −c1z1 − f 0
1 − ϕT

f1
θ̂ + ẏref, c1 > 0 (4.45)

α2 =
(

g0
2 + ϕT

g2
θ̂
)−1 (

−c2z2 − z̄1 − f 0
2 − ϕT

f2
θ̂ + ẋ2,c

)

, c2 > 0. (4.46)

Finally, the update laws follow from the CABS procedure and are

˙̂θ = Proj
(

Γ
(

ϕ f1
z̄1 + ϕ f2

z̄2 + ϕg2
uz̄2

))

(4.47)

where Γ = Γ
T

> 0. The projection operator is applied to keep g0
2 + ϕT

g2
θ̂ from

changing sign. Therefore, it effectively keeps |ϕT
g2

θ̂| ≤ |g0
2| − b, where b is a constant

design parameter. This choice of stabilizing functions and update laws renders the
derivative of the CLF

V =
1

2

(

z̄T
1 z̄1 + z̄T

2 z̄2 + θ̃T
Γ
−1θ̃
)
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Figure 4.1: Response (top), tracking error (middle), and control input (bottom) for
the CABS and CBS control designs applied to the missile example.

negative semi-definite. Hence, theorem 3.3 can be used to show that the equi-
librium (z̄, θ̃) = 0 is globally stable, and that the compensated tracking errors z̄
converge to zero asymptotically.

The adaptive design is applied to the missile model, a mismatch between the
true model and the on-board model is simulated by a mismatch in Mach number
between the on-board model and the true model. The missile actually flies at
M = 2.0, while the controller gets M = 1.8 as an input. This results in highly
unstable dynamics if the estimation is switched off as illustrated in figure 4.1 by the
CBS design. The controller gains have been selected equal as in the non-adaptive
command-filtered backstepping design in section 3.5.2, and the adaptation gain Γ =
2000I. The response of the missile and the parameter estimates are shown in figure
4.1 and 4.2 respectively. Note that the parameter estimates are not converging to
their true values, but rather to arbitrary constants when no change occurs to the
system. The oscillatory behavior in this case is due to the tuning of the command
filters.
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Figure 4.2: Parameter estimates for the CABS control design.

4.4 Modular Adaptive Backstepping

So far, the design of the control law has been integrated with the design of the
parameter update laws. In this section an alternative approach to adaptive con-
trol of uncertain systems using backstepping is taken. The preceding designs are
limited to Lyapunov based update laws, and hence the estimation is driven by
the tracking error. For linear control designs, this restriction can be removed by
estimation based designs which achieve modularity of the controller and identifier:
any stabilizing controller can be combined with any identifier. The controller is
capable of stabilizing the system when the parameters are known: this is called the
certainty equivalence principle. The identifier on the other hand guarantees certain
boundedness properties independently of the controller. This modularity makes
this approach more versatile than the Lyapunov based identifier design.

4.4.1 Weakness of Certainty Equivalence

In this section the weakness of certainty equivalence principle when applied naively
to nonlinear systems is illustrated. As observed in chapter 3 there is a fundamental
difference between instability phenomena in linear and nonlinear systems. This
will be illustrated using a simple example which has been visited earlier when
discussing the robust backstepping design. Applying the certainty equivalence
principle results in an unbounded closed-loop system for certain combinations of
initial conditions.
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Consider a scalar system

ẋ = u + ϕT(x)θ (4.48)

where ϕ(x) is a vector of smooth nonlinear functions, and θ is a vector of unknown
constant parameters. For this system, the simplest and most obvious certainty
equivalence controller is

u = −x − ϕT(x)θ̂ (4.49)

where θ̂ is the estimate of θ. With this controller, the resulting equivalence feedback
system is

ẋ = −x + ϕT(x)θ̃ (4.50)

where θ̃ = θ − θ̂. Earlier in this chapter update laws ˙̂θ were designed using Lya-
punov designs. In this design, a standard identifier is used to give an estimate to
the controller instead: two modules are connected that are designed independently.
In this case, consider a normalized gradient identifier

χ̇ = −χ + ϕ(x), χ(0) = 0 (4.51)

ξ̇ = −ξ − ϕT(x)θ̂, ξ(0) = x(0) (4.52)

˙̂θ =
χ

1 + χTχ

(

x − χT θ̂ − ξ
)

. (4.53)

It is easy to check that x − χT θ̂ − ξ = χT θ̃ such that

˙̃θ = − χχT

1 + χTχ
θ̃. (4.54)

Using the inequality θ̃TχχT θ̃ ≤ θ̃TχTχθ̃, note that

d

dt

(
1

2
θ̃T θ̃

)

= −θ̃T χχT

1 + χTχ
θ̃ ≥ −θ̃

χTχ

1 + χTχ
θ̃

≥ −θ̃T θ̃,

(4.55)

which implies that

|θ̃(t)| ≥ |θ̃(0)|e−t. (4.56)

Therefore, the convergence of the identifier can at best be exponential. Connecting
this identifier with the certainty equivalence controller (4.49) for the case that

ϕ(x) = x2, θ̃ = θ̃(0)e−t (4.57)

yields the following certainty equivalence feedback system

ẋ = −x + x2θ̃(0)e−t. (4.58)
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In this case, an analytical solution is available

x(t) =
2x(0)

x(0)θ̃(0)e−t + (2 − x(0)θ̃(0))et (4.59)

for which is it easy to see that whenever

x(0)θ̃(0) > 2 (4.60)

the solution of the closed loop system escapes to infinity in finite time as the de-

nominator tends to zero. This instability is caused by the nonlinearity ϕ(x) = x2.
If the nonlinearity would have been bounded by linear growth, |ϕ(x)| ≤ k|x|, the
above instability would not have occurred. This example shows that there are two
options: either design a much faster identifier, as used in the CABS design, or a
stronger controller with a bigger stability margin against disturbances such as θ̃;
a more robust design. In the next section a control is designed which guarantees
boundedness of all closed-loop system states when the estimation error is bounded,
and its derivative is either bounded or square-integrable.

4.4.2 ISS-Backstepping Design

The modular scheme is based on the robust backstepping scheme introduced in sec-
tion 3.4 and the ISS-CLF concept from section 3.2. The parameter estimation error
and its derivative are considered as external disturbance inputs, and the controller
is required to achieve boundedness of the system state whenever these inputs are
bounded. The controller design for nonlinear systems in parametric strict-feedback
form (4.16) is very similar to that of the over-parametrized backstepping design as
given in section 4.2, with the addition of nonlinear damping terms.
Step 1. The design procedure starts by introducing the tracking errors

z1 = x1 − yref

z2 = x2 − α1

which have the dynamics

ż1 = ẋ1 − ẏref = x2 + f1 + ϕT
1 θ − ẏref

= z2 + α1 + f1(x1) + wT
1 θ − ẏref

where w1 = ϕ1. A stabilizing function α1 is designed which damps the effect the
parameter estimation error has on the tracking error z1

α1 = −c1z1 − s1z1 − f1 − wT
1 θ̂ + ẏref (4.61)

where the nonlinear damping gain s1 is given by

s1 = wT
1 κ1w1, κ1 = κT

1 > 0.
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Step i = 2, . . . , n − 1. The design continues by introducing more tracking errors

zi = xi − αi−1

whose dynamics are

żi = ẋi − α̇i−1

= xi+1 + fi + ϕT
i θ −

i−1

∑
k=1

∂αi−1

∂xk

(

xk+1 + fk + ϕT
k θ
)

−
i−1

∑
k=1

∂αi−1

∂y
(k−1)
ref

y
(k)
ref −

∂αi−1

∂θ̂
˙̂θ

= zi+1 + fi + αi + wT
i θ

−
i−1

∑
k=1

(

∂αi−1

∂xk
(xk+1 + fk) +

∂αi−1

∂y
(k−1)
ref

y
(k)
ref

)

− ∂αi−1

∂θ̂
˙̂θ

where

wi = ϕi −
i−1

∑
k=1

∂αi−1

∂xk
ϕk.

A stabilizing function for the system can be designed which damps the effect of the
estimation error, and the effect of its derivative on the error dynamics. A possible
stabilizing function is

αi = −zi−1 − (ci + si)zi − fi −wT
i θ̂ +

i−1

∑
k=1

(

∂αi−1

∂xk
(xk+1 + fk) +

∂αi−1

∂y
(k−1)
ref

y
(k)
ref

)

(4.62)

where

si = wT
i κiwi +

(
∂αi−1

∂θ̂

)T

µi

(
∂αi−1

∂θ̂

)

, κi = κT
i > 0, µi = µT

i > 0.

Step n. Finally, the last step yields the control law for u. The tracking error dynamics
are given by

żn = gu + fn + wT
n θ −

i−1

∑
k=1

(

∂αn−1

∂xk
(xk+1 + fk) +

∂αn−1

∂y
(k−1)
ref

y
(k)
ref

)

− ∂αn−1

∂θ̂
˙̂θ

where

wn = ϕn −
n−1

∑
k=1

∂αn−1

∂xk
ϕk.

The control law

u = g−1
[

−zn−1 − (cn + sn)zn − fn − wT
n θ̂

+
n−1

∑
k=1

(

∂αi−1

∂xk
(xk+1 + fk) +

∂αi−1

∂y
(k−1)
ref

y
(k)
ref

)] (4.63)
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damps out the effect of the estimation error and its derivative on the tracking error
dynamics using the nonlinear damping gain

sn = wT
n κnwn +

(
∂αn−1

∂θ̂

)T

µn

(
∂αn−1

∂θ̂

)

.

The input-to-state properties of the error system can be shown by introducing
the following constants

c0 = min
1≤i≤n

λ(ci), κ0 =

(
n

∑
i=1

κ−1
i

)−1

, µ0 =

(
n

∑
i=1

µ−1
i

)−1

. (4.64)

Consider the following CLF

V =
1

2
zTz

whose derivative along the solutions of the tracking error system is given by

V̇ =−
n

∑
i=1

zT
i cizi −

n

∑
i=1

zT
i

(

wT
i κiwi +

∂αT
i−1

∂θ̂
µi

∂αi−1

∂θ̂

)

zi

+
n

∑
i=1

zT
i

(

wT
i θ̃ − ∂αi−1

∂θ̂
˙̂θ

)

≤−
n

∑
i=1

zT
i c0zi −

n

∑
i=1

(

wizi −
1

2
κ−1

i θ̃

)T

κi

(

wizi −
1

2
κ−1

i θ̃

)

+
1

4
θ̃Tκ−1

0 θ̃

−
n

∑
i=1

(
∂αi−1

∂θ̂
− 1

2
µ−1

i
˙̂θ

)T

µi

(
∂αi−1

∂θ̂
− 1

2
µ−1

i
˙̂θ

)

+
1

4
˙̂θTµ−1

0
˙̂θ

≤−
n

∑
i=1

zT
i c0zi +

1

4
θ̃Tκ−1

0 θ̃ +
1

4
˙̂θTµ−1

0
˙̂θ. (4.65)

which shows that the ISS property of z with respect to θ̃ and ˙̂θ.

4.4.3 Swapping Filters

The goal of a swapping filter, for example (4.52), is to transform a dynamic paramet-
ric model into static form, such that standard parameter estimation algorithms can
be used. These normal parameter estimation algorithms are not directly applicable
since measurements of ẋ are often not available. The term swapping describes the
fact that the order of the transfer function describing the dynamics and the time-
varying parameter error θ̃ is exchanged.

Two different swapping schemes are presented, one using a z-swapping derived
from the tracking error model, and the other called x-swapping derived from the
state dynamics. Each of these two schemes allows application of gradient and least
squares update laws.
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z-Swapping

Consider the parametric z-model

ż = Az(z, θ̂, t)z + WT(z, θ̂, t)θ̃ + QT(z, θ̂, t) ˙̂θ. (4.66)

By applying the filters

Ω̇
T = Az(z, θ̂, t)ΩT + WT(z, θ̂, t), Ω ∈ R

p×n, (4.67)

ψ̇ = Az(z, θ̂, t)ψ − Ω
T ˙̂θ − QT(z, θ̂, t) ˙̂θ, ψ ∈ R

n (4.68)

the linear parametric model

z + ψ = Ω
T θ̃ + ǫ̃ (4.69)

is obtained. The signals z, ψ, and Ω are available, and ǫ̃ is an exponentially decaying
signal due to initial conditions of the filter, and is governed by

˙̃ǫ = Az(z, θ̂, t)ǫ̃, ǫ̃ ∈ R
n. (4.70)

Define the estimation error ǫ as
ǫ = z + ψ. (4.71)

Then, introduce an additional filter such that the swapping terms explicitly appear
in the estimation error

Ω̇0 = Az(z, θ̂, t)Ω0 + WT(z, θ̂, t)θ̂ − QT(z, θ̂, t) ˙̂θ, Ω0 ∈ R
n (4.72)

and replace ψ = Ω0 − Ω
T θ̂ the estimation error can be written as

ǫ = z + Ω0 − Ω
T θ̂ = Ω

T θ̃ + ǫ̃. (4.73)

This results in an estimation error that is linear in the parameter estimation error,
allowing application of either a gradient or least squares update laws.

x-Swapping

Instead of the parametric z−model, consider the parametric x−model

ẋ = f (x, u) + FT(x, u)θ (4.74)

which includes the class of parametric-strict feedback systems (4.16) with the par-
ticular choices

f (x, u) =








x2 + f1(x1)
...

xn + fn−1(x1, . . . , xn−1)
fn(x) + gn(x)u








, FT(x, u) =









ϕT
1 (x1)

...

ϕT
n−1(x1, . . . , xn−1)

ϕT
n (x)









.
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Then, introduce two filters

Ω̇0 = A(x, t) (Ω0 + x)− f (x, u), Ω0 ∈ R
n (4.75)

Ω̇
T = A(x, t)ΩT + FT(x, u), Ω ∈ R

p×n (4.76)

where A(x, t) is a negative definite matrix for each x continuous in t. Again, the
prediction error can be written in similar form as for the z−swapping scheme

ǫ = Ω
T θ̃ + ǫ̃. (4.77)

To guarantee boundedness of Ω when F(x, u) grows unbounded, a particular choice
of A(x, t) is made

A(x, t) = A0 − ρFT(x, u)F(x, u)P (4.78)

where ρ > 0 and A0 is an arbitrary constant negative definite matrix such that

PA0 + AT
0 P + I = 0, P = PT

> 0.

Then, the dynamics of ǫ̃ are governed by

˙̃ǫ = A(x, t)ǫ̃ (4.79)

4.4.4 Identifier Choice and Stability Proof

The signals from the z− and x−swapping filters can be used to drive the parameter
update laws. The simplest update for θ̂ is the gradient update law

˙̂θ = Γ
Ωǫ

1 + νtr
(

Ω
T

Ω
) , Γ = Γ

T
> 0, ν ≥ 0. (4.80)

The constant matrix Γ is the update gain, similar to the gain used in the over-
parametrized and CABS designs. The constant ν is a parameter which can be used
to normalize the update law. The least squares update law is very similar to the
gradient update law, with time-varying update gain Γ

˙̂θ = Γ
Ωǫ

1 + νtr
(

Ω
T

ΓΩ
)

Γ̇ = −Γ
Ωǫ

1 + νtr
(

Ω
T

ΓΩ
)Γ, Γ(0) = Γ

T(0) ≥ 0, ν ≥ 0.

(4.81)

Especially for the least squares update law a lot of variations and modification exist
in literature.

For both the update law choices, the following lemma determines the properties
of the identifier desired by the modular control design for either swapping scheme.
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Lemma 4.1 (Identifier Properties). Let the maximal interval of existence of solutions of
be (4.16), the z−swapping filters (4.67) and (4.72) or the x−swapping filters (4.75) and

(4.76), either the gradient (4.80) or least squares (4.81) update laws be
[

0, t f

)

. Then for

ν ≥ 0 the following properties hold:

(i) θ̃ ∈ L∞[0, t f )

(ii) ǫ ∈ L2[0, t f ) ∩ L∞[0, t f )

(iii) ˙̂θ ∈ L2[0, t f ) ∩ L∞[0, t f ).

Proof. The complete proof can be found in Krstić, Kanellakopoulos, and Kokotović
[88, Ch. 6]. The proof is based on analyzing three Lyapunov functions V1(Ω), V2(ǫ̃)
and V3(θ̃, ǫ̃).

Additionally, it is possible to establish additional properties of the least squares

algorithm. Namely that θ̂(t) converges to a constant vector, and ˙̂θ ∈ L1.
Using lemma 4.1, the following theorem states the properties of the closed-loop

system for any combination of swapping scheme and update law choice of the
modular backstepping design.

Theorem 4.2. All the signals in the closed-loop adaptive system consisting of the system
dynamics (4.16), modular control design, the z−swapping filters (4.67) and (4.72) or the
x−swapping filters (4.75) and (4.76), either the gradient (4.80) or least squares (4.81), are
globally uniformly bounded, and (z, ǫ) → 0 as t → ∞. This means that global asymptotic
tracking is achieved

lim
t→∞

[

y(t)− yref(t)
]

= 0. (4.82)

4.5 Command Filtered Modular ISS-Backstepping Design

The modular backstepping design can be simplified by using command filters to
produce the derivatives of the stabilizing functions. Additionally, in this section
the modular backstepping design is extended to systems with unknown control
gains.

4.5.1 Command Filtered Modular Design

Consider a non-triangular, feedback passive system

ẋi = fi(x) + gi(x)xi+1, i = 1, . . . , n − 1

ẋn = fn(x) + gn(x)u
(4.83)
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where x = (x1, . . . , xn) is the state, u is the control input. The functions fi and gn are
(partly) unknown. Note that in this case the assumption is made that the functions
gi are known for i = 1, . . . , n − 1. The sign of gn is known, and gn(x) 6= 0 for all
x ∈ Dx. Assume that the unknown functions can be split into a known and an
unknown part as

fi(x) = f 0
i (x) + ϕT

fi
(x)θ,

gn(x)u = g0
n(x)u + ϕT

gn
(x, u)θ.

(4.84)

The design of the command filtered modular backstepping design is actually nearly
identical to the CABS design, with the addition of nonlinear damping terms. The
design can be summarized as

zi = xi − xi,c (4.85)

z̄i = zi − ξi (4.86)

x0
i,c = αi−1 − ξi (4.87)

αi = g−1
i

(

−cizi − si z̄i − gT
i−1z̄i − f 0

i − ϕT
fi

θ̂ + ẋi,c

)

(4.88)

si =

{
ϕT

fi
κi ϕ fi

i = 1, . . . , n − 1
(

ϕT
fi

κi ϕ fi
+ ϕT

gi
κi ϕgi

)

i = n
(4.89)

χ̇i = −ciχi + gi

(

xi+1,c − x0
i+1,c

)

(4.90)

where ci > 0, κi > 0 are constants and z0 ≡ 0, α0 ≡ yref, xn,c ≡ uc. Furthermore, the

signals x0
i,c are filtered by stable filters to produce xi,c and its derivative. Parameter

projection is applied to keep the sign of gn(x) from changing due to the parameter
estimate

˙̂θ = Proj



Γ
Ωǫ

1 + νtr
(

Ω
T

ΓΩ
)



 . (4.91)

The derivative of the CLF V(z̄) = 1
2 z̄T z̄ when the projection operator is not effect

using the filtered modular control design becomes

V̇ =
n

∑
i=1

z̄T
i

˙̄zi

=−
n

∑
i=1

z̄T
i ci z̄i −

n

∑
i=1

z̄T
i ϕT

fi
κi ϕ fi

z̄i +
n

∑
i=1

z̄T
i ϕT

fi
θ̃ − z̄T

n ϕT
gn

κn ϕgn
z̄n + z̄T

n ϕT
gn

θ̃

≤−
n

∑
i=1

z̄T
i c0z̄i −

n

∑
i=1

(

ϕ fi
z̄i −

1

2
κ−1

i θ̃

)T

κi

(

ϕ fi
z̄i −

1

2
κ−1

i θ̃

)T

−
(

ϕgn
z̄n −

1

2
κ−1

n θ̃

)T

κn

(

ϕgn
z̄n −

1

2
κ−1

n θ̃

)

+
1

4
θ̃Tκ−1

0 θ̃
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≤−
n

∑
i=1

z̄T
i c0z̄i +

1

4
θ̃Tκ−1

0 θ̃

where c0 = min1≤i≤n λminci, κ0 =
(

∑
n
i=1 κ−1

i

)−1
. This shows that the Lyapunov

functions is negative definite outside a compact ball around the origin. If the
command filter settings are chosen appropriately, the signals ξi are small, and hence
zi will be small.

Theorem 4.3. All the signals in the closed-loop adaptive system consisting of the system
dynamics (4.16), the filtered modular control design, the z−swapping filters (4.67) and
(4.72) or the x−swapping filters (4.75) and (4.76), either the gradient (4.80) or least squares
(4.81), are globally uniformly bounded, and (z, ǫ) → 0 as t → ∞. This means that global
asymptotic tracking is achieved

lim
t→∞

z̄1 = 0. (4.92)

and z1 → 0 if the effect of the command filters is negligible.

4.5.2 Modular Backstepping Missile Example

The filtered modular backstepping design illustrated by means of application on
the missile example. The same parameterization as for the missile CABS example,
section 4.3.2, is used. The control design is very similar to the CABS design with the
addition of nonlinear damping terms in the stabilizing functions. The stabilizing
functions are defined as

α1 = −c1z1 − s1z̄1 − f 0
1 − ϕT

f1
θ̂ + ẏref (4.93)

α2 =
(

g0
2 + ϕT

g2
θ̂
)−1 (

−c2z2 − z̄1 − s1z̄1 − f 0
2 − ϕT

f2
θ̂ + ẋ1,c

)

(4.94)

where

s1 = ϕT
f1

κ1 ϕ f1
, s2 =

(

ϕ f2
+ ϕg2

)T
κ2

(

ϕ f2
+ ϕg2

)

and u0
c = α2. A least squares type update law is used in combination with the

x−swapping scheme. Projection of the parameter estimate is required such that the

sign of g0
2 + ϕg2

θ̂ remains constant. The resulting control design has a 6 command

filter states, 72 recursive least squares filter states, 18 swapping filter states, for a
total of 96 states which significantly more than required for the CABS controller
design. A mismatch between the true dynamics of the missile and the model is
simulated by a mismatch in the measured Mach number which serves as an input
to the controller. The controller measures Mach 1.8 while the missile actually flies at
Mach 2.0, resulting in a destabilizing disturbance in the closed-loop dynamics. The
modular controller rapidly estimates this destabilizing dynamics as seen in figures
4.3 and 4.4. In this case the true parameters are not estimated over this relatively
short time span, this can be explained by the fact that the regressor functions are
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Figure 4.3: Response (top), tracking error (middle), and control input (bottom) for
the modular backstepping design applied to the missile example.

almost linearly dependent. Although the parameter estimates do not converge to
their true values, tracking of the desired reference signal is achieved.

4.6 Composite Adaptive Backstepping

Since the parameter uncertainty is reflected in both the tracking error and the pre-
diction error, it is desirable to extract information from both these sources. This
type of parameter updating is called composite adaptation [160], and can be seen
as an extension of the integrated backstepping approach. The design can also be
interpreted as a hybrid combination of the integrated and the modular design. The
biggest drawback of the modular approach is the use of nonlinear damping terms
in the stabilizing functions and control law to counteract the effect of the estimation
error and its derivative. A weak point of the integrated approach was its sensitivity
to tuning and convergence properties. The composite design eliminates the need
for the nonlinear damping terms, and improves the convergence characteristics of
the integrated design.
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Figure 4.4: Parameter estimates for the modular backstepping control design with
recursive least squares identifier.

The composite update law is composed as

˙̂θ = Proj



Γ



Φz̄ +
ΩΨǫ

1 + νtr
(

Ω
T

ΓΩ
)









Γ̇ = −Γ
ΩΨΩ

T

1 + νtr
(

Ω
T

ΓΩ
)Γ

(4.95)

where Ψ = Ψ
T ≥ 0 is a weight matrix to control how the adaptation law should

weigh the information from the tracking error with respect to the information from
the estimation error. This matrix can also be interpreted as a scaling factor in the
least squares update law and setting the matrix to zero yields the CABS design.
Consider the following CLF

V =
1

2

[

z̄T z̄ + θ̃T
Γ
−1θ̃ + ǫ̃T PΨǫ̃

]

. (4.96)

Upon examination of the unnormalized update law, ν = 0,

d

dt

(

Γ
−1θ̃
)

= −Γ
−1

Γ̇Γ
− θ̃ − Γ

−1 ˙̂θ

= ΩΨΩ
T θ̃ − ΩRǫ − Γ

−1
Φz̄

= −ΩΨǫ̃ − Γ
−1

Φz̄.
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This, combined with the fact that the ǫ̃ dynamics are governed by (4.70) or (4.79),
yields the following time-derivative for the CABS control design with composite
update law (4.95)

V̇ = −z̄T ˙̄z − 1

2
˙̂θT

Γ
−1θ̃ +

1

2
θ̃T d

dt

(

Γ
−1θ̃
)

+
1

2
ǫ̃T PΨ ˙̃ǫ +

1

2
˙̃ǫT

ΨPǫ̃

≤ −
n

∑
i=1

z̄T
i ci z̄i −

1

2
ǫT

ΨΩ
T θ̃ − 1

2
θ̃T

ΩΨǫ̃ − 1

2
ǫ̃T

Ψǫ̃

≤ −
n

∑
i=1

z̄T
i ci z̄i −

1

2
ǫT

Ψǫ +
1

2
ǫT

Ψǫ̃ − 1

2
ǫ̃T

Ψǫ +
1

2
ǫ̃T

Ψǫ̃ − 1

2
ǫ̃T

Ψǫ̃

≤ −
n

∑
i=1

z̄T
i ci z̄i −

1

2
ǫT

Ψǫ

with Γ > 0 and P > 0. The CLF derivative shows convergence of both the compen-
sated tracking error and the estimation error to zero. If the command filter tuning
is chosen appropriately, the signals ξ are small and hence the tracking error z will
be small, resulting in asymptotic tracking of the reference signal.

4.7 Adaptive Backstepping of Pure Feedback Systems

The pure-feedback design from section 3.6 can be extended quite easily to uncertain
non-affine in control systems. However, care must be taken that the sign of the
derivative of the control gain function with respect to the control input is strictly
positive or negative. This can be achieved by either parameter projection alone,
which would become a very complex and tedious task, or a special choice of re-
gressor functions with parameter projection. An example of such functions are
integrated Gaussians

ϕi(x, u) =
∫ u

0
e−(χ−ci)

T(χ−ci)/σ2
i dξ (4.97)

where ξ is the integration variable, ci is vector defining the center, σi is the width of

the Gaussian. Note that
∂ϕ(x,u)

∂u > 0, and therefore by applying simple parameter
projection the sign of the control gain function can be preserved.

4.8 Conclusions

In this chapter several adaptive backstepping design approaches were introduced.
Using these approaches stabilizing control laws can be designed which achieve
convergence of the tracking error to zero and boundedness of the closed-loop sys-
tem states in the presence of parametric uncertainties in the system. The use of
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command filters greatly simplifies the designs and for the integrated adaptive back-
stepping designs even avoids over-parameterization. The modular adaptive back-
stepping design allows application of non-Lyapunov based update laws for the
unknown parameter such as gradient based and least squares update laws. It
achieves this modularity by including nonlinear damping terms. The composite
adaptive update law eliminates the need for these nonlinear damping terms by
using information from both the tracking error and the estimation error in the
update law. In the next part these control approaches are used for aircraft control.





BIBLIOGRAPHY

[4] Z. Artstein. “Stabilization with relaxed controls”. In: Nonlinear Analysis 7.11
(1983), pp. 1163–1173.

[32] C. G. Darwin and A. R. Wallace. “On the tendency of species to form
varieties; and on the perpetuation of varieties and species by natural means
of selection”. In: Journal of the Proceedings of the Linnean Society of London.
Zoology 3 (1858), pp. 45–62.

[52] B. Etkin and L. D. Reid. Dynamics of Flight: Stability and Control. 3rd. John
Wiley & Sons, 1996.

[55] J. Farrell, M. Polycarpou, and M. Sharma. “Adaptive Backstepping with
Magnitude, Rate, and Bandwidth Constraints: Aircraft Longitude Control”.
In: American Control Conference. Denver, CO, June 2003, pp. 3898–3903.

[56] J. A. Farrell, M. Polycarpou, M. Sharma, and W. Dong. “Command Filtered
Backstepping”. In: Automatic Control, IEEE Transactions on 54.6 (June 2009),
pp. 1391–1395.

[57] J. A. Farrell, M. Sharma, and M. Polycarpou. “Backstepping Based Flight
Control with Adaptive Function Approximation”. In: Journal of Guidance,
Control and Dynamics 28.6 (Jan. 2005), pp. 1089–1102.

[58] J. Farrell, M. Sharma, and M. Polycarpou. “On-line Approximation Based
Aircraft Longitudinal Control”. In: American Control Conference, Denver, CO.
Denver, CO, June 2003, pp. 1011–1015.
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PART

II
MODULAR BACKSTEPPING FLIGHT

CONTROL

In this part of the dissertation the theory introduced in the first part is applied
on different aircraft models, ranging from a relatively simple single flight con-
dition over-actuated model of an F-18-like aircraft to full envelope nonlinear
models of the F-16 and ADMIRE. The adaptive backstepping approaches in-
troduced in chapter 4 are extended with different control allocation methods as
well as full envelope model identification.
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5
AIRCRAFT DYNAMICS

This chapter forms an introduction to flight dynamics for the reader not fa-
miliar with the subject. It defines important reference frames and derives the
equations of motion for a rigid symmetric aircraft. Finally, two different non-
linear aircraft models are introduced.

5.1 Aircraft Dynamics

In this chapter the equations of motion for symmetric aircraft flying over a flat
Earth are derived. First of all, some coordinate frames and the relevant aircraft
states are introduced. Then, the assumptions made to derive the equations of
motion are stated. The external forces and moments acting on the aircraft are
discussed and the equations of motion are derived. Then, the most common control
variables and available control effectors are discussed. The chapter is concluded
with an overview of a high-fidelity F-16 model and the ADMIRE model to which
the methods developed in this dissertation are applied.

5.1.1 Coordinate Frames

Before deriving the equations of motion for aircraft several coordinate frames are
required

Earth-Fixed Reference Frame FE: This coordinate system has its origin fixed to an
arbitrary point on the surface of the Earth. The zE-axis points toward the
center of the Earth, and xEyE defines a tangent plane to the Earth’s surface.
Normally, xE points to the North and yE points East.
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Body-Fixed Reference System FB: The origin and axes of the coordinate system
are fixed with respect to the geometry of the aircraft. If the aircraft has a
plane of symmetry, then xB and zB lie in that plane of symmetry. Normally,
xB points towards the nose of the aircraft, zB down, and yB over the right
wing.

Stability-Axis Reference Frame FS: In this dissertation, the stability-axes are de-
fined as a body-carried coordinate system where the xS-axis is the projection
of the velocity vector onto the plane of symmetry of the aircraft.

Wind-Axis Reference Frame FW : This reference frame is body carried in which the
xW-axis points in the direction of the velocity vector of the aircraft relative to
the air mass. The zW-axis is in the plane of symmetry of the aircraft, and the
yW-axis points to the right.

The coordinate systems are shown in figure 5.1. The position of the aircraft is
defined in the FE reference frame. The attitude of the aircraft is the rotation from
FE to FB. The rotation sequence from FE to FB is defined by the angles of yaw,
pitch, and roll. The yaw angle ψ is the rotation around the zE axis, followed by the
pitch angle θ around the new y-axis, and finally the roll angle φ around the new x-
axis. This representation of attitude has a singularity at ±90 degrees of pitch which
for military aircraft is a potential problem. Therefore, a quaternion representation
of the aircraft’s attitude is used which avoids this singularity. The transformation
matrix from FE to FB is defined as

TE→B =








(

q2
0 + q2

1 − q2
2 − q2

3

)

2 (q1q2 + q0q3) 2 (q1q3 − q0q2)

2 (q1q2 − q0q3)
(

q2
0 − q2

1 + q2
2 − q2

3

)

2 (q2q3 + q0q1)

2 (q1q3 + q0q2) 2 (q2q3 − q0q1)
(

q2
0 − q2

1 − q2
2 + q2

3

)








,

where the transformation from the Euler, or Tait-Bryan, angles to quaternion repre-
sentation is defined as

q =







q0
q1
q2
q3






= ±








cos
φ
2 cos θ

2 cos
ψ
2 + sin

φ
2 sin θ

2 sin
ψ
2

sin
φ
2 cos θ

2 cos
ψ
2 + cos

φ
2 sin θ

2 sin
ψ
2

cos
φ
2 sin θ

2 cos
ψ
2 + sin

φ
2 cos θ

2 sin
ψ
2

cos
φ
2 cos θ

2 sin
ψ
2 + sin

φ
2 sin θ

2 cos
ψ
2








.

When the FB is rotated around the yB axis by the angle of attack α the FS reference
frame is obtained. Finally, rotation around the zS-axis by the sideslip angle yields
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Figure 5.1: Coordinate systems and aircraft attitude representation.

FW . This results in two additional rotation matrices defined as

TB→S =





cos α 0 sin α
0 1 0

− sin α 0 cos α



 (5.1)

TB→W =





cos β sin β 0
− sin β cos β 0

0 0 1



 TB→S (5.2)

5.1.2 Assumptions

Before proceeding to the derivation of the equations of motion, the following as-
sumptions are made

1. The aircraft is a rigid body (as opposed to flexible) and has constant mass
over the duration of the considered motion. The equations of motion simplify
considerably due to this assumption, and it is quite valid. The decrease in
mass of an F-16 aircraft flying at maximum dry thrust for 1 minute is less
than 1% of the aircraft’s total mass.

2. The aircraft’s mass distribution is symmetric with respect to the XbOZb plane,
such that the cross-products of inertia Ixy and Iyz are zero.
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3. Earth is considered flat and non-rotating, and regarded as an inertial reference
frame. This assumption is valid when dealing with control design of aircraft,
but does not hold when designing guidance or navigation systems for flight
over larger portions of Earth.

4. The air in front of the aircraft’s trajectory is considered to be at rest relative to
the Earth’s surface.

5. The force, or thrust, produced by the engine is assumed to be in the XbOZb
plane and to act parallel to the Xb-axis. The gyroscopic effect caused by the
angular momentum of the rotating turbine is considered constant.

Note that assumptions requiring symmetry of the aircraft are most likely violated
when the aircraft sustains damage to the airframe. The aerodynamic effects re-
sulting from the damage are however larger than the influence of the center of
gravity shift and miss-aligned principle moment of inertia axes. A derivation of the
equations of motions without this assumption can be found in Bacon and Gregory
[7], Lombaerts [96].

5.1.3 Equations of Motion

Under the above assumptions, the aircraft has six degrees of freedom, three transla-
tions and three rotations. The aircraft’s motion can thus be described by its position,
attitude, linear velocity, and angular velocity over time. The aircraft dynamics can
be described by a state space model with 13 states consisting of

• p =
[

xE yE zE

]T
the aircraft position in FE,

• V =
[

uB vB wB

]T
the velocity vector expressed in FB,

• q is a quaternion vector describing the orientation of FB relative to FE,

• ω =
[

pB qB rB

]T
the angular velocity of the aircraft in FB.

The equations governing these state vectors can be compactly written as

ṗ = TT
E→B(q)V (5.3)

F = m
(
V̇ + ω × V

)
(5.4)

q̇ = Ω(ω)q (5.5)

M = Jω̇ + ω × Jω (5.6)

where F is the sum of external forces on the aircraft’s center of gravity, m is the
aircraft’s mass, Ω is an anti-symmetric matrix defined as

Ω(ω) =







0 −pB −qB −rB
pB 0 rB −qB
qB −rB 0 pB
rB qB −pB 0







,
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M is the sum of external moments, and J is the inertia tensor. The external forces
and moments have three major sources: gravity, engine thrust, and aerodynamic
efforts.

Gravity Contribution

The gravity contribution consists of only a force since it acts on the center of gravity.
The gravitational force, mg, is directed along the positive zE-axis. Therefore, in FB
the resulting external force due to gravity can be written as

FG = TE→B(q)
[

0 0 mg
]T

.

Engine Contribution

The engine thrust only produces an external force in the xB-axis direction due to
assumption 5. Therefore,

FE =
[

T 0 0
]T

.

Additionally, due to the rotation of the turbine an gyroscopic moment is introduced
when the aircraft rotates.

ME = HE × ω

Aerodynamic Contribution

The aerodynamic forces and moments are due to the interaction between the air-
craft body and the airflow. Their magnitude and direction are determined by the
amount of air diverted by the aircraft in different directions. The amount of air
diverted is mainly decided by the velocity of the aircraft with respect to the sur-
rounding air, the properties of the surrounding air, the geometry of the aircraft, the
angular rotation rate and the aircraft’s control surface deflections δ. A standard
way of modeling the aerodynamic forces and moments is

Force = q̄SCF (α, β, ω, δ, M, . . .)

Moment = q̄SlCM (α, β, ω, δ, M, . . .)

where q̄ = 1
2 ρV2

T is the aerodynamic pressure, S is the aircraft wing area, and l
is a reference length, normally chosen as the chord for the pitch moment and the
wingspan for the lateral moments, CF and CM are aerodynamic coefficients. These
aerodynamic coefficients are hard to model analytically and are usually obtained
through (virtual) wind tunnel experiments and actual flight tests. The resulting
aerodynamic force and moment expressions in FB are

FA =





X̄
Ȳ
Z̄



 = q̄S





CX
CY
CZ
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and

MA =





L̄
M̄
N̄



 = q̄S





Clb
Cm c̄
Cnb





5.1.4 Wind-Axis Equations of Motion

For control design it is often more convenient to formulate the equations of motion
related to the aircraft velocity in the FW reference frame.

V̇T =
1

m
(−D + T cos α cos β + mg1) (5.7a)

α̇ = qS − pS tan β +
1

mVT cos β
(−L − T sin α + mg3) (5.7b)

β̇ = −rS +
1

mVT
(Y − T cos α sin β + mg2) (5.7c)

where the contributions due to gravity are generated by TB→W TE→Bg. The rela-
tionship between the aerodynamic forces expressed in the two coordinate systems
is given by





D
Y
L



 = TB→W





X̄
Ȳ
Z̄



 . (5.8)

5.2 Atmospheric Model

The aerodynamic forces and moments are dependent on the atmospheric flight con-
dition. Given the aircraft’s altitude and airspeed the atmospheric conditions can be
calculated using the ISA atmosphere model. For the troposphere, i.e. for altitudes
below 11 km, this atmospheric model is given below. First of all the temperature is
calculated by the following relation between temperature and altitude h

Th = T0 + λh. (5.9)

where λ is the temperature gradient. Using this temperature, the speed of sound
and the Mach number can be calculated by

M =
VT

a
=

VT
√

γRTh

. (5.10)

where R is the specific gas constant of air, γ is the ratio of specific heats. The
pressure is calculated from

p = p0

(
Th

T0

)− g0
Rλ

. (5.11)
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The ideal gas equation can be used to calculate the density of the air

ρ =
p

RTh
. (5.12)

5.3 Control Variables

If a flight control system is to be implemented, the first question that has to be
answered is what does a pilot or autopilot system want to control? Most fighter
aircraft are still designed for the high maneuverability required in dogfights. For
longitudinal control, the normal acceleration or load factor, and pitch rate are im-
portant control variables. Since the load factor is closely coupled to the angle of
attack, the angle of attack is often selected as a control variable in nonlinear control
approaches.

In the lateral direction the roll rate and sideslip control systems are most com-
mon. Typically, the sideslip is regulated to zero such that the aircraft is flying
straight into the relative wind. However, in some occasions some degree of sideslip
might be necessary, e.g. when landing the aircraft in the presence of crosswind
or to restore equilibrium when flying with asymmetric aircraft. Two choices are
available for roll rate control. Controlling the roll rate in FB results in exchange of
the angle of attack and sideslip. At high angles of attack this is highly undesirable,
since the largest acceptable amount of sideslip during a roll is in the order of 3 − 5
degrees [44]. By rolling around the xS-axis or xW-axis instead this problem can be
circumvented. The last type of roll is known as a velocity-vector roll.

There exist situations where other control variables are chosen. Examples are
autopilot functions such as altitude, heading and speed hold which are functions
to assist the pilot during long distance flight. Other interesting control variables are
the position of the aircraft with respect to other aircraft in close formation flight to
reduce drag. Additionally, control of the flight path angle γ may be of interest for
automatic take-off and landing.

5.4 Control Effectors

The equations of motion of an aircraft show that the motion of an aircraft can be
modified by using control effectors. These control effectors can be categorized into
aerodynamic control surfaces and force generators. The control surfaces perturb
the airflow around the aircraft, and this generates aerodynamic forces and moments
acting on the aircraft. Engines generate thrust forces by accelerating the air. Many
different aerodynamic control surface configurations for modern fighter aircraft
exist, figure 5.2 shows two possibilities. On the left an F-16 aircraft with conven-
tional control surface layout is shown. The aircraft is controlled by the horizontal
stabilizers, the rudder, ailerons and has speedbrakes, leading and trailing edge
flaps. On the right a Su-35 aircraft is shown which has twin tails and therefore
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(a) F-16 aircraft (b) Sukhoi 35 aircraft

Figure 5.2: Control surface configurations of two different fighter aircraft.

double rudders, horizontal stabilizers, canards, ailerons, leading- and trailing edge
flaps and speedbrakes.

5.5 High Fidelity F-16 Model

In this section the high-fidelity model of an F-16 aircraft, see figure 5.2(a), which is
used in chapters 8 and 12 is introduced. First of all the available control effectors in
the model are discussed. Following are the engine and aerodynamic models.

5.5.1 Aircraft Geometry

The F-16 model allows controlling the throttle, horizontal stabilizer, aileron and
rudder deflections. The F-16 aircraft is equipped with leading edge flaps helping
the aircraft to fly at high angles of attack. The speed brakes and trailing edge
flaps are not included in the model. Additionally, in the model only symmetric
horizontal stabilizers deflections are allowed, unlike the real F-16 aircraft. The
geometric data for the F-16 model can be found in [126].

5.5.2 Engine Model

The F-16 aircraft is powered by a turbofan jet-engine with afterburner. The engine-
thrust-lever system is modeled by means of engine thrust look-up tables, throttle
gearing and engine power level lag. The power level is modeled as a first-order
transfer function where the lag time constant is a function of the current engine
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power and the commanded power. The commanded power level is a piece-wise
linear function of the throttle setting.

Pc(δT) =

{

64.94δT if δT ≤ 0.77,

217.38δT − 117.38 if δT > 0.77.
(5.13)

The actual power level Pa is obtained through a first-order lag-filter with variable
time-constant

Ṗa =
1

τ⋆

eng

(
P⋆

c − Pa

)
(5.14)

where
P⋆

c = Pc, τ⋆

eng = 1
5 if Pc ≥ 50 and Pa ≥ 50

P⋆

c = 60, τ⋆

eng = τeng if Pc ≥ 50 and Pa < 50

P⋆

c = 40, τ⋆

eng = 1
5 if Pc < 50 and Pa ≥ 50

P⋆

c = Pc, τ⋆

eng = τeng if Pc < 50 and Pa < 50

1

τeng
=







1.0 if (P⋆

c − Pa) ≤ 25

1.9 − 0.036(P⋆

c − Pa) if 25 < (P⋆

c − Pa) ≤ 50

0.1 if 50 ≤ (P⋆

c − Pa)

The engine thrust data is available in look-up tables as a function of the actual
power setting, altitude, and Mach number. The thrust is computed as

T =

{

Tidle + (Tmil − Tidle)
Pa
50 if Pa < 50,

Tmil + (Tmax − Tmil)
Pa−50

50 if Pa ≥ 50.
(5.15)

The angular momentum of the turbofan is assumed constant, with a value of 216.9

kgm2s−1.

5.5.3 Aerodynamic Model

The aerodynamic data of the F-16 model has been derived from low-speed static
and dynamic wind-tunnel tests conducted with sub-scale models at the NASA
Ames and Langley Research Centers [126]. The aerodynamic data is given in tabu-
lar form and is valid for the subsonic flight envelope for angles of attack between
−20 and 90 degrees, and sideslip angles up to 30 degrees.

The total aerodynamic coefficients used in the equations of motion are com-
posed out of several different contributing aerodynamic coefficients. One longitu-
dinal and one lateral coefficient composition are shown here, the remaining coeffi-
cients are very similar and the complete description can be found in [126]. The force
coefficient in the zB-direction is defined as

CZt
= CZ(α, β, δh) + δCZlef

(α, β)

(

1 − δlef

25

)

+
qB c̄

2VT

(

CZq
(α) + δCZqlef

(α)

(

1 − δlef

25

))
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where
δCZlef

(α, β) = CZlef
(α, β)− CZ(α, β, δh = 0)

The moment coefficient around the zB-direction, Cn, is build-up as

Cnt
= Cn(α, β, δh) + δCnlef

(

1 − δlef

25

)

+ δCnβ
(α)β − CYt

xcgr − xcg

b

+

(

δCnδa
+ δCnδa lef

(

1 − δlef

25

))
δa

21.5
+ δCnδr

δr

30

+

(

Cnp
(α) + δCnplef

(α)

(

1 − δlef

25

))
pBb

2VT

+

(

Cnr
(α) + δCnrlef

(α)

(

1 − δlef

25

))
rBb

2VT

where

δCnlef
= Cnlef

(α, β)− Cn(α, β, δh = 0)

δCnδa
= Cnδa

(α, β)− Cn(α, β, δh = 0)

δCnδa lef

= Cnδa lef

(α, β)− Cnlef
(α, β)− δCnδa

δCnδr
= Cnδr

(α, β)− Cn(α, β, δh = 0).

Note that the variables used in these look-up functions are in degrees instead of
radians.

5.6 ADMIRE Model

A different, high-fidelity model of an aircraft is the Aero-Data Model In a Research
Environment (ADMIRE) model developed by the Swedish Defence Agency FOI in
cooperation with Saab AB. The ADMIRE is a generic model of a small single seat
fighter aircraft with a delta-canard configuration. A full envelope adaptive control
design with control allocation, and on-line model structure selection is made in
chapter 9.

5.6.1 Aircraft Geometry

The aircraft has a delta-canard configuration, and dimensions comparable to the F-
16 aircraft. The geometry of the aircraft resembles the Saab JAS 39 Gripen aircraft,
increased 20% in size. The available control surfaces in the model are the left and
right canards, the left and right outer elevons, the left and right inner elevons, the
rudder, the leading edge flap, landing gear, air brake, and the thrust vectoring
nozzle. The last three actuators are not used in this dissertation to control the
aircraft. Each of the remaining control effectors, together with the throttle, can be
commanded individually.
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Figure 5.3: Example aerodynamic data for the ADMIRE model. In 5.3(a) the
asymmetric elevon deflection effect on the rolling moment coefficient is shown,
5.3(b) shows the symmetric canard deflection effect on the pitching moment
coefficient.

5.6.2 Engine Model

The engine model contains data in two 2-dimensional tables describing the pro-
duced engine thrust, with and without afterburner activated. The thrust is a func-
tion of the altitude and Mach number. The input to the engine is the throttle, taking
values between 0 and 1. At throttle settings larger that 0.8 the afterburner is active.
The dynamic response of the engine is modeled with a simple first order lag filter
with a time constant of 2.0.

5.6.3 Aerodynamic Model

The aerodata of the model consists of aerodata tables, interpolation routines and
aerodata algorithms. The aerodata is valid up to Mach numbers of 2.5, altitudes up
to 20 km, angles of attack up to 30 degrees and sideslip angles up to 20 degrees. The
original GAM model [6] has been extended for angles of attack up to 90 degrees at
Mach numbers up tot 0.5. There is considerable coupling between the longitudinal
and lateral variables and coefficients, and the aerodata includes static aeroelastic
effects. The full description of the aerodynamic coefficient-buildup can be found
in [60]. The major difference with the F-16 model is that the aerodynamics do not
have a linear-base, but rather the individual coefficients are build up from many
nonlinear lookup tables. Example aerodynamic data is shown in figure 5.3.
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5.7 Conclusions

In this chapter an introduction to aircraft dynamics and common control objectives
for fighter aircraft was given. Two nonlinear aircraft models were introduced, the
high-fidelity F-16 model, and the ADMIRE model. The aerodynamic model of
both these aircraft varies nonlinearly through large flight envelopes, and hence it
is expected that nonlinear control approaches can obtain better performance than
linear control designs with less design effort. Furthermore, the ADMIRE model
is over-actuated and thus some form of control allocation is required to control
this aircraft. Finally, aircraft dynamics are typically not in lower-triangular form
since the control effectors typically generate forces and moments. This has to be
accounted for in the control design.

In the following chapters nonlinear adaptive control methods are applied to the
flight control design to obtain excellent performance in nominal flight conditions,
and improve stability and performance in post-failure flight conditions.
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A COMPARISON OF ADAPTIVE

CONTROL DESIGNS

In this chapter three control design approaches from chapter 4 are applied to a
simplified, over-actuated fighter aircraft model. Two different design philoso-
phies are pursued, the integrated adaptive approach where the identifier is de-
signed simultaneously with the control law, and a modular approach which sep-
arates the control law and identifier. Since the aircraft model is over-actuated,
different control allocation methods are implemented. The relation between the
accuracy of the parameter estimates and the tracking performance is investi-
gated by comparing simulation results for the combinations of backstepping
and control allocation approaches.

6.1 Introduction

Each of the different adaptive backstepping options introduced in chapter 4 has its
advantages and disadvantages. In this chapter the tuning-backstepping, command-
filtered integrated and modular backstepping methods are applied to a simple,
single flight condition, nonlinear over-actuated aircraft model. Since the aircraft
model is over-actuated, meaning more control effectors than controlled variables,
some form of control allocation (CA) has to be applied to distribute the desired
control moment over the available control effectors.

The integrated backstepping designs that make use of Lyapunov based update
laws are designed to meet a global system stability criterion, rather than minimiz-
ing the estimation error. As a result, these methods only yield a pseudo-estimate of
the unknown model parameters [133]. The parameters do not necessarily converge

103
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to their true values as this is not a requirement for stability. It is unclear what the
effect of this on the control allocation since it is hard to predict the consequences
of using the estimated values within the control allocation scheme. On the other
hand, the least squares estimation of the modular design should be able to estimate
more accurate parameter values since it uses state information directly, and not
only the tracking error. The contributions of this chapter are twofold. First, a
comparison of the performance of three adaptive control design methodologies on
a nonlinear fighter aircraft model suffering from several types of control surface
lockups is made. Second, the estimation accuracy of the designs is studied and how
this accuracy affects the performance for different control allocation algorithms.

In this chapter, first of all the aircraft model is introduced and rewritten in a form
suitable for the application of the backstepping methods. Then, the three different
backstepping designs are introduced and their differences are clearly indicated.
The backstepping designs only yield a desired control moment which has to be
distributed over the available control effectors. Two methods based on the pseudo-
inverse and on quadratic programming are introduced to solve this control allo-
cation problem. Finally, using numerical simulations the different combination of
control allocation and backstepping designs for four failure scenarios are evaluated
on tracking performance and parameter estimation accuracy.

6.2 Aircraft Model

To effectively compare the different control designs a relatively simple, still nonlin-
ear, aircraft model was obtained from [133]. This aircraft model has some resem-
blances to an F-18 aircraft. The aerodynamic data is available in the form of tables
for two trimmed flight conditions: one at an altitude of 30, 000 ft and Mach number
of 0.7, the other at 40, 000 ft and Mach number of 0.6. The model has seven surfaces
which can be controlled: left and right horizontal stabilizers, left and right ailerons,
collective leading edge flaps, collective trailing edge flaps, and collective rudder. A
layout of the aircraft and its control surfaces is show in figure 6.1.

The main simplifications made in the derivation of the model are the assump-
tion of constant airspeed, and secondly that the control surface deflections do not
generate lift and drag effects. This last assumption was made to transform the
system into a feedback linearizable form to allow application of feedback lineariza-
tion and non-filtered backstepping methods. Second order actuator dynamics have
been included in the model. The magnitude, rate and bandwidth limits of the
various actuators are specified in table 6.1.
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Figure 6.1: Top-view of an F-18 aircraft. The failing horizontal tail surface is marked
in yellow, and the failing aileron is marked red.

Table 6.1: Actuator Specifications

Surface
Deflection Limit Rate Limit Bandwidth

[deg] [deg/s] [rad/s]
Horizontal Stabilizer [-24, 10.5] ± 40 50

Ailerons [-25, 45] ± 100 50
Leading Edge Flaps [-3, 33] ± 15 50
Trailing Edge Flaps [-8, 45] ± 18 50

Rudder [-30, 30] ± 82 50

The full equations of motion are given by

















α̇
β̇
φ̇
ϑ̇
ṗ
q̇
ṙ
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q − pβ + zα∆α + (g0/V)(cos ϑ cos φ − cos ϑ0)
yβ + p(sin α0 + ∆α)− r cos α0 + (g0/V) cos ϑ sin φ

p + q tan ϑ sin φ + r tan ϑ cos φ
q cos φ − r sin ϑ

lββ + lqq + lrr + (lβαβ + lrαr)∆α + lp p − i1qr

mα∆α + mqq + i2 pr − mα̇(g0/V)(cos ϑ cos φ − cos ϑ0)

nββ + nrr + np p + npα p∆α − i3 pq + nqq
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(6.1)



106 CHAPTER 6. A COMPARISON OF ADAPTIVE CONTROL DESIGNS

where all the stability and control derivatives are considered to be unknown and
should be estimated on-line by the parameter estimation process. The system of
equations (6.1) can be rewritten in a notationally more convenient form for the
control design as

ẋ1 = f1(x1, x0) + ϕT
f1
(x1, x0)θ + g1(x1, x0)x2 (6.2)

ẋ2 = f2(x1, x2, x0) + ϕT
f2
(x1, x2, x0)θ + g2(θ)u (6.3)

ẋ0 = f0(x1, x2, x0) (6.4)

where

x1 =
[

φ α β
]T

,

x2 =
[

p q r
]T

,

u =
[

δel δer δal δar δle f δte f δr

]T
,

and the uncontrolled state x0 = ϑ. The known nonlinear aircraft dynamics are
represented by the vector functions f1(x1, x0), f2(x1, x2, x0) and f0(x1, x2, x0) and
the matrix function g1(x1, x0). The matrix functions ϕ1(x1, x0) and ϕ2(x1, x2, x0) are
regressor matrices for the part of the unknown dynamics that does not depend on
the control input, θ is the unknown parameter vector, and g2(θ) is a linear mapping
of the control input related parameters into matrix form. The parameter vector is
defined as

θ =
[

zα yβ lβ lp lq lr lβα lrα l0 lδel
lδer

lδal
lδar

lδr
mα mq mα̇ m0 mδel

mδer
mδal

mδar
mδle f

mδte f
mδr

nβ nr np npα nq n0 nδel
nδer

nδal
nδar

nδr

]T

with

g2(θ) =






lδel
lδer

lδal
lδar

0 0 lδr

mδel
mδer

mδal
mδar

mδle f
mδte f

mδr

nδel
nδer

nδal
nδar

0 0 nδr




 .

6.3 Control System Design

The aircraft model has been rewritten into a form that is suitable for application of
different backstepping design methods in the previous section. The static, or non-
adaptive part, of both the integrated and modular backstepping designs is almost
identical. The main difference is that nonlinear damping terms are not required
for the integrated designs to guarantee boundedness of the state in the presence of
estimation errors, but they do improve the tracking performance [88].
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6.3.1 Static Backstepping Design

The control objective is to let x1 track a smooth reference signal yr. The reference yr
and its derivative ẏr are produced by filtering a step-like signal with a second order
filter. This filter can tuned such that desired transient response requirements are
met. The first step in the design is to introduce tracking errors, which are defined
as

z1 = x1 − yr (6.5)

z2 = x2 − x2,r (6.6)

where x2,r is a filtered stabilizing function for the z1 subsystem. The dynamics of
the z1 subsystem satisfy

ż1 = g1 (z2 + α1) + f1 + ϕT
f1

θ − ẏr (6.7)

using the dynamics (6.2). If the parameter vector θ is assumed known, and z2 = 0,

then a stabilizing function α1 for the CLF V1 = 1
2 zT

1 z1 is defined as

α1 = g−1
1

(

− f1 − ϕT
f1

θ̂ − C1z1 + ẏr

)

, (6.8)

where θ̂ is the estimate of the parameter vector, and C1 is a positive definite gain
matrix. For the nominal controller, the estimate is not updated and is taken equal
to some a-priori estimate of the unknown parameters. The input to the command
filter to produce the reference signal for x2 is defined as

x0
2,r = α1 − Ξ2. (6.9)

To remove the effect of command filtering from the tracking errors, the tracking
error is augmented with filters that estimate the effect of filtering the control inputs.
These augmented tracking errors are defined as

z̄1 = z1 − Ξ1 (6.10)

z̄2 = z2 − Ξ2 (6.11)

and the filter dynamics are

Ξ̇1 = −C1Ξ1 + g1

(

x2,r − x0
2,r

)

(6.12)

Ξ̇2 = −C2Ξ2 + g2(θ̂)u − Mdes (6.13)

where Mdes is defined in the final backstepping step. The dynamics of the z̄2
subsystem are given by

˙̄z2 = g2(θ̂)u + f2 + ϕT
f2

θ − ẋ2,r − Ξ̇2. (6.14)
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A stabilizing function Mdes can be defined, which serves as the desired total control
effort to be produced by control surfaces

Mdes = ĝ2u0 = −C2z2 − gT
1 z̄1 − f2 − ϕT

f2
θ̂ + ẋ2,r. (6.15)

The task to distribute Mdes over the control surfaces is performed by the control

allocation scheme, and results in desired actuator deflections u0. These desired
control surface deflections are subsequently filtered to incorporate magnitude, rate,
and bandwidth constraints to produce u.

The derivative of the CLF

V =
1

2
z̄T

1 z̄1 +
1

2
z̄T

2 z̄2 (6.16)

along the trajectories of the closed-loop system defined by (6.7), (6.14) and the
assumption that θ̂ = θ, is reduced to

V̇ = −z̄T
1 C1z̄1 − z̄T

2 C2z̄2

showing that the origin of (z̄1, z̄2) is UGAS. If the filter state (Ξ1, Ξ2) is small due
to appropriate settings of the command filters, then (z1, z2) will be close to the
origin, resulting in good tracking performance of the reference signal yr. This
concludes the common static feedback design for all methods. Nonlinear damping
and integral terms can be easily added to this design. The modifications of the static
design required for the three different backstepping designs are now shown, and
the identification method in each approach is discussed.

6.3.2 Filtered Integrated Adaptive Backstepping Design

The CABS backstepping control law design is identical to the static design above.
The parameter update law can be chosen such that global stability of the closed-
loop system can be shown. Consider the CLF

V =
1

2
z̄T

1 z̄1 +
1

2
z̄T

2 z̄2 +
1

2
θ̃T

Γ
−1θ̃. (6.17)

By choosing the update law

˙̂θ = Proj
(

Γ
(

ϕ f1
z̄1 + ϕ f2

z̄2 + ϕu z̄2

))

(6.18)

where ϕT
u θ̂ = g2(θ̂)u, and parameter projection is applied to guarantee that g2(θ̂)

always has full rank, avoiding controllability issues. The CLF derivative along the
trajectories of the system with the same control laws as the static backstepping
design, and the update law (6.18) becomes

V̇ = −z̄T
1 C1z̄1 − z̄T

2 C2z̄2.

Using a theorem due to LaSalle-Yoshizawa 3.3, UGS of the closed-loop system and
convergence of the augmented tracking error to zero can be concluded.
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6.3.3 Filtered Modular Adaptive Backstepping Design

The modular backstepping design requires robustification of the static backstep-
ping design presented above with respect to parameter estimation errors to achieve
modularity of the design. Additionally, since the time derivative of the state is not
always measurable swapping filters are applied to map the dynamic parametric
from into static form, allowing direct use of standard identifiers. This swapping
filter, see also 4.4.3, is defined by

Ω̇0 = A(Ω0 + X)− f (x, u) (6.19)

Ω̇
T = AΩ

T + ϕT(x, u) (6.20)

ǫ = x + Ω0 − Ω
T θ̂ (6.21)

where

f =

[
f1 + g1x2

f2

]

, ϕT =

[

ϕT
f1

ϕT
f2
+ ϕT

u

]

A = A0 − ρϕT ϕP, ρ > 0, P = PT
> 0

and the matrix ϕu maps the control vector u to the corresponding parameter esti-

mates in θ such that ϕT
u θ̂ = gh2(θ̂)u.

Nonlinear damping terms are added to the stabilizing functions

α1 = g−1
1

(

−C1z1 − S1z̄1 − f1 − ϕT
f1

θ̂ + ẏr

)

(6.22)

Mdes = −C2z2 − S2z̄2 − f2 − ϕT
f2

θ̂ + ẋ2,r (6.23)

where
S1 = ϕT

1 κ1 ϕ1, S2 = (ϕT
2 + ϕT

u )κ2(ϕ2 + ϕu)

and κ1 > 0, and κ2 > 0 are the nonlinear damping gains. The resulting control de-
sign achieves input-to-state stability with respect to the parameter estimation error
θ̃. The parameter update is performed using a least squares filter with exponential
forgetting

˙̂θ = Proj

(

ΓΩǫ

1 + ν tr(ΩT
ΓΩ)

)

(6.24)

Γ̇ =
−ΓΩΩ

T
Γ + λΓ

1 + ν tr(ΩT
ΓΩ)

, λ ≥ 0, ν ≥ 0. (6.25)

where parameter projection is applied to ensure that g2(θ̂) always has full rank. By
means of the CLF

V =
1

2
z̄T

1 z̄1 +
1

2
z̄T

2 z̄2 (6.26)
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ISS of the augmented tracking error with respect to the parameter estimation errors
can be shown. The derivative becomes

V̇ ≤ −z̄T
1 C1z̄1 − z̄T

2 C2z̄2 +
1

4
θ̃Tκ−1

1 θ̃ +
1

4
θ̃Tκ−1

2 θ̃. (6.27)

The size of the compact set to which the augmented tracking errors will converge
can be controlled through the nonlinear damping gains κ. When the estimation
errors are converging to zero, also the augmented errors will converge to zero.

After a period of flying, even with a small forgetting factor, the covariance
matrix Γ will become very small, reducing the ability of the identification module
to track rapid or sudden changes in the system parameters. Therefore, a change
detector is introduced to reset the covariance matrix when a large mismatch be-
tween the estimated model and the system is detected. After a sudden failure, or
during mismatch, the estimation error ǫ will be large compared to the estimation
error before the failure. The current estimation error is compared with the average
estimation error ǭ taken over the last tǫ seconds. An abrupt change is declared
when ∣

∣
∣
∣

ǫ − ǭ

ǭ

∣
∣
∣
∣
> Tǫ (6.28)

where Tǫ is a predefined threshold. On detection of a failure, i.e. a sudden change
in the prediction error, the information matrix is reset. The change detector has to
be tuned with caution, since a too sensitive tuning will result in the detector being
triggered during normal maneuvering and a high threshold results in no triggering
at all. Note that introduction of exponential forgetting and covariance resetting
does not change the established properties of the closed-loop system [64, 143].

6.3.4 Tuning Function Adaptive Backstepping Design

The tuning function adaptive backstepping design removes the over-parameteri-
zation of the adaptive backstepping design by postponing the actual design of the
identifier until the final stage of the design. In intermediate stages, intermediate
update laws are defined for the parameter update called tuning functions. These
tuning functions are extended recursively, until at the last step the complete update
law for the unknown parameter is obtained. More details on this approach can be
found in [87, 88, 163]. Note that in this design the command filters and the filter
states Ξ are not used, therefore the CLF only contains the true tracking errors, and
the analytic derivative of the virtual control law is required.

The time derivative of α1 will be of the form

α̇1 = β1 + βT
2 θ̂ (6.29)

where the functions β1, and β2 are obtained through tedious analytic calculations.
The resulting parameter update law is summarized as

˙̂θ = Proj
(

Γ
(

ϕ f1
z1 +

(

ϕ f2
+ ϕu + β2

)

z2

))

(6.30)
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For the CLF

V =
1

2
zT

1 z1 +
1

2
zT

2 z2 +
1

2
θ̃T

Γ
−1θ̃ (6.31)

the tuning function design results in the CLF derivative

V̇ = −zT
1 C1z1 − zT

2 C2z2 (6.32)

showing UGS of the origin of the error system, and by LaSalle-Yoshizawa it follows
that limt→∞ z1 = 0.

6.4 Control Allocation Methods

The backstepping control laws in the previous section yield a desired control mo-
ment. The task of control allocation is to distribute the desired control moment over
the available control effectors in some optimal way. The control allocation problem
is summarized by

g2(θ̂)u
0 = Mdes (6.33)

where u0 are the desired control surface deflections. Without constraints on u,
(6.33) describes an overdetermined system and hence has infinite solutions. In
the presence of magnitude and rate constraints on u, this equation has either an
infinite number of solution, a unique solution, or none at all. Two different con-
trol allocation methods are discussed in this section, one based on the (weighted)
pseudo-inverse, the other based on quadratic programming. These control allo-
cation methods are quite simple methods, and many more sophisticated methods
exist. An overview of numerous control allocation techniques is presented in [14,
43, 68, 131].

6.4.1 Weighted Pseudo-inverse Control Allocation

The pseudo-inverse control allocation does not take any constraints on the control
effectors into account, and should therefore be interpreted as a crude approach to
control allocation. The pseudo-inverse itself can be interpreted as a least-squares
fit to an over- or under-determined system of linear equations. The pseudo-inverse
can be computed numerically stable through singular-value decomposition (SVD)
or Cholesky decomposition. Suppose that the SVD of a matrix A is given by

A = UΣVH (6.34)

then the pseudo-inverse A† is

A† = VΣ
†UH (6.35)

where Σ
† is the transpose of Σ with every nonzero entry replaced by its reciprocal,

⋆
H denotes the conjugate transpose.
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The weighted pseudo-inverse is a slightly more sophisticated algorithm which
allows to put a weight on the different parts of the least-squares fit. The solution to
the optimization problem

min
Q∈S

QTWQ, S =
{

Q
∣
∣ ‖B̂2u0 − Mdes‖ is minimum

}

(6.36)

where W is a weight matrix is given by

u0 = W−1B̂T
2

(

B̂2W−1B̂T
2

)

Mdes. (6.37)

This gives a unique solution to the optimization problem, but does not take con-
straints on the control inputs into account. When W = I the normal pseudo-inverse
is obtained.

6.4.2 Quadratic Programming

The main disadvantage of the pseudo-inverse method is that it does not take mag-
nitude and rate constraints on the control effectors into account. Quadratic pro-
grams (QP) can handle constraints and can be solved efficiently, therefore they
are interesting for on-line applications. The QP will be feasible when the desired
moment vector is within the attainable moment set, and infeasible if it is outside.
Especially for on-line applications it is important that the problem is always fea-
sible, such that a solution can always be obtained. Two approaches are available
to guarantee that the QP will be feasible: direction preserving and sign preserving
modification of the optimization problem. Direction preserving QP scales down
the magnitude of the desired moment such that it falls within the attainable mo-
ment set, the sign-preserving method on the other hand scales down individual
components of the moment vector. The difference between the scaling methods is
illustrated in figure 6.2.

The sign preserving control allocation method makes more effective use of the
available control authority, and therefore this method is selected. The QP is formu-
lated by Simmons and Hodel [155] as

min
u,σ

1

2
xT Hx + f Tx (6.38)

s.t. g2(θ̂)u − Σ
T Mdes = 0
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(a) Direction Preserving (b) Sign Preserving

Figure 6.2: Different approaches to handle infeasible solutions [155].

where x =
[

uT σroll σpitch σyaw

]T
,

Σ =





σroll 0 0
0 σpitch 0

0 0 σyaw



 ,

H =

[
Qu 0
0 Qσ

]

,

f T =
[

CT
u −2Qσ1T

]

.

The weight matrices Qu and Qσ, and vector Cu are user specified. The scaling
factors σ are more heavily weighted than the control inputs such that as much
as possible of the available control authority is used, Qσ ≫ Qu. Note that rate
constraints can be implemented as magnitude constraints if a fixed simulation time
step is taken, by selecting the most restrictive constraint of the two. Then, the
modified magnitude constraints are defined as

δ(t + T) = max
(
δmin, δ(t) + δ̇T

)

δ̄(t + T) = min
(

δmax, δ(t) + ¯̇δT
) (6.39)

where T is the fixed time step and δ̇ represents the rate constraints.

6.5 Results

The combinations of the control designs and control allocation methods are evalu-
ated on their tracking performance and parameter estimation accuracy for several
failure scenarios. Two different maneuvers of 60 seconds have been flown. The
control task is to track roll and angle of attack reference signals, while regulating
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Table 6.2: Controller Tuning.

Controller C1 C2 κ1 κ2 A0 ρ Γsym Γasym

NOMINAL I3 2I3 0.01I36 0.01I36 n/a n/a n/a n/a
INTEGRATED I3 2I3 0.01I36 0.01I36 n/a n/a 10 3
TUNING I3 2I3 0.01I36 0.01I36 n/a n/a 10 3

MODULAR I3 2I3 0.01I36 0.01I36 −I6 0.1 1×103 1×103

the sideslip angle to zero. The tuning of the different controllers is summarized in
table 6.2. The inner loop command filters implement the actuator specifications as
shown in table 6.1, the outer loop filters do not implement magnitude or rate con-
straints. The difference in magnitude for the update gain Γ between the integrated
and modular approaches is due to the fact that the integrated approaches use the
tracking error signal to drive the parameter update, and the modular approach uses
the filtered estimation error and regressors instead.

Numerical simulations of the controllers were performed in Mathworks Simu-
link environment. The simulations were performed with a fixed-time step of 0.01s
and a third-order accurate solver. First the simulation scenarios are introduced,
followed by an evaluation of the nominal performance. Once the reference per-
formance of the controllers is established, the scenarios with control failures are
evaluated. Finally, a specific failure scenario is highlighted and a direct comparison
of the integrated and modular backstepping approach is made.

6.5.1 Simulation Scenarios

The simulated failure scenarios are limited to individual locked control surfaces
at different deflections. As indicated in figure 6.1, failures of the left aileron and
the left elevator surfaces are considered at both flight conditions: the left aileron
locks at either −25,−10, 0, 10, 25 or 45 degrees, and the left elevator locks at either
−20,−10,−5, 0, 5 or 10 degrees. A positive deflection means trailing edge down
for both control surfaces. All simulations are started from the trimmed flight con-
dition. Scenarios 1 and 2 are flown at flight condition I, scenarios 3 and 4 at flight
condition II. The simulated failures are introduced 1 second into the simulation and
the failed surface is deflecting to the failure position subject to the rate limit of the
corresponding effector, i.e. 100 deg/s for the aileron and 40 deg/s for the elevator
surface. Second order command filters are used to generate the reference signals
on angle of attack and roll angle. The following two maneuvers are considered

Maneuver 1 Three angle of attack doublets of ±15 degrees around the trim angle
of attack are flown, while a roll angle double of ±90 degrees is commanded
during the third angle of attack doublet.

Maneuver 2 Three multi-axis doublets are flown, exciting the angle of attack ±15
degrees around the trim angle of attack and the roll angle ±60 degrees.



6.5. RESULTS 115

Table 6.3: Simulation Scenarios. Control surface positions in degrees after 1 second.

Scenario Maneuver Trim Condition Failed Effector Lock Positions
1 1 I Left Aileron 45, 25, 10, 0, -10, -25 degrees
2 1 I Left Hor. Stabilizer 10, 5, 0, -5, -10, -20 degrees
3 2 II Left Aileron 45, 25, 10, 0, -10, -25 degrees
4 2 II Left Hor. Stabilizer 10, 5, 0, -5, -10, -20 degrees
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Figure 6.3: Maneuvers flown for the controller comparison.

The resulting, filtered, reference signals for these two maneuvers are shown in
figure 6.3. The simulation scenarios are summarized in table 6.3. Each scenario
and failure case is simulated for each of the control design and control allocation
method combinations. Two different weight matrices are used for the weighted-
pseudo inverse and QP control allocation methods, favoring horizontal tail surface
deflections and favoring aileron deflections respectively

Wu1
= diag

([
1 1 20 20 10 10 5

])
, (6.40)

Wu2
= diag

([
20 20 1 1 10 10 5

])
. (6.41)

For each scenario, 6 failure case were performed for every control allocation method,
resulting in 120 failure simulations per control design.

6.5.2 Nominal Performance

The root mean square (RMS) tracking error over the whole simulation is chosen as
the evaluation criterion for the nominal performance. The RMS tracking error for
the nominal simulations and all controller and control allocation method combina-
tions is shown in table 6.4. These results show that the choice of control allocation
does not have a large impact on the nominal performance. When the estimate of
the control effectiveness matrix g2 is good, and the desired control moments are
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Table 6.4: Tracking performance, nominal case.

Control Design
Control Allocation NONAD TUNING CABS MODBS

PI 1.0013 0.8058 0.7692 1.0013
WPI Wu1

1.0139 0.8891 0.8717 1.0139

WPI Wu2
1.0007 0.7872 0.7402 1.0007

QP Wu1
0.9964 0.8604 0.8198 0.9964

QP Wu2
0.9964 0.8273 0.7953 0.9964

within the attainable moment set, the desired control moment can be realized. The
performance of the two backstepping designs with Lyapunov based update law
is better than the non-adaptive and modular backstepping since the integrated
designs adapt the model parameters even if they are correctly initialized. In real
applications this behavior could be removed by adding dead-zones. The modular
backstepping design recognizes that the parameter estimates are at their correct
values, and therefore does not adapt the parameters.

6.5.3 Failure Performance

The same reference tracking problem is considered with failures. To be able to
present some meaningful statistics on performance, simulation cases which were
terminated due to excessive tracking errors are not included in the comparison.
The number of excluded cases is given in table 6.5. The adaptive control designs
have considerable less terminated simulations than the non-adaptive design. The
non-adaptive control law only results in satisfactory tracking for the mildest failure
cases. Another striking fact is that the adaptive control laws in combination with
the control allocation weight matrix Wu1

perform worse than with its counterpart,

especially for the weighted pseudo-inverse. An exception is the modular design
in combination with the quadratic programming control allocation. Weight matrix
Wu1

gives priority to the horizontal stabilizers. If one of these surfaces fails, and

its loss of effectiveness is poorly estimated, the difference between the desired
moments and the actually generated moments will be big, resulting in performance
degradation and large tracking errors. This effect is even larger when the weighted
pseudo-inverse is used instead of a control allocation method which can incorpo-
rate constraints on the input. The failure cases that occur for the adaptive designs
are the most extreme failure cases. For example, in scenario 4 with an elevator hard-
over failure of 10.5 degrees, the simulation is terminated for each flight control
design. Stability can still be maintained, but the commanded maneuver is too
demanding for this failure at flight condition II.

The RMS of the tracking errors over the whole duration of the simulation, com-
bined with the parameter estimation errors in the last five seconds are calculated for
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Table 6.5: Number of terminated simulation cases.

Controller
Control Allocation NOMINAL TUNING CABS RLS-BS

PI 15 2 2 4
WPI Wu1

19 18 14 15

WPI Wu2
18 5 4 5

QP Wu1
15 10 10 3

QP Wu2
18 6 6 2

Total # of Failures 85 41 36 29

controller comparison. The results of the numerical simulations can be found in ta-
bles 6.6-6.9. Note that the results for the damaged aircraft are averaged over all suc-
cessful failure scenarios. The average performance of the modular approach is better
than that of the integrated designs. The performance of the nominal controller is
included for comparison, note that the tracking performance for the mild successful
failure cases already degrades when compared to the nominal performance. Not
surprisingly, the average performance with the QP control allocation is better than
for the (weighted) pseudo-inverse methods, and the number of successful simu-
lations is also higher. The latter methods do not take constraints on the surface
deflections into account, which can result in suboptimal use of the available control
effectiveness, and thus reduced performance. Page and Steinberg [133] did similar
simulations for the tuning function backstepping design in combination with the
weighted pseudo-inverse and direct control allocation. Their results show that the
weighted pseudo-inverse control allocation gave the best results due to the artificial
lead it generates, although it is pointed out that this lead can also result in poor
performance during maneuvers. However, their research did not consider actual
failures, the investigation was limited to maneuvers with wrong initial estimate of
the aerodynamic parameters. With control surface failures, the choice between the
weighted pseudo-inverse and a more sophisticated method becomes more crucial
as shown in this chapter.

A possible source for the better performance of the modular controller is a
more accurate parameter estimation. To verify this hypothesis, the average errors
over the last 5 seconds of the simulation between the estimate of the parameter
and the true values of the post-failure parameters are calculated. The average
estimation errors of parameters θ not related to the control surfaces are shown
in table 6.7, table 6.8 presents the estimation errors in the unchanged part of the
control effectiveness matrix, and finally, the estimation errors in the changed part
of the control effectiveness matrix are shown in table 6.9. From these tables it
becomes clear that the modular design estimates the parameter values closer to
their true values than the other two designs. In fact, if the simulations are continued
the estimates of the least squares algorithm keep converging closer to the true
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Table 6.6: Tracking performance after aircraft failure (terminated cases removed).

Control Design
Control Allocation NONAD TUNING CABS MODBS

PI 5.7142 2.4372 2.1363 1.7437
WPI Wu1

4.8384 3.7543 2.6949 2.0602

WPI Wu2
4.4557 2.3611 2.3331 2.4741

QP Wu1
5.7652 2.5326 2.4066 1.7660

QP Wu2
4.2899 2.3884 2.3583 1.8176

Table 6.7: Average estimation error of θ unrelated to control surfaces over last 5
seconds.

Control Design
Control Allocation TUNING CABS MODBS

PI 0.2179 0.2064 0.0589
WPI Wu1

0.2693 0.2187 0.0242

WPI Wu2
0.2053 0.1950 0.0413

QP Wu1
0.3267 0.2805 0.0739

QP Wu2
0.2400 0.2272 0.0516

Table 6.8: Average estimation error of unchanged g2 elements over last 5 seconds.

Control Design
Control Allocation TUNING CABS MODBS

PI 0.3070 0.3034 0.2125
WPI Wu1

0.3151 0.3294 0.0691

WPI Wu2
0.2785 0.2796 0.1508

QP Wu1
0.2611 0.2484 0.1481

QP Wu2
0.2620 0.2628 0.1310
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Table 6.9: Average estimation error of changed g2 elements due to surface failures
over last 5 seconds.

Control Design
Control Allocation TUNING CABS MODBS

PI 1.7742 1.7776 0.4046
WPI Wu1

1.8362 1.0579 0.7117

WPI Wu2
1.5960 1.5359 0.2266

QP Wu1
2.0812 2.0979 0.2208

QP Wu2
1.8665 1.8685 0.1005

parameters for the same repeating reference signal. This is not the case for the
integrated designs where usually the opposite is true [164], which is why parameter
projection methods are often used to bound the values of the parameter estimation
errors for an adaptive backstepping design with Lyapunov based update. Most
crucial for the control allocation are the estimation errors in the effectiveness of
the failed surfaces as shown in table 6.9. It is evident that the parameter estimation
quality of the modular design is superior to the integrated Lyapunov based designs,
which explains why this control law has the most successful reconfigurations when
a weighted control allocation method is used.

6.5.4 Specific Failure Scenario Comparison

To see if the observations on the total amount of failure scenarios can be a more
direct comparison of the tracking error response and parameter estimations for the
modular and filtered adaptive backstepping designs is made. One of the severest
failures is shown, a trailing-edge down hard-over of the left horizontal stabilizer
after 1 second in the simulation. The simulation results for the modular adap-
tive backstepping design are shown in figure 6.4, the results for the filtered inte-
grated adaptive backstepping design in figure 6.5, both for the QP control allocation
method with weight matrix Wu2

, favoring aileron deflections. Both control designs

manage to stabilize the aircraft quite fast after the failure occurs and both achieve
excellent tracking performance after the controller is reconfigured and post-failure
transients. The parameter estimates converge to constant values in both designs
but only the modular control design has convergence of the parameter estimates to
their true values.

6.6 Conclusions

Three nonlinear adaptive control designs for a simple, over-actuated fighter aircraft
model with unknown aerodynamic parameters have been studied. Two of these
adaptive designs use an integrated Lyapunov based update law, while the other
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Figure 6.4: Modular adaptive backstepping simulation results for scenario 4, QP2
control allocation, 10 degree horizontal stabilizer fault.
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Figure 6.5: Filtered integrated adaptive backstepping simulation results for sce-
nario 4, QP2 control allocation, 10 degree horizontal stabilizer fault.
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design is modular and uses a least-squares update law. The control designs were
combined with two control allocation methods to distribute the desired control
effort over the available control surfaces. A comparison based on numerical sim-
ulations of the resulting control design and control allocation combinations for
different control surface failures has been made. From the comparison, conclusions
can be drawn and some recommendations formulated:

• The numerical simulations show that all three adaptive control designs pro-
vide a significant improvement over a non-adaptive backstepping or NDI-like
design in the presence of actuator lock-up failures. With the pseudo-inverse
control allocation the reconfiguration success rate and performance of the
adaptive control designs is very similar. However, in combination with more
sophisticated control allocation methods the reconfiguration success rate and
performance of the modular adaptive design is superior to the integrated
designs. This can be mainly explained by the better parameter estimates
obtained by the least squares identifier.

• In some simulation cases, the adaptive control designs managed to stabilize
the aircraft and were able to track part of the desired trajectories. Following
the complete desired maneuver was too challenging for the degraded aircraft.
Therefore an adaptive controller alone is not sufficient to improve safety in
post-failure flight conditions: both the pilot and guidance system have to
be made aware of the failure characteristics and post-failure flight envelope.
The problem of determining the aircraft’s capabilities, or safe maneuvering
envelope, is addressed in part III of this dissertation.

• The integrated adaptive designs do not require nonlinear damping terms in
the design to guarantee boundedness of the closed-loop system states. These
nonlinear damping terms can possibly result in high-gain feedback control
and numerical instability in the modular adaptive design. Furthermore the
dynamic order of the modular design with least squares identifier is consid-
erably larger than the integrated designs.

• The choice of control allocation weights has a small influence on the tracking
performance after failure when the aircraft can be reconfigured within the
limits of the control surfaces and attainable moment envelope. The methods
which take constraints into account perform very similar or better than the
methods which do not. In the nominal case, hardly any difference was found
between the different control allocation methods.

• Tuning of the integrated adaptive control designs turned out to be quite time
consuming, even for this relatively simple aircraft model. Increasing the adap-
tation gain will result in faster parameter convergence, but on the other hand
it can lead to undesirable transients in the closed-loop response. An alter-
native, more modular, approach called Immersion and Invariance Adaptive
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Backstepping has been proposed in [163, 166] which was considerably easier
to tune at the cost of an increase in the number of controller states.
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ADAPTIVE OPTIMIZING NONLINEAR

CONTROL DESIGN

In the previous chapter three different adaptive backstepping designs and two
control allocation methods were combined, each having been designed sepa-
rately. In this chapter, the control law design and control allocation are tackled
simultaneously and stability of the combined design is shown through Lya-
punov analysis. The resulting control designs are applied to the same aircraft
model and failures as in the previous chapter, and simulation results are dis-
cussed.

7.1 Introduction

Nearly all modern aircraft, ranging from general aviation aircraft to commercial
and military jets, have become over-actuated systems. While this facilitates on-
line reconfiguration, it creates an additional problem for the control engineer. The
main question to be answered is, what is the best way to use the available control
effectors to realize the desired control effort? Hence, some kind of cost function
should be formulated and optimized subject to the constraint that the total control
effort is equal, or as close as possible, to the desired control effort, such that the
aircraft handles as intended by the designer.

Optimizing control allocation solutions have been derived for certain classes of
over-actuated systems, including aircraft, automotive vehicles and marine vessels
[14, 19, 48, 68, 79, 80, 105, 106, 142, 169]. In many of these works, the control alloca-
tion problem is viewed as a static or quasi-dynamic optimization problem which is
solved independently of the dynamic control problem. Johansen, Fossen, and Berge
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[79] showed that it is not necessary to solve the optimization problem exactly at
each time instant. The main advantage of this approach is computational efficiency
and simple implementation. Furthermore, the method is able to handle non-affine
cost functions and control effort mappings when convexity constraints are satisfied.
Stability of the closed-loop system is shown through Lyapunov-analysis of a time-
varying optimal set composed of the tracking errors, estimation error and first-
order derivatives of a Lagrangian cost function.

In this chapter, first of all the problem is presented in mathematical form and
some preliminaries are discussed. Afterwards, the non-adaptive high level con-
trol with dynamic control allocation scheme is introduced, and its stability and
convergence results are analyzed. Then, the non-adaptive control design is ex-
tended in three different adaptive designs: integrated, modular, and composite.
The composite adaptive approach is applied to the control design of the simple
fighter aircraft model of chapter 6. Simulation results for two specific failure cases
are demonstrated. Finally, the conclusions are presented and recommendations for
future research formulated.

7.2 Problem Definition and Preliminaries

Consider a system in the form

ẋ1 = f1(t, x, u) + ϕT
1 (t, x, u)θ + g1(t, x, u)x2

ẋ2 = f2(t, x, u) + ϕT
2 (t, x, u)θ + g2(t, x, u)x3

...

ẋn−1 = fn−1(t, x, u) + ϕT
n−1(t, x, u)θ + gn−1(t, x, u)xn

ẋn = fn(t, x) + ϕT
n (t, x)θ + gn(t, x)τ,

(7.1)

with θ ∈ R
p, and a static mapping from the control effectors u to the virtual controls

τ

τ = h(t, x, u, θ) = ϕT
u (t, x, u)θ + ϕT

0 (t, x, u). (7.2)

Then, the system dynamics can be written in alternative form as ẋ = G(t, x, u, θ).
Furthermore, there are actuator dynamics between the control laws and the actual
system. The commanded control effector signals ud are filtered by the actuator
model to produce the actual input to the system u. This is modeled as

u̇ = m(t, x, u, ud) (7.3)

where the function m is assumed to be known, measurements of u are not required
by the controller. Additionally, the following assumption is made on the system
(7.1).
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Assumption 7.1. (Control Mapping Assumption) The function h is twice differentiable,
and there exist constants 0 < ρ1 < ρ2, such that ∀t, x, u, θ

ρ1 I <
∂h

∂u
(t, x, u, θ)

(
∂h

∂u
(t, x, u, θ)

)T

≤ ρ2 I. (7.4)

This assumption can be viewed as a controllability assumption in the sense that
the mapping h is surjective, and there exists a function fu(t, x, θ) such that for all
t, x, θ, h(t, x, fu(t, x, θ), θ) = τd, where τd is the desired control effort. The problem
of finding the optimal control allocation is formulated as a static minimization
problem as

min
ud

J(t, x, ud) subject to τd − h(t, x, ud, θ) = 0. (7.5)

where J is a cost function that incorporates objectives such as minimum power
consumption, wear and tear, effects related to actuator configuration (singularity
avoidance), and actuator constraints. Based on the optimization problem, the La-
grangian function

L(t, x, ud, λ, θ̂) = J(t, x, ud) +
(
h(t, x, ud, θ̂)− τd

)T
λ (7.6)

is introduced. The assumptions made on the cost function are

Assumption 7.2. (Cost Function Assumptions)

1. The cost function J is twice differentiable and J(t, x, ud) → ∞ as |ud| → ∞.

Furthermore, ∂J
∂ud

, ∂2 J
∂t∂ud

and ∂2 J
∂x∂ud

are uniformly bounded by x and ud.

2. There exists constants 0 < k1 < k2 such that ∀t, x, θ and
(

uT
d λT

)T
/∈ O0

uλ, where

Ouλ =
{

uT
d , λT∣∣ ∂L

∂ud
= 0, ∂L

∂λ = 0
}

,

k1 I <
∂2L

∂u2
(t, x, ud, λ, θ) ≤ k2 I, (7.7)

where O0
uλ is the interior of Ouλ. In the interior, the lower bound is replaced by

∂2L

∂u2 ≥ 0.

The second order sufficient conditions posed by Nocedal and Wright [129] are
satisfied for all t, x, ud, λ and θ by these assumptions. Hence the set Ouλ describes
global optimal solutions of the problem (7.5). The control problem is to design a
controller which is able to track a reference signal yr(t) ∈ C

n asymptotically when
the parameters θ are not known, and simultaneously optimize the cost function J.
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7.3 Non-adaptive Control Design

In this section the non-adaptive optimizing control design is introduced. First of
all the combination of backstepping with optimizing dynamic control allocation
approach is derived. The steps up until the final step are identical to the normal
backstepping design, where a virtual control law for the desired control effort τd
is derived. The task of control allocation is to generate commands for the control
effectors such that the desired control effort is generated and the cost function is
minimized. Closed-loop stability and convergence to the optimal solution can then
be shown through Lyapunov analysis.

7.3.1 High-level Control Design

The backstepping design is performed using CLFs of the form

Vi+1(z̄1, . . . , z̄i) = Vi +
1

2
z̄T

i z̄i (7.8)

where z̄i are the augmented tracking errors. More detail and extensive discussion
can be found in chapters 3, 4 and 6. The backstepping design ends with a virtual
control law for the desired total control effort τd. The resulting backstepping control
design can be summarized as

zi = xi − xic
, (7.9a)

z̄i = zi − Ξi, (7.9b)

Ξ̇i = −C1Ξi + gi

(

xi+1c
− x0

i+1c

)

for i = 1, . . . , n − 1, (7.9c)

x0
ic

= αi−1 − Ξi for i = 2, . . . , n (7.9d)

αi = g−1
i

(

− fi − ϕT
i θ̂ − Cizi − gT

i−1z̄i−1 + ẋic

)

(7.9e)

where the desired commands x0
ic

are filtered to produce xic
and ẋic

, and the desired

control effort τd = αn. If the generated control effort τ is equal to the desired total
control effort τd, the CLF derivative at the final step becomes

V̇n = −
n

∑
i=1

z̄T
i Ci z̄i ≤ 0 ∀z̄ 6= 0 (7.10)

showing UGAS of the equilibrium z̄ = 0, which for appropriate filter settings can
be used to show stability and convergence of the tracking error z to zero.

7.3.2 Control Allocation Design

The task of the control allocation design is to transform the desired virtual control
commands τd to actual control effector commands ud based on the solution of the
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optimization problem (7.5). This will be done by considering first-order optimality
of the Lagrangian function (7.6). Update laws for the effector reference commands
ud and the Lagrangian parameter λ are then defined, such that ud and λ converge to
a set defined by the time-varying optimality condition. Stability and convergence
of the closed loop system is shown for the time and state varying optimal set

A =

{(

z̄T uT λT
)T ∣

∣

(

z̄T ∂LT

∂u
∂LT

∂λ

)T
= 0

}

. The design of the update laws is based

on the following optimizing control Lyapunov function (OCLF)

Vca(t, z̄, θ̂, ud, λ) = σVn(t, z̄, θ̂) +
1

2

(

∂LT

∂ud

∂L

∂ud
+

∂LT

∂λ

∂L

∂λ

)

, (7.11)

which is an extension of the CLF (7.8) with terms penalizing the first order deriva-
tives of the Lagrangian function with respect to the desired control effector signals,
and the Lagrangian parameter. The parameter σ > 0 is an arbitrary design constant
used to control the relative weight of the tracking error subsystem in the OCLF.
The time derivative of the OCLF along the trajectories of the system (7.1) with the
control effector mapping (7.2) is given by

V̇ca = σ

(

∂Vn

∂t
+

∂VT
n

∂z̄

(
G(t, x, u, θ̂)− ẋc − Ξ̇

)

)

+

(

∂LT

∂ud

∂2L

∂u2
d

+
∂L

∂λ

∂2L

∂ud∂λ

)

u̇d +
∂LT

∂ud

∂2L

∂λ∂ud
λ̇

+

(

∂LT

∂ud

∂2L

∂z̄∂ud
+

∂LT

∂λ

∂2L

∂z̄∂λ

)

˙̄z +
∂LT

∂ud

∂2L

∂t∂ud
+

∂LT

∂λ

∂2L

∂t∂λ

= −σ
n

∑
i=1

z̄T
i Ci z̄i +

[
∂L
∂ud
∂L
∂λ

]T

H

[
u̇d

λ̇

]

+

[
∂L
∂ud
∂L
∂λ

]T

uff

(7.12)

where

H =








∂2L

∂u2
d

∂2L

∂λ∂ud

∂2L

∂ud∂λ
0








xc is composed of yr and the xic
, and, when det

(

∂2L

∂u2
d

)

≥ ς

uff =

[
∂2L

∂t∂ud

∂2L
∂t∂λ

]

+

[
∂2L

∂z̄∂ud

∂2L
∂z̄∂λ

]

(
G(t, x, u, θ̂)− ẋc − Ξ̇

)
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, else uff = 0. The update laws for ud and λ now follow straightforward from the
OCLF derivative, where they are used to cancel the known parts related to the cost
function partial derivatives:

[
u̇d

λ̇

]

= −ΓcaH

[
∂L
∂ud
∂L
∂λ

]

− H−1uff. (7.13)

where Γca is a symmetric, positive definite gain matrix. Additionally, the actuator
model has been used to remove the effect of the actuator dynamics on the tracking
error. Therefore, the effect of the actuator and control allocation dynamics on the
tracking error is removed by the filter

Ξ̇n = −CnΞn +
(
h(t, x, u, θ̂)− τd

)
, (7.14)

where θ̂ is a fixed estimate of the parameter θ in the non-adaptive design. The
matrix Γca can be time-varying to speed up convergence. For example if Γca =

γ
(

HT H
)−1

for some γ > 0, then

[
u̇d

λ̇

]

= −γH−1

[
∂L
∂ud
∂L
∂λ

]

− H−1uff (7.15)

where the first term is the Newton direction when L is considered the cost func-
tion to be minimized. In the case HT H is poorly conditioned, the choice Γca =

γ
(

HT H + ςI
)−1

for a small ς > 0 can be made. Using the design (7.9), (7.13),

(7.14), the OCLF derivative becomes

V̇ca = −σ
n

∑
i=1

z̄T
i Ci z̄i −

[
∂L
∂ud
∂L
∂λ

]T

HΓcaH

[
∂L
∂ud
∂L
∂λ

]

, (7.16)

which shows that the set A is UGAS and therefore the augmented tracking error
will converge to zero when t → ∞. For appropriate choices of the virtual command
filters, controller gains, and within the set of constraints on x and u, Ξ is small and
therefore the tracking error z1 converges to a small neighborhood around zero. The
first order partial derivatives of the cost function with respect the desired control
commands and the Lagrangian parameter converge to zero, and due to the cost
function being convex, the desired commands and Lagrangian parameter converge
to the optimal solution.

7.4 Adaptive Control Design

So far, it has been assumed in the design that the parameter θ was known. If the
parameter θ is (partially) unknown, the control design from the previous section
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is not implementable. Hence, an estimate θ̂ and corresponding update law are
introduced. Three different adaptation laws are presented, in the first the parameter
update is designed simultaneously with the control laws: the integrated design.
In the second design, modularity between the control laws and the identifier is
achieved by means of introducing additional nonlinear damping terms, allowing
non-Lyapunov based identifiers to be applied. Finally, a hybrid combination of
the two former designs is proposed which has better convergence properties as it
uses information from both sources to update the estimate, and does not require
nonlinear damping terms.

7.4.1 Integrated Update Law

The Lyapunov-based update laws for the integrated adaptive design method are
designed by extending the OCLF (7.11) with additional terms that penalize the
parameter estimation error, yielding an adaptive optimizing CLF (AOCLF)

Vint = Vca +
1

2
tr
(

θ̃T
Γ
−1
θ θ̃
)

(7.17)

where Γ
T
θ = Γθ > 0 is the update gain matrix, and θ̃ = θ − θ̂. In this case, the task

is to stabilize the set Aint defined by

Aint =
{

η ∈ R
q | Q(η) = 0

}
(7.18)

where η =
(

z̄T θ̃T uT
d λT

)T
, and Q(η) =

(

z̄T θ̃T ∂LT

∂ud

∂LT

∂λ

)T
. Taking the time deriva-

tive of (7.17), results in

V̇int = −σ
n

∑
i=1

z̄T
i Ci z̄i −

[
∂L
∂ud
∂L
∂λ

]T

HΓcaH

[
∂L
∂ud
∂L
∂λ

]

− tr
(

θ̃T
Γ
−1
θ

˙̂θ
)

+ σ
n

∑
i=1

(

z̄T
i ϕT

i θ̃
)

+

(

∂LT

∂ud

∂2L

∂x∂ud
+

∂LT

∂λ

∂2L

∂x∂λ

)

ϕT
u θ̃ +

(

∂LT

∂ud

∂2L

∂θ̂∂ud

+
∂LT

∂λ

∂2L

∂θ̂∂λ

)

˙̂θ

(7.19)

where the parameter update law is used to cancel the indefinite parts, and the con-
trol allocation update law feed-forward signal now includes the parameter estimate
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update:

˙̂θ = Γθ

(

σ
n

∑
i=1

ϕi z̄i + ϕu

(

∂2LT

∂x∂ud

∂L

∂ud
+

∂2LT

∂x∂λ

∂L

∂λ

))

(7.20)

[
u̇d

λ̇

]

= −ΓcaH

[
∂L
∂ud
∂L
∂λ

]

− H−1uff, (7.21)

uff =

[
∂2L

∂t∂ud

∂2L
∂t∂λ

]

+

[
∂2L

∂z̄∂ud

∂2L
∂z̄∂λ

]

(
G(t, x, u, θ̂)− ẏr − Ξ̇

)
(7.22)

+





∂2L
∂θ̂∂ud

∂2L
∂θ̂∂λ



 ˙̂θ.

This choice of update laws results in the AOCLF time derivative

V̇int = −σ
n

∑
i=1

z̄T
i Ci z̄i −

[
∂L
∂ud
∂L
∂λ

]T

HΓcaH

[
∂L
∂ud
∂L
∂λ

]

, (7.23)

which shows UGS of the set Aint. From LaSalle-Yoshizawa’s theorem 3.3 it follows

that when t → ∞, all solutions converge to the manifold
[

z̄T ∂LT

∂ud

∂LT

∂λ

]T
= 0 .

It is possible to conclude UGAS of Aint for the integrated design when certain

PE conditions are satisfied, and then demonstrating that the estimation error ϕT θ̃
converges to zero, see e.g. [186, 187].

7.4.2 Modular Update Law

The modular adaptive design aims to separate the identifier from the the Lyapunov
design, to allow non-Lyapunov based parameter update laws. In order to achieve
this for general nonlinear systems, nonlinear damping terms are required to make
the control design robust against parameter estimation errors, see chapter 4 and
6. In this case, these nonlinear damping terms are required both in the high level
design and the control allocation update laws. First of all swapping filters are
introduced since the state derivatives are, in general, not measurable or directly
available. These swapping filters are nearly identical to the swapping filters de-
rived in chapter 4 and used in chapter 6. Two filters and a static mapping are
introduced

Ω̇0 = A (Ω0 + x)− f (t, x, u) (7.24a)

Ω̇
T = AΩ

T + FT(t, x, u) (7.24b)
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where

f (t, x, u) =






f1(t, x, u) + g1(t, x, u)x2
...

fn(t, x) + gn(t, x)ϕT
0 (t, x, u)




 ,

FT(t, x, u) =






ϕT
1 (t, x, u)

...

ϕT
n (t, x) + gn(t, x)ϕT

u (t, x, u)






and the estimation error is defined as

ǫ = (Ω0 + x)− Ω
T θ̂ = Ω

T θ̃ + ǫ̃ (7.25)

with ǫ̃ = (Ω0 + x)− Ω
Tθ. The matrix A is negative definite, and strengthened

A(t, x) = A0 − ρFT(t, x, u)F(t, x, u)P (7.26)

where ρ > 0, and P is a constant matrix such that

PA0 + AT
0 P = −I, P = PT

> 0. (7.27)

This allows the following update laws to be used, which guarantee boundedness
of the estimation error

˙̂θ = ΓθΩǫ (7.28)

for a gradient based update law with Γθ a positive definite, symmetric matrix, and

˙̂θ = ΓθΩǫ (7.29)

Γ̇θ = −ΓθΩΩ
T

Γθ (7.30)

for a least-squares update law. Additionally, the high-level virtual control laws and
control allocation update laws are augmented with nonlinear damping terms to
achieve the desired separation. The virtual control laws become

αi = g−1
i

(

− fi − ϕT
i θ̂ − Cizi − Si z̄i − gT

i−1z̄i−1 + ẋic

)

(7.31)

where the nonlinear damping matrices Si are defined as

Si = ϕT
i κi ϕi (7.32)

and κi = κT
i > 0 are the nonlinear damping gain matrices of size R

(p×p). Additional
nonlinear damping is added in the design of the desired virtual control effort τd,
such that Sn becomes

Sn = ϕT
i κi ϕi + ϕT

u κu ϕu. (7.33)
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The update laws for control allocation become

[
u̇d

λ̇

]

= −ΓcaH

[
∂L
∂ud
∂L
∂λ

]

− H−1 (uff + uκ) (7.34)

where uff is the same as for the non-adaptive control design, and uκ is the contribu-
tion due to nonlinear damping defined as

uκ =

[
∂2L

∂x∂ud

∂2L
∂x∂λ

]T

ϕT
u κud

ϕu

[
∂2L

∂x∂ud

∂2L
∂x∂λ

] [
∂L
∂ud
∂L
∂λ

]

. (7.35)

Boundedness of Ω, ǫ̃, θ̃, boundedness and square-integrability of ǫ and ˙̂θ has al-
ready been shown in chapter 4. Using the designed update laws for the parameter
estimate, the high-level control laws, and the control allocation update laws, ISS of
the set Amod = A with respect to the parameter estimation error and its derivative
is shown by means of the following OCLF

Vmod = Vca. (7.36)

The derivative of the OCLF along the trajectories of the system (7.1), the virtual
control laws (7.31), and the control allocation update laws (7.34) becomes

V̇mod = −σ
n

∑
i=1

z̄T
i Ci z̄i − σ

n

∑
i=1

z̄T
i Si z̄i + σ

n

∑
i=1

(

z̄T
i ϕT

i θ̃
)

+

(

∂LT

∂ud

∂2L

∂x∂ud
+

∂LT

∂λ

∂2L

∂x∂λ

)

ϕT
u θ̃ +

(

∂LT

∂ud

∂2L

∂θ̂∂ud

+
∂LT

∂λ

∂2L

∂θ̂∂λ

)

˙̂θ

−
[

∂L
∂ud
∂L
∂λ

]T

HΓcaH

[
∂L
∂ud
∂L
∂λ

]

−
[

∂L
∂ud
∂L
∂λ

]T

uκ

= −σ
n

∑
i=1

z̄T
i Ci z̄i − σ

n

∑
i=1

(

ϕi z̄i −
1

2
κ−1

i θ̃

)T

κi

(

ϕi z̄i −
1

2
κ−1

i θ̃

)
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+
σ

4

n

∑
i=1

θ̃Tκ−1
i θ̃ − σ

(

ϕu z̄n −
1

2
κ−1

u θ̃

)T

κu

(

ϕu z̄n −
1

2
κ−1

u θ̃

)

+
σ

4
θ̃Tκ−1

u θ̃ −
[

∂L
∂ud
∂L
∂λ

]T

HΓcaH

[
∂L
∂ud
∂L
∂λ

]

−







ϕu






∂2L
∂x∂ud

∂2L
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z̄T
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σ

4

n
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θ̃Tκ−1
i θ̃ +

σ

4
θ̃Tκ−1

u θ̃ +
1

4
θ̃Tκ−1

ud
θ̃ (7.37)

−
[

∂L
∂ud
∂L
∂λ

]T

HΓcaH

[
∂L
∂ud
∂L
∂λ

]

From the last inequality, a positively invariant compact set can be derived to which
the augmented tracking errors and control allocation states will exponentially con-
verge. From (7.37)

σc0z̄T z̄ + γ0

(

∂LT

∂ud

∂L

∂ud
+

∂LT

∂λ

∂L

∂λ

)

≥ 1

4
θ̃Tκ−1

0 θ̃ (7.38)

where c0 = mini λmin(Ci) ≥ 0, γ0 = inft λmin(HΓcaH), κ−1
0 = σ ∑

n
i=1 κ−1

i + σκ−1
u +

κ−1
ud

implies that V̇ ≤ 0. Hence, the inequality therefore describes an upper bound

on the invariant compact set. ISS-stability of the set Amod can be shown using
an ISS-Lyapunov function, see appendix A.5, since existence of such a function is
equivalent to the system being ISS [88, 168], if Amod is compact, and 0-invariant.

7.4.3 Composite Update Law

The designs above can be combined as discussed in chapter 4. This has the benefit
that the nonlinear damping terms are no longer required for stability, and faster
convergence of the tracking errors as well as estimation error can be achieved. The
composite design makes use of the nonlinear swapping filters (7.24), and has a
composite update law defined as

˙̂θ = Γθ

(

σ
n

∑
i=1

ϕi z̄i + ϕu

(

∂2LT

∂x∂ud

∂L

∂ud
+

∂2LT

∂x∂λ

∂L

∂λ

)

+ ΩΨǫ

)

(7.39)

with Ψ = Ψ
T
> 0 a weight matrix to control how the adaptation law should weight

information form the tracking error relative to the information coming from the
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estimation error. The update gain matrix Γθ can be kept constant for a gradient
approach or updated through the weighted least-squares update law

Γ̇θ = −ΓθΩΨΩ
T

Γθ . (7.40)

The control allocation update laws are identical to the ones in the integrated adap-
tive design. The AOCLF from the integrated design is augmented with a term

penalizing the residual error ǫ̃ = Ω0 + x − Ω
Tθ,

Vcomp = Vint +
1

2
ǫ̃TPΨǫ̃. (7.41)

This AOCLF will be used to show UGS of the set

Acomp =







(
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)T ∣∣
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z̄T θ̃ ǫ̃T ∂LT
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∂LT

∂λ

)T

= 0






. (7.42)

The time derivative of Vcomp along the solutions of the system, with the integrated

control laws and composite update laws becomes
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n
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2
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∂ud
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HΓcaH
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∂L
∂ud
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(7.43)

showing UGS of the set Acomp. The fact that the dynamics of ǫ̃ are governed

by (4.79) has been used to provide an upper bound on part of the AOCLF time
derivative. From the LaSalle-Yoshizawa theorem it follows that when t → ∞,

all solutions converge to the manifold
[

z̄T ǫT ∂LT

∂ud

∂LT

∂λ

]T
= 0. Note that the major

difference between the integrated and composite designs is that in the composite
design also convergence of the estimation error to zero is guaranteed. Convergence
of the parameter estimation error θ̃ to zero can only be guaranteed when a PE
condition is satisfied.

7.5 Fighter Aircraft Model Application

The backstepping high-level control scheme with optimizing dynamic control allo-
cation with composite update laws is applied in the control design for the aircraft
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model introduced in section 6.2. The performance of the control design is evaluated
at the lowest altitude flight condition, flight condition I, for the same failure scenar-
ios as used in the previous chapter. Since the control allocation method discussed in
this chapter is not able to handle actuator rate constraints, these have been removed
from the design.

7.5.1 Controller Design

The control design follows the nominal backstepping design presented in chapter 6
for the high level control design. This design is extended with dynamic control allo-
cation and parameter estimation laws according to the composite adaptive design.
The following cost function has been used

J(ud) = uT
d Wud + J2(ud) (7.44)

where W = WT
> 0, and J2 includes the magnitude constraints for this aircraft by

means of barrier functions

J2(ud) = −w ln
(
ud − ud,min

)
− w ln

(
−ud + ud,max

)
(7.45)

where w > 0 is a tuning gain, ud,min and ud,max represent the lower and upper
bound on ud respectively.

The numerical simulations have been performed in the MATLAB/Simulink en-
vironment, with an adaptive time-step, third-order accurate solver. The tuning
parameters summarized in table 7.1 were used in the design. Additionally, covari-
ance resetting was introduced to speed-up the estimation after a failure is detected.
When a low-pass filtered version of the squared estimation error exceeds a certain
threshold, and the covariance matrix is small, it is reset. Hence, the covariance
matrix will only be reset if there is confidence in the estimated parameters, and
there is a large estimation error.

7.5.2 Nominal Simulation Results

Before considering actuator failures, the nominal simulation results are presented.
The parameter vector is initialized with the values used in the model, hence, the
on-board and the actual aircraft model are identical. The tracking performance for
the aircraft performing three simultaneous angle of attack and bank angle doublets
is shown in figure 7.1. The desired references are tracked nearly perfect, and the
sideslip angle is kept very close to zero during the whole maneuver. Due to the
aircraft model and on-board model being identical, the composite adaptive con-
troller does not update the on-board model parameters. The commanded control
deflections and the realized deflections are shown in figure 7.2. Note that for this
controller tuning and reference signal the leading and trailing edge flaps contribute
significantly to the realized control effort.
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Table 7.1: Adaptive Optimizing Controller Tuning Parameters

.

Parameter Value
C1 I3
C2 2I3

S0 1 × 10−1 I36
γ 500
w 0.1 · diag (1 1 1 1 1 1 1)
W diag (1 1 2 2 2 2 1)
A0 −100I6
ρ 10000

ǫmin 1 × 10−6

Γreset 10S0S0
Sreset 10I36

R 1000
λ 0.005
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Figure 7.1: Tracking performance of the composite adaptive optimizing controller
in the nominal case.
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Figure 7.2: Control deflections commands and positions in the nominal case.

7.5.3 Elevator Failure

Several elevator lock-in-place failures have been investigated, only the severest
considered failure is discussed here. After three seconds in the simulation, the
left elevator deflects to −20 degrees and locks there. Hence, a trim moment is
introduced, and the effectiveness of the left elevator seems zero. This failure is
detected rapidly by the change detection mechanism, and the update gain matrix
is reset. After the failure is detected, the controller reconfigures very quickly and
is able to complete the maneuver with excellent tracking performance as shown in
figure 7.3. After the failure is injected and detected there are fast transients in the
estimated parameters, as observed in figure 7.4. After the estimates have settled
near their values sufficient for convergence of the augmented tracking error, they
will start converging to their true values if a PE condition is satisfied. The control
deflections used by the controller are shown in figure 7.5.

7.5.4 Aileron Failure

Similar as for the elevator failures, aileron actuator failures have been investigated.
Once again, only the worst case failure is discussed here. After three seconds
into the maneuver, the left aileron deflects to 45 degrees trailing edge down. A
transient can be observed from figure 7.6 after injection of the failure. The controller
rapidly reconfigures and is able to track the reference commands very well. The
failure is accommodated by asymmetric deflection of the elevators, with help from
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Figure 7.3: Tracking performance of the composite adaptive optimizing controller
for a left elevator lock to −20 degrees after 3 seconds.
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Figure 7.4: Parameter estimates and filtered estimation error for a left elevator lock
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Figure 7.5: Control deflections commands and positions for a left elevator lock to
−20 degrees after 3 seconds.

the remaining functional aileron as shown in figure 7.8. The parameter estimates
and filtered estimation error are shown in figure 7.7, after initial transients the
parameter estimates start converging to their true values and the filtered estimation
error converges to zero.

7.6 Conclusions

In this chapter three adaptive control designs have been proposed for over-actuated
systems with uncertain parameters, and these methods have been applied to the
same aircraft model as in the previous chapter. The control design has been sepa-
rated into a high-level control law, dynamic control allocation update laws, and an
parameter update law. Stability of the time-varying optimal sets has been proven
through Lyapunov analysis. Based on the designs and the obtained simulation
results, the following observations can be made:

• Closed loop boundedness of the tracking errors can be proven by means
of AOCLFs. Since the state and control effectors of a system are generally
bounded, locally asymptotic tracking of the desired reference signal can be
concluded. The optimizing control allocation algorithm is also defined by
means of a Lyapunov function, and it does not solve the optimization problem
exactly at each step but rather (continuously) converges to the time varying
optimal solution.
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Figure 7.6: Tracking performance of the composite adaptive optimizing controller
for a left aileron lock to 45 degrees after 3 seconds.
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Figure 7.7: Parameter estimates and filtered estimation error for a left aileron lock
to 45 degrees after 3 seconds.



7.6. CONCLUSIONS 143

0 10 20 30 40 50 60

0

50

 

 

0 10 20 30 40 50 60

0

50

 

 

0 10 20 30 40 50 60

0

50

 

 

t [sec]

t [sec]

t [sec]

δ a
l,

δ a
r

[d
eg

]
δ e

l,
δ e

r
[d

eg
]

δ l
e

f,
δ t

e
f,

δ r
[d

eg
]

δal,d
δar,d

δal
δar

δel,d
δer,d

δel
δer

δle f ,d
δte f ,d
δr,d
δle f
δte f

δr

Figure 7.8: Control deflections commands and positions for a left aileron lock to 45
degrees after 3 seconds.

• The tracking performance of the adaptive control design is excellent for the
nominal case and all considered failure cases. The failures are identified
shortly after they are introduced to the system, and the new dynamics are
rapidly identified.

• The composite adaptive design has the best convergence properties and does
not require nonlinear damping to achieve this. The dynamic order of the
resulting controller is equal to that of the modular adaptive design, and con-
siderably higher than the integrated design due to inclusion of the update
gain Γθ as states of the controller.

• The control allocation algorithm is not iterative, and does not depend on
optimization software.

Some extensions of the work presented are suggested.

• The considered control scheme requires state measurements. In many appli-
cations (full) state measurements are not available, such that observers and
estimators become necessary. This has to be accounted for in the control
allocation design to guarantee boundedness of the tracking error.

• Extension of the method to handle non-convex optimization problems. The
scheme currently will converge to a locally optimal solution, but this will not
necessarily result in accurate tracking.
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• Considering anti-windup strategies, and possibly slack variables to enable
faster convergence and handle solution infeasibility. Furthermore, include
rate constraints on the control effectors.

• Actuator models can be included in the design, and parameters of these mod-
els can be estimated on-line.
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FULL ENVELOPE MODULAR

ADAPTIVE CONTROL

In this chapter the modular adaptive control approach introduced in chapter 4 is
applied to the control design for a high fidelity F-16 model. The flight envelope
is partitioned into hyperboxes, for each hyperbox a locally valid incremental
model based on the linearized equations of motion is estimated. The models
from the hyperboxes are combined by means of B-spline interpolation functions
to obtain a smooth model valid for the complete flight envelope. The perfor-
mance of the resulting adaptive control design is evaluated for representative
flight conditions, maneuvers and failure cases.

8.1 Introduction

During the last decades the flight envelope of modern fighter aircraft has become
larger, and in this expanded flight envelope the performance requirements have
become more demanding. Examples of modern aircraft with large flight envelopes
include the F-22 Raptor and F-35 Lightning II. Most modern fighters are capable of
flying at high angles of attack, and high angles of sideslip to achieve high ma-
neuverability. At these flight conditions, unmodeled vehicle dynamics and un-
modeled parametric variations can occur, due to unsteady aerodynamic effects,
control surface saturation and increased longitudinal and lateral coupling [153]. In
addition to this, there is an increased interest in the ability of aircraft to remain
controllable and operable after faults, failures and structural damage occurring
during the flight. Because of these challenges, advanced nonlinear adaptive control

145
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techniques are typically required to address the nonlinear, uncertain and time-
varying, characteristics and requirements of such vehicles.

In this chapter a modular approach based on backstepping is taken, extending
the approach from chapter 6 to full flight envelope model identification, and apply-
ing it on a high fidelity nonlinear model of an F-16 aircraft. In the approach the con-
trol law is based on Input-to-State Stable (ISS) backstepping which can be combined
with any identifier that guarantees bounded estimates. Command filters are used
to avoid the tedious analytic computation of virtual control signal derivatives, and
make it possible to apply the control design to non-lower triangular systems. The
flight envelope is partitioned into hyperboxes, in each of these boxes an incremental
locally valid linear-in-the-parameters model is estimated using continuous-time
orthogonal least squares. The benefit of this partitioning approach over a single
local model approach is that information can be stored, such that when revisiting
a identified part of the flight envelope the estimated incremental model can be
retrieved and estimated restarted from there instead of starting from scratch. The
output of the hyperboxes is combined using tensor-product B-spline weights to
obtain a smooth, nonlinear and globally valid dynamic aircraft model. Compared
to multilayer neural network approaches the advantages of the B-splines are their
local support and numerical stability. This local support allows updating the esti-
mated model only at the current flight condition. Additionally, it is easier to extract
model information for health monitoring and failure analysis from a model with
clear physical interpretation [130].

The remaining part of this chapter is organized as follows. First the system
dynamics are cast into a form convenient for the application of the control design.
Then the ISS-backstepping design is discussed and its stability properties are estab-
lished. Following is the design of the identifier such that the aircraft model can be
estimated and stored over the full flight envelope. Simulation results are presented
for application of the ISS-backstepping design with least squares identification for
several failure cases on a nonlinear model of an F-16 aircraft. Finally, conclusions
drawn from the simulation experiment are given.

8.2 Controller Design

Consider a nonlinear system

ẋ = f (x, u)
y = h(x)

(8.1)

where x ∈ R
n is the state vector, u ∈ U ⊂ R

m is the system control vector, and
y ∈ R

q is the output vector. The function f contains both parametric and nonpara-
metric uncertainties. The control objective is to let the system output track a known
smooth reference signal yr with bounded derivatives. In the modular backstepping
approach the design of the identifier and control law is separated. This allows
for more flexibility in the choice of identification method, which is therefore not
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limited to Lyapunov-based identifier designs. Thus, the identification process is
not only driven by the tracking error, the system state and/or its measurements
can be incorporated as well by means of nonlinear swapping filters.

For linear systems the separation principle [83] holds, which allows straight-
forward separation of the identifier and control law. The true parameter values
are simply replaced by their estimates in the control law according to the certainty
equivalence principle [5, 88]. However, due to the difference in stability charac-
teristics of linear and nonlinear systems this is not allowed for general nonlin-
ear systems as shown in section 4.4. In systems with faster than linear growing

nonlinearities (for example x2 and x1x2) even a small parameter estimation error
can drive the state to infinity in finite time [88]. Hence, the control law has to
be made robust against estimation errors and the time varying character of the
parameter estimates. The estimation error is viewed as unknown disturbance and
is attenuated by adding nonlinear damping terms to the control law. The complete
structure of the proposed control design is shown in figure 8.1.

Figure 8.1: A schematic overview of the control architecture.

8.2.1 System dynamics

First of all rewrite the system dynamics (8.1) to

ẋi = fi(x, u) + gi(x)xi+1 + ϕT
i (x, u)θ + δi(x, u, t)

ẋn = fn(x) +
(

gn0
(x) + gnθ

(x, θ)
)

u + ϕT
n (x, u)θ + δn(x, u, t)

(8.2)

where δ represents an unknown, bounded, disturbance, fi, gi and gn0
represent

known parts of the system dynamics, gnθ
uncertainty in the control effectiveness,

ϕT : R
n ×R

m → R
n×p a known matrix function , and θ ∈ R

p an unknown constant
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vector of parameters, together these present the uncertain, or unknown part of the
dynamics to be estimated. Assume that the disturbance δ is bounded as

|δ(x, u, t)| ≤ pT(x, u)ψ⋆ ∀x ∈ R
n, ∀u ∈ R

m, ∀t ∈ R+ (8.3)

where p is a vector of known, smooth, positive functions, and ψ⋆ ≥ 0 is an un-
known constant parameter vector defining an upper bound on the uncertainty.

8.2.2 Backstepping Control Law Design

The ISS-backstepping scheme by Krstić, Kanellakopoulos, and Kokotović [88] is
combined with command filtering and adaptive bounding [57, 59, 141]. Using this
combination, the tedious analytical computation of derivatives of the intermediate
control laws is avoided as shown in chapter 4, the method can be applied to systems
which are not in lower triangular form, and magnitude and rate constraints on the
(intermediate) control laws can be incorporated. Adaptive bounding is included in
the design to robustify against a possible mismatch in model structure between the
output of the interpolated linear local models and the true system.

The control law design can be summarized as

z̄i = xi − xic
− Ξi, (8.4a)

ėi = z̄i, (8.4b)

Ξ̇i = −CiΞi + gi

(

xi+1c
− x0

i+1c

)

, (8.4c)

x0
ic

= αi−1 − Ξi, (8.4d)

ωi = pi(x, u) tanh

(
xi − xic

ςi

)

, (8.4e)

βi = ψiωi, (8.4f)

ψ̇i = Γψi
(ωi z̄i − σi(ψi − ψ0)) , (8.4g)

αi = g−1
i

(

− fi − ϕT
i θ̂ − C1

(

xi − xic

)

− Si z̄i + ẋic

−Kiei − βi − gT
i−1z̄i−1

)

, (8.4h)

Si = ϕT
i κi ϕi, (8.4i)

u0
c = ĝ−1

n gnαn − ĝ−1
n κu z̄n, (8.4j)

where z̄i is the augmented tracking error, Ξ a filtered version of the error imposed

by the command filters, e is the integrated augmented tracking error, x0
c the filter

input, αi the virtual control input at stage i, ĝn is the estimate of gn = gn0
+ gnθ

,

σi ≥ 0 is a constant leakage gain to guarantee boundedness of ψi, ψ0
i ≥ 0 is a design

constant. Nonlinear damping, through Si, is used to guarantee boundedness of the
states with respect to the parameter estimation error. The parameter ςi is a (small)
constant used to smooth the switching of the control laws at at ωi = 0.
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Application of the design (8.4) to the system (8.2) results in the augmented
tracking error derivatives for i = 1, . . . , n − 1, the compensated tracking error
dynamics become

˙̄zi = fi + gixi+1 + ϕT
i θ + δi − ẋic

− Ξ̇i

= fi + gix
0
i+1c

+ gi(xi+1c
− x0

i+1c
) + gi(xi+1 − xi+1c

) + ϕT
i θ

+δi − ẋic
+ CiΞi − gi(xi+1c

− x0
i+1c

)

= fi + giαi + gi(xi+1 − xi+1c
− Ξi+1) + ϕT

i θ + δi − ẋic
+ CiΞi

= −(Ci + Si)z̄i + gi z̄i + ϕT
i θ̃ + δi − βi − Kiei − gT

i−1z̄i−1,

(8.5)

with g0 = 0, z̄0 = 0. For z̄n they become

˙̄zn = fn + gnu + ϕT
n θ + δn − ẋnc

− Ξ̇n

= fn + ĝnu0
c − ẋnc

+ ĝn

(

u − u0
c

)

+ (gn − ĝn) u + ϕT
n θ

+δn + CnΞn − ĝn

(

u − u0
c

)

= fn + ĝnαn − ẋnc
+ ϕT

n θ + CnΞn

−κu z̄n + δn + (gn − ĝn) u

= − (Cn + Sn) z̄n + ϕT
n θ̃ + δn − βn − gT

n−1z̄n−1
−κu z̄n − Knen + g̃u,

(8.6)

where θ̃ = θ − θ̂, and θ̂ is the estimate of the unknown parameter vector. Now
consider the Control Lyapunov Function (CLF) candidate

V(z̄, χ, e) =
1

2

n

∑
i=1

(

z̄T
i z̄i + χT

i Γ
−1
ψi

χi + eT
i Kiei

)

(8.7)

where χi = ψi − ψM
i , ψM

i = max
(

ψ⋆

i , ψ0
i

)

. The time derivative of the CLF (8.7)

along the solutions of Eqs. (8.5)–(8.6) satisfies

V̇ = z̄T
1

(

−C1z̄1 − K1e1 − ϕT
1 κ1 ϕ1z̄1 + g1z̄2 + ϕT

1 θ̃ + δ1 − β1

)

+
n−1

∑
i=2

z̄T
i

(

−Ci z̄i − Kiei − ϕT
i κi ϕi z̄i − gi−1z̄i−1 + gi z̄i+1

+ϕT
i θ̃ + δi − βi

)

+ z̄T
n

(

−Cn z̄n − Knen − ϕT
n κn ϕn z̄n

−gn−1z̄n−1 + ϕT
n θ + δn − βn − κu z̄n + (gn − ĝn)u

)

+
n

∑
i=1

χT
i

(

ωizi − σi(ψi − ψ0
i )
)

+
n

∑
i=1

z̄T
i Kiei



150 CHAPTER 8. FULL ENVELOPE MODULAR ADAPTIVE CONTROL

= −
n

∑
i=1

z̄T
i Ci z̄i −

n

∑
i=1

z̄T
i ϕT

i κi ϕi z̄i +
n

∑
i=1

ϕT
i θ̃z̄i +

n

∑
i=1

(δi − βi)z̄i

− z̄T
n κu z̄n + z̄T

n (gn − ĝn)u +
n

∑
i=1

χT
i

(

ωi z̄i − σi(ψi − ψ0
i )
)

= −
n

∑
i=1

z̄T
i Ci z̄i −

n

∑
i=1

(

ϕi z̄i −
1

2
κ−1

i θ̃

)T

κi

(

ϕi z̄i −
1

2
κ−1

i θ̃

)

+
n

∑
i=1

1

4
θ̃Tκ−1

i θ̃ −
(

z̄n −
1

2
κ−1

u g̃nu

)T

κu

(

z̄n −
1

2
κ−1

u g̃nu

)

+
1

4
uT g̃T

n κ−1
u g̃nu +

n

∑
i=1

(

δi z̄i −
(

ψM
i

)T
ωi z̄i −

1

2
χT

i σiχi

−1

2
(ψi − ψ0

i )
Tσi(ψi − ψ0

i ) +
1

2

(

ψM
i − ψ0

i

)T
σi

(

ψM
i − ψ0

i

))

≤ −
n

∑
i=1

z̄T
i Ci z̄i +

1

4

n

∑
i=1

θ̃Tκ−1
i θ̃ +

1

4
uT g̃T

n κ−1
u g̃nu (8.8)

+
1

2

n

∑
i=1

(ψM
i )Tςi + (ψM

i − ψ0
i )

Tσi(ψ
M
i − ψ0

i )

which uses a claim by Polycarpou and Ioannou [141] for the adaptive bounding
of disturbances. The second and third terms at the first line of the inequality in
(8.8) are due to the nonlinear damping, the last two terms are due to the adaptive
bounding. The result in (8.8) shows that the tracking error states and desired con-
trol input are bounded when the parameter estimation errors are bounded, and that
the tracking error states converge exponentially to a positively invariant compact
set. Using results by Freeman, Krstić, and Kokotović [61] the robustness bounds
of the controller can be derived. Tracking performance can be improved by either
increasing the nonlinear damping gains and adaptive bounding update gains, or
reducing the parameter estimation error using online identification. Suppose that
(8.8) could be rewritten as

V̇ ≤ −z̄TC0z̄ +
1

4
θ̃Tκ−1

0 θ̃ +
1

4
uT g̃T

n κ−1
u g̃nu + Λ

where

C0 = min
1≤i≤n

λmin Ci,

κ0 =

(
n

∑
i=1

κ−1
i

)−1

,

Λ = 1
2

[

(ψM)Tς + (ψM − ψ0)Tσ(ψM − ψ0)
]
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and Λ > 0 since ςi > 0, ψM
i > 0, σ > 0 by their definitions. Therefore

z̄TC0z̄ ≥
[

1

4
θ̃Tκ−1

0 θ̃ +
1

4
uT g̃T

n κ−1
u g̃nu + Λ

]

implies that V̇ < 0 and therefore gives an upper bound on the invariant compact
set to which z̄ will converge.

8.2.3 Nonlinear Swapping Filters

Similar to their use in linear modular designs the swapping filters are used as
an analytical device which uses regressor filtering to account for the time-varying
nature of the parameter estimates [88]. The filters transform a time-varying system
into a static mapping, such that only state measurements are required and not
their derivatives. Two types of nonlinear swapping can be applied, either to the
tracking error system, or to the system dynamics. In this work x-swapping filters
are selected to achieve the greatest similarity to NDI with RLS estimation technique
used by Lombaerts, Huisman, Chu, Mulder, and Joosten [97]. Note that the function
of this filter is not state estimation, but rather to extract the unknown dynamics
from the state and control feedback. First rewrite the system (8.2) in the form

ẋ = f (x, u) + FT(x, u)θ + ∆(t, x, u) (8.9)

where

f (x, u) =








g1x2 + f1(x1)
...

gn−1xn + fn−1(x)
gn0

u + fn(x)








, FT(x, u) =









ϕT
1 (x, u)

...

ϕT
n−1(x, u)

ϕT
n (x, u)









.

The x-swapping filters are applied

Ω̇0 = A(t)(Ω0 + x)− f (x, u), Ω0 ∈ R
n (8.10a)

Ω̇
T = A(t)ΩT + FT(x, u), Ω ∈ R

p×n. (8.10b)

The matrix A(t) is an exponentially stable matrix, that is a matrix with all eigenval-
ues in the left half plane, defined as

A(t) = A0 − ρFT FP, (8.11)

where ρ > 0 and A0 is an arbitrary negative definite matrix such that

PA0 + AT
0 P = −I, P = PT

> 0,

to stabilize the scheme against fast parameter and regressor variations. Since A0 <

0, ρ > 0, P > 0 and FT F > 0, the matrix A(t) < 0 ∀t. For the identification
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algorithm discussed in the following section the output Ω is used as the regressor,
and the output vector Y = Ω0 + x as the dependent variable. The estimation error
is defined as

ǫ = Ω0 + x − Ω
T θ̃ (8.12)

which satisfies
ǫ = Ω

T θ̃ + ǫ̃ (8.13)

where ǫ̃ is the filtered disturbance

˙̃ǫ = A(t)ǫ̃ + ∆. (8.14)

Since A(t) is exponentially stable, and ∆ is bounded, ǫ̃ is bounded and even con-
verges to zero exponentially for ∆ = 0. Therefore, ǫ is bounded, and converges to
zero when ∆ = 0. Since ǫ is L2, F is smooth, and all states are bounded, ǫ̈ is also
bounded. Therefore, ǫ̇ is uniformly continuous. Since ǫ(t) → 0 for ∆ = 0, then

lim
t→∞

∫ t

0
ǫ̇(τ)dτ = lim

t→∞
ǫ(t)− ǫ(0) = −ǫ(0) < −∞. (8.15)

By Barbalat’s lemma, ǫ̇(t) → 0. Since ˙̂θ ∈ L∞ ∩ L2 and ¨̂θ ∈ L∞, it hence follows

that ˙̂θ → 0.

8.3 Identifier Design

In the case that the on-board model is correct, the control law design from the pre-
vious section stabilizes the system, and achieves good tracking performance on the
aircraft. Generally, the model used to predict the aerodynamic forces and moments
is uncertain, or, in some flight conditions or failure conditions even unknown or
unavailable. Therefore the on-board model is updated during the flight, to match
the true aircraft behavior as close as possible. Since fighter aircraft dynamics vary
nonlinearly through a large operating regime, the flight envelope is partitioned
into small regions, which will be called hyperboxes. Each of these hyperboxes will
contain a local linear-in-the-parameters-model. By combining the output of all of
the local models together by means of smooth interpolation, a global nonlinear
aerodynamic model is obtained. The main advantage of this approach is that the
complexity of the local models can be relatively low, while still being able to obtain
an accurate global approximation.

First of all the least squares method used to update the local models is discussed,
after which the interpolation technique based on tensor B-splines is presented.

8.3.1 Local Model Update

The introduced backstepping scheme can be combined with all identifiers which
guarantee boundedness of the estimation error and its derivative. A recursive least
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squares (RLS) filter is selected here, since by design it can guarantee convergence
of the parameter estimates to constant values. Instead of selecting an RLS filter
in combination within the modular backstepping framework applied in previous
work[194, 198], an Orthogonal Least Squares (OLS) technique is applied to update
the local models. The motivation for this is the planned extension towards online
structure selection of the local linear models in future research. The current ap-
plication of the OLS is equivalent to the continuous least squares formulation and
therefore yields the same results. The continuous OLS description is started from
the continuous time recursive least squares definition

min
θ(t)

∫ t

0
eλ(τ−t)

(

y(τ)− ϕ(τ)Tθ(t)
)2

dτ (8.16)

where the entries of ϕ(τ) ∈ R
p and y(τ) are given signals, and the entries of

θ(t) ∈ R
p are unknown scalar constants. The scalar λ ≥ 0 is a forgetting rate,

determining the relative importance of the past input. Instead of directly solving
this optimization problem, we perform a Cholesky factorization of the correlation

matrix N =
〈

ϕ, ϕT
〉

= RT
〈

q, qT
〉

R = RT R, where R is the Cholesky factor of

N and q is a vector of orthogonal vectors. Thus, (8.16) can now be rewritten as

minθ 〈y, y〉 − 2
〈

y, ϕT
〉

θ + θT Nθ, and the solution follows from Nθ =
〈

ϕ, yT
〉

,

or RT Rθ = RT
〈

q, yT
〉

. Therefore R and
〈

q, yT
〉

need to be tracked. This can

be achieved by adding an additional component to the input, ϕ̂ =
[

ϕT yT
]T

.

However, instead of tracking the Cholesky factor R̂ of the augmented correlation

matrix N̂, tracking the inverse Cholesky factor Ŝ = R̂−1 allows extraction of the pa-

rameter estimate without matrix inversion or backsubstitution. From ˙̂N = ϕ̂ϕ̂T −
λN̂ and the lemma which relates the evolution of a matrix and its Cholesky factor
by Dehaene, Moonen, and Vandewalle [38] the following is obtained

˙̂S = −Ŝ upph
(

ŜT ϕ̂ϕ̂T Ŝ
)

+
λ

2
Ŝ (8.17)

where upph, the upper triangular half-part, is defined by

Y = upph(X) ⇐⇒







yi,j = xi,j i < j

yi,j =
1
2 xi,j i = j

yi,j = 0 i > j

. (8.18)

For the application with the backstepping control law designed earlier the input
matrix becomes

ϕ̂T =
[

Ω
T (Ω0 + x)

]

(8.19)

The parameter estimate θ̂ can be extracted easily by

θ̂i = −Ŝi,p+1/Ŝp+1,p+1. (8.20)
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The relation between the forgetting rate used in continuous time and the more
commonly known forgetting factor for discrete time is given by

Tsλ = − ln λd, (8.21)

where Ts is the sampling time of the discrete system, and λd is the discrete forget-
ting factor. For example, at a sampling rate of 50 Hz and a discrete forgetting factor
of 0.98 the equivalent continuous time forgetting rate is about 1.

Naturally, the parameters of the model cannot be accurately determined unless
some conditions are imposed on the input signal. For adaptive control with online
identification, convergence of the residual modeling error to zero is more important
than convergence of the model parameters. When the input signal is persistently
exciting (PE) the estimates will converge to constant values. By definition, ϕ satis-
fies a persistency of excitation condition if positive constants ρ1, ρ2 and T exist such
that the following condition is satisfied ∀t ≥ 0

ρ1 I ≤
∫ t+T

t
ϕ(τ)ϕ(τ)Tdτ ≤ ρ2 I. (8.22)

The reference trajectory can be made PE by superimposing a sinusoidal signal on
the reference signal, as discussed by Stepanyan and Hovakimyan [175]. Another
method is by using an intelligently exciting signal [22, 23], which decays with
trajectory tracking and parameter estimation errors.

8.3.2 Full Envelope Interpolation

Naturally, the estimation method described previously could be used to fit a model
to the complete dynamics of the aircraft. However, to be able to achieve a rea-
sonably accurate fit throughout the whole flight envelope such a model would be
extremely complex and large. For such a large model, the covariance matrix would
become very large since its number of elements scales quadratically, increasing
the computational load of the identification scheme dramatically. Therefore an
approach is selected which splits the complete flight envelope into partitions, the
output of the smaller partitions is combined using smooth interpolation functions.
It is desired to only update the model in the active part of the flight envelope, and
therefore interpolating functions with local support are selected: B-splines.

A B-spline is a spline function that has minimal support with respect to a given
degree, smoothness and domain partition [34].

Definition 8.1 (B-spline basis function). : Let U be a set of m + 1 nondecreasing
numbers, u0 ≤ u1 ≤ . . . ≤ um. The ui are called knots, the set U the knot vector, and the

half-open interval [ui, ui+1) the ith knot span. If a knot ui appears k times, where k > 1, ui
is a multiple knot of multiplicity k, written as ui(k). Otherwise it is called a simple knot.
The knots can be considered as division points that subdivide the interval [u0, um] into knot
spans. All B-spline basis functions are supposed to have their domain on [u0, um]. To define
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B-spline basis functions one more parameter is required, the degree of these basis functions,
p. The ith B-spline basis function of degree p, written as Ni,p(u), is defined recursively as

follows:

Fi,0(u) =

{
1 if ui ≤ u < ui+1
0 otherwise

Fi,p(u) =
u − ui

ui+p − ui
Fi,p−1(u) +

ui+p+1 − u

ui+p+1 − ui+1
Fi+1,p−1(u)

This formula is usually referred to as the Cox-de Boor recursion formula.

The B-splines have two characteristics that make them very suitable for online
identification:

1. Only a small number of B-spline basis functions is nonzero at any given point
in the flight envelope. Therefore only a small number of local models has
to be updated, resulting in lower computational load. Additionally, since
the update is local, the model has memory capabilities. Moving through the
complete flight envelope model information is stored.

2. The spline output is always positive and normalized, resulting in a numerical
stable process.

In figure 8.2(a) the output of a cubic B-spline network is shown, along with the
individual B-splines and the control points. The B-spline is generalized for higher
input dimensions by taking the tensor product of the B-spline basis functions in
each of dimension, for example in three dimensions this yields

γijk = γi ⊗ γj ⊗ γk. (8.23)

Figure 8.2(b) shows the degree of membership for a cubic B-spline basis function
for two input dimensions with knot vectors
xknot = yknot =

[
−2 −2 −2 −2 −1 0 1 2 2 2 2

]
. Note that the

shape of the basis functions changes near the edges of the domain to keep the sum
of all individual degrees of membership equal to 1. The degree of membership γi,
the B-spline output, is used to distribute the current measurement over the active
local models as a weight on their derivative.

˙̂Si = −Ŝi upph
(

ŜT
i ϕ̂γi ϕ̂

T Ŝi

)

+
λγi

2
Ŝi (8.24)

For the inactive local models, with γj = 0

˙̂Sj = 0. (8.25)



156 CHAPTER 8. FULL ENVELOPE MODULAR ADAPTIVE CONTROL

0 1 2 3 4 5 6
0

1

2

3

4

5

6

y = w
4
 s

4
 + w

5
 s

5
 + w

6
 s

6
 + w

7
 s

7

w
4

w
6

w
7

w
8

w
9

w
2

w
1

w
3

s
9s

1
s

5s
4s

3s
2

s
6 s

7
s

8

w
5

(a) Cubic B-Spline (b) Tensor B-Splines

Figure 8.2: A cubic B-Spline function output is shown in (a). The output at a
given input point is the weighted sum of the active B-Splines. The Degree of local
membership determined by cubic B-spline basis functions in two dimensions with
knot vectors xknot = yknot = [−2 − 2 − 2 − 2 − 1 0 1 2 2 2 2] is shown in (b).

The output at any given point in the flight envelope can be obtained by summing
the weighted output of the local models as

θ̂ = ∑
i

γi θ̂i (8.26)

where θi is the output of the i−th local model.

8.3.3 Covariance Resetting

The covariance matrix generally becomes very small after a period of tracking
without any noticeable mismatch between the on-board model and the true aircraft
behavior, despite using a forgetting factor in (8.24). This reduces the ability of the
identifier to adjust to abrupt changes in the system dynamics. For aircraft, and
especially fighter aircraft, slow adaptation to the new dynamics could cause the
aircraft to reach dangerous or unrecoverable regions of the state space. Therefore, a
mechanism is applied to reset the covariance matrix to enable fast adaptation when
an abrupt change is detected. After a sudden change, the residual vector ǫ will in
general be large. By monitoring the residual, and comparing it with a degree of
membership weighted predefined threshold, abrupt changes can be detected and
consequently reset the covariance matrix of that particular hyperbox, i.e.

γi|ǫ| ≥ Wǫ. (8.27)

The trace of the inverse covariance matrix has to be below a certain threshold, to
avoid repeated and continuous resetting after a failure. Note that the estimated
parameters are not reset to zero, only their “update gain”.
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8.4 Application to the F-16 Model

The control design presented in the preceding sections is applied to a nonlinear
model of the F-16 [126]. The aerodynamic data tables are valid in the subsonic
regime, with an angle of attack between −20 and 90 degrees, and sideslip angle of
|β| ≤ 30 degrees. The tabular data in the model is obtained from wind-tunnel tests
and captures the nonlinear behavior of the total aerodynamic force and moment
coefficients. A quaternion representation of the attitude is used to avoid the 90
degree pitch singularity.

8.4.1 F-16 Aircraft Model and Assumptions

The F-16 model allows for control over thrust-lever, horizontal stabilizer, ailerons,
and rudder. Additionally the assumption is made that either thrust measurement
or an accurate thrust model is available. The control inputs are defined positive
in the conventional way: a positive control deflection results in a negative force or
moment in the body-axes. The F-16 is equipped with automatic leading edge flaps,
which are deflected according to a transfer function dependent on angle of attack
α and a bias depending on the ratio of dynamic pressure and static pressure (Mach
number)[126]

δLEFc
= 1.38

2s + 7.25

s + 7.25
α − 9.05

q̄

pstatic
+ 1.45

The control surfaces of the F-16 are driven by servo-controlled actuators to produce
the deflections commanded by the flight control system, u, which are the true
control variables. The actuators of the control surfaces are modeled as a first-order
low-pass filters with fixed gain and saturation limits in range and deflection rate,
see table 8.1. The time constants of the actuators are 0.136 for the leading edge flaps
and 0.0495 for the other control surfaces. The throttle response used in the F-16 is
modeled as low-pass filter with time constant 1.0.

Table 8.1: The control input units and maximum values

Control Unit Min. Max. Rate limit

Thrust-lever - 0 1 ± 5 s−1

Horizontal Tail deg -25.0 25.0 ± 60 deg/s
Ailerons deg -21.5 21.5 ± 80 deg/s
Rudder deg -30.0 30.0 ± 120 deg/s
Leading edge flap deg 0.0 25.0 ± 25 deg/s

The original nonlinear model is not affine in the control surface inputs, the
horizontal stabilizer appears as an input to several lookup tables. Therefore an
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affine approximation of these tables is made, introducing an model-mismatch. For
example, the moment coefficient Cm is approximated as

Cm(α, β, δe) ≈ Cm0
(α, β, δe) + Cmδe

(α, β, δe)δec
(8.28)

since the current deflection δe is known through the command filters. This approxi-
mation is valid over a small range of elevator deflections around the current operat-
ing point. By partitioning on the stabilizer deflection, an accurate approximation is
obtained for the full range of elevator deflections. Other similar coefficients which
have a non-affine dependence on the stabilizer deflection are approximated simi-
larly. This approximation does however create a mismatch between the true aircraft
dynamics and the modeled aircraft dynamics, thereby introducing an unknown
disturbance which is modeled as δ in (8.2). Using the adaptive bounding technique,
the controller is robustified against this unknown model mismatch.

8.4.2 Partition Model Structure

The incremental model estimated on-board the aircraft is based on the linearized
system equations [41]. The local models of the different hyperboxes is not necessar-
ily the same: for example partitions at extreme angles of attack and sideslip angles
can have a more complex model structure to capture all the nonlinear phenomena
occurring. In this work the following local model structure has been selected for all
hyperboxes

δCX =
[

1
qc̄

2VT
δe

] [

δCX0
δCXq

δCXδe

]T
,

δCY =
[

1
pb

2VT

rb
2VT

δa δr

] [

δCY0
δCYp

δCYr
δCYδa

δCYδr

]T
,

δCZ =
[

1
qc̄

2VT
δe

] [

δCZ0
δCZq

δCZδe

]T
,

δCl =
[

1
pb

2VT

rb
2VT

δa δe δr

] [

δCl0
δClp

δClr
δClδa

δClδe
δClδr

]T
,

δCm =
[

1 α
qc̄

2VT
δe

] [

δCm0
δCmα

δCmq
δCmδe

]T
,

δCn =
[

1
pb

2VT

rb
2VT

δa δe δr

] [

δCn0
δCnp

δCnr
δCnδa

δCnδe
δCnδr

]T
.

The regressor functions are block-diagonally stacked together to form the full re-
gressor matrix, all the incremental unknown parameters are stacked to form a large
column-vector with 27 parameters.

8.4.3 F-16 Control Law Design

The controller design discussed in the previous sections is applied to the F-16 air-
craft model. The application of the proposed control scheme is not presented in
great detail since it is very similar to the examples from chapter 4 and the F-18
application of chapter 6. A tracking controller for the total airspeed, angle of attack,
sideslip angle, and velocity vector roll rate is designed.

First define the outer loop subsystem as

x1 =
[

VT α β
]T

(8.29)
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with dynamics

ẋ1 = f1 + F1 + g1

[
pS qS rS

]T
+ g1T

[
T 0 0

]T
(8.30)

where

f1 =








g1

−pS tan β +
1

mVT cos β
(−T sin α + mg3)

1

mVT
(−T cos α sin β + mg2)








,

F1 =
1

m








− cos α cos β sin β sin α cos β

− sin α

VT cos β
0

cos α

VT cos α

− cos α sin β

VT

cos β

VT
− sin α sin β

VT












X̄
Ȳ
Z̄



 ,

g1 =





0 0 0
0 1 0
0 0 −1



 , g1T
=






cos α cos β

m
0 0

0 0 0
0 0 0




 .

Note that this differs slightly from the system description given by (8.2) due to the
presence of the control input T. The thrust input can be obtained from this outer
loop for airspeed control. For the inner loop subsystem state is

x2 =
[

pS qS rS

]T
(8.31)

with dynamics

ẋ2 = f2 + F2 + g2

[
δa δe δr

]T

where
f2 = −TB→S J−1 (ωB × JωB) + ṪB→SωB,

F2 = TB→S J−1





L0
M0
N0



 ,

g2 = TB→S J−1





Lδa
Lδe

Lδr

0 Mδe
0

Nδa
Nδe

Nδr



 .

The aerodynamic forces and moments appearing in the above equations in the
design are split into a part that is assumed known, or the nominal model, and a
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contribution from the estimated incremental on-board model. For example, the
total aerodynamic force in x-body direction can be written as

X̄ = q̄S








CX + CXq

qc̄

2VT
︸ ︷︷ ︸

nominal

+ δCX0
+ δCXq

qc̄

2VT
++δCXδe

δe

︸ ︷︷ ︸

incremental








. (8.32)

Thus known nonlinearities from aerodynamics and inertia coupling, are included
in the function f1, f2. The functions F1 and F2 define an incremental (nonlinear)
aerodynamic model. The matrix B2 defines the aerodynamic control effectiveness
and is composed out of a known part, and an incremental part.

8.5 Simulation Scenarios and Results

This section presents the numerical simulation results from the application of the
complete control design to the F-16 model of the previous section for a number
of failure scenarios and flight conditions. The controller is evaluated on tracking
performance and estimation accuracy. The control design has been implemented
in the MATLAB/Simulink

c© environment by means of S-functions written in C++.
First the tuning of the design will be discussed, followed by an introduction of the
failure scenarios and flight conditions. After this, the simulations results will be
presented and discussed. The simulations performed run in real time on a 2.4 Ghz
desktop machine.

8.5.1 Controller Tuning

First of all the command shaping filters, see figure 8.1, are discussed. The pur-
pose of the filters is to transform step-like input signals from the pilot or outer-
loop flight path controller to smooth reference signals as input to the controller.
These filters can be tuned and scheduled such that level 1 handling qualities can
be achieved through the whole flight envelope, by scheduling their tuning on the
flight conditions [163]. In this work a single tuning is selected for the whole flight
envelope to simplify the design, since the main focus is on the feasibility of the
control law design with online incremental model identification. The command
filters are second-order low pass filters with magnitude constraints, the dynamics
of these filters are

[
ẋc(t)
ẍc(t)

]

=

[
q1
q2

]

=





q2

2ζωn

[

SR

(

ω2
n

2ζωn

[

SM(x0)− q1

])

− q2

]



 (8.33)

where SM(·) and SR(·) represent the magnitude and rate limit functions respec-
tively. The tuning parameters for the filters are shown in table 8.2. A different
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Table 8.2: Command filter parameters.

Variable Bandwidth Damping Magnitude Constraints
VT 0.2 1.0 -

α 1.5
√

2/2 -

β 2.0
√

2/2 -

pS 2.0
√

2/2 -

qS 100
√

2/2 ±50 deg/s

rS 100
√

2/2 ±15 deg/s

damping ratio for the speed control has been selected to prevent overshooting the
desired setting. Furthermore the bandwidth of the VT command filter is small since
the speed dynamics are relatively slow, especially compared to the other controlled
variables. Additionally, accurate speed tracking is not the prime focus of the control
design, the flown maneuvers are relatively short and highly dynamic.

The Lyapunov design only requires the controller gains to be negative definite,
although it is natural to select the inner loop gains higher than the outer loop
gains to achieve good tracking performance. The controller tracking error gains
are selected as,

C1 =





0.5 0 0
0 0.5 0
0 0 0.5



 , C2 =





1.5 0 0
0 1.0 0
0 0 1.0





and the integrated tracking error gain only on the integrated stability axis roll rate

K1 =





0 0 0
0 0 0
0 0 0



 , K2 =





0.25 0 0
0 0 0
0 0 0



 .

The nonlinear damping gains κ are tuned to small values, if the parameter
estimation is fast and accurate their contribution to the tracking performance is
small. Therefore they are selected as 0.01I with I the identity matrix of appropriate
size. The adaptive bounding gains are chosen small too since the assumption is
made that the local model structure and the flight envelope partitioning will result
in an accurate incremental model. The update gain Γ and leakage term σ are
selected as

Γ = diag
([

1 × 10−6 1 × 10−1 1 × 10−1 1 × 10−1 1 × 10−1 1 × 10−1
])

σ = 1 × 10−1 I6

The nonlinear swapping tuning parameters are selected such that the relevant
dynamics of the aircraft can be captured. The swapping filter matrix is chosen
as A0 = −100I6 and the damping gain ρ = 0.01. The flight envelope is partitioned
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Table 8.3: Flight envelope partitioning.

Variable min. (deg) max. (deg) step (deg) hyperbox partitions
Angle of attack -20 90 5 24
Sideslip angle -30 30 5 14
Horizontal stabilizer deflection -25 25 5 12
Total 4032

in three dimensions for the incremental model: the angle of attack, the sideslip
angle, and horizontal stabilizer deflection, equivalent to most lookup tables in the
existing model. Each input dimension of the B-spline basis functions is partitioned
uniformly since this resulted in good tracking performance in earlier work [164].
The flight envelope partitioning is defined in table 8.3. The number of hyperbox
partitions is a trade-off between local model complexity, required onboard storage
capacity, and model accuracy. The order of the B-spline interpolation functions is a
trade-off between the smoothness of the estimated model, and the number of active
local models. Second order B-splines are used for all the input dimensions, since
this produces a smooth nonlinear model, while limiting the number of active local
models at any given point in the flight envelope to 3 × 3 × 3 = 27.

A very mild forgetting rate of λ = 0.005 has been selected for all the partitions,
this would correspond to a discrete forgetting factor of 0.9999 at 50 Hz sampling.
The partitions are initialized with small values of the Cholesky factor of the covari-
ance matrix, and a reset is triggered when an element of the partition weighted
absolute estimation error vector exceeds

Wǫ = 1 × 10−6 [ 1 1 1 1 1 1
]T

the Cholesky factor for that particular partition is reset to

Ŝreset = diag
([

102 104 103 102 102 102 103 103 102 103 103 102 102 102

104 104 104 102 103 105 103 102 102 102 104 104 104 1
])

to encourage fast adaptation to the changed system dynamics.

8.5.2 Simulation Scenarios

Three types of simulation scenarios are defined, the nominal case for which no
faults occur, secondly a scenario where the center of gravity suddenly shifts in lon-
gitudinal direction, and finally scenarios in which the right aileron surface moves to
a specified position and locks up. All simulations last 60 seconds. The simulations
have been performed at two flight conditions, one at low altitude, 1000m at Mach
0.3, the other at cruise altitude of 10000m and Mach 0.8. Since the aircraft’s maneu-
verability is different at these flight conditions, also different maneuvers have been
performed at these flight conditions. In figure 8.3 the input commands for the two
flight conditions is shown.
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Figure 8.3: Input commands for the different maneuvers at different flight condi-
tions.

The aileron faults are introduced after 7 seconds in the simulation, and the occur
when the aircraft is roll and pitching simultaneously. Three different lock positions
are considered: locking at zero-deflection, lock at half deflection of 10.75 degrees,
and a lock at full deflection or full hard-over of 21.5 degrees. Note that this aircraft
model does not contain differential stabilizer inputs, hence only the rudder and the
left aileron can be used to compensate the roll moment disturbance in this fault
scenario.

In the last type of scenarios the center of gravity is suddenly shifted by 5%
of the mean aerodynamic chord in longitudinal direction after 6 seconds into the
simulation, which results in a change of longitudinal stability of the aircraft.

8.5.3 Simulation Results

First the nominal simulation results are presented to show that when the on-board
model is accurate, excellent tracking performance of the angle of attack, sideslip
angle, and velocity vector roll rate is achieved and the estimated incremental model
parameters are practically zero. Figure 8.4 shows the tracking response and track-
ing errors, and figure 8.5 shows the estimated local model parameters during the
maneuvers. Tracking of the velocity command is difficult due to the relatively slow
response of the engine compared to the dynamics of the aircraft. Additionally, it is
not possible to give negative thrust and speedbrakes are not included in the model.
When there is no change of the onboard dynamics, the identifier does not estimate
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a noticeable change in the incremental model parameters, tracking performance is
excellent for both flight conditions and maneuvers.

A more demanding and interesting scenario for the proposed adaptive con-
troller is a sudden shift of the center of gravity in longitudinal direction. The
pitching and yawing coefficients will change as a result of this shift according to

∆Cm = CZ∆xcg c̄

∆Cn = CY∆xcg
c̄

b

where ∆xcg is the shift in longitudinal direction in percentage of the chord length,
∆Cm is the increment in pitch moment coefficient, and ∆Cn the increment in yaw
moment coefficient. No inertia model was available, therefore the mass and mo-
ments of the aircraft do not change. Normally, aircraft and their control laws are
designed for a range of possible center of gravity positions. Especially for model
based controllers a known change of position is therefore not a problem, a sudden
unknown change on the other hand can cause degraded tracking performance and
even stability problems. Figure 8.6(a) shows the tracking performance for a desta-
bilizing shift of 5% of the mean aerodynamic chord, or 0.1725 m. In figure 8.6(b)
the control deflections are compared with the nominal center of gravity position
deflections. Figure 8.7(a) shows the response and tracking error of the proposed
control scheme without any adaptation, i.e. θ̂ = 0, ψ = 0. Clearly the tracking
performance has decreased a lot caused by the mismatch between the onboard
model and the true aircraft dynamics. A direct comparison of the tracking errors
between the adaptive control design (left) and non-adaptive control design (right)
is possible in figure 8.8.

The filtered residual error signals (8.14) are shown in figure 8.9, which shows
that when a new part of the flight envelope is visited after the failure, first the fil-
tered residuals increase after which they converge back to zero when the estimates
for the active partitions are updated. The estimated incremental model parameters
during the simulation are shown in figure 8.10(a). The failure is detected very
rapidly, as seen in figure 8.10(b), and several of the active partitions are reset almost
immediately. When a different part of the flight envelope is visited during the
maneuvering, also the partitions that become active and have not been updated
yet, are reset. To show that the update is only local, figure 8.11 shows the estimated
δCm at the end of the simulation compared to a cross-section of the interpolated
lookup table value CZ(α, β, δe) at β = 0, which is a main contributor to the effect
of the center of gravity shift. The figure shows that the identifier only estimated
in the part of the envelope where the aircraft has flown, and that the estimation is
accurate.

The proposed control design with a single partition, i.e. one local model, for
the whole flight envelope has been simulated. The tracking performance of the
controller is of the same level as the partitioned controller as shown in figure 8.12,
however the scheme has less capability to store its estimated data for different
parts of the flight envelope. Although the single incremental model control design
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Figure 8.4: Tracking response for two different maneuvers executed at two different
flight conditions. The tracking response for the low altitude, slow flight is shown in
8.4(a) . The tracking response for the cruise altitude and velocity is shown in 8.4(b).
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Figure 8.5: Incremental model parameters estimated during the nominal tracking
maneuvers at two different flight conditions. The model parameters for low
altitude, slow flight, are shown in 8.5(a). The model parameters for cruise altitude
and velocity flight are shown in 8.5(b).
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Figure 8.6: The response of the aircraft for a sudden center of gravity shift after
6 seconds at low altitude, low speed flight is shown in 8.6(a). The control surface
deflections for the shifted center of gravity location at the top of 8.6(b), and the
nominal deflections the bottom.
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Figure 8.7: The response and tracking errors of the aircraft with non-adaptive
controller for a sudden center of gravity shift after 6 seconds at low altitude,
low speed flight are shown in 8.7(a). The control deflections for the aircraft with
changed c.g. location are shown at the top of 8.7(b), and the nominal deflections at
the bottom.
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Figure 8.8: Tracking errors for the adaptive control design (left) and non-adaptive
control design (right) for a sudden center of gravity shift.

0 10 20 30 40 50 60

−1

0

1

x 10
−9

ε V
t,ε

α,ε
β

0 10 20 30 40 50 60

0

5

10x 10
−4

t [sec]

ε p s, ε
q s,ε

r s

Figure 8.9: The filtered residuals for the adaptive controller for a sudden center of
gravity shift after 6 seconds.



170 CHAPTER 8. FULL ENVELOPE MODULAR ADAPTIVE CONTROL

is capable of approximating the incremental dynamics accurately over a limited
portion of the flight envelope, it will never yield a globally valid approximation
using the same model structure as is used in each of the partitions of the fully
partitioned flight envelope. This limitation is illustrated in figure 8.11, the single
partition controller achieves a good approximation of δCm for a small portion of the
complete envelope: it fits a tangent plane to the true function. The fully partitioned
envelope only approximates accurately in the visited part of the flight envelope,
and its estimate in the unvisited parts is equal to zero. Increasing the order and
complexity of the regressor would increase the approximation capabilities of the
identifier in the single partitioned case. Unfortunately, it is not always clear which
basis functions to include in the model such that the basis functions have phys-
ical interpretation, and increase the approximation capabilities. This problem is
approached in the next chapter through on-line structure selection.

Finally the results of one of the aileron experiments are shown: the case with a
full hard-over of the right aileron at the cruise altitude and velocity. The response
is shown in figure 8.13(a). Due to the reduced control authority around the lateral
axis, the aircraft is not able to track the roll command, tracking of the angle of
attack command is excellent however. Additionally, despite the locked aileron, the
sideslip angle is very small: in the order of a half degree. The estimated incremental
model parameters are shown in figure 8.14(a). Clearly the change in dynamics is
detected, and the identifier estimates mainly in the lateral directions. However, the
incremental model estimates do not yet converge to their true values, not enough
information to estimate the correct parameters can be obtained from the flown
maneuver. The control surface deflections are compared to the nominal case in
figure 8.13(b).

8.6 Conclusions

In this chapter a modular control design is presented for a high-fidelity nonlinear of
an F-16 aircraft. The controller is based on the backstepping approach, combined
with a orthogonal least squares identifier. The flight envelope is partitioned into
hyperboxes, in each of these hyperboxes a local linear-in-the-parameters model is
estimated, and using second-order B-spline interpolation a smooth model is ob-
tained for the complete flight envelope. The developed control design was tested in
three different simulation scenarios: a nominal scenario without failures, a sudden
shift of the center of gravity, and a full hard-over of right aileron.

Based on the simulations the following conclusions can be drawn.

• The performance of the adaptive control design is identical in the nominal
case as for a non-adaptive controller with the same tuning. An incremental
model to the on-board model is estimated to account for mismatch between
the true and modeled dynamics. If the input signals are sufficiently rich, this



8.6. CONCLUSIONS 171

0 20 40 60

0

2

4

x 10
−7

δ 
C

X

0 20 40 60
−6
−4
−2

0
2

x 10
−8

δ 
C

Y

0 20 40 60

0

10

20x 10
−6

δ 
C

Z

t [sec]

0 20 40 60
−2

0

2x 10
−3

δ 
C

l

0 20 40 60

0

5

10

δ 
C

m

0 20 40 60

−0.02

0

0.02

δ 
C

n

t [sec]

(a) Estimation for c.g. shift

0 10 20 30 40 50 60
0

10

20

# 
re

se
t p

ar
tit

io
ns

0 10 20 30 40 50 60

0

2

4

x 10
−4

t [s]

ψ

(b) Resetting and adaptive bounding for c.g. shift

Figure 8.10: The estimated incremental model parameters are shown in 8.10(a).
8.10(b) shows the number of partitions reset at a certain time instant at the top, and
at the bottom shows the adaptive bounding estimate ψ.
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Figure 8.12: Response and tracking error of the adaptive controller with single
partition incremental model for a sudden center of gravity shift after 6 seconds
at low altitude, low speed flight.
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Figure 8.13: The response of the aircraft after a full right aileron hardover occurring
after 7 seconds at high altitude, cruise speed flight is shown in 8.13(a). The control
surface deflections for the aircraft with full right aileron hard-over at the top of
8.13(b), and the nominal deflections the bottom.



174 CHAPTER 8. FULL ENVELOPE MODULAR ADAPTIVE CONTROL

0 20 40 60
−0.01

0

0.01

δ 
C

X

0 20 40 60
−0.04

−0.02

0

δ 
C

Y

0 20 40 60
−4
−2

0
2
4
6
8x 10

−4

δ 
C

Z

t [sec]

0 20 40 60

−0.5

0

0.5

δ 
C

l

0 20 40 60
−6
−4
−2

0
2
4x 10

−10

δ 
C

m

0 20 40 60
−0.1

0

0.1
δ 

C
n

t [sec]

(a) Estimation for aileron hardover

0 10 20 30 40 50 60
0

10

20

# 
re

se
t p

ar
tit

io
ns

0 10 20 30 40 50 60

0

5

10

x 10
−4

ψ

t [sec]

(b) Resetting and adaptive bounding for aileron hardover

Figure 8.14: The estimated incremental model parameters are shown in 8.14(a). The
number of partitions resetting at a certain time instant is shown at the top of 8.14(b),
and the bottom shows the adaptive bounding estimate ψ.
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incremental model approximates the difference between the a-priori model
and the true dynamics.

• In the simulation scenario with a sudden shift of the center of gravity in
longitudinal direction, tracking performance was excellent and the correct
change in the dynamics was estimated. The performance of the non-adaptive
control design degraded considerably.

• Longitudinal tracking performance was excellent while lateral tracking per-
formance was partially restored for the aileron failure scenario.

• Partitioning the flight envelope into smaller partitions allows the use of rel-
atively simple incremental models, and keeps the number of active identifier
states within acceptable bounds. Additionally, it helps to reduce the required
local model complexity to obtain an accurate fit to the true dynamics.

Improvements can be made on the control design as well.

• The lateral tracking performance was only partially restored in the case of an
aileron failure. If the estimated model can be used to predict the maneuvering
capabilities of the aircraft before and after failures, this information would be
incredibly valuable for the (auto)pilot.

• The structure of lookup-tables of the nominal F-16 model is highly similar
to that of the chosen local models. Hence, the design approach should also
be evaluated when this is not the case, possibly with automatic structure
selection of the local models.
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FULL ENVELOPE ADAPTIVE CONTROL

WITH STRUCTURE SELECTION AND

CONTROL ALLOCATION

In this chapter several techniques used in the preceding chapters are combined
to design an adaptive control design for the ADMIRE aircraft model. The
flight envelope partitioning approach from chapter 8 is extended with structure
selection in each partition, and then combined with the adaptive optimizing
control allocation approach from chapter 7. Simulation results are presented
for different failures and center of gravity shifts.

9.1 Introduction

For many indirect-adaptive flight control applications the model structure is con-
sidered fixed, and only aerodynamic parameters are estimated, for example by
means of a least-squares procedure. However, the model structure that has been
selected for the nominal design may be invalid during highly dynamic maneu-
vers and in post-failure situations. In these conditions, it is very probable that
the nominal model structure has to be extended with additional nonlinear and/or
coupling terms. Unfortunately, it is not known during the design which indepen-
dent variables will have a significant influence on the dependent variable in post
failure flight conditions. Inclusion of all possible regressor candidates (or indepen-
dent variables) in the regressor set will lead to many small coefficients with large
standard deviations. Additionally, these coefficients perturb the estimation of the
coefficients for the significant regressors and destroy the extrapolation properties

177
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[99]. Therefore, proper model identification including structure selection is nearly
unavoidable for aircraft with large changes or variations in their aerodynamics
due to for example component failures and airframe damage, especially for fault
diagnosis and isolation purposes.

The combined problem of structure selection and parameter estimation (SSPE)
can be stated as selecting a subset of regressor candidates and finding the corre-
sponding parameter estimate which adequately fits the data [26]. A possible ap-
proach to the SSPE problem is applying some optimal multiple selection method
based on the theory of hypothesis testing like stepwise regression[40, 85]. For on-
line applications however these methods are not suitable since the measurement
data becomes available sequentially. A suboptimal method based on orthogonal
decompositions and forward selection is more promising for on-line applications.
The idea of using OLS in nonlinear aerodynamic modeling problems is not new.
The similar idea of generating multivariate orthogonal modeling functions from
measured data, ranking those functions by fit error reduction capability, and using
the predicted square error (PSE) was developed by Klein and Morelli [85], Morelli
[121]. Moreover, orthogonal functions were used by Mulder [122] in optimization
of multi-dimensional input signals for dynamic flight test maneuvers. The use of
recursive OLS combined with model selection was introduced by Luo and Billings
[104]. This approach was used in combination with an NDI-design for a Boeing 747
aircraft by Lombaerts, Oort, Chu, Mulder, and Joosten [99].

In this chapter, first the equations of motion for a rigid body aircraft are revisited
in vector form. Then, a Lyapunov based control design is presented to control these
dynamics, including optimizing control allocation and parameter estimation based
on a composite update law. Then, a structure selection algorithm is introduced
based on orthogonal least squares decompositions. This approach is then extended
to full envelope modeling by partitioning the flight envelope into small partitions,
with a local incremental model in each model to be identified. Simulation results
are presented for the application of the resulting control design on the ADMIRE
model under different failure and flight conditions. Finally, conclusions are drawn
and some directions for future research are indicated.

9.2 Aircraft Dynamics and Problem Statement

The aircraft is assumed to be a rigid body with mass m and inertia tensor J. Its
motion will be described in a body-fixed coordinate system, with the origin at the
center of mass. Then, the aircraft dynamics can be described by

mV̇ = F − ω × mV (9.1)

Jω̇ = τ − ω × Jω (9.2)

where V is the velocity, and ω is the angular velocity. F is the external force
resulting from gravity, aerodynamics and engine thrust. τ is the external torque
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due to aerodynamics and engine thrust. The velocity vector can be decomposed
into

V = VTV̂ = VT





cos α cos β
sin β

sin α cos β



 (9.3)

Then, the velocity dynamics (9.1) can be split into a part related to the magnitude
of the vector, or total airspeed, as

V̇T =
V̂T F

m
(9.4)

and a part considering the direction of the vector

˙̂V = V̂ × F

mVT
× V̂ − ω × V̂. (9.5)

This description of the aircraft dynamics assumes that the external forces and
moments acting on the aircraft are completely known. However, even in the nom-
inal case this is not entirely true since there will nearly always exist a mismatch
between the true and the modeled aircraft dynamics. Therefore, the velocity vector
direction and angular velocity dynamics are rewritten as

˙̂V = V̂ × F0(t, x, u) + ϕT
F (t, x, u)θ + δF(t, x, u)

mVT
× V̂ − ω × V̂ (9.6)

Jω̇ = τ(t, x, u, θ)− ω × Jω (9.7)

where F0 represents the known or a-priori estimate of the external force, x is the
state of the system composed out of V̂ and ω, u are the control effector states or
inputs, ϕF is a known function, θ is an unknown constant parameter, and δF an
unknown smooth function representing function uncertainty. Additionally, there
exists a mapping from the control effectors u to the torque on the aircraft

τ(t, x, u, θ) = τ0(t, x, u) + ϕT
τ (t, x, u)θ + δτ(t, x, u) (9.8)

where τ0 is the a-priori estimate of the external moment, ϕτ a known function,
and δτ represents function uncertainty. The system dynamics can be described in
compact form by

ẋ = K(t, x, u, θ) (9.9)

If an actuator model is available, the effect of the actuators can be removed from
the tracking error in the command filtering approach by introducing an estimated
control effector state u with dynamics

u̇ = m(t, x, u, ud). (9.10)

where ud represents the commanded deflections.
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The control task is to track a reference signals for the direction of the velocity
vector and the velocity vector roll rate, or wind-axis roll rate. The available control
effectors are the control surfaces that generate aerodynamic forces and moments
on the aircraft, and the engine thrust. To handle the over-actuation of aircraft
with many control effectors, and the uncertainty in the model structure and model
parameters an adaptive backstepping approach with optimizing control allocation,
command filtering, and online structure selection is chosen.

9.3 Control Law Design

In this section the control law design is discussed. Many of the introduced back-
stepping design techniques in the preceding part of the dissertation come together
in the design. First a vectorized backstepping approach to velocity vector direc-
tion and roll-rate control is introduced when the aircraft dynamics are completely
known. Then, this control design is extended with command filters to remove the
need of analytical derivatives of the intermediate control laws. The filtered back-
stepping design is extended with parameter update law to estimate the unknown
parameter, and the optimizing control allocation approach from chapter 7. Finally,
the controller is made robust against the function uncertainty δ to reduce transient
response effects.

9.3.1 Vector Backstepping

The control goal is to track a reference signal for the direction of the velocity vector,
and the rotation rate around this velocity vector, or wind-axis roll-rate. First the
high level control design is made for the case that there is no uncertainty: θ =
0, δ = 0. The tracking errors are defined as

z1 = V̂ − V̂r (9.11)

z2 = ω − ωc (9.12)

where V̂r is the reference velocity vector direction, and ωr the reference angular
rate. A speed controller can be added by designing a desired throttle setting based
on equation (9.4). The first step is to design a control law which renders the origin

asymptotically stable when z2 = 0. Consider the CLF candidate W1 = 1
2 zT

1 z1 with
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time derivative

Ẇ1 = żT
1 z1

=
(

˙̂V − ˙̂Vr

)T (
V̂ − V̂r

)

=

(

V̂ × F0

mVT
× V̂ − ω × V̂ − ˙̂Vr

)T
(
V̂ − V̂r

)

=

(

V̂ × F0

mVT
× V̂ − z2 × V̂ − α1 × V̂ + ωV̂r

× V̂r

)T
(
V̂ − V̂r

)
(9.13)

such that with

α1 = ωc = −C1

(
V̂ × V̂r

)
− F0

mVT
× V̂ + ωV̂r

+ pWref
V̂, C1 = CT

1 > 0 (9.14)

the time derivative of W1 becomes

Ẇ1 =
(

−z2 × V̂ + C1

(
V̂ × V̂r

)
× V̂ − ωV̂r

× V̂ + ωV̂r
× V̂r

)T (
V̂ − V̂r

)

= −
(
V̂ × V̂r

)T
C1

(
V̂ × V̂r

)
< 0, V̂ 6= ±V̂r.

In this derivation the relation aT (b × c) = bT (c × a) = cT (a × b) has been used. In
the second step of the backstepping design a desired torque is designed. The CLF
is augmented with a term penalizing the angular rate tracking error

W2 = W1 +
1

2
zT

2 z2. (9.15)

The time derivative of this CLF along the solutions of (9.6), (9.7), and intermediate
control law (9.14) becomes

Ẇ2 = −
(
V̂ × V̂r

)T
C1

(
V̂ × V̂r

)
− zT

2

(
V̂ × z1

)

+ zT
2

(

J−1 (τ − ω × Jω)− ω̇c

)

(9.16)

which can be rendered negative definite by the choice

τdes = ω × Jω + J
(
V̂ × z1

)
+ Jα̇1 − JC2z2. (9.17)

With this choice of intermediate control laws, the CLF derivative becomes

Ẇ2 = −
(
V̂ × V̂r

)T
C1

(
V̂ × V̂r

)
− zT

2 C2z2 < 0, V̂ 6= ±V̂r, z2 6= 0.

showing UGAS of the origin of the tracking error system.
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9.3.2 Command Filtering

The backstepping design can be modified to include command filters, removing
the need for the analytic derivative of the virtual control law (9.14) and (9.17). The
effect of filtering the virtual control laws to produce their time derivatives, and
the effect of actuator dynamics is estimated by special filters. Define augmented
tracking errors as

z̄1 = z1 − Ξ1 (9.18)

z̄2 = z2 − Ξ2, (9.19)

and the filter dynamics become

Ξ̇1 = −C1V̂ × Ξ1 × V̂ − ωV̂r
× z1 − (ωc − ω0

c )× V̂ (9.20)

Ξ̇2 = −C2Ξ2 + J−1
(

τ(t, x, u, θ̂)− τ0
des

)

. (9.21)

where τ0
des is the desired torque, and τ is the estimated torque generated on the

aircraft at the current operating point. The derivative of α1 in (9.17) is replaced
with the derivative output of the filter

τ0
des = ω × Jω + J

(
V̂ × z1

)
+ Jω̇c − JC2z2. (9.22)

Then, the time-derivative of the CLF V2 = 1
2 z̄T

1 z̄1 +
1
2 z̄T

2 z̄2 becomes

V̇2 = −
(
V̂ ×

(
V̂r + Ξ1

))T
C1

(
V̂ ×

(
V̂r + Ξ1

))
− z̄T

2 C2z̄2 ≤ 0.

showing UGAS of the origin of the augmented tracking error system. If the filter
settings are chosen appropriately, the signals Ξ will be small, and therefore the
tracking error z will be small.

9.3.3 Optimizing Control Allocation

The desired torque τ cannot be directly commanded to the aircraft, it is influenced
by the control effectors. Since on modern aircraft there exist many different control
effectors some form of control allocation is required to distribute the desired torque
over the control effectors. This can be formulated as a static optimization problem
as done in (7.5) and transformed into a Lagrangian function (7.6) with assumptions
7.2. Suppose there exists a cost function J(t, x, ud), which together with the desired
torque can be transformed into the Lagrangian function

L(t, x, ud, λ, θ) = J(t, x, ud) + (τ(t, x, ud, θ)− τdes)
T λ. (9.23)

In the nominal situation, where θ and δ are assumed to be zero, introduce the OCLF

Vca(t, z̄, ud, λ) = σW2 +
1

2

(

∂LT

∂ud

∂L

∂ud
+

∂LT

∂λ

∂L

∂λ

)

, (9.24)
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which is an extension of the V2 with terms penalizing the first order derivatives of
a Lagrangian function with respect to the desired control effector signals, and the
Lagrangian parameter. The update laws for the control allocation part become

[
u̇d

λ̇

]

= −γH−1

[
∂L

∂ud
∂L
∂λ

]

− H−1uff (9.25)

where

H =








∂2L

∂u2
d

∂2L

∂λ∂ud

∂2L

∂ud∂λ
0








and

uff = H−1

[
∂2L

∂t∂ud

∂2L
∂t∂λ

]

+ H−1

[
∂2L

∂z̄∂ud

∂2L
∂z̄∂λ

]

(
K(t, x, u, θ)− ẋc − Ξ̇

)
.

With these update laws, the OCLF derivative becomes

V̇ca = −σ
2

∑
i=1

z̄T
i Ci z̄i −

[
∂L

∂ud
∂L
∂λ

]T

HΓcaH

[
∂L

∂ud
∂L
∂λ

]

.

9.3.4 Adaptive Optimizing Control Allocation

The design is now extended in two directions, the parametric uncertainty is taken
into account and the desired virtual control commands Mdes are transformed to
control effector commands ud based on the solution of an optimization problem.
The approach taken is identical to the adaptive control allocation schemes intro-
duced in chapter 7.

First, introduce the swapping filters required for the modular and composite
adaptive approaches when state derivative measurements are not available. The
swapping filter states are defined by

Ω̇0 = A (Ω0 + Gx)− f (t, x, u) (9.26)

Ω̇
T = AΩ

T + FT(t, x, u) (9.27)

where

G =

[
I3 0
0 J

]

,

f (t, x, u) =

[

V̂ × F0
mVT

× V̂ − ω × V̂

τ0 − ω × Jω

]

,

FT(t, x, u) =

[

V̂ × ϕT
F

mVT
× V̂

ϕT
τ

]

.
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The estimation error is defined as

ǫ = (Ω0 + Gx)− Ω
T θ̂ = Ω

T θ̃ + ǫ̃. (9.28)

The matrix A is negative definite, and defined as in (7.26). With the parameter
estimate available, the intermediate control law is modified to cancel the estimated
incremental force in (9.6) and a nonlinear damping term

α1 = −(C1 + S1)
(
V̂ × V̂r

)
− F0 + ϕT

F θ̂

mVT
× V̂ + ωV̂r

+ pWref
, (9.29)

where

S1 =

(

V̂×
ϕT

F

mVT

)T

κ1

(

V̂×
ϕT

F

mVT

)

, κ1 = κT
1 > 0.

Additionally, nonlinear damping is added to the desired torque

τ0
des = ω × Jω + J

(
V̂ × z1

)
+ Jω̇c − J(C2 + S2)z2 (9.30)

where
S2 = J−1 ϕT

τ κ2 ϕτ J−T , κ2 = κT
2 > 0.

Then, the OCLF is extended with a term penalizing the estimation error θ̃, and the

residual ǫ̃ = Ω0 + Gx − Ω
Tθ, resulting in an AOCLF. With the time derivative of

this AOCLF the composite update law for the parameter estimate θ̂ can be designed

Vcomp = Vca +
1

2
θ̃T

Γ
−1
θ θ̃ +

1

2
ǫ̃TPΨǫ̃ (9.31)

where Ψ = Ψ
T
> 0 is a weight matrix to control how the adaptation law should

weight information from the tracking error relative to the information coming from
the estimation error. The resulting composite update law is

˙̂θ = Γθ

(

σ
ϕF

mVT
V̂T
× z̄1 + ϕτ

(

J−T z̄2 +
∂2LT

∂x∂ud

∂L

∂ud
+

∂2LT

∂x∂λ

∂L

∂λ

)

+ ΩΨǫ

)

, (9.32)

with the update of Γθ defined as

Γ̇θ = −ΓθΩΨΩ
T

Γθ + λΓθ , λ ≥ 0. (9.33)

Since the parameter estimate is now time-varying, it is included in the feed-forward
path of the optimizing control allocation update laws, additionally nonlinear damp-
ing terms are added to the design to improve the transient response. The adaptive
optimizing control allocation update laws become

[
u̇d
λ

]

= −ΓcaH

[
∂L

∂ud
∂L
∂λ

]

− H−1 (uff + uκ) (9.34)
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with

uff =

[
∂2L

∂t∂ud

∂2L
∂t∂λ

]

+

[
∂2L

∂z̄∂ud

∂2L
∂z̄∂λ

]

(
K(t, x, u, θ̂)− ẋc − Ξ̇

)
+





∂2L
∂θ̂∂ud

∂2L
∂θ̂∂λ



 ˙̂θ

uκ =

[
∂2L

∂x∂ud

∂2L
∂x∂λ

]T

J−1 ϕT
τ κu ϕτ J−T

[
∂2L

∂x∂ud

∂2L
∂x∂λ

] [
∂L

∂ud
∂L
∂λ

]

.

The Ξ filters are additionally modified to guarantee global boundedness of the
augmented tracking error:

Ξ̇1 = −(C1 + S1)V̂ × Ξ1 × V̂ − ωV̂r
× z1 −

(

ωc − ω0
c

)

× V̂ (9.35)

Ξ̇2 = −(C2 + S2)Ξ2 + J−1
(

τ(t, x, u, θ̂)− τ0
des

)

. (9.36)

The resulting AOCLF derivative becomes

V̇comp ≤ −σ
n

∑
i=1

z̄T
i Ci z̄i −

1

2
ǫT

Ψǫ +
1

4
θ̃T
(

σκ−1
1 + σκ−1

2 + κ−1
u

)

θ̃

−
[

∂L
∂ud
∂L
∂λ

]T

HΓcaH

[
∂L

∂ud
∂L
∂λ

]

(9.37)

which shows boundedness of the augmented tracking error, the residual error, and
the first order partial derivatives of the Lagrangian function with respect to the
parameter estimation error.

9.3.5 Nonparameteric Robustness Modification

There is no guarantee that the model structure selected in the structure selection
process correctly captures the structure of the aircraft’s dynamics at each time in-
stant. This modeling error results in function uncertainty which can potentially
destroy the claims about stability of the resulting closed-loop system. Therefore,
the control design is augmented with robustifying terms similar to the robust back-
stepping approach of section 3.4.

Add robustness improving terms in the intermediate control law α0
1 and the

control allocation update law to guarantee boundedness of the tracking error, and
the partial derivatives with respect to the function uncertainty δ

α0
1 = −

(

C1 + S1 + SδF

) (
V̂ × V̂r

)
− F0 + ϕT

F θ̂

mVT
× V̂ + ωV̂r

+ pWref
(9.38)

τ0
des = ω × Jω + JV̂ × z1 + Jω̇c − J(C2 + S2)z2 (9.39)

uκ =

[
∂2L

∂x∂ud

∂2L
∂x∂λ

]T

J−1
(

κδu
+ ϕT

τ κu ϕτ

)

J−T

[
∂2L

∂x∂ud

∂2L
∂x∂λ

] [
∂L

∂ud
∂L
∂λ

]

(9.40)
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with

SδF
=

V̂×
mVT

κδF

V̂×
mVT

S2 = J−1κ2 J−T .

The Ξ-filters are also modified to achieve the desired closed-loop stability

Ξ̇1 = −(C1 + S1 + SδF
)Ξ1 − ωV̂r

× z1 −
(

ωc − ω0
c

)

× V̂ (9.41)

Ξ̇2 = −(C2 + S2)Ξ2 +
(

τ(t, x, u, θ̂)− τ0
des

)

(9.42)

The AOCLF derivative becomes

V̇comp ≤ −σ
n

∑
i=1

z̄T
i Ci z̄i −

1

2
ǫT

Ψǫ +
1

4
θ̃T
(

σκ−1
1 + κ−1

u

)

θ̃

−
[

∂L
∂ud
∂L
∂λ

]T

HΓcaH

[
∂L

∂ud
∂L
∂λ

]

+
1

4
δT

F κ−1
δF

δF +
1

4
δT

τ

(

σκ−1
2 + κ−1

δu

)

δτ .

(9.43)

showing boundedness of the augmented tracking error, the residual, and the first
order partial derivatives of the Lagrangian function with respect to the parameter
estimation error, and the function uncertainty.

9.4 Model Structure Selection and Identification

A control law has been designed which is able to stabilize the aircraft when a
nominal and incremental aerodynamic model are available. The remaining task
is to select the structure of the incremental model such that the combination of the
nominal model and the incremental model matches the actual aircraft dynamics.
Most structure selection approaches are based on an orthogonal decomposition of
the regressor matrix Φ, and essentially seek to include the regressor candidates that
have a have correlation to the dependent variable. The procedure is equivalent to
pivoting, a very common technique in linear algebra.

9.4.1 Least Squares and Orthogonal Decompositions

The numerical solution of a linear least squares problem through orthogonal de-
composition of the matrix Φ is well established and will be shown here for discrete

signals. For discrete signals, denote by Φ̂
T =

[

Φ
T y
]

the n × (m + 1) matrix formed

by adjoining Φ
T and y. Suppose that this matrix can be decomposed as Φ̂

T = Q̂R̂,
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where R̂ is an upper triangular (m + 1)× (m + 1) matrix, and Q̂ is an n × (m + 1)
matrix with orthogonal matrix. Write Q̂ = [Q q] and

R̂ =

[
R r
0 r̂

]

then the decomposition Φ̂
T = Q̂R̂ can be written as [Φ y] = [Q q] R̂ with Φ

T = QR

and y = Qr + r̂q. Since the columns of Q̂ are orthogonal, qTQ = 0, and the norm of
the residual can be written as

‖Φ
Tθ − y‖2 = (ΦTθ − y)T(ΦTθ − y)

= (QRθ − Qr − r̂q)T (QRθ − Qr − r̂q)

= (QRθ − Qr)T (QRθ − Qr) + r̂2qTq − 2r̂qTQ (Rθ − r)

= ‖Q (Rθ − r) ‖2 + r̂2‖q‖2. (9.44)

Therefore, if θ⋆ satisfies Rθ⋆ = r, then θ⋆ minimizes the norm of Φ
Tθ − y. Since

R is upper triangular, the equation Rθ⋆ = r can be easily solved for the parameter
estimate θ⋆ by backsubstitution.

9.4.2 Error Analysis

Before introducing the model structure selection procedure, the effects of ignoring

columns of Φ
T on the error of the least squares solution are analyzed. First, from

(9.44), it follows that the residual squared error is r̂2‖q‖2 when Rθ⋆ = r. Suppose

that only the first ms columns of Φ
T have been selected, and the remaining m − ms

are ignored. If necessary, the selected columns of Φ
T can be moved to the first

ms columns by permutation of the matrix Φ
T . These columns are denoted Φ

T
s ,

and the remaining columns are Φ
T
e , such that Φ

T =
[

Φ
T
s Φ

T
e

]

. Similarly, partition

Q = [Qs Qe]. Let θs and rs be the first ms elements of θ and r, respectively, and θe

and re the remaining elements. The orthogonal decomposition of Φ̂
T then becomes

[

Φ
T
s Φ

T
e y

]

=
[

Qs Qe q
]





Rs Rse rs
0 Re re
0 0 r̂



 .

Therefore y = Qsrs + Qere + r̂q. Setting θe = 0, (9.44) can be written as

‖Φ
Tθ − y‖2 = ‖Qs (Rsθs − rs) ‖2 + ‖Qere‖2 + r̂2‖q‖2. (9.45)

A minimum is achieved when θs = R−1
s rs. Note that this is not the same as simply

setting the last m − ms terms of θ⋆ to zero, since θ⋆ = R−1
s

(

rs − RseR−1
e re

)

. The
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columns of Qe are just q̂ms+1, . . . , q̂m and therefore

‖Qere‖2 + r̂2‖q‖2 =
m

∑
i=ms+1

ri + r̂2,

where ri is the ith component of r = [rs re]. Thus, ri is the length of the projection of
y onto the ith column of Q. It can be interpreted as the change in error by switching
from keeping the first i − 1 columns, to keeping the first i.

9.4.3 Model Structure Selection

The error analysis forms the basis of the selection techniques used by Billings,
Korenberg, and Chen [12], Chen, Billings, and Luo [26], Korenberg, Billings, Liu,

and McIloy [86], Stark [170]. Suppose that at the ith selection step several columns
have been chosen already q̂1, . . . , q̂i−1, and recall that q̂i is a scalar multiple of

the projection of Φ̂
T
i onto the orthogonal complement of the space spanned by

q̂1, . . . , q̂i−1. The order of the columns of Φ
T is essentially arbitrary, hence there is

nothing special about Φ̂i. Therefore, it might be better to use one of the remaining

columns Φ̂
T
i , . . . , Φ̂

T
m to construct q̂i. Billings, Korenberg, and Chen [12] point

out that (9.44) suggests that Φ̂
T
ji T from Φ̂

T
i , . . . , Φ̂

T
m to maximize the resulting ri.

Incorporation of Φ̃
T
ji then leads to largest decrease in the residual error. Introduce

an orthonormal permutation matrix Π such that Φ
T = QRΠ

T . The matrix Π is the
composition of ms transpositions, one each for each selection step of the algorithm.

The mth
s transposition swaps the mth

s and ithms
columns of Φ̂

T . Note that the last

column of Φ̂
T always contains the data to be fitted, and hence plays a special role.

Several criteria can be used to decide how many columns have to be incorpo-
rated in the model, i.e. when to terminate the model selection procedure. Several
stopping criteria haven been suggested in literature. Chen, Billings, and Luo [26],
Stark [170] suggest selecting ms so that

1 −
ms

∑
i=1

[ERR]i ≤ µ, µ ∈ [0, 1] (9.46)

such that the model given by the first ms columns explains all but a proportion µ of
the variation in y. More sophisticated tests are based on variations of Akaike’s
Information Criterion (AIC) . A good overview of different candidate stopping
criteria and their comparison is given by Barron [9], de Gooijer, Abraham, Gould,
and Robinson [35], Mendes and Billings [113]. The resulting structure selection

scheme operating on Φ̂
T is summarized in algorithm 1.
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Algorithm 1: Forward Structure Selection on Φ
T .

begin
ms = 0
repeat

ms = ms + 1
for j = ms → m do

q
(ms)
j = ϕj − ∑

ms−1
i=1

ϕT
j qi

qT
i qi

qi

[ERR]
(ms)
j =

(

yTq
(ms)

j

)2

yTy

(

q
(ms)

j

)T

q
(ms)

j

end

ims
= arg maxms≤j≤m [ERR]

(ms)
j

[ERR]ms
= [ERR]

(ms)
ims

qms
= q

(ms)
ims

Swap mth
s and ithms

columns of Φ
T

Swap mth
s and ithms

columns of Π

until stopping criterion is satisfied or ms = m

end

9.4.4 Selection on the Cholesky and QR Factorizations

The model structure selection scheme is very closely related to orthogonal decom-

position. Suppose that the regressor matrix Φ
T is premultiplied by an orthogonal

matrix P. Clearly, the orthogonal decomposition of P̂Φ̂
T = Q̃R̃ with Q̃ = P̂Q̂ and

R̃ = R̂. Thus, the upper triangular part of the decomposition is invariant under

orthogonal coordinate changes. If the special selection P̂ = Q̂−1 is made, then

P̂Φ̂
T = R̂ and structure selection can be applied on R̂ directly, yielding the same

column selection as performing structure selection on Φ
T [170]. Note that only the

matrix R has to be updated recursively in an on-line scheme, tracking the matrix Q̂
is not necessary, reducing the required amount of storage.

The Cholesky factorization of the matrix Φ̂
T is closely related to the Gram-

Schmidt factorization. The inverse of this matrix is also upper triangular and is

denoted by S, the Cholesky Inverse Root (CIR) of Φ̂
T . The CIR has several impor-

tant statistical properties for model structure selection [69]

Property 9.1. In the ith column of S, r2
i = s−2

ii is the residual sum of squares when xi is
regressed on the set x1, . . . , xi−1. The coefficient related to xj in this regression is −sji/sii.
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Property 9.2. If k > i, the residual sum of squares of the regression of xi on
(x1, . . . , xi−1, xi+1, . . . , xk) is

r2
i =

(
k

∑
j=i

s2
ij

)−1

(9.47)

Property 9.3. If M is any diagonal matrix and y = Mx, then the CIR of y is SM−1 and
scale changes have an innocuous effect on the CIR.

These properties can be used for structure selection using only the matrix Ŝ. At

the kth stage of the selection process, pivot the data row to the row below the
selected regressor column and retriangularize the matrix. Then, the residual sum
of squares for the model including the regressor located at the row below the data
row can be calculated using property 9.2. By means of row permutations and re-
triangularization the regressor can be added to the set of selected regressors which
yields the largest reduction in the residual sum of squares. The resulting structure
selection procedure is summarized in algorithm 2. Note that in the structure selec-
tion algorithm on the CIR the data row is swapped to directly after the the selected
regressors.

Algorithm 2: Structure Selection on CIR.

begin
ms = 0
repeat

ms = ms + 1

Swap data row to row ms and retriangularize Ŝ

Swap (ms − 1)th and mth
s columns of Π

for k = ms + 1 → m do

Swap row k to row ms + 1 and retriangularize Ŝ

r
(ms)
k =

(

s2
ms,ms

+ s2
ms,ms+1

)−1

end

ims
= arg minms+1≤k≤m r

(ms)
k

Swap row ims
to row ms

Swap mth
s and ithms

columns of Π

until stopping criterion is satisfied or ms = m

end
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9.4.5 Updating the Decomposition

Since data becomes available in a continuous stream during on-line operations
and the model structure selection operates only on the triangular parts of the de-
composition, the triangular part has to be updated continuously with the new

information. The derivative of the correlation matrix N̂ = Φ̂
T

Φ̂ = ΠRTRΠ
T is

given by
˙̂N = ϕ̂T ϕ̂ − λN̂ (9.48)

where ϕ̂T =
[

Ω
T (Ω0 + Gx)

]

. Then, the derivative of the Cholesky factor R is

given by

˙̂R = upph
(

R̂−T
Π

T ϕ̂ϕ̂T
ΠR̂−1

)

R̂ − λ

2
R̂. (9.49)

where upph, the upper triangular half-part, is defined by

Y = upph(X) ⇐⇒







yi,j = xi,j i < j

yi,j =
1
2 xi,j i = j

yi,j = 0 i > j

. (9.50)

This update requires on-line matrix inversion which can be avoided by considering
the inverse of the matrix R̂, or the CIR. The update for the CIR is defined as

˙̂S = −Ŝ upph
(

ŜT
Π

T ϕ̂ϕ̂T
ΠŜ
)

+
λ

2
Ŝ, (9.51)

with the additional advantage that θ̂ can be extracted very easily through property
9.1.

Since the designed law design in the previous section also contains a direct up-
date component, this has to be added to the update of the matrix Ŝ. The parameter

estimate is effectively contained in the (ms + 1)th column of the matrix Ŝ and hence
only that column of the matrix is affected. The direct part of the update law is
defined by

˙̂θdirect = Γθ

(

Π1:ms,⋆

)T
(

σ
ϕF

mVT
V̂T
× z̄1 + ϕτ

(

∂2LT

∂x∂ud

∂L

∂ud
+

∂2LT

∂x∂λ

∂L

∂λ

))

(9.52)

where Γθ is defined by Ŝms,ms
ŜT

ms,ms
, the product of the upper-left block of size ms ×

ms of the matrix Ŝ with its transpose. This direct update is added in the least square

update to the first ms elements of the (ms + 1)th column of the matrix Ŝ as

− ˙̂θdirectŜms+1,ms+1. (9.53)
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9.5 Full Envelope Aerodynamic Modeling

The estimation and structure selection method introduced above could be used to
fit a model to the complete dynamics of an aircraft over the whole flight envelope.
For complex aircraft dynamics with many control effectors, the required set of
regressors to accurately model the dynamics would become incredibly large. For
such large size models, the covariance matrix would become very large since its
number of elements scales quadratically with increasing model size, increasing
the computational load of the identification scheme dramatically. Therefore an
approach is taken which splits the complete flight envelope into partitions with
a locally valid model in each partition. The output of these models is combined
using smooth interpolation functions. It is desired to only update the model in the
active part of the flight envelope to limit the computational requirements. Therefore
interpolating functions with local support are selected, resulting in a local receptive
field approach.

9.5.1 Local Model Structure

For an accurate fit of the total aerodynamic model for the aircraft, there is a trade-
off between the local model complexity or number of regressor candidates, and the
total number of partitions required. On the other hand, the structure of the local
models can be used to extract information about the system behavior. As an exam-
ple, the sign of the aerodynamic derivative Cmα

can be used to make claims about

the static stability of an aircraft. Besides the linear independent variables com-
monly found in aerodynamic models, there are also nonlinear and cross-coupling
regressor candidates. Especially for aircraft with damage, the coupling between the
longitudinal and lateral modes becomes stronger, requiring inclusion of additional
coupled regressor candidates in the model. As a compromise between the local
model complexity and the total number of partitions required Taylor expansion
terms up to second order can be included. Then, the following set of regressor
candidates for each total force and moment coefficient is obtained

• longitudinal linear: 1, α,
qB c̄
2VT

and longitudinal control surface deflections such

as δe,

• longitudinal nonlinear: α2, α
qB c̄
2VT

, αδe,

• lateral linear: β,
pBb
2VT

,
rBb
2VT

and lateral control surface deflections such as δa and

δr,

• lateral nonlinear: β2, β
pBb
2VT

, β
rBb
2VT

, βδa, βδr,

• coupled nonlinear: αβ, α
pBb
2VT

, β
qB c̄
2VT

, α
rBb
2VT

, αδa, βδe, αδr.
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When an aircraft has more control effectors, their aerodynamic contribution can be
included in similar fashion as done for the common control surfaces. It is possible
to enforce a specific order in which the model structure candidates are allowed to
enter the selection process. For example, it seems logical to first include linear terms
in the regression before considering the nonlinear terms [96].

9.5.2 Local Model Updating and Resetting

The norm of the residual error ǫ is filtered by a low-pass filter to remove faulty
measurements and noise. Based on this filtered residual the required action for
the partition is selected. If the filtered residual is above the threshold η1, structure
selection is performed for the partition. When the filtered residual exceeds a second
threshold η2 and the standard deviation of all coefficients included in the model is
below the third threshold η3, all measurement data is thrown away by resetting the
partition. If the standard deviation is small, and there is a large residual, a change
in the system dynamics is indicated. Furthermore, structure selection is performed
when a partition has been active for a certain amount of time Tss, and the time the
partition has been active is reset to zero. This results in regular structure selection,
even if the residual error is small for the current model. If the residual falls below
the threshold ǫmin, no (additional) regressors are selected, regardless of whether
the stopping criterion is satisfied or not.

9.6 ADMIRE Application and Simulation Results

The ADMIRE is a generic model of a small single-seat fighter aircraft with a delta-
canard configuration. Available control effectors are the right and left canard, lead-
ing edge flaps, four elevons, rudder and throttle setting. The aerodynamic model
is based on the Generic Aerodata Model (GAM) developed by Saab AB available
as aerodata tables with associated interpolation routines and algorithms. The aero-
data varies with Mach number, and contains static aeroelastic effects as well as cou-
pling between lateral and longitudinal dynamics. The model has been discussed in
more detail in chapter 5, and the full details can be found in [60].

9.6.1 Controller Tuning

A simple quadratic cost function with barrier functions to implement magnitude
constraints on the desired control effector signals is used. This cost function is
defined as

J(ud) = uT
dWud − w ln

(
ud − ud,min

)
− w ln

(
ud,max − ud

)
(9.54)

where W = WT
> 0 and w = wT

> 0 are tuning gains, ud,min and ud,max represent
the lower and upper bounds on ud respectively. The tuning parameters of the
controller are specified in table 9.1. Covariance resetting when a change is detected
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Table 9.1: ADMIRE Controller Tuning Parameters.

Parameter Setting
C1 2I3
C2 5I3
Ψ 10I3
γ 50
w 0.1 · diag (2 2 1 1 1 1 0.5 1)
W 1000 · diag (2 2 1 1 1 1 0.5 1)
A0 −100I3

κ 1 × 10−3 I42
η1 0.1
η2 0.5
η3 10
Tss 10

S0 1 × 10−7 I42
Sreset 10I42
λ 0.1
ωǫ 50.0

ǫmin 1 × 10−12

Table 9.2: Reference Filter Parameters.

Variable Bandwidth Damping
VT 0.5 1.0
α 2.0 1.0
β 2.0 1.0

pW 4.0 1.0
ωc 10.0 1.0

has been applied. The reference filters for the aerodynamic angles, and angular
rates haven been chosen according to table 9.2.

9.6.2 Incremental Aerodynamic Model

The flight envelope has been partitioned in three dimensions: the angle of attack,
sideslip angle, and the Mach number using B-spline basis functions as discussed
in chapter 8. The partitioning structure is shown in table 9.3. This partitioning has
been chosen since the step size for the angle of attack and sideslip angle resulted
in adequate performance for the F-16 aircraft model. Second order interpolation is
used for angle of attack and sideslip to achieve smooth and continuous transition



9.6. ADMIRE APPLICATION AND SIMULATION RESULTS 195

Table 9.3: Flight Envelope Partitioning.

Variable Knots Order Hyperbox Partitions
Angle of attack [−20 − 20 − 20 − 15 − 10 · · · 80 85 90 90 90] 2 24
Sideslip angle [−30 − 30 − 30 − 25 − 20 · · · 20 25 30 30 30] 2 14
Mach number [0 0 0.4 0.5 1.0 1.5 3 3] 1 6
Total 2016

between partitions. The knot locations for the Mach partitioning have been chosen
to roughly match the structure in the aerodynamic model of the aircraft, first order
interpolation is used to have continuity in the model parameters between parti-
tions. A finer partitioning for the Mach number can be chosen in the high subsonic
and transonic region if a change in control strategy is implemented, for example a
switch to load-factor control.

The local model structure is relatively simple and consists of 42 candidate re-
gressors, 14 for each component of the torque vector. The candidate regressor
variables are the 8 individual actuator deflections, the 3 dimensionless angular
rotation rates in the body axes, the 2 aerodynamic angles, and a bias term for each
of the components of the torque vector.

9.6.3 Nominal Simulation Results

First of all nominal simulation results are presented to show the capabilities of the
control design on the nominal aircraft. A maneuver is flown at low airspeed, M =
0.3, at 1000m altitude, with simultaneous pitching and rolling of the aircraft. The
resulting aircraft response is shown in figure 9.1 and the associated commanded
and realized actuator signals are shown in figure 9.2. The reference signals are
tracked accurately, and during the maneuver the sideslip angle is kept within ±1
degree. The actuator commands are well within their magnitude bounds and hence
there is room to accommodate actuator failures. In figure 9.3 the Euler angles are
shown, and an impression of the flown maneuver is shown in figure 9.4. The
maneuver is a velocity vector roll, followed by a pitch and simultaneous velocity
vector roll in the opposite direction returning to return to level flight.

9.6.4 Changes in Aerodynamic Coefficients

The structure selection and estimation capabilities of the adaptive controller are
first tested by introducing a failure which can be completed accommodated by the
set of available regressor candidates. After two seconds in the simulation, a failure
is introduced which decreases the static stability coefficient Cmα

by 0.2, and the

pitch stability coefficient Cmq
by 0.3. This change causes a bias in the angle of attack

tracking response of the nominal controller which is not shown here. The response
of the adaptive controller is shown in figure 9.5. Comparing with the nominal re-
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Figure 9.1: Aircraft response in the nominal case with non-adaptive controller.

sponse of figure 9.1, the change in the aerodynamic coefficients is hardly noticeable
because the controller rapidly detects the change, and resets the active partitions to
quickly estimate the incremental aerodynamic model. Figure 9.6 shows the control
deflections, which are considerably smaller compared with the control deflections
required in the nominal case as seen in figure 9.2. Finally, the estimation results
are shown in figure 9.7. A clear peak is visible in the residual error directly after
introducing the change in the coefficients. During the maneuver the parameters
are estimated, and by the end of the simulation the correct structure and parameter
values have been identified. The variation in the estimated parameter after 27
seconds is explained by the fact that the aircraft enters a different part of the flight
envelope, where no incremental model has been identified yet.

9.6.5 Actuator Failures

Two different actuator failures are considered. First, a lock of the right canard
and right outer elevon at their center position of 0 degrees after two seconds in
the simulation. This causes a small positive rolling moment and a small negative
pitching moment due to the imbalance between the left and right sides of the
aircraft. The maneuver is flown at a velocity ranging from 100 m/s at the start of the
simulation to 180 m/s at the end. The response of the aircraft is shown in figure 9.8,
the actuator commands and realized deflections in figure 9.9. Finally, the estimated
incremental model parameters and residual error are shown in figure 9.10. The
tracking performance is very good despite the lock of the surfaces at their center
position. The desired control torque is realized by the remaining functional control
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Figure 9.2: Actuator commands and deflections in the nominal case with non-
adaptive controller.

surfaces as can be seen by comparing figures 9.2 and 9.9. During the maneuver the
residual errors converge to a small neighborhood around zero.

Secondly, an actuator failure is considered which suddenly lets the right outer
elevon deflect to 15 degrees trailing edge up. This causes a rolling moment to
the right. This failure is identified rapidly by the identifier as seen in figure 9.13,
although there still exists a residual error after identification. This indicates that
this failure cannot be fully accommodated within the chosen set of regressor can-
didates. Hence, either a larger set of regressor candidates has to be chosen, or a
finer partitioning of the flight envelope has to be made. The tracking response is
excellent despite the residual error as shown in figure 9.11. The resulting control
effector commands and realized signals are shown in figure 9.12.

9.6.6 Center of Gravity Shift

As the last “failure” condition, a sudden center of gravity shift is introduced into
the system. A mismatch between the real aircraft’s center of gravity and the esti-
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Figure 9.3: Euler angles for the nominal case with non-adaptive controller.

Figure 9.4: Impression of the trajectory flown by the aircraft.
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Figure 9.5: Aircraft response with adaptive controller for a sudden change in the
pitch stability coefficients.

mated location of the center of gravity used by the control law can be caused by
a faulty fuel or weapon-store sensor, or damage to the airframe. Especially for
model inversion controllers without adaptation, these kind of failures result in bad
tracking performance or even instability [164, 197, 199]. The center of gravity is
shifted 20 cm forwards and 10 cm to the left with respect to its original location,
additionally the aerodynamic model of the pitching moment is changed by modi-
fying the pitch stability coefficients with opposite signs. The center of gravity shift
causes increased coupling between the longitudinal and lateral axes of the aircraft,
leading to a deterioration of tracking performance of the non-adaptive controller.
The response of the aircraft with adaptive controller is shown in figure 9.14. Clearly,
the tracking performance is still excellent. A considerable change in control effector
activation compared to the nominal case can be observed by comparing figures 9.15
and 9.2. The estimated parameters and the residual error are shown in figure 9.16.
Quite a large number of regressors is selected to accurately model the influence of
the aerodynamic force on the aerodynamic moments due to the mismatch between
the aerodynamic center and the center of gravity.

9.7 Conclusions

In this chapter many design techniques introduced during the preceding part of
the dissertation are brought together to create a controller which is able to achieve
excellent tracking performance for nonlinear, over-actuated, aircraft. The controller
is designed within the backstepping framework and combines a high level control
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Figure 9.6: Actuator commands and deflections of the aircraft with adaptive
controller for a sudden change in the pitch stability coefficients.

design with dynamic optimizing control allocation using a composite update law
for estimation of the unknown parameter. The flight envelope has been divided
into a smaller partitions, for each partition a locally valid model is created. Both the
structure and model parameter values are identified on-line based on a orthogonal
least squares identification scheme. Global stability of the closed-loop system, and
convergence of the estimated parameter can be proven using a single Lyapunov
function. The control design is evaluated with numerical simulations. Based on
these simulation results, several observations can be made.

• The proposed control design shows excellent performance for a variety of
simulated fault and failure cases ranging from a simple change in the aerody-
namic coefficients, to actuator failures and center of gravity shifts. The track-
ing performance of non-adaptive model based control designs deteriorates
significantly for these kinds of failures.

• When the failure is in the space spanned by the set of available regressor can-
didates, the correct model structure can be identified, and the correct param-
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Figure 9.7: Estimated parameters and residual error for a sudden change in the
pitch stability coefficients.
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Figure 9.8: Aircraft response with adaptive controller for a sudden lock of the right
canard and outer elevon.
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Figure 9.9: Actuator commands and deflections of the aircraft with adaptive
controller for a sudden lock of the right canard and outer elevon.

eter values are estimated if a persistency of excitation condition is satisfied.
Even if the failure cannot be completely characterized by the available set of
regressor candidates, tracking performance can be very good as long as the
residual error between the estimated model and the true behavior is small.

• Splitting the complete flight envelope into smaller partitions allows real-time
implementation of the control design, and the identified information can be
stored efficiently for later use, when the same part of the envelope is visited
again.

• Tuning of the controller is straightforward since the update gain of the pa-
rameter adaptation is tuned automatically by the least squares filter, and the
remaining tuning parameters can be chosen independently. However, care
has to be taken in the selection of the structure selection and covariance reset-
ting parameters.

The control design presented can be extended in different directions for future
research.



9.7. CONCLUSIONS 203

0 10 20 30 40 50

−0.4

−0.2

0

0.2

0.4

 

 

0 10 20 30 40 50
−1

−0.5

0

0.5

1

 

 
t [sec]

θ̂
[-

]

θ̂L

θ̂M

θ̂N

t [sec]

ǫ
[-

]

ǫL

ǫM

ǫN

Figure 9.10: Estimated parameters and residual error for a sudden lock of the right
canard and outer elevon.
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Figure 9.11: Aircraft response with adaptive controller for a sudden lock of the
right outer elevon at 15 degrees.
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Figure 9.12: Actuator commands and deflections of the aircraft with adaptive
controller for a sudden lock of the right outer elevon at 15 degrees.

• Implement a more advanced control allocation scheme by including control
effector rates and constraints in the cost function such that for demanding
maneuvers the full capabilities of the control effectors are used. An example
of such demanding maneuvers would be high angle of attack maneuvering
at low-airspeed using thrust vectoring.

• Extend the cost function and the control design with airspeed control such
that for example at cruise the control deflections can be chosen which mini-
mize the aircraft drag and hence minimizing fuel consumption.

• Investigate the trade-off between local model structure and level of partition-
ing required to accurately model the aircraft dynamics over the full enve-
lope. Increasing the number of regressor candidates causes the number of
identifier states to increase in quadratic order, increasing the computational
load. Therefore, this investigation is very important before attempting online
applications.
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Figure 9.13: Estimated parameters and residual error for a sudden lock of the right
outer elevon at 15 degrees.
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Figure 9.14: Aircraft response with adaptive controller for a sudden center of
gravity shift.



206 CHAPTER 9. ADAPTIVE CONTROL WITH STRUCTURE SELECTION

0 10 20 30 40 50
−30

−20

−10

0

10

20

 

 

0 10 20 30 40 50

−20

0

20

 

 

0 10 20 30 40 50
−5

01

5

10

 

 

t [sec]

ca
n

ar
d

s,
ru

d
d

er
[d

eg
]

δrc

δlc

δr

t [sec]

el
ev

o
n

s
[d

eg
] δroe

δrie

δlie

δloe

t [sec]

le
f,

th
ro

tt
le

,[
d

eg
,-

]

δle f

δT

Figure 9.15: Actuator commands and deflections of the aircraft with adaptive
controller for a sudden center of gravity shift.

• Modify the control design such that for higher Mach numbers instead of angle
of attack the normal load factor is controlled. Simultaneously, the desired
response of the aircraft can be scheduled over the flight envelope for the best
possible handling qualities.

• Extend the set of regressor candidates with longitudinal/lateral coupling and
nonlinear terms, and additionally estimate an incremental aerodynamic force
model.

• Another interesting option is to replace the tensor B-spline partitioning with
local models to model the aerodynamic coefficients by simplex B-splines as
proposed by de Visser, Chu, and Mulder [37].
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Figure 9.16: Estimated parameters and residual error for a sudden center of gravity
shift.
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PART

III
SAFE FLIGHT ENVELOPE

In the preceding part of the dissertation adaptive control designs have been
applied to different fighter aircraft models. Although these control designs are
able to stabilize the aircraft in post-failure flight conditions, it is still unclear
what the remaining maneuvering capability and flight envelope of the aircraft
is. Knowledge of the flight envelope is extremely important to prevent loss-
of-control accidents from occurring. In this part, a method is proposed which
can be used to determine the safe flight envelope using a model of the aircraft
dynamics, and it is applied to a nonlinear fighter aircraft model to show its
capabilities.
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10
FLIGHT ENVELOPE PROTECTION

In this chapter an introduction to the flight envelope and flight envelope pro-
tection concepts is given. The importance of knowledge about the safe flight
envelope is discussed and the question how this knowledge can enhance the
safety of flight and aid the aircraft designer during the design and development
phases is answered. Then, different interpretations of flight envelope are dis-
cussed. A literature review of existing approaches to aircraft flight envelope
determination and protection is given. Finally, some conclusions and research
objectives based on this literature review are given.

10.1 Introduction

During the last decades adaptive control, in its many forms, has received a lot of
attention within the flight control community. These control algorithms are able
to deal with changes in the system’s dynamics due to possible system component
faults and failures. A question that still remains unanswered is which parts of the
state space are safe to operate in, often even when the dynamics of the system are
fully known they are not completely understood. This question is of fundamental
importance in the safety verification of control systems and system validation.

The relevance of knowledge of the flight envelope is emphasized by means of
two accidents which are both the result of a violation of the safe flight envelope. On
October 4, 1992 El-Al flight 1862, a Boeing 747 cargo plane crashed into two apart-
ment buildings in the Bijlmermeer neighborhood of Amsterdam, near Schiphol
Airport. Engine number three separated from the right wing of the aircraft shortly
after take-off, damaging the wing flaps, and striking engine number four which
then also separated. The damage to the airframe sustained by the aircraft after the
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(a) El-Al Flight 1862 [96]
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Figure 10.1: Structural damage for El-Al Flight 1862 10.1(a) and the reconstructed
loads on the vertical stabilizer of AA 587 in 10.1(b).

separation of the right inboard engine is illustrated in figure 10.1(a). Post crash
analysis showed that the aircraft still had marginal controllability left in a severely
restricted flight envelope [161]. Simulator experiments using various fault tolerant
flight control approaches have shown that landing the aircraft safely at Schiphol
airport was still possible [2, 98, 178]. Additional simulations showed that a very
experienced pilot was able to land the aircraft using the standard control system
when he was informed about the severely restricted flight envelope. However,
the Boeing 747 aircraft does not have such a fault tolerant control system and,
more importantly, the pilots did not have any knowledge about the restricted flight
envelope of the aircraft. When the crew tried to reduce the speed for landing the
aircraft banked sharply to the right without any chance of recovery: control of the
aircraft was completely lost with disastrous results.

One could argue that the cause of the preceding accident was the damage the
aircraft sustained, and that a crash might have been inevitable with the informa-
tion available at that time. Therefore, another example is presented in which the
structural damage and fatal crash was actually caused by excessive pilot input.
American Airlines Flight 587, an Airbus A300, departing from John F. Kennedy
International Airport and encountered heavy turbulence due to the wake of a pre-
ceding aircraft shortly after take-off. The pilots tried to keep the plane upright with
aggressive rudder inputs which eventually caused the aircraft’s vertical stabilizer to
snap off entirely. This caused complete loss-of-control of the aircraft and eventually
a crash. The reconstructed loads on the vertical stabilizer and its design limits are
shown in figure 10.1(b).

Spin is an aggravated stall that results in auto-rotation. The flight path is a
downward spiral, in which the aircraft descends while rotating about a vertical
axis, rolling, yawing, pitching and sideslipping as a consequence of being at some
angle of attack between stall and 90 degrees. The combination of separated flows,
high rotational rates, and high coupling in lateral and directional axes make spin
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a very complicated motion. Simultaneously, the pilot can be very disoriented and
might not be able to give the required control input to get the aircraft back to a stable
state. Combined, this results in major difficulties in spin recovery and therefore
prediction and analysis of spin characteristics together with recovery strategies
have received great interest.

Recent statistics show that the majority of accidents in aviation nowadays are
due to Loss-of-Control (LOC) [15, 145]. It is very hard to obtain a definition of LOC
in analytical terms [91, 202], but it is generally associated with flight outside of
the normal flight envelope, nonlinear behavior, and inability of the pilot to control
the aircraft [90]. This also shows that LOC is not a phenomenon solely attributed
to military aircraft, but that it is a real problem for commercial aircraft and general
aviation as well. One definition of LOC is that the (auto)pilot is not able to return to
a normal flight condition from the current flight condition: the aircraft has exceeded
its safe flight envelope. A very striking fact is that this category of accident causes is
one of the few, if not the only one, which has not decreased in frequency over the
last decades. Therefore, safety of aviation can be potentially be improved by paying
effort in flight envelope protection and upset prevention to avoid LOC situations.

10.2 The Flight Envelope

The conventional definition of the flight envelope is “[the flight envelope] describes
the area of altitude and airspeed where an airplane is constrained to operate.”
[147]. The flight envelope boundaries are defined by various limitations on the per-
formance of the airplane, for example available engine power, stalling and buffet
characteristics, structural considerations and requirements on noise production. A
very common way to present the flight envelope is the doghouse-plot. In figure 10.2
a doghouse plot for the F-16 aircraft is shown which relates the altitude, velocity
and some other variables at which the aircraft can safely fly.

The boundaries defined on the flight envelope in the doghouse plot are quite
adequate during normal operation of aircraft. The main problem with this con-
ventional definition of flight envelope is that only constraints on quasi-stationary
aircraft states are taken into account, for example for coordinated turns and cruise
flight. Additionally, constraints posed on the aircraft state by the environment are
not part of the conventional definition of flight envelope. The aircraft’s dynamic
behavior can pose additional constraints on the flight envelope, for example due to
inertia coupling effects. Such constraints would be especially important for military
and acrobatic aircraft, aircraft having experienced upset, and aircraft with airframe
and/or actuator damage or malfunctions. Thus, a different, extended definition of
the flight envelope is required. The definition of the safe flight envelope used in
this dissertation is presented below, which is more restrictive than the definition
based on performance and structural limitations alone.

Definition 10.1 (Safe Flight Envelope). The safe flight envelope is the part of the state
space for which safe operation of the aircraft and safety of its cargo can be guaranteed and
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Figure 10.2: Doghouse-plot for an F-16 aircraft model [162].

externally posed constraints will not be violated.

The safe flight envelope can be defined by the intersection of three envelopes:

Dynamic Envelope Constraints posed on the envelope by the dynamic behavior
of the aircraft, due to its aerodynamics and kinematics.

Structural and Comfort Envelope Constraints posed by the airframe, pilot, pas-
sengers and cargo. These constraints are usually defined through maximum
accelerations and loads.

Environmental Envelope Constraints due to the environment in which the aircraft
operates.

The last two envelopes pose external constraints on the flight envelope, constraints
which are generally well-known and can be quantified easily. Examples of such
external constraints are the terrain around the aircraft (see figure 10.3(a)), weather,
and the maximum load-factor the airframe can sustain before breaking (see figure
10.3(b)). The first example given in the introduction is considered to be a violation
of the dynamic flight envelope, while the structural envelope was violated by the
aircraft in the second example. The focus of the research in this dissertation is on
the first type, i.e. the flight envelope that is internal to the system itself and depends
on its dynamic behavior. A more formal definition of the dynamic flight envelope is
given below.
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(a) Environmental constraints (b) Structural constraints

Figure 10.3: External constraints posed on the flight envelope

Definition 10.2 (Dynamic Flight Envelope). The region of the aircraft’s state space in
which the aircraft can be safely controlled and no loss-of-control events can occur.

Constraints posed on the aircraft by the dynamic flight envelope are for example a
maximum roll-rate at a certain angle of attack in order to prevent the aircraft from
entering a potentially hazardous inertia coupling or spin phenomenon. Similar
constraints can be obtained to prevent aircraft from entering stall and deep-stall, or
even unstable limit cycles. Simultaneously, the dynamic flight envelope provides
excellent insight in the aircraft maneuvering capabilities, and the envelope results
can for example be used to develop evasive and attack maneuvers. Furthermore,
when an CFD model with uncertainty bounds on the parameters is available a
preliminary flight envelope model can be created to support flight testing outside
the conventional regime, or identify and address potentially hazardous parts of the
flight envelope already during the design phase.

10.3 Flight Envelope Protection Methods

As noted by Lambregts, Nesemeier, Wilborn, and Newman [91] one of the most
promising techniques to prevent LOC-related accidents is envelope protection. En-
velope protection methods use the safe flight envelope (and add a margin of safety)
to prevent pilots from commanding control inputs that would push the aircraft
outside that flight envelope. For example, if the pilot uses the rearward side-stick
to pitch the aircraft nose up, the control computers creating the flight envelope
protection will prevent the pilot pitching the aircraft beyond the stalling angle of
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attack. As a result, even if the pilot tried to apply more and more rearward control,
the flight envelope protection would cause the aircraft to ignore this command.
Flight envelope protection can in this way increase aircraft safety by allowing the
pilot to apply maximum allowable control effort in an emergency, while at the same
time not pushing the aircraft outside the margins of its operational safety. Whether
the pilot is allowed to override the constraints posed by the flight computer is a
still the subject of an ongoing debate. A prerequisite for flight-envelope protection
systems is a fly-by-wire (FBW) system. In the FBW, the pilot’s inputs are sent to a
computer which then calculates the desired commands, i.e. there is no direct link
between the pilot and the controls. Such systems have existed for over 30 years
but are currently only available in military aircraft, several commercial aircraft and
some general aviation aircraft. The task of envelope protection can be split into two
parts:

1. determination/calculation of the safe flight envelope, and

2. guaranteeing that the aircraft state stays within that safe flight envelope.

Quite a lot of research has been done on the second aspect of envelope protection
and the constraints posed on the aircraft states by the safe flight envelope can
be incorporated in the control design such that the (auto)pilot is either unable to
steer the aircraft outside its safe operating regime (hard-constrained, for example
the Airbus A320 aircraft), or is informed that the aircraft is pushing the envelope
(soft-constrained, for example the Boeing 777 aircraft). It is important to note that
envelope protection does not only enable aircraft to safely operate within their
envelope, but should do so without restricting the aircraft to a smaller region of
its operational envelope.

Switching logic with PID-control is used by Well [200] and Falkena, Borst, and
Mulder [54] to develop controllers which keep a fighter and a general aviation air-
craft respectively within a restricted part of the flight envelope. Limit detection and
avoidance schemes based on neuro-adaptive techniques have also been proposed
and flight tested on rotorcraft UAVs [72, 73, 81, 205]. Tang, Roemer, Ge, et al. [181]
emphasize the integration of online flight envelope estimation and protection func-
tions as a total solution, and feasibility of the concept and proposed architecture
is shown through simulation studies on the NASA GTM model. This architecture
combined with adaptive flight control is illustrated in figure 1.3.

10.4 Survey of (Safe) Flight Envelope Estimation

Although the nonlinear problems in aircraft flight dynamics and control have been
well recognized and widely documented since the dawn of aviation [1], their pre-
diction and solution was limited by both the lack of analytical tools and poor simu-
lation capabilities [136]. One of the first problems to draw attention was the inertia-
coupling problem as predicted by Phillips [139]. Reviews of early work on these
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problems have been provided by Hacker and Oprisiu [67] and Murphy [123]. Ap-
proximate analytical methods were used to predict conditions for onset of instabil-
ity, which were not always reliable. Due to increasing computing power, greater
reliance was placed on numerical simulations to predict instability onset and post-
instability nonlinear dynamical behavior. Increasing demands on aircraft agility
and performance have since then pushed the operating range of modern fighter
aircraft (far) beyond the linear range of aerodynamics [70]. This introduced new
nonlinear problems due to flight at high angles of attack and critical flight regimes,
typically under post-stall conditions.

Initial flight envelope and clearance results can be obtained by means of wind-
tunnel tests, CFD-calculations and experience with comparable airframe and actu-
ator configurations. Usually, this information is verified and corrected through an
expensive flight testing program.

An important development in the field was the introduction of bifurcation and
continuation methods by Carroll and Mehra [24] and Zagaynov and Goman [209].
These techniques made it possible to smartly compute an entire family of steady
state solutions for varying values of a control parameter, for example the elevator
deflection. By means of numerical differentiation it is is possible to obtain the
linearized dynamics at each trim state, and compute the stability of each trim state.
Continuation algorithms have been very helpful in computing and characterizing
limit cycle oscillations in terms of their onset, stability, amplitude, and frequency
[136]. Bifurcation and continuation methods have been mainly used as analysis
tools during the design of aircraft and for clearance of flight control laws and en-
velope. For excellent overviews and state of the art of bifurcation theory applied to
flight the dynamics, the interested reader is referred to Cummings [31], Lowenberg
[103], Goman, Zagaynov, and Khramtsovsky [63], and Sinha [157]. Examples of
the application of bifurcation and continuation methods to aircraft dynamics are
given by Paranjape, Sinha, and Ananthkrishnan [136], flight clearance metrics for
autonomous UAVs through continuation analysis were derived by Panella [135].

Concepts directly related to safety are reachability, viability and invariance.
These concepts were explicitly linked for aviation safety in flight control analysis
[108] and analysis of a traffic alert and collision avoidance system [95] for exam-
ple. An indirect approach to address the reachability questions is using optimal
control methods, where the reachable sets are characterized as levels sets of the
value function of an appropriate optimal control problem [116]. A basic flight en-
velope was derived through reachable set analysis combined with neuro-dynamic
programming by Djeridane and Lygeros [39]. The safe envelope for an aircraft in
different landing configurations was investigated by Bayen, Mitchell, Oishi, and
Tomlin [10] in the reachable set framework. Five dimensional reachable set com-
putations have been implemented on a glider submarine at the French Department
of Defense [146]. The safety of closely-spaced parallel approaches was investigated
and demonstrated by Teo, Jang, and Tomlin [182], Teo and Tomlin [183].

The theory of reachable set analysis has been applied to linear parameter vary-
ing (LPV) systems by Shin [152]. Many nonlinear methods based on Lyapunov’s
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stability theory, see 3, have been proposed and applied successfully as a region
of attraction (ROA) prediction tool [66, 180, 185, 188]. ROA methods are able to
predict a stable set in the state space around a given equilibrium point for which
the system will return to the equilibrium. Hence, an application scenario would be
a trimmed aircraft experiencing an upset condition due to atmospheric phenomena.
Knowledge whether such conditions could potentially destabilize the aircraft with-
out chance of recovery is vital to verify safety. A combination of LPV reachability
and region of attraction analysis is applied to the NASA GTM model investigating
the safe envelope by Pandita, Chakraborty, Seiler, and Balas [134].

The methods discussed so far are off-line methods, requiring a fixed, a-priori
aircraft model. Real time estimation of stability margins has also been investi-
gated. Frequency response analysis based stability margin determination was first
demonstrated on the X-36 aircraft by Balough [8], Lichter, Bateman, and Balas [94]
demonstrated run-time margin estimation on NASA Langley’s AirSTAR testbed.
In [125] on-line stability metrics were derived on-line for a small-scale Cessna 182
aircraft.

10.5 Conclusions

In this chapter the concept of flight envelope was discussed. The safe flight enve-
lope is defined as the region in the state space for which safe operation of the aircraft
and safety of its cargo can be guaranteed and externally posed constraints will not
be violated. This region in the state space can be defined as the intersection between
the dynamical, structural and environmental envelopes. Statistical data shows that
the majority of aircraft accidents in the past decade has been related to excursions
of the aircraft beyond its safe flight envelope. Therefore, both knowledge of the safe
flight envelope and some form of protection is required to keep the aircraft within
the safe flight envelope. Since determination of the actual limits is important not to
constrain the operational envelope too much, this will be the focus of the research
in the remainder of this part of the dissertation.
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11
LEVEL SET METHODS

This chapter introduces the theory used by the proposed method to determine
the safe dynamic flight envelope of aircraft. First the reachable set concept is
introduced, and its use in safe flight envelope determination is discussed. After
this, the explicit and implicit descriptions of sets are introduced. Dynamics are
added to the implicit description by means of the level set equation, such that the
set can be evolved in time to obtain the reachable set. Different solution methods
for the level set equation, a Hamilton Jacobi partial differential equation for
systems with inputs, exist. Three different solution approaches are introduced,
as well as their advantages and disadvantages. The potential of the level set
approach for reachability analysis is illustrated by means of several examples.
These examples are additionally used to perform a comparison of computation
time required for the different solution methods. Finally, conclusions are drawn
from the analysis of the examples.

11.1 Forwards and Backwards Reachable Sets

Reachable set analysis is a useful tool in the safety verification of systems. The
reachable set for a given initial set describes the set of states that can be reached
within a certain time. In this section, the concept will be defined formally, and the
difference between forwards and backwards reachable sets is illustrated.

Consider a system

ẋ = f (x(t), u(t), d(t))

x(0) ∈ S0 or x(t f ) ∈ T f

t ∈ [0, t f ]

(11.1)

225
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backwards
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target
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(a) Backwards Reachable Set
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initial
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(b) Forwards Reachable Set

Figure 11.1: Backwards (left) and forwards (right) reachable set definitions

where 0 ≤ t f < ∞, x ∈ R
n is the state, u ∈ U ⊂ R

m is the control input, d ∈ D ⊂ R
q

is the disturbance input, S0 =
{

x ∈ R
n | S(x) ≤ 0

}
is a set of initial states, and

T f =
{

x ∈ R
n | T(x) ≤ 0

}
is a set of target states. The function f is assumed to

be Lipschitz continuous. The spaces of admissible control and disturbance input
trajectories are denotes as the spaces of the piecewise continuous functions U =
{

u(·) ∈ PC0 | u(t) ∈ U, 0 ≤ t ≤ t f

}

, and D =
{

d(·) ∈ PC0 | d(t) ∈ D, 0 ≤ t ≤ t f

}

respectively.
The dynamics defined by (11.1) can be evolved backwards and forwards in time

resulting in the backwards and forwards reachable sets respectively. The difference
between these two sets is illustrated in figure 11.1. Formally, these sets are defined
below [75].

Definition 11.1 (Backwards Reachable Set). The backwards reachable set T (τ) at time
τ(0 ≤ τ0t f ), of the system (11.1) for the target set T f , is the set of all states x(τ), such

that there exists a control input u(t) ∈ U (τ ≤ t ≤ t f ), for all disturbance inputs d(t) ∈
D(τ ≤ t ≤ t f ), for which some x(t f ) ∈ T f are reachable from x(τ) along a trajectory

satisfying (11.1).

Definition 11.2 (Forwards Reachable Set). The forwards reachable set S(τ) at time
τ(0 < τ ≤ t f ) of the system (11.1) for the initial set S0, is the set of all states x(τ),

such that there exists a control input u(t) ∈ U (τ ≤ t ≤ t f ), for all disturbance inputs

d(t) ∈ D(τ ≤ t ≤ t f ), for which x(τ) is reachable from some x(0) ∈ S0 along a trajectory

satisfying (11.1).

11.2 The Flight Envelope and Reachable Set Analysis

With the concepts of forwards and backwards reachability, the safe envelope can
be defined. First, pose the initial and target set as a set of known safe states, for
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backwards reachable set
forwards reachable set

safe operating set

a-priori safe set

Figure 11.2: The safe envelope for a known safe set is defined by the intersection of
the forwards and backwards reachable sets.

example a set of trimmable states at normal flight conditions. The backwards
reachable set then contains the set of states that can be controlled back to a state
within the trim set using a control signal within the control effector constraints
and for any disturbance realization included in the model, for example wind or
uncertain aerodynamic parameters. Similarly, the forwards reachable set describes
the set of states that can be reached from the trim states, allowing investigation
of the full maneuvering capabilities of an aircraft, and what influence different
control constraints and disturbance levels have on maneuverability, stability and
performance.

The safe maneuvering envelope can be obtained by the intersection of the for-
wards and backwards reachable sets, as illustrated in figure 11.2. The end time for
the calculations and disturbance constraints do not have to be the same equivalent.
For example, one can allow a longer time period for the backwards reachable set for
highly maneuverable aircraft, or, increase the magnitude constraints on the distur-
bance in the backwards reachable set to obtain safer bounds on the safe envelope.
Regions in the flight envelope that are part of the forwards reachable set, but are
not part of the backwards reachable set, are potentially hazardous.

11.3 Connection to Lyapunov Theory

A very interesting connection to Lyapunov theory can be drawn, one of the main
subjects of part I in this dissertation. Suppose that it is possible to find a positive
definite function V where the trim set corresponds to some level set of V. Then, if
additionally the safe maneuvering envelope can be encoded in the function V as a
different, higher value, level set, this Lyapunov function can be used to prevent
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the aircraft state from exceeding the safe maneuvering envelope. It is possible
to interpret the Lyapunov function value as a distance measure to the trim set.
This could then for example be used in a receding horizon controller. In [144] a
connection between the Hamilton-Jacobi-Bellman equation and a modified version
of Sontag’s formula is drawn to create a control law based on a CLF. which solves
the HJB equation.

11.4 Implicit Functions and Surfaces

Sets or regions in some space, can be defined in different ways. This section intro-
duces the explicit and implicit representations and discusses their advantages and
disadvantages.

In one spatial dimension, the real line can be divided into three distinct pieces,
by using the points x = −1 and x = 1. Three intervals are defined as (∞,−1),

(−1, 1) and (1, ∞) as three sub-domains. The part Ω
− = (−1, 1) will be referred

to as the inside part of the domain, and Ω
+ = (∞,−1) ∪ (1, ∞) as the outside part.

The border between the inside and outside consists of two points ∂Ω = {−1, 1},
and is defined as the interface. Therefore, in one spatial dimension the inside and
outside regions are one-dimensional (a line), while the interface is zero-dimensional
(a point). More generally, in R

n, the sub-domains are n-dimensional, while the
interface has dimension n − 1.

In an explicit representation of the interface, all segments that are part of the
interface are explicitly defined, as in the example in one dimension above. An
alternative description is the implicit definition of the interface as an isocontour of
some function. For example, the zero isocontour of the function φ(x) = |x| − 1 is
the set of all points where φ(x) = 0. Figure 11.3 shows this implicit description
of the interface ∂Ω. Note that the function φ(x) is defined over the whole domain,
while the interface, or isocontour, is defined on a domain that is one dimension
lower.

The explicit interface definition requires specification of all points that belong
to the interface. While this task is achievable for simple geometric and low dimen-
sional shapes, it becomes increasingly difficult for more complex interface shapes
and/or higher dimensions. A convenient way of approximating an explicit repre-
sentation is to discretize the interface into a finite number of points. The approxi-
mated interface can then be obtained by triangulation of these points. The interface
can then be evolved in time by evolving each discretization point through time.

An implicit representation of the interface might seem wasteful on the other
hand, since the function is defined on the whole (computational) domain, while
only the interface is of interest. One possible solution for this is by clustering
the computational nodes near the interface, and allowing a coarser grid further
away from the interface. The implicit interface description allows the use of a very
powerful tool to evolve the interface: the level set method.
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φ(x) = |x| − 1
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Figure 11.3: Implicit function φ(x) = |x| − 1 defining the region Ω
− and Ω

+ as
well as the boundary ∂Ω.

11.5 Level Set Method

The level set method adds dynamics to implicitly defined set descriptions. The
book by Osher and Fedkiw [132] provides an excellent introductory reference about
the level set method and dynamic implicit surfaces. The interface, or boundary of
a set, needs to be evolved in time to obtain the reachable set for the defined initial
or target set. Suppose that the velocity of each point on the interface is given by
some externally generated velocity field f (x). Then, every point on the interface
can be evolved in time using this velocity field. The simplest way to achieve this is
by solving the ordinary differential equation (ODE)

dx

dt
= f (x) (11.2)

for every point that is part of the interface. This is a Lagrangian formulation of the
interface evolution equation. If the connectivity of the discretized interface points
does not change, and the surface elements are not distorted too much, the interface
can be evolved relatively easy in this fashion. Unfortunately, even rather trivial
velocity fields can cause large distortions of the boundary elements, and hence
the accuracy of this method deteriorates quickly if the interface description is not
regularized and smoothed often.

Instead of directly evolving the interface, the implicit function φ is used to both
represent the interface, and to evolve it in time. The simple convection equation.

φt +∇φ · f (x) = 0, (11.3)

where subscript t denotes a temporal partial derivative in the time variable t, de-
fines the evolution of the implicit function φ. Note that the function f (x) should
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now be defined on the whole domain of interest to correctly evolve the interface.
This partial differential equation (PDE) often needs to be solved numerically for
non-trivial velocity fields, for which various methods exist. In section 11.7 some
of these methods will be discussed in more detail. In the next section the level set
equation, or Hamilton Jacobi PDE, for systems with inputs is derived.

11.6 Reachable Sets and Differential Games

A connection between reachable sets and optimal control can be made. This con-
nection allows transformation of the reachable set problem described in section 11.1
using the level set approach of the previous section into a terminal value Hamilton
Jacobi partial differential equation (HJ PDE).

11.6.1 The Hamilton-Jacobi PDE

Consider the dynamical system

ẋ = f (x, a, b) (11.4)

where a and b are inputs to the system. A trajectory of this system is defined by
ξ f (·; x, t, a(·), b(·)) , where

ξ f (·; x, t, a(·), b(·)) = x,

d

dt
ξ f (s; x, t, a(·), b(·)) = f (x, a(s), b(s)).

A finite horizon differential game is played over the time horizon [−T, 0], with
dynamics governed by (11.4). The terminal cost of a trajectory is given by

C(x, t, a(·), b(·)) = G(ξ f (·; x, t, a(·), b(·))).

One player will try to maximize this cost, while the other player tries to minimize
it. If player a tries to minimize the cost and player b tries to maximize it, the value
function of the differential game is defined by

V(x, t) = inf
a(·)∈A

sup
b(·)∈B

C(x, t, a(·), b(·)),

= inf
a(·)∈A

sup
b(·)∈B

G(ξ f (0; x, t, a(·), b(·))).
(11.5)

If the value function would be differentiable, it is straightforward to show using
Bellman’s optimality principle [11] and a Taylor expansion of the value function
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that the differential game can be reformulated as a Hamilton-Jacobi Isaacs PDE. If
the dynamic programming principle holds, the value function can be rewritten as

V(x, t) = min
a∈A

max
b∈B

V
(

ξ f (t + ∆t; x, t, a(·), b(·)), t + ∆t
)

for −T ≤ t ≤ t + ∆t ≤ 0 and V(x, 0) = G(x). A first order Taylor expansion of
the value function under the assumption that the function is differentiable is now
given by

V(ξ f (t + ∆t; x, t, a(·), b(·)), t + ∆t) ≈ V(x, t) + Vt(x, t)∆t + Vx(x, t) · ∆x.

Re-arranging terms in the expression defined by the principle of optimality and
diving by ∆t yields

min
a∈A

max
b∈B

V(ξ f (t + ∆t; x, t, a(·), b(·), t + ∆t)− V(x, t)

∆t
= 0

Now insert the Taylor expansion of the value function and letting ∆t → 0 gives

min
a∈A

max
b∈B

[
d

dt
V(x, t)

]

= 0

∂

∂t
V(x, t) + min

a∈A
max
b∈B

∂

∂x
V(x, t) · f (x, a, b) = 0

∂

∂t
V(x, t) + H(x,

∂

∂x
V(x, t)) = 0,

(11.6)

where the Hamiltonian H(x, p) = infa(·)∈A supb(·)∈B p · f (x, a, b). Unfortunately,

the assumption that V(x, t) is differentiable is often violated. Therefore, this deriva-
tion is not technically correct. If shocks and rarefactions are present, a classical
solution to an HJ PDE may not exist. An non-classical or weak solution to the
PDE is defined through a viscosity solution, which first appeared in [30] and was
rewritten in a more useful form in [29]. A bounded, uniformly continuous function
φ(x, t) is a viscosity solution to the HJ PDE

∂

∂t
φ(x, t) + H(x,

∂

∂x
φ(x, t)) = 0,

provided that for each infinitely differentiable test function ψ(x, t)

• if φ(x0, t0)− ψ(x0, t0) is a local maximum of the function φ − ψ, then

∂

∂t
ψ(x0, t0) + H(x,

∂

∂x
ψ(x0, t0)) ≤ 0
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• if φ(x0, t0)− ψ(x0, t0) is a local minimum of the function φ − ψ, then

∂

∂t
ψ(x0, t0) + H(x,

∂

∂x
ψ(x0, t0)) ≥ 0

Note that viscosity solutions are not the same as vanishing viscosity solutions which

are the solutions φ(ǫ)(x, t) in the limit ǫ → 0 of the linear second order PDE

∂φ(ǫ)

∂t
+ H(x,

∂φ(ǫ)

∂x
) = ǫ

∂2φ(ǫ)

∂x2
(11.7)

Lemma 11.3. The value function φ(x, t) of the game (11.5) is the viscosity solution of a
Hamilton-Jacobi terminal value PDE.

∂

∂x
φ(x, t) + H

(

x,
∂

∂x
φ(x, t)

)

= 0, for t ∈ [−T, 0] , x ∈ R
n

φ(x, 0) = G(x) for x ∈ R
n

(11.8)

where

H(x, p) = min
a∈A

max
b∈B

pT f (x, a, b) (11.9)

Proof. This lemma is a special case of Theorem 4.1 in [53]

11.6.2 HJ PDE for the Backwards and Forwards Reachable Sets

The connection between the HJ PDE and reachable sets has been shown. Now, the
HJ PDE can be derived for the backwards and forwards reachable set formulations.
It will be assumed that the task of the player a will be to use the control input to get
away from the initial or target set as far as possible, while the task of player b will
be to remain as close to the initial or target set as possible.

Therefore, the Hamiltonians are for these respective problems are defined as

Hb(x, p, t) = min
u∈U

max
d∈D

p · f (x, u, d)

H f (x, p, t) = max
u∈U

min
d∈D

p · f (x, u, d)
(11.10)

The following relation

Hl(x, p, t) = −Hr(x,−p, t) (11.11)

allows the transformation of an initial value problem, denoted by subscript l, re-
lated to forwards reachable sets into an equivalent terminal value HJ PDE [112],
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denoted by subscript r. The HJ PDE for the backwards and forwards reachable set
determination are [89]

∂
∂t φb + Hb(x, p, t) = 0

Hb(x, p, t) = min
u∈U

max
d∈D

pT f (x, u, d)

φb(x, 0) = T(x),

(11.12)

and
∂
∂t φ f + H f (x, p, t) = 0

H f (x, p, t) = max
u∈U

min
d∈D

pT f (x, u, d)

φ f (x, 0) = S(x)

(11.13)

respectively. Note that the backwards reachable set is solved from time t = 0
backwards to t = −t f ≤ 0. A modification can be made such that the reachable set
only is allowed to grow, meaning that states that have been part of the reachable
set are marked as reachable for the whole timespan considered. For more detail on
this modification, the reader is referred to [116], the implementation basically make
sure that only flow inwards over the interface is allowed by scaling the dynamics.
The modified Hamilton is defined as

H̃(x, t, p) = min [0, H(x, t, p)] . (11.14)

11.7 HJ-PDE Solution Methods

Various methods exists to obtain a solution to a Hamilton-Jacobi partial differential
equation, or the level set equation. In this section, three different approaches to
solving the equation are discussed. The methods can be distinguished by the way
the interface is defined and how it is propagated in time. The methods will not be
discussed in full detail, references will be given to the interested reader instead.

11.7.1 Lagrangian-methods

The Lagrangian methods can be considered as tracking methods, which track the
evolution of the interface in a Lagrangian fashion, for example by evolving marker
particles using the velocity field. This concept is illustrated in figure 11.4. The
fundamental problem in the Lagrangian methods is the distortion of the locations
of the computational elements, particles, resulting in an inaccurate description of
the interface. Therefore, a regularization procedure is necessary to compensate for
this problem and hence maintain the accuracy of the method. Several rather ad-
hoc procedures have been proposed such as particle insertion and deletion. In
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Figure 11.4: Euler, Lagrangian, and semi-Lagrangian schemes for the Level Set
equation.

[71] a Lagrangian particle level set method was proposed which regularizes the
particles by a remeshing procedure after each time-step to avoid this distortion of
the calculation grid. Another problem with this method is that for the evolution
of systems with inputs, the optimal inputs have to be solved. The optimal inputs
depend on the state as well as the co-state. When the particles or computational
elements located only near or on the interface, the co-state or directional derivative
of the value function, is nearly impossible to obtain. Thus, determination of the
optimal inputs as they appear in (11.10) is hard and rather inaccurate, resulting in
a bad approximation of the true reachable set solution.

11.7.2 Euler-methods

The Euler-methods discretize the state space by means of a grid. On this grid,
sets can be defined easily by an isocontour of an implicit surface as described
in section 11.4. The Hamilton-Jacobi PDE is then solved by numerical integra-
tion of the implicit function values on the grid nodes in time. Usually, a Lax-
Friedrichs approximation of the Hamiltonian is used to ensure stability of the nu-
merical scheme by adding artificial viscosity. The spatial derivatives in (11.12)
and (11.13) can be computed using (weighted) essentially non-oscillatory (ENO)
schemes. Time-integration is performed by second- or third-order total variation
diminishing (TVD) explicit Runge-Kutta schemes.

The biggest disadvantage of this approach is that the time-step is restricted by
the Courant-Friedrichs-Lewy-condition (CFL condition) [27]. This is a necessary
condition to ensure converge of the solution when using explicit time-marching
schemes. In essence, it states that the domain of dependence must include the
analytical domain of dependence in order to assure that the scheme can access the
information required to form the solution: the solution is not allowed to travel more
than one grid cell. Therefore, when the desired accuracy of the solution is high, the
allowed time step can become extremely small.
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The CFL time step restriction in one dimension becomes

∆t ≤ ∆x

max |u| (11.15)

where max |u| is chosen to be the largest value of |u| over the entire Cartesian grid.
A multi-dimensional CFL-condition can be written as

∆t max

{

∑
i

|vi|
∆xi

}

= α (11.16)

where α ≤ 1 is a safety factor and the maximization is over the computational
domain. This condition clearly poses a stringent constraint on the allowed time-
step for high resolution grids: for a small ∆xi and fast dynamics, or large |vi|, the
allowed ∆t to comply with the CFL-condition will be very small.

11.7.3 Semi-Lagrangian methods

The time restriction posed by the CFL-condition can be eliminated by allowing
unbounded stencils [177]. The time-step can be decoupled from the CFL-condition
by using an explicit unconditionally stable time-stepping scheme. These schemes
can be interpreted as semi-Lagrangian time-stepping schemes. For first-order hy-
perbolic problems, these schemes satisfy the CFL-condition with large time steps
by shifting the stencil. The difference between the Euler and semi-Lagrangian ap-
proach is illustrated in figure 11.4. A semi-Lagrangian approach based on particle
level sets was taken in [49] for systems without inputs. Consider the simplest linear
hyperbolic PDE

φt +∇φ · f (x, t) = 0. (11.17)

This partial differential equation propagates the φ values along the characteristic
curves s(t) defined by

ṡ(t) = f (s(t), t). (11.18)

Therefore, the value of φ at any time t can be determined by finding the charac-
teristic curve passing through (x, t) and following it backwards to some previous
point (x0, t0) where the value of φ is known: then φ(x, t) = φ(x0, t0). This obser-
vation forms the basis of the “backwards characteristic”, or the CIR-scheme due to
Courant, Isaacson and Rees [28] the simplest semi-Lagrangian scheme. Given φ at
time tn the CIR-scheme approximates φ(x, tn+1) at any point x at time tn+1 = tn +
∆t by evaluating the velocity F(x, tn), approximating the backwards characteristic
through x by a straight line

x − (tn+1 − t) f (x, tn+1) ≈ s(t), (11.19)

and interpolating φ linearly at time tn to the point

x − ∆tF(x, tn) ≈ s(tn). (11.20)
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Figure 11.5: Bilinear interpolation of off-grid value for the semi-Lagrangian level
set.

Then φ(x, tn+1) is set equal to the interpolated value. For linear PDEs the Lax-
Richtmyer equivalence theorem guarantees that the CIR scheme converges to the
exact solution when δt, δx → 0, if the PDE is stable and consistent [177]. The linear
interpolation scheme in the two-dimensional case results in

φ̂(s(tk)) = (1 − dx

∆x
)(1 − dy

∆y
)φ00 +

dx

∆x
(1 − dy

∆y
)φ10

+ (1 − dx

∆x
)

dy

∆y
φ01 +

dx

∆x

dy

∆y
φ11

(11.21)

and is illustrated in figure 11.5.

11.7.4 Hybrid methods

The methods discussed can be combined with each other. For example, the Euler-
approach can be combined with marker particles evolved in Lagrangian fashion
fairly easily. Impressive results have been obtained with a combination of a grid-
based solver and marker particles in [101]. The marker particles are used to obtain
a high resolution definition of the interface, while the grid is used to define the
flow in regions further away from the interface. Additionally, the marker particles
can be used to correct the implicit interface definition on the grid. Unfortunately,
the marker particles do not help resolving the time-restriction problem posed by
the CFL-condition directly. Furthermore, marker particles can not be used when
shocks are developed in the solution as this phenomenon is incorrectly resolved by
the Lagrangian method.
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11.8 Reachable Set Examples

To illustrate the capabilities of reachable set calculations using level set methods,
and to investigate which method is the most suitable for aircraft flight envelope
determination, several examples are presented. These examples have been selected
since they have some connection to the aircraft envelope reachability problem, and
since the results for some of the examples are freely available in literature. This
allows comparison between the different solution methods as well as verification
of their implementation.

11.8.1 Double Integrator

Most mechanical systems can be interpreted as a chain of integrators from the input
to the “output” of the system. The double integrator system

ẋ = f (x, u) =
d

dt

[
x1
x2

]

=

[
x2
u

]

(11.22)

can be interpreted as a very simple mechanical system: a cart on rails, where x1
represents the cart’s position, x2 the velocity of the cart, and the input u is the
specific acceleration. In this case the target set is created artificially as a region
where a measure of total energy in the system is below a certain threshold. This
measure is defined as

E(x1, x2) =
1

2

(

x2
1 + x2

2

)

. (11.23)

The target set is then defined as the set T =
{

(x1, x2) ∈ R
2 | E(x1, x2) ≤ 0.5

}

. The

Hamilton-Jacobi PDE for this problem back- and forwards in time is described by

∂

∂t
φ(x, t) + min

u

∂

∂x
φ(x, t) · f (x, u) fort ∈ [−t f , 0] (11.24)

and
∂

∂t
φ(x, t) + max

u

∂

∂x
φ(x, t) · f (x, u) fort ∈ [−t f , 0] (11.25)

respectively. For this example, symmetric constraints were posed on the control
input u ∈ [−1.0,+1.0]. The optimal control input u⋆ in the HJ PDEs (11.24) and
(11.25) depends both on the direction of time, and the sign of the second co-state.
For the forwards reachable set the optimal control input is

u⋆ =







umax if p2 ≥ 0

umin otherwise.
(11.26)

and vice-versa for the backwards reachable set. The resulting forwards and back-
wards reachable sets for the semi-Lagrangian and Euler approach are shown in
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Figure 11.6: Forwards (yellow) and backwards (cyan) reachable sets for the
double integrator example system. On the left the results for the Semi-Lagrangian
approach are shown, on the right the results for the Euler aproach.

figure 11.6. Unfortunately, it is not straightforward to obtain an analytical solution
for this problem for the given target set. Therefore, a relatively large number of
simulations was performed with the initial state on the boundary of the target set,
the convex hull of all intermediate and end-points was taken as the true reachable
set. This set is defined by the dash-dotted red contour in figure 11.6.

The adaptive nature of the semi-Lagrangian approach on kd-tree grids is demon-
strated in figure 11.7 which shows the nodes at the start and end of the computa-
tion. Clearly, the highest level of grid refinement is achieved near the interface, or
at values of the value function close to the value describing the set of interest.

11.8.2 Acoustic Capture

The acoustic capture example is included to show the power of the level set method
to automatically merge the interface. The reachable set develops a hole in the solu-
tion which potentially could also happen in the case of the aircraft flight envelope,
for example by limit cycle oscillations. It is very difficult to correctly obtain this
reachable set through simulations alone, and the Lagrangian method even requires
ad-hoc procedures or may even fail to find the solution altogether.

In the acoustic capture example, the evader is free to travel in any direction,
while the pursuer has a limited turn radius. The evader’s limited speed is reduced
even further if the pursuer gets too close, trying to avoid making to much noise and
getting caught. This differential game can be analyzed in two dimensional relative
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Figure 11.7: Grid nodes of the adaptive kd-tree grid semi-Lagrangian method for a

1282 effective resolution grid.

Table 11.1: Parameters for the Acoustic Capture Example.

Variable Explanation Value

a velocity vector and input of the evader B̄
2[0, 1]

b angular velocity and input of pursuer [-1, 1]
We speed of evader 1.3
Wp speed of pursuer 1.0

R turn radius of pursuer 0.8
S radius beyond which evader can 0.5

safely use maximum speed

coordinates with the pursuer fixed at the origin. The relative dynamics are

ẋ =
d

dt

[
xr
yr

]

= f (x, a, b)

= Wp

[
0
−1

]

+
Wp

R

[
yr
−xr

]

b + 2We min

(√

x2
r + y2

r , S

)

a

(11.27)

where the problem specific parameters are defined in table 11.1. The optimal con-
trol inputs in this case are defined as

a =
p

‖p‖ ∈ B̄
2(0, 1)

b = − sgn (p1yr − p2xr) ∈ [−1, 1] .

(11.28)

where B̄
2(0, 1) is the Banach-space in R

2 with the Euclidean norm bounded to 1.
The capture region of the pursuer is defined by the box T = [−3.5, 3.5] ×

[−0.2, 0] ⊂ R
2. The reachable set is defined only backwards in time, and represents

the set of states for which the pursuer is able to capture the evader. The evolution
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Figure 11.8: Evolution of the capture region for the acoustic capture example using
a semi-Lagrangian level-set method.

of the reachable set backwards in time is shown in figure 11.8 and figure 11.9 for the
semi-Lagrangian and Euler approach respectively. Unfortunately, determination of
the analytic solution for this problem is hard, probably the best non-analytical ap-
proach would be creating many simulated trajectories for a large number of input
combinations. Comparing the results of the Euler and the semi-Lagrangian method
shows that the methods produce results that are very similar. The results produced
by the Euler approach are more accurate since second-order time integration was
used, in combination with a second-order ENO scheme for the spatial derivative.
The semi-Lagrangian approach is only first order accurate in time, and first order
accurate spatial derivatives were used.

11.8.3 Aircraft Collision Avoidance

The example section is concluded with an application of reachability analysis for
aircraft collision avoidance. This example can also be interpreted as application of
the reachability analysis in determining part of the environmental envelope. In this
case the pursuer airplane wants to create a collision by getting within the minimum
separation distance of the evader airplane: the reachable is therefore the set for
which the pursuer is able to enter the minimum-separation zone of the evader. In
literature, this problem is also referred to as the game of two identical vehicles [114].

The dynamics of this system with the evader fixed at the origin are described by

ẋ =
d

dt





xr
yr
ψr



 =





−ve + vp cos ψr + ueyr

vp sin ψr − uexr

up − ue



 = f (x, ue, up) (11.29)
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Figure 11.9: Evolution of the capture region for the acoustic capture example using
an Euler level-set method.
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Figure 11.10: Coordinate system for the game of two identical aircraft.

where x ∈ R
2 × [0, 2π[, ve the velocity of the evading aircraft, ue ∈ Ue is the control

input of the evading aircraft, vp the velocity of the pursuer aircraft, and up ∈ Up is
the input of the pursuing aircraft. The coordinate system is shown in figure 11.10.

Since a collision is allowed to occur at any relative heading, the target set T f
only depends on the relative coordinates xr and yr, and includes any state within a
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(a) Semi-Lagrangian (b) Euler

Figure 11.11: Semi-Lagrangian (a) and Euler (b) unsafe-set results for the aircraft

collision avoidance example, 1283 grid resolution.

distance r of the planar origin:

T f =
{

x ∈ R
2 × [0, 2π[ | x2

r + y2
r ≤ r2

}

T(x) =
√

x2
r + y2

r − r
(11.30)

for the target condition of the backwards reachable set. Analytical results used to
verify the resulting reachable set were obtained from [117]. The following parame-
ters were used for this example

r = 5
vp = ve = 5

Ue = Up = [−1, 1]

The resulting reachable set for the Euler approach on a 1283 grid is shown in figure
11.11(b) and compared with the analytical solution represented by barrier points
on the interface. Only barrier points on the top half of the surface are shown since
the solution is symmetric. The resulting reachable set for the semi-Lagrangian ap-

proach for an effective resolution of 1283 is shown in figure 11.11(a). Once again, the
Euler approach has better accuracy, due to the higher order integration method and
more accurate derivative approximation. The semi-Lagrangian method actually
gives an under-approximation of the true reachable set solution in this case.

11.8.4 Computational Load

For the generation of the reachable set of these examples two different level set
methods were used. The first is the Level Set Toolbox by Ian Mitchell [115], which
implements the Euler approach for uniform grids in MATLAB. The second method
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Table 11.2: Computation time for the Euler and semi-Lagrangian level set methods
for various examples.

Example Resolution Euler Semi-Lagrangian

Double integrator
1282 2.3 6.8

2562 22.5 18.4

Acoustic capture
1282 48.7 135

2562 373 600

Collision avoidance
643 524 552

1283 9812 5537

implements a semi-Lagrangian method on adaptive kd-tree grids. The effective
resolution for both methods has been selected the same. The first method allows
the user to select an accuracy level which determines which kind of derivative
approximation method and time integration method is used. Implementing the
Euler level set method in a more low-level programming language would probably
increase the speed of the method, although the code is vectorized and makes use of
the LAPACK libraries.

From table 11.2 it becomes clear that for low dimensional grids the non-adaptive
Euler approach gives the best results. Additionally, the Euler method achieves
better accuracy for lower, or computation time of the same order. Unfortunately,
the computational load increases dramatically when the dimension of problem is
increased due to both the CFL condition and the number of grid elements growing
exponentially. The adaptive semi-Lagrangian method is slower for low dimen-
sional and low resolution grids due to grid adaptation and has lower accuracy
due to the selected time integration and spatial derivative approximation methods.
Adaptation of the grid on the other hand has clear benefits when the dimension is
increased: the most computational effort is spent on the most interesting regions
of the domain. Therefore, the semi-Lagrangian approach is selected as the most
promising solution method for application to aircraft flight envelope determination
by means of reachable set analysis.

11.9 Conclusions

In this chapter, the level set method for reachability analysis has been introduced,
and its relation to the flight envelope problem has been discussed. Different solu-
tion methods to solve the level set equation were presented: the Euler, Lagrangian,
and semi-Lagrangian approaches. Only the first and last are considered to be
applicable to the flight envelope problem, while the Lagrangian method can be
used as auxiliary method to improve the resolution of the solution locally.

Three different examples were presented to demonstrate the capabilities of reach-
able set analysis through the level set approach: a double integrator, acoustic cap-
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ture, and an aircraft collision avoidance example. These examples were also used
to perform a comparison between the Euler and semi-Lagrangian solution meth-
ods. The semi-Lagrangian appears to scale best with increasing grid resolution
and dimension, and acceptable accuracy Therefore, the semi-Lagrangian approach
is selected to be used for safe flight envelope determination through reachability
analysis. In the next chapter, the semi-Lagrangian method is applied to a nonlinear,
longitudinal, high-fidelity F-16 aircraft model.

Several recommendations can be made to improve the speed and accuracy of
the semi-Lagrangian method. First of all the efficiency of the code can be improved,
and an extension to use multiple cores or even distribution of tasks can be imple-
mented to increase solution speed. The accuracy of the method can be improved
by more accurate derivative approximation, and higher-order time integration and
interpolation methods. It would be interesting to combine the method with par-
ticles, tracking the flow in Lagrangian fashion, to further improve the accuracy as
proposed by Losasso, Gibou, and Fedkiw [102].
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F-16 LONGITUDINAL ENVELOPE

In this chapter the semi-Lagrangian level set method on adaptive kd-tree grids
is applied to a nonlinear model of the longitudinal F-16 dynamics. First of all
the model will be introduced and the simplifications made are discussed. After
this, the trim-set for the model is derived which serves as the starting point
for the level set algorithm. Results obtained for different aircraft configura-
tions at different flight conditiions are presented and discussed. Finally, the
conclusions drawn from the application and the results are presented and some
recommendations for future research are made.

12.1 Aircraft Model and Assumptions

To research whether the reachable set approach can yield promising results for
determining the safe flight envelope of modern aircraft, the method is applied to a
simplified nonlinear model of the longitudinal F-16 dynamics. The main simplifi-
cations made to the model are

Assumption I The dynamics have been made affine in the control and disturbance
inputs,

Assumption II Only magnitude constraints on the control and disturbance inputs
are taken into account,

Assumption III The altitude and therefore the air density as well as gravitational
acceleration are kept constant during the maneuver.

Assumption IV The aircraft has a plane of symmetry, the engine thrust lies in this
plane of symmetry.

245
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When the full maneuvering capabilities of an aircraft are considered the reach-
able set calculations have to be run in at least 9 dimensional space if the altitude
is considered to be fixed: three states related to the airspeed and its direction,
three rotational rates, and three defining the attitude of the aircraft with respect
to Earth. Rate constraints on the control input and actuators can in principal be
taken into account by augmenting the system with actuator dynamics. Such an
application would be too computationally demanding to run with acceptable res-
olution on a single desktop computer at the moment of writing however. In this
application example only the longitudinal dynamics are considered to reduce the
computational load, and additionally simplify the presentation of the maneuver set
in figures. Therefore, only four states need to be considered: the total airspeed VT ,
the angle of attack α, the pitch rate qB, and the pitch attitude defined through a
quaternion component q2. The engine thrust T and horizontal stabilizer deflection
δh are considered as control inputs. In the results presented in this chapter no
disturbance inputs were taken into account, however the extension of the HJ PDE
including uncertainty on the aerodynamic parameters, aircraft parameters, and
wind as disturbance inputs is straightforward. The HJ PDE with control inputs
and aerodynamic uncertainty is presented. By solving this HJ PDE, the worst-case
safe maneuvering envelope can be obtained.

The model of the longitudinal dynamics is given by

V̇T =
1

m
[−D + T cos α + mg1] (12.1)

α̇ = qB +
1

mVT
[−L − T sin α + mg3] (12.2)

q̇2 =
1

2
qBq0 (12.3)

q̇B =
M

Iyy
(12.4)

where the lift, drag forces and pitch moment are described by

D =
1

2
ρV2

T S
[

−CXT
cos(α)− CZT

sin(α)
]

L =
1

2
ρV2

T S
[

CXT
sin(α)− CZT

cos(α)
]

M =
1

2
ρV2

T S
[

CmT
+ CZT

(xcg − xcgr)
]

.

The force and moment coefficients in the body-axes are specified in [126]. The
gravity components g1 and g3 are defined by

g1 =
[

−2q0q2 cos α + (q2
0 − q2

2) sin α
]

g0

g3 =
[

2q0q2 sin α + (q2
0 − q2

2) cos α
]

g0,
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and the quaternion component q0 is derived from the constraint q2
0 + q2

2 = 1 as

q0 =
√

1 − q2
2. A more detailed overview of the aerodynamic model and all the

individual lookup tables can be found in [126]. The horizontal stabilizer deflection
is constrained to ±25 degrees in the nominal case, and the engine thrust is con-
strained between 0 and 75000 Newton. The leading edge flap also available in the
model has not been used during any of the simulations.

12.2 Trim Set

The trim set is used as the initial safe set for the level set algorithm. Therefore,
definition of this trim set is extremely important in order to obtain the correct
safe flight envelope: an unsafe state that is part of the initial set will destroy all
claims made about the safety of the resulting flight envelope. The trim-set can be
found through various methods: analytically, by means of numerical optimization,
interval-analysis [189], and bifurcation and continuation methods [3, 62].

As discussed in the previous chapter, both the Euler- and semi-Lagrangian ap-
proaches require that at least one cell of the grid is part of the initial or target set in
order to be able to propagate the interface in time. If this is not the case, the methods
can evolve the implicit surface yet the reachable set will be empty as there is no
meaningful iso-contour to define the set. The aircraft trim set is a very thin hyper-
surface if a requirement on the trim condition is that the aircraft is non-rotating
and the flight path angles are constant. This is illustrated in figure 12.1(a) which
shows the trim-curve for symmetric, non-climbing flight at different altitudes and
c.g. positions. Alternatively one can perform the trim for non-zero rotational rates
and a wide range of flight path angles. This would yield a much larger set of
trimmable states for which an implicit surface description has to be made, and most
of the considered flight conditions would not generally be considered as normal
flight conditions. Another alternative is assuming that all states within a certain
weighted distance of the trim-curve belong to the trimmable-set. This approach
immediately yields an implicit surface description of the trimmable set, and the
distance can be chosen such that all states within the resulting trimmable-set are
actually (quasi-)trimmed states. This can be verified by comparing the results from
the last approach with the full trim approach. Figure 12.1(b) shows the results of
including states within a certain distance of the trim-curve as part of the trimmable-
set.

12.3 Level Set Problem and Solver Settings

The reachability problem has four dimensions. In this section the HJ PDE will be
derived which has to be solved to obtain the forwards and backwards reachable
sets, and hence the safe flight envelope. Due to the first assumption, the total
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Figure 12.1: Longitudinal, symmetric, level, trim curve at different altitudes and
c.g. positions (a). Slices of the extended trim set for the F-16 aircraft at low altitude
flight in (b).

aerodynamic forces and moment coefficients can be written as

CXT
= CX0

+ CXδh
δh + CX∆

∆,

CZT
= CZ0

+ CZδh
δh + CZ∆

∆,

CmT
= Cm0

+ Cmδh
δh + Cm∆

∆.

where ∆ is the disturbance signal. Inserting these coefficients into the equations of
motion then results, and then considering the forwards reachable set results in the
following HJ PDE

0 =
∂V

∂t
+ max

u
min

∆

∂VT

∂x
f (x, u, ∆)

=
∂V

∂t
+

∂V

∂VT

(

g1 +
q̄S

m

(

CX0
cos α + CZ0

sin α
))

+
∂V

∂q2

1

2
qBq0 (12.5)

+
∂V

∂α

(

qB +
1

mVT

(

mg3 − q̄S
(

CX0
sin α − CZ0

cos α
)))

+
∂V

∂qB
q̄Sc̄Cm0

+ max
δh

(
∂V

∂VT

q̄S

m

(

CXδh
cos α + CZδh

sin α
)

− ∂V

∂α

q̄S

mVT

(

CXδh
sin α − CZδh

cos α
)

+
∂V

∂qB
q̄Sc̄Cmδh

)

δh



12.4. NOMINAL AIRCRAFT RESULTS 249

Table 12.1: Solver settings for the reachable set calculations.

Parameter Setting
min. level 0
max. level 6
domain [50, 200]× [−20, 50]× [−60, 60]× [−1, 1]
final time 1.0 second
dt 0.01 second
scale factor 45

+ max
T

(
∂V

∂VT

1

m
cos α − ∂V

∂α

1

mVT
sin α

)

T

+ min
∆

(
∂V

∂VT

q̄S

m

(

CX∆
cos α + CZ∆

sin α
)

− ∂V

∂α

q̄S

mVT

(

CX∆
sin α − CZ∆

cos α
)

+
∂V

∂qB
q̄Sc̄Cm∆

)

∆.

The optimal input values for δh, T and ∆ for each grid node can be derived by
simply evaluating the parts of the HJ PDE where they appear. Using these optimal
input values at each grid node, the flow field over the whole domain can be calcu-
lated, and the value function can be propagated using the semi-Lagrangian level
set method.

12.4 Nominal Aircraft Results

In this section the results of applying the semi-Lagrangian level set method to the
aircraft model described above are presented. The calculations were performed by
an implementation of the semi-Lagrangian level set method in C++ on a desktop
computer. More details about the implementation can be found in appendix C. The
settings for the solver are given in table 12.1 below.

The safe flight envelope computations are performed with four different model
settings. An overview of the considered scenarios is given in table 12.2. First the
nominal aircraft is investigated at an altitude of 0m. To compare the maneuverabil-
ity of the aircraft at different altitudes, the envelope is also determined at a flight
level used for cruise, 10000m. The influence of the center of gravity position on the
aircraft’s flight envelope is investigated by shifting it backwards compared with
the nominal low altitude simulations. This causes the aircraft to have a smaller
stability margin. Finally, the effect of damage to the horizontal stabilizer actuators
is investigated by reducing the deflection limits of the stabilizer.

The following legend is used in the figures: the trim set is shown in red, the
forwards reachable set in yellow, the backwards reachable set in blue, and the
intersection or the safe flight envelope in green.
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Table 12.2: Simulation Scenarios.

scenario description altitude stabilizer limits c.g. position
I nominal, low 0 [−25, 25] 0.30c̄
II nominal, high 10000 [−25, 25] 0.30c̄
III cg 0 [−25, 25] 0.36c̄
IV stabilizer 0 [−5, 5] 0.3c̄

12.4.1 Low Altitude Maneuverability

First of all the maneuverability of the F-16 aircraft at low altitude is investigated by
comparison of the safe envelope at three flight conditions with different airspeed.
Figures 12.2(a), 12.2(b), and 12.3(a) show the reachable sets and safe envelope at
airspeed of 60, 100 and 150 m/s respectively, at a c.g. location of 0.30c̄ and nom-
inally constrained horizontal stabilizer. Clearly, with increasing dynamic pressure
due to increasing velocity, the aircraft becomes more maneuverable as can be ob-
served from the increased size of the safe maneuver set. Furthermore, the expected
relations between the angle of attack and the pitch attitude, the angle of attack
and pitch rate, and the pitch attitude and pitch rate can all be observed from the
plots. Especially for the airspeed of 100 m/s a clear difference between the forwards
and backwards reachable sets exists; states can be reached within one second that
cannot be returned to the set of assumed safe sets within one second. It is expected
that at least part of these states are within the safe maneuver envelope evaluated
for a longer time period.

12.4.2 High Altitude Results Altitude Comparison

There exists a large difference between the trim curves of the aircraft at low and
high altitude as can be observed from figure 12.1(a). The lookup tables of the used
F-16 model do not depend on Mach number. Therefore, the difference between the
maneuver set of the aircraft at different altitudes for the same airspeed is explained
by the difference in air density, and hence dynamic pressure. This difference can
be observed by comparing Fig. 12.3(a) and Fig. 12.3(b). The dynamic pressure
resulting from flying at 10000m and 150 m/s is about 75% of the dynamic pressure
for flying at 0m and 100 m/s. The same ratio can be observed in the size of the
maneuver sets shown in figure 12.2(b) and figure 12.3(b).

12.5 Center of Gravity Shift Comparison

The center of gravity location has considerable influence on the maneuverability
of an aircraft. Normally when the center of gravity is moved backwards, the static
stability margin of the aircraft is reduced, and maneuverability is increased. The
safe maneuvering envelope of the aircraft with the center of gravity shifted aft
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Figure 12.2: Initial, forwards, backwards, and safe maneuver set for the F-16 aircraft
at VT = 60 m/s (a) and VT = 100 m/s (b) at 0m altitude.
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Figure 12.3: Initial, forwards, backwards, and safe maneuver set for the F-16 aircraft
at VT = 150 m/s at 0m and 10000m altitude.
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Figure 12.4: Initial, forwards, backwards, and safe maneuver set for the F-16 aircraft
at VT = 60 m/s, and VT = 100 m/s for xcg = 0.36c̄.

by 6% of the chord at an altitude of 0m is shown in figures 12.4(a), 12.4(b), and
12.5(a) for airspeeds of 60, 100, and 150 m/s respectively. At all airspeeds the
safe maneuvering set is quite comparable in size with the results obtained at the
nominal center of gravity location. However, it seems that the forwards reachable
set has become larger while the backwards reachable set has become smaller; it has
become easier to maneuver away from the safe set but harder to return to it.

12.6 Constrained Actuator Comparison

Unfortunately there is no aerodynamic failure model for the F-16 aircraft available
and therefore no simulations could be performed to investigate the influence of
realistic aerodynamic changes in the dynamics on the safe maneuvering envelope.
Instead, an actuator failure is considered to simulate an aircraft with reduced safe
maneuvering envelope. The trim curve does not change much due to this failure,
only part of the curve is cut off as seen in Fig. 12.1(a). The safe maneuvering
envelope of the aircraft with reduced horizontal stabilizer deflection capability for
three different airspeeds of 60, 100, and 150 m/s at an altitude of 0m is shown in
figures 12.5(b), 12.6(a), and 12.6(b) respectively. At low airspeed there is little left
of the maneuvering capability of the aircraft. When the airspeed is increased, the
safe maneuvering envelope grows slightly. This illustrates that aircraft with failures
can have severely reduced maneuvering capability. Hence, in order to guarantee
safety, knowledge of the post-failure maneuvering envelope is extremely important
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Figure 12.5: Initial, forwards, backwards, and safe maneuver set for the F-16 aircraft
at VT = 150 m/s, xcg = 0.36c̄, at VT = 60 m/s with constrained horizontal stabilizer

to |δh|max = 5 degrees.

to prevent loss-of-control incidents and accidents.

12.7 Conclusions

In this chapter the safe longitudinal envelope for a high-fidelity, nonlinear, F-16
aircraft model has been derived using the semi-Lagrangian level set method intro-
duced in the previous chapter, demonstrating the capabilities of the reachable set
approach for safe envelope determination. From the results, several conclusions
can be drawn.

• The semi-Lagrangian approach is able to solve the level set equations to ob-
tain the safe flight envelope for a high-fidelity aircraft model. Hence, the
approach can potentially be an aid in the design and (flight) testing phases of
aircraft development.

• The shape of the forwards and backwards reachable sets matches with what
is expected from flight dynamics. At higher altitude the aircraft becomes less
maneuverable for the same airspeed. When the center of gravity is shifted in
longitudinal direction, the aircraft becomes more unstable, resulting in larger
maneuverability, but at the cost of greater difficulty to get the aircraft back to
a trim condition.
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Figure 12.6: Initial, forwards, backwards, and safe maneuver set for the F-16 aircraft
at VT = 100 m/s and VT = 150 m/s, |δh|max = 5 deg.

• In the case of a loss in hydraulic pressure, resulting in more stringent con-
strained horizontal stabilizer deflections, the maneuvering capabilities of the
aircraft severely degrade at low airspeeds. At higher airspeeds there is more
maneuvering capability left, and this information could be extremely benefi-
cial for a safe approach and landing. If the post-failure flight envelope would
have been available in the El-Al Flight 1862 discussed in chapter 10, a crash
might have been prevented.

• The method is not yet feasible for on-line applications due to the computa-
tional power required. Instead of calculating the envelope on-line using an
estimated model, a database of flight envelopes for different failure cases
and aircraft configurations can be carried on-board as proposed by [181].
Then, using fault detection and isolation schemes, an appropriate safe flight
envelope can be selected from the database.

The research yielded several ideas for future investigation. Especially for general
aviation and commercial aircraft, it would be interesting to investigate whether
the full envelope determination problem can be split into fast, and slow dynamics
by means of time-scale separation arguments. This would simplify the dynamic
envelope problem into five and four dimensional subproblems which are far more
computationally tractable than the original problem, and might even be solved on
current hardware within reasonable amounts of time. Another problem requiring
attention is the determination of the initial safe set. An alternative solution is
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to start with very small grid resolution, and evolve the level set backwards and
forwards over a small amount of time. Then, the resulting safe flight envelope can
be used to initiate the calculations on a larger and coarser resolution domain.
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[144] J. A. Primbs, V. Nevistić, and J. C. Doyle. “Nonlinear Optimal Control: A
Control Lyapunov Function and Receding Horizon Perspective”. In: Asian
Journal of Control 1.1 (Mar. 1999), pp. 14–24.

[145] H. Ranter. Airliner Accident Statistics 2006. Tech. rep. Aviation Safety Net-
work, 2007.
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CONCLUSIONS AND

RECOMMENDATIONS

This dissertation describes the development of an adaptive flight control ap-
proach for modern fighter aircraft, and the determination of the safe flight
envelope for such high performance aircraft. In this chapter the main con-
clusions of this research are summarized. Based on these conclusions and other
observations made during the research, new research objectives and questions
can be formulated in the form of recommendations for future research.

13.1 Conclusions

The conclusions are directly linked to the research goals postulated in the introduc-
tion. These research goals are summarized here:

• Damaged Aircraft Control A control scheme has to be developed which achieves
the desired performance characteristics over the whole flight envelope of the
aircraft. Additionally, in the presence of faults and failures in the system,
the control law has provable stability and state boundedness characteristics.
Combined with on-line model identification the control design clearly en-
hances performance and survivability in post-failure flight conditions.

• Control Allocation Modern aircraft have many different control effectors. While
this property allows on-line reconfiguration as it provides redundancy, it poses
an additional problem in the control design since the desired control effect
has to be distributed over the available control effectors. This distribution is
performed optimally with respect to a cost criterion and takes the individual
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control effector characteristics into account. Stability of the control law with
control allocation can be shown.

• Damaged Aircraft Identification Aircraft failures or damage influence the dy-
namics of the system, which need to be identified on-line to allow active
reconfiguration of the control design and restore control performance. Se-
vere failures cause changes in the required model structure, and addition-
ally, asymmetric damage contributes to the complexity of the required model
structure. When the model structure and estimated parameters match the
underlying physics of the system, the estimated model can be used for fault
diagnosis and derivation of the safe flight envelope post-failure. Therefore,
development of on-line model structure selection methods is required and
the estimated model has to be stored efficiently onboard.

• Flight Envelope Determination Especially for highly maneuverable aircraft and
aircraft with faults and failures the aircraft dynamics pose important con-
straints on the safe maneuvering space. In post-failure flight conditions knowl-
edge of the safe envelope can be the difference between an inevitable accident
or safe (crash) landing. Thus, a method has to be developed which calculates
the safe envelope, based on a available model of the aircraft, and takes input
constraints and disturbances into account.

13.1.1 Damaged Aircraft Control

The research on adaptive control described in this dissertation is focused on a
physical modeling approach where knowledge of flight dynamics is used in the
design of indirect adaptive backstepping flight control designs for different aircraft
models. Starting from the adaptive backstepping framework, the approach was
extended with control allocation, and full envelope model estimation and model
structure selection.
Adaptive backstepping is a recursive, Lyapunov-based, nonlinear design method
which makes use of parameter update laws to deal with parametric uncertainties
in the system. The main idea of backstepping is to design the control law recur-
sively by considering some of the state variables as “virtual control inputs”, and
designing stabilizing functions for these. With the inclusion of command filters, the
backstepping design is applicable to non-triangular systems and the whole design
is simplified considerably as the need for analytic derivatives of the “virtual control
inputs” is removed.

Different parameter update laws can be designed, resulting in the integrated,
modular, and composite update law designs. The integrated design employs a
Lyapunov based update law, while the modular update law allows the use of a
recursive least squares identifier. However, nonlinear damping terms are required
in the control law to achieve the modularity between the controller and identifier.
The composite update law combines the integrated and modular designs, and has
the best parameter convergence properties of all three designs.
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In chapter 6 three nonlinear adaptive control designs for a simple, over-actuated
fighter aircraft model with unknown aerodynamic parameters have been studied.
Two of these adaptive designs use an integrated Lyapunov based update law, while
the other design is modular and uses a least-squares update law. The control de-
signs were combined with two control allocation methods to distribute the desired
control effort over the available control surfaces. A comparison based on numerical
simulations of the resulting control design and control allocation combinations for
different control surface failures has been made.

The main observation that can be made from the simulation results is that all
three adaptive flight control designs provide a significant improvement over a non-
adaptive model based design in the presence of actuator failures. With the pseudo-
inverse control allocation the reconfiguration success rate and performance of the
adaptive control designs is very similar. However, in combination with more so-
phisticated control allocation methods the reconfiguration success rate and perfor-
mance of the modular adaptive design is superior to the integrated designs. This
can be mainly explained by the better parameter estimates obtained by the least
squares identifier.

In some simulation cases, the adaptive control designs managed to stabilize
the aircraft and were able to track part of the desired trajectories. Following the
complete desired maneuver was too challenging for the degraded aircraft. There-
fore an adaptive controller alone is not sufficient to improve safety in post-failure
flight conditions: both the pilot and guidance system have to be made aware of the
failure characteristics and post-failure flight envelope. The problem of determining
the aircraft’s capabilities, or safe maneuvering envelope, is addressed in part III of
this dissertation.

Tuning of the integrated adaptive control designs turned out to be quite time
consuming, even for this relatively simple aircraft model. Increasing the adaptation
gain will result in faster parameter convergence, but on the other hand it can lead
to undesirable transients in the closed-loop response. The modular design requires
inclusion of nonlinear damping terms to guarantee boundedness of the closed-
loop response. These nonlinear damping terms can result in high-gain control, and
possibly undesirable numerical effects.

13.1.2 Control Allocation

In chapter 7 three adaptive control designs have been proposed for over-actuated
systems with uncertain parameters: an integrated, modular and composite design.
The control design is split into a high-level control law and a dynamic control
allocation update law. The last update law does not solve the control allocation
problem directly as was done in chapter 6, but rather converges to the optimal
solution continuously. Closed loop boundedness of the system states and desired
control effector signals can be proven by means of adaptive optimizing control
Lyapunov functions, and locally, asymptotic tracking of the desired reference signal
is concluded.
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The composite adaptive design has the best convergence properties and does
not require nonlinear damping unlike the fully modular design. The tracking per-
formance of the composite control design is excellent in the nominal case as well
as for all considered failure cases. After introduction of a failure to the model, the
correct model parameters are rapidly estimated. The dynamic order of the resulting
controller is equal to that of the modular adaptive design, but considerably higher
than for the integrated design due to the presence of the dynamic update gain.

13.1.3 Damaged Aircraft Identification

In chapter 9 many design techniques introduced earlier are brought together to
create a controller which is able to achieve excellent tracking performance for non-
linear, over-actuated, aircraft. The controller is designed within the backstepping
framework and combines a high level control design with dynamic optimizing con-
trol allocation using a composite update law for the unknown parameter. The flight
envelope has been divided into small partitions, for each partition a locally valid
model is created. Both the structure and model parameter values are identified on-
line based on a orthogonal least squares identification scheme. Global stability of
the closed-loop system, and convergence of the estimated parameter can be proven
using a single Lyapunov function. The control design is evaluated with numerical
simulations.

The proposed control design shows excellent performance for a variety of sim-
ulated fault and failure cases ranging from a simple change in the aerodynamic
coefficients, to actuator failures and center of gravity shifts. The tracking perfor-
mance of non-adaptive model based control designs deteriorates significantly for
these kinds of failures. When the failure is in the space spanned by the set of
available regressor candidates, the correct model structure can be identified, and
the correct parameter values are estimated if a persistency of excitation condition
is satisfied. Even if the failure cannot be completely characterized by the available
set of regressor candidates, tracking performance can be very good as long as the
residual error between the estimated model and the true behavior is small.

Splitting the complete flight envelope into smaller partitions allows real-time
implementation of the control design, and the identified information can be stored
efficiently for later use, when the same part of the envelope is visited again. Tuning
of the controller is very straightforward since the update gain of the parameter
adaptation is tuned automatically by the least squares filter, and the remaining
tuning parameters can be chosen independently.

13.1.4 Flight Envelope Determination

The second part is considered with determination of the safe flight envelope. Sta-
tistical data shows that the majority of aircraft accidents in the past decade has been
related to excursions of the aircraft beyond its safe flight envelope. Therefore, both
knowledge of the safe flight envelope and some form of protection is required to
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keep the aircraft within its safe flight envelope. The safe flight envelope is defined
as the region in the state space for which safe operation of the aircraft can be
guaranteed and externally posed constraints will not be violated. This region in
the state space can be defined as the intersection of the dynamical, structural and
environmental envelopes.

In chapter 11 the level set method for reachability analysis has been introduced,
and its relation to the flight envelope problem has been discussed. The dynamic
flight envelope can be obtained by evaluating the forwards and backwards reach-
able set of a set of known, safe states. Different solution methods to solve the
level set equation are presented: the Euler, Lagrangian, and semi-Lagrangian ap-
proaches. Only the first and last are considered to be applicable to the flight en-
velope problem, while the Lagrangian method can be used as auxiliary method to
improve the resolution of the solution locally.

Three different examples were presented to demonstrate the capabilities of reach-
able set analysis through the level set approach: a double integrator, acoustic cap-
ture, and an aircraft collision avoidance example. These examples were also used
to perform a comparison between the Euler and semi-Lagrangian solution meth-
ods. The semi-Lagrangian appears to scale best with increasing grid resolution
and dimension, and acceptable accuracy. Therefore, the semi-Lagrangian approach
is selected to be used for safe flight envelope determination through reachability
analysis.

In chapter 12 the safe longitudinal envelope for a high-fidelity, nonlinear, F-16
aircraft model is derived using the semi-Lagrangian level set method introduced
in chapter 11, demonstrating the capabilities of the reachable set approach for safe
envelope determination. The semi-Lagrangian approach is able to solve the level
set equations to obtain the safe flight envelope for a high-fidelity aircraft model.
Hence, the approach can potentially be an aid in the design and (flight) testing
phases of aircraft development.

The shape of the forwards and backwards reachable sets matches with what is
expected from a flight dynamics analysis. At higher altitude the aircraft becomes
less maneuverable for the same true airspeed due to reduction of dynamic pressure.
When the center of gravity is shifted in longitudinal direction, the aircraft becomes
more unstable, resulting in larger maneuverability, but at the cost of greater diffi-
culty to get the aircraft back to a trim condition. In the case of a loss in hydraulic
pressure, resulting in smaller deflection limits of the horizontal stabilizers, the ma-
neuvering capabilities of the aircraft severely degrade at low airspeed. At higher
airspeed there is more maneuvering capability left, and this information could
be extremely beneficial for a safe approach and landing. If the post-failure flight
envelope would have been available in the El-Al Flight 1862 accident introduced in
chapter 10, a crash might have been prevented.

13.1.5 Final Conclusions

The conclusions can be summarized for each of the research objectives as
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• Adaptive control improves the tracking performance in post-failure flight
conditions considerably over non-adaptive designs, while the nominal per-
formance is identical or slightly better. However, the improved performance
comes at the cost of a larger computing power requirement due to the in-
creased order of the control design.

• The over-actuation of modern aircraft facilitates on-line reconfiguration. With
control allocation methods, the available control effectors can be used opti-
mally with respect to a cost criterion taking individual effector characteristics
into account. By incorporation of control allocation into the backstepping
framework, closed loop boundedness and stability can be shown through
Lyapunov analysis.

• Full envelope model identification is made possible by partitioning the flight
envelope into small regions or hyperboxes. Each hyperboxes has its own
locally valid model for which the model structure and parameters can be
identified. The full model is obtained by B-spline interpolation between the
local models. Due to the local support of these B-splines, only a limited
amount of hyperboxes has to be evaluated and updated for each flight condi-
tion.

• The safe flight envelope for a given aircraft can be derived by means of reach-
ability analysis, provided that an accurate model of the vehicle dynamics is
available and the magnitude of the control inputs and disturbances is known.

13.2 Recommendations and Future Prospects

New research questions and objectives are formulated based on the research pre-
sented in this dissertation.

Adaptive Flight Control

The contributions in adaptive flight control are obtained from numerical flight sim-
ulations with pre-programmed maneuvers, no piloted simulations have been per-
formed. The interaction between pilots and adaptive control designs is still an area
open for research. Investigating the handling qualities of adaptive flight control
designs just after injection of a failure, and after the estimated model has converged
would make a very interesting study.

No accurate failure models of realistic structural damage were available for
modern fighter aircraft. Therefore, the evaluation of the adaptive flight control de-
signs was limited to simulation scenarios with actuator failures, shifts of the center
of gravity, and uncertainties on individual aerodynamic coefficients. It would be
very interesting to analyze whether the proposed control designs achieve adequate
performance for asymmetric failure modes such as partial wing surface loss. In that
case, the set of regressor candidates would have to be extended with additional
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coupled longitudinal-lateral and nonlinear terms to be able to correctly identify the
new dynamics.

The developed control designs can be enhanced with Fault Detection and Iso-
lation (FDI) modules for actuator failures, performing actuator health monitoring,
simplifying the task of on-line model identification and control reconfiguration.
This was not done in the present research to make the limited failure scenarios more
challenging for the controller, including such a module would be a very logical
step when actuator models and more challenging aerodynamic failure cases are
available. Similarly, in this research full, perfect, state measurement was assumed
while this is not always possible in real applications. Therefore, the extension of
the design with state observers has still to be investigated.

Currently, a fixed partitioning of the flight envelope has been used in combi-
nation with structure selection for each partition. An interesting extension would
be automatic partitioning of the flight envelope, similar to what is proposed by
[124]. The automatic partitioning recruiting and shape optimization can then be
used together with structure selection to achieve an accurate fit of the aerodynamic
model, even in the presence of asymmetric failures. Another possibility would
be to replace the tensor B-splines partitioned envelope with local models in each
hyperbox by simplex splines to model the aerodynamic coefficients [37].

No adaptive control designs are currently reported to be in operational use.
The main reason is that there are no certification guidelines or requirements for
adaptive control designs, and therefore these novel designs cannot be applied to
commercial aircraft in production yet. Currently, many of the analysis tools used
for certification and verification are based on linear system theory. With the emer-
gence of nonlinear control designs, such as for example in the Lockheed-Martin
F-35 aircraft, there exists a need for new validation and verification methods which
are applicable to nonlinear control designs and nonlinear aircraft models.

Safe Flight Envelope

Several recommendations can be made to improve the speed and accuracy of the
semi-Lagrangian method. First of all the efficiency of the code can be improved,
and an extension to use multiple cores or even distribution of tasks can be im-
plemented to decrease the required time to calculate the solution. The accuracy
of the method can be improved by more accurate derivative approximation, and
higher-order time integration and interpolation methods. It would be interesting
to combine the method with particles, tracking the flow in Lagrangian fashion
by “floating” along streamlines, to further improve the accuracy as proposed by
Losasso, Gibou, and Fedkiw [102].

Especially for general aviation and commercial aircraft, it should be investi-
gated whether the full envelope determination problem can be split into fast, and
slow dynamics by means of time-scale separation arguments. This would simplify
the dynamic envelope problem into five and four dimensional subproblems which
are far more computationally tractable than the original problem, and might even
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be solved on current hardware within reasonable amounts of time. The information
obtained using these calculations might be valuable during the design process to
identify problem areas in the flight envelope.

Another problem requiring attention is the determination of the initial safe set.
An alternative solution is to start with very small grid resolution, and evolve the
level set backwards and forwards over a small amount of time. Next, the resulting
safe flight envelope can be used to initiate the calculations on a larger and coarser
resolution domain.

It would be extremely interesting to apply the approach to the El-Al Boeing 747
accident and determine whether indeed the aircraft would become uncontrollable
below a certain airspeed, and, secondly, determine the optimal flight path to the
runway that could still have been flown by the aircraft.

Future Prospects

Most probable first applications of adaptive control techniques are in small and
relatively cheap UAV utilized in reconnaissance missions by the military, police and
similar organizations. These UAVs are then able to complete their mission while
flying over hazardous areas, for example enemy territory, by coping with airframe
damage and actuator and sensor failures. When the technology has matured more,
it will eventually find its way to manned military aircraft and commercial aircraft,
to increase the safety of aviation.

Additionally, adaptive control and on-line system identification techniques have
clear benefits in flight testing, reducing both the required time and budget to exe-
cute the test program. The adaptive control techniques do not have to be imple-
mented on the final products, but can be used to obtain flight test data in uncon-
ventional regimes of the flight envelope, for example flight at high angle of attack.

Further developments should be aimed at increasing the technology readiness
level of the designed algorithms. In The Netherlands at least two aircraft exist
which can be employed to test the development algorithms during real flights: the
Orange Jumper F-16 aircraft from the RNLAF and the Cessna Citation II labora-
tory aircraft of the NLR and Delft University of Technology. At the current stage,
demonstrating of the developed fault tolerant control and identification techniques
in a realistic environment is the next logical step in the development process.
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SYSTEM AND STABILITY CONCEPTS

The following comparison functions are useful tools for stability analysis.

Definition A.1. A continuous function α : [0, a) → R+ is said to be of class K if it is
strictly increasing and α(0) = 0. It is said to be of class K∞ if a = ∞ and limr→∞ α(r) =
∞.

Definition A.2. A continuous function β : [0, a)×R+ → R+ is said to be of class KL if
for each fixed s the mapping β(s, r) is of class K with respect to r and, for each fixed r, the
mapping β(r, s) is decreasing with respect to s and β(r, s) → 0 as s → ∞. It is said to be
of class KL∞ if, in addition, for each fixed s the mapping β(r, s) belongs to class K∞ with
respect to r.

Lyapunov analysis can be used to show stability of sets through the following
claims [158].

Definition A.3. If the system ẋ = f (x) is forward complete, then for this sytem a closed,
forward invariant set A is:

• Uniformly Stable (US) if there exists δ(·) ∈ K∞ such that for any ǫ > 0,

|x0|A ≤ δ(ǫ), t ≥ 0 → |x(t, x0)|A ≤ ǫ. (A.1)

• Uniformly Globally Asymptotically Stable (UGAS) if it is US and Uniformly At-
tractive (UA) , that is, for each ǫ > 0 and r > 0 there exists T > 0 such that

|x0|A ≤ r, t ≥ T → |x(t, x0)|A ≤ ǫ. (A.2)
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Definition A.4. The system ẋ = f (x, u, t) is input-to-state stable (ISS) with respect to a
closed, 0-invariant set A if there exists β ∈ KL and γ ∈ K such that for each u ∈ Lm

∞ and
all initial states x0, the solution x(t, x0, u) is defined for all t ≥ 0 and satisfies

|x(t, x0, u)|A ≤ β(|x0|A, t) + γ(‖u[0,t]‖) (A.3)

for each t ≥ 0.

Definition A.5. An ISS Lyapunov function with respect to the compact subset A ⊆ R
n

for system Σ is a smooth function V : R
n → R+ which satisfies the following conditions:

1. V is proper and positive definite with respect to the set A, that is, there exist α1, α2 ∈
K∞ such that for all ξ ∈ R

n,

α1(|ξ|A) ≤ V(ξ) ≤ α2(|ξ|A), (A.4)

2. there exist functions α3 ∈ K∞ and σ ∈ K such that

∇V(ξ) f (ξ, v) ≤ −α3(|ξ|A) + σ(|v|) (A.5)

for all ξ ∈ R
n and for all v ∈ R

m.
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F-18 AERODYNAMIC MODEL DATA

Table B.1: Aircraft model parameters for trim condition I, h = 30000 ft and M = 0.7

lβ = −11.04 lq = 0 lr = 0.4164 lβα = −19.72 lrα = 4.709 lp = −1.4096

zα = −0.6257 yβ = −0.1244 mα = −5.432 mα̇ = −0.1258 mq = −0.3373 nβ = 2.558

nr = −0.1122 np = −0.0328 npα = −0.0026 nq = 0 lδel
= 6.3176 lδer

= −6.3176

lδal
= 7.9354 lδar

= −7.9354 lδr
= 1.8930 i1 = 0.7966 i2 = 0.9595 i3 = 0.6914

mδel
= −4.5176 mδer

= −4.5176 mδal
= −0.8368 mδar

= 0.8368 mδle f
= −1.2320 mδte f

= 0.9893

mδr
= 0 g0 = 9.80665 nδel = 0.2814 nδer = −0.2814 nδal

= −0.0698 nδar
= −0.0698

nδr
= −1.7422 V = 212.14 α0 = 0.0681 θ0 = 0.0681

Table B.2: Aircraft model parameters for trim condition II, h = 40000 ft and M = 0.6

lβ = −7.0104 lq = 0 lr = 0.3529 lβα = −16.4015 lrα = 1.0461 lp = −0.7331

zα = −0.2876 yβ = −0.0700 mα = −1.4592 mα̇ = −0.0177 mq = −0.1286 nβ = 1.3612

nr = −0.0619 np = −0.0177 npα = 0.0696 nq = 0 lδel
= 2.7203 lδer

= −2.7203

lδal
= 4.2438 lδar

= −4.2438 lδr
= 0.8920 i1 = 0.7966 i2 = 0.9595 i3 = 0.6914

mδel
= −1.9782 mδer

= −1.9782 mδal
= −0.3183 mδar

= −0.3183 mδle f
= −0.4048 mδte f

= 0.3034

mδr
= 0 g0 = 9.80665 nδel = 0.1262 nδer = −0.1262 nδal

= −0.0963 nδar
= −0.0963

nδr
= −0.8018 V = 177.09 α0 = 0.1447 θ0 = 0.1447
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SEMI-LAGRANGIAN LEVEL SET

IMPLEMENTATION

C.1 kd-tree Grids

The interface is the most interesting region of the state space, as it defines the level
set of interest. Hence, the computational effort should be concentrated in a band
around the interface. This can be achieved by refining the grid closer to the interface
by splitting grid cells, and coarsening the grid by merging grid cells further away
from the interfrace. Interpolation methods can be used within the grid cells to
advance the level set in semi-Lagrangian fashion.

Every cell vertex has a value, which can be interpreted as the level set value.
Hence, when any of a cell’s vertices has a value closer to the value of the interface,
the cell is split into smaller cells. When all vertices of the parent cell and its children
have values larger than twice the maximum allowed value, the children are merged
together to the parent cell. In two dimensions, the resulting grid is a quadtree grid
[33], see figure C.1(a). In three dimensions the result is an octree grid where each
parent has 8 children, see figure C.1(b). This concept generalizes to n-dimensional
space, where each parent has 2n-children.

C.2 Spatial Derivative Approximation

Since the grid is not regular any more, the distances to the left and right neighbors
of a node are not necessarily equal. Furthermore, some nodes will have virtual
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(a) Quadtree

—
(b) Octree

Figure C.1: kd-tree grid representations

neighbors, being virtual nodes on the edges and faces of the grid cells. Hence,
the spatial derivative required in the level set equation is obtained by a weighted
central difference, to account for the difference in distance to the neighbor nodes.
The derivative is approximated by[36]

∂ϕ

∂x
=

h2
1 ϕ(xi+1)− (h2

1 − h2
2)ϕ(xi)− h2

2 ϕ(xi−1)

h1h2(h1 + h2)
(C.1)

where h1 defines the distance to the left neighbor xi−1, and h2 the distance to the
right neighbor xi+1. This derivative approximation has first order accuracy in x.

C.3 Adaptive kd-tree CIR-scheme

The CIR-scheme for the semi-Lagrangian level set solution method is defined by
the algorithm:

The algorithm has been implemented as a toolbox in the C++ programming
language. The implementation keeps track of the grid nodes and grid boxes. Each
grid boxes contains references to its parent box, and to its vertex nodes. After each
modification of the grid, the new neighbor nodes of the grid nodes are found to
speed up the calculation of the approximated spatial derivative.

Using the toolbox, implementation of reachability problems is very straightfor-
ward. The user has to supply the dynamics with the optimal inputs based on the co-
state, and the initial or target set. After compilation of the code, the calculations can



C.3. ADAPTIVE KD-TREE CIR-SCHEME 281

Algorithm 3: CIR-scheme for semi-Lagrangian level set evolution.

begin
initialize the grid boxes and their nodes with the initial/target condition
t = t0
repeat

for each grid node do

evaluate the spatial derivative
∂φ
∂x

determine the optimal control inputs
evaluate the velocity F(x, tn) for the grid node
move x backwards with velocity −F(x, tn) to get to
s = x + δtF(x, tn)
interpolate φ(x, tn) to the point s to obtain φ(x, tn+1 = φ(s, tn)

end
for each grid box do

if any grid node < scale 2level then
split box and mark grid nodes of neighboring boxes for
re-evaluation

end

if all child-boxes’ grid nodes level set value > scale 2level+1 then
merge child boxes

end

end
process the marked and new nodes
Re-normalize the grid such that difference in grid-level between
adjacent box is maximally one
t = t + ∆t

until t = tfinal

end

be run from the command-line and MATLAB readable results are stored together
with a log file.
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Acronyms

AIC Akaike’s Information Criterion

AOCLF Adaptive Optimizing Control Lyapunov Function

CA Control Allocation

CABS Constrained Adaptive Backstepping

CFL Courant-Friedrichts-Lewy

CIR Cholesky Inverse Root

CLF Control Lyapunov Function

ENO Essentially non-oscillatory

FBL Feedback Linearization

FBW Fly-By Wire

FDD Fault Detection and Diagnosis

FDIE Fault Detection Isolation and Estimation

FTCS Fault Tolerant Control System

FTFC Fault Tolerant Flight Control

GAM Generic Aerodata Model

GUAS Globally Uniformly Asymptotically Stable

ISS Input-to-State Stable

LOC Loss of Control

LPV Linear Parameter Varying

MRAC Model Reference Adaptive Control

NDI Nonlinear Dynamic Inversion

NN Neural Network

OCLF Optimizing Control Lyapunov Function

ODE Ordinary Differential Equation
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OLS Orthogonal least squares

PSE Predicted square error

QP Quadratic Programming

RFC Reconfigurable Flight Control

RLS Recursive Least Squares

RMS Root Mean Square

ROA Region of Attraction

SSPE Structure Selection and Parameter Estimation

SVD Singular Value Decomposition

TSS Time-Scale Separation

TVD Total Variation Diminishing

UA Uniformly Attractive

UAS Uniform Asymptotic Stability

US Uniformly Stable

VSC Variable Structure Control

Greek Letters

α Angle of attack rad

β Sideslip angle rad

∆ Uncertainty

δ
⋆

Control surface deflection rad

ǫ Estimation error

Γ Update gain matrix

κ, µ Nonlinear damping gain matrix > 0

λ Forgetting factor

λ Lagrange multiplier

ω
⋆

Angular velocity in the ⋆ coordinate system rad/s

Φ Data matrix

φ Level set function

Ψ Composite update law weight matrix

σ Leakage gain > 0

ϕ Regressor function

ξ, Ξ Filter state

θ Unknown parameter
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θ̂ Estimated parameter

θ̃ Parameter error
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q̄ Dynamic pressure N/m2

X̄ Force in xBdirection N

Ȳ Force in yB−direction N

Z̄ Force in zB−direction N

b Reference span length m

C Tracking error gain matrix > 0

J Inertia tensor kgm2

K Integral gain matrix

L Roll moment Nm

M Pitch moment Nm

N Yaw moment Nm

p
⋆

Roll rate in ⋆ coordinate system rad/s

pstatic Static pressure N/m2

q
⋆

Pitch rate in ⋆ coordinate system rad/s

R Cholesky factor

r
⋆

Yaw rate in ⋆ coordinate system rad/s

S Inverse Cholesky factor

S Total wingarea m2

TA→B Transformation matrix from A to B coordinates

VT Total airspeed m/s

Notation

〈x, y〉
∫ t

0
expλ(τ−t) x(τ)y(τ)Tdτ

⊗ Kronecker product

a× Cross-product matrix
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Superscripts

0 Unfiltered

Subscripts

B Body Fixed Coordinate System

b Backwards

c Commanded

d Desired

E Earth Fixed Coordinate System

f Forwards

r Reference

S Stability-Axis Coordinate System

W Wind-Axis Coordinate System



SAMENVATTING

Adaptieve Backstepping Besturing en Veiligheidsanalyse van
Moderne Jachtvliegtuigen

Er bestaan vele voorbeelden van incidenten met vliegtuigen waar het de piloten
gelukt in om met behulp van de overgebleven besturingsmogelijkheden het vlieg-
tuig, de passagiers en vracht te redden uit een schijnbaar hopeloze situatie. Helaas
is het omgekeerde ook waar. Verschillende ongelukken zijn gebeurd waarin de
bemanning niet in staat was het vliegtuig te redden, hoewel analyse na de vlucht
uitwees dat met gebruik van alternatieve, misschien onconventionele, besturing
dit wel tot de mogelijkheden behoorde. Deze ongelukken tonen aan dat er een
mogelijk nut bestaat voor fout-tolerante vliegtuigbesturingssystemen (FTFC) die
veranderingen in de vliegtuigdynamica door schade en actuator falen kunnen op-
vangen. Sommige ongelukken hadden voorkomen kunnen worden door middel
van dergelijke FTFC technieken vanuit een luchtvaarttechnisch oogpunt.

Algemeen gezegd, kunnen FTFC methoden ingedeeld worden in twee types:
actief en passief. De passieve ontwerpen zijn robuust tegen een verzameling van
vooraf aangenomen fouten. Echter, een regelaar met genoeg robuustheid om alle
mogelijk foutsituaties te bevatten is waarschijnlijk onnodig conservatief in veel ge-
vallen. Er bestaat ook geen garantie dat onvoorziene en meerdere gelijktijdige fou-
ten, noch dat een dergelijke regelaar zelfs bestaat. In tegenstelling tot de passieve
methoden, reageren actieve methoden actief door de stuuracties te reconfigureren
zodat stabiliteit en acceptable prestaties van het systeem behouden blijven, zelfs na
het optreden van schade en fouten.

De huidige staat van de techniek toont aan dat er nog openstaande problemen
en beperkingen zijn aan FTFC. De passieve methoden zijn gelimiteerd tot en om die
reden heeft een actieve benadering meer potentieel wanneer onvoorziene fouten
en combinaties van fouten kunnen optreden. Slechts een handvol methoden zijn
toepasbaar over het hele vliegdomein, en met name de schatting van de dynamica
gebeurt alleen op of om de huidige vliegconditie. Er wordt geen volledig model
opgebouwd door deze methoden, en de geschatte modellen worden niet opgesla-
gen voor hergebruik wanneer op dezelfde vliegconditie gevlogen wordt. Directe
adaptieve methoden passen de parameters van de regelaar aan zodat de gewenste
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prestaties worden behaald, en schatten geen model van het systeem. Op neurale
netwerken gebaseerde methoden hebben last van convergentie problemen, en zijn
gebaseerd op black-box structuren die de transparantie van de geschatte modellen
reduceren. In dit onderzoek is gekozen voor een benadering gebaseerd op kennis
van vliegtuigdynamica, wat leidt tot transparante modellen en ook kunnen deze
modellen gebruikt worden voor foutdiagnose en reconfiguratie.

Incidenten door verlies van controle (LOC) gebeuren niet alleen met bescha-
digde vliegtuigen. Sommige rapporten claimen dat LOC de grootste factor in fatale
vliegtuigongelukken van de laatste tien jaar. Op dit moment heeft de industrie
nog geen volledige LOC preventie toegepast. Het limiteren van het vliegdomein is
een eerste en nodige stap gemaakt door vliegtuig bouwers. Kennis van het veilige
vliegdomein is zeer belangrijk om LOC ongelukken te kunnen voorkomen, en te-
gelijkertijd het opereren van vliegtuig aan de grenzen van hun kunnen mogelijk te
maken. In vliegcondities met schade of fouten zou men willen weten welk gebied
van het vliegdomein nog steeds veilig is, om zo de missie voort te zetten en een
veilige (crash) landing mogelijk te maken. Dit onderzoeksgebied heeft nog niet
veel aandacht gehad binnen de luchtvaartgemeenschap, zelfs niet voor vliegtuigen
zonder schade en fouten.

Het onderzoek beschreven in deze dissertatie heeft daarom de volgende doelen:

• Het ontwikkelen van een regelaar met gewenste prestatie karakteristieken
over het gehele vliegdomein van het vliegtuig, zelfs in aanwezigheid van
fouten en schade.

• Omdat moderne vliegtuigen zijn uitgerust met vele, redundante, besturings-
mogelijkheden, moet het gewenste stuureffect verdeeld worden over de be-
schikbare stuurvlakken. Deze verdeling kan optimaal gedaan worden ten
opzichte van een kostfunctie, en neemt de eigenschappen van de individuele
stuurvlakken in beschouwing. Stabiliteit van de regelaar gecombineerd met
de control allocation kan bewezen worden.

• Fouten en schade aan het vliegtuig beı̈nvloeden de dynamica van het sys-
teem, de verandering moet geı̈dentificieerd worden om reconfiguratie van de
besturing mogelijk te maken, en besturingsprestaties te herstellen. Hevige
fouten leiden to grote veranderingen in modelstructuur nodig om het sys-
teem te modelleren, asymmetrische schade leidt bijvoorbeeld tot het opne-
men van vele gekoppelde longitudinale en latera voorspellende variabelen.
Als de model structuur en geschatte model parameters overeenkomen met de
onderliggende fysica van het systeem, kan het model gebruikt worden voor
fout diagnose en het veilige vliegdomein. Ontwikkeling van online structuur
selectie methoden en efficı̈ente opslag van het geschatte model is benodigd.

• Met name voor wendbare vliegtuigen en vliegtuigen met fouten en schade,
worden beperkingen opgelegd aan het veilige vliegdomein door de dyna-
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mica. Kennis van het vliegdomein voor vliegtuigen met schade kan het ver-
schil betekenen tussen een onafwendbaar ongeluk of een veilige landing. Om
die reden, moet er een methode ontwikkeld worden waarmee het veilige
vliegdomein bepaald kan worden, gebaseerd op het beschikbare model van
het vliegtuig, rekening houdend met input limieten en mogelijke verstorin-
gen.

Adaptive backstepping is een recursieve, op Lyapunov-theorie gebaseerde, niet-line-
aire ontwerpmethode die gebruik maakt van update laws voor model parameters
om te compenseren voor parametrische onzekerheid in het systeem. Het basis idee
van backstepping is om de regelaar recursief te definiëren door toestandsvariabelen
als virtuele stuur input te beschouwen en daarvoor een virtuele regelaar te ont-
werpen. Het backstepping ontwerp kan uitgebreid worden met command filters om
het toe te kunnen passen op niet-feedback lineariseerbare system, en tegelijkertijd
wordt het ontwerp versimpeld doordat de analytische afgeleiden van de virtuele
stuur inputs niet meer nodig zijn.

Verschillende update laws voor de model parameters kunnen gebruikt worden
wat leidt tot geı̈ntegreerde, modulaire en samengestelde ontwerpen. De geı̈nte-
greerde ontwerpen maken gebruik van een op Lyapunov gebaseerde update law,
de modulaire benadering maakt het gebruik van de recursieve kleinste kwadra-
tenmethode mogelijk. Echter, om de scheiding tussen regelaar en modelschatter
mogelijk te maken zijn niet-lineaire dempingstermen nodig in het ontwerp. De
samengestelde update law combineert de geı̈ntegreerde en modulaire ontwerpen en
heeft de beste convergentie eigenschappen.

In een vergelijking tussen de geı̈ntegreerde en modulaire benaderingen resul-
teerden beide tot een verbetering van prestaties voor beschadigde vliegtuigen in
vergelijking met een niet adaptief ontwerp. De prestaties en parameter schattingen
van het modulaire ontwerp waren beter dan van het geı̈ntegreerde ontwerp.

Control allocation kan geı̈ntegreerd worden in het backstepping framework door
update laws voor de gewenste stuursignalen te ontwerpen vanuit een Lyapunov
perspectief. In dit ontwerp convergeren deze signalen continu naar de optimale
oplossing in plaats van het expliciet oplossen van het control allocation probleem op
elk tijdstip.

Het probleem van volledig vliegdomein model schatting is benaderd door het
opdelen van het domein in kleinere regio’s genaamd hyperboxes. In elke hyperbox
wordt een lokaal geldig lineair in de parameters model geı̈dentificeerd. De output
van deze modellen wordt geı̈nterpoleerd door middel van B-splines om de output
te verkrijgen voor het volledige domein. Omdat B-splines lokale ondersteuning
hebben, is slecht een beperkt aantal lokale modellen actief op elk punt in het vlieg-
domein.

De structuur benodigd om aërodynamische fouten te modeleren is niet op voor-
hand bekend, het meenemen van teveel voorspellende variabelen leidt tot over-
fitting en vermindert extrapolatie eigenschappen. Een on-line structuur selectie
methode is ontwikkeld gebaseerd op orthogonale kleinste kwadraten welke ge-
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bruikt kan worden in combinatie met het adaptive backstepping ontwerp. Tijdens het
selecteren van de structuur wordt recursief de voorspellende variabele geselecteerd
die de grootste vermindering van het foutresidu geeft totdat er aan een criterium
wordt voldaan.

De adaptive backstepping methode met control allocation, vliegdomein partitio-
nering en model structuur selectie is getest op het over-bestuurde, niet-lineaire
ADMIRE vliegtuig model. Het voorgestelde ontwerp laat uitmuntende prestaties
zien voor verscheidene fout en schade scenario’s, van een simpele verandering in
de aërodynamische coëfficiënten, tot stuurvlak fouten en verschuivingen van het
zwaartepunt. Als de fout binnen het bereik van de verzameling van beschikbare
voorspellende variabelen valt, kunnen de correcte structuur en parameter waar-
den geı̈dentificeerd worden wanneer er aan een persistency of excitation voorwaarde
voldaan wordt. Zelfs wanneer de fout niet compleet gemodelleerd kan worden
binnen de beschikbare voorspellende variabelen kan de besturingsprestatie goed
zijn, zolang het model fout residu maar klein is.

De toepassing van adaptieve regelmethoden voor vliegbesturing laat zien dat
het wellicht mogelijk is om een vliegtuig te stabiliseren voor een verscheidenheid
van fouten en schade, maar dat het nog steeds onduidelijk is in hoeverre de presta-
ties van het vliegtuig achteruit zijn gegaan door deze fouten en schade.

Verder onderzoek of het gebied van FTFC zou realistische aërodynamische fout-
modellen en testvluchten met UAV en onderzoeksvliegtuigen moeten omvatten.
De interactie tussen adaptieve regelsystemen en de piloten moet onderzocht wor-
den. Voordat toepassing van FTFC in productie vliegtuigen mogelijk is, zouden
richtlijnen en voorschriften voor de validatie en verificatie van dergelijke systemen
ontwikkeld worden.

Het veilige vliegdomein is gedefinieerd als de regio in de toestandsruimte waarin
veilige opereren van het vliegtuig, en veiligheid van de vracht en passagiers kan
worden gegarandeerd, en tegelijkertijd extern opgelegde restricties in acht worden
genomen. Deze regio in de toestandsruimte is beschreven door de overlap tussen
de dynamische, structurele en omgevings- domeinen. Het veilige dynamische do-
mein kan bepaald worden door middel van de voorwaarts en achterwaarts bereik-
bare verzamelingen voor een gegeven verzameling van veilige toestanden, bijvoor-
beeld een verzameling van evenwichtstoestanden. Deze bereikbare verzamelingen,
of sets, kunnen bepaald worden door evolutie van de initiële of doel verzameling
in de tijd gebruikmakend van de level-set methode. Gebaseerd op de toepassing op
simpele voorbeeldsystemen, laat de semi-Lagrangian methode het grootste potenti-
eel zien voor bepaling van het veilige vliegdomein. De voorgestelde methode is
toegepast op de longitudinale dynamica van een F-16 vliegtuig model. De vorm
van de voor- en achteruit bereikbare sets komt overeen met de verwachtingen
vanuit de vliegdynamica. Op grotere hoogte wordt het vliegtuig minder wendbaar
voor dezelfde vliegsnelheid wat aan de vermindering van luchtdichtheid geweten
kan worden. Als het zwaartepunt naar achter wordt verschoven in lengterichting,
wordt het vliegtuig onstabieler wat resulteert in grotere wendbaarheid maar het
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ook moeilijker maakt om het vliegtuig terug in evenwicht te krijgen. In het ge-
val van verlies van hydraulische druk, resulterend in kleinere mogelijke uitslagen
van het horizontale stuurvlak, gaat de wendbaarheid drastisch omlaag voor lage
snelheden.

Vervolgonderzoek op dit gebied is noodzakelijk, bijvoorbeeld door het splitsen
van het probleem in langzame en snelle dynamica door middel van time-scale-
separation argumenten. Als de snelheid waarmee de oplossing wordt berekend
verbetert, behoort online toepassing tot de mogelijkheden.
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