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Abstract: Muscle overload injuries in strength training might be prevented by providing personalized
feedback about muscle load during a workout. In the present study, a new muscle load feedback
application, which monitors and visualizes the loading of specific muscle groups, was developed
in collaboration with the fitness company Gymstory. The aim of the present study was to examine
the effectiveness of this feedback application in managing muscle load balance, muscle load level,
and muscle soreness, and to evaluate how its actual use was experienced. Thirty participants were
randomly distributed into ‘control’, ‘partial feedback’, and ‘complete feedback’ groups and monitored
for eight workouts using the automatic exercise tracking system of Gymstory. The control group
received no feedback, while the partial feedback group received a visualization of their estimated
cumulative muscle load after each exercise, and the participants in the complete feedback group
received this visualization together with suggestions for the next exercise to target muscle groups
that had not been loaded yet. Generalized estimation equations (GEEs) were used to compare
muscle load balance and soreness, and a one-way ANOVA was used to compare user experience
scores between groups. The complete feedback group showed a significantly better muscle load
balance (β = −18.9; 95% CI [−29.3, −8.6]), adhered better to the load suggestion provided by
the application (significant interactions), and had higher user experience scores for Attractiveness
(p = 0.036), Stimulation (p = 0.031), and Novelty (p = 0.019) than the control group. No significant
group differences were found for muscle soreness. Based on these results, it was concluded that
personal feedback about muscle load in the form of a muscle body map in combination with exercise
suggestions can effectively guide strength training practitioners towards certain load levels and more
balanced cumulative muscle loads. This application has potential to be applied in strength training
practice as a training tool and may help in preventing muscle overload.

Keywords: strength training; resistance training; feedback; injury; muscles; overload; overtraining

1. Introduction

Participation in fitness and strength training activities is becoming increasingly popu-
lar and brings along various health benefits [1,2]. Nevertheless, sedentary lifestyles remain
a serious health issue worldwide [3]. In times of growing sedentary behavior and related
adverse health problems, fitness and strength training activities can play a major role in im-
proving public health worldwide, because they are readily accessible [3]. However, on the
downside, there is a health risk related to fitness and strength training activities in the form
of musculoskeletal injuries. In 2019, fitness injuries accounted for 17% (930,000) of all sports
injuries in the Netherlands, ranking this sports domain second behind soccer (22%) [4]. The
challenge is to stimulate people to engage in fitness and strength training and reap all the
associated health benefits while reducing the risk of fitness-related musculoskeletal injuries.
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In line with the widely used injury prevention model of van Mechelen et al. [5], the
first steps towards prevention include gaining knowledge regarding fitness-related injuries
and their etiology. Few studies have investigated fitness-related injuries in the general
population [4,6]. However, more studies have been conducted on fitness-related injuries
in more competitive sub-groups of fitness, such as CrossFit, powerlifting, and weightlift-
ing [7–11]. Although these sub-disciplines differ from general fitness and strength training
because they focus on specific exercises only, similar loading principles and objectives
apply. Therefore, these sub-disciplines can provide meaningful information regarding
fitness-related injuries. Based on the combined results reported in those studies, 58–59%
of the injuries involved the muscles and tendons [6,7]. Most injuries were mild to mod-
erate in severity, resulting in relatively short (training) time losses [6,8,9]. Regarding the
injury onset (acute or overuse), overuse injury percentages varied between 25 and 54%
of all injuries [4,6,8,9,11], which can be considered high compared to other sports [4]. A
systematic review [12] reported ‘overuse’ and the ‘frequent use of high loads’ as two of
the five main causes of injury and musculoskeletal pain in fitness. Moreover, two studies
reported that the main injury cause mentioned by fitness practitioners was overload [6,13].
Overload can result from excessive training volumes or insufficient recovery time. In one
study, the specific types of overload causing injury that were mentioned by practitioners
included ‘using too much weight’, ‘executing too many repetitions’, or ‘performing too
many activities’ [6]. Based on these findings, it seems that a large part of the fitness injury
problem concerns muscle injuries that are often caused by overload or overuse or at least
are perceived as resulting from those causes.

According to step three of van Mechelen et al.’s injury prevention model [5], a pre-
ventive measure is needed to prevent muscle overload. Currently, only 18% of all fitness
participants train under the continuous supervision of a personal trainer or instructor [6].
Without expert supervision, strength training practitioners may not know the appropriate
weights and number of repetitions to choose and may not be fully aware of which muscles
they are training, which could lead to overloading of specific muscles. A potential solution
might be to provide practitioners with feedback regarding their muscle load during their
workout via a mobile application. However, to our knowledge, no such application has
been developed, perhaps due to the technical difficulties involved in assessing muscle load,
as well as various other issues that should be addressed. The first factor to consider is the
modality of the feedback (e.g., visual, acoustic, or haptic). Visual feedback has been proven
to be an effective means of performance enhancement in strength training [14] and is easy
to provide via a mobile application. A second factor is the timing of the feedback, which
can be concurrent, i.e., during the performance, or terminal, i.e., after the performance.
Concurrent feedback may help with understanding a complex task, especially during the
early phases of learning, whereas terminal feedback may lead to better learning in easy
tasks or during later phases of learning [15]. A third factor is the content of the feedback,
which must be relevant to the task and understandable to the user [15]. For the purpose of
providing practitioners with feedback regarding their muscle load during their workout,
we opted for visual, terminal feedback on muscle load after each exercise, personalized
to their own capacity. This type of feedback could potentially help practitioners to avoid
overloading their muscles, and instead load all muscles with an appropriate intensity that
matches their capacity and results in achieving the desired training goal (e.g., hypertrophy).
Additionally, apart from the perspective of injury prevention, practitioners might be more
motivated to keep on exercising once they receive stimulating information during their
workout in relation to their training goals [14].

In summary, muscle overload injuries form a problem in strength training and may
be prevented by providing practitioners with feedback regarding their muscle load. As
an initial step towards this goal, we developed and evaluated an innovative muscle load
feedback application for strength training, with the overarching long-term aim of reducing
injury risk by avoiding overload and overuse. In this study, we sought to determine if the
feedback application in question can aid users to achieve a more balanced muscle load, by
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avoiding overloading certain muscles while underloading other muscles. A more balanced
load may contribute to the prevention of overload injuries, which is an assumption that
must be confirmed in future controlled trials with prospective longitudinal research designs.
However, self-reported muscle soreness, which may be considered a precursor of muscle
injuries [16], can be assessed in the short term. The primary aim of this proof-of-concept
study was therefore to investigate if muscle load feedback can improve the muscle load
balance, muscle load level, and muscle soreness of strength training practitioners, while
the secondary aim was to evaluate the user experience and motivational effect of the
application. In particular, it was hypothesized that muscle load feedback improves the
muscle load balance and muscle soreness and has a positive effect on the user experience of
strength training participants. If these hypotheses are confirmed, the feedback application
may be further refined and validated.

2. Materials and Methods
2.1. Participants

The minimum sample size required to obtain an effect size of 0.25 with a power of 80%
and a statistical significance level of 5% was calculated by G*Power 3 [17], assuming a mixed
ANOVA design, since the literature regarding power analyses for Generalized Estimation
Equations (GEEs), the statistical method adopted in the present study, was lacking. A
minimum required sample size of 21 participants was found. To be certain of adequate
power, 30 healthy participants (sex: 16 men, 14 women, age: 37 ± 14 years, strength training
experience: 2.4 ± 2.4 years; mean ± standard deviation (SD)) were included in the present
study. The inclusion criteria were a minimum age of 18 years and no musculoskeletal
injuries at the start of the study. Recruitment was aimed at obtaining an as heterogenous
sample as possible in terms of sex, age, and strength training experience, to achieve
generalizable results. The participants were recruited through voluntary response sampling.
The study was approved by the local ethics committee of the Faculty of Behavioural and
Movement Sciences of the Vrije Universiteit Amsterdam (VCWE-2021-188). All participants
provided written informed consent.

2.2. Muscle Load Feedback Application

The feedback application was developed in collaboration with the fitness company
Gymstory [18]. Gymstory provides an automated gym exercise tracking solution, based on
a sensor and mobile app (Gymstory, Amsterdam, The Netherlands). With this solution, the
performed exercises, lifted masses, and number of performed repetitions and sets can be
tracked and registered for each individual strength training athlete. Since the purpose of the
study was to provide muscle load feedback, we extended the Gymstory app with additional
information and functionalities to be able to estimate personalized muscle loads. To this
end, multiple components had to be implemented. First of all, although Gymstory tracks
the training volume and intensity by registering the repetitions and masses, the maximum
masses that participants can lift for specific exercises must be known to personalize this
intensity. Therefore, the option to add the one-repetition max (1RM) per exercise was
implemented. Second, estimating the muscle load for an exercise requires knowledge
of which muscle groups are contributing to that movement and to what extent. These
muscle contributions can be estimated based on functional anatomical knowledge. A
database that described primary and secondary muscle contributions for multiple exercises
(Supplementary File S1) was implemented in the Gymstory app. Thirdly, an equation to
estimate an athlete’s personalized muscle load, based on recorded repetitions and masses,
measured 1RMs, and estimated muscle contributions was added (Supplementary File S2).
The equation is based on the assumption that when an exercise is performed for 3 sets
of 10 repetitions at 70% of the 1RM, which corresponds to guidelines from the American
College of Sports Medicine (ACSM) [19], the target load is achieved for a primary muscle,
and half of the target load is achieved for a secondary muscle. More details and assumptions
for the equation are presented in Supplementary File S2. This equation was implemented
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in the Gymstory app. It must be noted that the muscle load calculations remain to be
validated. For the present study, muscle load estimates obtained by using this equation
were deemed sufficient to examine if the concept of the feedback application works. If the
concept proves successful, the accuracy of the calculations could be improved.

By employing the implemented components, a personalized muscle load could be
estimated with the Gymstory app after each exercise. To provide clear and understand-
able feedback to the practitioners, the muscle load was visualized in the app as a colored
muscle load body map (Figure 1A). This visualization represents the cumulative load that
is updated after each exercise. At the start of a workout session, all muscle groups in the
body map are white, and after each exercise, the colors of the corresponding primary and
secondary muscle groups are updated, with light green indicating light to medium cumula-
tive muscle load, dark green indicating the target muscle load, and yellow/orange/red
indicating a potential risk of muscle overload. In addition to the muscle load body map,
another functionality was added to the app, which provided practitioners with advice for
subsequent exercises (including appropriate sets, repetitions, and weights) that targeted
muscle groups that had not or had barely been loaded yet (Figure 1B). This feature rested on
the assumption that a more balanced cumulative muscle load would prevent overloading
of specific muscles and underloading of other muscles, considering a total body workout.
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2.3. Procedures

The study design was a matched experimental study with three groups. A flow di-
agram of the study design is shown in Figure 2. The participants were first matched by
an optimization method that minimized the variations in sex, age, and strength training
experience, and subsequently randomly allocated them to one of three groups: control
group, ‘partial feedback’ group, and ‘complete feedback’ group. All participants started
with two intake sessions with an experienced fitness instructor in which their one-repetition
maximum (1RM) was estimated by a submaximal test protocol for 18 selected exercises [20].
Submaximal 1RM testing involves a safer protocol than maximal 1RM testing in which
the participant performs a set of repetitions with a submaximal weight until failure. The
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number of correctly executed repetitions and the lifted weight are used to estimate the 1RM
based on a regression equation [20]. Next, all participants performed eight strength training
sessions for four consecutive weeks (two per week). In each session, the participants were
instructed to perform 8 exercises of their choice from the 18 preselected exercises. All
participants were instructed to attempt to perform a full-body workout, loading all muscles
evenly. Performed exercises, sets, repetitions, and weights were automatically tracked
by the Gymstory sensor. Based on this data in combination with the measured 1RMs
and functional anatomical knowledge of primary and secondary muscle contributions per
exercise, the cumulative load on each of the muscle groups for each participant was individ-
ually estimated using the developed equation (Supplementary File S2). The three groups
received the following feedback regarding their muscle load during the eight workouts:

• Control group: no feedback.
• Partial feedback: this group received a visualization of the estimated cumulative

muscle load after each exercise via the Gymstory app in the form of the muscle load
body map (Figure 1A).

• Complete feedback: this group also received the muscle load body map after each
exercise, and additionally received a list with suggestions for subsequent exercises,
targeting muscle groups that had not or had barely been loaded yet (Figure 1A,B).
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The morning after each workout, all participants received an online questionnaire
with questions regarding their muscle soreness (Supplementary File S3) and were invited
to score the soreness per muscle group by self-assessment on a visual analogue scale
(VAS) (0–100 mm), with 0 indicating ‘no soreness’ and 100 indicating ‘maximum soreness’.
The participants were asked not to perform any other sports activities in the 24 h before
or on the same day after the strength workout, in order to avoid muscle soreness from
other sports at the time of the questionnaire. Furthermore, after the last workout, the user
experience questionnaire (UEQ) was added to the questionnaires [21,22] to examine how the
practitioners experienced the application. The UEQ consists of 26 pairs of opposing terms,
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each belonging to one of six scales: Attractiveness, Perspicuity, Efficiency, Dependability,
Stimulation, and Novelty. The answers were rated on a 7-point Likert scale ranging from
−3 (completely agree with the term on the left) to +3 (completely agree with the term on
the right).

2.4. Statistical Analyses

A frequency analysis was performed to describe the characteristics of each group.
After a workout, the total cumulative muscle load of a participant (calculated by the
equation in Supplementary File S2) was presented as an array, with a percentage between 0
and 100+ for each muscle group. From this array, the SD was calculated as an indicator of
cumulative muscle load balance. A lower SD meant a more even load distribution over
all muscles, while a higher SD meant that, compared to the mean loading of the muscles,
certain muscle groups were loaded extensively while other muscle groups were not. In
addition, the mean of the cumulative muscle load was calculated after each session. For
the muscle soreness, the mean was calculated for each session. The SD of the cumulative
muscle load was expressed as a percentage of the mean cumulative muscle load of that
session for normalization (i.e., the coefficient of variation; CV). The statistical analyses were
performed in IBM SPSS Statistics 25. The cumulative muscle load balance, mean cumulative
muscle load, and mean muscle soreness were compared between the three groups and eight
workout numbers using Generalized Estimation Equations (GEEs) with an exchangeable
working correlation structure [23]. GEEs were chosen as the regression technique because
this technique can deal with correlated data (repeated measurements) and missing data
(missing workouts). In the initial GEE regression model, the categorical variables group
(type of feedback), workout number, and the interaction between group and workout
number were included as predictor variables. If the parameter estimates showed that none
or only a very few of the (in total 14) group × workout number interaction combinations
were significant, and no clear interaction effect could be observed from the corresponding
figure, the interaction term was removed from the model. The parameter estimates and
their 95% confidence intervals (CIs) for the final GEE models were reported for all outcome
parameters, indicating that an a priori α level of 0.05 was used to determine statistical
significance. In all regression analyses, the control group and the first workout were always
taken as a reference for computing the contrasts.

The UEQ scores for the six scales were compared between groups using a one-way
ANOVA. Effect sizes r are reported, where r = 0.1 represents a small effect, r = 0.3 a
medium effect, and r = 0.5 a large effect. In the case of a significant effect, post hoc analyses
with Bonferroni correction were conducted. In addition, the scores were compared to the
established benchmark values for the UEQ, which were constructed based on a dataset
containing 9905 responses from 246 product evaluations [22]. This informs us not only
about the differences in user experience between the different groups in our study, but also
about how the user experience holds up compared to a large set of other products.

3. Results

In total, 30 participants completed 191 workouts, implying that 49 sessions were
missed, e.g., due to illness. All participants completed at least four workouts. The par-
ticipant characteristics per group are summarized in Table 1. An ANOVA on these data
confirmed that the matching and randomization procedure was successful and that there
were no between-group differences in sex (p = 0.886), age (p = 0.934), or strength training
experience (p = 0.963) (Table 1).
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Table 1. Participant characteristics per group and the p-values of the one-way ANOVAs comparing
those characteristics between the groups.

Item Control (n = 10) Partial Feedback (n = 10) Complete Feedback (n = 10) p-Value
n (%) Mean ± SD n (%) Mean ± SD n (%) Mean ± SD

Sex Male
Female

5 (50%)
5 (50%)

6 (60%)
4 (40%)

5 (50%)
5 (50%) 0.886

Age (years) 38 ± 14 39 ± 15 36 ± 15 0.934
Strength training
experience (years) 2.5 ± 2.6 2.2 ± 2.4 2.4 ± 2.5 0.963

3.1. Muscle Load

The group means of the normalized standard deviation of the cumulative muscle load,
which was used as an indicator of muscle load balance, are presented for all workouts
in Figure 3A. It can be observed from Figure 3 that, in general, the cumulative muscle
load CV was lowest for the complete feedback group, followed by the partial feedback
group and the control group, while the between-group differences remained reasonably
constant over all workouts. The initial GEE model consisted of group, workout number,
and their interaction as predictor variables of the outcome cumulative muscle load CV. This
analysis revealed only one significant interaction term (from a total of 14 interaction terms
between the categories of group and workout number), confirming that the differences
between groups remained similar throughout the workouts. The interaction between
group and workout number was therefore removed from the model and the final GEE
model for cumulative muscle load CV (Table 2) showed that the cumulative muscle load
CV was, for all workouts, significantly lower in the complete feedback group compared
with the control group (β = −18.9; 95% CI [−29.3, −8.6]). The cumulative muscle load
CV for the partial feedback group, although lower, was not significantly different from
the control group (β = −6.8; 95% CI [−19.5, 6.0]). There were no significant differences
in cumulative muscle load CVs between each of the workouts 2–8 and workout 1 (the
reference workout), indicating that the cumulative muscle load CV did not change over
time for each of the groups. These results indicated that a more balanced (estimated) muscle
load was achieved with the complete feedback, but not with the partial feedback, compared
with the control group.

In addition, it was examined whether the group, workout, or the interaction between
group and workout influenced the mean cumulative muscle load. The corresponding
regression analysis revealed multiple significant interactions (Table 2). In line with what
can be observed in Figure 3B, these analyses showed that the mean cumulative muscle
load increased significantly more from workout 1 to workout 6 in the control group than in
the partial feedback group (β = −24.0, 95% CI [−47.9, −0.1]) and the complete feedback
group (β = −24.3, 95% CI [−46.3, −2.2]). Also, between workouts 1 and 8, the cumulative
muscle load increased significantly more in the control group than in the partial feedback
group (β = −37.6, 95% CI [−62.4, −12.9]) and the complete feedback group (β = −26.3,
95% CI [−49.5, −3.0]). Figure 3B shows that while the mean cumulative muscle loads
were similar in all groups at the initial workouts, the mean cumulative muscle load in
the control group increased throughout the workouts, whereas the load in the feedback
groups remained similar, explaining the observed significant interactions between group
and workout numbers.
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workout. Error bars (95% confidence intervals (CI)) indicate the variation between participants.

Table 2. Parameter estimates (Beta) and their 95% confidence intervals (CIs) of the final General-
ized Estimation Equation models for cumulative muscle load CV (coefficient of variation), mean
cumulative muscle load, and mean muscle soreness.

Independent Variables
Cumulative Muscle
Load CV
(β and 95% CI)

Mean Cumulative
Muscle Load
(β and 95% CI)

Mean Muscle
Soreness
(β and 95% CI)

Group Control a 0 0 0
Partial −6.8 (−19.5, 6.0) 7.5 (−7.3, 22.3) −0.5 (−2.8, 1.8)
Complete −18.9 (−29.3, −8.6) * 1.3 (−9.5, 12.0) 0.9 (−1.8, 3.6)

Workout
number 1 a 0 0 0

2 5.0 (−4.4, 14.3) 0.7(−14.4, 15.7) 1.2 (−1.4, 3.8)
3 5.1 (−3.9, 14.1) 4.0 (−7.8, 15.8) −0.7 (−2.5, 1.2)
4 2.5 (−5.0, 10.0) 12.5 (−4.8, 29.8) −1.9 (−3.5,−0.2) *
5 8.9 (−0.6, 18.4) 16.4 (−1.1, 33.9) −1.0 (−2.4, 0.5)
6 6.7 (−3.7, 17.1) 22.1 (0.9, 43.4) * −0.3 (−2.1, 1.5)
7 0.6 (−10.2, 11.3) 16.1(−0.9, 33.0) −1.2 (−3.5, 1.0)
8 −0.3 (−8.7, 8.1) 27.6 (4.7, 50.5) * −1.1 (−3.5, 1.4)
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Table 2. Cont.

Independent Variables
Cumulative Muscle
Load CV
(β and 95% CI)

Mean Cumulative
Muscle Load
(β and 95% CI)

Mean Muscle
Soreness
(β and 95% CI)

Interaction
group *
workout
number

Control*1 a 0
Control*2 a 0
Control*3 a 0
Control*4 a 0
Control*5 a 0
Control*6 a 0
Control*7 a 0
Control*8 a 0
Partial*1 a 0
Partial*2 −5.2 (−24.0, 13.7)
Partial*3 0.7 (−15.5, 17.0)
Partial*4 0.2 (−19.4, 19.8)
Partial*5 −15.2 (−37.3, 7.0)
Partial*6 −24.0 (−47.9, −0.1) *
Partial*7 −13.5 (−33.9, 6.8)
Partial*8 −37.6 (−62.4, −12.9) *
Complete*1 a 0
Complete*2 4.8 (−13.4, 22.9)
Complete*3 −7.6 (−21.3, 6.1)
Complete*4 −11.9(−30.1, 6.4)
Complete*5 −14.5 (−34.2, 5.3)
Complete*6 −24.3 (−46.3, −2.2) *
Complete*7 −14.3(−33.5, 4.9)
Complete*8 −26.3 (−49.5, −3.0) *

* Refers to an interaction term. a Refers to a reference group.

3.2. Muscle Soreness

It was investigated if the mean muscle soreness was influenced by the group, workout
number, or interaction between group and workout number (Figure 3C). Significant inter-
actions between group and workout were not observed, and the final regression model
without the interactions only showed a significantly lower mean soreness at workout 4
compared with workout 1 (β = −1.9, 95% CI [−3.5, −0.2]) for all groups (Table 2).

3.3. User Experience

The group mean scores for the six scales of the User Experience Questionnaire (UEQ)
after the last workout for all three groups are presented in Figure 4. In the background of
the figure, the benchmark scores for the different scales are presented. As can be observed
in this figure, the scores ranged between bad and above average for the control group and
the partial feedback group, whereas the scores were above average to excellent for all scales
for the complete feedback group.

The one-way ANOVA revealed a significant effect of group on the scores of all six
scales (Table 3). Post hoc analyses with Bonferroni correction showed that the complete
feedback group rated the app significantly better than the control group on Attractiveness
(p = 0.036), Stimulation (p = 0.031), and Novelty (p = 0.019), and significantly higher than the
partial feedback group on Dependability (p = 0.019), although this difference was also nearly
significant for Perspicuity (p = 0.051), Efficiency (p = 0.051), and Novelty (p = 0.053). There
were no significant differences between the control group and the partial feedback group.
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Table 3. Results of the one-way ANOVA comparing the user experience questionnaire (UEQ) scores
on each scale between groups, as well as the post hoc analyses.

Scale Post Hoc
Comparisons

Mean
Difference

Standard
Error df F-Value p-Value Effect Size r

Attractiveness 2, 26 4.465 0.022 * 0.506
Control–Partial −0.080 0.430 1.000
Control–Complete −1.127 0.418 0.036 *
Partial–Complete −1.047 0.430 0.066

Perspicuity 2, 26 3.826 0.035 * 0.477
Control–Partial 0.161 0.377 1.000
Control–Complete −0.800 0.367 0.116
Partial–Complete −0.961 0.377 0.051

Efficiency 2, 26 3.810 0.035 * 0.476
Control–Partial 0.200 0.462 1.000
Control–Complete −0.975 0.449 0.118
Partial–Complete −1.175 0.462 0.051

Dependability 2, 26 4.403 0.023 * 0.503
Control–Partial 0.500 0.332 0.430
Control–Complete −0.483 0.323 0.439
Partial–Complete −0.983 0.331 0.019 *

Stimulation 2, 26 4.402 0.023 * 0.503
Control–Partial −0.136 0.325 1.000
Control–Complete −0.875 0.316 0.031 *
Partial–Complete −0.739 0.325 0.094

Novelty 2, 26 5.170 0.013 * 0.533
Control–Partial −0.117 0.329 1.000
Control–Complete −0.950 0.320 0.019 *
Partial–Complete −0.833 0.329 0.053

* p < 0.05.

4. Discussion

The primary aim of the present study was to investigate if the use of a newly conceived
muscle load feedback application could effectively improve the cumulative muscle load
balance, muscle load level, and muscle soreness balance in strength training practitioners
during total body workouts. The results revealed that practitioners who received feedback
in the form of a body map and exercise suggestions during their workout achieved a more
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balanced cumulative muscle load compared with practitioners who did not receive any
feedback, as opposed to practitioners who only received the body map. Moreover, it was
found that the mean cumulative muscle load was similar for all groups in the first workouts,
but the mean load in the control group increased throughout the workouts while the load
remained the same in the feedback groups. The mean muscle soreness was similar for
all groups and all workouts, implying that no evidence was found that the feedback can
decrease muscle soreness.

The secondary aim of the study was to evaluate the subjective experience with the
application. User experience, as assessed using the UEQ and compared with the benchmark
scores, showed that the complete feedback group rated the application good to excellent on
all scales. Comparisons between groups showed that the rated scores were better for the
complete feedback group than the other two groups on all scales.

The feedback provided in the form of a body map and exercise suggestion effectively
improved the cumulative muscle load balance of the participants, indicating that partici-
pants adhered to the feedback provided by the app. To verify that the feedback was used,
participants were questioned after each workout on what they had based their exercise
choice on, and these results showed that nine out of ten participants in the complete feed-
back group had typically used the list of suggestions for subsequent exercises (regularly
combined with the body map, and often combined with their own preference), and only
one participant typically based the choice on his/her own preference or on the body map
alone. In line with these results, high scores were found for all items of the user experience
questionnaire in the complete feedback group, and 100% of the participants indicated that
they would like to use the feedback during their future workouts, confirming that this type
of feedback was perceived to be useful and valuable.

However, the feedback that consisted of the body map only, was not found to be
significantly effective in improving participants’ cumulative muscle load balance. A po-
tential explanation for this finding is that even when participants know which muscle
groups they need to train (because these muscle groups appear white or light green on
the body map), they do not know exactly which exercises to choose to target these muscle
groups. Moreover, the questionnaires showed that 60% of the participants in the partial
feedback group typically used the body map to select their next exercise, but 40% made
the choice based on their own preference or another strategy. The fact that a substantial
portion (40%) of the participants in the partial feedback group did not use the feedback
could also be a reason for the lack of effect on the muscle load balance. To further examine
this theory, we compared the average cumulative muscle load CVs between participants
in the partial feedback group who did and did not use the body map. Interestingly, the
mean cumulative muscle load CV was much smaller (76.8% of the mean cumulative muscle
load) for the participants who did use the body map to select their next exercise, compared
with participants who did not (97.1% of the mean cumulative muscle load). This finding
highlights that feedback consisting of the body map alone could potentially aid in improv-
ing the cumulative muscle load balance, but not for all practitioners, either because some
practitioners may prefer other methods to select their exercises or perhaps because they do
not know how to properly use this type of feedback. In line with this, the user experience
scores were lower in the partial feedback group than in the complete feedback group. This
shows that the content of this feedback can be improved upon in terms of relevance and/or
understandability [15].

The mean cumulative muscle loads increased more throughout the workouts for the
control group compared with the feedback groups. This probably occurred because the
feedback groups received feedback with a load level that was determined during the
intake sessions and not adjusted during the relatively short (four-week) period of the
study, and participants in the feedback groups seemed to adhere to these load levels. This
result suggests that this type of feedback can be effective in guiding strength training
practitioners towards a certain load level. Therewith, the application could potentially aid
in preventing practitioners from training too heavily (and thereby presumably prevent
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overload injuries). The participants that did not receive feedback increased their loads,
which could constitute a risk for overtraining according to the ACSM [19]. However,
it must be noted that, especially when this feedback application is applied for longer
training periods, practitioners are expected to increase in strength, implying that the load
prescriptions should also increase over time (meaning we cannot exclude that the control
group increased their load appropriately). It is very important that appropriate load
increases are determined carefully. For instance, regular (submaximal) 1RM tests could
be conducted to update the 1RM values in the application. Another option that may be
more applicable, is that practitioners regularly evaluate if they can perform one or two
repetitions more than the prescribed number, in which case the load prescriptions in the
app could be increased with 2–10% according to ACSM guidelines [19].

Although similar studies regarding cumulative muscle load feedback are lacking
in the literature, the present findings can be compared to those of studies that applied
different forms of feedback during strength training, including feedback on barbell veloci-
ties and body kinematics and kinetics. In line with our findings, Weakley et al. [24] and
Wilson et al. [14] found that visual barbell-velocity feedback improved motivation and
competitiveness of strength training participants. Furthermore, Keller et al. [25] found that
kinematic jump height feedback led to immediate improvement in jump performance. This
agrees with the immediate improvement in muscle load balance for the complete feedback
group observed in the first workout of the present study. However, when the feedback
was removed in the study of Keller et al. [25], all improvements in jump performance
were lost. Similarly, another feedback study found that the strength training performance
returned to pre-feedback level when the feedback was removed [26]. Although this was
not specifically investigated in the present study, the immediate improvement observed
in the complete feedback group with respect to the control group at the first workout and
absence of clear further improvements in the subsequent workouts may suggest there is
no learning effect and people will depend on the application to obtain the positive effects.
Strength training participants would therefore be advised to continue using the app if made
available in practice.

Whereas typical methods to estimate muscle loads in human movement science stud-
ies include electromyography (EMG) or motion capture combined with musculoskeletal
modeling [27], a new muscle load estimation method was chosen for the present study.
A clear advantage of this new method compared to the more typical methods is that it
can easily be applied in the gym, as no sensors or markers need to be attached to the
athlete’s body. However, the validity of this new method has not been investigated yet,
and it is expected that the muscle load estimations deviate from the actual muscle loads
for multiple reasons. Firstly, the muscle load was estimated based on rough estimates of
the muscle contributions per exercise, subdivided into either primary (100% contribution)
or secondary (50% contribution) muscles. This subdivision in only two options is most
likely an oversimplification, since muscles could also contribute with other percentages.
Secondly, individual differences in anatomy and movement execution were not included
in the estimation. It is important for future use of the application that the accuracy of the
estimations is tested and further improved. Regarding the first point, the muscle force esti-
mation could be improved if more detailed muscle force contributions are determined, for
instance, by estimating the muscle forces with musculoskeletal modeling with or without
EMG for multiple participants and multiple exercises, and using the mean estimated contri-
butions to replace the current functional anatomy-based estimations. Regarding the second
point, real-time measurements would be required to include individual anthropometry
and movement executions in the muscle load estimation. Camera-based motion capture
combined with a fast-computing musculoskeletal model is a recent development that may
be a potential option to integrate within the feedback application in the future [28].

In addition to improving the accuracy of the muscle load calculations, other adjust-
ments could be made to improve the applicability of the feedback application. In the
present study, muscle load advice was always based on a full body workout, a fixed load
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percentage of 70% of the 1RM, and a fixed number of sets and repetitions. It would be
valuable if the application was expanded with multiple training options, so that the muscle
load advice could be adjusted based on the final training goal of the athlete (e.g., hypertro-
phy and speed). For instance, athletes should be able to choose the desired 1RM level, and
whether to train a specific body part or the full body. Moreover, future research could focus
on further optimizing the load advice based on personal characteristics including gender,
age, and experience.

The mean muscle soreness was not lower in the feedback groups than in the control
group. However, the mean muscle soreness was found to be very low for all groups
(with a score of 3 out of 100 on average). Moreover, muscle soreness cannot be translated
to muscle overload injuries directly, and it is therefore important that the application is
evaluated for a longer period wherein injuries are monitored prospectively as well to
determine if the feedback can be effective for injury prevention. In addition, it must be
noted that muscle soreness was self-assessed and based on subjective perceptions, and it
may therefore be difficult to compare the amount of muscle soreness between individuals
and between groups.

Multiple strengths and limitations apply to the present study. One of the strengths
is that the studied feedback application can be directly applied in the sport practice and
is currently already being used by Gymstory to provide muscle load feedback to their
users. Another strength pertains to the innovative characteristics of the study, which, to our
knowledge, is the first study to develop and evaluate a muscle load feedback application for
strength training. On the other hand, the study suffered from some noteworthy limitations.
Firstly, the sample size of the study was relatively small with 10 participants per group,
especially because substantial differences between individuals were observed (as can
be deducted from the substantial size of the error bars in Figure 3 and the difference
in reported adherence within the partial feedback group). Secondly, recruitment was
performed through voluntary response sampling, which may have led to self-selection
bias. It is possible that the participants that volunteered were already more interested in
receiving feedback during strength training than people that did not volunteer. Thirdly,
we did not include a group who only received the exercise suggestion. Therefore, we
cannot conclude whether the better muscle balance and user experience scores found
for the complete feedback group were due to the combination of body map and exercise
suggestion, or mainly due to the exercise suggestion. The absence of improvements in the
partial feedback group may point at the second possibility.

5. Conclusions

• Feedback regarding the personal muscle load of strength training participants pro-
vided in the form of a muscle body map and exercise suggestion can effectively aid in
achieving a more balanced cumulative muscle load, which may decrease the risk of
overloading certain muscles while underloading other muscles.

• Feedback regarding the muscle load in the form of a body map and suggested exercises
was perceived to be valuable and stimulating.

• Feedback regarding the muscle load can effectively guide strength training participants
towards a certain load level, presumably helping to maximize training effects without
getting injured.

• Feedback regarding the muscle load does not change muscle soreness.
• Future research can improve the accuracy of the muscle load estimation.
• A longitudinal study with a longer follow-up period is needed to investigate if the

feedback application can effectively prevent muscle injuries.

6. Practical Application

The proof-of-concept feedback application can successfully influence the cumulative
muscle load of strength training practitioners. This highlights the potential of this type of
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feedback as a training tool. Future research should improve and validate the application
and investigate if it can successfully prevent muscle overload injuries.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/sports11090170/s1, File S1: Primary and secondary muscle
contributions; File S2: Muscle load estimation; File S3: Muscle soreness questionnaire.
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28. Uhlrich, S.D.; Falisse, A.; Kidziński, Ł.; Muccini, J.; Ko, M.; Chaudhari, A.S.; Hicks, J.L.; Delp, S.L. OpenCap: 3D human movement
dynamics from smartphone videos. bioRxiv 2022. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/ijerph191912710
https://doi.org/10.1177/1541931213601750
https://doi.org/10.3758/s13423-012-0333-8
https://www.ncbi.nlm.nih.gov/pubmed/23132605
https://doi.org/10.1007/s00421-016-3411-1
https://doi.org/10.3758/BF03193146
https://www.yourgymstory.com
https://doi.org/10.1249/MSS.0b013e3181915670
https://doi.org/10.1007/978-3-540-89350-9_6
https://doi.org/10.9781/ijimai.2017.445
https://doi.org/10.1146/annurev.pu.14.050193.000355
https://www.ncbi.nlm.nih.gov/pubmed/8323597
https://doi.org/10.1519/JSC.0000000000002133
https://www.ncbi.nlm.nih.gov/pubmed/28704314
https://doi.org/10.1016/j.humov.2014.04.007
https://doi.org/10.7717/peerj.4972
https://www.ncbi.nlm.nih.gov/pubmed/29892511
https://doi.org/10.1519/JSC.0000000000002330
https://www.ncbi.nlm.nih.gov/pubmed/29120981
https://doi.org/10.1101/2022.07.07.499061

	Introduction 
	Materials and Methods 
	Participants 
	Muscle Load Feedback Application 
	Procedures 
	Statistical Analyses 

	Results 
	Muscle Load 
	Muscle Soreness 
	User Experience 

	Discussion 
	Conclusions 
	Practical Application 
	References

