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Adaptive Composite Online Optimization:
Predictions in Static and
Dynamic Environments

Pedro Zattoni Scroccaro

Abstract—In the past few years, online convex optimiza-
tion (OCO) has received notable attention in the control
literature thanks to its flexible real-time nature and powerful
performance guarantees. In this article, we propose new
step-size rules and OCO algorithms that simultaneously
exploit gradient predictions, function predictions and dy-
namics, features particularly pertinent to control applica-
tions. The proposed algorithms enjoy static and dynamic
regret bounds in terms of the dynamics of the reference
action sequence, gradient prediction error, and function
prediction error, which are generalizations of known reg-
ularity measures from the literature. We present results
for both convex and strongly convex costs. We validate
the performance of the proposed algorithms in a trajectory
tracking case study, as well as portfolio optimization using
real-world datasets.

Index Terms—Composite costs, dynamic environments,
online convex optimization (OCO), predictions, real-time
control.

[. INTRODUCTION

HE standard framework of online convex optimization

(OCO) can be described as a game between a Player and
Nature, played over 1" rounds. Let A be the Player’s action
space. Suppose that X C A is a convex set representing the set
of possible actions of the Player. Moreover, let 7 denote a set of
convex functions available to Nature. At each round ¢, the Player
chooses an action z; € X. After the Player commits with an
action, Nature reveals a convex cost f; : X — R, where f; € F.
The Player suffers the loss f;(x;). The goal of the Player is to
perform as well as possible against the costs chosen by Nature.
(See [1], [2], and [3] for in-depth studies of fundamental theories
of OCO and its many applications.)
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A common metric to evaluate the performance of the Player
is the so-called static regret defined as

T T
Reg? = th(xt) - r;g)x(lth(a") (1)
t=1 t=1

Intuitively, this metric quantifies how well the Player performs
against the best fixed action computed in hindsight. Based on
this notion of regret, OCO algorithms are designed such that
the resulting action sequence {z;}7_, guarantees a sub-linear
regret w.r.t. T, i.e., limp o (Reg?/T) = 0. In other words,
such OCO strategies perform (on average) as well as the best
fixed action in hindsight. A standard algorithm to choose x; is
called online mirror descent (OMD) algorithm

Typq = arg arg)rfl {n(V fe(ze), x) + Bp(x,z.)}  (OMD)
where 7); denotes the step-size and B}, is the Bregman divergence
functional [2]. By choosing 7, appropriately, Algorithm OMD
guarantees Regi < O(VT) [4] or Regs < O(log(T)) [51,
based on the regularity of the cost set /. Moreover, Abernethy
et al. [6] showed that these regret rates are in fact optimal by the
minimax formulation of OCO problems.

However, there are many OCO problems in which the Player
and Nature do not exactly follow the rules of the sequential
game mentioned above. In this article, we focus on the case
of OCO with predictions. In these scenarios, we assume access
to predictions about the costs of the problem being studied,
and we use OCO algorithms combined with these predictions
in order to achieve improved regret guarantees. For instance,
if our OCO problem is related to estimating the evolution of
dynamical parameters of a system, predictions could come from
a dynamical model we have of the system (see Section IV). This
approach is inspired by the classical control theory literature,
in which dynamical and/or predictive models of the system
being controlled are almost always assumed to exist. Moreover,
there has been recent interest from both the online learning
and controls communities in combining OCO techniques to
control problems, e.g., [7], [8], [9], [10]. Also, most of the
results presented in this work apply to problems with composite
costs with nonsmooth components (e.g., || - [1). These results
open up even more possibilities of connections with control
applications, for instance, ¢; optimization for sparse networked
feedback control [11], [12]. Therefore, we hope that this work
lays a theoretical foundation and also inspires new works in the
intersection of OCO and control theory.

Next, we formally define important notions that will be used
throughout the article.
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A. Gradient Predictions

The minimax regret bounds for OCO algorithms are derived
assuming a worst-case (i.e., fully adversarial) cost sequence
{f:}L_,. The cost sequence is however not completely adver-
sarial in many practical OCO problems [13]. In such problems,
the Player can (partially) predict the unseen cost f; at round ¢,
before deciding its action z;.! It is hence natural to expect that
one can possibly exploit the predictability of an OCO problem
to achieve tighter regret bounds.

A generic notion of the predictability of Nature’s moves can
be stated as follows [13]. At the outset of each round ¢ € [T,
the Player has access to the value of a function

M, Xt x Frlx -t 5 p,

where Z denotes some information space provided to the Player
via an exogenous source and P is the space to which each
predictable entity belongs. In particular, a certain class of OCO
problems with predictability is the class of OCO problems with
gradient predictions. Observe that here P C A*, where A* is the
dual space of the action space .A. To exploit gradient predictions
in OCO problems, Rakhlin and Sridharan [13] proposed the
optimistic mirror descent (OptMD) algorithm

@y = argmint {n, (M, @) + B (@, yr-1)}
. (OptMD)
Ye = argfl}lelil eV fe(2e), y) + Br(y, yi-1)}
where {M;}] | is a generic gradient prediction sequence.’
Rakhlin and Sridharan [14] further provided an adaptive step-
size rule for Algorithm OptMD such that Reg?; < O(1 +

vV Dr), where

T
Dr =" [V fi(z:) — M2 (2)

t=1

When the Player has access to V f;(+) before choosing x;, we
say that the Player has access to perfect gradient predictions. In
this scenario, Ho-Nguyen and Kiling-Karzan [15] showed that
by setting My := V fi(y¢—1), ¢ < 1/ and when F represents
B-smooth functions, Algorithm OptMD guarantees Regj. <
o(1).

B. Problem With D

In the following, we argue that regret bounds given in terms of
D1 are not suitable for exploiting gradient predictions, mainly
because x; is not available at the beginning of round ¢ (see
Algorithm OptMD). In some works that prove regret bounds in
terms of D (e.g., [14], [16]), it is argued that for “predictable
sequences,’ external knowledge of the gradient sequence can
be used to achieve tighter regret bounds. For example, Jad-
babaie et al. [16] stated that: “...one can get a tighter bound
for regret once the learner advances a sequence of conjectures
{M,}!_, well-aligned with the gradients.” However, consider
the following scenario: at the beginning of round ¢, the Player
has access to a prediction of Vf,(-), namely V f;(-). Now,
based on those regret bounds given in terms of D7, how one
would choose M; when using Algorithm OptMD? Naturally,
we want to choose M; so that Dr is as small as possible

I'This assumption deviates from the standard OCO protocol, where Nature
reveals f; only after the Player chooses .
2Notice that Algorithm OptMD reduces to Algorithm OMD when M; = 0.

(recall that Dy = Z?:l |V fi(z¢) — My||?). However, since x;
is not available at the beginning of round ¢, we cannot set
M, =V ft(xt). Thus, from these regret bounds, it is not clear
how one should choose M; in order to exploit this type of gra-
dient prediction. Moreover, Ho-Nguyen and Kiling-Karzan [15]
showed that when perfect gradient predictions are available (that
is, Vf;(-) = Vf.(-)), constant static regret is achievable. Still,
this constant regret result is not recovered by the regret bound
Regi < O(1 + /Dr) given in [14], even when perfect gradi-
ent predictions are available. In fact, since smoothness of the cost
is not assumed in [14], if it was possible to choose M, such that
Dr =0 (i.e., such that Reg;. < O(1)), this would contradict
the lower bound for first-order optimization methods [17], [18,
Remark 1]. Therefore, we conclude that in order to effectively
exploit gradient predictions, a different approach must be used.

C. Dynamic Environments and Regularity Measures

In the regret notion (1), the Player’s cumulative loss competes
against the loss of the best fixed action in hindsight. There are, on
the other hand, many OCO problems where the best fixed action
is not accessible or does not exist [19]. Thus, in those cases, the
use of the regret (1) is not convenient anymore. The term OCO
problems in dynamic environments is used in the literature for
such problems [20].

To generalize the standard regret notion in order to tackle
these scenarios, Zinkevich [21] proposed to compare the Player’s
performance against a general dynamical reference sequence
{us}E; € XT. The resulting metric is called the dynamic re-
gret, defined as

T T
Reg? 1:th($t)—2ft(ut)~ 3)
=1

t=1

Unfortunately, it is impossible to achieve a sublinear dynamic
regret for an arbitrarily chosen {u;}7_, [22]. Thus, in order
to achieve meaningful dynamic regret bounds, it is common to
place extra regularity assumptions on the costs and/or the refer-
ence sequence. For example, Hall and Willett [23] considered the
bounded variability of the reference sequence in terms of C'y- :=
Zf,T:1 ||ut41 — uel|. For convex costs, the authors showed that
Algorithm OMD guarantees Reg® < O(vT(1 + C7)). The
authors further considered that the Player has access to dy-
namical models ®; : X — X of the reference sequence, that
is, models that approximate the true dynamical models @}, i.e.,
us1 = P (uy). They employ @ (a4 ) instead of a in Algorithm
OMD and prove Reg% < O(v/T(1 + C%.)), where

T
Cr = s — @p(wr)|- “)

t=1

When @, approximates the true dynamics well enough, we
may have C/. < Cp, which in turn implies tighter dynamic
regret bounds. Subsequently, Jadbabaie et al. [16] studied dy-
namical environments to account for the cases with gradi-
ent predictions. The authors showed that Algorithm OptMD
guarantees Reg? < O(y/1 + Dr(1 + Cr)) in such cases. Fi-
nally, using an expert-based algorithm called Ader, Zhang
et al. [24] showed that it guarantees the optimal bound Reg% <

O(J/T + ).
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Another important regularity measure popular in the literature
is the temporal variability of the cost sequence

T
Vi = ; ma | fi(x) = fer ()] 5)
In the setting of stochastic optimization with noisy gradi-
ents, Besbes et al. [19] showed that a restarted gradient de-
scent algorithm incurs dynamic regret bounded by O(T2/3(1 +
v)'/3), where v is an upper bound of Vy known in ad-
vance, and Jadbabaie et al. [16] provided an algorithm,
which guarantees a dynamic regret bound of O(/Dr + 1+
min{/(Dr + 1)Cr, (D + 1)'/3T/3V1/31) 3 for the spe-
cific case when the regret is defined w.r.t. the reference sequence

up = arg mingey f+(x), also known as restricted dynamic re-
gret [25].

D. Composite Cost, Implicit Updates, and
Function Predictions

A cost function f; is called composite if it can be decom-
posed as fi(-) = s¢(-) + 7¢(+). For example, Duchi et al. [26]
considered the case when r(-) = r(-) for all ¢, and proposes the
composite objective mirror descent (COMID) algorithm

Ti41 = arg gg/{} {ne(Vse(xt), ) +ner(x) + Brlw, )}
(COMID)

where differently from OMD, the fixed part () is not linearized.
This can be advantageous when, for example, r(-) = || - ||;. In
this case, using COMID would lead to sparse updates, whereas
OMD would not [26]. In the offline optimization literature (i.e.,
f+(+) = f(-) for all t), algorithms that partially linearize the cost
function are called proximal gradient methods [27], [28]. These
algorithms are usually used when s is smooth, but r is not. Then,
by linearizing only the smooth component of f, a proximal
gradient method can lead to convergence rates that match the
one of OMD for smooth costs (e.g., O(1/T) rate instead of

O(1/v/T)). Intuitively, when smoothness is necessary to prove a
convergence rate for some first-order algorithms, one can usually
deal with nonsmooth components by not linearizing them in the
proximal updates.

Somewhat related to proximal gradient methods are the so-
called implicit updates, also known as implicit online mirror
descent (IOMD) [29], [30], [31]

Tpp1 = arg glelz{} {nefe(x) + Br(z, 24)} (IOMD)
Kulis and Bartlett [30] proved regret bounds for IOMD that
match the ones from OMD. McMahan [32] and Song et al. [33]
quantified the advantage of implicit updates through non-
negative, data-dependent quantities. Recently, Campolongo and
Orabona [31] showed that an adaptive version of IOMD guar-
antees O(min{Vr, v/T}). Moreover, in dynamic environments,
Campolongo and Orabona [25] showed that a version of [OMD
guarantees O(min{Vp, /T(1+ 7)}), where 7 is a known up-
per bound of C'r. When 7 is not known, a similar bound
O(min{Vr, \/T(1 + Cr)}) can be achieved by combining im-
plicitupdates with experts and strongly adaptive algorithms [25].

When a linearized version of the cost f; is used in our OCO
strategy, e.g., OMD algorithm, it is natural to expect that we

3The O notation hides poly-logarithmic terms.

only need gradient predictions to exploit information of unseen
costs, asitis done in the OptMD algorithm. However, when using
strategies that partially linearize the cost f; (or do not linearize it
at all), one should not hope that gradient predictions of the cost
can be effectively used. Therefore, in order to exploit predic-
tive information about cost functions, we will require gradient
predictions of its linearized component and function predictions
of its nonlinearized component. For example, for the composite
cost fi(x) = si(x) + (), if we decide to linearize s, () and
not linearize r¢(z), we will require gradient predictions of s;
and function predictions of r;, denoted as 7.

E. Problem Description and Related Works

In this article, we consider OCO problems with compos-
ite costs of the form f;(-) = s¢(-) + r¢(-), in both static and
dynamic environments. Recall that Ho-Nguyen and Kiling-
Karzan [15] observed that perfect gradient predictability in
the form of M; = V f;(y;—1) implies that Algorithm OptMD
guarantees constant static regret. Motivated by this observation
and the discussion presented in Section I-B, we extend this idea
to the case of an “imperfect” gradient predictability. To do so,
we introduce the gradient prediction error measure

t
D= [IVsr(yr1) = Var(y- )| ©6)

T=1

where {y,_1}._, are points generated by an online algorithm.
Notice that we changed the notation from M; to V§,(y,_1).
We do it so that the connection between the gradient of s; and
the gradient predictions is clearer. Also, notice that this measure
refers to gradient predictions only for the s; component of f;.
Thus, we also introduce the function prediction error

V)= Z re (@) = 77 (20) + 77 (yr) — 7 (yr)| @)

where {z,}!_, and {y,}._, are points generated by an on-
line algorithm. When s; = 0, V//. can be interpreted as a gen-
eralization of Vp for the case when function predictions are
available. Namely, when function predictions are not available,
by setting 7, = r,_1, we get V. < 2V. Moreover, in dynamic
environments, we further suppose that the Player has access to
a (possibly approximate) dynamical model ®; of the reference
sequence {u; };_. This is a useful assumption, which has been
used in practical applications of OCO algorithms [10], [34]. We
are now set to state the problem considered in this article.

Problem: Design and analyze OCO algorithms such that the
corresponding regret bounds exploit

1) (possibly imperfect) gradient and/or function predictions
of the components of the cost sequence {f;}7_,

2) (possibly approximate) dynamical models @, of the ref-
erence sequence {1 }i_;.

Other than the works already mentioned in Section I, sev-
eral studies in the literature propose algorithms that take ad-
vantage of the predictability of the cost sequence. Several
works exploit predictions in OCO problems with switching
costs. In this scenario, at round ¢, the Player suffers the loss
fi(xp, e 1) = er(ay) + y||wy — 24-1|, where ¢; is a convex
function and ~v||z; — 21| is the switching cost. In order to
exploit predictions in these problems, it is usually necessary to
have a window of future cost predictions [35], [36], [37], [38],
[39]. Another application where predictions have been used is

Authorized licensed use limited to: TU Delft Library. Downloaded on May 09,2023 at 11:48:43 UTC from IEEE Xplore. Restrictions apply.
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the so-called online control problem. For this class of problems,
due to the dynamics of the system, the cost f; may depend on the
whole history of previous actions, and a window of predictions
is again necessary [40], [41], [42]. Thus, since in this work, the
cost at time ¢ only depends on x; and we only use predictions
about the very next cost, results on OCO with switching costs and
online control are not directly comparable to this paper’s results.
Dekel et al. [43] studied online linear optimization. The authors
supposed that at the outset of each round, the Player has access
to a vector (or hint) that is correlated with the cost to be incurred
to the Player. If all hints are sufficiently good and the action
set possesses certain geometrical properties, the authors showed
Reg7 < O(log(T)). Recently, Bhaskara et al. [44] extended
this result to the case when not all hints are correlated with
the true cost vector. In dynamic environments, Lesage—Landry
et al. [45] showed that tighter dynamic regret bounds can be
achieved by only using predictions that meet certain conditions.
Ravier et al. [46] employed gradient predictions in order to
obtain possibly tighter dynamic regret bounds. However, the
proposed approach yields regret bounds that lack worst-case
guarantees. Chang and Shahrampour [47] proposed an online
optimistic Newton method that exploits gradient and hessian
predictions and prove dynamic regret bounds for this algorithm.

F. Contributions and Organization

A summary of the main results is now given as follows:

1) Static regret for convex costs: In static environments,
we propose a novel algorithm that uses step-sizes that
adapt to the quality of gradient and function predictions,
guaranteeing Reg$ < O(1 + /Dl + min{Vy,) VT?})
for convex costs (see Theorem 2.5). This result gener-
alizes the best-case Reg’. < O(1) [15] and worst-case
Reg; < O(V/T) [21] regret rates.

2) Static regret for strongly convex costs: When the costs are
strongly convex and we have access to the r, components,
we propose an adaptive step-size 7; which improves the
regret to Regj < O(1 +log(1 + D7.)) (see Theorem
2.9). This result generalizes the best-case Reg7 < O(1)
[15] and worst-case Reg? < O(log(T') [48] regret rates.

3) Dynamic regret for convex costs: For dynamic
environments, we introduce a new variant of Algorithm
OptMD that simultaneously exploits gradient predictions,
function predictions, and the dynamics of the reference
sequence. We show that it guarantees regret Reg% <

0 ((1 + Ch) (14 /Dy +min{Vr, /(1 + c;)T}))

for convex costs (see Theorem 2.15).

4) Dynamic regret for implicit updates: Using fully implicit
updates (i.e., when s; = 0), we show that the proposed
algorithm guarantees the dynamic regret bound Reg% <
O(min{Vp,” /(1 +7)T}), where 7 is a known upper
bound to C’ (see Theorem 2.17). This result generalizes
the dynamic regret bounds of [25], for the case of function
predictions.

5) Dynamic regret for fully adaptive step-size: Finally, when
we have access to the r, component of the costs, we
propose a step-size 1, which adapts to gradient predic-
tions and C on the fly. The resulting algorithm guaran-
tees Regf < O(/(0r + D}.)(1 + C7.)), where 07 is a

parameter used to control the size of the step-size (see
Theorem 2.18).

For the ease of the readers, in an arXiv version of this article,
we also present tables positioning the above contributions within
the existing OCO literature reviewed earlier, with a particular
focus on the predictions and composite features in the context
of static regret bounds [49, Appendix A]. The rest of this article is
organized as follows. The main results are provided in Section II.
To improve the flow of this article, we moved the proofs of our
main results to Section III. Numerical experiments are presented
in Section IV.

[I. MAIN RESULTS

A. Mathematical Preliminaries

Let the action set X' C R™. We denote by || - || the dual norm
of || - ||. Also, we define [T] := {1,2,...,T}.

Definition 2.1 (Bregman Divergence): Let h: X — R be
a differentiable convex function. The Bregman divergence of
x,y € X, w.rt. the function h is By (z,y) := h(z) — h(y) —

(Vh(y),z —y).
Definition 2.2 («-Strong convexity): A function f: X —
R is a-strongly convex w.rt. a norm || - || if f(z)— f(y) <

(Vf(x),z —y) — $lle —y|* forall z,y € X.

Definition 2.3 (3-Smoothness): A function f : X — R is (-
smooth w.r.t. a norm || - || if it is differentiable and ||V f(z) —
Vil < Bllz —yl, forall z,y € X.

Next, we collect several assumptions, which we will employ
in the results to follow.

Assumption 2.4 (Regularity Assumptions): Let Abe aBanach
space equipped with the norm || - ||. Suppose that

1) The set X is a convex subset of A.

2) The map h : A — R is differentiable and 1-strongly con-
vex on X.

3) Each member of the cost sequence {s; }7_; is convex and
B-smooth. Each member of the cost sequence {r;}_; is
convex.

4) By(z,y) < R?forall x,y € X, where R > 0.

5) For all ¢ € [T], the gradient prediction V3§, satisfies
|Vsi(z) — Vi (x)]], <o < ocoforany z € X.

6) For all ¢ € [T, the function prediction 7 is convex and
|re(x) — 7(z)] < oo forany z € X.

In particular, the last two points of Assumption 2.4 simply
state that the gradient and function predictions cannot be arbitrar-
ily bad, which would naturally prevent the use of such predictive
information. Next, we provide static and dynamic regret bounds
that exploit gradient/function predictability and/or dynamical
models of the reference sequence.

B. Static Environments

Our first result concerns convex costs in static environments.
In order to exploit predictive information of composite costs of
the form

fi() = se() + 1)

we propose the optimistic composite mirror descent (OptCMD)
algorithm

Ty = argmin {ne(V3e(yi-1), ) +mere(x) + Br(z,yi-1)}

Yyp = arg Iyrél/{} {e(Vse(ze),y) +nere(y) + Br(y, ye-1)}
(OptCMD)

Authorized licensed use limited to: TU Delft Library. Downloaded on May 09,2023 at 11:48:43 UTC from IEEE Xplore. Restrictions apply.
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where V3, is a gradient prediction of V§; and 7 is the function
prediction of 7. Notice that unlike algorithms COMID and
IOMD, Algorithm OptCMD makes use of an auxiliary vari-
able y;. However, x; is still the decision variable of all OCO
algorithms discussed in this article. Algorithm OptCMD can
be interpreted as an extension of OptMD for composite costs
with smooth and nonsmooth components. As hinted in Section
I-B, one needs smooth functions to properly exploit gradient
predictions of costs. Therefore, the intuition behind Algorithm
OptCMD is similar to the one from proximal gradient algo-
rithms: we handle nonsmooth components by not linearizing
them in the proximal updates, while linearizing the smooth
ones. This leads to using function predictions of the nonsmooth
component 1, instead of gradient predictions.

Theorem 2.5 (Static regret: convex costs): Suppose that As-
sumption 2.4 holds. Using the adaptive step-size

1
= 9 57
forall ¢ > 1, Algorithm OptCMD guarantees

1
2

m= (482 + (VL) + D)

Reg} < O (1 + /Dy min { Vi, ﬁ}) ®

Remark 2.6 (Intuition on adaptive step-size 1;): In Theorem
2.5, for simplicity, consider the case when 7¢(z) = 0 Va € X,

i.e., Vi, = 0. For this scenario, we want to guarantee O(v/T)
regret in the worst-case, and in order to do so, it is known we
need 7; = O(1/+/t). On the other hand, with perfect gradient
predictions (i.e., D’T = 0), we want to guarantee O(1) regret,
and in order to do so, we need 1 < O(1/8) [15]. Now, if
we want to guarantee a regret bound that generalizes these
two extreme cases, it is natural that our step size should also
generalize 1, = O(1/+/t) and n; < O(1/p3), which is precisely
the behavior of the 7, we designed. Similar intuitions can be
derived from the other scenarios and results presented in this
article.

The result of Theorem 2.5 is also related to [50, Th. 3],
where the authors prove regret bounds for the so-called Compos-
ite Adaptive Optimistic Follow-the-Regularized-Leader (CAO-
FTRL) algorithm. The key differences between these results are:
the CAO-FTRL algorithm uses FTRL update steps, which can
be computationally more expensive than the mirror descent steps
of Algorithm OptCMD; the CAO-FTRL algorithm assumes
knowledge of r; at the beginning of round ¢, thus, is less general
than Algorithm OptCMD; and finally, the regret bound of [50,
Th. 3] is presented in terms of Dp. Here, we re-emphasize that
our regret bounds depend on D’T instead of D7, which solves
the issues raised in Section I-B. Key points to achieve this result
are our proposed adaptive step-size (see remark above), and the
extra assumption that the costs are S-smooth. In particular, since
smooth costs have Lipschitz continuous gradients, we are able to
control the difference between, possibly approximate, gradient
predictions.

Next, we discuss how the bound of Theorem 2.5 generalizes
several regret bounds from the literature.

Remark 2.7 (Generality of regret bound): First, letus consider
the case when r; is known at the beginning of round ¢, i.e.,
Vi = 0. In this case, f; is S-smooth convex, and Algorithm
OptCMD reduces to Algorithm OptMD. In this scenario, when
perfect predictions are available, setting V§; = Vs, implies that
D!, = 0, and the regret inequality (8) reduces to Reg < O(1),
recovering the result of Ho-Nguyen and Kiling-Karzan [15]. On

the other hand, in view of Assumption 2.4, the regret inequality
(8) also recovers the minimax static regret Regs < O(v/T)
in the worst case, that is, even if the gradient predictions are
completely uncorrelated with the true gradients and we end up
with D/, = O(T). Next, consider the case when Vs, is known at
the beginning of round ¢, i.e., D/, = 0. Inthis case, f is a general

convex function and (8) reduces to O(1 + min{Vy, VT}).
Again, when perfect predictions are available we recover the
optimal constant regret bound, by simply setting 7; = r;. This
bound generalizes the O(1 + min{Vz,v/T}) bound of Cam-
polongo and Orabona [31], which is known to be optimal [31,
Th. 6.3]. In this case, if our function predictions are good, V7.
may be small and we guarantee small regret. On the other
hand, we still guarantee the standard O(v/T) regret in the
worst-case.

Next, we state a static regret result for strongly convex costs.
This stronger assumption on the costs allows us to achieve tighter
bounds. For this result, we need the following assumption.

Assumption 2.8 (Extra regularity assumptions): Suppose that
the action space A is an Euclidean space equipped with the
two-norm | - ||z and i(x) = 3||z||3. Moreover, suppose we have
access to perfect function prediction of r;. That is, we are able
to set 7, = r; for all ¢.

Notice that under Assumption 2.8, the Bregman divergence
B (x,y) = %||z — y||3. Concerning the perfect prediction of ry,
this is the case, for example, when this term corresponds to a
fixed known regularizer, e.g., :(z) = ||z||, or naturally when
ri(xz) = 0 for all £.

Theorem 2.9 (Static regret: strongly convex costs): Suppose
that assumptions 2.4 and 2.8 hold and that the costs {s;}7_; are
a-strongly convex. Using the adaptive step-size

1 a ., \1
m = 25 N = (25+ ﬁth)

for all ¢ > 1, Algorithm OptCMD with 7; = r; guarantees
Regy < O (1 +log(1 + D7)). ©)

Remark 2.10 (Generality of bound for strongly convex costs):
Employing a similar line of argument as in Remark 2.7, we state
two observations. With perfect gradient predictions, inequality
(9) becomes Reg7 < O(1), again recovering the result of Ho-
Nguyen and Kiling-Karzan [15]. Moreover, the optimal regret
bound Reg;. < O(log(T)) is also recovered in the worst-case.

C. Dynamic Environments

As previously mentioned, when working in dynamic environ-
ments, we would like to exploit gradient predictions, function
predictions, and knowledge of reference sequence dynamics.
Thus, in this scenario, we propose the Optimistic Dynamic
Composite Mirror Descent (OptDCMD) algorithm

Ty = argiréi)r(l (V3 (ye—1), ) + m7e(x) + Br(x, ye-1)}
Y = argl'ng{%;l {ne(Vse(ze), y) +mre(y) + Br(y, ye-1)}

yr = P4(31).
(OptDCMD)

This algorithm can be viewed as a combination of Algorithm
OptCMD and the DMD algorithm of Hall and Willett [23]. To
the best of our knowledge, no result in the literature has presented
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a regret analysis of an algorithm that combines gradient predic-
tions, function predictions, and knowledge about the dynamics
of the reference sequence. In what follows, we assume that the
Player has access to dynamical models ®; of {u;}7_,. Let us
further make the following assumptions.

Assumption 2.11 (Lipschitz-likeness of By,): Forall z,y, z €
X, there exist a scalar v > 0 such that the Bregman divergence
satisfies the Lipschitz-like condition Bp(x,z) — Bi(y, z) <
Yz = yll.

Remark 2.12 (Mildness of Assumption 2.11): It follows that
Assumption 2.11 holds when the mapping A is Lipschitz on X
[16], which is a mild assumption once X is usually a compact
set. Some examples are h(z) = 1|3 (i.e., the euclidean case),
or the “KL divergence case” [18].

Assumption 2.13 (Non-expansiveness of ®,): For all z,y €
X and B, the mapping ®; is nonexpansive, that is,
Bu(®4(x), ®:(y)) — Br(z,y) < 0.

Remark 2.14 (Necessity of Assumption 2.13): Observe that
Assumption 2.13 is a restriction on the class of dynamical
models ®;. The reason behind this assumption is to control the
impact of a possibly unreliable prediction (made by the use of
®,), as the online game progresses [20], [34].

In the results that follow, by abuse of notation, we use V/ :=
Zi:l [re(z7) = Pr(r) + 77(Fr) — 72 (0]

Theorem 2.15 (Dynamic regret: convex costs): Suppose that
assumptions 2.4, 2.11, and 2.13 hold. Define the adaptive step-
size

1
2

1
m= 25’ = (452 + (‘/75/71)2 + Dé—l)

for all t > 1. Then, Algorithm (OptDCMD) guarantees
Reg} <O ((1 +Ch) (1 +1/Dhy
-+ min {VT,/ (1+ C})T})) .

Remark 2.16 (Comparison with literature): Let us consider
the case when r; is known at the beginning of round ¢, i.e.,
Vi = 0. Observe that when @, approximates the true dy-
namics of the comparator sequence {u;}._;, we may have
C’. < Cr. Moreover, we also recover C/, = Cp if we choose
®, as the identity map. Therefore, compared to the bound
Regl < O((Cr + 1)y/Dr + 1) of Jadbabaie et al. [16], our
result improves it in the sense that it is given in terms of
C’. and D/, instead of Cp and Dy (recall the discussion
of Section I-B). Moreover, recall that we have ||[Vs:(yt—1) —
Vé¢(yi—1)|« < o by Assumption 2.4. Hence, it follows that
O(y/1+ Dio(1+ C%)) = O(VT(1 + C%)) in the worst-case,
and we recover the bound of Hall and Willett [23]. However,
Zhang et al. [24] proposed an algorithm called Ader, which
achieves the optimal bound Reg% < O(/T(1 + C},)). Thus,
in the worst-case, our regret bound does not recover the opti-
mal one. Comparing (10) with the O(min{Vr,\/T(1+7)})
dynamic regret bound of Campolongo and Orabona [25], where
7 is a known upper bound of C'7, we see that (10) has worst
dependence of C”.. This is mainly due to the fact that, in order
to exploit gradient prediction, we need to have 7, < 1/(23).
Since in [25] a fully implicit algorithm is used (see Algorithm
IOMD), the step size can depend linearly on 7, in other words,
it can be as large as necessary.

(10)

In the next theorem, we show that if the component s; = 0,
thatis, f; = r;, we achieve a bound that generalizes [25, Th. 5.1]
using function predictions, i.e., using V7. instead of V. Notice
that in this case, the updates of Algorithm OptDCMD are fully
implicit updates, just like in Algorithm IOMD.

Theorem 2.17 (Dynamic regret: implicit updates): Suppose
that assumptions 2.4, 2.11, and 2.13 hold. Furthermore, let s; =
0 for all ¢, and 7 be an upper bound of C7.. Define the adaptive
step-size

-
Vig
for all ¢ > 1. Then, Algorithm (OptDCMD) guarantees

=

Regl < O (min {VT,' 1+ T)T}) . (11)

As mentioned in Remark 2.16, the Ader algorithm of Zhang
et al. [24] guarantees the optimal worst-case dynamic regret
bound of Regé < O(y/T(1 + C7.)), without prior knowledge
of C/. or an upper bound on it. In order to achieve this bound,
an expert-tracking algorithm based on online gradient descent
(OGD) updates is used. In our final result, we show that by
using a step-size that adapts to 7, a similar regret bound can be
achieved while also exploiting gradient predictions.

Theorem 2.18 (Dynamic regret: fully adaptive step-size):
Suppose that assumptions 2.4, 2.11, and 2.13 hold. Furthermore,
assume have access to r;, thus, we can choose 7; = r;. Set the
adaptive step-size to 1y = 12 = 1/(20) and

Cl 11
M=\~
Dy 4 +0:

fort > 2, where 6; is chosen such thatn; < 7,1 < ﬁ and 0; >
;1 for all ¢. In this scenario, Algorithm OptDCMD guarantees

Regl < O (\/(oT + D)1+ C’T)) RGP

Remark 2.19 (Comments on 0;): From the definition of the
step-size used in Theorem 2.18, we notice that the more the ref-
erence sequence {u; }£_; varies (i.e., the bigger C} is), the larger
1¢ should be. Intuitively, we need larger step-sizes to “track” a
reference sequence that changes a lot. On the other hand, in
order to exploit gradient prediction, we also need n; < 1/(203).
Thus, 6, can be interpreted as a trade-off parameter, which must
be big enough so that n; < 1/(2/3), but also not too big so that
the algorithm is not able to “track” {u; }Z_,. Also notice that, in
the case of perfect gradient predictions (i.e. D/, = 0), the regret

bound of Theorem 2.18 becomes Regd < O(1 + C%.), since
in this scenario we need 6, = O(1 + C}) in order to guarantee
that ; < 1/(28). This dynamic regret bound is similar to the
one presented in [22], where the authors do not use any kind
of gradient predictions, but assume strongly convex costs and a
specific reference sequence defined as u; = arg mingcy f¢(x).

In Theorem 2.18, notice that feedback about |u; —
®; 1 (us—1)]| after round ¢ is necessary to implement the pro-
posed step-size n;. Although this information may not be avail-
able in the most general case of arbitrary costs f; and reference
sequence u, it is reasonable to assume this type of feedback in
many applications. For example, in the case, where the reference
sequence is a fixed point (and the dynamic regret reduces to
static regret), the feedback assumption trivially holds since in
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this case ||us —us—1]| = 0. Another example is the case of
quadratic costs (see experimental results in [22] and [34]), which
is ubiquitous in control applications. In this case, the gradient
feedback V f; constrains the information about wu;, thus, our
step-sizes can be implemented. Finally, another common case is
when u; = arg mingecy f:(). When the cost f; is revealed after
round %, its optimizer can be computed, and again our step-sizes
7, can be implemented, although it may be computationally
expensive to do so.

Differently from the approach proposed in Theorem 2.18,
algorithms based on the doubling-trick or experts have been
proposed as a way to adapt to C’. without knowing it in ad-
vance [16], [24], [25]. We leave it as an open question whether
or not these tools can be used to prove tighter dynamic regret
bounds when using gradient and/or function predictions. More-
over, our regret bounds can serve as the basis for the design and
analyses of algorithms that learn gradient/function predictors
and minimize regret simultaneously. For instance, in order to
learn good predictors, it may be necessary to explore the action
space by playing actions perturbed by some noise. This strategy
may lead to regret bounds that depend on the prediction error (i.e,
D’ and/or V) and terms that depend on the perturbation noise.
Studying the trade-off between exploration (playing perturbed
action to learn good predictors and minimize D7, and/or V) and
exploitation (playing actions with low noise) is an interesting
future work direction.

[Il. TECHNICAL PROOFS

A. Auxiliary Lemmas

The following lemma is a straightforward generalization of
the standard mirror descent inequality and is stated without
proof.

Lemma 3.1: Suppose that & is a closed convex set. Let ¢ :
X — R be a convex function and n > 0. Define

u = arg Irg/_rvl {ne(x) + Bu(z,v)}.

It follows that, for all z € X and g(u) € dp(u)
77<9(U)7U - Z> < Bh(za U) - Bh(za U) - Bh(uav)'

The next lemma relates the proximal gradient updates (e.g.,
as in Algorithm OptCMD) with the gradients of the linearized
components.

Lemma 3.2: Suppose that X" is a closed convex setin a Banach
space S equipped with a norm || - ||. Let h be 1-strongly convex
wrt || -||. Let wy,we € S*, v € X, r: X - R is a convex
function and 7 > 0. Define

. 1
uy 1= arg min {(wl, x1) 4+ r(z) + th(xl,v)}
1

1
ug 1= arg min {(wQ,x2> +r(z2) + EBh(ZL’Q, v)} .

xo€X

Then, it holds that ||u; — us|| < nljwy — wal|«.
Proof: From the optimality of vy and us [51, Th. 3.1.24], we
have

(w1 + g(uy),us —ur) > (Vh(uy) — Vh(v),u1 — ug) and

n(—wz — g(u2),ug — u1) > (Vh(v) — Vh(uz),ur — uz)

where g(u) € Or(u) Vu € X. Adding these two inequalities up,
we get

(13)

n(wr — wa + g(u1) — g(uz), uz — u1)
— Vh(uz),u; — us).

Since h is 1-strongly convex, it follows that:

(Vh(ul) - Vh(uz),ul - UQ> Z Hul — UQ||2. (14)

Combining (13) and (14), using the Cauchy—Schwarz inequality
and the monotonicity of the subgradient (g(u;) — g(uz),us —
u1) < 0, we have [|[u; — ua||? < nljw; — wa|«||uz — uy||. Asa
result, the claim follows.

The next lemma s useful for upper bounding quantities arising
from the use of adaptive step-sizes in OCO algorithms.

Lemma3.3: Let{a;}1_,,{br} 11}, {cr}F_,, be nonnegative
sequences, with b;y1 > b, and ¢iy1 > ¢;. Then, for T > 1

T b -

¢
E Qpy | —————— < 2 bT(cT—i—E at>.
SN et T a \/ =1

Proof: The proof is by induction. For 7' = 1, one can show
analytically that the inequality holds. Suppose that the inequality
holds for some 7" — 1 > 2. Thus, it follows that:

o
— CtJer 10k
T—1
at
Py Ct"‘Zk 1ak CT+Zk 10k
T-1 br
2 bT1<CT 1+ )+aT _—
\/ Z or + Y hoy Gk

T b
< 2\/bT (CT —GT+Zt:1 at) + ar m
=1

ar

br (2 A—ar+ \/Z)
where A := cp + 23:1 a;. As a function of ap > 0, one can
show that the R.H.S of the previous inequality is maximized
when ar = 0. Thus, \/br(2/A — ar + “—\/%) < 24/br A. This
concludes the proof. |

The next lemma is useful for upper bounding quantities
arising from the use of adaptive step-sizes in OCO algorithms,
especially when the costs are strongly convex.

Lemma 3.4: Given two positive reals a and b, it holds that

1 1 bt
Z_ )< e
(i a) <o)

Proof: Let us first recall the identity log(§) < & — 1, for any
€>0.Set& =a'/b 1. Notice that

bt a™t a_l 1 1

Thus, the claim is an immediate consequence of the above
relation. | |

IN
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B. Main Proofs < e[| Vse(@e) = Ve (ye-1) |12
Next, we continue with the proofs of our main results. 1 1 ) 1 §
1) Proof of Theorem 2.5: Define z*:=argming,cy + < - ) lxe — yel|® — =—Il®t — ye-1l|
Angyq 4ny 2n;

S°[_, fi(x). From the definition of f,
fe(@e) — fe(@") = se(@e) + re(we) — se(2”) — re(z”)

= si(xy) — se(a®) + re(xy) — 7(xy)
+ (@) = 1e(ye) +7e(ye) — ()

<A+ (Vsg(ay), mp — x¥)
+(Ge(e), me — ) + (9e(ye), ye — 2°)

= Ap + (Vse(@e) = V3u(yi-1), T — yr)
+(V3e(yt—1) + Ge(we), 20 — i)
+(Vse(@e) + ge(ye), ye — 27)

where ¢:(y) € Ore(ye), Gi(xe) € OFi(xy), Ay i=1(my) —
7i(zy) + 7(y) — ri(y) and the inequality follows from the
convexity of s, r; and 7;. Using Lemma 3.1, we get

ft(SCt) *ft(I*)

<AL+ (Vse(xy) — V3 (Y1), T — ye)

1
+ Py (Br(x", ys-1) — Bu(x", yt)
t
—Bn(zt,y1-1) — Bn(ye, 1))
<A H (I Vsi(we) = VEi(ye—1) [« llze — yell
1
+ 7{7 (Bh(x*vytfl) - Bh(x*,yt)
t
—Bh(l’nyt—l) - Bh<ytaxt))
=A+ By + Cy
where we define
Ay = || Vse(xe) = V3 (ye—1)lllle — yel|
1
277t — By (ys, x¢) — n*Bh(JUtvyt 1)
Bt = 7’7 (Bh(ﬂﬁ*,ytq) - Bh(x*7yt)) 9
t

1
Ct = At — ZBh(yt,It).
t

We will proceed by upper bounding Zle A; and Zthl B,
separately.
(Upper bounding ZtT:1 Ay): Starting from the fact that

—Bp(z,y) < —3lz — y||* and that ab < pa® + % for any p >
0, we have
A = | Vse(@e) = V8e(ye—1) ||« lze — el
1
- Tmb’h(ytyxﬁ - EBh(xtayt 1)
< Vse(ze) = V3e(ye—1)lllze — yell
1 2 1 2
meyt oy | Tmllwt Yl

1
< 21| Vse(xe) — Vs (e-1)|12 — = v — ye1|)?

2,
. R? R?
+ 2041 (| Vst (ye—1) — V3 (ye—1)|17 + o
1 R? R2
< (242 - DT _ a7
B ( P 277t> e = geal”+ 20141 2
+ 2041 | Ve (ge-1) — Vi (ye—1) |12
. R? R2
S 2l Vo) = Vi)l + 21 20
(15)

where used the facts that Mg 18 nomncreasmg, Assumptlon 24

and the fact that n; < B which implies 23%1;,1 — % <0.

Next, we will bound the two terms of (15) separately. Summing
the first termover ¢t = 1,...,7T, we get

T
2> mera || Vsi(yi1) — Vi(ye |12
t=1

Vst (ye— 1)—
Vs 4 (
< 4\/452 + (VJ)? + Dl < 4V + 4,/45% + DI,

where the inequalities follow from the definition of D}, Lemma

3.3 and va + b < \/a + +/b. Summing the second and third
terms of (15) overt = 1, ..., T and telescoping the sum, we get

R® & ( 11 ) R’

2 =\ N M 20744
Putting these bounds together, we arrive at

R2
+44/4p82 + DI,
21741
R? , 5 ;

=4+ 5 ) (Ve + 482+ Dy ).

(Upper bounding Z?:l B;): Rearranging and telescoping the
sum, we have

V§t(yt,1)||f
1D,

T
:22
t=1

T
ZAt < 4Vy +

(16)

ZBt < Z o5 y1) — Br(a®,yt))
< —B ,Yo) + By (z*,
m (2", Y0) Z (mH t> n(@", ye)
2
<F (17)
nr
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where we used Assumption 2.4. Putting (16) and (17) together,
we arrive at

B

Reg? < (Ay+ By + Cy)

1
R2 , 5 - R2
(4+> (VT+1/4ﬁ + DY +o
d 1
+) (At - mBh(ytaxt))
t=1
3R?
(4 + 2) <V} +1/48% + D’T>

~
I

L 1
A — —B 18
+ ; < ¢ 5 h(ytaxt)) (18)
< (5+ 3R2> <V’ +./482 + D! > (19)
> 2 T T

where we used the definition of 774; and the fact that V:’p =
S>7_, |A| by definition. Similar to [31, Th. 6.2], we will pro-
ceed to bound the regret in a second way, which in turn will
imply the regret is upper bounded by the minimum of (19) and
the second bound. In particular, we will focus on the following
part of (18)

() - e

=1

S

t=1 t=1

yt7 It

SN
Z HH% —yell* = chr

t

where Ap == 327 (1A — llze — v¢]|*) and ¢ := 5 + 332

Thus

4C77t

2

3R
Reg’ < cAr + (4 + 4> \/482% + D).

Next, we will proceed to prove an upper bound to A%, which
will naturally imply an upper bound to cAr. To do so, we will
first prove an upper bound to the term |A¢| — e — e |2

(20)

4C'flt
(Upper bounding |A| — 4cm |lw: — y¢]|?): From the defini-

tion of A; and convexity of r; and 7;, we have that

Ap < (gt(2)

- gt(yt)a Tt — yt>

2
. T —
< VARl ) ~ gl + 22y
Cllt
and
Ay < lge(we) — Gelye) |l llve — el

2

- . o, Nzt — el 2

< enellge(ze) — Ge(ye)[l5 + iy, (22)

for any g,(z;) € dry(x;) and §;(y;) € O (y.), where we used
the facts that L2t 1@7;;\\2 >0 and ab < pa® + % for any p > 0.

Similarly, we also have that

2
~ Ty —
~ A < VERgw) — anle)l + 120 a3y
C’l?t
2
“ Ty —
—AtScntllgt(yt)—gt(wt)IlfJf‘H t4 . 24
CTlt

Combining (21), (22), (23), and (24), we get that

o 2
Iz = yell® oy {VeRrG, enGt}  25)

A, —
A Ten,

where Gy := max{llg; (x) — ge(ye) |+, lge () — Ge (o)1}

(Upper bounding 1%): Notice that

12
My — gy = A = e wl {\/iRGt,cnth} .
deny
(26)
Defining A2 := 0, we have that

[M]=

=30 (- a2)

o+
Il

1

I
] =

(G =2 +20 = A1) 2o )

o~
Il
-

Ms

(2R*G} + 2enih—1GY)

o~
Il

1

where the last inequality follows from (26). Next, notice that by

definition
t—1
(N

\/4/32 ,+ ( IAkI) D;

Thus, we have that

*””’523,5”) By=i
=S A

MAt—1=

T T
7 <> (2R’G} +2¢G7) = (2R* +20) Y G
t=1 t=1

Taking the square root and substituting it into (20), we get the
second regret bound

[T
Reg’ < cV2R? + 2¢ Ztﬂ G?
3R?
2 /
+ (5+4 ),/45 + Dl

Finally, combining (19) and (27), arrive at

Reg} < min { (5 + > Vi, eV/2R? + 2¢ Gz}
3R?
(5+ 4> \/45?% + DI,

~0 (1+ D’T+min{v;,\/:?}) .

27
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2) Proof of Theorem 2.9: In order to prove Theorem 2.9,
first we will prove a version of this theorem for general Breg-
man divergences and a general notion of strong convexity (see
Lemma 3.8). This result is achieved by exploiting a certain
technical assumption (see Assumption 3.6). Then, we will show
that for the euclidean case (i.e., By(z,y) = 5|z — y|3), this
technical assumption always holds and Theorem 2.9 follows.

Definition 3.5 («a-Strong convexity w.r.t. Bp): A function
f: X = R is a-strongly convex w.rt. By, if f(z) — f(y) <
(Vf(x),x —y) — aBp(y,x), forall z,y € X.

Assumption 3.6 (Technical assumption): For 1 / n>a>0,
there exists a constant A > 0 such that A8y, (z,y) — Bh(y, z) —

aBp(z,z) <0, forall z,y,z € X.

Before stating the general version of Theorem 2.9, we make
a short remark on Assumption 3.6.

Remark 3.7 (Mildness of Assumption 3.6): Notice that 1, «,
and By, (z, y) are all non-negative. Thus, for a general choice of
h, one should expect to be able to choose a small enough X to
ensure that the inequality in Assumption 3.6 holds. In particular,
when By, (z,y) = 3|/ — y||3, we will show that Assumption 3.6
holds for A = /2

Lemma 3.8 (Strongly convex case with general divergence):
Suppose that Assumptions 2.4 and 3.6 hold and that the costs
{fi}L_, are a-strongly convex w.r.t. By. Using the adaptive
step-size

20
for all t > 1, Algorithm OptCMD with 7, = 7, guarantees
Reg} < O (1+1log(1+ D).

1 A -t
=z M= ((72D21 + 25)

Proof: Let x* := argmingcy 23;1 fi(z). Since s; is a-
strongly convex w.r.t. B, we have

se(x) — se(x™) < (Vse(xy), mp — a¥) — abBp(z", xy).
Thus
fe(we) = fe(a®) = se@e) + re(w) — se(2”) —re(a”)
= si(xy) — s (z") + () — reay)
+ (@) —re(ye) +re(ye) — re(2)
<(Vsi(w1), 0 — 2%) — aBp(z”, 2¢) + (ge(w0), ¢ — Y1)
+ (9t (ye), ye — %)
= (Vsi(ws) — V3:(ye-1), o0 — ye)
+ (Vse(@e) + 9e(ye), ye — 27)
+ (V5:(ys-1) + ge (), 24

where g;(y:) € Ori(ye), gi(xy) € Ory(xy) and the inequality
follows from the convexity of s; and r,. Using Lemma 3.1, we
get

- yt> - th(x*, $t)

ft(lft) - ft(x*)
<(Vsy(xg) —

1
+ — (Bp(z*
Ut(h(x

Vét(yt—l)y Ty — yt> - th($*7 JUt)

»ytfl) - Bh(‘r*uyt)

—Bn(wt,y:-1) — Bu(ys, 1))

<A+ By

where we define

1
A = 77* (Bh(x*aytfl) - Bh(x*vyt) - Bh(ytaxt))
t
—aBp(x*, zy)
. 1
B, = Hvst(ft) - Vst(yH)H*llxt - yt” - U*Bh(xt,ytfl)
t

With the above notations at hand, it follows that:

Dy Ay,
We proceed by bounding Z;T:l Ay and ZtT: 1 Bu separately.
(Upper bounding Zthl A;): Observe that

Sa-y L

t=1

T

Regy = > (fula) -

t=1

(28)

Bh( ,yt71) - Bh(x*vyt))

-3 (nlt@h(ym ) + th@‘"@“t))

t=1

378 (m,yo +Z<1)Bh( “Yt)
—Z< By (y, x1) + aBy (a7, m).

Assumption 2.4 and 1; = 1mp1y that 2 (2 vo) < 93R2,
From the definition of 77t, we have that
1 1 A
— — = | Vse(ye—1) — Vi (ye—1)|2. 29a
Mt T o2 Vst (ye-1) t(ye-1) | (29a)
Hence, we obtain
— — =) Bua",y
g <77t+1 t) a 2
(Ve (1) = Ve(ye 1))
_ )\Z t\Yt—1 - t\Yt—1)||% Bh(x*ayt)
t=1 g
< z Bala” ) %)

where the inequality follows from the fifth item in Assumption
2.4. In light of the upper bounds derived in (29), we then infer
that

ZAt < 2ﬂR2 + Z ()»Bh 7yt

1 *

—;Bh(yt,xt) —aB(x 7-1'15)) <28R*  (30)
t

where the second inequality follows from Assumption 3.6.

(Upper bounding Z'le Bt): Invoking Lemma 3.2, we con-
clude that

lye — ¢l| < mellVse(we) — V3(ye-1) |l
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and as a result o2 20 1 1
1 = 5 + = log —log | —
By <mil|Vsi(we) — Var(yr1)|2 — =B (e, ye1). s n
. Ur B o2 N 252 ( m )
Notice that 3 Y —
2
By <2n¢||Vsi(xe) — Vise(ye—1) |2 which immediately yields
1 T
+ 20| Vse(ye1) = Vae(ye1)II7 = —Bn (e, ye1) a® 207
2 2 " 2 X_:BtSE+Tlog 1+25 D7 ) (32)
<207z — yeall” + 2mlIVse(ye-1) — Vae(ye—1) I3 .
1 (Regret upper bound): In light of (30) and (32), we get
— — B (s, yr-1)- 2 902 A
us Reg%SZﬁR2+UB+Zlog< 2502 ’).
g
where we made use of the identity ||a — b||? < 2||a — _ )
l|? +2|le — b||2 and the 5 smoothness of s;,. Using Lemma The lemma immediately follows. ) 2.
—By(x,y) < L[|z — y|?, we arrive at Finally, for the euclidean case (i.e., By (z,y) = 3/lz — yl3)

and choosing A = «/2, we have

1
&g(mﬁ)mtm4w
2n;

+ 20| Vst (y—1) — Ve (ye—1)]|2-

From the definition of 7;, we have that 2, 3? — 2—71% <0Vt > 1,
and summing B; overt = 1,...,T yields

1
)\Bh(x*ayt) - TTBh(yta CL’t) - th(x*7xt)
t

o 1 a,
= ZHI* —yill5 — Tntllyt — x5 — 5|Ix — 4|

o 1
< Gl =l = gl w3 <o

where the second inequality follows from ||a — b||? < 2||a —
c||? + 2||c — b||? and the third inequality follows from 7, ' >

T T
> Bi<2Y il Vsi(yir) — Vailye )2
t=1 t=1

T B > «a. Thus, we have shown that Assumption 3.6 holds for all
<2 Z N1 | Vst (Y1) — Ve(ye-1)|? t, and Theorem 2.9 follows from Lemma 3.8. [ |
t=1 3) Proof of Theorem 2.15: Let u; € X. Following similar
T steps to the ones from the proof of Theorem 2.5, one can show
+2 Z(m - 77t+1)||vst(yt71) - Vét(ytfl)lli that fy(w¢) — foltse) < A¢ + By + Gy, where we define
t=1 Ap = | Vse(e) = Va(ye-1) [ llze — Gell
By virtue of the fifth item in Assumption 2.4, it follows that: 1 1
— TmBh(gjt,xt) — th(fL‘tayt—l)
Z — D)1 Vse(ye-1) = V3e(ye-1) |12 ]
t=1 By = — (Bu(us, ye—1) — Br(ue, i), Cp = Ay
T ) Up
Z — 1) =0 (m — rar) < 0P = o 15
Py 25 2 m h(yt717t)
Based on the above analyses, it is straightforward to see that Moreover, still following steps similar to the proof of Theorem

2.5, we can show that

T 9 T
g
By < — 42 neralVsi(y1) = Vai(ye)IZ. GD 2
tz:;t B ;t+1 t\Yt-1 t\Yt-1 ZAt_<4+R)<VTI"+ /4B2+D/T)- (33)

Notice that by the definition 7;, we have

) , o2 1 1 (Upper bounding thl By): Adding :I:iBh(qu,yt) and
[Vse(ye-1) = Vi (ye1) 2 = 5N (Ut—H - 77t) :t%Bh(CI)t(ut),yt) to B; and summing the result over t =
and as a result T we get
o2 2 T
ZBt <Z + 27 Nes ( L 1) , ZBt—Z (Br(ut,yt—1) — Bp(ues1,ye) + B (ues1, yt)
pa— Ne+1 M =11
Using Lemma 3.4 to upper bound the RHS of the inequality =B (Pe(ut), yt) + Br(Pe(ue), Po(e)) —Bn(ut, §t))

above, we have that where we made use of y; = ®;(7;). By Assumption 2.11, it

T 2 9,2~ —1 holds that for some positive real ~y
ZBt<U—+L21og e+
= B 2 B (i1, ye) = Br(Pe(ue), ye) < vllurrr — Polu)]]-

t=1

!
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By Assumption 2.13, it further holds that 3R? ,
+ 4+T+vCT \/4582% + Dl.. (38)
By (®+(ut), ¢(gt)) — Br(ue, §) < 0.

By virtue of the last two inequalities, we arrive at

SLED IR

+[lugrr —

(Br(we, ye—1) — Br(ues1, ye)

Py (ur)]]) - (34)

Next, observe that

Z

Bh utvyt 1) Bh(UtJrlvyt))

T
1 1 1
< *mBh(Uhyo)‘i‘ E (‘

7 -
= \Tlt  Tt-1

2 T 2
§R+R2Z<11>§R
t=2

Uil Mt Nt—1 nr

) B (ug, ye-1)

where we made use Assumption 2.4. Considering inequality
(34), one can conclude based on the above arguments that

T AN
5080 < 30 (Ll - w])
t=1 eI\

< — + — Z e = @) = LR yqcy)
(35)

where the second inequality follows from 7, > 7,,. Putting
(33) and (35) together, we arrive at:

T
Reg% S Z (At + Bt + Ct)
t=1

R2
< <4+ 2) (V} +4/452 +D’T>

T
1
+(R* + VCT + >, (At - mBh(yt»xtO

t=1
3R? -
< (4+ 5 +70’T> (V% +4/482 +DT>
T 1
+ ; (At - mBh(yt,wt))
3R? -
< (5 + N + 70’T> (V% +./482 + DT> 37)

where we used the definition of 7741 and the fact that
Vi =T, |At\ Define c¢:=5+ # +~C% and Ap =
Zthl(|At| 4cm lz¢ — v¢]|?). By following the same steps of
the last part of the proof of Theorem 2.5, one can show

T
Regy < cV/2R? +2¢1/y G7

(36)

Finally, combining (37) and (38), arrive at

Reg? < min

2 T
x {(5 + % + wc}) Vi, eV/2R? + 2q/zH G,%}
3R? , -
+ 4+ = +1C7 ) \J48° + Dr,

=0 <(1 +Cp) <1 + 1/ D} 4+ min {V}, 1+ C’T)TD) :
This concludes the proof. |

C. Proof of Theorem 2.17

Similarly to the beginning of the proof of Theorem 2.15, one
can show that f;(x;) — fi(uy) < By + Cy, where we define
1

By = — (Bh(utyytfl)
Tt

— Bh(ut, :ljt)) and

1 .
Cyi= Ay — 7Bh(ytaxt)~
Ui

Next, continuing following the proof of Theorem 2.15, we have
that

R?
ZBt < —+ Z —Hum By () < — (32 +77).
) nr

Thus, we have that

T
Regy < Z (B + Cy)
t=1

| /\

T
R2 +77' + Z (At - *Bh yt7$t)>

" t—1

R? ~ 1
<T ++ 1) Vi—> =By, x).

t=1 It

IN

Again following the steps of the proof of Theorem 2.15, we can
alternatively bound the regret by

/=T
Reg} < ¢V 2R? 4 27¢ Zt—l G? <O(/(1+71)T)

where ¢ = R; + ~ 4 1. Combining the two regret bounds, we
have

Reg} <O (min {Vf, (1+ T)T}) .
This concludes the proof. ]

1) Proof of Theorem 2.18: We start the proof by following
similar steps to the ones taken in the proof of Theorem 2.9. By
doing so, we arrive at

T

Reg} = > (f(n)

t=1

(39)

T T
~ i) S At B
t=1 t=1
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where

At = HVst(zt) - V§t(yt71)”*HIt - gt”

1 1
— —Bn(y,xt) — —Bp(xe, yi
e h(yt t) e h( ty Yt 1)

1 -
By = ;(Bh(utyyt—l) — B (ut, §t))-
t
(Upper bounding ZtT:1 Ay): We proceed by bounding

Zthl A, in the sequel. Recall that by definition, 1, < 1/(25)
for all ¢. Thus, by following similar steps as taken in the proof
of Theorem 2.5, we get

T
R2
Z Ap < 2
=1 nr

Recall the definition of 7;. Invoking lemma Lemma 3.3, we
arrive at

T
+ 2Zm+1\|VSt(yt71) — V(1) |2
+1 =1

T 2

ZAt < 2R

t=1 r+1

+4y/(0r + Dp)(1+Cp). (40)

(Upper bounding Z;‘F:l B,): Following similar steps as taken
in the proof of Theorem 2.15, we can bound:

T T
R2
ZBt S — + l||ut+1 — @t(ut)H
=1 oo
Define Auy := ||urr1 — ®i(uy)| and notice that
T T
1 1 1
Z lAUt = < - + ) Auy
= 1 \t M1 Tt
11 d
= — = Auy + Au
’y; (7716 77t+1> ' 'y; Nt+1 !
2 T
m 1 M+t

where for the last inequality, we assumed without loss of gen-
erality that Au; < R%. Following these same steps again, and
using the fact that n; = 7, we get

T

279R2 1
Z 7*”utﬂ — Oy (uy)]| < i + ’yz — Auy.
= M =1 t+2

Recall the definition of 7, in Theorem 2.18. Invoking Lemma
3.3, we get

T

1
vy @HWH — Oy ()|

t=1

< 294/ (Ors2 + Dipyy ) (1 + Cp).

Back to our upper bound on A;, we now have

T
2vR? R?
> B < T 2y (014 + Dy )(1+ Ch).
t=1 n i

(41)

(Regret upper bound): Considering equations (39), (40), and
(41), it holds that

202 R2 3R?
+ —
m 2nr

+ (44 29)y/(Or 42 + Dipyy ) (1+ Ch).

Reg% <

This concludes the proof. |

IV. NUMERICAL EXPERIMENTS

A. Tracking Dynamical Parameters

In this section, we employ a strategy based on Algorithm Opt-
DCMD in a parameter tracking problem. The scenario presented
in this section is based on the numerical experiment of [34]. De-
note the parameters to be tracked by u; € R*. These parameters
have dynamics described by the linear model u;+1 = Auy + vy.
Similarly to [34], we emphasize that our online learning results
hold even when the noise is adversarial with an unknown struc-
ture. For this experiment, we use

101 0 0

o1 01 o0 (2 B >0

A=1lo 0 1 oa| ™ ”“{—1 if 5 < 0
00 0 1

where v; is Gaussian noise with a random covariance matrix,
and the inequalities in the definition of v; are component-wise.
The cost at time ¢ is defined as fy(2;) = 3 lz; — ue[|3 + [|z¢]1,
where s;(z¢) := $||lzy — w3, 7e(2e) == ||lz¢||s and z; is the
output of our tracking algorithm. We assume the Player has
access to ®;(x) = Az, which is an approximate model of the
dynamics of u;.

To choose its action sequence {x;}7_,, the Player employs a
variation of Algorithm OptDCMD with h(z) = | z||3 (i.., the
euclidean setup), with the difference that in the update rule of
Ui, we use a constant step-size 7; = 1. This change was inspired
by [22], and the fact that 3|z, — u||3 is smooth and strongly
convex. For the update rule of x,, we use the step-size defined
in Theorem 2.15 (notice that since the nonsmooth component of
the cost f; is fixed, V/ = 0 for all ¢). We consider the following
gradient prediction models:

1) Perfect: a perfect model V3 (y;—1) := Vsi(yr-1)-
2) Noisy: a noisy model V§;(y;—1) := Vs (yi—1) + wy.
3) Noisy+Bias: a noisy prediction model plus a bias term
Vi (yi-1) = Vse(yr-1) +we — L.
4) Previous: a prediction model that uses the previous cost
gradient V§;(y1—1) := Vsi_1(yi-1)-
5) Random: a random prediction model V§;(y;—1) := wy.
where w; ~ N(0,0.51). As abenchmark, we use the dynamic
mirror descent (DMD) algorithm of Hall and Willett [23] with
a constant step-size 7 = 1 and a dynamic version of Algorithm
OptMD, which also uses the dynamical model ®; to update the
vy, variable. We refer to this algorithm as dynamic OptMD.

Denote the regrets of Algorithm OptDCMD, the DMD
algorithm and the dynamic OptMD by Regf(OptDCMD),
Regf(DMD) and Regf(d-OptMD), respectively. The experi-
ments are repeated 100 times, and for each experiment, a new
trajectory {u; }7_, was generated. The shaded areas correspond
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Regret difference between the DMD algorithm, the dynamic version of Algorithm OptMD and Algorithm OptDCMD, for different gradient

prediction models. (a) OptDCMD versus DMD. (b) OptDCMD versus dynamic OptMD.

to one standard deviation for Fig. 1(a) and 0.1 times one stan-
dard deviation for Fig. 1(b). Fig. 1(a) depicts the difference
Regf(OptDCMD)—Regf(DMD). One can observe that all the
models that use some kind of information about future gradients
(perfect, noisy, noisy+bias) were able to perform better than
the benchmark. This shows that indeed Algorithm OptDCMD
was able to exploit predictive information about the problem.
Moreover, model previous and random also perform better than
the benchmark on average, showing the robustness of our algo-
rithm against inaccurate gradient predictions. Fig. 1(a) depicts
the difference Regf(OptDCMD)-Regf(d-OptMD). As can be
seen, Algorithm OptDCMD performs better than the benchmark
for all predictions models, illustrating the advantage of the com-
posite updates Algorithm OptDCMD compared with Algorithm
OptMD.

B. Portfolio Selection

In this section, we apply the result of Theorem 2.5 in a port-
folio selection problem. Suppose that an investor (or the Player)
has n assets in a Market (or Nature). Let the Player’s action  be
a probability distribution over n assets. The action set A’ is thus
Api={reR":z(i) >0,) ", x(i) = 1}. Let the return of
an asset at round ¢ be the ratio of the value of the asset between
rounds ¢t and ¢ + 1. Atround ¢, Nature chooses a strictly positive
return vector 7; € RZ; such that each entry of r; corresponds
to the return of an asset. The Player’s wealth ratio between
rounds ¢ and ¢ + 1 is (ry,z;). Let the Player’s gain at round
t be log({ry, x;)). In a game of T rounds, the goal of the Player
is to maximize Zthl log({r;, x.)) or, equivalently, to minimize
Z?:l —log((r¢, ). Hence, we have f;(x) = —log((r,z))
and Vfi(z) = —r¢/(ry, z), for all x € X.* Notice that in this
scenario, there is no nonsmooth component in the cost f;, and
Algorithm OptCMD reduces to Algorithm OptMD.

We assume that the Player has prediction models of the
return vector r;, denoted by 7;. Thus, in light of the approaches
proposed in this article, we define

Tt

_ 42
Fooyn) *42)

Vft(yt—l) =

4See [1] for a more detailed description of this problem.

In what follows, we show how the Player can employ Algorithm
OptMD to decide its action sequence {z;}7_; considering the
static regret (1). Since the costs are convex, the Player uses the
step-size rule of Theorem 2.5 in Algorithm OptMD (with V; =
0). We assume the return of each asset at each time ¢ is bounded
as min < 7 < max (component-wise). By assuming 7, = 0.5
and . = 1.5, we can set the smoothness parameter 3 = 9.
Since A,, is the n-dimensional simplex, we let h(z) be the
negative entropy function » " ; x(i)log(z(i)). Observe that h
is 1-strongly convex w.r.t. || - ||1 [52]. We consider the following
prediction models for the returns vector:
1) MA(k): a Moving Average prediction model model 7, :=
% Zf:l Tt—i-
2) Previous: a model that uses the previous return vector as
its prediction 7y := ry_1.
3) Noisy: a noisy, unbiased predictor model of the true
returns vector 7y := 14 + v, where vy ~ A(0,0.3).
4) Random: a random predictor, where the entries of 7; are
chosen uniformly between 7y, and 7pax.
5) Recursivels(k): for each stock, we have a prediction model
of the form 7, = wiri_1 + wari_o + -+ + wWEri—p +
w41, Where the weights w1, . .., wg41 are updated on-
line, using a recursive least squares algorithm.
However, instead of using the output of these models directly
in (42), we will use #*; = g(7¢). The function g(r) is defined as

Tmax 17 >1
g(r) =<1 ifr=1
Tmin 1f7r <1

and is applied component-wise for vector inputs. The interpre-
tation behind passing the predictions 7, through g is that, instead
of using the exact predictions given by our models, we use 7
only as an indication if a given stock is predicted to increase or
decrease its value in the next round.

To simulate a stock market, we use six real-world datasets:
NYSE(O), NYSE(N), DJIA, TSE, SP500, and MSCI. A detailed
description of these datasets can be found in [53]. Let the
number of assets of each dataset be /NV. As a benchmark of each
experiment, we employ the Constant Uniform Portfolio (CUP)
strategy, that is, a Player that chooses x; = [1/N, ..., 1/N], for
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Fig. 2. Algorithm OptMD applied to the portfolio selection problem. (a) NYSE(N). (b) NYSE(O). (c) DJIA. (d) MSCI. (e) SP500. (f) TSE.

all ¢ € [T]. For the datasets considered in this experiment, the
CUP strategy performed better than the Algorithm OMD, for
any n, > Oand zp = [1/N,...,1/N].

Denote the regrets of Algorithm OptMD and CUP strate-
gies by Reg?.(OptMD) and Reg’-.(CUP), respectively. Fig. 2
depicts the difference Reg;(OptMD)—Reg;(CUP) for each
considered dataset. The experiment was repeated 10 times and
the shaded areas correspond to one standard deviation. As
expected, for all datasets, the noisy model achieved the best
performance, since it uses information of 7, in the prediction 7.
More interestingly, we notice that for all datasets except DJIA,
the recursiveLS(6) prediction model performed better than all
other models. Moreover, this model also performed better than
the CUP benchmark strategy. In other words, at time ¢, we were
able to generate and exploit the predictive information about the
return of each stock, using only information available up to time
t — 1. Another interesting conclusion we can draw from Fig. 2
is that, in general, using either the previous return or a simple
moving average as predictions lead to poor performance for the
algorithm. Finally, when using the random models (i.e., gradient
predictions uncorrelated with the true gradients), Algorithm
OptMD performed generally similarly to the CUP benchmark
strategy. This indicates that our approach can also be robust to
bad gradient predictions (see Remark 2.7).
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