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1. Introduction 

In recent years, studies on the determinants of innovative behavior in Europe have 

been encouraged by the increasing availability of firm-level data through the European 

Community Innovation Survey (CIS). The emerging literature has focused on determi-

nants of innovation such as market structure, firm size, knowledge spillovers, R&D colla-

boration, conditions for the appropriation of innovation benefits, and others. This paper 

will address a factor that has not been covered in CIS studies: What is the influence of the 

increased flexibility of labor on innovation? 

Over the last twenty years, many labor market economists have strongly 

recommended that high unemployment should be reduced by making European labor 

markets more flexible. An example is the OECD's Jobs Study (1994). Subsequent to the 

Jobs Study, a literature has developed that tries to substantiate that more flexible labor 

markets would not only be favorable for employment, but may also allow for higher 

economic growth and higher productivity growth (e.g. Nicoletti and Scarpetta 2003). 

Nonetheless, flexible labor contracts as determinants of innovation or productivity growth 

are still under-researched. There are only few firm-level studies, including Laursen and 

Foss (2003), Michie and Sheehan (2003), Kleinknecht et al. (2006), Arvanitis (2005), and 

Lucidi and Kleinknecht (2009). This is regrettable, as labor relations and human resour-

ces have been suggested to have a significant impact on innovation through their influ-

ence on knowledge processes (Amabile et al., 1996; Guest, 1997; Trott, 1998). 

This study makes an empirical contribution to our sparse knowledge about the im-

pact of flexible labor on innovation using firm-level data from several subsequent surveys 
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with broad industry coverage in the Netherlands. Our database covers a “direct” measure 

of innovation: sales performance of new or improved products, introduced during the past 

2 years. We take advantage of the fact that there is a wide spectrum of typical labor con-

tract patterns in the Netherlands (and in our database). A number of Dutch firms still have 

fairly rigid “Rhineland” labor relations, while others have highly flexible “Anglo-Saxon” 

practices in hiring. “Rhineland” firms typically offer their personnel good wages, fair 

protection against dismissal, and longer-term commitments. “Anglo-Saxon” firms em-

ploy significant labor on fixed-term contracts, hired from employment agencies or free-

lance workers, which allows them to adapt to changing demand conditions by easily hi-

ring or firing people.1 

We trust that the wide spectrum of “Rhineland” versus “Anglo-Saxon” labor con-

tracts in the Netherlands allows for a meaningful study of the possible impact of flexible 

labor on innovation performance. This paper is organized as follows: Section 2 provides a 

brief sketch of the theoretical background and discusses our hypotheses. Section 3 des-

cribes our data and the empirical model. Section 4 reports the regression results. Section 

5 rounds up with conclusions. 

2. Patterns of flexible labor and innovation 

Labor market flexibility can be subdivided into three types of flexibility: (1) nume-

rical flexibility, (2) functional flexibility and (3) wage flexibility (e.g. Beatson, 1995). 

This paper is confined to analyzing numerical and functional flexibility. Numerical (or 

“external”) flexibility allows for easy hiring or firing of personnel, resulting in significant 
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reductions of a firm's wage bill.2 High numerical (or “external”) flexibility is at the core 

of the “Anglo-Saxon” model of labor relations. 

Functional flexibility is the ability of firms to reallocate labor in their internal labor 

markets, relying on training that allows personnel to carry out a wider range of tasks (e.g. 

Beatson, 1995). Functional flexibility reflects the multiple competencies of workers, such 

as multi-skilling, multi-tasking, cooperation and the involvement of workers in decision 

making (Arvanitis, 2005). Functional (or “internal”) flexibility is characteristic of the 

“Rhineland” model of labor relations, providing opportunities for long-term careers in the 

same firm. Such long-term commitments may be interpreted as an investment in the trust, 

loyalty and commitment of individuals. 

Many mainstream economists tend to be in favor of more flexible, “Anglo-Saxon” 

labor markets. In a traditional microeconomics view, markets can never be flexible 

enough. There are a number of detailed arguments in favor of more numerical flexibility. 

First, long tenured employees may become conservative, being attached to outdated pro-

ducts and processes, and reluctant to adapt to significant changes due to “lock-in” effects 

(Ichniowski and Shaw, 1995). Second, labor market rigidity may reduce the reallocation 

process of labor from old and declining to newly emerging industries, and the difficulty 

of firing personnel might frustrate labor-saving process innovations (Bassanini and Ernst, 

2002; Scarpetta and Tessel 2004; see also Nickell and Layard, 1999). Third, with strong 

protection against dismissal, labor may become too powerful, increasing the chance that 

monopoly profits from innovation will be (partly) absorbed through higher wage claims. 

Monopoly profits from innovation are a reward for taking innovative risks; such risk-ta-

king would be discouraged if labor could claim part of the premium. Powerful labor, 
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negotiating wage contracts at the firm level, could therefore “hold up” investments in 

innovation (Malcomson, 1997). Finally, one might add that higher flexibility would also 

allow for easier replacement of less productive personnel by more productive people and 

the threat of firing might prevent shirking. Easier hiring and firing could also help keep 

wages low, as is evidenced by estimates of wage equations.3 Moreover, as has recently 

been emphasized by Arvanitis (2005), firms can more effectively fulfill their demands for 

specialized services by making use of temporary work. 

As counterarguments against high numerical flexibility, we propose the following: 

high numerical flexibility may weaken a firm's historical memory and continuity of lear-

ning. A high external labor turnover rate may reduce employees' loyalty and commit-

ment, resulting in easier leakage of knowledge to competitors; such externalities would 

discourage investment in R&D. The argument that high numerical flexibility will make it 

difficult for firms to store innovative knowledge is particularly relevant for firms that 

have a “routinized” Schumpeter II innovation regime (Kleinknecht et al., 2006). In a 

Schumpeter II regime, the path-dependent historical accumulation of knowledge is criti-

cal to superior product and process performance. Much of the accumulated knowledge is 

“tacit.” Different from documented and codified knowledge, “tacit” knowledge is ill-

documented and idiosyncratic, as it is based on personal experience (Polanyi, 1966). 

Accumulation of such knowledge is favored by a longer tenure in the same firm. 

Shorter job durations may also discourage investments in firm-sponsored training. 

In highly flexible labor markets, employees may be interested in acquiring general know-

ledge that increases their employability elsewhere, but they may be reluctant to acquire 

firm-specific knowledge (e.g., studying safety instructions) if they anticipate a short stay 
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in the firm. Moreover, Naastepad and Storm (2006) have shown that (growing) flexibility 

in labor relations in OECD countries leads to a significant growth in management bureau-

cracies to control disloyal behavior. While adherents of flexible labor markets emphasize 

that difficult firing of redundant personnel would frustrate labor-saving innovations, it 

can also been argued that personnel who are easy to fire have strong incentives to hide in-

formation about how their work can be done more efficiently. This can be damaging to 

productivity growth as far as the management is dependent on their personnel's “tacit” 

knowledge to efficiently implement process innovations (see also Lorenz, 1999). Finally, 

easy firing may change power relations in a firm. Personnel on the shop floor are less 

likely to criticize powerful (top) managers, and poor critical feedback from the shop floor 

may favor problematic management practices. 

Given the opposing theoretical arguments pertaining to numerical flexibility, it is 

interesting to look at empirical findings. Two recent studies using UK firm-level data 

show a negative correlation between numerical flexibility and innovation (Michie and 

Sheehan, 1999, 2001). Similar results are reported by Chadwick and Cappelli (2002) 

from US data. Arvanitis (2005) reports mixed results. In one of his specifications, he 

finds that temporary work has a positive impact on innovation, which he ascribes to the 

need to hire specialists on a temporary basis for the R&D process. When using part-time 

work as another indicator of flexible labor, he finds a significantly negative impact on 

innovation. His general conclusion is that "… firms with high productivity are those 

which apply new forms of workplace organization but do not engage many part-time and 

temporary workers" (Arvanitis, 2005: 1010). Given that the results by Arvanitis are not 
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clear-cut, we shall also test whether there is a non-linear relationship, using quadratic 

terms of numerically flexible labor. 

While the impact on innovation of numerical flexibility is doubtful, Arvanitis does 

find a positive impact on productivity and innovation for several of his indicators of 

functional flexibility. Similar results have been found by others (Michie and Sheehan, 

1999, 2001; Chadwick and Cappelli, 2002; Kleinknecht et al., 2006). High functional 

flexibility in internal labor markets reflects a firm's ability to organize flexibly without 

destroying loyalty and commitment by firing. This is likely to reduce positive externali-

ties through the exit of trained people or through disloyal behavior (e.g., the leaking of 

trade secrets to competitors). Furthermore, high functional flexibility can reduce commu-

nication barriers between different departments. Better sharing and transfer of knowledge 

across departments can favor innovation. 

3. Data, variables and methodology 

We use longitudinal firm-level data collected by the Organization for Strategic La-

bor Market Research (OSA) in the Netherlands. Since 1988, OSA has built an enterprise 

panel in all sectors of manufacturing, services, agriculture and in non-commercial servi-

ces, including the government sector. In fact, OSA samples all organizations in the 

Netherlands that employ personnel, with a minimum of five people, stratified by indu-

stries and firm size classes. The database provides information about the labor force (e.g., 

inflow, outflow, type of contract, internal mobility), as well as about R&D and new pro-

ducts sales. Since 1989, the survey has been conducted every two years. Organizations 

taking part in a previous survey are also included in the next survey. New organizations 
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are added to each wave in order to compensate for sample fall-out (see Appendix A). 

Data collection is performed using a combination of questionnaire-based face-to-face 

interviews and a questionnaire to be filled in by a manager and returned by mail. 

We construct a longitudinal dataset that includes dependent variables in year t and 

lagged independent variables in year t-2, the latter coming from the previous survey. Our 

final dataset is confined to the period 1992-2000, as information from earlier surveys is 

not fully comparable. Furthermore, we estimate our models on the total sample as well as 

on a sub-sample of 929 commercial SMEs with less than 250 employees. Restriction to 

SMEs has the advantage of having a more homogeneous sample. We confine our sample 

to four business sectors, i.e., manufacturing (SBI 15- SBI 37), construction (SBI 45), 

trade (SBI 50-52) and (other) services (SBI 55, SBI 60-67, SBI 70-74, and SBI 77). We 

exclude government and other non-commercial organizations. 

Our database allows the use of a “direct” indicator of product innovation; i.e., sales 

of new (or significantly improved) products and/or services. It is similar to the “innova-

tion output” indicator in the CIS database. There are two deviations of the OSA question-

naire from the CIS concept as described in the OECD Oslo Manual (2005). First, the CIS 

asks for new or improved products introduced during the past three years, while OSA 

covers the past two years. Second the CIS distinguishes products that are “new to the 

firm” from those that are “new to the market,” whereas OSA only asks for the former. 

We interpret products “new to the firm” as “imitative” innovations, and products “new to 

the market” as “true” innovations. As in the CIS, innovation performance in our OSA 

database is measured by asking respondents to subdivide their present product range into 

three types of product: 
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(1) Products that remained largely unchanged during the past two years; 

(2) Products that were incrementally improved during the past two years; and 

(3) Products that were radically changed or introduced as entirely new products 

during the past two years. 

Subsequently, respondents are asked to report the share of these three types of pro-

duct in their last year's total sales. As our dependent variable, we use the logs of new pro-

duct sales per employee introduced during the past two years; when using logs, this vari-

able conforms better to a normal distribution. Constructing this variable, we add catego-

ries (2) and (3), i.e., incremental and radical innovations. One should note that the new 

product sales under (2) and (3) need to be novel in that they include new technological 

knowledge; at least, they should be based on novel (and creative) combinations of exis-

ting technological knowledge, the latter being most relevant in the service industries. As 

mentioned earlier, the data do not allow us to distinguish “imitative” innovations ("new to 

the firm") from “true” innovations ("new to the market"). Only the 2001 survey provides 

information on novelty. It comes as no surprise that only a smaller portion of the innova-

ting firms have products that are “new to the market'” (see Table 3-1). In other words, our 

indicator of new product sales is dominated by “imitative” innovations. We evaluate the 

slight evidence on “new to the market” innovations in a separate estimate. 
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Table 3-1 Degree of novelty of new products in OSA survey (only survey 2001) 

Firms declaring that their new products were: # of All firms (%) # of SMEs (%) 

'new to the market' 268 (15.7) 188 (14.6) 

'partially new to the market' 903 (52.8) 655 (50.9) 

'hardly new to the market' 540 (31.5) 445 (34.5) 

Totals 1,711 (100) 1,288 (100) 

 

Our most important independent variables are numerical flexibility and functional 

flexibility. We use two indicators of numerical flexibility: Annual external labor turnover 

(i.e., percentages of people that joined or left the firm during the last year) and percenta-

ges of people on fixed-term contracts (hired directly by the firm). The correlation tables 

in the appendix show that the two indicators are weakly correlated; fortunately, our ro-

bustness checks with the multivariate analyses below indicate that this is not disturbing. 

Annual external labor turnover is measured by the maximum value of either the share of 

newly hired people or the share of people that left the firm in the past year. We also made 

robustness checks, using, e.g., the sum of people that left or joined the firm. This changed 

our results very little. We expect both indicators of numerical flexibility to have positive 

impacts on innovation performance until an optimum point, thereafter turning negative. 

We try to capture such non-linear effects by the inclusion of quadratic terms. Our indica-

tor of functional (or “internal”) flexibility is measured by the percentage of employees 

that changed their function and/or department within the firm during the past year. We 

expect functional flexibility to have a positive impact on innovation performance. 
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Control variables 

We use the following control variables, which are described in more detail in Ap-

pendix B: 

(1) Quality of human capital. This is measured by the percentage of employees with 

university or higher professional education degrees and by the percentage of employees 

who participated in training. Previous studies indicate that highly educated people can 

adapt more quickly to a changing environment, thus contributing to better business per-

formance (Holzer, 1987; Becker and Huselid, 1992; Galende and Suarez, 1999). Further-

more, formal and informal training can enhance an employee’s development and is likely 

to contribute positively to organizational outcomes and innovation (Russell et al., 1985; 

Bartel, 1994; Knoke and Kalleberg, 1994; Laursen and Foss, 2003). We thus expect both 

of these variables to have positive impacts on innovation performance. 

(2) R&D intensity as a proxy of inputs to the innovative process. 

(3) The logarithm of firm size. The relationship between firm size and a firm's 

innovation performance is inconclusive. On the one hand, small firms have little 

bureaucracy, short communication lines and dedicated management by their owners. On 

the other hand, strong dependence on the owner as a key figure can also have 

disadvantages. Moreover, small firms often suffer from a lack of (financial) resources and 

access to technological knowledge (see Tidd et al., 2006). A major disadvantage of small 

firms is that they have little capability to reduce risks by means of a diversified portfolio 

of innovative projects. 

(4) The logarithm of firm age. The impact of firm age on innovation is again a two-

sided story. Young firms can be expected to have highly dedicated and flexible 
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management and they can be more ambitious in innovation, as there is no internal 

resistance by vested interests in older product lines. Their innovation performance may, 

however, suffer from lack of experience with innovation (van de Panne et al., 2003). As 

far as innovative activities take advantage of accumulated technological knowledge and 

management experience from the past, firms with a long innovation history might use 

their R&D more efficiently. 

(5) Export intensity. The causal relationship between export and innovation is bi-

directional. First, innovation stimulates exports performance (Posner, 1961; Vernon, 

1966). Then, endogenous growth and new trade theories emphasize that export stimulates 

investment in R&D as operations on export markets give better access to international 

knowledge spillovers through flows of ideas and/or goods (Grossman and Helpman, 

1991; Aghion and Howitt, 1998). Hughes (1988) reports empirical evidence on the simul-

taneous relationship between export and R&D at sector level; evidence of a simultaneous 

relationship at the firm level has been reported by Kleinknecht and Oostendorp (2002). 

Using export shares in total sales lagged by two years, we try to mitigate the endogeneity 

problem. 

(5) Industry average of new product sales. A firm's score on new product sales 

crucially depends on the typical length of the product life cycle in its sector of principal 

activity. Obviously, a sector like ICT with short product life cycles will have higher sales 

of new products than sectors with long life cycles, such as aircraft construction. The 

dependent variable can therefore not be compared across industries unless we correct for 

life cycle differences. As life cycle data are not easily collected in enterprise surveys, we 

use, as a substitute, the log of average new product sales in a firm's sector of principal 
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activity. Inclusion of this variable comes down to explaining the deviation of a firm's new 

product sales from the average of its industry. Besides correcting for typical differences 

in product life cycles between industries, this variable can also capture other unobserved 

specifics of industries, such as differences in technological opportunity or in the appro-

priability of innovation benefits. Not surprisingly, inclusion of this variable made indu-

stry dummies insignificant. In our robustness checks, it turned out that a tentative ex-

change of this variable against industry dummies had little effect on the coefficients of 

the other variables. 

 

3.1. Econometric model 

We assume that flexible labor patterns are related to a firm's new product sales as 

follows: 

2,42,32,22,1, −−−− +++++= tittitititi YearsConFFLNFLy εββββα  Equation (1) 

Here, y (for firm i and year t) denotes the log of “new product sales per employee.” 

We include lagged values of the following independent variables: “NFL” includes 

variables of numerical flexibility measured by external labor turnover and percentages of 

people on temporary contract; “FFL” denotes functional flexibility, i.e., the percentages 

of employees changing function or department within firms; “Con” represents seven 

control variables; and “Years” represents year dummies. By using 2-year lagged values of 

independent variables, we reduce potential endogeneity problems. 

We use four econometric models on pooled longitudinal data: an OLS model, a 

Tobit model, a Heckman model and a Heck-tobit model. We do not estimate panel data 
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models because of high attrition. A balanced panel covering 5 waves of data would leave 

only very few firms. Rather than using one-way error component models or equally com-

plex methods for unbalanced panels (for a survey see Baltagi and Song, 2004), we use 

straightforward regression techniques on pooled longitudinal data, correcting for repeated 

observations (clustering) with robust estimation methods. 

First, we use a pooled OLS model (Model 1). This has the disadvantage of sample 

selection bias since it only includes firms that have positive innovation output. Firms with 

zero or missing innovation output are excluded (also because of the log transformation), 

with a possible sample selection bias as a result. In order to correct for selection bias, we 

have two options, and we use both. First, we use the Tobit model (Model 2). A Tobit mo-

del (e.g. Maddala, 1985) corrects for non-normality of the distribution of our dependent 

variable that is caused by the high probability mass at zero due to firms that have no new 

product sales. Including firms with no innovation reduces the sample selection bias. 

The mathematical representation of a simple Tobit procedure is as follows: 

0
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>
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⎪
⎨
⎧

= *
iy

*
iy

if
if*

iy
iy   Equation (2) 

Where *
iy  is a latent variable: ),0(~, 2* σβ iiii uuxy +=   Equation (3) 

Second, we use a Heckman model (Model 3) to correct for item non-response bias. 

The Heckman model also includes firms that did not report their innovation output, again 

reducing sample selection bias. In the Heckman model, a selection equation is introduced 

with a binary variable z (for firm i and year t), which indicates whether the dependent 

variable (y) is observed or not. The underlying continuous variable is modeled as follows: 
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Heckman selection equation: 2,2,, −− += tititi uwz γ  , Equation (4) 

where w represents the independent variables listed in the linear equation (Equation 1) 

and an instrumental variable. We choose for the latter a variable that measures a firm's 

sensitivity to economic fluctuations. The latter does not correlate with the error terms in 

the linear equation, but does have a significant impact on the propensity to innovate in the 

selection equation. This instrumental variable thus ensures the identification of the Heck-

man model (Heckman, 1979; Greene, 2002).  

Finally, we also use a Heck-tobit model (Model 4) to control for both aforemen-

tioned possible selection biases. We first formally test for sample selection bias using a 

Heckman two-step procedure and generate an inverse Mill's ratio (Heckman 1979; Berk, 

1983). This ratio captures the probability of responding to the survey as a function of the 

variables listed in w of equation 4. We then include this ratio in the Tobit model to statis-

tically control for item non-response bias. 

4. Results from four regression models 

Descriptive statistics are reported in Appendix C. Appendices D and E show the 

correlations between our independent variables in the total sample and the SME sample. 

No correlation exceeds 0.5. The variance inflation factors (VIFs) range from 1.03 to 1.21, 

from which we conclude that multicollinearity is unlikely to be a problem. Tables 4-1A 

and B present the results of four regression models in the total sample and in the SME 

sample. 
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We explain the log of new product sales per employee achieved by firms that have 

such sales. In other words, our interpretation is strictly confined to innovating firms. The 

four regression models produce fairly consistent results. It is reassuring that the coeffi-

cients proved robust to tentative inclusion or exclusion of various independent variables. 

An important result in the earlier rounds of our estimates (not documented here) comes 

from experiments with quadratic terms of our variables on numerical flexibility. Their in-

clusion had little influence on the other coefficients, and, against our expectations, these 

quadratic terms proved insignificant throughout. They are therefore omitted from our fi-

nal version. 

Both tables show that, as expected, R&D intensity is highly significantly positive in 

all four models. The positive effect of export intensity on innovation performance is also 

highly significant in all versions. It is no surprise that an individual firm's new product 

sales are heavily related to the average new product sales in its sector of principal acti-

vity. Including industry average new product sales implies that our model explains devia-

tions of an individual firm's new product sales from its industry average. The two indica-

tors of human capital (educational achievements and training) have positive impacts on a 

firm’s innovation performance (significant at the 5% level in all four models). This re-

confirms the importance of qualified human capital to the innovation process. 

Pertaining to firm size and firm age, we conclude that the advantages and disadvan-

tages of a firm being small or big and being young or old seem almost to cancel each 

other out. We find only weak evidence (at the 10% level) that older and larger firms 

might have higher new product sales when considering the total sample (see Table 4-1A). 
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When taking SMEs separately, however, the coefficients for size or age become insignifi-

cant (see Table 4-1B). 

As expected, high rates of individual changes in function or department within the 

firm (“functional flexibility”) contribute positively to new product sales, being significant 

at 5% level in all four models in both samples. This underlines the importance of “insi-

der-outsider” labor markets for keeping knowledge in the firm and investing in the loyal-

ty and commitment of employees while allowing for flexibility. 

Finally, all four models in both samples indicate that a high external labor turnover 

has no impact on innovation. In three out of four models, however, high shares of em-

ployees on temporary contract seem to have a positive impact on innovation output (sig-

nificant at the 5% level in the SME sample and at the 10% level in the total sample). This 

finding supports the argument by Ichniowski and Shaw (1995) discussed earlier, but is 

hard to reconcile with recent firm-level studies in the Netherlands (Kleinknecht et al., 

2006) and in Italy (Lucidi and Kleinknecht, 2009) that find a negative impact of 

numerically flexible labor on labor productivity growth. It is important to keep in mind 

that two studies using UK firm-level data also show a negative correlation between nu-

merical flexibility and innovation (Michie and Sheehan, 1999, 2001), and that similar re-

sults are reported by Chadwick and Cappelli (2002) from US data. As mentioned above, 

Arvanitis (2005) reports mixed results on the topic. 
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Table 4-1A: Explaining logs of new product sales per employee a (Summary of regressions from total sample) 

Dependent variable 
Log (new product sales per employee) 

Model 1 
OLS 

Model 2 
Tobit 

Model 3 
Heckman (linear part) 

Model 4 
Heck-tobit 

Labor flexibility: Coefficient (t-value) Coefficient (t-value) Coefficient (t-value) Coefficient (t-value) 
External labor turnover (max.) 0.004 (0.76) 0.007 (0.95) 0.005 (0.91) 0.014 (1.16) 
% of temporary work 0.039 (1.92)† 0.061 (2.03)* 0.037 (1.83)† 0.047 (1.29) 
Functional flexibility 0.063 (2.75)** 0.091 (2.68)** 0.064 (2.83)** 0.099 (2.74)** 
Control variables:     
Qualified personnel 0.026 (2.93)** 0.040 (2.97)** 0.025 (2.88)** 0.035 (2.29)* 
Training efforts 0.017 (2.24)* 0.026 (2.10)* 0.017 (2.26)* 0.026 (2.10)* 
Export intensity 0.020 (3.04)** 0.030 (3.05)** 0.020 (3.11)** 0.033 (3.02)** 
Firm age 0.012 (1.80)† 0.019 (1.88)† 0.012 (1.86)† 0.021 (2.01)* 
R&D intensity in new product/service 0.074 (5.71)** 0.119 (5.96)** 0.074 (5.71)** 0.118 (5.90)** 
Firm size 0.001 (1.71)† 0.001 (1.86)† 0.001 (1.54) 0.001 (0.56) 
Industry average new product sales 0.962 (3.09)** 1.411 (2.85)** 0.904 (2.86)** 0.948 (1.16) 
Year1997 b -7.423 (-3.40)** -11.042 (-3.17)** -6.993 (-3.14)** -7.603 (-1.28) 
Year1999 -7.080 (-3.25)** -10.499 (-3.03)** -6.773 (-3.09)** -8.044 (-1.65)† 
Year2001 -8.747 (-3.93)** -13.393 (-3.76)** -8.583 (-3.87)** -12.094 (-3.02)** 
Constant term 0.693 (0.53) -4.295 (-1.99)* 0.465 (0.35) -6.085 (-1.89)† 
Instrumental variable     
Nonselection hazard    4.729 (0.73) 
Economic fluctuations c   -0.096 (-2.48)* -0.094 (-2.53)* 
Number of observations 1032 1032 2329 1031 
Censored observations  395 1298 395 
Uncensored observations  637 1031 636 
Statistics summary 
 
 

R²  = 0.1354 Log likelihood = -
2561.5084 
Pseudo R² = 0.0272 

Wald chi2(13): 183.00 
Prob>chi2: 0.0000 
Wald test of independent 
equations (rho=0): 
chi2(1)=0.90 
Prob>chi2 = 0.3438 

Log likelihood = -
2562..3007 
Pseudo R² = 0.0257 

a † : at 0.1 significance level; *: at 0.05 significance level; **: at 0.01 significance level; two-tailed test 
b The reference group of year dummies is 1995 
c The coefficient of 'sensitivity to economic fluctuations' is in the selection equation of the Heckman model, not in the linear equation 
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 Table 4-1B: Explaining logs of new product sales per employee a (Summary of regression from SME sample) 

Dependent variable 
Log (new product sales per employee) 

Model 1 
OLS 

Model 2 
Tobit 

Model 3 
Heckman (linear part) 

Model 4 
Heck-tobit 

Labor flexibility: Coefficient (t-value) Coefficient (t-value) Coefficient (t-value) Coefficient (t-value) 
External labor turnover (max.) 0.007 (1.14) 0.012 (1.31) 0.008 (1.35) 0.023 (1.59) 
% of temporary work 0.045 (2.19)* 0.070 (2.30)* 0.042 (2.06)* 0.046 (1.15) 
Functional flexibility 0.062 (2.33)* 0.091 (2.22)* 0.062 (2.35)* 0.091 (2.21)* 
Control variables:     
Qualified personnel 0.026 (2.79)** 0.042 (2.86)** 0.026 (2.76)** 0.037 (2.38)* 
Training 0.019 (2.34)* 0.029 (2.22)* 0.020 (2.44)* 0.034 (2.43)* 
Export intensity 0.018 (2.38)* 0.027 (2.39)* 0.019 (2.52)* 0.036 (2.49)* 
Firm age 0.011 (1.52) 0.018 (1.60) 0.011 (1.59) 0.022 (1.83)† 
R&D intensity in new product/service 0.074 (5.38)** 0.122 (5.69)** 0.074 (5.37)** 0.122 (5.66)** 
Firm size 0.003 (0.95) 0.005 (0.99) 0.003 (0.84) 0.002 (0.28) 
Industry average new product sales 1.002 (2.99)** 1.574 (2.86)** 0.942 (2.80)** 1.058 (1.39) 
Year1997 b -8.062 (-3.43)** -12.767 (-3.31)** -7.608 (-3.23)** -8.904 (-1.61) 
Year1999 -7.522 (-3.21)** -11.880 (-3.10)** -7.248 (-3.10)** -9.562 (-2.12)* 
Year2001 -9.415 (-3.93)** -15.314 (-3.87)** -9.350 (-3.93)** -14.789 (-3.71)** 
Constant term 0.479 (0.34) -5.283 (-2.18)* 0.050 (0.03) -8.900 (-2.08)* 
Instrumental variable     
Nonselection hazard    7.386 (1.00) 
Economic fluctuations c   -0.097 (-2.34)* -0.093 (-2.35)* 
Number of observations 928 928 2044 927 
Censored observations  372 1117 372 
Uncensored observations  556 927 555 
Statistics summary 
 
 

R²  = 0.1348 Log likelihood = -
2266.7467 
Pseudo R² = 0.0279 

Wald chi2(14): 172.41 
Prob>chi2: 0.0000 
Wald test of 
independent equations 
(rho=0): chi2(1)=2.13 
Prob>chi2 = 0.1440 

Log likelihood = -
2263.0926 
Pseudo R² = 0.0281 

a † : at 0.1 significance level; *: at 0.05 significance level; **: at 0.01 significance level; two-tailed test 
b The reference group of year dummies is 1995 
c The coefficient of 'sensitivity to economic fluctuations' is in the selection equation of the Heckman model, not in the linear equation 
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Interpreting our finding of a positive impact of temporary contracts on new product 

sales, two caveats should be kept in mind. The first qualification shown in Table 4-2, is 

that the screening of personnel is an important motive for employing people on a fixed-

term basis. The motive of savings on the wage bill plays only a minor role (3.2%). More 

than 40% of the temporary contracts in the OSA database serve as a trial period, after 

which individuals may extend their employment with the firm. This indicates that firms 

are dependent on probationary periods to select the right personnel. In particular, recent 

university graduates typically begin their employment on a temporary basis. After a 

period of good performance, they can expect tenure. In this context, it is interesting to see 

a correlation between qualified personnel and temporary work (significant at the 5% le-

vel) in Appendices D and E. 

Table 4-2: Descriptive statistics: Reasons of using fixed term contracts a 

Reasons for fixed-term contracts: Total sample: SME sample: 

1. Fluctuations 217 (28.07%) 154 (27.11%) 

2. Cost purpose 25 (3.23%) 18 (3.17%) 

3. Personal preference of people 7 (0.91%) 6 (1.06%) 

4. Replacement because of illness / 

absence 

61 (7.89%) 49 (8.63%) 

5. (Extended) try-out period 330 (42.69%) 254 (44.72%) 

6. Seasonal peaks 17 (2.20%) 14 (2.46%) 

7. Temporarily off work 60 (7.76%) 40 (7.04%) 

8. Others 56 (7.24%) 33 (5.81%) 
a Source: OSA database; information available only in surveys 2001 and 1997 

 

As a second qualification, recall that our dependent variable is heavily influenced 

by products that are new to the firm, i.e., by “imitative” rather than “innovative” (“new to 
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the market”) products. We cannot distinguish between “imitative” and “innovative” pro-

ducts, except in the survey administered in 2001, which includes a separate question 

about degrees of novelty. Table 3-1 showed that the majority of firms that introduce new 

products are market followers (or imitators) rather than market leaders: less than 16% of 

the firms have products that are fully “new to the market.” Using these data, we estimated 

an ordered logit model in Table 4-3. The table shows three things: First, firms with high 

R&D intensities tend to have higher probabilities of introducing products that are “new to 

the market.” Second, the same holds for firms in industries with high shares of new pro-

ducts sales. Third, high percentages of workers on temporary contracts have a negative 

impact on the probability that a firm's new products will be “new to the market.” Similar 

results hold when we confine the sample to firms with less than 250 workers (not docu-

mented here). The finding in Table 4-3 is opposed to the positive coefficient of temporary 

contracts in our estimate in Table 4-1. It appears that the arguments in favor of rigid labor 

relations mainly hold for the market leaders that undertake substantial R&D efforts. For 

the larger stream of imitators, more flexible labor relations are more attractive. 
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Table 4-3: What factors determine whether a product will be new to the market rather than 

new to the firm? a (Summary of Ordered logistic regressions, total sample) 

The dependent variable is: Novelty of innovative products 

(1 = new to firm; 2 = partially new to market; 3 = new to market (reference group: 'new to the firm') 

 Model 1: Model 2: 

Labor flexibility: Coefficient (t-value) Coefficient (t-value) 

External labor turnover (max) -0.010 (-0.12) - 

Percentage of workers on temporary contract -0.038 (-1.69)† -0.042 (-2.01) * 

Functional (internal) flexibility 0.010 (0.57) 0.010 (0.56) 

Control variables:   

Export intensity -0.004 (-0.70) -0.003 (-0.50) 

Firm age 0.003 (0.43) 0.003 (0.46) 

R&D intensity (product or service-related R&D) 0.018 (1.66) † 0.018 (1.71) † 

Firm size 0.000 (0.02) -0.000 (-0.04) 

Industry average new product sales 0.594 (1.84) † 0.604 (1.89) † 

Cut1 

Cut2 

Number of observations 

5.539 

8.173 

150 

5.621 

8.260 

155 

Log likelihood -144.33 -149.08 

Pseudo R² 0.031 0.032 

Statistics summary Wald chi2(8)= 10.80 Wald chi2(8)= 11.09 
a The results are based on a cross-sectional OSA data; the dependent variable is taken from the 2001 survey (covering 
year 2000); the independent variables come from the 1999 survey, covering year 1998. 
b † : at 0.1 significance level; *: at 0.05 significance level; **: at 0.01 significance level; two-tailed test 
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5. Discussion and conclusions 

This paper makes an empirical contribution to the sparse knowledge about the im-

pact of flexible labor on innovation, using new product sales as a direct measure of inno-

vation and controlling for factors such as human capital, R&D intensity, export intensity, 

firm size and age, and industry average new product sales. As opposed to some previous 

studies, our data allow a 2-year lag between the dependent and independent variables, 

which we hope will relax the problems of endogeneity that are notorious in this type of 

analysis. Not surprisingly, R&D intensity, export intensity and levels of education and 

training all contribute positively to new product sales. As expected, an individual firm's 

new product sales are heavily related to average sales in its sector of principal activity. 

We find weak evidence that larger and older firms have higher new product sales 

than their young and small counterparts. It seems as if the (dis)-advantages of a firm be-

ing small or big or being old or young almost cancel each other out. This is hard to recon-

cile with evidence reported earlier by Acs and Audretsch (1993) using new product an-

nouncement data. They found that, in many sectors, smaller firms made a disproportio-

nately large contribution to innovative output. Investigating new product announcement 

data more thoroughly, however, evidence has been found indicating that the data are 

biased in favor of smaller firms (see van der Panne, 2004). The output indicator used in 

this paper does not seem to have such a bias (Kleinknecht et al. 2002). We conclude that 

the advantages typical of small and young firms, such as little bureaucracy and short 

communication lines, dedicated management by the owners or the ability to occupy mar-

ket niches that are less interesting for big firms, seem to be compensated (or perhaps 

slightly over-compensated) by the advantages enjoyed by bigger and older firms, such as 
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the ease of financing of innovations due to some monopoly power, the exploitation of 

strong marketing functions and brand names, accumulated knowledge and experience 

from (the management of) earlier innovations, or the diversification of risks through a 

large portfolio of innovation projects. 

The positive impact of functional flexibility is significant in all four models of both 

samples and is consistent with previous results by Michie and Sheehan (1999, 2001); 

Chadwick and Cappelli (2002) and Arvanitis (2005). Our findings confirm the important 

role of functional flexibility in reducing barriers to knowledge sharing and building mul-

tiple competencies of employees in internal labor markets. Functional flexibility in “insi-

der-outsider” labor markets allows for flexibility while being socially responsible towards 

a firm's personnel. The latter might be interpreted as an investment in trust, loyalty and 

commitment. Such investment is likely to economize on supervision and monitoring costs 

and reduces the leaking of a firm's knowledge to competitors. 

Our model is remarkably robust to changes in specifications and in sample size. 

This also holds for inclusion of non-linear terms of numerical flexibility variables. Speci-

fications with non-linear terms are not documented in this paper, as these terms all proved 

insignificant. Intuitively, one might have expected that there is some optimum level of 

numerical flexibility that would enhance innovation and that beyond the optimum point, 

flexibility becomes counter-productive. However, the data do not support this. 

We find mixed results on numerical flexibility. While one of the proxies of numeri-

cal flexibility, external labor turnover, is insignificant in all four models, another proxy, 

temporary work, has a positive effect on innovation performance, or, being more precise, 

on “imitative” (“new to the firm”) products. As could be seen from Table 3-1, most of 
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our new product introducers are market followers rather than market leaders, i.e., they in-

troduce products that are “new to the firm” rather than products “new to the market.” 

Many of these firms are likely similar to what Pavitt (1984) named “supplier-dominated 

innovators,” i.e., firms that innovate mainly by adopting (and creatively using) new 

equipment from suppliers. Such adoption may be favored by carefully screening the right 

personnel. As we saw from Table 4-2, an important motive behind using temporary con-

tracts is personnel screening. Typically, young university graduates are hired under a pro-

bationary period and can expect tenure if they perform well. Such temporary contracts 

seem to be positively related to “imitative” innovations. 

Further explorations suggest, however, that the probability of having products “new 

to the market” (rather than “new to the firm”) is negatively influenced by high shares of 

temporary workers. Hence, the minority of R&D intensive market leaders tends to rely 

significantly less on flexible work, which is consistent with the findings of Arvanitis’ 

(2005) study on data from Switzerland. It also underlines the arguments by Lucidi and 

Kleinknecht (2009) about the need for the continuous accumulation of (tacit) knowledge 

that is favored by longer commitments of workers to their firms. It appears that the much 

criticized “rigidity” of insider-outsider labor markets is favorable to R&D intensive mar-

ket leaders, while the larger stream of imitators and market followers prefer using tempo-

rary contracts to try out new people with fresh ideas, which may favor technology adop-

tion. 

Finally, our results warn against the unconditional plea by mainstream economists 

for the deregulation of labor markets (see e.g. the OECD's Job Study, 1994). It seems that 

the “rigidity” of insider-outsider labor markets also has advantages, as it allows for “func-
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tional” flexibility. The often criticized protection of “insiders” can be interpreted as an in-

vestment in the loyalty and commitment of workers. Moreover, functional flexibility on 

internal labor markets has advantages for the continuity of (organizational) learning, and 

strengthens the historical memory of firms. Neoclassical economists should note that 

temporary contracts might have advantages for imitative firms, but definitely are not an 

option preferred by market leaders who seem to have a greater need for continuity in lear-

ning and in preventing knowledge from leaking to competitors. 
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Appendix A: Overview of firms that participated in each wave (1991-2005)a 

Year of first wave 1989 1991 1993 1995 1997 1999 2001 2003 2005 

1989 2041b 1391 985 676 467 292 131 72 36 

1991  626 404 297 194 120 38 26 17 

1993   653 407 252 152 69 38 25 

1995    1316 797 450 192 96 50 

1997     825 438 172 96 52 

1999      1273 551 282 120 

2001       2046 986 446 

2003        3152 1186 

2005         1199 

Total 2041 2017 2042 2696 2537 2725 3199 4748 3131 
a Source: OSA Labour Demand Panel (Explanatory notes) 1991-2006 
b Italics: Numbers of newly participating firms 
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Appendix B: Description of variables 

Variable names: Variables description: 

Dependent variable: 

Log (new product sales per 

employee) 

The logarithm of turnover from new products 'new to the firm 

and/or 'new to the market' introduced during the past two years 

divided by total employees. Note that 'imitative' innovations ('new 

to the firm' but already known in the market) are much more 

numerous than innovations 'new to the market'. In fact, we measure 

imitation rather than innovation. 

Variables on flexible labor: 

External flexibility Maximum of the share of newly hired employees and the share of 

employees that left the firm during the last year. 

Temporary work The percentage of employees having fixed-term contracts hired 

directly by the firm. 

Functional flexibility The percentage of employees that changed their function and/or 

department within the firm. 

Control variables: 

Qualified personnel The percentage of employees with university or higher professional 

education degrees. 

Training The percentage of employees that participated in training (both 

internal and external trainings). 

Export Export as the share of turnover. 

R&D intensity R&D expenditure on new products or services as a percentage share 

of turnover 

Firm age Difference between survey year and establishment year 

Firm size Number of employees in full-time equivalents 

Industry average new 

product sales 

Average of logs of new product sales per employee in a firm's 

sector of principal activity. 

Instrumental variable 

Economic fluctuations Categorical variable: Whether the firm is sensitive to fluctuations in 

the economy; 1=not sensitive, 2= a little bit sensitive, 3=very 

sensitive. 
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Appendix C: Descriptive statistics (Total sample vs. SME sample) 

Variable name Mean Median Std. Dev. Min Max 

Dependent variable      

Log (new product sales per employee) 5.88 

(6.71) 

7.86 

(10.00) 

5.32 

(5.62) 

0 

(0) 

25.52 

(19.80) 

Variables on flexible labor      

External labor turnover 14.18 

(14.96) 

10.71 

(10.73) 

19.79 

(20.10) 

0 

(0) 

1111 

(500) 

Personnel on temporary contract 4.37 

(3.94) 

0 

(0) 

9.76 

(8.29) 

0 

(0) 

100 

(100) 

Functional flexibility 2.88 

(2.72) 

0 

(0) 

6.54 

(5.83) 

0 

(0) 

117 

(75) 

Control variables      

Qualified personnel 23.22 

(13.90) 

10.53 

(7.12) 

28.57 

(19.20) 

0 

(0) 

100 

(100) 

Training 35.51 

(31.35) 

26.91 

(24.15) 

27.88 

(24.35) 

0.3 

(0) 

100 

(100) 

Export 8.25 

(14.36) 

0 

(0) 

22.09 

(27.22) 

0 

(0) 

100 

(100) 

R&D intensity 8.31 

(9.67) 

0 

(0) 

13.17 

(13.69) 

0 

(0) 

30 

(30) 

Firm age 27.04 

(26.55) 

17 

(18) 

27.77 

(26.09) 

0 

(0) 

99 

(103) 

Firm size 205.05 

(63.21) 

51 

(39) 

540.36 

(60.37) 

5 

(5) 

23500 

(250) 

Industry average new product sales 9.59 

(9.41) 

10.49 

(10.84) 

2.64 

(2.99) 

1.74 

(1.74) 

13 

(13) 

Instrumental variable      

Economic fluctuation 1.94 

(0.24) 

2 

(2) 

0.78 

(0.72) 

1 

(1) 

3 

(3) 
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Appendix D: Correlations between variables (total sample) 

 Variable name 1 2 3 4 5 6 7 8 9 10 11 VIFs 

1 Log (new product sales 

per employee) 

            

2 External labor turnover 0.01           1.19 

3 Temporary work 0.01 0.15*          1.17 

4 Functional flexibility 0.11* 0.11* 0.05*         1.13 

5 Qualified personnel 0.13* -0.03* 0.13* 0.03*        1.16 

6 Training 0.10* 0.01 0.03* 0.07* 0.19*       1.07 

7 Export 0.14* -0.02 -0.02* 0.05* -0.12* -0.09*      1.12 

8 R&D intensity 0.17* 0.03* 0.02* 0.08* 0.03* -0.06* 0.23*     1.20 

9 Firm age -0.07* -0.07* -0.01 -0.02 -0.06* -0.06* 0.06* 0.04*    1.02 

10 Firm size 0.10* -0.01 -0.01 0.19* 0.02 -0.06* 0.02* 0.06* 0.04*   1.07 

11 Industry average new 

product sales 

-0.02 0.08* -0.02* 0.05* -0.06* 0.14* 0.04* 0.05* -0.02* 0.00  1.03 

12 Economic fluctuation 0.02 0.03* -0.03* 0.00 -0.22* -0.07* 0.14* 0.10* 0.03* -0.04* 0.02*  

* p<0.05, two-tailed tests 



34 

 

Appendix E: Correlations between variables (SME sample) 

 Variable name 1 2 3 4 5 6 7 8 9 10 11 VIFs 

1 Log (new product sales 

per employee) 

            

2 External labor turnover 0.06           1.21 

3 Temporary work 0.12* 0.27*          1.20 

4 Functional flexibility 0.14* 0.23* 0.11*         1.10 

5 Qualified personnel 0.15* 0.10* 0.15* 0.12*        1.13 

6 Training 0.11* 0.01 0.03 0.08* 0.16*       1.06 

7 Export 0.16* -0.03 0.01 0.08* 0.01 -0.07*      1.19 

8 R&D intensity 0.24* 0.02 0.07* 0.09* 0.16* -0.01 0.25*     1.18 

9 Firm age 0.05 -0.10* -0.00 -0.02 -0.04 0.06* 0.00 -0.01    1.06 

10 Firm size 0.13* -0.07* 0.09* 0.11* 0.05* -0.01 0.26* 0.20* 0.16*   1.19 

11 Industry average new 

product sales 

-0.06 0.06* 0.05* 0.06* 0.09* 0.13* 0.01 0.01 -0.00 -0.10*  1.03 

12 Economic fluctuation 0.04 0.01 -0.02 0.02 -0.12* 0.00 -0.01 0.02 0.01 0.05* -0.06*  
* p<0.05, two-tailed tests 
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1 Hall and Soskice (2001) suggested that rigid “Rhineland” arrangements are more conducive to incremental innovation, while flexible “Anglo-Saxon” contracts 
are better for radical innovation. This suggestion did, however, meet some criticism recently (see Akkermans et al., 2009). 
2 For evidence from the OSA database on the wage-reducing effects of flexible work, both at the firm and the individual levels see Kleinknecht et al. (2006). 
3 Kleinknecht et al. (2006) give evidence from individual-level as well as firm-level wage equations that flexible personnel earn lower hourly wages, and that 
firms with high shares of flexible personnel pay lower wages. Similar evidence from individual-level wage equations has been reported by Booth et al., 2002, 
McGinnity and Mertens 2004; Sànchez and Toharia 2000, or Ségal and Sullivan, 1995. 
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