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Voor het berekenen van akoestische golfvelden in sterk inhomogene
media is de eindige-elementenmethode zoals beschreven in dit proef-
schrift, wanneer optimaal geprogrammeerd, een belangrijke concurrent
voor de bestaande eindige-elementenmethoden die slechts van continue
benaderingen van de onbekende veldgrootheden gebruik maken.

Dit proefschrift, hoofdstuk 13.

Bij het toepassen van het reciprociteitstheorema voor de numerieke
oplossing van golfproblemen geeft substitutie van testvelden met
bronnen waarvan de drager gelijk is aan de grootte van de karakteris-
tieke gebieden een even nauwkeurig resultaat als de substitutie van
puntbronoplossingen als testvelden. De eerstgenoemde testvelden heb-
ben als voordeel, dat de resulterende veldgrootheden overal begrensd
zijn, zodat de numerieke problemen die bij de substitutie van punt-
bronoplossingen bestaan, worden vermeden.

Voor het testen van de nauwkeurigheid van een numeriecke methode is
het van wezenlijk belang over een niet-triviaal testprobleem uit de
categorie waarop de numerieke methode van toepassing is te beschik-
ken, waarvan de oplossing langs onafhankelijke (bij voorkeur analyti-
sche) weg bekend is.

De methode van Cagniard en De Hoop voor het oplossen van gepulste
golfproblemen, die doorgaans op golven geéxciteerd door puntbronnen
is toegepast, is gemakkelijk uit te breiden tot het geval van excitatie
door uitgebreide bronnen.

Stam, H.J., The two-dimensional elastodynamic distributed
surface load problem, accepted for publication in Wave Motion,
Vol. 12, 1990 (zie ook dit proefschrift, hoofdstuk 11).

De systematiek van de in dit proefschrift beschreven eindige-elementen-

methode is ook van toepassing op n-dimensionale eindige- elementenmethoden

met n > 3. Daarbij wordt het rekengebied opgedeeld in simplices
in R™ en worden de onbekende grootheden in deze simplices
lineair geinterpoleerd tussen hun waarden in de hoekpunten.

De uitbreiding van de in dit proefschrift beschreven eindige-elementen
methode tot een gekoppelde ruimte-tijdeindige-elementenformulering
van akoestische golfproblemen in sterk inhomogene, in de tijd veran-
derende media is niet mogelijk, omdat er geen voorwaarden voor de
continuiteit van de golfgrootheden door vlakken van discontinuiteit

in de media-eigenschappen in het gediscretiseerde ruimte-tijdgebied
bekend zijn.
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De werking van alternatieve geneeswijzen dient te worden aangetoond
met behulp van statistische methoden en niet met de aanname van vage
niet-meetbare structuren (zoals het bestaan van meridianen in de acu-
punctuur of de werking die een stof volgens het model van Barnard
(1965) in de homoeopathie nog bij zeer sterke verdunning kan hebben).

P. van Dijk, Geneeswijzen in Nederland en Vlaanderen, 1986,
7de druk, pp. 25-46 (acupunctuur) en pp. 143-164 (homoeopathie).

Aangezien de huidige promovendi geen tijd hebben om zich naast het
gebied waarop hun promotieonderwerp betrekking heeft nog op andere
gebieden van de cultuur goed te ontwikkelen, is de eis dat zij
tenminste zes stellingen aan hun proefschrift toevoegen die niet

op het onderwerp van het proefschrift betrekking hebben, uit de

tijd. Deze eis dient dan ook te vervallen.

Op beginnersniveau is de linkshandige badmintonspeler in het
voordeel ten op zichte van de rechtshandige.

Bij het schaken is de openingszet 1.d4 sterker dan 1.e4.

Bondsdorff, E., Fabel, K., Riihimaa, O., 1971. Schach und Zahl,
Walter Rau Verlag, Diisseldorf, tweede druk.

Aangezien bij het bridgen de kans op een gelijkmatige verdeling

van de kaarten, wanneer met de hand geschud, groter is dan wanneer
deze aselect verdeeld zijn, verdient het aanbeveling agressiever te
bieden dan in de leerboeken - die van de aselecte verdeling uitgaan -
wordt aangegeven.

Sint, C. en Schipperheyn, T., 1985, Het moderne Acol boek,
Elsevier, Amsterdam.

De invoering van het '’Keep-your-lane’systeem verhoogt de verkeersveiligheid

op autosnelwegen en zou daarom ook in Nederland ingevoerd moeten worden.

Verkeerskunde 41, 1989, nr.3, p. 101.
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Chapter 1
INTRODUCTION

The computational modeling of acoustic wave problems has numerous applica-
tions. As examples we mention: exploration geophysics, acoustic imaging for
medical purposes, and non-destructive evaluation of mechanical structures. In
all these applications one is interested in space-time acoustic wave phenomena
in strongly inhomogeneous, and possibly anisotropic, fluids and solids, and the
quantitative evaluation of the quantities that characterize the wave motion (the
scalar traction in fluids, the stress in solids and the particle velocities in both
of these media) is the ultimate goal. For simple configurations, such as the
geometries that comply with coordinate systems in which the governing acous-
tic wave equations are separable, analytical solutions to wave propagation and
scattering problems can be constructed (Pao and Mow 1973); for more com-
plicated configurations, however, it is necessary to turn to numerical methods.
One of the numerical methods that is known for its simplicity is the finite-
difference method. Finite-difference discretizations of the second-order elasto-
dynamic wave equation in two spatial dimensions that are explicit in time have
been given by Alterman and Loewenthal (1972), Boore (1972), and Kelly et
al. (1976). Emerman, Schmidt and Stephen (1982) and Virieux (1984; 1986)
have solved the coupled first-order elastodynamic wave equations in two dimen-
sions numerically with the aid of both an implicit and an explicit finite-difference
method as far as the time coordinate is concerned. Although the finite-difference
method with its coordinate-line grid structure has the advantage of its simplic-
ity, it has difficulties with taking into account arbitrarily shaped boundaries and
interfaces of discontinuity in the mechanical properties that do not comply with
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oD

Figure 1.1: The bounded domain D of computation with boundary 8D and unit
vector along the outward normal v,,.

the prevailing grid (see, for example, Boore 1972; Ilan et al. 1975; llan and
Loewenthal 1976; Ilan 1978; and Kummer and Behle 1982). Now, arbitrarily
oriented boundaries and interfaces can be handled without difficulty by the more
intricate finite-element method, which is not restricted to a particular grid struc-
ture. Finite-element solutions of elastodynamic wave problems have been given
by Smith (1975), and Smith and Bolt (1976). Further, in the work of Marfurt
(1984) a comparison between the finite-element and the finite-difference meth-
ods has been given in the solution of scalar wave problems and elastodynamic

wave problems.

Because of the limitations on computer storage capacity and computation
time, one has to restrict, both in the finite-difference and in the finite-element
method, the domain of the numerical computation in size as much as possi-
ble. Now, for a solution of the wave problem in some bounded domain D (see
Figure 1.1) to be unique, conditions at the boundary 8D of D are required
in addition to the partial differential equations that hold in D. To compute
wave motions that have not progressed yet that far from the sources that gen-
erate them, appropriate zero-value boundary conditions suffice, provided that
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3D is chosen outside the region where the wave motion has penetrated thus
far. Admissible zero-value boundary conditions are either of the Dirichlet or the
Neumann type. The distinction is as follows. For the Neumann-type boundary
condition the normal component of the particle velocity is prescribed on that
part of the boundary that is adjacent to a fluid and the traction is prescribed
on that part of the boundary that is adjacent to a solid; for the Dirichlet-type
boundary condition the scalar traction is prescribed on that part of the bound-
ary that is adjacent to a fluid, while the particle velocity is prescribed on that
part of the boundary that is adjacent to a solid. In most cases, the domain
of computation D becomes, for such a procedure to apply, prohibitively large.
Consequently, the domain D has to be smaller and one has to take into account
that the wave motion has reached 0D and that across dD acoustic radiation
takes place away from D. The type of boundary condition that models this
radiation into an unbounded exterior domain with known, simple acoustic prop-
erties is an important subject of present theoretical research. Some aspects of

this are discussed below.

To construct boundary conditions that model the radiation of waves across
8D away from D, the domain D of computation is embedded in a surrounding
medium, the embedding, whose properties are so simple that its Green’s function
can be constructed by analytical methods. This enables us to make use of the
corresponding surface-source or contrast volume-source integral representations
of the wave field in the embedding. The surface-source integral representations
of the acoustic wave field in the embedding, with the sources located on 9D,
produce boundary integral equations upon taking the points of observation on
dD, while upon taking in them the point of observation in the interior of D,
the Oseen extinction theorem leads to the null-field condition. Both types of
integral relations yield (non-local) relations between the (scalar) traction and
the particle velocity at the boundary dD. The discretization of these relations
can provide the basis for the construction of non-local absorbing boundary con-
ditions that can be used in the finite-element scheme. The difficulty with the
boundary integral equations is that the Green’s functions occurring in them have
singularities in the point where the integration point coincides with the point of

observation; these singularities have to be handled analytically. The null-field
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condition has no such difficulty, but here the arbitrariness of the points at which
it is invoked yields a problem.

Another way to arrive at an absorbing boundary condition is to represent
the acoustic wave field quantities on 3D by a volume integral that contains the
contrast volume-source densities with respect to the embedding in D, where
the latter differ from zero in any subdomain where the medium in D differs in
properties from the one'in the embedding. This representation relates the wave
field quantities on dD to those in the domain D. Taking 3D at some distance
from the contrast sources in D, the singular points in the Green’s function in the
volume integral representations are avoided. Again, the relations yield a basis
for non-local absorbing boundary conditions.

The methods described above discuss exact integral relations between the
acoustic wave field quantities at the boundary 8D of D (arising from the bound-
ary integral equations) or between the ones at the boundary @D and those in the
interior of D (arising from the contrast volume-source integral representations).
Non-local boundary conditions to be used in the computational method then
could follow upon discretizing these relations. However, the singularity of the
Green’s functions involved may present difficulties in this discretization. To cir-
cumvent these difficulties we make use of another procedure that can equally well
be argued to approximate the relations that mutually exist between the wave
field values at D or exist between the wave field values at the boundary 4D
and those in the interior of D. The basis for the analysis lies in the application
of the acoustic space-time reciprocity theorem of the time-convolution type to
the discretized version [D] of D and its embedding Dy. In a reciprocity theorem
of this kind two states occur that can be present in one and the same domain
in space-time. We identify one of the states with the actual acoustic wave field,
while the other is regarded as a computational one that remains to be chosen
appropriately. For the sources that occur in the computational state, a sequence
of localized source distributions is chosen that are defined in [D]. Each of them
has as its support one of the elementary regions into which D is discretized. The
computational state has, like the actual wave field, no sources in the embedding
D,. For the medium properties in D and D, of the computational state the
ones of the embedding are taken. The corresponding wave field quantities that
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are related to the localized source distribution in a medium like the embedding
are our discretized Green’s functions. It is assumed that these can be calcu-
lated analytically. Substitution of these choices for the computational state in
the reciprocity theorem yields relationships between the values of the acoustic
wave field quantities weighted over each of the supports of the localized sources,
and the contrast and generating sources in [D]. These relations serve as the
non-local boundary conditions for our finite-element method. Due to the finite
magnitude of the localized source solutions (discretized Green’s functions) in the
embedding, no difficulties of the type that would be met in the discretization of

the exact integral relations for the acoustic wave field quantities occur.

The combination of two solution methods, a finite-difference or a finite-
element one for the bounded domain with an intricate medium and an analytical
one for the simple embedding, is known as a hybrid method. Wilton (1978)
computes the acoustic radiation and scattering of a submerged elastic struc-
ture by combining a finite-element method with a mixed form of the boundary
integral-equation method and the null-field method. Murakami et al. (1981)
have presented a scheme that combines a finite-element method with a null-field
method for the computation of time-harmonic elastodynamic waves. Van den
Berg (1987) has solved two-dimensional SH-wave problems in the frequency do-
main by using a hybrid method that combines a finite-element formulation with

a boundary integral-equation method.

In the present monograph, a hybrid method is presented that solves numer-
ically space-time acoustic wave problems in a configuration that may consist
of fluid and solid parts. The fluids and solids are taken to be linear, locally
and instantaneously reacting, and time invariant in their mechanical behavior.
In some bounded domain D¢ the medium is arbitrarily inhomogeneous and
anisotropic. The embedding of this domain is a fluid or a solid whose properties
are so simple that its Green’s function can be constructed by analytical methods.
The fluid-domain acoustic wave fields are characterized by their particle velocity
and their scalar traction; the solid-domain acoustic wave fields are characterized
by their particle velocity and their stress; these quantities are regarded as the
fundamental state variables and will henceforth be referred to as the acoustic

state quantities. We take the bounded domain of numerical computation D such
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that DY C D. The computation of the wave fields in D is carried out by a
finite-element method that is suited to handle, in particular, the conditions at
arbitrarily shaped boundaries and interfaces of the solid/solid, fluid /fiuid and
the solid/fluid types.

In a number of engineering problems, mostly of the static, i.e., time-inde-
pendent, type, the finite-element method can be based on a variational principle
(Reddy 1987, p.258; Zienkiewicz and Taylor 1989, p.32). Such a principle states
that the solution of the problem is a stationary point of a judiciously constructed
functional (for example, the minimum of the potential energy stored in the sys-
tem). For problems for which no variational principle is available, the methods
of weighted residuals is commonly employed to lead to a finite-element formula-
tion (Reddy 1987, p.287; Zienkiewicz and Taylor 1989, p.210). In our approach
we shall use an acoustic space-time reciprocity theorem of the time-correlation
type (De Hoop 1988; De Hoop and Stam 1988) as point of departure. In such
a reciprocity theorem two acoustic states occur that can be present in one and
the same domain in space-time. One of the states is identified with the actual
acoustic wave field for which a numerical approximation is to be constructed,
while the other is regarded as a computational one that remains to be chosen
appropriately. Particular choices for the computational states are shown to lead
to a formulation that is equivalent to a certain weighting procedure applied to
the first-order equations that govern the wave motion, i.e., the equation of mo-
tion and the deformation rate equation. Next, particular local representations
for the acoustic wave field are developed that are typically adapted to handle
the conditions at interfaces in strongly inhomogeneous structures.

In view of the time invariance of the configuration in which the wave field
occurs, we discretize the geometry into elementary subdomains that are cylin-
drical in the time direction in four-dimensional space-time. In three-dimensional
space we take the tetrahedron as the elementary subdomain (see Figure 1.2).
With this choice, the discretized geometry consists of prisms in space-time. In
accordance with this, the local expansion functions are taken to be the product
of a function of space and a function of time. The vertices of the tetrahedra
form the nodes of the spatial discretization. In each vertex of a tetrahedron

that coincides with a nodal point that is not on an interface (a ’simple’ node),
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Figure 1.2: The spatial discretization of the domain D of computation
into a union of tetrahedra.

the vectorial and tensorial state quantities are represented through their com-
ponents with respect to the chosen Cartesian background reference frame. In
each vertex of a tetrahedron that coincides with a nodal point that is on an
interface (a 'multiple’ node), the vectorial and tensorial state quantities that are
continuous across this interface are again represented through their components
with respect to the chosen Cartesian background reference frame while the ones
that have one or more components that may jump by finite amounts across this
interface are represented with respect to appropriate local base vectors. The
directions of these local base vectors are chosen such that in the resulting rep-
resentations of the state quantities, the continuity conditions at the interfaces

are satisfied exactly (i.e., in machine precision).

For a unique (numerical) solution of the wave problem in the inhomoge-
neous and anisotropic bounded domain of computation D we need boundary
conditions at its outer boundary dD. In our hybrid method we represent the
state quantities on 8D by integral representations containing the ”discretized”
Green’s functions of the embedding and localized source distributions that rep-
resent the inhomogeneities in D. Suppose the embedding is a fluid, then we
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fluid embedding

contrasting
fluid
L 7T 777 727

contrast volume
sources

fluid surface
sources

Figure 1.3: The contrast volume-sources and the fluid-type surface
sources in the fluid embedding.

define in the fluid parts of DSC contrast volume sources that are non-zero in
those subdomains where the fluid properties show a contrast with respect to the
embedding. Because the action of the solid parts in DC cannot be given in
the form of fluid contrast volume sources, it is represented by fluid-type surface
sources at the fluid/solid interfaces (see Figure 1.3). If the embedding is a solid,
we define in the solid parts of D3¢ contrast volume-sources that are non-zero in
those subdomains where the solid properties show a contrast with respect to the
embedding and the action of the fluid parts in DS are modeled by solid-type
surface sources at the solid/fluid interfaces (see Figure 1.4). The relevant in-
tegral representations follow from the acoustic space-time reciprocity theorems
of the time-convolution type (De Hoop 1988; De Hoop and Stam 1988) upon
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Figure 1.4: The contrast volume-sources and the solid-type surface
sources in the solid embedding.
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choosing in these theorems computational states that correspond to appropriate
localized source distributions (the ”discretized” Green’s functions) of the em-
bedding, which for a homogeneous embedding can be constructed analytically
(De Hoop 1958; Achenbach 1973; De Hoop 1984; De Hoop 1985). In the im-
plementation there is no need to put the boundary at some distance from the
contrast sources since the discretized Green’s functions are no longer singular.
Supplemented with these relations, the finite-element method produces a unique
solution of the wave problem in the domain D of computation. To determine
the acoustic wave field in the embedding, we subsequently employ the surface-
and volume-source integral representation, using the now known values of the
acoustic wave fields at the boundaries of the surface sources and in the contrast

volume-source densities.



Chapter 2

BASIC EQUATIONS OF
ACOUSTICS

In this chapter the basic equations of low-velocity linearized acoustics are sum-
marized. In the linear theory of acoustic waves, it is presupposed that the con-
vective term in the co-moving time derivatives occurring in the equations can be
neglected and that the media are linear in their acoustic behavior (Achenbach
1973).

The position of observation in three-dimensional space R® is specified by
the coordinates {zi, z;,zs} with respect to a fixed, orthogonal, Cartesian ref-
erence frame with origin O and the three mutually perpendicular base vectors
{%1,%2,13} of unit length each. In the indicated order the base vectors form a
right-handed system. The subscript notation for Cartesian vectors and tensors
in R® is employed and the summation convention applies. The corresponding
lower-case Latin subscripts are to be assigned the values 1,2,3. Whenever ap-
propriate, the position vector will be denoted by £ = z,i, . The time coordinate
is denoted by t. Partial differentiation is denoted by 8; 8, denotes differentiation
with respect to z,; 9; is a reserved symbol for differentiation with respect to ¢.
The symbols N and U are used to denote the intersection and the union of sets,
respectively, while D; C D, denotes that D; is a proper subset of D,. SI-units
are used throughout.

The geometrical configuration that we study is taken to be time invariant.
The fluids and solids present in it are assumed to be linear, locally and instan-

taneously reacting, and time invariant in their mechanical behavior. They may

11
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Figure 2.1: Domain D consisting of the subdomains D* and D/, re-
spectively, with closed outer boundary 8D, and its outwardly directed
unit normal vector v,,. The part of 3D in the solid is denoted by S°
and the part of @D in the fluid by S§7; 8D’ is the closed boundary of
D*, 3D/ is the closed boundary of D’.

be arbitrarily inhomogeneous and anisotropic. Let the configuration occupy the
bounded domain D C R3, and let D* be the subdomain of D occupied by the
solid and D’ the subdomain of D occupied by the fluid. The boundary of D
is denoted by dD; the part of D in the fluid is denoted by S/ and the part
of D in the solid by S* (Figure 2.1). The closed boundary of D* is dD* and
the closed boundary of D/ is 3D’ . The acoustic wave field in the domain D*
occupied by the solid is characterized by its solid particle velocity v, and its
stress 7,,,. The physical properties of the solid are characterized by its tensorial
volume density of solid mass pi, (Lord Rayleigh 1899; Bromwhich 1902) and its
compliance s;jp, (the inverse of its stiffness). In each subdomain of D* where
the acoustic properties vary continuously with position, the acoustic wave field

quantities are continuously differentiable and satisfy the (linearized) equation of
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motion (Love 1944, Achenbach 1973, Aki and Richards 1980)
- Akmpqam‘qu + pi,atv, = f:, (21)

and the (linearized) deformation rate equation

AijmrOmVr — SijpgOtTpq = hij, (2.2)
in which
v, = solid particle velocity (m/s),
7pg = solid stress (Pa),
pi, = tensorial volume density of solid mass (kg/m?),
Sijpg = compliance (Pa™?),
? = volume source density of solid force (N/m?),
hij = volume source density of strain rate (s™!).

Here, Agmpg = (6kpbimg + Okgbmp) /2 is the unit tensor of rank four that specifically
occurs in elastodynamics (6p is the Kronecker tensor: 6, = 1if k = p and §, =
0 if k # p); it has the symmetry properties Agnpe = Amikpg = Amkgp = Dkmaep
and Apmpg = Apgikm, and it selects out of any tensor of rank two with which it

is contracted, the symmetrical part. Thus
Akmpq'rm = (Tkm + ka)/2 and A,-,-,mamv, = (6,'v,- + ij‘-)/Z. (2.3)

The compliance accounts for the, possibly anisotropic, elastic properties of the
medium. The latter is related to the stiffness ¢;;p, in the following way (Herman
1981):

CijkiSkipg = Aijpq- (2.4)
The tensorial volume density of solid mass accounts for the anisotropy in the
inertia properties of the solid (Bromwich 1902). For an isotropic medium, the

tensorial volume density of solid mass reduces to
p;r = paékrw (2-5)

where

p* = scalar volume density of solid mass (kg/m®),
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and the compliance to
Sijpg = A6,-J'6pq + 2M Aijpgs (2.6)

where A and M are two scalar coefficients. The corresponding stiffness is com-
monly written as (Achenbach 1973)

Cpgij = Abpgbij + 2UDpgis, (2.7)

where
A, 4 = Lamé coefficients (Pa).

From (2.6) and (2.7) it follows that the coefficients A and M are related to the
Lamé coefficients through (Achenbach 1973, Herman 1981)

A= —A2u(3) +2u)]7), M= (4u)7", (2.8)

and
A= —A[2M(3A +2M)|™Y, u=(4M)™. (2.9)

The quantities p},, sijpy and cpgi; are referred to as the constitutive coefficients of
the solid. They are assumed to be independent of time. In a (sub)domain of the
solid where they vary with position, the solid is inhomogeneous or heterogeneous;
in a (sub)domain where they are constant, the medium is homogeneous. At
interfaces between two different solids the constitutive coefficients in general
jump by finite amounts. In all applications that we consider we shall assume
that at a solid/solid interface the media are rigidly bonded (neither rupture of
nor mixing between the media takes place); then, the solid particle velocity and
the solid traction are continuous across the interface. Let v = v,t,, denote a
unit vector normal to the interface at the position z on the interface, then we
have (Figure 2.2)

lim v, (z + hv,t) = lim v,(z + hv,t) for all ¢, (2.10)
h10 K10

and
1}%1 ty(z + hv,t) = I'H{)l te(z + hu,t) for allt, (2.11)
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<

solid solid

Figure 2.2: Solid/solid interface with unit normal vector V.

(%

m

fluid fluid

Figure 2.3: Fluid/fiuid interface with unit normal vector v,.
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L

solid fluid

Figure 2.4: Fluid/solid interface with unit normal vector v,, pointing
away from the solid.

where the solid traction t; is defined as

ti = AkmpeVmTpq- (2.12)

The acoustic wave field in the domain D’ occupied by the fluid is char-
acterized by its fluid particle velocity w, and its scalar fluid traction o (the
opposite of the pressure). The physical properties of the fluid are characterized
by its tensorial volume density of fluid mass p,{, (Lord Rayleigh 1899) and its
compressibility x. In each subdomain of D’ where the acoustic properties vary
continuously with position, the acoustic wave field quantities are continuously
differentiable and satisfy the (linearized) equation of motion (Lamb 1957)

— bmOm0 + pL,Bw, = f] (2.13)
and the (linearized) deformation rate equation

OmrOmwy, — KOO = ¢, (2.14)
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in which
w, = fluid particle velocity (m/s),
o = scalar fluid traction (Pa),
pl = tensorial volume density of fluid mass (kg/m?),
k = compressibility (Pa~!),
f! = volume source density of fluid force (N/m?),
g = volume density of injection rate (s~1).

Although (2.13) and (2.14) could be written in a simpler manner (note that
8kmOm = O), we have for reasons of symmetry with the acoustic equations for a
solid retained in the first term on the left-hand side the Kronecker tensor. The
inverse of the compressibility « is denoted as the modulus of compression K, i.e.
(Herman 1981),

kK =1. (2.15)

The tensorial volume density of fluid mass acounts for anisotropy in the inertia
properties of the fluid. For an isotropic fluid, the tensorial volume of mass

reduces to
L = 76y, (2.16)

where
p’ = scalar volume density of fluid mass (kg/m?).

The quantities pi,, x and K are referred to as the constitutive coefficients of
the fluid. They are assumed to be independent of time. In a (sub)domain
where they vary with position, the fluid is inhomogeneous or heterogeneous;
in a (sub)domain where they are constant, the fluid is homogeneous. At an
interface between two different fluids the constitutive coefficients in general jump
by finite amounts. Across a fluid/fluid interface the normal component of the
fluid particle velocity and the scalar fluid traction are continuous, i.e., at each

point z of a fluid/fluid interface we have (Figure 2.3)
lim v,w,(z + hv,t) = lim v,w,(z + hv,t) for allt, (2.17)
hfo hi0

and
lim o(z + hv,t) = lim o(z + hv,t) for all t, (2.18)
k10 hi0
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Table 2.1: The admissible explicit boundary conditions on 8 D.

part of exterior adjacent to prescribed value of type of boundary-

boundary surface value problem
s] fluid scalar traction Dirichlet
sf fluid normal velocity Neumann
S; solid velocity Dirichlet
S; solid traction Neumann

where ¥ = vpi,, is a unit vector along the normal to the fluid/fluid interface at
the point z.

The last type of interface that can occur in the configuration is a fluid/solid
interface. Across such an interface the normal component of the fluid particle
velocity is equal to the normal component of the solid particle velocity and the
scalar fluid traction equals the normal component of the solid traction, while
the tangential component of the solid traction is equal to zero, i.e., at each point
z of a fluid/solid interface we have (Figure 2.4)

lim v,v.(z + hv,t) = lim v,w.(z + hv,t) for all ¢, (2.19)
A10 k[0
1}}%1 vite(2 + hv,t) = 1}%1 o(z + huv,t) for all ¢, (2.20)
and
l'il%l [te(z + hv,t) — vyt (z + ho,t)) = Ofor allt, (2.21)

where ¥ = vpi,, is a unit vector along the normal to the fluid /solid interface at
the point z pointing away from the solid.

For a solution of the acoustic wave problem in a bounded configuration D
(Figure 2.1) to be unique, the acoustic wave equations and the interface condi-
tions must be supplemented by boundary conditions at 3D. Admissible bound-
ary conditions of the explicit type are presented in Table 2.1 (see also Figure 2.5).

As far as the time dependence is concerned, only causal solutions of the
differential equations (2.1)-(2.2) and (2.13)-(2.14) are physically acceptable, i.e.,
the acoustic wave motion must be causally related to the action of the sources.

Assuming that the sources start to act at the instant ¢ = to, the causality of
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.
1
t,on S, v, _on S

v_on S’ gon S/

Figure 2.5: The four types of explicit boundary conditions prescribed at the
different parts of the outer boundary dD.
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the wave motion is ensured by putting the values w,, o, v, and 7, equal to zero
when t < t;. To account for the possible action of other sources that were active

up to the instant to, we can introduce the initial conditions

v, (Z,t0) = v] (), and 1h4(,t0) = 71 (z) for z € D* (2.22)
and

wy(z,t) = w!(z), and o(z,to) = o’ (z) for z € D’. (2.23)

In most of our applications we start from a medium at rest, in which case the
right-hand sides of (2.22) and (2.23) vanish.

Uniqueness

To prove the uniqueness of the solution of the acoustic wave problem in the
bounded domain D, subject to the boundary conditions of Table 2.1 at dD
and the initial conditions of (2.22)-(2.23), we make use of the energy balance
associated with the linearized acoustic wave equations, viz. (Achenbach 1973)

P+ 8 (Wiyp + Wyep) =W, (2.24)
where
P=- st A mrpgVmVrTpgd A ~ /zes! SmiVmwirodA (2.25)
is the acoustic power flow across the boundary 8D away from D,
. = s f
Wikin LED'(I/Z)vkp,wv,.dV + Lw!(l/Z)wkpk,w,dV (2.26)

is the kinetic energy associated with the wave motion in D,
W =[ 1/2)7i8:5 dv+f 1/2)oxodV 2.27
def 3€D,( / )"':5 iraTpq xeD!( /2)oKko ( )

is the complementary energy (=elastic deformation energy for the linear medium)
of the wave motion stored in the material in D, and

V = 0 — hiiTis £
W = -/ZED'(fkvk th:J)dV +./;5D!(fbwk qa)dV (2.28)

is the time rate at which work is done by the sources present in D. Equation
(2.24) follows from (2.1)-(2.2) and (2.13)-(2.14) under the condition that both
the volume densities of mass in the fluid and in the solid and the compliance
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are symmetrical tensors, i.e., p{, = p,fk, Pir = Py and Sijpg = Spgij. For Wi
and Wys actually to represent stored energies, they must be positive for any
non-vanishing wave field; hence p{,, pi, and s;j,, must be symmetrical, positive
definite tensors and « is a positive scalar.

For the uniqueness proof we assume the existence of at least one solution
that satisfies the equations (2.1)-(2.2), (2.13)-(2.14), the boundary conditions
of Table 2.1, and the initial conditions (2.22)-(2.23); we denote this solution by
the superscript I: {w!,o’,v!,r q} Suppose there is a different solution to the
problem that satisfies the same system of equations in D, the same boundary
conditions at 8D and the same initial conditions in D; we denote it by the
superscript IT : {w!!,o'! vl 1, } Then, because of the linearity of the wave
problem, the difference field {w, o2, 08,18} = {w! —w!!, ! oM, v - vl 7] —
71} satisfies the equations (2.1)-(2.2), (2.13)-(2.14) with zero right-hand sides,

the boundary conditions

02 = 0 whenzc S/, (2.29)
vwd = 0 whenze S, (2.30)
v® = 0 whenze S, (2.31)
tA = 0 whenz€S;, (2.32)
and the initial conditions
{w?(z,t0),0%(z,t0)} =0 when z € D/, (2.33)
{v?(z,t0), 74(2,20)} =0 when z € D°. (2.34)

Using these results in (2.24) we obtain
Aps A a. J . A
o[ (/2faotav+a. [  (1/2wirdutav
(2.35)

+ 8,/ (1/2) 5 SiipaTogdV + a,/ I(1/2)0AnaAdV =0.
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Integrating (2.35) with respect to t, and using (2.33) and (2.34), we arrive at
[ (/20 (w0004, (@)vP (=, )av
ZeD*

+ zeD,(l/Z)wf(z,t)p',:r(z)w,A(z,t)dV

+ zen'(l/z) 5(2,t)8i5pq ()5 (2, t) AV (2.36)

+/ (1/2)0?(z,t)k(z)o? (2,t)dV =0 for all t > ¢,.
ZeD/

Now, for a non-vanishing difference wave field all the terms in (2.36) are positive.
Hence, the energy identity (2.36) can only be satisfied if

{w?(z,t),0%(z,t)} =0 when z € D for allt > t,, (2.37)

{v2 (z,t), 75 (2, t)} =0 when z € D* for allt > . (2.38)

Consequently, the initial assumption that {w!, ¢’,v,7] } and {w?, 0%/, v!! T
were two non-identical solutions of the acoustic wave problem leads to a contra-
diction, and the solution to the problem, provided that it exists, is unique. This
completes the proof.

The uniqueness of the acoustic wave problem is a prerequisite for the mean-
ingfulness of the construction of analytical or numerical solutions to it. In this
respect it is noteworthy that in many cases in practice the configuration does
not contain a bounded closed surface on which explicit boundary values are
given. Frequently, the configuration is of the scattering type where a certain
strongly inhomogeneous configuration of bounded extent is embedded in a so-
called "invariant embedding” (Bellman and Kalaba 1956). The properties of
this embedding are taken to be relatively simple ones (for example, homoge-
neous and isotropic), such that the Green’s functions (point-excitation solutions
to the wave problem) can be constructed analytically. If such a model applies,
the contrast-source formulation of the inhomogeneities with respect to the em-
bedding leads to non-local boundary conditions on @D that force the scattered
wave to radiate into the embedding. The corresponding initial/boundary value
problem can, in this case, too, be shown to have a unique solution.



Chapter 3

SPACE-TIME ACOUSTIC
RECIPROCITY THEOREM OF
THE TIME-CONVOLUTION
TYPE

In the present chapter we present the space-time acoustic reciprocity theorem
of the time-convolution type on which part of our later analysis is based. A
reciprocity theorem interrelates in a specific way two physical states that could
be present in one and the same domain in space-time. In our case we have
a relation between two acoustic wave fields. Their characteristic quantities are
distinguished by the superscripts ‘A’ and 'B’, respectively (Figure 3.1). The reci-
procity theorems of the time-convolution type for acoustic waves in a fluid and
in a solid have been derived in papers by De Hoop (1988) and De Hoop and Stam
(1988), respectively. In them, also a historical survey of the development of these
theorems is given. The fluid and solid configurations considered in these papers
were time invariant and the media in them were linear, and instantaneously and
locally reacting in their acoustic behaviour. Inhomogeneity, anisotropy, and ar-
bitrary relaxation effects were included. For our instanteneously reacting fluids
and solids we derive the reciprocity theorems in a simpler way. In a solid medium
of the type specified in Chapter 2, the field quantities in State 'A’ satisfy the
equations {cf. (2.1) and (2.2))

— DimpOmyg (,8) + 1 (2) 0007 (2,1) = [y (2, 1) (3.1)

23
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State A’ State 'B’

time -

) time— invariant
coordinate

[ spatial domain

D

of computation
spatial
coordinates

Figure 3.1: Space-time domain with the two admissible acoustic states 'A’ and
'B'.
and

BijmeOmvf (2,t) — s, (2) Bl (2, t) = hfj(2, 1), (3.2)
and the quantities of the time-shifted and time-reversed field in State ' B’ satisfy
the equations (cf. (2.1) and (2.2))

= ArmijOmtf (2,7 — t) + P2 (2)8, - (z, 7 —t) = f*B(z,7 — 1) (3.3)
and v
ApgmkOmVE (T, 7 — t) — sg,-j(z)af-trg(z, T—t)= hfq(z, T —t). (3.4)

As regards the space-time geometry in which the two admissible solid states
occur, the time invariance implies that the geometry is the Cartesian product
D? x R of a time-invariant spatial domain D* C R® where a solid medium is
present, and the real axis R. The theorem will be derived for bounded do-
mains D?*. The reciprocity theorem of the time-convolution type follows upon
considering the interaction quantity

[ . AmepaOmlvA (2,8)78 (2,7 — 1) — 0B (2,7 — t)TA(, )ldt.  (3.5)




3. RECIPROCITY THEOREM OF TIME-CONVOLUTION TYPE 25

The first term in (3.5) is evaluated in the following way:
/;ER Am,,qam[v;‘(z,t)rﬁl(z, T —t)]dt
= [ g [0nvA@ )72 (2,7 — 1)
teR
+ v (2, t) Apmij[OmT2 (2,7 — t)]dt (3.6)
= / (68,4 (2)u7A (2,2) + hf (2, 1)]rE (2,7 — t)dt

+ f vA(z,8) (05 (2)8, v (2,7 — t) — fB(z, 7 — t)]dt,
teR

where (3.2) and (3.3) have been used. Similarly, the second term in (3.5) is
evaluated as

/: B[0P (2,7 = )7 (2, 0)de

= /t Ao 00 (3,7 = D2,

VP (Z, T — £) Dkmpg [Om Ty (%, ) dt (3.7)
- /téR[sfq,.,.(z e 7B (2, m — t) + hB (2,7 — t)]7A (2, t)dt

+ [ Bl = Aot (5 t) - fi* (= 0lde,

where (3.1) and (3.4) have been used. Subtracting (3.7) from (3.6), and using
the properties of the time convolution of two space-time functions, we arrive at

A rpgOm v (2, t) 1B (2,7 — 1) — 0P (2,7 — )1 (2, t)]dt

teR
=0, [ (a7~ lsfia(a) — ofus (Nt (o, )t
-8, /zen v (2,7 — t)[olA (2) — 078 (2)|vA (2, t)dt (3.8)

w [ (B - Ole) + B (o - 0fA a0

Th (@, )k (z, 7 — t) — vi(z,t) [ B (z, 7 — t))dt.
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aDs.IS

Figure 3.2: Domain D* = U}y, D*!S consisting of the subdomains
{D*!$; IS =1,...,NS } with boundaries dD*!5.

Equation (3.8) is the local form of the space-time acoustic reciprocity theorem
of the time-convolution type in a solid. The first two terms at the right-hand
side of (3.8) are representative for the differences in the properties of the media

present in the two states; they vanish at those locations where p}* = p:;:B and
A — B
i7p9 peij
each other’s adjoints. In case the conditions hold for one and the same solid, the

s In case the latter conditions hold, the two media are denoted as
solid is denoted as self-adjoint. The last four terms at the right-hand side are
associated with the source distributions; they vanish at those locations where

no sources are present.

To arrive at the global form of the reciprocity theorem (for the domain D},
we integrate (3.8) over D*. Applying Gauss’ divergence theorem to the resulting
left-hand side for all subdomains D*/¥, with IS =1,..., NS, out of which D*
is composed (Figure 3.2) and where the solid particle velocity and the stress are
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continuously differentiable, and adding the relevant results, we end up with
NS

Z /teR dt ZedDeIS A”"""V'('{S)[vf(z’t)rtg(z’ T—1t)
. IS=1

—vP(z,7 — )1/ (z,t)]dA

=9, - dt e r‘?(z,r - t)[sgpq(z) - sg,.j(x)]r;:(z,t)dV

-0, [ dt vf (z,7 — t)[pp(2) — piy (z)]v (z,t)dV  (3.9)
teR ZLeDr

+ en dt ZGD'[T,-?(Z,T - t)hg-(z, t) + ka(z,r —t) ,:’A(:c,t)

- r‘ﬁ](z,t)hfq(z,r —t) — vA(z,t) fB(z, T — t)]dV,

where D* = U3, D*!S and dD*'S is the boundary of D*/5. The unit vector
along the normal to dD*IS is denoted by »US): it points away from D*!5,
Equation (3.9) is the global form of the space-time reciprocity theorem of the
time-convolution type in a solid and is known as Grafi’s reciprocity theorem
(Graffi 1939). The integrals over the internal surfaces account for possible jumps
in the quantities across interfaces. For physical wave fields in the two States 'A’
and 'B’', the contributions from interfaces between different media present in D?*
cancel in view of the interface conditions (2.10) and (2.11), but for computational
states that do not necessarily satisfy these conditions, the interface integrals in
general remain.

In a fluid medium of the type specified in Chapter 2, the field quantities of
the State 'A’ satisfy the equations (cf. (2.13) and (2.14))

— bemOmo (z,t) + plA (2)Bwh(z,t) = 1A (2,1) (3.10)

and
S Omwi(z,t) — k% (2)0,0%(2,t) = ¢*(=, 1), (3.11)

and the quantities of the time-shifted and time-reversed field in State 'B' satisfy
the equations (cf. (2.13) and (2.14))

— bmBm0® (2,7 — t) + plB(2)8,_wP (z,7 — t) = B (2,7 — 1) (3.12)
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and
bmkOmwy (2,7 ~ t) — kP (2)8,_10® (2,7 — t) = ¢B(z,7 ~ 1). (3.13)

As regards the space-time geometry in which the two admissible fluid states
occur, the time invariance implies that the geometry is the Cartesian product
D’ x R of a time-invariant spatial domain D/ C R® where a fluid medium is
present and the real axis R. The theorem will be derived for bounded domains
D?. The reciprocity theorem of the time-convolution type follows upon consid-

ering the interaction quantity
f . bmrOm|wi(z,t)0® (2,7 — t) — wB(z,7 — t)o?(2,1)]dt. (3.14)
te
The first term in (3.14) is evaluated in the following way:
[ 8Bl wh (2, 1)0® (2,7 — 1))t
teR
= / R&,,,,[a,,,w;‘(z, t)loB(z,7 — t) + wA(2,)6,m[Omo B (z, 7 — t)]dt
te
= / A (@)8:0A (2,1) + ¢4 (=, )]0 P (=, 7 — t)at (3.15)
te
+ [ w0l (@0, wP(z,7 — 1) - 1B (2, - D),
te

where (3.11) and (3.12) have been used. Similarly, the second term in (3.14) is

evaluated as
/:en 6mrOm|w? (2,7 — t)oA(2,t)]dt
- /tek bmi[Omwy (2,7 — 1)]0(2,2) + wF (2,7 — t)64m|Omo™ (2, 1)) dt
= [ kP @00 (2,7 ~ 1) + ¢ (7 — )]oA(x, )t (3.16)

+ [ wE @7 - Ol @0t (2,0) - S, D),

where (3.10) and (3.13) have been used. Subtracting (3.16) from (3.15), and

using the properties of the time convolution of two space-time functions, we
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arrive at

/ bmrOm|wh(z,t)0B (2,7 — t) — wP(z, 7 — t)o?(z,t)]dt
=9, / (z,7 — t)[cA(z) — £B(z)]o* (=, )dt
=0, [ wf(@.r =~ oA (2) - o1 () e, 1)t (3.17)

+ t R[aB(z,r — t)g4(z,t) + wl(z, 7 - t) f*(z,1)

—o*(z,t)¢% (z, 7 — t) — wh(z,t) f/B (2,7 — t))dt.

Equation (3.17) is the local form of the space-time acoustic reciprocity theorem
of the time-convolution type in a fluid. The first two terms at the right-hand
side of (3.17) are representative for the differences in the properties of the media
present in the two states; they vanish at those locations where pi'rA = pf,"B and
k* = k8. In case the latter conditions hold, the two fluids are denoted as each
other’s adjoints. In case the conditions hold for one and the same fluid, the
fluid is denoted as self-adjoint. The last four terms at the right-hand side are
associated with the source distributions; they vanish at those locations where
no sources are present.

To arrive at the global form of the reciprocity theorem (for the domain
DY), we integrate (3.17) over D/. Applying Gauss’ divergence theorem to the
resulting left-hand side for all subdomains D//F, with IF = 1,...,NF, out of
which D/ is composed (Figure 3.3) and where the fluid particle velocity and the
scalar traction are continuously differentiable, and adding the relevant results,

we end up with

/ / 6m,u(IF [wh(z,t)0B(z,7 — t) — wE(z,7 — t)o*(z,t)]dA
IF 1/t€R ZTedDI-IF _
=0, [ dt[ 0P~ 1)xA(a) - £®(@)loA (@, )V
o [ at[  wb(er -0l @) - pP @@ )V (3.18)

A
+ rer dt zeD![aB (z,7 — t)g4(z,t) + wl(z,7 — t) fi (=, 1)
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Figure 3.3: Domain D/ = UNJ_; D/'F consisting of the subdomains
{ D/'F; IF = 1,...,NF } with boundaries 8 D/F,

— o*(z,t)qB(z, 7 — t) — wh(z,t) f/B(z,7 —t))dV,

where D/ = UM, D*'F and dD/'F is the boundary of D/'F. The unit vector
along the normal to @D/'F is denoted by vF); it points away from D/F.
Equation (3.18) is the global form of the space-time reciprocity theorem of the
time-convolution type in a fluid. The integrals over the internal surfaces account
for possible jumps in the quantities across interfaces. For physical wave fields in
the States 'A’ and 'B’, the contributions from interfaces between different media
present in D’ cancel in view of the interface conditions (2.17) and (2.18), but
for computational states that do not necessarily satisfy these conditions, the
interface integrals in general remain.

To obtain the reciprocity theorems for an unbounded domain, they are ap-
plied to the ball D,, interior to the sphere 3D, with radius A around the origin
O; after which the limit A — oo is taken.

Equations {3.9) and (3.18) will serve as a basis for the development of ap-

propriate integral representations of the acoustic wave field, especially for the
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surface and (contrast) volume source representations that will later be employed
in the embedding.
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Chapter 4

SPACE-TIME ACOUSTIC
RECIPROCITY THEOREM OF
THE TIME-CORRELATION
TYPE

In this chapter, for the same type of solid and fluid configurations as in Chapter
3, the space-time acoustic reciprocity theorems of the time-correlation type are
presented. These reciprocity theorems are derived in De Hoop (1988) and De
Hoop and Stam (1988) for the more general case that the media show relaxation.
For our instanteneously reacting fluids and solids we derive the relevant theorems
in a simpler way. Again the characteristic quantities of the two acoustic wave
fields are denoted by the superscripts ‘A’ and 'B’, respectively (Figure 4.1). In a
solid medium of this type, the field quantities in State ‘A’ satisfy the equations
(cf. {2-1) and (2.2))

- Akmpqam";;(zs t)+ p;’;‘(:l:)atvf(:c,t) = I‘:’A(z:t) (4.1)

and
AijmeOmvi(z,t) — s;‘m(z)agrp‘;(z, t) = h;-‘j(:c,t), (4.2)

and the quantities of the time-shifted (but now not time-reversed) field in State
'B' satisfy the equations (cf. (2.1) and (2.2))

— ArmiiOmTid (Tt — 1) + p5B(2)8,_,vB (2.t — 7) = f*B(z,t — 1) (4.3)

33
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State A’ State 'B’

time
; € t1 —1 ;
coordinate me— 1nvariant

" spatial domain

of computation
spatial
coordinates

Figure 4.1: Space-time domain with the two admissible acoustic States 'A' and
IBI'

and
ApgmiOmvy (2,6 — 7) — Spsi(2)8e— B (z,t — 1) = RE (z,t — 7). (4.4)

As regards the space-time geometry in which the two admissible solid states
occur, the time invariance implies that the geometry is the Cartesian product
D* x R? of a time-invariant spatial domain D* C R® where a solid medium
is present, and the real axis R. The theorem will be derived for bounded do-
mains D*. The reciprocity theorem of the time-correlation type follows upon
considering the interaction quantity

/, Brsednlv? (2 )78 (z,t = 1) + 0B (5.t - 1)A(e, Oldt. (45)
€
The first term in (4.5) is evaluated in the following way:

B
[ . BB [vA (2, )75 (2, — 7))t

=/ A;jm,[amv;‘(z,t)]r,? (z,t ~ 1)
teR
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+ VA2, ) Armij [OmTis (2,1 — 7)]dt (4.6)

= tER[ t]pq( )atT (z t) + h’A(z t)] i?(z!t - T)dt

+ [ M@)o ()0 B (2.t = 1) — £22 (2,8 - 7)),
teR

where (4.2) and (4.3) have been used. Similarly, the second term in (4.5) is
evaluated as

/tER AmrpgOm VB (2, — T)r,;:(z, t)]dt
= [ ApemilOmoB (.t = )] (2,)
teR
+ v (Z,t = 7) Diompg[Om Ly (=, t)]dt (4.7)
= [ 5 (@)01rrE (@t = 1)+ RE (.t = 7)]rh(a. )

+/ vB (2t — 7)[ppA(2) 0 (2, 1) — fi 4 (z,t)]dt,

where (4.1) and (4.4) have been used. Adding (4.6) to (4.7) and using the

properties of the time correlation of two space-time functions, we arrive at
[  Bepg Ol 2, )7 (@ = 1) £ 0P, = 1) (2, )]
=0, [ 2@t = 1)lsh(e) - By (@) (2,00t
+0, [ o (z,t =)o (@) - £i () oAz )t (4.8)
+ [zt = )k (1) — oF (ot — 1) A (3, )
teR
+ T,ﬁ](x,t)hﬂ(z,t —7) — vi(z,t) [ B(z,t — 7))dt.

Equation (4.8) is the local form of the space-time acoustic reciprocity theorem
of the time correlation type in a solid. The first two terms at the right-hand
side of (4.8) are representative for the differences in the properties of the media

present in the two states; they vanish at those locations where pi* = p%2 and
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aDS.IS

Figure 4.2: Domain D* = Uﬁf:l D*1S consisting of the subdomains
{D*!5; 1§ =1,...,NS } with boundaries D*'$.

s;‘m = qu,‘j- In case the latter conditions hold, the two media are denoted as

each other’s adjoints. In case the conditions hold for one and the same solid, the
solid is denoted as self-adjoint. The last four terms at the right-hand side are
associated with the source distributions; they vanish at those locations where
no sources are present.

To arrive at the global form of the reciprocity theorem (for the domain De),
we integrate (4.8) over D’. Applying Gauss’ divergence theorem to the resulting
left-hand side for all subdomains D*!5, with IS =1,..., NS, out of which D*
is composed (Figure 4.2) and where the solid particle velocity and the stress are

continuously differentiable, and adding the relevant results, we end up with

NS
Z -/teR at /;eaz)-.ls A'"'”V’('{S)[v?(z’ t)T:l(z’t - T)
IS=1

+ v (z,t - 1)rf(z,t)]dA

=o [ dt|  rB(a,t-1)lsh(z) - L)z dv




4. RECIPROCITY THEOREM OF TIME-CORRELATION TYPE 37

B _ s,A _ 8B A
vo.[ atf oBt-n)eit@) - sl @t (49)

s, A
+ @ /z LA @t = kh(z ) — P (et - 1) @)

+ 1 (2, t)hE (2t — 7) — vA(z,t) f2B(z,t — 7)]dV,

where D* = NS D*!S and dD*'S is the boundary of D*'S. The unit vec-
tor along the normal to 8D*!S is denoted by v/5); it points away from D*!$.
Equation (4.9) is the global form of the space-time reciprocity theorem of the
time-correlation type. The integrals over the internal surfaces account for pos-
sible jumps in the quantities across interfaces. For physical wave fields in the
States 'A' and 'B’, the contributions from interfaces between different media
present in D* cancel in view of the boundary conditions (2.10) and (2.11), but
for computational states that do not necessarily satisfy these conditions, the
interface integrals remain.

In a fluid medium of the type specified in Chapter 2, the field quantities of
the State 'A’ satisfy the equations (cf. (2.13) and (2.14))

— bemOmo? (z,t) + p{'f(x)&,w;‘(z, t) = ,{’A(z,t) (4.10)

and
SmeOmwi(z,t) — k*(2)3:0% (2, 1) = ¢*(z, 1), (4.11)

and the quantities of the time-shifted (but now not time-reversed) field in state
'B' satisfy the equations (cf. (2.13) and (2.14))

— bymOm0® (z,t — 1) + piB(2) 8¢ wf (2,t — 1) = fIB(z,t ~ 1) (4.12)
and
bmkOmwE (2, — 1) — kB(2)y-,05 (z,t — 1) = ¢®(z,t — 7). (4.13)

As regards the space-time geometry in which the two admissible fluid states
occur, the time invariance implies that the geometry is the Cartesian product
D! x RS of a time-invariant spatial domain D/ C R® where a fluid medium
is present, and the real axis R. The theorem will be derived for bounded do-

mains D’. The reciprocity theorem of the time-correlation type follows upon
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considering the interaction quantity

/ - bmrOm[w(z,t)0B (2.t — 7) + wP(2,t — 7)o*(2,1))dt. (4.14)
te
The first term in (4.14) is evaluated in the following way:

/ bmr O |wi (2, 8)0® (2,8 — 7)]dt
teR

= / . bmr[Omwi(2,t) 08 (2, t — 7) + WA (2,1)6,n[0mo® (2, — 7)]dt
te

= /l 4 @)0,04 (,6) + ¢A(2,8)0® (2, — 1)t (4.15)
+/ A(2,t) |5 (2)8,—,wh (2,8 — 7) — f1B(2,t — 7)]dt,

where (4.11) and (4.12) have been used. Similarly, the second term in (4.14) is
evaluated as

[ EmrOml (3.t = 1) (2, 1) dt
= [ 8slOmuB (2.t = 7)]0A(2,1) + WP (2,1 — 7)61m[O0* (2, 1)t
- -/teR[NB(z)at_’aB (z,t—7)+ qB(.'l:,t - T)]O'A(z,t)dt (4.16)

+/ wp (z,t — 1)[pl ()8, wA(z,t) — f]4(z,t)]dt,

where (4.10) and (4.13) have been used. Adding (4.15) to (4.16), and using the

properties of the time correlation of two space-time functions, we arrive at
/tER bmrOm Wi (2, t)0P (2,8 — 7) + wP(2,t — 7)0% (2, 1)]dt
= a, /H o8 (z,t ~ 1)[kA(z) — KB (2)]o" (2, t)dt
+or [ wl(et = )6l a) - P (@) wd(z. s (4.17)
+ [ o @t = gt @,t) - bt - 1) 1A (e,0)

+0*(z,t)q® (z,t — 1) — wi(z,t) f/B(z,t - r)]dt.
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Figure 4.3: Domain D/ = U}/, D/'F consisting of the subdomains
{ D''F, [F =1,...,NF } with boundaries dD/F.

Equation (4.17) is the local form of the space-time acoustic reciprocity theorem
of the time-correlation type in a fluid. The first two terms at the right-hand
side of (4.17) are representative for the differences in the properties of the media
present in the two states; they vanish at those locations where p,{’,A = p{,’cB and
k% = kB. In case the latter conditions hold, the two media are denoted as each
other’s adjoints. In case the conditions hold for one and the same fluid, the
fluid is denoted as self-adjoint. The last four terms at the right-hand side are
associated with the source distributions; they vanish at those locations where

no sources are present.

To arrive at the global form of the reciprocity theorem (for the domain
D'), we integrate (4.17) over D/. Applying Gauss’ divergence theorem to the
resulting left-hand side for all subdomains D/*¥, with IF = 1,...,NF, out of
which D7 is composed (Figure 4.3) and where the fluid particle velocity and the

scalar traction are continuously differentiable, and adding the relevant results,
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we end up with

NF

(IF)[,,A B _ B _ A
I;L—;‘l/texdt reopsir Sty Nwi(z,t)0% (2,8t — 1) + wP(z,t — 7)0*(2,1)]dA

-3, /t L& /z _,, 2@t = 1)kA(E) - kB (@)]oA (5, t)aV
+0, [_dt [ wh(at - n)lef(a) - ol (@) (e, )V (4.18)

+ /t e /z 107 @ = 1)gA () - wE (3t~ 1)1 (2,1
+ o*(z,t)¢%(z,t — 7) — wA(z,t) f}B(z,t — 7)]dV,

where D/ = U}~ D/'F and dD’'F is the boundary of D//F. The unit vector
along the normal to dD%!F is denoted by vUF); it points away from D/F.
Equation (4.18) is the global form of the space-time reciprocity theorem of the
time-correlation type in a fluid. The integrals over the internal surfaces account
for possible jumps in the quantities across interfaces. For physical wave fields in
the States ‘A’ and ' B', the contributions from interfaces between different media
present in D/ cancel in view of the boundary conditions (2.17) and (2.18), but
for computational states that do not necessarily satisfy these conditions, the
interface integrals remain.

Equations (4.9) and (4.18) will serve as a basis for the development of the
finite-element method for the elastodynamic wave problem.




Chapter 5

THE FINITE-ELEMENT
METHOD BASED ON
RECIPROCITY

In this chapter a finite-element method to solve acoustic wave problems is pre-
sented that is based on reciprocity. It amounts to a particular type of dis-
cretization of the acoustic wave problem associated with the partial differential
equations (2.1)-(2.2) and (2.13)-(2.14). The finite-element method is a pow-
erful tool for analyzing problems numerically in engineering and the applied
sciences. The method is extensively described in the textbooks by, for example,
Zienkiewicz and Taylor (1989) and Strang and Fix (1973). One of the advan-
tages of the finite-element method as contrasted with finite-difference schemes
on coordinate-line grids is that it can handle, without difficulty, boundary con-
ditions at arbitrarily shaped boundaries and interfaces.

On many occasions where the finite-element method is applied to space-
time problems, the method is only used for the spatial part of the analysis.
Such a discretization in part of the problem produces a system of ordinary
differential equations in time. The solution method of the latter equations in
the time direction is then still free to be chosen; one can either use analytical or
numerical methods (see, for example, Smith 1975; Zienkiewicz 1983; Zienkiewicz
and Morgan 1983; Zienkiewicz et al., 1984).

A recent development in the application of the finite-element method to

OThe theory developed in this chapter has been presented in Stam and De Hoop (1990)
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space-time problems is its extension to the time domain as well. This so-called
space-time finite-element method applies to a fully discretized space-time do-
main. The property of the finite-element method that it is able to handle
irregular grids, makes this method also suited for problems defined in time-
dependent configurations. Mitchell (1977) presents such a method for a one-
dimensional wave problem. Bajer (1986) describes the application to vibration
analysis, where the space-time domain is discretized into triangular, tetrahe-
dral and hyper-tetrahedral space-time elements. In the present monograph we
consider wave problems in a time-invariant configuration. Notwithstanding this
time invariance, we make use of a space-time finite-element formulation, because
it treats the dependence on the time coordinate in the same way as the depen-
dence on the spatial ones, which can, for the analysis of wave phenomena, be
argued to be a desirable feature.

Finite-element solutions of physical problems are mathematically based on
so-called weak formulations of the relevant problems. Especially when solv-
ing static, i.e., time-independent problems, variational principles furnish such
formulations (Reddy 1986, p.258; Zienkiewicz and Taylor 1989, p.32). In it, a
functional is constructed that is stationary and, in case the functional is positive
definite, a minimum for the exact solution of the problem. Achenbach (1973,
p.61) presents such a variational principle for the elastostatic problem with re-
gard to a perfectly elastic body. For problems where no variational principle is
available, the method of weighted residuals furnishes the method for construct-
ing weak solutions. In this method the governing partial differential equations
are weighted, i.e., multiplied through by some weighting function and integrated
over the domain of computational interest, the latter being the domain in which
the problem has to be solved numerically. Selecting a certain sequence of lin-
early independent weighting functions, this procedure leads to relations that are
in fact weighted forms of the pertaining differential equations.

In our approach we introduce as the starting point for the construction of
a finite-element solution of the wave problem the reciprocity theorem of the
time-correlation type derived in Chapter 4. Of the two states occurring in
this theorem, State 'A’, is identified with the actual wave field that is to be

approximated, while the other state, State 'B’, is considered as a computational
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one that remains to be chosen appropriately. For the acoustic waves in the solid

parts, the theorem is applied to the bounded subdomain D* of D where the

solid medium is present. We have (cf. (4.9))

feR /;BeaD Js A""”"u )IvA(z t) Pq( z,t — T)
IS=1

+vB(z,t —7)

=9, e dt reDr (2t — 1) (80,0 (2) — spi; () )74 (2, 8)dV
a/ / ,t—1)[p2A +B(2)vA(z,t)dV

vo [ dtf  of@t-nleite) - s @Az

+ teRdt xen.v’,-?(z,b—r)h;‘j(z,t)—vf(x,t—'r) Az, t)

+ 'r;:(z,t)hﬁ](z,t —7)—

r;,:(z,t)]dA

vA(z,t) f*B(x,t — 7)dV.

(5.1)

Equation (5.1) can, from a particular point of view, also be regarded as a

*weighted” form of the acoustic wave equations (2.1) and (2.2) pertaining to

State 'A’. To show this, we take State 'B' to be any sequence of piecewise con-

tinuously differentiable functions {vZ2(z,t; IWS),
, NWS, and take {f>B(z,t; IWS),

with IWS =1,...

f2B(z,t - 7;IWS) =

and (cf. (4.4))

ke (z,t — T IWS) = ApemkOm i (2,

A,m‘,amrf (z,t — 73 IWS)
+058 (2)8; -8 (z,t — 73 IWS)
-7 IWS)
,W( 7)0,- Tis ( t —1;IWS),

72(z,t; IWS)} defined on D*,
hy (z,t; IWS)} as (cf. (4.3

)

(5.2)

(5.3)

for given {p%;’,s2,;}. Substitution of these expressions for f# and k&, in (5.1)
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leads to
NS 18
Z jieR dt /ﬂl:eBDn.ls A""WV'(" )[v;‘(z,t)rﬁ(z,t -7 S)
IS=1

+ v} (2t — 7, IWS)rf (=, t)]dA
=0/ .0 /zw, 78 (2,t — 7, IWS) sk, (2)7 (2, t)aV

8, dt B(z,t — 7, IWS)p"A(z)vA(z, t)dV 5.4
+or | 4], eD,vk(w T )ou” (z)vf (=, t) (5.4)

+f @ /x L (@t = T IWS)kY(2,t) — o (2t — 75 IWS) fiA (5, t)dV

t /M, Apgmi[Omv (2, t — 73 IWS)|rf (2,1)
+Brmijv2 (2, 8)[OmTE (z, t — 73 IWS)]dV.

Next, by applying Gauss’ divergence theorem to the subdomains D*!5, with
IS =1,...,NS, in the interiors of which both sides are continuously differen-
tiable, we replace the surface integrals on the left-hand side by a volume integral.
Adding the results, we end up with the desired relation

/ it [ vB(z,t — 1, IWS)
teR TeD*
[~ AkmpOmTi (2, 1) + pi2 (2) 302 (2, t) — o (z,t)|dV (5.5)

_ B —_

/‘eRdt /z (et - IWS)

[DiimrOm v (2, 8) — 8055, (2)Be7fy (2,) — R (2,2)]aV =0
for WS =1,...,NWS.

Upon choosing in (5.5) the test functions 7;7 = 0 throughout D* and v? # 0,
we obtain a number of NWS weighted forms of the equation of motion over the
space-time domain D’ x R with the arbitrary piecewise continuously differen-
tiable weighting functions vf :

/ dt v (2,t — 7; IWS)
teR  JxeD*
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[~ Akmpe @i (2, t) + pp (2)0ev (2, 8) — 2A(2,t)]dV =0 (5.6)
for IWS=1,...,NWS.

Note that the choice 77 = 0 is compatible with (5.2) and (5.3), provided that we
take p,k =0,f> B =0 and h = Amkamv,, Upon choosing the test functions
v2 = 0 throughout D’ and 7 ;é 0 in (5.5) we obtain a number of NWS weighted
forms of the deformation ra.te equation over the space-time domain D* x R with

the arbitrary piecewise continuously differentiable weighting functions Tg :

dt B -

/‘ER /;GD. 7i; (2,t — 7;IB)

[AijmrOmv (z,t) — um(z)@, ( t) — hg-(:c,t)]dV =0 (5.7)
for IWS =1,...,NWS.

Note that the choice v2 = 0 is compatible with (5.2) and (5.3), provided that
B B — _ . B
we take quu 0,hy =0 and f% = —Api;0mT;; -
For the acoustic waves in the fluid parts, the theorem is applied to the
bounded subdomain Df of D where a fluid medium is present. We have (cf.

(4.18))
IF I/eR -/;:eauf 174 6""VUF)[W (z,t)0® (2,t — ) + wP(2,t — r)o*(2,t)]dA
o [ atf  oP(at - r)lAE) - k(o (z )V
o /te,z /,E z,t = 7)ol (2) ~ o1} (2))wf (z,1)dV (5.8)
+ /;GR dt -/a:eul o®(z,t — )¢ (z,t) — wl(z,t — 7) f{A(z,1)

+ 04(z,t)¢%(z,t — 1) — wh(,t) f/B(z,t — T)dV.

Equation (5.8) can, from a particular point of view, also be regarded as a
?weighted” form of the acoustic equations (2.13) and (2.14) pertaining to State
'A'. To show this, we take State ‘B’ to be any sequence of piecewise contin-
uously differentiable functions {wg(z,t; IWF),o?(z,t; IWF)} defined on D/,
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with IWF = 1,..., NWF, and take {f/-2(z,t; IWF), ¢%(z,t; IWF)} as (cf. (4.12))

frf’B(z,t - T;IWF) = _6rmam08(z’t - T;IWF) (5'9)

+p (z)a,_,w,, (z,t — 7; IWF)

and (cf. (4.13))

Pzt — 1, IWF) = 6,0pmwi(z,t — 7, IWF) (5.10)

—k2(2)0;-,08(z,t — ; IWF),

for given {p/;®,x}. Substitution of these expressions for f/'® and ¢® in (5.8)

leads to

NF

dt bmrV/I0) (wh (2, ) 0" (2, — 7, IWF
1F=1-/ten Zesprae ™™ @, o7zt -7 )

+ wB(z,t — 7, IWF)o4(z,t)]dA

= /'ER dt -/;:euf oB(z,t — 7; IWF)k*(2)8,04(z,t)dV

+ /ER /z @t = i IWF)p[A ()00 2,00V (5.11)
+/€R /;:eDf z,t — 7, IWF)gA(z,t) — wP(z,t — 1; IWF) f[4(z,t)dV
+ e dt /zeD! bmi|Omwi (z,t — 7; IWF)|0%(2,t)

+6mew?(2,t)[Bma® (2, — 7; IWF)]dV

for IWF =1,..., NWF.

Next, by applying Gauss’ divergence theorem to the subdomains D/F  with

IF =1,...,NF, in the interiors of which both sides are continuously differen-

tiable, we replace the surface integrals on the left-hand side by a volume integral.
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Adding the results, we end up with the desired relation

/ / (z,t — 73 IWF)
teR zeD!

[~ 6em@mo™(x,t) + pLA (2)swA(2,t) — fIA(z,t)]dV

—/;ER dt /zemaB(z,t — 1, IWF) (5.12)
[6mrBOmwi (z, t) — £*(2)Be0%(2,t) ~ ¢*(z,t)]dV =0

for IWF =1,..., NWF.

Upon choosing in (5.12) the test function ¢ = 0 throughout D/ and wf # 0,
we obtain a number of NWF weighted forms of the equation of motion over the

space-time domain D’ x R with the arbitrary piecewise continuously differen-

tiable weighting function w?:

B .
/t b /z (et — i IWF)
[—6emOm0™ (2, 8) + o[ (2) 0w (2, t) — flA(z,t)]dV =0 (5.13)

for IWF=1,..., NWF.

Note that the choice o? = 0 is compatible with (5.9) and (5.10), provided that
we take p,,c =0, f] fB — 0 and ¢% = ,,L,,t"),,lw,c Upon choosing the test function
wf = 0 throughout D/ and o® # 0 in (5.12), we obtain a number of NWF
weighted forms of the deformation rate equation over the space-time domain

D’ x R with the arbitrary weighting function o&:
/ dt oB(z,t - r; IWF)
teR JxeDS
[bmrBmw?(z,t) — k% (2)0:0% (2,t) — ¢*(z,t)]dV =0 (5.14)
for WF =1,...,NWF,

Note that the choice wP = 0 is compatible with (5.9) and (5.10), provided that
we take k2 =0, ¢ =0 and f/'B = —§,,Om0".
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Equations (5.5) and (5.12) form the basis of a space-time finite-element
method. In these equations the Field 'A' remains to be identified with an ap-
proximation to the actual wave field, given the chosen sequence of the States
'B' . Upon taking a reciprocity relation as the point of departure of setting up
a numerical scheme, it seems more or less natural to treat the States 'A’ and
'B' in an equivalent manner, which implies that each specimen of the weighted
State 'B' is also taken as a specimen of the sequence of functions into which
State 'A' is expanded . As far as (5.5) and (5.12) are concerned, this implies
that the sequence of weighting functions is taken to be the same as the sequence
of expansion functions. This procedure leads to a square system of linear al-
gebraic equations with the expansion coefficients of State 'A' as the unknowns.
Boundary conditions of the explicit type are accounted for by prescribing those
expansion coefficients that are related to the relevant field values of State 'A’
at the boundary of D. The above method is known as the method of weighted
residuals (see, for example, Dhatt and Touzot (1984); Reddy (1986); Zienkiewicz
and Taylor (1989)).

To model an acoustic wave field that radiates into an exterior unbounded do-
main the Green'’s function (point-source excitation) of which is known, non-local
absorbing acoustic boundary conditions are applied. These boundary conditions
relate the wave field quantities at the boundary 8D to their values in the interior
of D via the pertaining (discretized) contrast source-type integral representa-
tions. In the solution of the wave problem these relations are added to the
equations that follow from using the finite-element method for the interior field
in D and the so-called hybrid finite-element method results. The source-type
integral representations of the acoustic quantities occurring in this formulation
will be discussed in Chapter 6.



Chapter 6

INTEGRAL RELATIONS FOR
THE HYBRID
FINITE-ELEMENT METHOD

In this chapter, the integral relations for the acoustic wave field quantities that
are needed for the hybrid finite-element method are discussed. In their dis-
cretized form they lead to non-local absorbing boundary conditions that will
simulate the causal radiation of acoustic waves into a sourcefree unbounded em-
bedding of the bounded domain of computation. The geometry to which the
integral representations apply is a so-called scattering geometry. Such a geom-
etry consists of a bounded domain D¢ whose wave properties show a contrast
with those of a given unbounded embedding Dy. The domain D5€ is built up of
fluid and/or solid parts that may be arbitrarily inhomogeneous and anisotropic.
The domain occupied by the fluid parts is denoted by D/ (D/ c D%C); the
domain occupied by the solid parts is denoted by D* (D* C D%%). Obviously,
Df U D?* = D5C. The embedding Dy consists of either a fluid or a solid {Fig-
ure 6.1). In the case that in Dy a fluid is present, the medium properties of the
embedding are given by its tensorial volume density of fluid mass pff’(z) and
its compressibility x°(z). In the case that in Dy a solid is present, the medium
properties of the embedding are given by its tensorial volume density of solid
mass p’C(z) and its compliance s9,;;(z).

For the construction of the non-local boundary conditions we use the global
forms of the reciprocity theorems of the time-convolution type ((3.9) and (3.18)),
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fluid or solid embedding

D 0 solid

7 /S
fluid S /.ﬂuid/

AN\

\
\g
5 N

Figure 6.1: The scattering geometry with bounded domain D5C con-
sisting of fluid and/or solid parts in which the wave properties show a
contrast with those of the fluid or solid embedding in D,.
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presented in Chapter 3. Which of the two theorems is applied in a particular
scattering problem, depends on the type of medium present in the embedding.
In the case of a fluid embedding, the reciprocity theorem (3.18) is applied to both
the domain D/ and the domain D,. The results are subsequently combined (in
the same way as in which the results for the subdomains D’F were combined
in Chapter 3 to give an integral relation applying to D’) to a single integral
relation that holds for the fluid part of the scattering configuration. Similarly,
in the case of a solid embedding, the reciprocity theorem (3.9) is applied to both
the domain D* and the domain D,. The results are subsequently combined (in
the same way as in which the results for the subdomains D*’® were combined
in Chapter 3 to give an integral relation applying to D*) to a single integral

relation that holds for the solid part of the scattering configuration.

Now, the reciprocity theorems in Chapter 3 have been derived for bounded
domains D* and D’. In the above described procedure, however, we need them
also for the unbounded fluid or solid embeddings. In order to obtain the theo-
rems for the unbounded domain Dy, we first apply them to the bounded domain
Do N Da(= Da \ D5C) where D, is the ball interior to the sphere dDa with
radius A around the origin O. The radius A is taken so large that D¢ C Dy
(Figure 6.2). In the relevant result, we finally let A — oco. For causal acoustic

states the contribution from d D4 then vanishes in the limit A — oo.
Fluid embedding

In the case of a fluid embedding, the reciprocity theorem (3.18) is applied to
the domain (Do N Da) U Df (= D, \ D*). Upon taking A — oo, we have
(Do N Dp) U D! — DouU DY (= Dy \ D*). We assume that in D, both states
correspond to waves that radiate causally away from sources of bounded extent
that are located in D5C. Under this condition the surface integral over 3Da
vanishes in the limit A — oco. The medium properties in D, are in both states
taken to be the ones applying to the embedding. The volume source distributions
of State 'A’ are taken to be located in D7, while for the source distributions of
State 'B' we take sequences of localized sources whose supports are the elements
of the discretized version of D/. Hence, the domain D, is sourcefree for both

states. The only surface integrals that in the limit A — oo remain in the
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Figure 6.2: The ball D, interior to the sphere D, with radius A
around the origin O. The domain D5C is a proper subdomain of D,.

reciprocity theorem are then the ones over the fluid/solid boundaries 3D* and
possibly the ones over the fluid/fluid interfaces, depending on the discontinuities
in the wave field quantities in the States 'A' and 'B’ (Figure 6.3).

In the reciprocity theorem we now identify State ‘A’ in D’ with an approx-
imation of the actual acoustic wave field that exists in D/ and assume that
this approximation satisfies the boundary conditions (2.17) and (2.18) at the
interfaces. Henceforth, the superscript A will be dropped. The medium proper-
ties in State 'B' in D7 are also taken to be the ones of the embedding. For the
specification of the wave field quantities of State 'B’, we first define two finite se-
quences of localized source distributions. The first sequence consists of localized
source distributions in the fluid of the body force type f/ = SF/(z,t; IGF/)
with IGF/ = 1,...,NGF/; the second one consists of localized source dis-
tributions in the fluid of the injection rate type ¢ = SFI(z,t;IGF?) with
IGF? = 1,...,NGF?. Each of these localized source distributions has as its
support one of the elements of the discretized geometry that is used in the
finite-element modeling of the wave motion in D/, and has a bounded mag-
nitude. Now, we choose in State 'B' for the sources successively one of these
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Figure 6.3: The fluid domains (hatched) to which the reciprocity theo-
rem is applied; v{¢) is the unit normal vector at the fluid/solid bound-
aries pointing away from the solid.

localized source distributions and for the wave field quantities the ones that
correspond to the causal wave fields {G’F,:"‘f(z,t; IGF!),GF°(z,t; IGF)} and
{GF?*(z,t; IGF?), GF°%(z,t; IGF7)}, respectively, radiated by these sources
and located in a medium with the acoustic wave properties of the embedding.
The relevant radiated wave fields are defined in the entire R® and satisfy the
interface conditions (2.17) and (2.18) everywhere. Henceforth, the relevant radi-
ated wave fields will also be denoted as “discretized” Green’s functions because
of their similarity to point-source solutions in the non-discretized geometry. Sub-
stituting the choices for State ‘A’ and State 'B’ into Equation (3.18), we obtain

/ at [  w(z,t)SF!(z,7 - t;IGF')dV
teR ZeD!

= (s) o.f — ¢ f
zendt eopr bt |w, (2, t)GF* ' (z,7 — t; IGF’)

~ GF*!(z,7 — t;IGF?)o(z,t)]dA

+ 8, dt GF°!(z,7 — t; IGF!)[x(z) — °(z)]o (z,t)dV

teR ZeD/
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— w,f _ ¢ Nipd .
8, n dt/zeuf GF (=, 7 — t; IGF’)|p;,(z) — p}} (z)|w, (2, t)dV

(6.1)

+ [ a / [GF™! (2,7 — ; IGF')q(2,t) + GF*! (2,7 — t; IGF) f! (=, )|V,
teR ZeD/

for IGF/ =1,..., NGF/,
and
[ dt / o(z,t)SF (2,7 — t; IGFY)dV
teR ZeD!

= (s) 0.q — 4 q
/tERdt /z p, om0, @, )GFo% (2,7 — §; IGF?)

- GF(z,r — t; IGF%)o(z,t)]|dA

% Jer® GF*(z,7 — t; IGF* —° ,t)dvV
" teR  JzeDS (2,7 GF)|x(z) — k°(z)]o (z,1)
—~— w,q 4. q ! _ jlo
9, -/t‘eR dt LeDI GFk (zy r—tIGF )[Pk,(z) Pri (z)]wr (Z, t)dV (62)
t o @ Jpop(CF (2,7 = IGF")q(2,t) + GF* (2,7 — IGF) f{(z,1)}dV,
teR ZeD!

for IGF?* =1,...,NGF4.

In (6.1) and (6.2), D" is the fluid/solid boundary and v{*) the unit vector along
its normal pointing away from 8D*.

In case the embedding is homogeneous, there exist analytic expressions for
the radiated wave fields {GF"/,GF°/} and {GF"?,GF°4}. To derive these,
the basic wave equations, that now have constant coefficients, are subjected to
a time-Laplace transformation and a spatial three-dimensional Fourier transfor-
mation. In the space-time transformed domain, the solutions corresponding to
the localized body force and injection rate sources can in principle, and in case
the embedding is also isotropic, very easily, be found. The corresponding space-
time solutions are obtained after the successive application of the inverse spatial
Fourier transformation and the inverse time-Laplace transformation. Note that
for our discretized Green’s functions, the inverse spatial Fourier integrals are
uniformly convergent since the result is a bounded function of position.
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Equations (6.1) and (6.2) yield relationships between the values of the state
quantities in State 'A’' weighted over each of the supports of the localized sources
(the terms in the left-hand sides), the contrast and generating sources in D/ and
the boundary values of the wave field at dD°. This aspect lies at the root of the
hybrid finite-element modeling to be discussed in Chapter 8.

Solid embedding

In the case of a solid embedding, the reciprocity theorem (3.9) is applied to
the domain (Do N D) U D* (= Da \ Df). Upon taking A — oo, we have
(Do N Dp)UD* — DyUD* (= Dy \ Df). We assume that in Dy both states
correspond to waves that radiate causally away from sources of bounded extent
that are located in D®Y. Under this condition the surface integral over D,
vanishes in the limit A — oo. The medium properties in Dy are in both states
taken to be the ones applying to the embedding. The volume source distributions
of State 'A' are taken to be located in D*, while for the source distributions of
State 'B' we take sequences of localized sources whose supports are the elements
of the discretized version of D*. Hence, the domain Dy is sourcefree for both
states. The only surface integrals that in the limit A — oo remain in the
reciprocity theorem are then the ones over the solid/fluid boundaries D/ and
possibly the ones over the solid/solid interfaces, depending on the discontinuities
in the wave field quantities in the States 'A’ and 'B' (Figure 6.4).

In the reciprocity theorem we now identify State 'A’' in D* with an approxi-
mation of the actual acoustic wave field that exists in D* and assume that this
approximation satisfies the boundary conditions (2.10) and (2.11) at the inter-
faces. Henceforth, the superscript A will be dropped. The medium properties in
State 'B' in D* are also taken to be the ones of the embedding. For the specifi-
cation of the other wave field quantities of State 'B’, we first define two finite se-
quences of localized source distributions. The first sequence consists of localized
source distributions in the solid of the body force type f* = SS/(z,t; IGSY)
with IGS! = 1,...,NGS/'; the second one consists of localized source dis-
tributions in the solid of the strain rate type h,, = SSh(z,t;IGS") with
IGS* = 1,...,NGS"®. Each of these localized source distributions has as its

support one of the elements of the discretized geometry that is used in the
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Figure 6.4: The solid domains (hatched) to which the reciprocity theo-

rem is applied; VS,{ ) is the unit normal vector at the solid /fluid bound-
aries pointing away from the fluid.

finite-element modeling of the wave motion in D*, and has a bounded mag-
nitude. Now, we choose in State 'B’' for the sources successively one of these
localized source distributions and for the wave field quantities the ones that
correspond to the causal wave fields {GS}" (z,t; IGS/), GS}(z,t;1GS’)} and
{GSP™(=,t; IGS™), GSf;h(z,t; IGS*)}, respectively, radiated by these sources
and located in a medium with the acoustic wave properties of the embedding.
The relevant radiated wave fields are defined in the entire R® and satisfy the
interface conditions (2.10) and (2.11) everywhere. Henceforth, the relevant radi-
ated wave fields will also be denoted as “discretized” Green’s functions because
of their similarity to point-source solutions in the non-discretized geometry. Sub-
stituting these choices for State ‘A’ and State 'B' into Equation (3.9), we obtain

/ dt / v,(2,8)SS! (2,7 — t)dV
teR XeD*

= (f) nf PO f
/tekdt /;:eaD! A pypgty] [v,(z,t)GSm (z,7 — t;IGSY)

-GS} (2,7 — ,1GS )1, (z,t)]|dA (6.3)
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+0, | adt GSI (2,7 — t; IGS!) (54150 (%) — 8953 (2))7pq (2, 1)V

teR TeD*
o [ dt / GSY (z,7 — t; IGS") |0, (2) — p°2(2))v, (2, t)dV
teR ZeD*
+ 1685 (=7 — 6 IGS ) hyy(z, 1) + GS (z,7 — t; 1GS?) fi (=, 1)]dV,
teR ZeD

for IGSY =1,...,NGS/,

and
h -
/tER dt S (2,t)8 Sy (2,7 — t)dV

= -/t-eR dt /:;:ean Amrquv(y{)[vr(z,t)GS;&h(z, T — 1 ]GS")

~ GSYMz, 7 — £, IGSM)1,,(z,t)|dA (6.4)
,h . h
+a, teRdt repe GSMm, 7 — 8, IGS™) (54550 (T) — Spgi (2)]75 (2, 1)dV
-8, [ dt| GSPMz,m - IGSM)[pL, () — pi ()], (2, t)dV
teR ZeD*
+ ] ] G827~ IGS™hyy (2, 1) + G827 — ,IGS™) fi (2, )4V,
te eD

for IGS* =1,...,NGS*.

In (6.3) and (6.4), 3D/ is the solid/fluid boundary and v{{) the unit vector along
its normal pointing away from 3D,

In case the embedding is homogeneous, there exist analytic expressions for
the radiated wave fields {GS}"/, GS[_,;f} and {GS;™*,GS]"}. To derive these, the
basic wave equations, that now have constant coefficients, are subjected to a
time-Laplace transformation and a spatial three-dimensional Fourier transfor-
mation. In the space-time transformed domain, the solutions corresponding to
the localized body force and strain rate sources can in principle, and in case the
embedding is also isotropic, easily, be found. The corresponding space-time so-
lutions are obtained after the successive application of the inverse spatial Fourier

transformation and the inverse time-Laplace transformation. Note that for our
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discretized Green’s functions, the inverse spatial Fourier integrals are uniformly
convergent since the result is a bounded function of position.

Equations (6.3) and (6.4) yield relationships between the values of the state
quantities in State ' A’ weighted over each of the supports of the localized sources
(the terms in the left-hand sides), the contrast and generating sources in D* and
the boundary values of the wave field at D/. This aspect lies at the oot of the
hybrid finite-element modeling to be discussed in Chapter 8.




Chapter 7

EXPANSION AND
WEIGHTING FUNCTIONS
FOR THE FINITE-ELEMENT
METHOD

Discretization Procedure

In the hybrid finite-element method for the scattering geometry introduced in

Chapter 6, the finite-element computations are restricted to the bounded domain
D3¢, The numerical handling of our acoustic wave problem in D¢ implies
that some discretized version of it is used to ’approximate’ the actual analytic
one defined through the partial differential equations, the boundary conditions
and the initial conditions presented in Chapter 2. We observe that each fluid
quantity QF = QF(z,t) occurring in the acoustic wave problem (which can be
a scalar, a vector, or a tensor of arbitrary rank) and defined on the domain D’
has, after discretization, a discretized counterpart [QF] = [QF](z,t) defined on
the discretized version [D’] of D/. Similarly, each solid quantity @S = QS(z,t)
'occurring in the acoustic wave problem (which can also be a scalar, a vector, or a
tensor of arbitrary rank) and defined on the domain D* has, after discretization,
a discretized counterpart [QS] = [QS](2,t) defined on the discretized version
(D*] of D*. In the applied discretization procedure the discretized version [D5¢]
of D5C is the union of the domains [D’] and [D?}, i.e., [D%°] = [Df] U [D*)].

OThe theory developed in this chapter has been presented in Stam and De Hoop (1990)

59
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To define in what sense the discretized wave field quantities approximate
the actual ones in the domains [D’] and [D?] we use the relations (5.12) and
(5.5), respectively, that have been derived from the reciprocity theorems of
the time-correlation type for a fluid and a solid. In the application of the
relation (5.12) to the discretized fluid domain [D/], we first choose an ap-
propriate sequence of piecewise continuously differentiable weighting functions
{wB(z,t; IWF), o8 (z,t; IWF)} with IWF = 1,..., NWF, defined on |D’]. Next,
the discretized fluid quantities [Q F] are substituted. Now, the discretized fluid
wave field quantities are considered to be an approximation of the exact ones in
[D/] if they satisfy the relation (5.12) for the whole sequence of chosen weighting
functions in the State'B’. Similarly, in the application of the relation (5.5) to the
discretized solid domain [D*], we first choose an appropriate sequence of piece-
wise continuously differentiable weighting functions {vZ (=, t; IWS),r2(z,t; IWS)}
with JWS = 1,...,NWS, defined on [D*]. Next, the discretized solid quantities
[QS] are substituted. Now, again, the discretized solid wave field quantities are
considered to be an approximation of the exact ones in [D*] if they satisfy the
relation (5.5) for the whole sequence of chosen weighting functions in the State
'B'.

The approximation of the acoustic wave field in the whole scattering domain
[D®C] is obtained by linking the ones in [D/] to the ones in [D’] along the
fluid/solid interfaces occurring in [D5€], where the relevant interface conditions

are required.
Discretization of the Computational Domain

The domain of computation D®C is discretized by taking it to be the union
[D5€) = UNT_, T(IT) of a finite number of tetrahedra {T(IT);IT =1,...,NT}
(simplices in R3) that all have vertices, edges and faces in common (see, Naber
1980). The vertices of the tetrahedra will also be denoted as the nodes of
the (geometrical) mesh and the supremum & of the maximum diameters of the
tetrahedra will be denoted as the mesh size.

Except for the (discretized) Green’s functions that have been introduced
in Chapter 6, each quantity QF = QF(=z,t) and QS = QS(z,t) occurring in

the acoustic wave-field problem will, in the interior of each tetrahedron, be
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approximated by the linear interpolation of its values at the vertices. We use
a local numbering that applies to each of the tetrahedra. The four vertices of
a tetrahedron T are denoted by {P(0), P(1), P{2), P(3)} and their position
vectors by {z;(0), z;(1), z:(2), z:(3)}, respectively. The position in the interior
of T or on its boundary 9T can be specified by the barycentric coordinates
{A(0), (1), A(2), A(3)} defined through

5= 23: AIV)zi (1Y) with 0 < A(IY) <1 and Zsj A(IY) =1. (7.1)

V=0 V=0

We observe that the barycentric coordinates A(IV) do perform the linear interpo-
lation in the tetrahedron (viz. of the position vector) we are looking for. To ex-
press the barycentric coordinates in terms of z;, some geometrical quantities as-
sociated with T are needed. First, the vectorial areas {4,(0), 4;(1), 4;(2), A:(3)}
of the faces of T that are directed along the outward normals to the faces of T
are introduced; they are given by (for the numbering we refer to Figure 7.1)

A(0) = etma(Zm(1)zn(2) + 2m(2)2,(3) + zm(3)2(1)) /2,
A1) = —€mn(zm(2)zn(3) + Zm(3)zn(0) + zm(0)24(2))/2, (7.2)
A(2) = ima(Zm(3)za(0) + 2, (0)z, (1) + 2m(1)2.(3))/2,

A(3) = —fimn(Zm(0)2,(1) + 2, (1)2,(2) + 2, (2)2,(0))/2,

where €;,,, is the completely antisymmetric unit tensor of rank three (Levi-
Civita tensor). The magnitude of the vectorial surface A;( V) is denoted by
A(I"). From (7.2) it follows that

‘i‘ A(IY)=o0. (7.3)

V=0

The volume of T is given by
V = Elmn(_zl(o)zm(l)zn(z) + zl(l)zm(z)zn(s)

—2(2) Zm(3) 2 (0) + 21(3) 2 (0) 2 (1)) /6. (7.4)

Now, we observe that at each vertex of T, the three vectorial edges leaving that

vertex and the three vectorial faces meeting at that vertex form, apart from
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P(3)
A,(1) 4 (0)

A, (2)
P(2) P(1)

P(0) 4 (3)

Figure 7.1: Tetrahedron T with its four vertices {P(0), P(1), P(2),
P(3)} and the outwardly directed vectorial areas {4,(0), A;(1), Ai(2),
A)(3)} of its faces.
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a constant factor, a set of (oblique) reciprocal base vectors. Let us consider
the vertex P(0). The three vectorial edges leaving this vertex are {z;(1) —
2;(0), 2:(2) — ;(0), z;(3) —z;(0) } and the three vectorial areas of the faces meeting
at this vertex are {A;(1), Ai(2), A:i(3)}. Now, it is easily verified that

[z(I¥) — zi(0)]4(JY) = —3V6(1¥,J") with IV =1,2,3 and JY =1,2,3,

(7.5)

where 6(IV,1¥) = 1 and 6(1IV,J¥) = 0 if IV # JY. From (7.5) it follows

that, at the vertex with position vector z;(0), the set of vectors {—[zi(1) —

2:(0)]/3V, —[z:(2) — ;(0)]/3V, —[z:(8) —2:(0)]/3V } is reciprocal to the set {A4;(1),

Ai(2), Ai(3)}, and the set {—A4;(1)/3V, —A4;(2)/3V, —A;(3)/3V} is reciprocal to

the set {z;(1) — :(0), z,(2) — z:(0), z:(3) — :(0)}. Returning to (7.1), we can,

by letting A(0) = 1 — A(1) — A(2) — A(3), write

3

z—z(0) = > MI)[=m(I") - z(0)]. (7.6)

V=1

Upon multiplying this equation by —(3V)~14;(JV) and using (7.5) we obtain
— (8V) Yz — m(0)]4(JV) = A(JY) for TV =1,2,3. (7.7)

Since further, on account of (7.3) and (7.7)
3

- (3V)_1[21 - 1:1(0)]44.1(0) = - Z )\(Iv), (78)
V=1
(7.6) leads to
1 — z,(0) = —(3V)? fj (2 — 2 (0)]Am(J¥ )2 (I7). (7.9)

Similar results hold for the other vertices as well. By combining the results we
have
3
z—o(l¥)=-@BV)? Y [2m — zn(IV)]An(J")n(JY) for IV =0,1,2,3.

JV=0

(7.10)
Summing the results for IV = 0,1,2, 3, respectively, and introducing the position
vector b of the barycenter of T through

b=(1/9) 3 u("), (7.1)

V=0
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we arrive at the symmetrical expression

I = b[ - (3V)_1 Zs: (zm - bm)Am(Iv).‘Dl(IV). (712)

V=0
On account of this relation, we can write

3

I = Z I[(IV)QS(IV;Z), (713)

V=0
where
$(IV;2) =1/4 — (3V) Yz — bp) A (TY). (7.14)

Comparing (7.13) with (7.1), we see that {¢(I";z); IV = 0,1,2,3} are nothing
but the barycentric coordinates of a point in T or on its boundary. On the
other hand, ¢(IV;z) performs a linear interpolation between the value one at
the vertex z; = z;(I V) and the value zero at the remaining vertices of 7.

In the tetrahedron T we use the functions ¢(IV; z) as local expansion func-
tions. The linear interpolation of a quantity QF(z,t) in a tetrahedron T present
in [Df] is correspondingly given by

[QF)(z,t) = zs: ASF(IV;t)o(IV;z) forz €T, (7.15)
V=0
in which
ASF(IY;t) = QF(z(1V);t) (7.16)

is the value of QF at the vertex with ordinal number IV. The linear interpolation
of a quantity QS(2,t) in a tetrahedron T present in | D’} is given by

[QS](z,t) = 23: A%S(I";t)¢(1V;z) forz €T, (7.17)
V=0
in which
A%(1V;1) = QS(2(1V);1) (7.18)

is the value of QS at the vertex with ordinal number IV. The global expansions,
for the domain [D5¢], of the quantities [QF] and [QS] follow by combining all
the local expansions. For the fluid quantities the latter are written as

[QF)(z,t) = % zs: ASF(IT, IV;t)®(IT,1V;z) for z € |D%C), (7.19)

IT=1]1V=0




7. EXPANSION AND WEIGHTING FUNCTIONS 65

in which
ASF(IT, IV ;t) = QF(z(I");t) for = € T(IT) (7.20)

is the value of QF in the tetrahedron T(IT) at its vertex with ordinal number

IV. For the solid quantities they are written as

NT 8
[QS)(z,t) = X > A9S(IT,IV;t)®(IT,IV;x) for x € [D*Y], (7.21)
IT=1]V=0
in which
AVS(IT, IV ;t) = QS(z(I");t) for z € T(IT) (7.22)

is the value of QS in the tetrahedron T'(IT) at its vertex with ordinal number
IV. In (7.19) and (7.21), the global expansion functions @ are defined by

(T, 1";z) = ¢(IV; 2)xrum)(z) for z € [D59, (7.23)

where xp(z) is the characteristic function of the set D, defined as

(7.24)

xo(z) = { 0 whenzgD

1 whenze D.

Discretization of the Medium Parameters

In the discretization of the medium parameters a distinction must be made be-
tween subdomains in which these parameters vary continuously with position
and subdomains in which surfaces of discontinuity in these parameters occur. It
is assumed that across such surfaces of discontinuity in medium parameters, the
parameter values jump by finite amounts. Especially in applications where accu-
rate values of the wave-field quantities up to these surfaces are needed (such as,
for example, in the modeling of borehole measurement situations in exploration
geophysics, and in the non-destructive evaluation of mechanical structures), spe-
cial measures have to be taken to model the behavior of these quantities accu-
rately. In principle, the medium properties can jump across any face of any
tetrahedron of the discretized geometry. To accomodate this feature, all nodes
of the geometrical mesh are considered as multiple nodes, where the multiplic-
ity of each node is equal to the number of tetrahedra that meet at that node

(Figure 7.2). The values of the constitutive parameters at the vertices follow
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vertices "

Figure 7.2: A multiple node in the discretized geometry and the tetra-
hedra that meet in this node. The multiplicity of the node in the figure
is equal to eight.
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from user-supplied input expressions that are spatially sampled in the interior
of each tetrahedron close to each of its vertices. Out of the thus constructed
local expansions of the medium parameters, their global expansions over the
domain of computation are composed. In these global representations a global
numbering is applied which is related to the local numbering by

I=IT+I" for IT=1,...,NT, IV =0,...,3. (7.25)

For a non-scalar constitutive parameter (such as the tensorial volume density
of mass for a fluid or a solid) the components with respect to the background
Cartesian reference frame are used in the discretization procedure. The relevant
global expansions for the fluid properties are written as
Neit
[l (=) = 3 AR (1)@ (I*/;2) for z € [D*C] (7.26)
Iri=1
for the fluid’s tensorial density of mass, where {®%/(I#/;z); 1%/ = 1,...,N*/}

is the sequence of its global linear expansion functions and {45/ (1°/); 1°/ =

1,...,N*/} is the sequence of its global tensorial expansion coefficients, and
N=
[k(z)] = > A*(I*)®*(I*,z) for z € [D°] (7.27)
I%=1

for the fluid’s compressibility, where {®*(I*;z); I* = 1,..., N*} is the sequence
of its global linear expansion functions and {A®(I*);I* = 1,...,N*} is the se-
quence of its global scalar expansion coefficients. The relevant global expansions
for the solid properties are written as

wer

(i (@)] = 3. AL(I7)@%*(I**;z) for z € [D%] (7.28)

I9e=1
for the solid’s volume density of mass, where {®%*(I*¢;z); I#* = 1,...,N**}
is the sequence of its global linear expansion functions and {A}’(I#*); I** =

1,...,N**} is the sequence of its global tensorial expansion coefﬁcients, and

e
[sijpe ()] = I; Al (I)®*(I*;z) for z € [D%9] (7.29)
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for the solid’s compliance, where {®°(I*;2); I* = 1,..., N*} is the sequence of its
global linear expansion functions and {4}, (I°); I* = 1,..., N*} is the sequence
of its global tensorial expansion coefficients.

Discretization of the Volume Source Densities

For the discretization of the volume source densities the same procedure as for
the discretization of the medium parameters is followed. The values of the vol-
ume source densities at the vertices of the tetrahedra out of which the discretized
geometry is composed, follow from user-supplied input expressions that are sam-
pled in the interior of each tetrahedron close to each of its vertices. Out of the
thus constructed local expansions of the volume source densities, their global
expansions over the domain of computation are composed in the same way as is
done for the medium parameters (with the same global numbering (cf. (7.25))).
Here, too, for the non-scalar volume source densities the components with re-
spect to the background Cartesian reference frame are used in the discretization
procedure. The relevant global expansions for the volume source densities in

the fluid are written as
NI

()= 3 A 087 (I12) forze [D5€) (7.30)

Hil=1

for the volume source density of body force in a fluid, where {®// (I7+/;2); I/ =
1,..., Nf/} is the sequence of its global linear expansion functions and {AL (1410
IHf=1,... NI } is the sequence of its global vectorial expansion coefficients,
and Ne

lg(z,t)] = > AY(I%)®*(I%z) for z € [D5C) (7.31)

I9=1

for the volume source density of injection rate, where {®?(I%; z); I = 1,..., N9}
is the sequence of its global linear expansion functions and {A9(I%t); I =
1,..., N} is the sequence of its global scalar expansion coefficients. The relevant
global expansions for the volume source densities in the solid are written as

NI
[fi(=,t)] = X AP (15 0)@*(17%z) forz € [D%] (7.32)
Ifie=1

for the volume source density of body force in a solid where {&/i*(I/; z); I/ =

1,..., N’} is the sequence of its global linear expansion functions and {A]"* (I/*;1);
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'#=1,...,N/ #} is the sequence of its global vectorial expansion coefficients,
and
hij(z,t)] = Z AL(IM 1) @M (I z) for z € (D) (7.33)
Ih=1

for the volume source density of injection rate, where {®*(I*; z); I" = 1,...,N*}
is the sequence of its global linear expansion functions and {A}(I*; ) I" =

1,..., N*} is the sequence of its global expansion tensorial expansion coefficients.

Discretization of the Wave-Field Quantities

In the discretization of the acoustic wave field quantities the situation is more
complicated. Here, some components are by necessity continuous across an in-
terface of discontinuity in material properties, while other components show a
finite jump across such a discontinuity surface. To preserve accuracy in the com-
putational results, it is necessary to take computational measures that enforce
the continuity conditions across an interface (in machine precision) and leave
the non-continuous components free to jump by finite amounts. The procedure
we apply is explained for an arbitrary non-scalar wave field quantity @ that
has to be approximated. This quantity can represent the fluid particle velocity
w, in [D’], the solid particle velocity v, in [D?] or the stress 7, in [D°]. The
non-scalar expansion coefficients in (7.15) and (7.17) have at each vertex to be
decomposed along a certain base consisting of three linearly independent vec-
tors. In a number of circumstances, the base vectors of the global Cartesian
background reference frame serve this purpose. Depending on the indicated
continuity requirements it may, however, be necessary to use local base vectors
instead of the global ones. As such, the three edges that leave the vertex under
consideration are candidates, as well as the three vectorial areas of the faces
that meet at that vertex. These two systems form, locally, a set of reciprocal
base vectors. (cf. (7.5)). The actual choice to be made depends on the behav-
jor of the medium properties in the neighborhood of the vertex (node) under
consideration.

The interfaces of discontinuity in the material properties that may occur
in the scattering domain D%C are of the fluid/fluid, the solid/solid, or the
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fluid/solid type. The relevant continuity conditions for a fluid/fluid interface
are given by (2.17) and (2.18), for a solid/solid interface by (2.10) and (2.11),
and for a fluid/solid interface by (2.19), (2.20) and (2.21). The specific choices
of the vectorial/tensorial decompositions of the wave field quantities at the ver-
tices of a tetrahedron are displayed below. Note that for a scalar quantity no
base of decomposition is required.

Choice of the vectorial/tensorial decompositions at the vertices of a
tetrahedron

Vertex coincides with nodal potnt not on an interface

In a vertex that coincides with a nodal point that is not on an interface we
decompose the field quantities along the axes of the background Cartesian ref-
erence frame.

Vertex cotncides with nodal point on a solid/solid interface

Across a solid/solid interface all components of the solid particle velocity and
the normal component of the stress (the traction) are to be continuous, while the
tangential components of the stress may jump by finite amounts. Accordingly,
in a vertex P(IV) of a tetrahedron T that coincides with a nodal point located
on a solid/solid interface, the solid particle velocity is decomposed along the
axes of the background Cartesian reference frame, and the stress 7,,(1";t) is
written as

Bll710) = ~@V) Y T, 0)[07) - 2(IV)AWY).  (1.34)

JV=0

Equation (7.34) implies that the second subscript of 7,,(I";t) is decomposed
along the local base vectors {—(3V)~![z,(JV)—z,(IV)|A(JV); JV =0,1,2,3,J" #
IV} that are directed along the edges meeting in P(I¥). Using (7.5), it follows
that the expansion coefficient

Tp(IV,JV;t) = 1pg(IV;8) A, (JV) /A(TY) with IV # JY, (7.35)

is the traction at the face with vectorial area A,(JY) in the vertex P(IV). Obvi-
ously, the term with JV = IV drops automatically from the summation (7.34);

for later purposes it is, however, advantageous to put

T,(I",I";t) = 0. : (7.36)
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The factor A(JV) in (7.34) and (7.35) drops out in the final result but is intro-
duced for the computational reason that the expansion coefficients truly have

the magnitude and dimension of a traction.
Vertez cotncides with nodal point on a fluid/fluid interface

Across a fluid/fluid interface the normal component of the fluid particle velocity
is to be continuous, while its tangential components may jump by finite amounts.
Accordingly, in a vertex P(IV) of a tetrahedron T that coincides with a nodal

point located on a fluid/fluid interface, the fluid particle velocity is written as

3
w,(IV;t) = —(3V)™ S_ w(V,J%;t)[z, (V) — z.(IV)]A(JY). (7.37)
JV=0
Equation (7.37) implies that the particle velocity w,(IV;t) is decomposed along
the local base vectors {—(3V)~! [z,(J") — z,(IY)] A(JY),JY =0,1,2,3,J" #
IV} that are directed along the edges meeting in P(I"). Using (7.5), it follows

that the expansion coefficient
w(I¥,JV;t) = w,(IV;t)A(JV)/A(IY) with IV # JY, (7.38)

is the magnitude of the normal component of the fluid particle velocity at the
face with vectorial area A.(JV) in the vertex P(I"). Obviously, the term with
JV = I" drops automatically from the summation (7.37); for later purposes it
is, however, advantageous to put

wW(Iv,IV;t) =0 (7.39)

Here, too, the factor A(JV) is introduced for the computational convenience
that the expansion coefficients truly have the magnitude and the dimension of

a velocity.
Vertex cotncides with nodal potnt on a fluid/solid interface

At a fluid/solid interface the normal component of the fluid particle velocity is
equal to the normal component of the solid particle velocity while their tangen-
tial components may differ by finite amounts. Further, the normal component
of the traction in the solid is equal to the scalar traction in the fluid, while the

tangential components of the traction in the solid are equal to zero. Accordingly,
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in a vertex P(IV) of a tetrahedron T situated in the solid part that coincides
with a nodal point that is located on a fluid/solid interface, the solid particle

velocity is written as

3
v, (IV;t) = —(3V)™ 3 v(IY,J%;t)[z.(JY) — =, (I")|A(JY). (7.40)
JV=0
In (7.40), the particle velocity v,{IV;t) is decomposed along the local base vec-
tors {~(3V) Yz, (JV)—=,(IV)]A(JY),JY =0,1,2,3,JV # IV} that are directed
along the edges meeting in P(IV). Using (7.5), it follows that the expansion co-
efficient

V(IY,JVit) = v, (I";8) A (JY)/A(JY) with IV # JY, (7.41)

is the magnitude of the normal component of the solid particle velocity at the
face with vectorial area A,(J") in the vertex P(IV). Obviously, the term with
JV = IV drops automatically from the summation (7.40); for later purposes it
is, however, advantageous to put

v({Iv,1V;t)=o. (7.42)

In a vertex P(I") of a tetrahedron T situated in the fluid part that coincides with
a nodal point that is located on a fluid /solid interface, the fluid particle velocity
is, again, represented by (7.37). Finally, the stress 7,,(I";t) is represented by
(7.34) where the coefficient T,(IV,J";t) is now given by

3

LUV, JVt) = > TV, 37, KV;e){6(J",KV) A, (K")/A(KY)  (7.43)
KV =0

+ [1-6(J7, K )lepuAr(JV)|z(KY) — z(1V)]/12(A(TY))*]}

where &, is the completely antisymmetric unit tensor of rank three (Levi-
Civita tensor). With the representation (7.43), the traction at the face with
vectorial area A,(JY) in the vertex P(IV) is decomposed along the base vec-
tors A,(JY)/A(JY), and {epuAs(JV)|zi(KY) — (1Y), K¥ = 0,1,2,3, KV #
IV,KY # JV}. The first one is nothing but the unit normal vector of the face
with vectorial area A,(JY); the two other ones are perpendicular to the nor-
mal vector of this face and one of its two edges that meet in the vertex P(IV).
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Obviously, the expansion coefficient
TV, JY,J%t) = T,(IV, JV;t) A, (JV)JA(JY) with JV £ 1Y, (7.44)

is the magnitude of the normal component of the traction at the face with

vectorial area A,(JV) in P(IV). Further, the two expansion coefficients
TV, 77, KY;t) = T,(1",J7;0)[z,(LY) — zp(1")]
with KV # IV, KY #JV, LV # IV, LY # J" (7.45)
and KV # LY,

are the innerproducts of the traction at the face with vectorial area 4,(J") in the
vertex P(IV) with the two edges of this face that meet in P(I') and completely
determine the tangential component of the traction in P(IY). Substitution of
(7.43) into (7.34) gives the representation of the stress 7,,(I";t) in the vertex
P(IV) as

el I73t) = —(BV)L Y Y T, K ){6(07 KV ) Ay (K”)/A(KY)
2(77) = 2,1V A(T) + 1 - 6(J°, K¥)] (7.46)

epnAr(JV)[2i(KY) = 2 (17)][2g(JV) = 2o (IV)}/[2A(S7)]}-

Obviously, the terms with K¥ = IV and JV = I" in (7.46) drop automatically

from the summation. It is advantageous however, to put
TV, IY,KV;t) =TIV, J",I";t) = T(I",I",I";t) = 0. (7.47)

With this, for each nodal point located on either of the interfaces under con-
sideration, appropriate expansions for the acoustic state quantities have been
defined.

Global Representations

The global representation of each wave field quantity is again composed out of
all its local representations. In this process, the relationships between the local

representations in the different tetrahedra in the geometrical mesh that exist on
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account of the continuity conditions that hold on their common faces, are taken
into account. Due to the way in which in a vertex of a tetrahedron the vectorial
and tensorial wave field quantities are decomposed, the required continuity is
simply accounted for by taking the proper local expansion coefficients occurring
in the local expansions in the two adjacent tetrahedra to be equal. Subsequently,
the resulting value is used to represent a single expansion coefficient in the global
representation. The related global expansion function is then the combination of
all the local expansion functions in the different tetrahedra that are "supervised”
by this global expansion coefficient. In the domain outside the union of the
supports of all these local expansion functions, the global expansion function is
defined to be zero. Summing the thus constructed global expansion functions,
the global representations of the wavefield quantities are arrived at. Note that
in these global expansions the number of global expansion coefficients is, in
general, less than the number of local expansion coefficients. For the fluid wave

field quantities we write the global expansions as
.
[w,](z,t) = > A*(I*;t)®,(I*;z) when z € [D/], (7.48)
Iv=0

for the fluid particle velocity in [D’], and

[o)(z,t) = % A°(I°;t)®(I°;z) when z € [D/]. (7.49)
Jo=0

for the scalar traction in [D’]. For the solid wave field quantities we write

Ne
[v,)(z,t) = :;0 A*(I*;t)®,(I°;z) when z € [D"]. (7.50)

for the solid particle velocity in [D?], and

[7pq](z,t) = g“ AT(I";t)®pe(I";2) when z € [D*]. (7.51)
I"=0
for the solid stress in [D?]. Note that the zero value of the tangential component
of the traction at a fluid/solid interface is accounted for by putting the relevant
local expansion coefficients of the type (7.45) equal to zero.
The presented global representations of the acoustic medium parameters, the
acoustic sources and the acoustic wave field quantities in [DC] are the discrete
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counterparts of the corresponding piecewise analytic exact wave field quantities
in this domain and are used as their approximations in the hybrid finite-element
method.

The expressions (7.35) and (7.46) do not exihibit explicitly the symmetry
of the tensorial stress at each vertex. This implies that not all nine coefficients
that can be globalized are linearly independent. In fact, three relationships
exist between them. The latter follow from contracting the expressions with
appropriate vectorial geometrical quantities associated with the vertex under

consideration and using the orthogonality relationship (7.5).
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Chapter 8

THE IMPLEMENTATION OF
THE HYBRID
FINITE-ELEMENT METHOD

In this chapter a hybrid finite-element method is described for the computation
of the acoustic wave field in the scattering geometry introduced in Chapter 6.
We repeat that in this configuration D5C is the bounded domain that contains
fluid and/or solid parts that may be arbitrarily inhomogeneous and anisotropic
and D, is the fluid or solid embedding, in general with simple medium properties.
In the hybrid finite-element method, the acoustic wave field in D%¢ is computed
numerically with the finite-element presented in Chapter 5. As was already
mentioned in Chapter 7, we in fact approximate the exact acoustic wave field
by a discretized representation defined in the discretized version [D%¢] of D¢,

As the starting point for the finite-element computation in the discretized
fluid domain [D’] C [D39] and the discretized solid domain [D*] C [D*°] the
integral relations (5.12) and (5.5) are taken. In (5.12) we substitute for the
medium properties of State ‘A’ the global representations (7.26) and (7.27), for
the sources of State 'A’ the global representations (7.30) and (7.31) and, finally,
for the wave field quantities of State ‘A’ the global representations (7.48) and
(7.49). Similarly, we substitute in (5.5) for the medium properties of State 'A'
the global representations (7.28) and (7.29), for the sources of State 'A’ the
global representations (7.32) and (7.33) and, finally, for the wave field quantities
of State 'A’ the global representations (7.50) and (7.51).

77
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Next, in each of the two integral relations an appropriate sequence of weight-
ing functions is substituted for State 'B’. Upon taking a reciprocity relation as
the point of departure of setting up a numerical scheme, it seems more or less
natural to treat the States ‘A' and 'B’ in an equivalent manner, which implies
that each specimen of the sequence into which State ' A’ is expanded is also taken
as a specimen of the State 'B'. Thus each global expansion function is used as a
weighting function (Galerkin method). We note that with this choice the num-
ber of global expansion functions and therefore also the number of the global
expansion coefficients of the wave field quantities of the State ' A’ is equal to the
number of weighting functions that are substituted for the State 'B’. The dif-
ferent integrals that show up in our finite-element formulation of the space-time

acoustic wave problem are evaluated in Appendix A.

To have a unique solution for the discretized version of the acoustic wave field
problem in [D®C], boundary conditions are required at the boundary [9D°).
To approximate the exact wave problem in D5C as much as possible, the type of
boundary conditions that guarantee its uniqueness are also used in its discretized
version. We distinguish two cases. In the first case, the generated waves in [ D]
do not reach the boundary [dD%C] within the chosen time window. In this case,
zero-valued boundary conditions suffice. In agreement with the analytical wave
problem in DC, these explicit boundary conditions are either of the Dirichlet
or the Neumann type. In the finite-element scheme they are applied to the
discretized versions [S{], [S]], [S?] and [S}) of the surface parts s!, s], s; and
53 of D¢, respectively. The zero-valued boundary conditions are accounted for
by just setting the global expansion coefficients related to the prescribed wave
field quantities at the boundary [D%C| equal to zero. In fact, in the case of
zero-valued boundary conditions, each combination of Dirichlet and Neumann
boundary conditions can be taken. They all yield a solution of the wave problem
in the discretized geometry. In general, these solutions differ. The discrepancy
between them is indicative of the discretization error as far as this is due to the
discretization of the boundary conditions. Next, the global expansion functions
that are related to a prescribed global expansion coefficient are omitted from
the sequence of the weighting functions in the computational scheme. In this

manner, the number of weighting functions substituted for the State 'B' remains
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equal to the number of the unknown global expansion coefficients of the acoustic

wave field quantities.

In the second case, the acoustic waves generated by the (contrast) sources in
[D%], have reached the boundary [8DSC] within the chosen time window. In
the exact acoustic wave problem in the infinite scattering geometry, the acoustic
waves generated in DC radiate across the boundary dD5¢ into the embedding
D,. To preserve this feature in the discretized version of the acoustic wave
problem, non-local boundary conditions are constructed to model the radiation
of the acoustic wave field across the boundary [8D%°] into the embedding Do.
For the fluid and for the solid embedding these non-local boundary conditions

have different forms.

In the case of a fluid embedding, we start with the Equations (6.1) and (6.2)
in which the discretized Green’s functions for a fluid medium occur. They yield
relationships between the values of the fluid state quantities weighted over each
of the supports of the localized source distributions, the contrast and generating
sources of the acoustic wave field in [D’], and its values at the boundary [0 D"].
Without loss of generality, we take the boundary [9D5°] at some distance from
the solid parts [D?] in [D5°], i.e. [D%°] = [S/] so that all nodal points on the
discretized boundary [0 D3| are present in the fluid medium. Next, we construct
the non-local boundary conditions for these nodal points at [0D%C] with the
aid of the relations (6.1) and (6.2). For this purpose, the global expansion
functions related to the acoustic wave field quantities at the nodal points on the
boundary [S/] are used as the sequence of localized source distributions in these
equations. For the medium properties and the sources in [D”] we substitute the
global representations (7.26), (7.27) and (7.30),(7.31), respectively. Finally, for
the acoustic wave field quantities the global representations (7.48) and (7.49)
are substituted. With these substitutions, we obtain a relationship between the
global expansion coefficients of the acoustic wave field quantities at the nodal
points on [0D5C], the ones at the interior nodal points of [Df] and the ones at
the nodal points on [dD?].

In the case of a solid embedding, we start with the Equations (6.3) and (6.4)
in which the discretized Green’s functions for a solid medium occur. They yield

relationships between the values of the solid state quantities weighted over each
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of the supports of the localized source distributions, the contrast and generating
sources of the acoustic wave field in D], and its values at the boundary (3D7].
Without loss of generality, we take the boundary [9.D5°] at some distance from
the fluid parts [D’] in [D5C], i.e. [ D5C] = [S?], so that all nodal points on the
discretized boundary [ D%¢] are present in a solid medium. Next, we construct
the non-local boundary conditions for these nodal points at [8D5C| with the
aid of the relations (6.3) and (6.4). For this purpose, the global expansion
functions related to the acoustic wave field quantities at the nodal points on the
boundary [S*] are used as the sequence of localized source distributions in these
equations. For the medium properties and the sources in [D*] we substitute the
global representations (7.28), (7.29) and (7.32), (7.33), respectively. Finally, for
the acoustic wave field quantities the global representations (7.50) and (7.51)
are substituted. With these substitutions, we obtain a relationship between the
global expansion coefficients of the acoustic wave field quantities at the nodal
points on [8D%C], the ones at the interior nodal points of [D?] and the ones at
the nodal points on [8D/].

The relations derived above for a fluid and a solid embedding are the non-
local boundary conditions that simulate the causal radiation of the acoustic
waves, generated in [DS°], into the sourcefree embedding D,. They are only
useful in our computational scheme if the discretized Green’s functions related
to our chosen sequence of localized source distributions can be found analyti-
cally. For a homogeneous fluid or solid embedding this is the case. The relations
are next added to the system of equations provided by the finite-element method
in [D®%°], in which we omit from the sequence of weighting functions the global
expansion functions that were used as localized source distributions in the rela-
tions (6.1) and (6.2) or (6.3) and (6.4). In this manner, the number of weighting
functions substituted for the State 'B’ remains equal to the number of the un-

known global expansion coefficients of the acoustic wave field quantities.

In our computational scheme, the finite-element method is only applied in
the spatial direction, because in this direction we may have inhomogeneities.
This so-called partial discretization procedure (Zienkiewicz and Morgan 1983,
p.266) of our space-time acoustic wave problem leads to a square system of lin-

ear, first-order, ordinary differential equations as far as the time coordinate ¢ is
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concerned. In it, the global expansion coefficients used in the global representa-
tions of the acoustic wave field quantities occur as the unknown time functions.
In principle, this system can, since it has constant (i.e., time-independent coeffi-
cients), be solved analytically. The analytic solution is just a linear combination
of exponential time functions, each term having in its exponent one of the eigen-
values of the system matrix. Although such analytic solutions are possible they
may be so complex that one has to resort to a numerical solution method in-
stead. Besides the numerous finite-difference methods that are available for the
solution of general systems of linear, first-order differential equations, we can
also make use of a finite-element method in the time direction. This method
is discussed in Zienkiewicz (1983, p.405) and in Zienkiewicz and Morgan (1983,
p.283). First, the time domain (determined by the chosen time window) is dis-
cretized into a union of time intervals of equal length. Next, piecewise linear
expansion functions (‘hat’ functions) are defined to be used in the representa-
tion of the unknown time functions on the discretized time interval. Finally, the
system of differential equations is weighted over the discretized time domain for
a particular sequence of weighting functions leading to a marching-on-in-time
scheme. Several schemes can be found in this framework by making different
choices for the time-weighting functions (Zienkiewicz 1983, p.411, Zienkiewicz
and Morgan 1983, p.287). In our computational method we apply this finite-
element discretization in the time direction where we take the time weighting
functions to be equal to the time expansion functions, i.e., we take for the time
weighting functions also ’hat’ functions. The relevant procedure leads to a dis-
cretization of the four-dimensional space-time geometry into a union of prisms
in space-time in which the acoustic wave field quantities are approximated by
local expansion functions, each of which is the product of a linear function of

space and a linear function of time.
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Chapter 9

THE TWO-DIMENSIONAL
ACOUSTIC WAVE PROBLEM

Introduction

To avoid the extensive use of computer storage capacity and computation time
for testing our finite-element method, it is tested for some two-dimensional
acoustic wave problems. For them, it is still possible to illustrate the specific
advantages of the use of our elements. The main difference with the three-
dimensional case is the construction of the local expansion functions. The el-
ementary regions into which the domain of computation is discretized are now
triangles {simplices in R?) instead of tetrahedra (simplices in R%). In each tri-
angle, the quantities associated with the wave motion are again approximated
linearly. The local expansion functions for the triangle will be presented. The
same type of arguments as in Chapter 7 are used to construct from the local
expansions the global ones. For simplicity, the media in the test problems are
taken to be istropic. Substituting the expressions (2.5) and (2.6) for the tenso-
rial volume density of mass and the compliance of the solid, we obtain for the

equation of motion in the solid D*
— AkmpgOmTpg + p°Ove = fi, (9.1)
and for the equation of deformation rate in the solid D*
AijmrOmr — (Aij6pq + 2M Aijpg) Bs7pg = hij. (9.2)
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Substituting the expression (2.16) for the tensorial volume density of mass of
the fluid, we obtain for the equation of motion in the fluid D/

— bimOm0 + p? 3wy, = f] (9.3)
and for the equation of deformation rate in the fluid Df

SmrOmw, — kB0 = q. (9.4)

Two-dimensional Acoustic Wave equations

A wave motion in three-dimensional space is called two-dimensional if all phys-
ical quantities associated with the wave motion are independent of one of the
Cartesian coordinates. As a consequence, the geometrical configuration as well
as the physical properties of the material in which the wave motion occurs are
independent of that particular coordinate. Let z5 be that coordinate, then we
have 8; = 0 (see Figure 9.1). In what follows, the subscript 2 will be indicated
explicitly, while Greek subscripts will be used to denote the remaining subscripts
1 and 3. In the solid the wave motion now consists of two uncoupled wave mo-
tions. The first is a horizontally polarized shear wave motion (S H —wave) char-
acterized by the non-zero quantities 7,;, vz, f; and h,, that satisfy the equation
of motion

— A3py20p8Tyz — AapasBpTes + p*Bva = f;, (9.5)

and the equation of deformation rate
Aaz-yza.,vz - 2M8,ra2 = haz. (96)

The wave motion is a horizontally polarized two-dimensional (shear) wave mo-
tion in a solid. The second one is a vertically polarized combined P— and
SV —wave motion characterized by the non-zero quantities 7,4, 722, Vas f2, hag

and hg; that satisfy the equation of motion
- Aaﬂ’yziaﬁr‘yﬁ + paatva = f;v (97)
and the equation of deformation rate

Aaﬁ-w&-,vg — (A(Sap&,.s + 2MAaﬂ—,5)atT,.,5 - A&apangg = hag, (9.8)

-Aao,‘;agﬂ,a - (A + 2M)8,r2, = hzz. (9.9)
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AN
spatial
configuration
cylindrical in z,

~

—-—

I\s.

Figure 9.1: The two-dimensional spatial configuration that is cylindrical
in the z,—direction.
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Elimination of 3, from Equations (9.8) and (9.9) leads to

A,,p.,ga,,v;—{[2AM/(A+2M)]6ap6,,5+2MAa,g,,5}3,r,,5 = hap—[A6ap/(A+2M)]hn.

(9.10)
Equations (9.7) and (9.10) are rewritten as
= (1/2)05(7ap + 78a) + 0*Bpva = f2, (9.11)
and
(1/2)(3avp + Bpva) — [2AM/(A + 2M))6,58:Toq — M3, (Tup + T54) =
hap — [Abap/(A + 2M))hss. (9.12)
Contracting Equation (9.12) with the Kronecker tensor 6,5 we find
Bty = {(A+2M)/[2M(3A + 2M)]}9. v, (9.13)

~ {(A +2M)/[2M (34 + 2M)[}hry + {A/|M (34 + 2M)]}hss.
Substitution in (9.12) gives
(1/2)(8avp + Bpva) — [A/(3A + 2M)|60g305 — M3y (1ap + 7pa) =
hap — 6ap[A/(BA + 2M))(Ruyy + hy3). (9.14)

Equations (9.11) and (9.14) are taken as starting point for the computation of
the horizontally polarized two-dimensional wave motion. Eliminating the stress
from them leads to a second order wave equation for the particle velocity v, in
which the wave speed of the P—wave

cp = [(A+2u)/p]'* = {(A + M)/[M(3A + 2M)p)} /2 (9.15)
and the wave speed of the S—wave ‘
es = (u/p)'/? = (4Mp)™1/? (9.16)

occur. In the fluid the two-dimensional wave motion satisfies the equation of
motion that decomposes into

- aﬁaﬁa + platwa f,f, (917)

plow, = f], (9.18)
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and the equation of deformation rate is

8apBawg — KOO = q. (9.19)

Expansion and Weighting Functions for the Two-dimensional Finite-
element Method

The two-dimensional domain of computation D%C is discretized by taking it to
be the union [D%C) = UM, T(IT) of a finite number of triangles {T(IT); IT =
1,...,NT} (simplices in R?) that all have vertices and edges in common (see,
Naber 1980). The vertices of the triangle will also be denoted as the nodes of
the (geometrical) mesh and the supremum h of the maximum diameters of the
triangles will be denoted as the mesh size.

Each fluid and solid quantity QF = QF(z,t) and QS = QS(z,t), respec-
tively, occurring in the acoustic wave-field problem will, in the interior of each
triangle, be approximated by the linear interpolation of its values at the vertices.
We use a local numbering that applies for each triangle. The three vertices of
a triangle T are denoted by {P(0), P(1), P(2)} and their respective position
vectors by {z,(0),z,(1),z.(2)}. The position in the interior of T or on its
boundary 8T can be specified by the barycentric coordinates {A(0), A(1),A(2)}
defined through

T, = i AIV)zo(IV) - with 0 < A(IY) <1 and zzj AMIV)=1. (9.20)
IV =0 V=0

We observe that the barycentric coordinates A(I') do perform the linear in-
terpolation in the triangle (viz. of the position vector) we are looking for. To
express the barycentric coordinates in terms of z,, some geometrical quantities
associated with T are needed. First, the vectorial lengths {Lq(0), La(1), La(2)}
of the edges of T that are directed along the outward normals to the edges of T
are introduced; they are given by (for the numbering we refer to Figure 9.2)

Ly(0) = eazpl(2s(1) — z5(2)],

eazpl(z8(2) — z5(0)], (9.21)

il

L,(1)

La(2) = eazsl(zs(0) — 25(1)];
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La(1) P(2) Lq(0)

P(1)
P(0)

La(2)

Figure 9.2: Triangle T with its three vertices {P(0), P(1), P(2)} and
the outwardly directed vectorial lengths {L,(0), L,(1), L,(2)} of its
edges.
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where €., is the completely antisymmetric unit tensor of rank three (Levi-Civita
tensor). The magnitude of the vectorial length L,(I") is denoted by L(IV). It
follows that

zzj L.(IV) =0. (9.22)
V=0
The area of T is given by
A = g24p]z6(0)z6(1) + z4(1)75(2) + z4(2)zs(0)]/2. (9.23)

Now, we observe that at each vertex of T, the two edges that leave that vertex
and their two vectorial lengths form, apart from a constant factor, a set of
(oblique) reciprocal base vectors. Let us consider the vertex P(0). The two
edges leaving this vertex are {z,(1) —24(0), z4(2) —2,(0)} and their two vectorial
lengths are {L,(1), L.{2)}. Now, it is easily verified that

(2o (1Y) — 24(0)]La(JY) = —246(1V,JY) with IV =1,2 and JV =1,2,
(9.24)
where 6(IV,IV) = 1 and 6§(IV,JY) = 0 if IV # JY. From (9.24) it follows
that, at the vertex with position vector z,(0), the set of vectors {—{z,(1) —
7,(0)]/2A, —[74(2) —z,(0)]/2A} is reciprocal to the set {L,(1), L,(2)}, and the
set {—La(1)/2A, —L,(2)/2A} is reciprocal to the set {z4(1) — z4(0),z,(2) —
7,(0)}. Returning to (9.20), we can, by letting A(0) = 1 — A(1) — A(2), write
2

2o~ 2a(0) = 3. AIY)[za(I") — 24(0)). (9.25)

V=1

Upon multiplying this equation by —(24)7'L,(JV) and using (9.24) we obtain
— (24) 7 za — Ta(0)] Lo (V) = A(JY) for J¥ =1,2. (9.26)

Since further, on account of (9.22) and (9.26)

2

— (24) 0 — 2o (0)La(0) = = 3 A("), (9.27)
(9.25) leads to
ra = 2a(0) = —(24) 3 [z~ 25O Lp()2ald). (029)

JV=0
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Similar results hold for the other vertices as well. By combining the results we
have

Ta—zo,(IV) = —(24)” Z [za—z6(IV)|La(J" )24 (JY) for IV =0,1,2. (9.29)
JV=0
Summing the results for IV = 0,1, 2, respectively, and introducing the position
vector b, of the barycenter of T through

be = (1/3) sz z(I"), (9.30)

V=0

we arrive at the symmetrical expression

= ba — Z [z8 — ba) L (I¥ ) za(IV). (9-31)

V=0
On account of this relation, we can write
2

Ty = VX_: z.(I")¢(IV; z), (9.32)
where
o(IV;2) = 1/3 — (24) Y (zps — bp) Ls(I¥). (9.33)

Comparing (9.32) with (9.20), we see that {¢(I";z); IV = 0,1,2} are nothing
but the barycentric coordinates of a point in T or on its boundary. On the
other hand, ¢(IV;z) performs a linear interpolation between the value one at
the vertex z, = z,(IV) and the value zero at the remaining vertices of 7.

In the triangle T we use the functions ¢(IV;z) as local expansion functions.
The linear interpolation of a quantity QF(z,t) in a triangle T present in [Df ]is
correspondingly given by

[@F)(z,t) Z ASF(IV;t)¢(IV;z) forzeT, (9.34)
V=0
in which
ACF(1V;t) = QF (=(IV);t) (9.35)

is the value of QF at the vertex with ordinal number IV. The linear interpolation

of a quantity QS(z,t) in a triangle T present in [D?] is given by

[QS](z,t) = i A(IV;t)p(1V;z) forze T, (9.36)

V=0
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in which _
AVS(1V;t) = QS(=(I7);t) (9.37)
is the value of QS at the vertex with ordinal number IV. The global expansions

of the quantities [QF] and (@S] follow by combining all the local expansions.
For the fluid quantities they are written as

NT
[QF|(z,t) = >_ i ASF(IT, IV ;t)®(IT, IV ;z) for z € [D5C],  (9.38)
IT=11V=0
in which
ASF(IT,IV;t) = QF (2(IV);t) for z € T(IT) (9.39)

is the value of QF in triangle T'(IT) at its vertex with ordinal number IV. For

the solid quantities they are written as

NT 2

[@S|(z,t) = 3. 3 ASS(IT,IV;t)@(IT,I";z) for z € [DC],  (9.40)
IT=11v=0
in which
AQS(IT, IV ;t) = QS(z(IV);t) for z € T(IT) (9.41)

is the value of QS in triangle T'(IT) at its vertex with ordinal number IV. In
(9.38) and (9.40), the global expansion functions ® are defined by

&(IT,1V;z) = ¢(I"; 2)xrur)(z) for x € [DY), (9.42)

where xp(x) is the characteristic function of the set D, defined as

_J 0 whenzgD
Xo(2) = { 1 whenz € D. (9.43)

The specific choices of the vectorial/tensorial decompositions of the wave field
quantities at the vertices of a triangle are displayed below. Note that for a scalar

quantity no base of decomposition is required.

Choice of the vectorial/tensorial decompositions at the vertices of a
triangle

Vertez coincides with nodal point not on an interface
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In a vertex that coincides with a nodal point that is not on an interface, we
decompose the field quantities along the axes of the background Cartesian ref-

erence frame.
Vertex coincides with nodal point on a solid/solid interface

Across a solid/solid interface all components of the solid particle velocity and
the normal component of the stress (the traction) are to be continuous, while the
tangential component of the stress may jump by a finite amount. Accordingly,
at a vertex P(IV) of a triangle T that coincides with a nodal point located on a
solid/solid interface, the solid particle velocity is decomposed along the axes of

the background Cartesian reference frame, and the stress 7,4(I";t) is written as

Tap(IV3t) = —(24)7 37 Ta(IV, 7V t)[zp(JY) — 2p(1")]L(JV).  (9.44)

JV=0

As far as the second subscript of rap(IV; t) is concerned it is decomposed along
the local base vectors {—(24) 7 Y[zs(JV) — z5(IV)]L(JY),JV =0,1,2,JV # 1"}
that are directed along the edges meeting in P(IV). Using (9.24), it follows that
the expansion coefficient

T (IV,JY;t) = ras(IV ;) La(JV)/L(JY), with IV # JY, (9.45)

is the traction at the edge with vectorial length Lg(J") at the vertex P(IY).
Obviously, the term with J¥ = IY drops automatically from the summation
(9.44); for later purposes it is, however, advantageous to put

T,(IV,I";t) = 0. (9.46)

Vertez coincides with nodal point on a fluid/fluid interface

Across a fluid/fluid interface the normal component of the fluid particle velocity
is to be continuous, while its tangential component may jump by a finite amount.
Accordingly, at a vertex P(I") of a triangle T that coincides with a nodal point
located on a fluid/fluid interface, the fluid particle velocity is written as

wall'31) = (@A) 3 WY, "3 0lzald) - 2alINLWY).  (947)

JV=0
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The particle velocity we (I ;t) is decomposed along the local base vectors {—(24) ™!
[2o(JV) =2 (IV)] L(JV),JV =0,1,2,J" # I"} that are directed along the edges
meeting at P(IV). Using (9.24), it follows that the expansion coefficient

W(I",J";t) = wa(IV;8) La(JV)/L(JY), with I £ JY, (9.48)

is the length of the normal component of the fluid particle velocity at the edge
with vectorial length L, (J") at the vertex P(IV). Obviously, the term with
JV = IV drops automatically from the summation (9.47); for later purposes it

is, however, advantageous to put
w(I',IV;t) = 0. (9.49)

Vertex coincides with nodal point on a fluid/solid interface

At a fluid/solid interface the normal component of the fluid particle velocity is
equal to the normal component of the solid particle velocity while their tangen-
tial components may differ by a finite amount. Further, the normal component
of the traction in the solid is equal to the scalar traction in the fluid, while the
tangential components of the traction in the solid are equal to zero. Accordingly,
at a vertex P(I") of a triangle T situated in the solid part that coincides with a
nodal point that is located on a fluid/solid interface, the solid particle velocity

is written as
2

va(IV;t) = —(24)7* 5= v({I7V,7%;5t)[za(J") — za(IV)]L(JY). (9.50)

JV=0
In (9.50), the particle velocity v4(I";t) is decomposed along the local base vec-
tors {—(24) Yz, (JY) = zo(IV))L(JV), IV =0,1,2,J # IV} that are directed
along the edges meeting in P(IV). Using (9.24), it follows that the expansion

coefficient
V({IY,J";t) = v (IV;t) L (JV)/L(JY), with IV #JY, (9.51)

is the length of the normal component of the solid particle velocity at the edge
with vectorial length L.(JY) at the vertex P(I'). Obviously, the term with
JY = IV drops automatically from the summation (9.50); for later purposes it
is, however, advantageous to put

v(I’,I";t) =o. (9.52)
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At a vertex P(IV) of a triangle T situated in the fluid part that coincides with
a nodal point that is located on a fluid/solid interface, the fluid particle velocity
is, again, represented by (9.47). Finally, the stress 7,4(I";t) is represented by
(9.44) where the coefficient T,(IV,JV;t) is now given as

To(IV,JV;t) = zzj T(1V,J",K";t){6(J", K")Lo(KY)/L(K") (9.53)
KV=0

+[1-6(J7, K" )[za(KY) = 2a(1")}/(L(IV))?}.

With the representation (9.53), the stress is decomposed along the base vectors
Lo(JY)/L(JV) and {[z.(KY) ~z,(IV)],K¥Y =0,1,2, K # IV, K" # JV}. The
first one is nothing but the unit normal vector of the edge with vectorial length
Ln(JV); the other one is directed along this edge. Obviously, the expansion
coefficient

T(IY,JY,0V;t) = To(IV,JV;t) Lo (JY)/L(JY), with JV # 1Y (9.54)

is the length of the normal component of the traction at the edge with vectorial
length L,(J") in P(IV). Further, the expansion coefficient

T(IV,JY,KY;t) = T,(I",J";t)|za(KY) — z,(IY)], with KV #1V,J"V # KV

(9.55)
is the innerproduct of the traction at the edge with vectorial length L,(JY) in
the point P(IV) and completely determines the tangential component of this
traction. Substitution of (9.53) into (9.44) gives the representation of the stress
748(I¥;t) in the vertex P(IY):

Tap(IV;t) = 52‘_, i T(I",JY,KV;t){6(JV,K")

JY=0KYV=0

[La(K”)/ LK zo(J¥) — 26(1")]/ L(I") (9-56)
+[1 =87, K")[za(KY) = za(I" )[z6(J") — 2(I")]/L(J")}-

Obviously, the terms with K¥ = IY and JV = I in (9.56) drop from the

summation. It is advantageous however, to put

TV, IV, KY;t) =T(1",J",1I";t) = T(I", IV, 1";t) = 0. (9.57)
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With this, for nodal points located on either of the interfaces that occur in
our problem, appropriate expansions for the acoustic state quantities have been
defined.

The global representation of each wave field quantity is again composed out
of all its local representations. In this process, the relationships between the
local representations in the different triangles in the geometrical mesh that exist
due to the continuity conditions that hold on their common edges, are taken

into account.
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Chapter 10

TWO-DIMENSIONAL
ACOUSTIC WAVES
GENERATED BY A STRIP
LOAD AT THE BOUNDARY
OF A SEMI-INFINITE FLUID

Introduction

The two-dimensional acoustic wave motion generated by an arbitrary distributed
impulsive surface load on the boundary of a semi-infinite lossless fluid is investi-
gated theoretically. With the aid of the Cagniard-De Hoop method closed-form
expressions are obtained for the particle velocity and the scalar traction of the
generated wave motion. For details of the Cagniard-De Hoop method see, for
example, Achenbach (1973), Miklowitz (1978), Aki and Richards (1980), De
Hoop and Van der Hijden (1985), or De Hoop (1988).

The practically important case is considered where the strip exerts on the
boundary surface of the fluid a normal force. The case of a uniformly distributed
impulsive strip load of the normal-load type is worked out in detail. Synthetic
seismograms are presented for an array of shallow receivers close to the strip
source, where a plane wave contribution is manifest in addition to the cylindrical
body wave. For the time shape (source signature) of the exerting force, a damped

sinusoid is taken. The results are of importance as test cases for the accuracy

97
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’
—-a S a
> o

75
AL 77
)

Figure 10.1: Semi-infinite, homogeneous, isotropic, lossless fluid with
medium parameters p and k and the strip source of extension [—a,a]
at its boundary. The strip source exerts a normal force ¢, .

in the computational modeling of acoustic wave problems by, for example, time-
domain finite-difference or finite-element methods {(see, Alterman and Karal,
1968; Kelly et al., 1976; Emerman et al., 1982; Marfurt, 1984; Virieux, 1984,
1986).

Basic Equations

The acoustic waves under consideration are small-amplitude disturbances trav-
eling in a semi-infinite, homogeneous, isotropic, and lossless fluid. The physical
properties of the fluid are characterized by its volume density of mass p and
its compressibility . To specify the position in the configuration we employ
the coordinates {z;,z;,z3} with respect to a fixed, orthogonal, Cartesian ref-
erence frame with origin O and the three mutually perpendicular base vectors
{il,i,,is} of unit length each. In the indicated order, the base vectors form a
right-handed system. In accordance with the geophysical convention, {3 points
vertically downwards (Figure 10.1). The subscript notation for Cartesian vec-
tors and tensors is used and the summation convention applies. The structure
is shift-invariant in the direction of . The time coordinate is denoted by ¢.
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Partial differentiation is denoted by &; 8, denotes differentiation with respect
to z,, 8; is a reserved symbol for partial differentiation with respect to ¢.

The fluid medium occupies the half-space
D = {z,, € R* 13 > 0}. (10.1)

A force is applied to the surface of the fluid; it is taken to be independent of
z,. As a consequence, all physical quantities associated with the wave motion
are independent of 3 as well, and @; = 0. The resulting two-dimensional wave
motion is characterized by the non-zero particle velocity components w; and
ws and the non-zero scalar traction ¢. The corresponding components of the

(sourcefree) equation of motion in the interior of D are

I

— 310' + patwl 0,

(10.2)
- 630' + pat‘IU3 = 0.

The scalar traction is related to the non-zero components of the particle velocity

through the (sourcefree) deformation rate equation (constitutive relation)
B0 = (1/£)(S1w; + Bsws). (10.3)

At the boundary of D, a surface load is applied to the fluid. Its (prescribed)
normal force has the vertical component ¢,. Hence, the boundary condition

- lirlr(x)or = ¢, (z,,t) for all z; and t, (10.4)
z3

is to be satisfied. Let the source start to act at the instant t = 0, then ¢, (z1,¢) =
0 when t < 0, while

{w1, w3, 0}(z1, z5,t) =0 when t < 0. {10.5)
Equation (10.5) describes the causality of the generated wave motion.

Method of Solution

The Cagniard-De Hoop method is used to obtain analytical expressions for the

particle velocity and the scalar traction. The first step in this method consists
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of carrying out a one-sided Laplace transformation with respect to time. To
show the notation we give the transformation for the particle velocity:
(2]

W (21, T3, S) =/ exp(—st)wi(z;, z3,t)dt. (10.6)

In (10.6), s is a real, positive parameter that is chosen large enough to ensure the
convergence of integrals of the indicated type. The next step consists of carrying
out a one-dimensional Fourier transformation with respect to the horizontal
coordinate z,. For the particle velocity this transformation is given by

wy(te, zg,8) = exp(isaz, )y (z;, 3, §)dz,, (10.7)
T1=-00

where & € R. The corresponding inverse transformation is given by (note that
the actual Fourier-transform variable in (10.7) is sa)

Wi (3, T3, 8) = (,<s/21|’)/oo exp(—isaz; ) (i, z3, s)da. (10.8)
a oo

Subjecting the equation of motion (10.2) and the equation of deformation rate
(10.3) to these transformations, 8; can be replaced by s and 9; by —isa, and
a system of ordinary differential equations in zs is arrived at (Van der Hijden,
1988):

OsF = —sAF, (10.9)

where the field matrix f: is the column matrix with the elements
Fy=-5, F, =i, (10.10) -
and the system matrix A4 is the square matrix with the elements
A=A =0,
(10.11)
Az =p, An = (1/p)[1/c} - (ie)?],

where ¢; = (pk)"Y/? is the fluid wave speed. Note that A is independent of
s. Equation (10.9) represents a system of linear first-order ordinary differential
equations in z3. The eigenvalues of 4 are found to be vy, with

vr = v(ie) = [1/¢} - (ia)]Y?, Re(vs) > 0. (10.12)
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The solution of (10.9) that is bounded as z3 — oo can be written as
F =W(ia,s)é(ia) exp(—svszs), (10.13)

in which

é=é(ia) = {p,71}7 (10.14)
is a normalized eigenvector of A corresponding to the eigenvalue ;. Note that
é(ia) is independent of s. The amplitude coefficient W (ia, s) in (10.13) follows
from the application of the boundary conditions (10.4) at 3 = 0. It is obtained

W(ia,s) = W(ia)é, (ia,s) = (p7") ¢ (i, ). (10.15)

Transforming the solution (10.13) back to the (zi, 23, s) —~domain, the s—domain
wave field constituent
N 00
F = (s/27) / W (ia, s)&(ia) exp|—s(iaz; + 17zs)]da (10.16)
a=—00
is obtained. Starting from the expression (10.16), the case of a uniformly dis-
tributed strip load of the normal-force type is further investigated in the next

section.

Cagniard-De Hoop Method for the Uniformly Distributed Normal
Strip Load

In this section the case of the uniformly distributed strip load of the normal-load
type is worked out in detail. First the ray parameter p = ta is introduced in

the integral representation (10.16). This leads to the expression
~ . 100 -
F= (s/27rz)[ W (p, )€(p) exp|—s(pz1 + vzs)|dp. (10.17)

p=—100

Now, along the strip
S ={z,€ R} —a<z <a, 73 =0} (10.18)

of width 2a a spatially uniformly distributed normal-load is exerted on the fluid
(Figure 10.1). The spatial dependence on z; of the strip load is modeled by
the difference of two unit step loads; one of which is active on the interval

(—a, o0), the other one being active on the interval (a, o). The combination of
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the two equals unity on the interval (—a,a) and vanishes outside this interval.
Correspondingly, the distribution of the surface load has the form

é1(z1,t) = & (t)[H (21 + a) — H(z: — a)], (10.19)

where
H(z,) = {0,1/2,1} for { z; < 0,z, =0,z; > 0} (10.20)

is the Heaviside unit step function. The space-time transformed expression
corresponding to (10.19) is

$1(p, s) = &, (s)[exp(spa) — exp(—spa))/sp. (10.21)

The expression (10.21) is substituted into (10.15) giving the amplitude coeffi-
cient that is substituted into (10.16). We observe that in the integrand in this
expression the point p = 0 is a regular point as long as the two terms in the
numerator are kept together. However, in the application of the Cagniard-De
Hoop method, we have to separate these two terms and each of them has a
simple pole at p = 0. To handle this singularity, the integrand in (10.186) is
continued analytically into the complex p—plane away from the imaginary axes.
Using Cauchy’s theorem, the path of integration is, before the separation of the
two terms in (10.21), deformed into the path L* that deviates from the imag-
inary axes along a semi-circle of vanishingly small radius around p = 0 in the
right half of the p—plane (Figure 10.2). (A semi-circle around p = 0 in the left
half of the p—plane could have served as well; the two types of deviation lead to
the same final results.)

With the above, we obtain for the wave-field contribution
E(Zh T3,s) = *[EE(Ix + a,z3,s) — FA_E(xl - a,z3,5)), (10.22)

where

A

EE(X y I3, 3) =
(8. (e)/2m] [, (W (p)/ple(p) exbl-s(ox +vszs)ldp,  (10.23)

in which x stands for z; +a or z, — a, respectively, and the expressions for W (p)
and g(p) are given in (10.15) and (10.14), respectively.
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Figure 10.2: The contour L* in the complex p—plane.

Next, we take advantage of the symmetry of the configuration with respect

to the plane z; = 0. In the present case, we have the symmetry relations

"‘wl(—xla z3, t)a

I

wi(z1,Z3,t)

w3(_zlaz3’t)s (10.24)

i

ws(z1,23,t)

o(zy,z3,t) = o(—z1,7s).
Once the wave field has been determined in the domain
D" = {z, € R* z; > 0,23 > 0}, (10.25)

its values in the entire half-space D are known via (10.24).
Body Wave Constituent

The first step in the Cagniard-De Hoop method consists of deforming, in each
of the two terms in (10.22), the path of integration L* in the complex p—plane
into a path L? along which

pPX + %3 =T, (10.26)
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where 7 is real and positive. By virtue of Jordan’s lemma (Whittaker and
Watson 1950, p.115) the contribution from joining circular axes at infinity van-
ishes, and hence Cauchy’s theorem ensures that the integral along the imaginary
p—axes is equal to the integral along L?. In (10.26), x = x, +a for the first term
in (10.22) and x = z; — a for the second term in (10.22). Such a path is denoted
as a Cagniard-De Hoop path. In the process of deformation we encounter the
singularities in W (p)/p, e(p) and v;(p) = (1/¢ — p*)*/%. These are: the branch
points p = +1/¢s of 47 that also occur in g(p), and the pole p = 0. The pole
p = 0 will be shown to be associated with the downgoing plane wave that ex-
ists in the vertical region below the strip S. Since the application of Cauchy’s
theorem in connection with the deformation of the path of integration in the
complex p—plane requires the integrands to be single-valued, branch cuts are, in
accordance with {10.12), introduced along Im(p) = 0 and 1/¢; < [Re(p)| < oo,
i.e., where Re(7;) = 0. In the cut p—plane, we then have Re[y/(p)] > 0. De-
pending on the position of the point of observation, three cases are distinghuised
for the deformation of the contour L* in (10.22) in the complex p—plane (Fig-
ure 10.3). First, if x > O the contour is deformed into the right half of the
complex p—plane. Secondly, if x = 0 the contour remains unchanged and runs
along L* . Finally, if x < 0 the contour is deformed into the left half of the
complex p—plane, in which case the contribution from the pole p = 0 is to be
taken into account. In this procedure the deformed path of integration in (10.23)
is obtained as p = p?(x, s, 7) in the upper half of the p—plane, together with
its image p = pP" with respect to the real axis in the lower half of the p—plane,
where p?® is given by

PP (X, 25, 7) = X7/ (X* + 23) + i(7% ~ TH Y224 /(5 + 22), (10.27)

with Ty < 7 < oo, where Ty = (x? + 22)1/2/c; is the arrival time of the body
wave. Introducing 7 as the variable of integration, we rewrite (10.23) in the form

FE = @L(s)é(x, z3,8) + H(~x). (s)W(0)&(0) exp(—szs/cyf), (10.28)
where H denotes again the Heaviside unit step function (cf. (10.20)), and

G(x, 23, 9) =/ . g(x, Zs,t) exp(—s7)dr, (10.29)
= I
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Im(p)

L?(x>0)

Figure 10.3: The contour L? in the complex p—plane for the three
different cases of x < 0,x =0,x > 0.
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in which
9(x, zs,7) = (1/m)Im{(W (p®)/p®]€® (p®)(3p° [0r)}H(r - Ty).  (10.30)
In (10.30), 3p®/97 is the one-dimensional Jacobian given by
3p®/0r = x/(x* + z3) +i[r/(s* — T} )ze/(x* + 22). (10.31)

In the derivation of (10.28), the parts associated with p = p? and p = pP" are
taken together and Schwarz’s reflection principle has been used in the integrand.
In equation (10.28), the first term is the contribution from the integration along
the contour LZ; it is identified as a cylindrical body wave motion. The second
term is the contribution from the residue of the integrand in (10.17) at the simple
pole p = 0; it is identified as the plane body wave that is excited below the strip
source. (Note that in the domain D* given by (10.25), the region below the
strip source 0 < z; < a leads to x < 0 in the term for which x = z; — a.) The
space-time expression for the body wave follows by applying the convolution
theorem to (10.28) and Lerch’s theorem (see Widder, 1946):

t
FE = H(t— TFY)PW (x, zs,t) + H(t — T}) f , ®, (t—7)g(x,zs,7)dr, (10.32)
7= b4
where Tf’ L = zg4/c; is the arrival time of the plane body wave and
PW(x,zs,t) = H(—x)W(0)£(0)®, (t — z3/cy). (10.33)

Equation (10.32) is the space-time expression for the body wave that is gen-
erated in the semi-infinite fluid by the strip load of normal force. The wave
motion consists of cylindrical body waves originating from the two edges of the
strip source (cf. (10.22)). In addition, we have an extra plane body wave in
the region below the strip source. As an illustration of the wave motion in
the semi-infinite fluid generated by the strip source at its boundary, synthetic
seismograms have been computed. The results are presented below.

Numerical Results

Synthetic seismograms of the particle velocity close to the strip source are pre-
sented for the normal strip load problem. The medium properties are taken to
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be p = 1.0 x 10 kg/m® and £ = 4.4+ 1071° Pa~!. The corresponding fluid wave
speed is ¢; = 1507 m/s. Along the strip

S={-a<z <a,z3 =0} (10.34)

the strip load exerts a spatially uniformly distributed normal force on the fluid.
The force per unit length in the z,-direction and unit width in the z,-direction
is ®(t)/2a with ®(t) as the wavelet. For the test problem we took a source

signature that is representative for a loaded mass-spring system, viz.
&, (t) = Aexp(—6t)sin(wt)H(t), (10.35)

where H(t) is the Heaviside unit step function (cf. (11.27)), A the source
strength amplitude, § the damping coefficient and w the angular frequency.
In our computations we take a strip load for which a=1 m. Two synthetic
seismograms are presented that represent the particle velocity close to the strip
source. They apply to an array of 21 receivers that are located 0.15 m apart at
a depth of 1 m. The first receiver of this array is located below the center of the
strip source (Figure 10.4). For the computation of these seismograms we took
as source parameters A = 1 N/m,§ = 2% 10* s~! and w = 27 * 5 * 10° rad/s;
this wavelet has a frequency of 5 * 10° Hz and its first peak dominates the wave
shape (see Figure 10.5). The seismograms in Figures 10.6 and 10.7 represent
the horizontal and vertical particle velocities w; and ws, respectively.

In the seismograms a scale is used such that the different wave phenomena
are clearly visible. As a consequence, some of the wave peaks in the seismograms
had to be clipped.

The computer program was written in Fortran 77. The time convolutions
occurring in the expressions for the particle velocity were evaluated numerically
with the aid of a subroutine of the NAG library (NAG (1988)). The relative
accuracy for the determination of these time convolutions was set to 1075, To
avoid numerical difficulties in the computation of the fluid waves in case the
Cagniard-De Hoop contour runs closely along the pole p = 0 in the complex
p—plane, an analytically integrable part was separated off from the relevant
Green’s function so that the remaining part was easy to integrate numerically.

For each receiver the synthetic data were computed at 300 time intervals

of 27 /30w m - s. Because the source signature is a highly damped sinusoid,
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</‘26.1.
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Figure 10.4: The array of 21 receivers near the strip source.
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0.5¢ Source signature
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Figure 10.5: The source signature of the strip source for the source
parameters A = 1 N/m, § = 2% 10* s™! and w = 27 * 5 + 10° rad/s
(f=5 % 10® Hz).
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Horizontal particle velocity wl (normal load)

e e S ) ey e e

(
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Offset (m)

Figure 10.6: The horizontal component of the particle velocity for the
21 shallow receivers for the normal load. The fluid waves are indicated
by B. The wave originating from the left edge of the strip source has
the superscript (—a), the one originating from the right edge of the
strip source has the superscript (a).
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Vertical particle velocity w3 (normal load)
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Figure 10.7: The vertical component of the particle velocity for the 21
shallow receivers for the normal load. The fluid waves are indicated by
B. The wave originating from the left edge of the strip source has the
superscript (—a), the one originating from the right edge of the strip

source has the superscript (a). The plane fluid wave is indicated by
BL),
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T

B ey

Figure 10.8: The different wave fronts generated by the normal load.
The wave fronts of the fluid waves are indicated by B. The waves
originating from the left edge of the strip source have the superscript
(—a), the ones originating from the right edge of the strip source have
the superscript (a). The wave front of the plane fluid wave is indicated
by B(PL),

the wave field quantities at a point of observation are expected to drop to a
very small value shortly after the arrival of the first peak of the different wave
constituents. To save a lot of computation time, the negligibly small field values
at these instants have been automatically put equal to zero. With the above
measures, the CPU-time needed for each of the two seismograms was about 1
hour on a Vax 8250 computer. The main part of the computation time was
spent on the evaluation of the time convolutions of the source signature with
the relevant Green'’s functions.

In the seismogram of the vertical component of the particle velocity ws we
see the plane fluid wave contribution that exists below the strip source. The
corresponding wave fronts are drawn in Figure 10.8.
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The synthetic seismograms in Figures 10.6 and 10.7 have been computed
for a source with a high frequency (5 kHz), in order to bring out clearly the
characteristics of the wave motions generated. In problems of applied geophysics
much lower frequencies usually occur. Since the presented solution method is

suited for all frequencies, it can be used for low-frequency problems as well.
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Chapter 11

TWO-DIMENSIONAL
ACOUSTIC WAVES
GENERATED BY A STRIP
LOAD AT THE BOUNDARY
OF A SEMI-INFINITE SOLID

Introduction

The two-dimensional acoustic P— and SV —wave motion generated by an arbi-
trary distributed impulsive surface load on the boundary of a semi-infinite per-
fectly elastic solid is investigated theoretically. With the aid of the Cagniard-De
Hoop method closed-form expressions are obtained for the particle velocity and
the stress of the generated wave motion. For details of the Cagniard-De Hoop
method see, for example, Achenbach {1973), Miklowitz (1978), Aki and Richards
(1980), De Hoop and Van der Hijden (1985), or De Hoop (1988). The case of a
uniformly distributed impulsive strip load of the normal-load and the shear-load
types are worked out in detail. Synthetic seismograms are presented for an array
of receivers close to the strip source, where a plane wave contribution is manifest
in addition to the cylindrical P— and SV —waves. For the time shape (source

signature) of the exerting forces, a damped sinusoid is taken. The results are

O A manuscript containing the theory developed in this chapter has been accepted for publi-
cation in Geophysics, 1990, Vol. 50, Nr. 8
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solid D

P

Figure 11.1: Semi-infinite, homogeneous, isotropi:ar;a p\grfevctly elastic
solid with medium parameters A, u, p and the strip source of extension
!—a,a] at its boundary. The strip source either exerts a normal force
¢, or a tangential force ¢,/

of importance as test cases for the accuracy in the computational modeling of
acoustic wave problems by, for example, time-domain finite-difference or finite-
element methods (see, Alterman and Karal, 1968; Kelly et al., 1976; Emerman
et al., 1982; Marfurt, 1984; Virieux, 1984, 1986).

Basic Equations

The elastic waves under consideration are small-amplitude disturbances travel-
ing in a semi-infinite, homogeneous, isotropic, and perfectly elastic solid. The
physical properties of the solid are characterized by its volume density of mass p
and its Lamé coefficients A and p, which are real, positive constants. To specify
the position in the configuration we employ the coordinates {z;,z,,zs} with
respect to a fixed, orthogonal, Cartesian reference frame with origin O and the
three mutually perpendicular base vectors {i;,42,13} of unit length each. In the
indicated order, the base vectors form a right-handed system. In accordance
with the geophysical convention, 3 points vertically downwards (Figure 11.1).
The subscript notation for Cartesian vectors and tensors is used and the sum-
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mation convention applies. The structure is shift-invariant in the direction of
i5. The time coordinate is denoted by t. Partial differentiation is denoted b:y 0;
8, denotes differentiation with respect to z,, J; is a reserved symbol for partial
differentiation with respect to t.

The elastic medium occupies the half-space

D = {zm € R% 13 > 0}. (11.1)

A force is applied to the surface of the solid; it is taken to be independent of
z,. Consequently, all physical quantities associated with the wave motion are
independent of z, as well, and 8, = 0. The resulting two-dimensional wave
motion is characterized by the non-zero particle velocity components vy and vg
and the non-zero stress components 7y;, 722, 733 and 733 = 731. The corresponding
components of the equation of motion in the interior of D are

— 0117y — Osnis + pOv; = O,
(11.2)
— 01731 — O37s3 + pOvs = O.

The non-zero stress components are related to the non-zero components of the
particle velocity through the (sourcefree) deformation rate equation (constitutive

relation)
91 = A(81v1 + Bsvs) + 21y vy,
0ir22 = (8191 + B3vs),
A1z = A(O1vy + F3vs) + 2udsvs, (11.3)
Ons = u(dvs+ 3su).

At the surface of D, a surface load is applied to the solid. Its (prescribed) force
has the horizontal component ¢;; and the vertical component ¢;. Hence, the

boundary conditions

—limns = ¢;/(z1,t) forall z, and ¢,
zalo
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(11.4)
— lirl%'rss = ¢,(z1,t) for all z; and ¢,
T3

are to be satisfied. Let the source start to act at the instant ¢t = 0, then
é,/(z1,t) =0 and ¢, (z,,t) = 0 when t < 0, while

{Ul, V3, 131, T22, T33,7'13}($1,13,t) =0 when t <O0. (11.5)

Equation (11.5) describes the causality of the generated wave motion.
Method of Solution

The Cagniard-De Hoop method is used to obtain analytical expressions for the
particle velocity and the stress. The first step in this method consists of carrying
out a one-sided Laplace transformation with respect to time. To show the
notation we give the transformation for the particle velocity:

~

[v.+)
Ox(z1, 23, 8) =/ oexp(—st)vk(zl,:cs,t)dt. {11.6)

In (11.6), s is a real, positive parameter that is chosen large enough to ensure the
convergence of integrals of the indicated type. The next step consists of carrying
out a one-dimensional Fourier transformation with respect to the horizontal
coordinate z; . For the particle velocity this transformation is given by

oo

te(fa, z3,8) = exp(isaz;)d(z, 23, 8)dz,, (11.7)
1=—0

where a € R. The corresponding inverse transformation is given by (note that
the actual Fourier-transform variable in (11.7) is sa)

Ok(z1, 23, 8) = (s/27) /w exp(—tsaz,);(ia, z3, s)da. (11.8)

a=-00
Subjecting the equation of motion (11.2) and the equation of deformation rate
(11.3) to these transformations, d; can be replaced by s and 8, by —isa, and

a system of partial differential equations in z3 is arrived at (Van der Hijden,

1988). Elimination of 7; from this system leads to

WE=-sAF, (11.9)
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where the field matrix F is the column matrix with the elements
Fy = —f, Fy=—fs5, Fy=, Fy=7, (11.10)
and the system matrix A is the square matrix with the elements

Apn = A=A = A= As2 = Ags = Ag = Au =0,

Ay = —iad /(A +2u), Az =p~ (10)?4p(X + u)/(A + 24),

Ay = —ta, Ay =p, An=1/n, A= —ie, (11.11)

A =1/(A+2u), Agp=—tar/(A+2u).

Note that A is independent of s. Equation (11.9) represents a system of linear
first-order ordinary differential equations in z3. The eigenvalues of 4 are found
to be +4p and g, with

Yp,s = Ip,s (1&) = [1/0?,—,,5 — (ia)z]l/z, Re(’Yp,s) _>_ 0, (1112)

where cp = [(A+2u)/p])'/? is the P—wave speed and cs = (u/p)'/? is the S—wave
speed. The solution of (11.9) that is bounded as z3 — oo can be written as

F=F (i, 2s,8) + E° (i, 73, 9), (11.13)
where

~ P Py P

EF =WP(ia,s)é" (ia) exp(—svpz3) (11.14)

is the P—wave in which
& = & (ia) = {2piap, 2u]1/2¢% — (i)?],ia,vp}T (11.15)
is a normalized eigenvector of A corresponding to the eigenvalue vp, and
P = WS (ia, s)&5 (ia) exp(—s7szs) (11.16)
is the SV —wave in which

& = & (ia) = {2u(1/2¢% — (ia)?], —2piars, Vs, —ia}” (11.17)
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is a normalized eigenvector of A corresponding to the eigenvalue 75. Note that
& (ia) and &%(ia) are independent of s. The amplitude coefficients WP =
WP (ia,s) and W5 = WS(ia,s) in (11.14) and (11.16) follow from the appli-
cation of the boundary conditions (11.4) at zg = 0. They are obtained as

WP (i, s) = Wf)(ia)/(ia, s) + W (i), (i, s), (11.18)
Wé(ia,s) = Wi (ia)g,(ia, s) + WE(ia)$, (iex, ), (11.19)
where
Wiia) = iavs/2ulr, WP (ia) = [1/2¢} — (i0)?]/2uAx, (11.20)
and
Wji(ia) = [1/2¢5 — (ie)?)/2u0p, W(ia) = —iayp/2uAR, (11.21)
in which
Ap(ia) = [1/2¢% — (ia)?)? + (ia)*vprs (11.22)

is the Rayleigh determinant. Transforming the solution (11.13) back to the

(21,23, s) —domain, the s—domain P— and SV —wave field constituents

~P,S

E™ = (sf2m) [

WS (i, s) (ia) exp|—s(iaz, + p,sts)de.  (11.23)
o0
are obtained. Starting from the expressions (11.23), the case of a uniformly
distributed strip load is further investigated in the next section.
Cagniard-De Hoop Method for the Uniformly Distributed Strip Load

In this section the case of the uniformly distributed strip load is worked out in
detail. First the ray parameter p = i« is introduced in the integral representa-
tions (11.23). This leads to the expressions

E° = (s/2mi) /‘°° WP (p, $)g%5 (p) exp[—s(pzy + 1pszs)ldp.  (11.24)

p=~t00

Now, along the strip

S={zm€R% —a <z <a, z3 =0} (11.25)
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of width 2a a spatially uniformly distributed load is exerted on the solid (Fig-
ure 11.1). The spatial dependence on z; of the strip load is modeled by the
difference of two unit step loads; one of which is active on the interval (—a, oo},
the other one being active on the interval (a,00). The combination of the two
equals unity on the interval (—a,a) and vanishes outside this interval. Corre-
spondingly, the distribution of the surface load has the form

{8, 8.} (z1,t) = {®//, 8, }(t)[H (2, + a) — H(z1 — a)], (11.26)

where
H(z;) ={0,1/2,1} for { z; < 0,z; = 0,z; > 0} (11.27)

is the Heaviside unit step function. The space-time transformed expression

corresponding to (11.26) is

{1/,8.}(p,5) = {8/, 8.} (s)[exp(spa) — exp(—spa)]/sp. (11.28)

The expression (11.28) is substituted into (11.18) and (11.19) thus giving the
amplitude coefficients that are substituted into (11.24). We observe that in the
integrand in this expression the point p = 0 is a regular point as long as the
two terms in the numerator are kept together. However, in the application of
the Cagniard-De Hoop method, we have to separate these two terms and each
of them has a simple pole at p = 0. To handle this singularity, the integrand
in (11.24) is continued analytically into the complex p—plane away from the
imaginary axes. Using Cauchy’s theorem, the path of integration is, before the
separation of the two terms in (11.28) has taken place, deformed into the path
LT that deviates from the imaginary axes along a semi-circle of vanishingly
small radius around p = 0 in the right half of the p—plane (Figure 11.2). (A
semi-circle around p = 0 in the left half of the p—plane could have served as
well; the two types of deviation lead to the same final results.)

In view of the linearity of our wave problem, the field F generated by a
combined normal and shear load is the superposition of a field £, generated by

a normal load and a field £/, generated by a shear load:

E=F, +E,, (11.29)
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Im(p)

— ~—3 Re(p)

L+

Figure 11.2: The contour L* in the complex p—plane

while we have the additional separation into a P—wave and an SV —wave which
I express by

E, =F°+Fi, (11.30)
E; =E}, + Ej. (11.31)

With the above, we obtain for the different wave-field contributions
. P,S ~ PSS ~ P.S
E; ) /(z1,28,8) = —[EE ) /(21 + a,25,8) ~ EE "/ (21 — a,25,8)], (11.32)

where

~ PSS
[EJ_,//(Xa I3, 3) =

(®..,/(s)/2mi) /p Wi (p)/p)E"° (p) exp(—s(px + 1p,ss)|dp(11.33)

»,

EL"‘[
in which x stands for z; + a or z; — a, respectively, and the expressions for
W77 (p) and €"(p) are given in (11.20), (11.21) and (11.15), (11.17). In the
case of a normal load, the factor p in the denominator of the integrand in (11.33)
is, in the expression for the SV —wave, canceled by the factor p occurring in
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W (p), while in the case of a shear load it is canceled in the expression for the
P—wave by the factor p occurring in W/’; (p).

Next, we take advantage of the symmetry of the configuration with respect
to the plane z; = 0. For a normal load (i.e., ®, =00, # 0) we have the

syminetry relations

vy (21, 35t) = —vy (=24, 25,),  vs(21,23,t) = v3(— 21, 75, ),
(11.34)
r18(Z1, T3, t) = —713(— 2y, Tast), Tas{z1, T3, t) = 73s(—%1, 23, 1),
For a shear load (i.e., ®, #£0,%, = 0) we have the symmetry relations
vi(z1, 23,t) = v1i(—21, 23, t), vs(Z1,Zs,t) = —v3(—x1, 23, 1),
(11.35)
115(Z1, 23, 1) = Tia(—2z1, T3, t), Tss(Z1, T3, t) = —7a3(— 21, 23, 8).
Once the wave field has been determined in the domain
D* = {z,, € R%z, > 0,z > 0}, (11.36)

its values in the entire half-space D are known via (11.34) and (11.35).
P-wave Contribution

The Cagniard-De Hoop method is first elucidated for the P—wave expressions
in the case of a spatially uniformly distributed normal strip load. The first step
consists of deforming, in each of the two terms in (11.32), the path of integration
L* in the complex p—plane into a path L along which

pX +pxs =1, (11.37)

where 7 is real and positive. By virtue of Jordan’s lemma (Whittaker and
Watson 1950, p.115) the contribution from joining circular axes at infinity van-
ishes, and hence Cauchy’s theorem ensures that the integral along the imaginary

p—axes is equal to the integral along Lf. In (11.37), x = z; + a for the first
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term in (11.32) and x = z; — a for the second term in (11.32). Such a path
is denoted as a Cégniard—De Hoop path. In the process of deformation we en-
counter the singularities in W (p) /p, €” (p) and vp,s(p) = (1/c} s — p?)!/2. These
are: the branch points p = £1/cp of 4p and p = +1/es of 45 that also occur
in WF(p)/p and ¢F(p), and the poles of WP (p)/p, i.e., the zeros p = +1/cg of
Ap (cf. (11.22)) (cg =Rayleigh wave speed), and the pole p = 0. The former
two poles are associated with the Rayleigh waves along the traction-free bound-
ary of the solid half-space; the pole p = 0 will be shown to be associated with
the downgoing plane wave that exists in the vertical region below the strip S.
Since the application of Cauchy’s theorem in connection with the deformation
of the path of integration in the complex p—plane requires the integrands to
be single-valued, branch cuts are, in accordance with (11.12), introduced along
Im(p) = 0 and 1/cps <| Re(p) |< oo, i.e., where Re(yps) = 0. In the cut
p—plane, we then have Re[vp s(p)] > 0. Depending on the position of the point
of observation, three cases are distinghuised for the deformation of the contour
L7 in (11.32) (Figure 11.3). First, if x > 0 the contour is deformed into the right
half of the complex p—plane. Secondly, if x = 0 the contour remains unchanged
and runs along L* . Finally, if x < 0 the contour is deformed into the left half
of the complex p—plane, in which case the contribution from the pole p = 0 is
to be taken into account. In this procedure the deformed paths of integration
in (11.32) are obtained as p = pP(x,zs,7) in the upper half of the p—plane,
together with their images p = p”" with respect to the real axis, where p” is
given by

PP (X, 25, 7) = x7/(x* + 22) + i(r? — T2) 225/ (x* + 22), (11.38)

with Tp < 7 < oo, where Tp = (x? +z2)'/2/cp is the arrival time of the P—wave.
Introducing 7 as the variable of integration, we rewrite (11.33) in the form

AP AP a .
EE, = ®,(s)G, (x,2s,8) + H(—=x)®.(s)WT (0)& (0) exp(—szs/cp), (11.39)
where H denotes again the Heaviside unit step function (cf. (11.27)), and

~P o L
G, (x,zs,8) =/ . g, (x> zs,t) exp(—s7)dr, (11.40)
P

7=

with

g (625, 7) = (1/m)Im{[WF (5°) /971" (p) (99" /07)}H (r — Tp).  (11.41)
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Im(p)

p=0
< <3 Re(p)

L(x<o0)

L (x>0)

Figure 11.3: The contour L¥ in the complex p—plane for the three
different cases of x < 0,x =0,x > 0.
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In (11.41), 8p” /37 is the one-dimensional Jacobian given by
Ap” |9t = x/(x* + z3) + i[r/(7? — TE)Y*zs/(x?* + z2). (11.42)

In the derivation of (11.39), the parts associated with p = p¥ and p = p*" are
taken together and Schwarz’s reflection principle has been used in the integrand.
In equation (11.39), the first term is the contribution from the integration along
the contour L¥; it is identified as a cylindrical P—wave motion. The second term
is the contribution from the residue of the integrand in (11.33) at the simple
pole p = 0; it is identified as the plane P—wave that is excited below the strip
source. (Note that in the domain D* given by (11.36), the region below the
strip source 0 < x; < a leads to x < 0 in the term for which x = z; — a only.)
The space-time expression for the P—wave follows by applying the convolution
theorem to (11.39) and Lerch’s theorem (see Widder, 1946):

t
FEY = H(t - TEYPW, (x,25,8) + H(t = Tp) [ 8.t~ 1)g"(x,7s,7)dr,

=Tp g‘L
(11.43)
where THL = z3/cp is the arrival time of the plane P—wave and
PW  (x,zs,t) = H(—x)WF(0)& (0)®,(t — zs/¢p). (11.44)

We note that for p = 0 the first and third components of the eigenvector & are
zero (see (11.15)). Consequently (cf. Eq. (11.10)), the only non-zero compo-
nents of the plane P—wave existing below the strip are 733 and vz, as expected.

SV-wave Contribution

The SV —wave contribution is found in a similar manner, except that now the
path of integration L* in each of the two terms of (11.32) is deformed in the
complex p—plane into a path LS along which

pX +Ysz3 =1, (11.45)

where again 7 is real and positive and x = z; + a for the first term in (11.32)
and x = z; — a for the second term in (11.32). In the process of deformation
we encounter the singularities in W (p)/p,€°(p) and vps(p) = (1/cb 5 — p*)V/2.
These are: the branch points p = +1/cp of 4p and p = +1/cs of s, and the
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Im(p)

Figure 11.4: The contours L¥ and L% in the complex p—plane for the
case cs/ep <[ x/(x* + 2 |< 1.

‘poles of W¥(p)/p, i.e., the zeros p = £1/cg of Ag. Note that in this case p =0
is not a pole because the factor p in the denominator is canceled by the factor p
occurring in W5 (p) (see (11.21)). Hence, the corresponding integrand in (11.33)
has no pole at p = 0 with the consequence that no plane SV —wave exists below
the strip source. In deforming the path of integration from L* to a path where
(11.45) holds, the deformed path is tempted to cross the branch cut associated
with p = 1/cp in case ¢s/cp <| x/(x* + z2)¥/? |< 1. This has to be prevented
and a loop integral L¥ around this branch cut must be included (Figure 11.4).
With this, the modified paths of integration in (11.32) generally exist of two
parts: p = p#(x,zs,7) and p = p°(x,zs,7) both in the upper half of the p-
plane, together with their images p = p~ and p = p°” with respect to the real

axis, where pf is given by

x7/(x? + z%) + (T2 — 7%)Y%23/(x* + 23) + 10  when x <0,

pH(X,IS,t) =
x7/(x® + z2) — (T2 — r%)"%z5/(x* + £}) + 10, when x > 0,
(11.46)
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with Ty < 7 < Tg where
Ty = Tp|x|/(x*+23)"? + Ts[1 ~ (cs/cp)?|V2zs/ (x* + 22)12,
(11.47)
Ts = (x*+23)"/*/es,

and
P° (X, 2s,7) = x7/(X* + 23) + i(r? — T2)Y2zs/(x* + 23), (11.48)

with Ts < 7 < oco. Introducing 7 as the variable of integration, we rewrite
(11.33) in the form

FE; (x,23,5) = 8.(s)&] (x, 75, 9), (11.49)

where

S Ts oo
Q.L(X’ zs3, 3) = »/1' . gf()ﬁ Is, T) exP(_ST)dT + '/f T Q,JS_(X’ z3, T) exp(—sr)d‘r,
(11.50)
in which

g7 (x> 23, 7) = (1/m)Im{ (W (p™)/p")e® (p¥)(8p% /07)}H (r ~ Tar) — H(r — Ts)),
(11.51)
with 8pf /87 being the one-dimensional Jacobian given by

{ x/(x* + =) ~ [r/(T§ — 7*)"/]zs/(x* + 23) when x <O,

apf jor =

x/(x* + z3) + [r /(T2 — r¥)/?|zs/(x* + z2) when x > 0,
(11.52)

and

g3 (x,z3,7) = (1/m)Im{ (W7 (p°)/p°¢" (p°) (8p% /Or)}H (r — T5),  (11.53)
with 8p° /37 being the one-dimensional Jacobian given by
8p° /8 = x/(x* + z3) + i[7/(r? — T2)?)zs/(x* + 22). (11.54)

The first term in (11.50) is the contribution from the integration along the
contour L¥; it is identified as a cylindrical headwave (headwave arising from a




11. STRIP LOAD AT A SOLID BOUNDARY 129

P to S conversion). The second term is the contribution from the integration
along the contour L%; it is identified as a cylindrical SV — wave. In (11.47) and
(11.48), Ty and T are the arrival times of the headwave and the SV —wave,
respectively. The space-time expression for the SV —wave follows by applying
the convolution theorem to (11.49) and Lerch’s theorem (see Widder, 1946):

t

FES = H(t-Tx) [ H(Ts = 1)®.(t - 1)g" (x,25,7)dr

=Ty
(11.55)

t

+H(t—Ts)[

r=Tg

o, (t - T)g_'i (x,zs,7)dr.

Shear Load

In the case of a shear load, the P— and SV -—wave contributions are found in
the same manner except that we have to replace W (p) and W$(p) by W/ (p)
and W/S/ (p), respectively, in (11.33). Then the factor p in the denominator of
(11.28) is canceled for the P—wave expressions. (Note that W/ (p) contains a
factor p (see (11.20))), while it remains present in the SV —wave expressions
(W/S/(p) does not contain a factor p (see (11.21))). Consequently, one of the
important differences with the results for the normal load is the existence of a
plane SV —wave in the region below the strip instead of a plane P—wave. The

expression (11.39) is, for the case of a shear load, replaced by

~ P A P
FE; = &,/(s)G)/(x,%s,5), (11.56)
where
AP -]
G, /(x,z3,8) = ‘/;=Tp 27/(x,2:3,t) exp(—s7)dr, (11.57)
in which

a5/ (x:zs,7) = (1/m)Im{[W})(p")/p"1&" (p7) (09" [0r)}H (r — Tp).  (11.58)

The relevant space-time expression for the P—wave follows by applying the
convolution theorem to (11.56) and Lerch’s theorem (see Widder, 1946):

t
FE] = H(t - Tp) v/rsz ®//(t — 7)g5, (x, s, 7)dr. (11.59)
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Next, the expression (11.49) is for the case of a shear load, replaced by

~ S R ~S
EE;/(x,zs,5) = ®/(s)G,/(x,7s,5), (11.60)
where
S _ Ts H d o0 s d
Q//(x,xs, s) = /;=Tu g//(x,zs,r) exp(—sr)dr + /T=Ts g//(x,:cs,r) exp(—s7)dr
(11.61)
+ H(—x)®;/(s)W/(0)°(0) exp(—szs/cs),
in which

97/ z5,7) = (1/m)Im{[W}(p") /p"]e° (p7) (39" |07)} H (r — Ty) — H(r — Ts)),
(11.62)
and

g5, (x,73,7) = (1/m)Im{ (W5} (s°)/9°1e° (6°)(99° [0 )} H (r — Ts).  (10.63)

Again, the relevant space-time expression for the SV —wave follows by applying
the convolution theorem to (11.60) and Lerch’s theorem (see Widder, 1946):

FE}, = H(t-TEY)PW,/(x,s,1)

t
+ H(t ~ Ty) / . H(Ts = 7)®/(t - )g% (x, 25, 7)dr (11.64)
=1y

+H(t—T5)/ft

T Q//(t - T)gf/(x,zs,f)df,
where TFL = z3/cs is the arrival time of the plane SV —wave and
PW,/(x,z3,t) = H(—x)W/“’}(O)_E_S(O)@l(t — zg/es). (11.65)

Equations (11.43), (11.55) and (11.59), (11.64) are the space-time expressions
for the different waves that are generated in the semi-infinite solid by a strip
load of the normal force and the shear force type, respectively. The wave motion
consists in each of the two cases of cylindric P- and SV-waves originating from
the two edges of the strip source (cf. (11.32)). In addition, in the case of a normal
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strip load we have an extra plane P—wave, and in the case of a shear strip load
an extra plane SV —wave, in the region below the strip source. As an illustration
of the wave motion in the semi-infinite solid generated by the strip source at
its boundary, synthetic seismograms for the uniformly distributed strip load of
the normal force and the shear force type have been computed. The results are

presented below.
Numerical Results

Synthetic seismograms of the particle velocity close to the strip source and at
greater depths are presented, both for the normal strip load problem and for
the .shear strip load problem. The medium properties are taken to be p =
2.5 % 10° kg/m® and A = g = 10" Pa. The corresponding P— and S-—wave
speeds are: cp = 3464 m/s and ¢s = 2000 m/s. Along the strip

S={-a<z <a,z3 =0} (11.66)

the strip load exerts either a spatially uniformly distributed normal force or
a spatially uniformly distributed shear force on the solid. The force per unit
length in the z,-direction and unit width in the z,-direction is ®(t)/2a with
®(t) as the wavelet. For the test problem we took a source signature that is

representative for a loaded mass-spring system, viz.
®,,/(t) = Aexp(—6t)sin(wt) H(t), (11.67)

where H(t) is the Heaviside unit step function (cf. (11.27)), A the source
strength amplitude, 6§ the damping coefficient and w the angular frequency.
In our computations we take a strip load for which e=1 m. Four synthetic
seismograms are presented that represent the particle velocity close to the strip
source; two of them show the different waves generated by the strip source of
the normal-load type and two of them show the different waves generated by the
strip source of the shear-load type. They apply to an array of 21 receivers that
are located 0.15 m apart at a depth of 1 m. The first receiver of this array is
located below the center of the strip source (Figure 11.5). For the computation
of these seismograms we took as source parameters A = 1 N/m,6 = 2 # 10 s7*
and w = 27 %5 % 10® rad/s; this wavelet has a frequency of 5 10® Hz and its first
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Figure 11.5: The array of 21 receivers near the strip source.
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Source signature
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Figure 11.6: The source signature of the strip source for the source
parameters A = 1 N/m, § = 2% 10* s7! and w = 27 * 5 » 10% rad/s
(f==5 * 10® Hz) and for the source parameters A = 1 N/m, § = 20 s7!
and w = 27 x5 rad/s (f = 5 Hz). Due to the scaled time axis, the figure
shows the same source signature for both sets of source parameters.
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peak dominates the wave shape (see Figure 11.6). The seismograms in Figures
11.7 and 11.8 represent the horizontal and vertical particle velocities v; and vg,
respectively, for the normal load. The seismograms in Figures 11.9 and 11.10
represent the horizontal and vertical particle velocities v; and vs, respectively,
for the shear load.

Next, another four synthetic seismograms are presented that represent the
particle velocity at greater depths; again two of them show the waves generated
by the strip source of the normal-load type and two of them show the waves
generated by the strip source of the shear-load type. They apply to an array
of 21 receivers that are located 150 m apart at a depth of 1000 m. The first
receiver of this array is again located below the center of the strip source (Figure
11.11). For the computation of these seismograms we took as source parameters
A=1N/m, 6=2+10s'andw =2r*5 rad/s; this wavelet has a frequency
of 5 Hz and its first peak dominates the wave shape (see Figure 11.6). The
seismograms in Figures 11.12 and 11.13 represent the horizontal and vertical
particle velocities v; and vs, respectively, in the case of a normal load. The
seismograms in Figures 11.14 and 11.15 represent the horizontal and vertical
particle velocities v, and vs, respectively, in the case of a shear load.

Both in the seismograms of the receivers near the strip source and in the
seismograms of the receivers at greater depths a scale is used such that the
different wave phenomena are clearly visible. As a consequence, some of the
wave peaks in the seismograms had to be clipped.

The computer program was written in Fortran 77. The time convolutions
occurring in the expressions for the particle velocity were evaluated numerically
with the aid of a subroutine of the NAG library (NAG (1988)). The relative
accuracy for the determination of these time convolutions was set to 10~-%. To
avoid numerical difficulties in the computation of the P~wave for the normal
load problem and in the computation of the SV —wave for the shear load problem
in case the Cagniard-De Hoop contour runs closely along the pole p = 0 in
the complex p—plane, for both problems an analytically integrable part was
separated off from the relevant Green’s function so that the remaining part was
easy to integrate numerically.

For each receiver the synthetic data were computed at 300 time intervals
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Horizontal particle velocity vl (normal load)
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Figure 11.7: The horizontal component of the particle velocity for the
21 shaliow receivers in the case of a normal load. The P—,H—, and
S —waves are indicated by P, H and S, respectively. The waves origi-
nating from the left edge of the strip source have the superscript (—a),
the ones originating from the right edge of the strip source have the su-
perscript {(a). The Rayleigh waves have a too small amplitude to show
up.




136

11. STRIP LOAD AT A SOLID BOUNDARY

Vertical particle velocity v3 (normal load)
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Figure 11.8: The vertical component of the particle velocity for the
21 shallow receivers in the case of a normal load. The P—, H—, and
§—waves are indicated by P,H and S, respectively. The waves origi-
nating from the left edge of the strip source have the superscript (—a),
the ones originating from the right edge of the strip source have the
superscript (a). The plane P—wave is indicated by PPL. The Rayleigh
waves have a too small amplitude to show up.
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Horizontal particle velocity vl (shear load)
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Figure 11.9: The horizontal component of the particle velocity for the 21
shallow receivers in the case of a shear load. The P—, H—, and S —waves
are indicated by P, H and S, respectively. The waves originating from
the left edge of the strip source have the superscript (—a), the ones
originating from the right edge of the strip source have the superscript

" (@). The plane S—wave is indicated by SPL, The Rayleigh waves have

a too small amplitude to show up.
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Vertical particle velocity v3 (shear load)
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Figure 11.10: The vertical component of the particle velocity for the 21
shallow receivers in the case of a shear load. The P—, H—, and S—waves
are indicated by P, H and S, respectively. The waves originating from
the left edge of the strip source have the superscript (—a), the ones
originating from the right edge of the strip source have the superscript
(a). The Rayleigh waves have a too small amplitude to show up.
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Figure 11.11: The array of 21 receivers at depth.
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Horizontal particle velocity vl (normal load)

g - T ! T T T T

el |

< P

’ - H

1 1 1 1

0 0.5 1 1.5 2 2.5 3
Of fset (km)

Figure 11.12: The horizontal component of the particle velocity for
the 21 receivers at greater depths in the case of a normal load. The
P—,H—, and S—waves are indicated by P, H and S, respectively. The
Rayleigh waves have a too small amplitude to show up.
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Vertical particle velocity v3 (normal load)
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Figure 11.13: The vertical component of the particle velocity for the 21
receivers at greater depths in the case of a normal load. The P—, H—,
and S—waves are indicated by P,H and S, respectively. The plane
P-wave below the strip cannot be distinguished from the cylindrical
P-wave emanating from the edges of the strip. The Rayleigh waves
have a too small amplitude to show up.
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Horizontal particle velocity vl (shear load)
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Figure 11.14: The horizontal component of the particle velocity for the
21 receivers at greater depths in the case of a shear load. The P—, H—,
and S—waves are indicated by P, H and S, respectively. The plane
S-wave below the strip cannot be distinguished from the cylindrical
S-wave emanating from the edges of the strip. The Rayleigh waves
have a too small amplitude to show up.
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Vertical particle velocity v3 (shear load)
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Figure 11.15: The vertical component of the particle velocity for the 21
receivers at greater depths in the case of a shear load. The P—, H—,
and S—waves are indicated by P, H and S, respectively. The Rayleigh
waves have a too small amplitude to show up.
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of 27/30w m - s. Because the source signature is a highly damped sinusoid,
the wave field quantities at a point of observation are expected to drop to a
very small value shortly after the arrival of the first peak of the different wave
constituents. To save a lot of computation time, the negligibly small field values
at these instants have been automatically put equal to zero. With the above
measures, the CPU-time needed for each of the eight seismograms was about
1.5 hour on a Vax 8250 computer. The main part of the computation time was
spent on the evaluation of the time convolutions of the source signature with
the relevant Green’s functions.

The seismograms in Figures 11.7-11.10 clearly show the different P—, S— and
P to S headwave conversion waves originating from the two edges of the strip
source. In addition, we see for the case of a normal load in the seismogram of the
vertical component of the particle velocity vs the plane P—wave contribution
that exists below the strip source, while for the case of a shear load we see in
the seismogram of the horizontal component of the particle velocity v; the plane
S —wave contribution that now exists below the strip source. The Rayleigh waves
have a too small amplitude to show up. The corresponding wave fronts for the
normal load are drawn in Figure 11.16 and for the shear load in Figure 11.17.

The synthetic seismograms in Figures 11.7-11.10 have been computed for a
source with a high frequency (5 kHz) in order to bring out clearly the character-
istics of the wave motions generated. In problems of applied geophysics much
lower frequencies usually occur. Since the presented solution method is suited
for all frequencies, it can be used for low-frequency problems as well.

The seismograms in Figures 11.12-11.15 clearly show the P—,S— and P to S
headwave conversion waves generated by the strip source. The Rayleigh waves
have a too small amplitude to show up. We see for the case of a normal load that
the strip source outputs a lot of shear wave energy. From these seismograms
it is observed that at a distance from the strip source that is large compared
with its width, the particle velocity can be approximated by the particle velocity
generated by a line source with the proper strength placed at the center of the
strip source.
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Figure 11.16: The different wave fronts generated by the normal load.
The wave fronts of the P—, H—, and S—waves are indicated by P, H
and S, respectively. The waves originating from the left edge of the
strip source have the superscript (—a), the ones originating from the
right edge of the strip source have the superscript (a). The wave front
of the plane P—wave is indicated by P"Y), The Rayleigh (surface)
waves are indicated by R.
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S S (PL) S

Figure 11.17: The different wave fronts generated by the shear load.
The wave fronts of the P—, H—, and S—waves are indicated by P, H
and S, respectively. The waves originating from the left edge of the
strip source have the superscript (—a), the ones originating from the
right edge of the strip source have the superscript (a). The wave front
of the plane S—wave is indicated by S(PX). The Rayleigh (surface)
waves are indicated by R.




Chapter 12

TWO-DIMENSIONAL
ACOUSTIC WAVES
GENERATED BY A STRIP
SOURCE AT A PLANE
FLUID/SOLID INTERFACE

Introduction

The two-dimensional acoustic wave motion generated by an arbitrary distributed
impulsive strip source at the plane interface between a semi-infinite solid and
a semi-infinite fluid is investigated theoretically. Both media are homogeneous,
isotropic and lossless. With the aid of the Cagniard-De Hoop method closed-
form space-time expressions are obtained for the particle velocity and the scalar
traction of the generated wave motion in the fluid and the particle velocity and
the stress of the generated wave motion in the solid. For details of the Cagniard-
De Hoop method see, for example, Achenbach (1973); Miklowitz (1978); Akiand
Richards (1980); De Hoop and Van der Hijden (1985); or De Hoop (1988).
The case is considered where the strip source either introduces a distributed
volume injection rate or exerts on the boundary surface of the fluid as well as
the boundary surface of the solid a normal distributed force. The case of a
uniformly distributed impulsive strip source is worked out in detail. Synthetic

seismograms are presented for an array of receivers in the solid close to the
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strip source where a plane P—wave contribution is manifest in addition to the
cylindrical P— and SV —waves, and for an array of receivers in the fluid close
to the strip source where a plane P—wave contribution is manifest in addition
to the cylindrical P—waves.

For the force and for the volume injection rate strip source strengths a
damped sinusoid is taken as time shape (source signature). The results are
of importance as test cases for the accuracy in the computational modeling of
acoustic wave problems by, for example, time-domain finite-difference or finite-
element methods (see, Alterman and Karal, 1968; Kelly et al., 1976; Emerman
et al., 1982; Marfurt, 1984; Virieux, 1984, 1986).

Basic Equations

The acoustic waves under consideration are small-amplitude disturbances trav-
eling in a fluid/solid configuration consisting of a semi-infinite fluid and a semi-
infinite solid that are in touch along their plane interface. The fluid and the solid
are both homogeneous, isotropic, and lossless. The physical properties of the
fluid are characterized by its volume density of mass o’ and its compressibility
«; the physical properties of the solid are characterized by its volume density of
mass p° and its Lamé coefficients A and u. All constitutive coefficients are real,

positive constants.

To specify the position in the configuration I employ, as before, the coordi-
nates {z,,z;, 3} with respect to a fixed, orthogonal, Cartesian reference frame
with origin O and the three mutually perpendicular base vectors {81,42,43} of
unit length each. In the indicated order, the base vectors form a right-handed
system. The origin O is taken to be on the plane interface and the unit base
vectors ¢, and ¢, are taken to be parallel to the interface. The unit base vector
i3 points vertically downwards into the solid (Figure 12.1). The subscript no-
tation for Cartesian vectors and tensors is used and the summation convention
applies. The time coordinate is denoted by t. Partial differentiation is denoted
by 8; 3, denotes differentiation with respect to z,,d; is a reserved symbol for
partial differentiation with respect to t.

The fluid/solid configuration occupies the domain D = R®. In D, the fluid
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Figure 12.1: The semi-infinite fluid and the semi-infinite solid in touch
along the infinite plane interface. The origin O of the Cartesian refer-
ence frame is taken to be at the interface, and the unit base vectors ¢;
and ¢, are taken to be parallel to it.
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occupies the halfspace
D’ = {z,, € R% z5 < 0} (12.1)

and the solid occupies the halfspace

D* = {z,, € R z5 > 0}. (12.2)
The plane interface between the fluid and the solid is given by

I ={zn € R® z3 = 0}. (12.3)

On the interface I a strip source is present that is parallel to the z,-direction and
exerts a normal force on the boundary surfaces of both the fluid and the solid.
With this source, we have a structure that is shift-invariant in the z,-direction.
The force that is applied by the strip source is taken to be independent of z,.
As a consequence, all physical quantities associated with the wave motion are
independent of z, as well, and 3, = 0. The resulting two-dimensional wave
motion in D is in the part D’ where the fluid is present, characterized by
the non-zero particle velocity components w; and wy and the non-zero scalar
traction o, and in the part D* where the solid is present, by the non-zero particle
velocity components v, and vz and the non-zero stress components 7y, 72, 7ss
and 7js = 73; (in-plane wave motion). The corresponding components of the
(sourcefree) equation of motion in the interior of D’ are

—0810 + p’B,wl = 0,
(12.4)
—'630 + p"agws = 0,

The scalar traction is related to the non-zero components of the particle velocity

through the (sourcefree) deformation rate equation (constitutive relation)
90 = (1/£)(91w1 + Bsws). (12.5)

The corresponding components of the (sourcefree) equation of motion in the
interior of D* are

—01m11 — O3y + p*Oyvy = 0,
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(12.6)
— 01751 — 03733 + p°Oyws = 0.

The non-zero stress tensor components are related to the non-zero components
of the particle velocity through the (sourcefree) deformation rate equation (con-

stitutive relation)
9iri1 = A(81v1 + Bsvs) + 2udy v,
8122 = A(B1v1 + Bavs),
8733 = A(Oyv1 + B3vs) + 2pd3vs, (12.7)
8ins = w(81vs + 8svy).

The wave fields that exist in the fluid and in the solid are interconnected by the
interface conditions at I. The action of the strip source is represented by the
difference across the interface I between the normal component of the particle
velocity in the solid and the normal component of the particle velocity in the
fluid, and the difference across the interface I between the normal component

of the traction in the solid and the scalar traction in the fluid:

lxar}% vg — g!T% ws = ¢v (z1,t) for all z; and ¢, (12.8)
and
— lim 733 + lim 0 = ¢p(zy,t) for all z; and t, (12.9)
z3}0 z310

where ¢y (z1,t) is the jump in the normal component of the particle velocity
across the interface I and ¢r(z,,t) is the jump in the normal component of the
traction across the interface I. Since the fluid exerts only a normal force to the

solid, the tangential traction in the solid is equal to zero at the interface:
lirlré 715 = 0 for all z; and ¢. (12.10)
z3

Let the source start to act at the instant ¢t = 0, then ¢y (z;,t) = 0 and ¢r(2z,,t) =
0 when t < 0, while

{w1, ws,c}(z1, 2s,t) =0 when t < 0 and z,, € D/ (12.11)
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and
{v1,vs, 711, 722, 733, 13} (21, 23,t) =0 when t < 0 and z,, € D". (12.12)

Equations (12.11) and (12.12) describe the causality of the generated wave mo-
tion.

Method of Solution

The Cagniard-De Hoop method is used to obtain analytical expressions for the
particle velocity and the scalar traction in the fluid and the particle velocity and
the stress in the solid. The first step in this method consists of carrying out a
one-sided Laplace transformation with respect to time. To show the notation
we give the transformation for the particle velocity in the fluid:

o0
We(zy,T3,8) = /;-o exp(—st)wi(z;, 3,t)dt. (12.13)

In (12.13), s is a real, positive parameter that is chosen large enough to ensure
the convergence of integrals of the indicated type. The next step consists of
carrying out a one-dimensional Fourier transformation with respect to the hor-
izontal coordinate z; . For the particle velocity in the fluid this transformation
is given by

oo

Wi (te, T, 8) = exp(tsaz, )Wz, 23, s)dzy, (12.14)
T}=—00

where o € R. The corresponding inverse transformation is given by (note that
the actual Fourier-transform variable in (12.14) is sa)

Wy (21, 73, 8) = (s/27) /w exp(—isaz;)wi(ia, z3, s)da. (12.15)

a=-00

Subjecting the basic equations (12.4)-(12.5) for the acoustic waves in the fluid
and the basic equations (12.6)-(12.7) for the in-plane motion in the solid to
these transformations, 9, can be replaced by s and 8, by —1sa, and two sjstems
of ordinary differential equations in zs are arrived at (Van der Hijden, 1988),
one describing the propagation of the acoustic waves in the fluid and the other
describing the propagation of the P— and SV —waves in the solid. The two
systems are given in two separate subsections to follow.
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The transform domain expressions for the acoustic waves in the fluid

Upon applying the transformations (12.13) and (12.14) to the equation of motion
(12.4) and the deformation rate equation (12.5), and eliminating w, from the
resulting system of partial differential equations, the following system of ordinary
differential equations is arrived at:

8 F = —spl B, (12.16)
where the fluid field matrix Ef is the column matrix with the elements
Ff = -6, F] = s, (12.17)
and the fluid system matrix éj is the square matrix with elements
Al = Al =0,4f, =o', 4], = (1/0)[(1/¢s)? - (i0)’), (12.18)

where ¢; = (p'k)"Y/? is the wave speed in the fluid. Note that 4’ is indepen-
dent of s. Equation (12.16) represents a system of linear first-order ordinary
differential equations in z3. The eigenvalues of the matrix éf are found to be

=+ where
95 = 5(ia) = [(1/¢f)* = (i2)*]* with Re(vs) 2 0. (12.19)
The solution of (12.16) that is bounded as z3 — —oo can be written as
Ef = E!(ia, zs,s) = W/ (ia,s)&' (ia) exp(syszs), (12.20)
in which
& (ia) = (o, )" (12.21)

is a suitably normalized eigenvector of the matrix éf corresponding to the eigen-

value —~y. Note that if is independent of s.

The transform domain expressions for the P— and SV —waves in the
solid

Upon applying the transformations (12.13) and (12.14) to the equation of motion
(12.6) and the deformation rate equation (12.7), and eliminating 71; from the
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resulting system of partial differential equations, the following system of ordinary
differential equations is arrived at:

HE = -sA’ F, (12.22)
where the solid field matrix _F:J is the column matrix with the elements
Fy = —fs, Fj =%y, By =0, Ff=1, (12.23)
and the solid system matrix 4° is the square matrix with the elements
An = Al = Ajy = Ajy = Agyy = Agg = A = Ay =0,
Ajr = —tad /(A + 2u), A}y =p— (1a)’4u(X +u)/(X + 2p),
Ap = —ta, Ay =p, Ay =1/p, Ay = —ia, (12.24)
A =1/(A+2u), A= —iad/(A+2p).

Note that 4° is independent of s. Equation (12.22) represents a system of linear
first-order ordinary differential equations in z3. The eigenvalues of A’ are found
to be +vp and ++ys, with

Yps = Yps(ia) = [1/ck s — (1a)*]'/, Re(vps) >0, (12.25)

where cp = [(A+2p)/p%]*/? is the P—wave speed in the solid and s = (u/p*)!/?
is the S—wave speed in the solid. The solution of (12.22) that is bounded as
T3 — oo can be written as

F' = F'(i0,25,8) + E’ (ic, 3, ), (12.26)

where
EP = WP (ia, s)&" (ia) exp(—svpzs) (12.27)

is the P—wave in which
& =& (1a) = {2uiarp, 2u[1/2¢% - (ia)?],ia,vp}T (12.28)
is a normalized eigenvector of A* corresponding to the eigenvalue vp, and

F° = WS (i, 5)25 (ia) exp(—s7ss) (12.29)
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is the SV —wave in which

& = #(ia) = {2u[1/26} — (0)?), ~2uiarys, vs, —ia)” (12.30)

is a normalized eigenvector of A* corresponding to the eigenvalue 5. Note that
&’ (10) and £° (1) are independent of s.

The amplitude coefficients W/ = W/(ia,s),W? = WP(ia,s) and W5 =
WS (i, s) in (12.20), (12.27) and (12.29) follow from the application of the
boundary conditions (12.8) - (12.10) at z3 = 0. They are obtained as

W (ia,s) = Wi(ia) v (ia, s) + Wi(ia)dr(ia, s), (12.31)
WP (ia, s) = WE (ia)dv (i, s) + WE (i) dr (i, s), (12.32)
WS (ia, s) = W (i) dv (s, s) + Wi (1) ¢r (1e, 5), (12.33)
where
Wi(ia) = Ar/vsAscm, Wilia) = 1p/40°civAscr, (12.34)
and
Wy (ia) = pf[1/2¢5 — (ia)?]/20* 5y Ason,
(12.35)
Wi (ie) = —[1/2¢5 — (i0)*)/20° 5 Ason,
and

Wi (ia) = —pliavp [20° iV Ason, WS (1) = ioyp[20°csAson,  (12.36)

in which
Ascy(ia) = Ap + pf'yp/4p’c§'7f, (12.37)

is the ”Scholte-wave determinant” and

Ar(ia) = [1/2¢§ — (10)*]* + (i) vps (12.38)
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is the "Rayleigh-wave determinant”. Transforming the solution (12.20) back to
the (z;, s, s)—domain, the s—domain expressions for the acoustic wave field in
the fluid

Ef = (s/27) /oo W/ (ia, s)& (ia) exp|—s(iaz) — vszs)|de (12.39)

a=-—00

are obtained. Transforming the solution (12.26) back to the (z;, 73, s) ~domain,

the s—domain expressions for the P~ and SV —wave field in the solid
EP'S = (s/2m) /oo WPS(ia, s)eP5 (ia) exp|—s(iaz, + vpszs)|da  (12.40)

a=—oo

are obtained. Starting from the expressions (12.39) and (12.40), the case of a

uniformly distributed strip source is further investigated in the next section.
Cagniard-De Hoop Method for the Uniformly Distributed Strip Source

In this section the case of the uniformly distributed strip source is worked out in
detail. First the "horizontal” ray parameter p = fe is introduced in the integral
representations (12.39) and (12.40). This leads for each of the formulas to an

expression of the form

E=(s/2mi) [ W(p,a)&lp) expl-s(pzs + 1lzs])d, (12.41)

p=—1i00
B I PS f.PS 5 _ zf.PS .
where F=F " " , W =W7"° g = ¢ and v = v;ps. Now, along the strip
S={zn € R} —a< 1, <a, 23 =0} (12.42)

of width 2a a spatially uniformly distributed surface source is present (Fig-
ure 12.2). The spatial dependence on z; of the source strength is modeled by
the difference of two unit step sources; one of which is active on the interval
(~a,00), the other being active on the interval (a,00). The combination of
the two equals unity on the interval (—a,a) and vanishes outside this interval.
Correspondingly, the distribution of the surface source has the form

&(z1,t) = ®(t)|H(z, + a) — H(z1 — a)], (12.43)

where
H(z,) = {0,1/2,1} for { z, < 0,2, = 0,2; > 0} (12.44)
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solid ¢ ¢¢ source

Figure 12.2: The uniformly distributed strip source of width 2a at
the plane interface between the semi-infinite fluid and the semi-infinite
solid.

is the Heaviside unit step function and ¢ = év r. The space-time transformed

expression corresponding to (12.43) is
é(p,s) = &(s)[exp(spa) — exp(—spa)]/sp. (12.45)

The expression (12.45) is substituted into (12.31), (12.32) and (12.33) giving
the amplitude coefficients that are needed in (12.41). We observe that in the
integrand in the latter expression the point p = 0 is a regular point as long as
the two terms in the numerator of (12.45) are kept together. However, in the
application of the Cagniard-De Hoop method, we have to separate these two
terms and each of them may have a simple pole at p = 0. This pole is present
in the integrands occurring in the expressions for the body wave components of
& and s in the fluid and for the P—wave components of 33 and 5 in the solid,
while for the components of 7,5 and o, in the solid the factor p is cancelled by the
factor p occurring in the corresponding components of the eigenvector & (cf.
(12.28)). The pole p = 0 is also not present in the integrands for the expressions
of the SV —wave components in the solid because in the amplitude coefficient WS

a factor p occurs that cancels the one in the denominator (cf. (12.36)). To handle
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Im(p)

L} —> Re (p)
L+

Figure 12.3: The contour L* in the complex p—plane

the possible singularity, the integrand in (12.41) is continued analytically into
the complex p—plane away from the imaginary axes. Using Cauchy’s theorem,
the path of integration is, before the separation of the two terms in (12.45),
deformed into the path Lt that deviates from the imaginary axes along a semi-
circle of vanishingly small radius around p = 0 in the right half of the p—plane
(Figure 12.3). (A semi-circle around p = 0 in the left half of the p—plane could
have served as well; the two types of deviation lead to the same final results.)
In view of the linearity of our wave problem, the field in D/*, generated by
a combined volume injection rate and force strip source, is the superposition of
a field Fy’ generated by a volume injection rate strip source and a field Fg’

generated by a force strip source:
F'e = Fl* 4+ Fle, (12.46)

while in the solid part D* we have the additional separation into a P—wave and

an S—wave which we express by

Ey, = FP+F3, (12.47)

Fi EE + F3. (12.48)
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With the above, we obtain for the different wave-field contributions expressions

of the form

F(zy,25,5) = —|FE(z, + a,s,8) — FE(z; — a, 13, 5)], (12.49)

where FE = FEJ7" with

EE(x,23,5) = [8(s)/2mi] [ (W (9)/ple(p) exp{-s(px + lzs))ldp, (12:50)

in which x stands for z; + a or z; — a, respectively, ® = &y r and W = W‘{';’S.
The expressions for Wi+ (p) and &% (p) are given in (12.34), (12.35), (12.36)
and (12.21), (12.28), (12.30).

Next, we take advantage of the symmetry of the configuration with respect
to the plane z; = 0. For the wave field in the fluid we have the symmetry

relations
wyi(z1,23,t) = —wi (21,23, t), ws(z1,73,t) = ws(—2z1,23,1),
(12.51)
o(zy, z3,t) = 0(—2y, 3, 1),

and for the wave field in the solid we have the symmetry relations

vy(z1, 23, t) = —vi(—2y, 23,1),  v3(z1,T3,t) = v3(—1y, 75, t),
(12.52)
T1s(21, 23, t) = —T13(—T1, Tsst),  T33(Z1, T3, t) = Ta3(—7, 73, t).
Once the wave field has been determined in the domain
* = {zn € R%z; > 0}, (12.53)

its values in the entire space D are known via (12.51) and (12.52).

The first step in the Cagniard-De Hoop method consists of deforming, in
each of the two terms in (12.49), the path of integration L* in the complex
p—plane into a path L? along which

px +v|zs| = 1, (12.54)
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where 7 is real and positive. By virtue of Jordan’s lemma (Whittaker and
Watson 1950, p.115) the contribution from joining circular axes at infinity van-
ishes, and hence Cauchy’s theorem ensures that the integral along the imaginary
p—axes is equal to the integral along LB. In (12.54), x = z; + a for the first
term in (12.49) and x = z, — a for the second term in (12.49). Such a path
is denoted as a Cagniard-De Hoop path. In the process of deformation we en-
counter the singularities in W (p)/p, &(p) and ~v,p,5(p) = (1/c p 5 ~ p*)/2. These
are: the branch points p = £1/csps of 75ps that also occur in W(p)/p and
£(p), and the poles of W(p)/p, i.e., the zeros p = +1/cson of Agcy (cf. (12.37))
{(cscm =Scholte wave speed), and the pole p = 0. The former two poles are as-
sociated with the Scholte waves along the fluid/solid boundary of the fluid/solid
configuration; the pole p = 0 will be shown to be associated with the up- and
downgoing plane waves that exist in the vertical region above and below the
strip S. The three possible distributions of the singular points in the complex
p—plane are shown in Figure 12.4. Note that we always have ¢s < ¢p. In ad-
dition, it can be proved that cscy < min {c;,¢p,cs}. Since the application of
Cauchy’s theorem in connection with the deformation of the path of integration
in the complex p—plane requires the integrands to be single-valued, branch cuts
are, in accordance with (12.19) and (12.25), introduced along Im(p) = 0 and
1/esps < |Re(p)| < o0, i.e., where Re(vs,ps) = 0. In the cut p—plane, we then
have Re[vsps(p)] > 0. Depending on the position of the point of observation,
three cases are distinghuised for the deformation of the contour L* in (12.50) in
the complex p—plane (Figure 12.5). First, if x > 0 the contour is deformed into
the right half of the complex p—plane. Secondly, if x = 0 the contour remains
unchanged and runs along LT . Finally, if x < 0 the contour is deformed into
the left half of the complex p—plane, in which case the contribution from the
pole p = 0 is to be taken into account. In this procedure the deformed paths of
integration in (12.49) are obtained as p = pP(x,zs,7) in the upper half of the
p—plane, together with their images p = p?" with respect to the real axis, where
p® is given by

PP (x:25,7) = x7/(x* + 23) + i(r* — T3) s/ (x* + =3), (12.55)

with T < 7 < oo, where Tp = (x* + z2)'/3/¢ is the arrival time of the body
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Figure 12.4: The three possible distributions of the singular points in
the complex p—plane.
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Im(p)

LB(x<0)

LZ(x>0)

Figure 12.5: The contour L? in the complex p—plane for the three
different cases of x < 0,x =0,x > 0.
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wave,
Body-Wave Contributions

Introducing in (12.50) 7 as the variable of integration, we find the body-wave

contribution
FE® = 8(s)G" (x,25,5), (12.56)
where
~B 0 B
G (x,r3,8) = . L (x,zs,7) exp(—s7)dr, (12.57)
=Tp
in which

¢®(x,zs,7) = (1/m)Im{[W (p®)/p®)&(p®)(8p® /07)}H (r ~ T5).  (12.58)
In (12.58), dpB /a7 is the one-dimensional Jacobian given by
0p® 101 = x/(x* + z3) + ilr/(r* — T3)*)|zs|/ (3 + <3). (12.59)

In the derivation of (12.56), the part associated with p = p® and p = p#
have been taken together and Schwarz’s reflection principle has been used in
the integrand. Equation (12.56) is the contribution from the integration along
the contour L? and is identified as a cylindrical wave motion. The space-time
expressions for the body-waves follow by applying the convolution theorem to
(12.56) and Lerch’s theorem on the uniqueness of the Laplace transform with
real, positive transform parameter (see Widder, 1946):

FE® = Hit - TB)/t &(t — r)g® (x> 23, 7)dr, (12.60)

r=Tg

where H denotes again the Heaviside unit step function (cf. (12.44)).

Plane Wave Contributions

The contribution of the residue of the integrand in (12.50) at the simple pole
p = 0 is found as

PW = H(—x)®(s)W(0)£(0) exp(—s|zs| /), (12.61)

where H denotes again the Heaviside unit step function. It is identified as the

plane wave that is excited above the strip source in the fluid and below the strip
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Im(p)

Figure 12.6: The contours L and L? in the complex p—plane for the
case that the deformed path is tempted to cross a branch cut.

source in the solid. (Note that in the domain D" given by (12.53), the region
0 <z, < aleads to x < 0 in the term for which x = z; — a.) The space-time

expression for the plane wave simply follows as
PW (x,zs,t) = H(-x)W(0)&(0)®(t ~ TpL), (12.62)

where Tpy = |zs|/c is its arrival time.
Head Wave Contribution

In the deformation of the path of integration from L* to the path where {12.54)
holds, it is not permitted to cross any of the branch cuts introduced in the
complex p—plane. In the case that a branch point p = p¥f = 1/¢;ps has a
smaller absolute value than the point p = pZ where p = p? is tempted to
cross the real axis, a loop integral L¥ around the relevant branch cut associated
with p¥ and joining the points p¥ — 10 and pZ + 40 has to be supplemented
(Figure 12.6). Along this loop, too, the parameterization (12.54) has to be
carried out. The relevant values of p in the upper and lower halves of the

p—plane are found as p = p¥(x,zs,7) and its image p = p¥"(x,zs,7) with
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respect to the real axis, respectively, where p¥ is given by

x7/(x* + 23) + (T — 7%)"*|zs| /(x* + z§) + 10  when x <0,

pH(X, $3at) =
x7/(x* + z§) — (T} — 78)"/*|zs|/(x* + 23) + 10 when x >0,
(12.63)
with Ty < 7 < Tg where
Ty = pff x|+ [(p8)* — (f)?]"/*|zs. (12.64)
The contribution of the loop integral around the branch is given by
A H a2, aH
EE" = ®(s)G (x,z3,5), (12.65)
where
~H t
G (x,z3,8) = H(t — TH)/; - ¢" (x,xs,7) exp(—s7)dr, (12.66)
=Ty
in which

g% (x, zs,7) = (1/m)Im{[W (p") /" |&(p") (89" /07)}H (Tp — 7).  (12.67)
In (12.67), 8p™ /37 is the one-dimensional Jacobian given by

X/t +23)  [r/(T§ — 7))zsl/ (¢ + 53)  when x <0,

ap” |ar = { )
) /(x* + 22) + [/ (T} — )25l /(X" +28) when x> 0.
(12.68)

The contribution from the integration along the contour L¥ is identified as a
cylindrical head wave. The space-time expressions for the head waves follow
by applying the convolution theorem to (12.65) and Lerch’s theorem on the
uniqueness of the Laplace transform with real, positive transform parameter
(see Widder, 1946):

t
FE? = H(t - TH)/ . ot — r)g"(x,x,o,,r)dr. (12.69)
r=iyg

Due to the three different wave speeds in the fluid/solid configuration, three
types of head waves can occur. Which type of head wave occurs in a specific

wave problem depends on the ordering of the three wave speeds and on the
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Table 12.1: The head waves that can occur in the fluid/solid configu-
ration.

ordering of  head waves in fluid head waves in solid
wave speeds

cs <cs<cp P tofconversion P toS conversion
S to f conversion

cg <cg<cp Ptof conversion f to S conversion
P to S conversion

cs < cp < ¢y P to S conversion
f to P conversion
f to S conversion

horizontal offset from source to receiver. For the three possible orderings of
these wave speeds (cf. Figure 12.4), the head waves are listed in table 12.1.
The space-time expression for the total wave motion in the fluid /solid con-
figuration that is generated by the strip source at the plane interface is now
simply found by adding the three contributions (12.60), (12.62) and (12.69):

FE = PW + FE¥ + FE®. (12.70)

The wave fronts corresponding to the body waves, the head waves, the plane
waves and the Scholte waves that are generated by the strip source in the
fluid /solid configuration are, for the three possible orderings of the wave speeds,
shown in Figures 12.7-12.9.

Numerical Results

Synthetic seismograms of the particle velocity in the fluid and in the solid close to
the strip source are presented for the volume injection rate strip source problem.
The fluid medium properties are taken to be pf = 1.0 * 10% kg/ m® and k =
4.4+1071° Pa™!; the solid medium properties are taken to be p* = 2.5+10° kg/m?®
and A = u = 10" Pa. The corresponding fluid, P— and S—wave speeds are:
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P( PL)

Figure 12.7: The different wave fronts generated by the strip source at
the plane fluid/solid interface for the case that ¢y < ¢g < ¢p. The wave
fronts of the fluid, P—, S—, and Scholte waves are indicated by f, P, S,
and SCH, respectively. The Pto f, S to f and P to S conversion waves
are denoted by Pf, Sf and PS, respectively. The waves originating
from the left edge of the strip source have the superscript (—a), the ones
originating from the right edge of the strip source have the superscript
(a). The wave fronts of the plane fluid and P—waves are indicated by
fPL) and PPL) respectively.
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FLUID| ¢ fo f@
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Figure 12.8: The different wave fronts generated by the strip source at
the plane fluid/solid interface for the case that ¢5 < ¢ ¢ < cp. The wave
fronts of the fluid, P—, S—, and Scholte waves are indicated by f, P, S,
and SCH, respectively. The P to f, f to S and P to S conversion waves
are denoted by Pf, fS and PS, respectively. The waves originating
from the left edge of the strip source have the superscript (—a), the ones
originating from the right edge of the strip source have the superscript
(a). The wave fronts of the plane fluid and P—waves are indicated by
fIPL) and P\PL)| respectively.
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Figure 12.9: The different wave fronts generated by the strip source at
the plane fluid/solid interface for the case that e¢p < ¢s < ¢5. The wave
fronts of the fluid, P—,S—, and Scholte waves are indicated by f, P, S,
and SCH, respectively. The f to P, f to S and P to S conversion waves
are denoted by fP, fS and PS, respectively. The waves originating
from the left edge of the strip source have the superscript (—a), the ones
originating from the right edge of the strip source have the superscript
(a). The wave fronts of the plane fluid and P—waves are indicated by
fPL) and PPL)| respectively.
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¢s = 1507 m/s, cp = 3464 m/s and cs = 2000 m/s. Along the strip
S={-a<z <a,z; =0} (12.71)

the strip source introduces a spatially uniformly distributed volume injection
rate. The injection rate per unit length in the z,-direction and unit width in
the r,-direction is ®(t)/2a with ®(¢) as the wavelet. For the test problem we
took as source signature

Dy (t) = Aexp(—6t)sin(wt)H(t), (12.72)

where H(t) is the Heaviside unit step function (cf. (11.27)), A the source
strength amplitude, § the damping coefficient and w the angular frequency.
In our computations we take a strip source for which a=1 m. Four synthetic
seismograms are presented that represent the particle velocity close to the strip
source; two of them show the different waves generated by the strip source in
the fluid and two of them show the different waves generated by the strip source
in the solid. The synthetic seismograms for the fluid apply to an array of 21
receivers that are located 0.15 m apart and 1 m above the fluid/solid inter-
face. The first receiver of this array is located above the center of the strip
source. The synthetic seismograms for the solid apply to an array of 21 re-
ceivers that are located 0.15 m apart and 1 m below the fluid/solid interface.
The first receiver of this array is located below the center of the strip source
(Figure 12.10). For the computation of these seismograms we took as source
parameters A =1 N/m,6 = 2% 10* s™! and w = 27 + 5 * 10° rad/s; this wavelet
has a frequency of 5 * 10° Hz and its first peak dominates the wave shape (see
Figure 12.11). The seismograms in Figures 12.12 and 12.13 represent the hor-
izontal and vertical fluid particle velocities w; and ws, respectively, and the
seismograms in Figures 12.14 and 12.15 represent the horizontal and vertical
solid particle velocities vy and v, respectively.

Both in the seismograms of the receivers in the fluid and in the solid a
scale is used such that the different wave phenomena are clearly visible. As a
consequence, some of the wave peaks in the seismograms had to be clipped.

The computer program was written in Fortran 77. The time convolutions

occurring in the expressions for the particle velocity were evaluated numerically
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Figure 12.10: The array of 21 receivers in the fluid above the strip
source and the array of 21 receivers in the solid below the strip source.
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Source signature
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Figure 12.11: The source signature of the strip source for the source
parameters A = 1 N/m, § = 2+10* s~ ! and w = 27 + 5 * 10° rad/s
(f=5 % 10°® Hz).
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Horizontal fluid particle velocity wl

Offset (m)

Figure 12.12: The horizontal component of the fluid particle velocity
for the 21 shallow receivers for the volume injection rate strip source.
The fluid waves are indicated by f. The wave originating from the left
edge of the strip source has the superscript (—a), the one originating
from the right edge of the strip source has the superscript (a).
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Vertical fluid particle velocity w3
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Figure 12.13: The vertical component of the fluid particle velocity for
the 21 shallow receivers for the volume injection rate strip source. The
fluid waves are indicated by f. The wave originating from the left edge
of the strip source has the superscript (—a), the one originating from
the right edge of the strip source has the superscript (a). The plane
fluid wave is indicated by f(PL),
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Horizontal solid particle velocity vl
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Figure 12.14: The horizontal component of the solid particle velocity for
the 21 shallow receivers for the volume injection rate strip source. The
P—,PS—, and S—waves are indicated by P, PS and S, respectively.
The waves originating from the left edge of the strip source have the
superscript (—a), the ones originating from the right edge of the strip
source have the superscript (a). The Rayleigh waves have a too small
amplitude to show up.



176

10"~

12. STRIP SOURCE AT A FLUID/SOLID INTERFACE.

Vertical solid particle velocity v3
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Figure 12.15: The vertical component of the solid particle velocity for
the 21 shallow receivers for the volume injection rate strip source. The
P—,PS—, and S—waves are indicated by P,PS and S, respectively.
The waves originating from the left edge of the strip source have the
superscript (—a), the ones originating from the right edge of the strip
source have the superscript (a). The plane P—wave is indicated by
PPL) The Rayleigh waves have a too small amplitude to show up.
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with the aid of a subroutine of the NAG library (NAG (1988)). The relative ac-
curacy for the determination of these time convolutions was set to 107, To avoid
numerical difficulties in the computation of the fluid wave or of the P—wave in
case the Cagniard-De Hoop contour runs closely along the pole p = 0 in the com-
plex p—plane, an analytically integrable part was separated off from the relevant
Green’s function so that the remaining part was easy to integrate numerically.

For each receiver the synthetic data were computed at 300 time intervals
of 27/30w m - s. Because the source signature is a highly damped sinusoid,
the wave field quantities at a point of observation are expected to drop to a
very small value shortly after the arrival of the first peak of the different wave
constituents. To save a lot of computation time, the negligibly small field values
at these instants have been automatically put equal to zero. With the above
measures, the CPU-time needed for each of the two seismograms for the receivers
in the fluid was about 1.0 hour and for each of the two seismograms for the
receivers in the solid about 1.5 hour on a Vax 8250 computer. The main part of
the computation time was spent on the evaluation of the time convolutions of
the source signature with the relevant Green’s functions.

The seismograms in Figures 12.12-12.15 clearly show the different fluid,
P—,S— and P to § headwave conversion waves originating from the two edges
of the strip source. In addition, we see in the seismogram of the vertical compo-
nent of the fluid particle velocity ws the plane fluid wave contribution that exists
above the strip source, while in the seismogram of the vertical component of the
solid particle velocity vs we see the plane P—wave contribution that exists be-
low the strip source. The P to f and S to f conversion waves and the Rayleigh
waves have a too smalil amplitude to show up. The corresponding wave fronts
applying to this test case for which ¢; < ¢s < cp are drawn in Figure 11.16.

The synthetic seismograms in Figures 12.12-12.15 have been computed for a
source with a high frequency (5 kHz), in order to bring out clearly the charac-
teristics of the wave motions generated. In problems of applied geophysics much
lower frequencies usually occur. Since the presented solution method is suited

for all frequencies, it can be used for low-frequency problems as well.
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Chapter 13
NUMERICAL RESULTS

As has already been mentioned in Chapter 9, we want to test our finite-element
method for some two-dimensional acoustic wave problems in order to avoid the
extensive use of computer storage capacity and computation time associated
with three-dimensional problems. For the former, it is still possible to illustrate
the specific advantages of the use of our elements. The main difference with
the three-dimensional case are the local expansion functions. The elementary
regions into which the domain of computation is discretized are now triangles
(simplices in R?) instead of tetrahedra (simplices in R®).

As test configurations we take the ones introduced in the Chapters 10-12,
i.e., the fluid halfspace (Figure 10.1), the solid halfspace (Figure 11.1) and the
fluid /solid configuration (Figure 12.1). In the case that the media present in
these configurations are taken to be homogeneous, the exact solutions are the
relevant Cagniard-De Hoop solutions given in these chapters.

The finite-element method is used to perform the spatial discretization and
leads, for each of the test problems, to a square system of linear, first-order,
ordinary differential equations as far as the time coordinate t is concerned. In
it, the global expansion coefficients used in the global representations of the
acoustic wave field quantities occur as fundamental unknown time functions.

Its general form is given by
&atﬂ = LI, (13.1)

where M and K are square matrices and z = z(t) is the vector with the un-

known time functions. In our computational method we apply a finite-element

179



180 13. NUMERICAL RESULTS

discretization in the time direction, too. Thus the time functions are approxi-
mated by a sequence of time expansion functions defined on the discretized time
axes. We take both for the time weighting and expansion functions so called
’hat’ functions. These are piecewise linear functions that have value one in one
of the discrete time points of the discretized time axes and zero in the neigh-
bouring points. Substitution of these time representations in (13.1) leads to the
system of equations

M- (1/3)AtKla™ = (4/3)AtKa" + M+ (1/3)At K™ (13.2)

where " = z(t") is the value of the vector with the time functions at the
instant ¢ = ¢". The scheme in (13.2) is a two-step method in the time direction.
Therefore, we need besides the initial value z°, that follows from the acoustic
wave problem, also an estimate of z* to start the marching-on-in-time procedure.

To this end we use at the start of the procedure the one-step Euler method:
Mz = (M + AtK2. (13.3)

The above described time discretization procedure is used in the time integration
of the different systems of differential equations that arise from the test problems.

The test problems are discussed separately below.
Fluid halfspace

At the boudary of the halfspace a strip source is present that exerts along the
strip
S ={-a<z <a,13 =0} (13.4)

a spatially uniformly distributed normal force on the fluid medium. (Fig-
ure 10.1). The force per unit length in the z,—direction and unit width in
the z;—direction is ®, (t)/2a with &, (t) as the wavelet. We have taken as the
source signature

®,(t) = Aexp(—6t)sin(wt) H(t), (18.5)

where H(t) is the Heaviside unit step function (cf. (10.20)), A the source
strength amplitude, 6 the damping coefficient and w the angular frequency.
In our computations we have taken a strip source for which a=0.25 m, A = -1
N/m, § =2%10%! and w = 27 + 5 % 10 rad/s (f = 0.5 kHz).
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- 2y — >

Figure 13.1: Domain of computation D with its four boundaries
0D,,8D,,8Ds and dD,. The horizontal distance between dD; and
8D, is 1.2 m; the vertical distance between 8D, and dD;s is 0.8 m.
Domain D is discretized into an 18 x 12 grid.

As domain of finite-element computation D a rectangle is chosen that has a
boundary 8D, that is coincident with the boundary of the halfspace, a boundary
8D, that is coincident with the plane of symmetry of the configuration (z, =
0, z3 € R) and the two boundaries dD; and 8D, that together form an artificial
boundary that restricts the domain of computation D (Figure 13.1). On the part
of D, where the strip source is not present, tractionfree boundary conditions
are imposed whereas on the remaining part of 8D, the strip source prescribes
the scalar traction. On the boundary 8D, the appropriate symmetry conditions
are prescribed. Finally, the normal component of the particle velocity has been
put equal to zero at the artificial boundaries D3 and 3D,. These boundaries
are taken so far from the strip source that the (artificial) reflections against them
can not reach the receivers within the chosen time window. As far as time is



182 13. NUMERICAL RESULTS

&

- 0.5m —d R
TOlTEIIVP7P77777777777 7770777777777 79777 777777777777 777777777777
Aluid 4 receivers near

0.1 .
™  strip source
X —0.9m 3 X X
1 2 S

Figure 13.2: The array of 3 receivers in the fluid near the strip source.

concerned, we introduce the normalized time coordinate "™ =t x f, where f
is the frequency of excitation of the strip source.

First the finite-element solution in a homogeneous fluid halfspace is tested
against the corresponding Cagniard-De Hoop solution. The fluid properties are
taken to be p/ = 1.0+ 10° kg/m® and k = 4.4+ 10" °Pa~}. The fluid wave speed
is then ¢; = 1507 m/s. The spatial fluid wave length A; follows then as A; =
¢s/f ~ 3 m. As window for the normalized time we choose t"™ € [0.0 s, 0.5s].
The seismograms for an array of 3 receivers are computed that are located 0.3 m
apart at a depth of 0.15 m. The first receiver of this array is located below the
center of the strip source (Figure 13.2). The vertical distance between the strip
source and the boundary 8D; is taken to be 0.8 m and the horizontal distance
between the center of the strip source and the boundary d D, is taken to be 1.2 m.
These distances ensure that the artificial reflections of the generated waves do
not reach the receivers within the chosen time window. The spatial discretization
is shown in Figure 13.1: we took 18 steps in the horizontal direction and 12 steps
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in the vertical direction. Consequently, we have 45 discretization steps per wave
length A;. In the time direction we have taken a number of 80 time steps for
our time window. The synthetic seismograms for the horizontal and the vertical
particle velocities for the array of three receivers are presented in Figure 13.3
and Figure 13.4, respectively. The solid lines represent the exact Cagniard-De
Hoop solution, the dashed line the finite-element solutions with the Cartesian
elements and the dotted line the finite-element solution with the Face elements.
We observe that the solution with the Face elements is a little better than the one
with the Cartesian elements. However, the CPU time used in the computations
with the Face elements was about 3 hours and with the Cartesian elements about
1 hour. For the homogeneous case, the finite-element method that makes use of

the Cartesian elements is more efficient than the one that uses Face elements.

Next, the performance of the two different types of elements is tested for an
acoustic halfspace wave problem with an inhomogeneous fluid. We take a strip
source with the same parameters as used in the homogeneous fluid wave problem
except that now a = 0.3 m. In the region R1 = {-0.1 < z; < 0.1, z3 > 0} the
fluid properties are taken to be p/) = 1.0%10% kg/m?® and (V) = 4.4%¥1071°Pa~1,
The fluid wave speed in R1 is then c(fl) = 1507 m/s and the spatial wave length
A.(,l) = 1.5 m. In region R2 = {—~oc0 < z; < —0.1V 0.1 < z; < 00, 3 > 0} the
fluid properties are taken to be p/(2) = 1.0%10* kg/m® and x(?) = 4.4¥10~°Pa™?,
The fluid wave speed in R2 is then c(fz) = 477 m/s and the spatial wave length
Ag.z) = 0.95 m. Further, we have between the regions R1 and R2 fluid/fluid
interfaces at {z; = —0.1,z3 > 0} and {z; = 0.1,z3 > 0} (Figure 13.5). The
media in the two regions R1 and R2 show a relatively large contrast in their

volume density of mass.

Synthetic seismograms have been computed for two receivers, the first one
at the position (0.075 m, 0.1 m) which is in the region R1 and the second one
at the position (0.125 m, 0.1 m) which is in the region R2. As window for the
normalized time we choose "™ = [0.0 s, 0.25 s|. The vertical distance between
the strip source and the boundary 8D; is taken to be 0.4 m and the horizontal
distance between the center of the strip source and the boundary 3D, is taken to
be 0.4 m (see Figure 13.5). These distances ensure that the artificial reflections

of the generated waves do not reach the receivers within the chosen time window.



184

13. NUMERICAL RESULTS
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Figure 13.3: The horizontal component of the particle velocity for the
three receivers for the normal force strip source. The solid line is the
Cagniard-De Hoop solution, the dashed line the finite-element solution
where Cartesian elements have been used and the dotted line the fi-
nite-lement solution where Face elements have been used.
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Vertical particle velocity w3
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Figure 13.4: The vertical component of the particle velocity for the
three receivers for the normal force strip source. The solid line is the
Cagniard-De Hoop solution, the dashed line the finite-element solution
where Cartesian elements have been used and the dotted line the fi-
nite-element solution where Face elements have been used.
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Nluid /Auid interfaces

Figure 13.5: The inhomogeneous fluid halfspace with the regions
R1={-0.1 < z; < 0.1, zs > 0} and R2={-00 < z; < -0.1V
0.1 < z; < 00, 3 > 0}. At {z; = 0.1,z5 > O} there is a fluid/fluid
interface. The horizontal distance between 8D, and 8D, is 0.4 m; the
vertical distance between dD; and dDs is 0.4 m. Domain D is dis-
cretized into a 4 x 4 grid.
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First, the finite-element computations with Cartesian and Face elements are
performed for a spatial discretization of 4 steps in the horizontal direction and 4
steps in the vertical direction of the domain of computation D (see Figure 13.5).
The synthetic seismograms of the particle velocities are presented in Figures 13.6
and 13.7. The solid line is the solution with Face elements and the dashed line is
the solution with Cartesian elements. Next, the computations with the Cartesian
elements are performed for two grids with an increased number of discretization
steps in the horizontal direction. In Figures 13.8 and 13.9 the dashed line is
the finite-element solution with Cartesian elements for a grid with 8 steps in the
horizontal direction and 4 steps in the vertical direction and in Figures 13.10 and
13.11 they are the relevant solutions for a grid with 12 steps in the horizontal
direction and 4 steps in the vertical direction. In these seismograms the solid
line is the finite-element solution with the Face elements for the 4 x 4 grid. We
observe that by increasing the number of discretization steps in the horizontal
direction the solution with Cartesian elements more and more approximates the
one computed with the Face elements. The CPU time needed for the finite-
element solution using the Cartesian elements for the finest grid is about 17
minutes and for the finite-element solution using the Face elements about 11
minutes. For this problem we observe that the finite-element method that uses
the Face elements is more efficient than the one using Cartesian elements.

Solid halfspace

For the solid halfspace only finite-element computations with Cartesian elements
have been performed because for this case the symmetry of the stress (following
from the balance of angular momentum) does not give rise to extra difficulties.
In case Face elements are used, the symmetrization of the expansion of the stress
becomes a problem. Because the individual local Face expansion functions are
not symmetric, this condition on the stress has to be enforced by supplementary

(local) equations. How this is to be implemented is still an unsolved problem.

The finite-element computations are performed for a homogeneous solid half-
space. At the boudary of it a strip source is present that exerts along the strip
(cf. (13.4)) a spatially uniformly distributed normal force on the solid medium

(Figure 11.1). The force per unit length in the z;—direction and unit width in
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Figure 13.6: The horizontal particle velocity for the two receivers near
the fluid/fluid interface for the normal force strip source problem. The
solid line represents the finite-element solution with the aid of Face
elements, the dashed line represents the one with the aid of Cartesian
elements. For both methods we used a 4 x 4 grid.
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Vertical particle velocity v3_
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Figure 13.7: The vertical particle velocity for the two receivers near the
fluid/fluid interface for the normal force strip source problem. The solid
line represents the finite-element solution with the aid of Face elements,
the dashed line represents the one with the aid of Cartesian elements.
For both methods we used a 4 x 4 grid.
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Horlzontal _particle velocity vl
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Figure 13.8: The horizontal particle velocity for the two receivers near
the fluid/fluid interface for the normal force strip source problem. The
solid line represents the finite-element solution with the aid of Face
elements for a 4 x 4 grid, the dashed line represents the one with the
aid of Cartesian elements for a 8 x 4 grid.
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Vertical particle velocity v3_

0.1

i
[
i
[l
i
|
i
1
'
1
1
'
i
]
]
1
'
]
!
]

J.15

0.2

'
[
[}
i
i
i
i
[}
]
1
i
]
:
'
[}
t
]
1
[l
|
1
1
[}
1
I

0.25 0.04 0.06 0.108 021
OFFSET (M)

Figure 13.9: The vertical particle velocity for the two receivers near
the fluid/fluid interface for the normal force strip source problem. The
solid line represents the finite-element solution with the aid of Face
elements for a 4 x 4 grid, the dashed line represents the one with the

aid of Cartesian elements for a 8 x 4 grid.
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Horizontal particle velocity vl _
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Figure 13.10: The horizontal particle velocity for the two receivers near
the fluid/fluid interface for the normal force strip source problem. The
solid line represents the finite-element solution with the aid of Face
elements for a 4 x 4 grid, the dashed line represents the one with the
aid of Cartesian elements for a 12 x 4 grid.
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Vertical particle velocity v3
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Figure 13.11: The vertical particle velocity for the two receivers near
the fluid/fluid interface for the normal force strip source problem. The
solid line represents the finite-element solution with the aid of Face
elements for a 4 x 4 grid, the dashed line represents the one with the

aid of Cartesian elements for a 12 x 4 giid.
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D,
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Figure 13.12: Domain of computation D with its four boundaries
8D,,8D,,0Ds and dD,. The horizontal distance between 3D, and
9D, is 1.4 m; the vertical distance between dD; and 4Ds is 1.0 m.
Domain D is discretized into a 7 x 5 grid.

the z;—direction is &, (t)/2a where the wavelet &, (t) is given by (13.5). As
source parameters we have taken a=0.25 m, A = 1 N/m, § = 2% 10% s~ and
w = 27 * 1.0 ¥ 10° rad/s (f = 1.0 kHz).

Similar to the computations for the fluid halfspace, the domain of finite-
element computation D is a rectangle with a boundary 8D, that is coincident
with the boundary of the halfspace, a boundary 8D, that is coincident with
the plane of symmetry of the configuration (z; = 0,z; € R) and two boundaries
0Dy and 4D, that together form an artificial boundary that restricts the domain
of computation D (Figure 13.12). On the part of D, where the strip source
is not present, tractionfree boundary conditions are required whereas on the
remaining part of @D, the strip source prescribes the solid traction. On the
boundary 8D, the appropriate symmetry conditions are prescribed. Finally,
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Figure 13.13: The array of 3 receivers in the solid near the strip source.

the normal component of the particle velocity has been put equal to zero at
the artificial boundary dD; and 8D,. These boundaries are taken so far from
the strip source that the (artiﬁcia.l) reflections of the waves generated by it
can not reach the receivers within the chosen time window. As far as time is
concerned, we introduce the normalized time coordinate t"™ = t f, where f is
the frequency of excitation of the strip source. As far as the medium properties
are concerned, we take p* = 2.5 * 10° kg/m® and A = g = 1.0  10’° N. The P-
and S—wave speeds are then cp = 3464 m/s and ¢s = 2000 m/s. The spatial
P— and S—wave lengths Ap and Ag follow then as Ap = ¢p/f ~ 3.5 m and
As = ¢s/f ~ 2 m. As window for the normalized time we have chosen t"*"™ €
[0.0 s, 0.5s]. The seismograms for an array of 3 receivers are computed that
are located 0.3 m apart at a depth of 0.15 m. The first receiver of this array is
located below the center of the strip source (Figure 13.13). The vertical distance
between the strip source and the boundary dDjs is taken to be 1.0 m and the
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horizontal distance between the center of the strip source and the boundary
9D, is taken to be 1.4 m. These distances ensure that the artificial reflections
of the generated waves don’t reach the receivers within the chosen time window.
The spatial discretization is shown in Figure 13.12 where we took 7 steps in
the horizontal direction and 5 steps in the vertical direction. Consequently,
we have 20 discretization steps per S—wave length Ag. In the time direction
we have taken a number of 50 time steps for our time window. The synthetic
seismograms for the horizontal and the vertical particle velocities for the array
of three receivers are presented in Figure 13.14 and Figure 13.15, respectively.
The solid lines represent the exact Cagniard-De Hoop solution and the dashed
lines the finite-element solutions with the Cartesian elements. The CPU time

used in the computations with the Cartesian elements was about 26 minutes.
Fluid/solid configuration

Numerical results are presented for a fluid/solid configuration in which the fluid
and solid are homogeneous (Figure 12.1). The properties of the solid are taken
to be p* = 2.5+ 10%g/m"® and A = g = 10 N. The P— and S—wave speeds are
then cp = 3464 m/s and ¢s = 2000 m/s, respectively. For the fluid properties
we have taken p/ = 1.0 + 10%kg/m® and k = 4.4 * 10~°Pa~!. The fluid wave
speed is then ¢; = 1507 m/s.

At the plane interface

I= {.’t] € R, Tz = 0} (13.6)

between the fluid and the solid, a strip source is present that introduces a
spatially uniformly distributed volume injection rate along the strip (13.4).
The injection rate per unit length in the z;—direction and unit width in the
z,—direction is @, (t)/2a where the wavelet @, (t) is given by (13.5). As source
parameters we have taken A =1 N/m, § = 2x10% " and w = 27+ 1.0%10° rad/s
(f = 1.0 kHz). For the chosen frequency of the excitation of the strip source
the spatial wave lengths of the fluid, P— and S—wave in the configuration are
Af = 1.5m,Ap = 3.5m and Ag =~ 2m, respectively.

On the part S N I of the interface the strip source generates a finite dif-
ference between the vertical component of the fluid particle velocity and the
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Figure 13.14: The horizontal component of the particle velocity for the
three receivers for the normal force strip source. The solid line is the
Cagniard-De Hoop solution, the dashed line the finite-element solution
where Cartesian elements have been used.
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Vertical part;icle velocity v3 .
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Figure 13.15: The vertical component of the particle velocity for the
three receivers for the normal force strip source. The solid line is the
Cagniard-De Hoop solution, the dashed line the finite-element solution
where Cartesian elements have been used.
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vertical component of the solid particle velocity. On the part 1 \ S of the inter-
face, where the strip source is not present, the vertical component of the fluid
particle velocity is equal to the vertical component of the solid particle velocity.
The scalar traction in the fluid is at each point of the interface I, equal to the
normal component of the traction in the solid. Finally, the tangential compo-
nent of the traction in the solid is at the interface I equal to zero. In general, the
tangential component of the fluid particle velocity is unequal to the tangential
component of the solid particle velocity at . We test to finite-element solu-
tions agains the exact Cagniard-De Hoop for the fluid/solid medium. In both
finite-element methods we use Cartesian elements in the fluid and solid parts
of the configuration. In the first method, denoted by Cartesian finite-element
method, all acoustic wave field quantities are continuous by construction across
the fluid/solid interface while in the second method, denoted by Face finite-
element method, the vertical component of the particle velocity may jump by a
finite amount through this interface. The last method reflects the principle of

the Face elements.

We compute the particle velocity for two receivers near the fluid/solid in-
terface. Omne receiver is present in the fluid and one is present in the solid.
Both receivers have equal horizontal offset and have a vertical offset from the
fluid /solid interface of 0.1 m. Computations are performed for the case that we
have a strip source of infinite extent (a — o0) and for one of a finite extent in
which case the receivers are placed at a part of the interface where the strip

source is not present. (Figure 13.16).

First we show the results for the receivers for a the strip source of infinite
extent (a — o0). For this case the domain of finite-element computation D
is a rectangle with two vertical boundaries dD; and 8D, that intersect the
strip source. At these boundaries we require the vertical component of the
particle velocity to be zero. Further, we have the two boundaries 3D, and 8Dy
that are the artificial boundaries that restrict the domain of computation D.
(Figure 13.17). We perform the computations for a spatial grid that has 6
step in the horizontal direction and 9 steps in the vertical direction. As far
as the shortes spatial wave length A; is concerned, we have 9 steps per wave

length. For the window of the normalized time coordinate we have taken tnorm =
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Figure 13.16: The 2 receivers near the fluid/solid interface that have
equal horizontal offset and a vertical offset from the fluid/solid interface
of 0.1 m.
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Figure 13.17: Domain of computation D with its four boundaries
8D,,8D,,0D; and 8D,. The horizontal distance between 0D, and
8D, is 1.0 m; the vertical distance between 3D; and the fluid/solid
interface is 0.5 m and between 8Ds and the fluid/solid boundary 1.0
m. Domain D is discretized into a 6 x 9 grid.
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[0.05,0.255] that has been discretized into a union of 50 time intervals. The
artificial boundaries D, and @D;s have been taken so far from the strip source
that the (artificial) reflections of the waves generated by it can not reach the
receivers within the chosen time window.

The synthetic seismograms for the horizontal and the vertical components of
the particle velocities for the receiver in the fluid and in the solid are represented
in the Figures 13.18-13.21.

In the synthetic seismograms the solid lines are the exact Cagniard-De Hoop
solutions, the dashed lines the solutions obtained by the Cartesian finite-element
method and the dotted lines the Face finite-element solutions. For each receiver,
both finite element methods needed about 1 hour CPU time.

We observe that the finite-element method using the Cartesian elements and
that that uses the Face elements give an equally well approximation of the exact
solution.

In the second numerical experiment, we compute the particle velocity for a
strip source of finite extent where the two receivers are placed at a part of the
interface where no strip source is present. The extent of the strip source is taken
to be 0.5 m (a = 0.25m). As domain of finite-clement computation we take the
same as the one for the previous experiment, except that now the boundary
9D, is coincident with the plane of symmetry of the configuration and D, is
an artificial boundary. We have also taken the same source parameters, time
window and discretization of the spatial and time domain as have been used in
the computations for the infinitely extended strip source.

The synthetic seismograms for the horizontal and the vertical components of
the particle velocities for the receiver in the fluid and in the solid are represented
in the Figures 13.22-13.25.

In the synthetic seismograms the solid lines are the exact Cagniard-De Hoop
solutions, the dashed lines the solutions obtained by the Cartesian finite-element
method and the dotted lines the Face finite-element solutions. For each receiver,
both finite element methods needed about 1 hour CPU time.

We observe that the Face finite-element method gives a better approximation
of the exact solution than the Cartesian finite-element method.

Concluding remarks
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Figure 13.18: The horizontal component of the fluid particle velocity
for the receiver in the fluid for the volume injection rate strip source
of infinite extent. The solid line is the Cagniard-De Hoop solution,
the dashed line the Cartesian finite-element method solution and the
dotted line the Face finite-element method solution. have been used.
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Fluid particle velocity w3
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Figure 13.19: The vertical component of the fluid particle velocity for
the receiver in the fiuid for the volume injection rate strip source of
infinite extent. The solid line is the Cagniard-De Hoop solution, the
dashed line the Cartesian finite-element method solution and the dotted
line the Face finite-element method solution.
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Figure 13.20: The horizontal component of the solid particle velocity
for the receiver in the solid for the volume injection rate strip source
of infinite extent. The solid line is the Cagniard-De Hoop solution, the
dashed line the Cartesian finite-element solution and the dotted line
the Face finite-element solution.
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Figure 13.21: The vertical component of the solid particle velocity for
the receiver in the solid for the volume injection rate strip source of
infinite extent. The solid line is the Cagniard-De Hoop solution, the
dashed line the Cartesian finite-element solution and the dotted line
the Face finite-element solution.
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Figure 13.22: The horizontal component of the fluid particle velocity
for the receiver in the fluid for the volume injection rate strip source
of finite extent. The solid line is the Cagniard-De Hoop solution, the

dashed line the Cartesian finite-element method solution and the dotted
line the Face finite-element method solution. have been used.
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Figure 13.23: The vertical component of the fluid particle velocity for
the receiver in the fluid for the volume injection rate strip source of finite
extent. The solid line is the Cagniard-De Hoop solution, the dashed
line the Cartesian finite-element method solution and the dotted line

the Face finite-element method solution.
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Figure 13.24: The horizontal component of the solid particle velocity
for the receiver in the solid for the volume injection rate strip source
of finite extent. The solid line is the Cagniard-De Hoop solution, the

dashed line the Cartesian finite-element solution and the dotted line
the Face finite-element solution.
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Solid particle velocity v3
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Figure 13.25: The vertical component of the solid particle velocity for
the receiver in the solid for the volume injection rate strip source of
finite extent. The solid line is the Cagniard-De Hoop solution, the
dashed line the Cartesian finite-element solution and the dotted line
the Face finite-element solution.
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From the results it can be concluded that the finite-element solution gives results
that approach the exact solution for the test cases when the mesh size dimin-
ishes. For the inhomogeneous configuration, where a relatively large contrast is
considered, it is shown that the use of Face elements is superior to the use of
Cartesian elements with a required refinement of the mesh near interfaces. The
implementation of the Face elements for the stress requires additional local re-
lationships between the expansion coefficients such that symmetry of the global

representations is enforced. This problem has not been solved yet.



212

13. NUMERICAL RESULTS




Appendix A

EVALUATION OF THE
ELEMENT INTEGRALS

In this appendix the different integrals that show up in the finite-element formu-
lation of the space-time acoustic wave problem will be evaluated. The relevant
domain integrals in R? are all extended over a triangle and in R3 over a tetra-
hedron; The triangle under consideration will be denoted by T2, its vertices
by {P(0), P(1), P(2)} and the corresponding barycentric coordinates (i.e., the
linear interpolation functions) by {A(0), (1), A(2)}. The tetrahedron under con-
sideration will be denoted by T3, its vertices by {P(0), P(1), P(2), P(3)} and
the corresponding barycentric coordinates (i.e., the linear interpolation func-
tions) by {A(0), A(1), A(2), A(3)}. The integrands in these integrals either do
not contain the barycentric coordinates or do contain one of them or the prod-
uct of two or three of them. Such integrals will, in a more general setting, be
evaluated below. _

The evaluation of the integrals over T3 is most easily carried out by in-
troducing three out of the four variables {A(0), A(1), A(2), A(3)} as the vari-
ables of integration, and using for the fourth variable the relation A(0) + A(1) +
A(2) + A(3) = 1. To keep the relevant scheme as flexible as possible, we let
{I,J,K,L} = cycl {0,1,2,3}, where "cycl” stands for "cyclic permutation of”,
take A(I),A(J) and A(K) as the variables of integration, and replace A(L) by
1-A(I) - MJ) — A(K).

Similarly, for the evaluation of the integrals over T'2 we introduce two out of
the three variables {A(0), A(1),A(2)} as the variables of integration, and use for
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the third variable the relation A(0) + (1) + A(2) = 1. To keep also this scheme
as flexible as possible, we let {I,J,K} = cycl {0,1,2}, take A(I) and A(J) as
the variables of integration, and replace A(K) by 1 — A(I) — A(J).

Integral over T'3 containing no barycentric coordinate in the integrand

The case where the integrand over T'3 contains no barycentric coordinate has as
a typical example the volume V of T3. For this we obtain

vV = / dz,dz,dzs (A.1)
TeTs

_ (21, x5, z3) 1 1-A(K) 1-A(K)-A(J)
N a(f\(I),A(J),As(K))/0 d"(K)/o dz\(J)/o (1),

in which 9(z,, z3,zs)/8(A(I),A(J), A(K)) denotes the three-dimensional Jaco-
bian of the transformation from {zi,z;,zs} to {A(Z),A(J),A(K)} as the vari-
ables of integration. Carrying out the integrations at the right-hand side, we

arrive at
a(xl’ Z2, Zs)

= 30, A, A& O (4.2)

|4

°r d(z;, -"52,»’53)
(A1), A(J), A(K))

This expression for the three-dimensional Jacobian is used in the further evalu-

=6V. (A.3)

ations of integrals over T'3.
Integral over T'2 containing no barycentric coordinate in the integrand

A typical example where the integrand over T2 contains no barycentric coor-
dinate is the area A of T2. For this we obtain, assuming that T2 lies in the
Z1, T3~ plane,

A = /;:eTz d.’l:ld.'tz (A4)

3z, 1) 1 1-A(J)
= ST /0 d\(J) /O ax(I)

in which 3(zy,z,)/3(A(1),A(J)) denotes the two-dimensional Jacobian of the
transformation from {z;, z;} to {A(I), A(J)} as the variables of integration. Car-~
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rying out the integrations at the right-hand side, we arrive at

Oy, z4)

A= somaep Ao

- _Oznm) ., (A.6)
a(AMI),M(J))

This expression for the two-dimensional Jacobian is used in the further evalua-

tions of integrals over T'2.

Integrals over T3 containing the barycentric coordinates in the inte-
grand

For the typical integral over T'3 that contains the barycentric coordinates in its

integrand we consider

It

I3(a, b, ¢, d) /z PO NE) AL derdrrday

1 1-A(K) 1-A(K)-A(J)
6V /0 dA(K) /0 dA(J) /0 (A.7)

POPAMIPAE) L = AT) = A(J) = ME)]|*dA(T)

with a > 0,6 > 0,¢ > 0,d > 0,

where (A.3) has been used to change from {z, 2,23} to {A(I),A(J), A\(K)} as

the variables of integration. Obviously,
13(0,0,0,0) = V. (A.8)
Integration by parts in the integral with respect to-A(I) yields

/ TP D PAGPAEL - AT — M) = AE)FaAD)

=@+ [T D@ RO (A9)
(1= X(I) = A(J) = A(K))*2ar(T).
Using (A.9) in (A.7) we obtain the recurrence relation

I3(a,b,¢c,d) = (a+1)"*d I3(a + 1,b,¢,d — 1). (A.10)
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Since (A.7) is completely symmetrical in all its parameters, (A.10) holds for
the increase of any of the four parameters by one and decreasing any other
parameter by one. Using the property of the factorial function

(a+ 1)! = (a+1)(a)! with 0! = 1, (A.11)

the recurrence relation (A.10) is satisfied by taking for I3(a, b, ¢, d) the expression

alb!icld!

I3(a,b,¢,d) = @tbictrdsp’”

(A.12)

where p is as yet arbitrary and (A.8) has been taken into account. Using (A.8)
again, it also follows that

I13(a,b,e,d +1) = I3(a,b,¢,d) ~ I3(a + 1,b,¢, d)

(A.13)
— I3(a,b+1,c,d) — I3(a,b,c + 1,d).
Substitution of (A.13) in (A.12) leads to
p=3. (A.14)
Collecting the results, we arrive at
1btc!d!3!
I3(a,b,¢,d) = o :_ﬁiii_{_ oI (A.15)

This formula can also be found in Zienkiewicz and Taylor (1989, p.139).

Integrals over T2 containing the barycentric coordinates in the inte-
grand

For the typical integral over T2 that contains the barycentric coordinates in its

integrand we consider

I12(a,b, ¢) /z L ADFOIPIAK)  dzydzs (A.16)

24 ["ax@) [T OFRIPIL - M) - A
with a > 0,5 > 0,¢ > 0,




A. EVALUATION OF THE ELEMENT INTEGRALS 217

where (A.6) has been used to change from {z;,z.} to {A(I),A(J)} as the vari-
ables of integration. Obviously,
12(0,0,0) = A. (A.17)

Integration by parts in the integral with respect to A(I) yields

[T @M@ - D) - M)a) (A18)

1-A(J)
=@+ 17 [ DA P - M) = M) ar).
Using (A.18) in (A.16) we obtain the recurrence relation
I2(a,b,¢) = (a+1)"'c I2(a+ 1,b,c — 1). (A.19)

Since (A.16) is completely symmetrical in all its parameters, (A.19) holds for
the increase of any of the four parameters by one and decreasing any other

parameter by one. Using the property of the factorial function
(a+1)! = (a+1){(a)! with Ot =1, (A.20)

the recurrence relation (A.19) is satisfied by taking for 72(a, b, ¢} the expression

12(a.b alble! 1A
(a,,¢) = (a+b+c+p)!p' ’ (A.21)

where p is as yet arbitrary and (A.17) has been taken into account. Using (A.17)

again, it also follows that
I2(a,b,c + 1) = I12(a,b,c) — I2(a + 1,b,¢) — I2(a,b + 1,¢). (A.22)

Substitution of (A.22) in (A.21) leads to

p=2. (A.23)
Collecting the results, we arrive at
alblc!2!
I2(a,b,c) = ————A. A.24
(@.5.9) = G era) (A-24)

This formula can also be found in Zienkiewicz and Taylor (1989, p.139).



218 ‘ A. EVALUATION OF THE ELEMENT INTEGRALS



REFERENCES

ACHENBACH, J.D. 1973. Wave propagation in elastic solids. Amsterdam:
North Holland Publ. Co.

AKI, K., and RICHARDS, P.G. 1980. Quantitative setsmology. San Francisco:
W.H. Freeman & Co.

ALTERMAN, Z.S., and KARAL, F.C. 1968. Propagation of elastic waves in
layered media by finite-difference methods. Bulletin of the Seismological Soctety
of America 58:367-398.

ALTERMAN, Z.S., and LOEWENTHAL, D. 1970. Seismic waves in a quarter
and three-quarter plane. Geophysical Journal of the Royal Astronomical Soctety
20:101-126.

BAJER, C.I. 1986. Triangular and tetrahedral space-time ﬁniﬁ;e elements in
vibration analysis. International Journal for Numerical Methods in Engineering
23:2031-2048.

BELLMAN, R., and KALABA, R. 1956. On the principle of invariant imbed-
ding and propagation through inhomogeneous media. Proceedings of the Na-
tional Academy of Sciences (USA) 42:629-632.

BOORE, D.M. 1972. Finite-difference methods for seismic wave propagation
in heterogeneous media. In Methods of computational physics, eds. B. Alder, S.
Fernback, and M. Rotenberg, pp. 1-37. New York: Academic Press Inc.

BROMWICH, T.J.I’A. 1902. Note on the wave surface of a dynamical medium,
aeolotropic in all respects. Proceedings of the London Mathematical Society
34:307-321.

219



220 REFERENCES

DHATT, G., and TOUZOT, G. 1984. The finite element method displayed.
New York: John Wiley & Sons, Inc.

EMERMAN, S.H., SCHMIDT, W., and STEPHEN, R.A. 1982. An implicit
finite-difference formulation of the elastic wave equation. Geophysics 47:1521-
1526.

GUPTA, P.K., BENNETT, L.A., and RAICHE, A.P. 1987. Hybrid calcu-
lations of the three-dimensional electromagnetic response of buried conductors.
Geophysscs 52:301-306.

VAN DER HIJDEN, J.H.M.T. 1987. Propagation of transient elastic waves tn
stratified anisotropic media. Amsterdam: North Holland Publ. Co.

DE HooP, A.T. 1985. A time-domain energy theorem for scattering of plane
acoustic waves in fluids. Journal of the Acoustical Society of America 77:11-14.

—- 1985. A time-domain energy theorem for the scattering of plane elastic
waves. Wave Motion 7:569-577.

—- 1988. Large-offset approximations in the modified Cagniard method for
computing synthetic seismograms: a survey. Geophysical Prospecting 36:465-
477.

—- 1988. Time-domain reciprocity theorems for acoustic wave fields in fluids
with relaxation. Journal of the Acoustical Society of America 84:1877-1882.

DE Hoorp, A.T., and VAN DER HUIIDEN, J.H.M.T. 1985. Seismic waves
generated by an impulsive point source in a solid/fluid configuration with a
plane boundary. Geophysics 50:1083-1090.

DE HooP, A.T., and STAM, H.J. 1988. Time-domain reciprocity theorems
for the elastodynamic wave fields in solids with relaxation and their application
to inverse problems. Wave Motion 10:479-489.

ILAN, A. 1978. Stability of finite difference schemes for the problem of elastic
wave propagation in a quarter plane. Journal of Computational Physics 29:389-
403.




REFERENCES 221

ILAN, A., and LOEWENTHAL, D. 1976. Instability of finite-difference schemes
due to boundary conditions in elastic media. Geophysical Prospecting 24:431-
453.

ILAN, A., UNGAR, A., and ALTERMAN, Z.S. 1975. An improved repre-
sentation of boundary conditions in finite-difference schemes for seismological
problems. Geophysical Journal of the Royal Astronomical Society 43:727-745.

KeLrLy, K.R., WARD, R.W., TREITEL, S., and ALFORD, R.M. 1976.
Synthetic seismograms: a finite-difference approach. Geophysics 41:2-27.

KUMMER, B., and BEHLE, A. 1982. Second-order finite-difference modeling
of SH-wave propagation in laterally inhomogeneous media. Bulletin of the Sets-
mological Society of America 72:793-808.

LAMB, H. 1957. Hydrodynamics. 6th ed. Cambridge: Cambridge Univ. Press.

LEE, K.H., PRIDMORE, D.F., and MORRISON, H.F. 1981. A hybrid three-

dimensional electromagnetic modeling scheme. Geophysics 46:796-805.

LoVvE, A.E.H. 1959. A treatise on the mathematical theory of elasticity. 4th
ed. Cambridge: Cambridge Univ. Press.

MARFURT, K.J. 1984. Accuracy of finite-difference and finite-element model-
ing of the scalar and elastic wave equations. Geophyssies 49:533-549.

MIKLOWITZ, J. 1978. The theory of elastic waves and waveguides. Amster-
dam: North Holland Publ. Co.

MITCHELL, A.R. 1977. Finite element methods in time dependent problems.
In The state of the art in numerical analysis, ed. D. Jacobs, pp. 671-697. Lon-

don: Academic Press Inc.

MUR, G., and DE HoOP, A.T. 1985. A finite-element method for computing
three-dimensional electromagnetic fields in inhomogeneous media. IEEE Trans-
actions on Magnetics MAG-21:2188-2191.

NABER, L. 1980. Topological methods in Euclidian Spaces. Cambridge: Cam-
bridge Univ. Press.



222 REFERENCES

NAG FORTRAN LIBRARY MANUAL MARK 13 1988. Numerical Algorithms
Group. Oxford, subroutine DO1AJF.

PAo, Y.H., and Mow, C.C. 1973. Diffraction of elastic waves and dynamic
stress concentrations. New York: Crane, Russak.

LORD RAYLEIGH 1899. On double refraction. Scientific Papers 1. Cambridge:
Cambridge Univ. Press, 111-119.

REDDY, J.N. 1986. Applied functional analysis and variational methods in
engineering. New York: McGraw-Hill Book Co.

SMITH, W.D. 1975. The application of finite-element analysis to body wave
propagation problems. Geophysical Journal of the Royal Astronomical Society
42:747-768.

STAM, H.J., and DE HoOP, A.T. 1990. Theoretical considerations on a
finite-element method for the computation of three-dimensional space-time elas-
todynamic wave fields. Wave Motion 12:67-80.

VIRIEUX, J. 1984. SH-wave propagation in heterogeneous media: Velocity-
stress finite-difference method. Geophysics 49:1933-1957.

—- 1986. P-SV wave propagation in heterogeneous media: Velocity-stress finite-
difference method. Geophysics 51:889-901.

WIDDER, D.V. 1946. The Laplace transform. Princeton: Princeton Univ.
Press.

WILTON, D.T. 1978. Acoustic radiation and scattering from elastic structures.
International Journal for Numerical Methods in Engineering 13:123-138.

WHITTAKER, E.T., and WATSON, G.N. 1950. A course of modern analysis.
4th ed. Cambridge: Cambridge.

ZIENKIEWICZ, O.C., 1983. Finite elements in the time domain. In State-of-
the art surveys on finite element technology, eds. A.K. Noor, and W.D. Pilkey,
pp. 405-449.




REFERENCES 223

ZIENKIEWICZ, O.C., and MORGAN, K. 1983. Finite elements and approzi-
mation. New York: John Wiley & Sons, Inc.

ZIENKIEWICZ, O.C., WooDp, W.L., HINE, N.W. and TAYLOR, R.L.
1984. A unified set of single step algorithms, Part 1: General formulation
and applications. International Journal for Numerical Methods in Engineer-
tng 20:1529-1552.

ZIENKIEWICZ, O.C., and TAYLOR, R.L. 1989. The fintte element method,
Basie formulation and linear problems. 4th. ed. London: McGraw-Hill Book
Co.



224 REFERENCES




SAMENVATTING

De numerieke modellering van akoestische golfproblemen heeft talrijke toepas-
singsgebieden. Voorbeelden zijn: de exploratiegeofysica, de akoestische beeld-
vorming voor medische doeleinden en het niet-destructief onderzoek aan me-
chanische constructies. In al deze toepassingen is men geinteresseerd in de
akoestische golfverschijnselen in ruimte en tijd in sterk inhomogene en mogelijk
anisotrope vloeistoffen en vaste stoffen, en de kwantitatieve bepaling van de
grootheden die de golfbeweging karakteriseren (de scalaire spanning in vloeistof-
fen (tegengestelde van de druk), de tensoriéle spanning in vaste stoffen en de
deeltjessnelheden in beide media), is het uiteindelijke doel. Voor eenvoudige con-
figuraties, zoals de geometrieén die zich schikken in coordinatenstelsels waarin
de geldende akoestische golfvergelijkingen separeerbaar zijn, kunnen analyti-
sche oplossingen voor golfpropagatie- en verstrooiingsproblemen worden gecon-
strueerd. Voor meer gecompliceerde configuraties is het echter noodzakelijk
van numerieke methoden gebruik te maken. Eén van de numerieke methoden
die bekend staat om haar eenvoud is de eindige-differentiemethode. Hoewel de
eindige-differentiemethode met haar coordinaatlijnroosterstructuur het voordeel
heeft van de eenvoud, geeft zij moeilijkheden met het modelleren van willekeurige
randen en discontinuiteitsvlakken in de materiaaleigenschappen die niet samen-
vallen met zo’n rooster. De willekeurig georienteerde randen en vlakken kun-
nen echter zonder moeilijkheden worden aangepakt met de meer gecompliceerde
eindige-elementenmethode, die niet beperkt is tot een speciale roosterstructuur.
Vanwege de beperkingen van de geheugenruimte en de rekentijd op de com-
puter, moet men het domein van numerieke berekening, zowel in de eindige-
differentiemethode als in de eindige-elementenmethode, zo veel mogelijk beperken.

Nu zijn er voor een éénduidige oplossing van het akoestische golfprobleem in een
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begrensd gebied D naast de daarin geldende differentiaalvergelijkingen ook voor-
waarden nodig op de rand 4D van D. Om golfbewegingen te berekenen die zich
nog niet zo ver van de bronnen af hebben uitgebreid, voldoen de juiste nulcon-
dities op D mits D buiten het gebied wordt gekozen waar de golfbeweging
tot dusver is doorgedrongen. Toegestane nulcondities zijn van het Dirichlet-
of van het Neumanntype. Het onderscheid is als volgt. Voor de randvoor-
waarde van het Neumanntype wordt de normale component van de deeltjes-
sneltheid voorgeschreven op de rand die grenst aan een vloeistof en de spanning
wordt voorgeschreven op het gedeelte van de rand die grenst aan een vaste stof.
Voor de randvoorwaarde van het Dirichlettype wordt de scalaire vioeistof span-
ning voorgeschreven op het gedeelte van de rand dat grenst aan een vloeistof,
terwijl de deeltjessnelheid wordt voorgeschreven op het gedeelte van de rand
dat grenst aan een vaste stof. In de meeste gevallen wordt het domein van nu-
merieke berekening D voor zo’n procedure veel te groot. Dientengevolge moet
het domein D kleiner worden genomen en moet men er rekening mee houden,
dat de golfbeweging de rand 9D heeft bereikt en dat door D heen akoestische
straling plaats vindt van D af. Het type randvoorwaarde dat deze straling in het
oneindige buitengebied met eenvoudige akoestische eigenschappen modelleert, is
een belangrijk onderwerp van het huidige theoretische onderzoek.

Om randvoorwaarden te construeren die de straling van golven door 8D heen
van D af modelleren, wordt het domein D van de eindige-elementenberekening
ingebed in een omringend medium, de ”inbedding”. In onze analyse nemen wij
een ruimte-tijdreciprociteitstheorema van het tijdconvolutietype als uitgangspunt.
Dit wordt toegepast op de gediscretiseerde versie [D] van D en zijn inbedding
Dy. In een reciprociteitstheorema van dit type komen twee toestanden voor die
in één en hetzelfde domein in ruimte en tijd kunnen bestaan. We identificeren
één van de twee toestanden met het werkelijke akoestische golfveld, terwijl het
andere wordt beschouwd als een hulptoestand die als passend te kiezen over-
blijft. Voor de bronnen die in de hulptoestand voorkomen, wordt een rij van
gelokaliseerde bronverdelingen gekozen die gedefinieerd zijn op [D]. Elk van
deze bronnen is gedefinieerd op één van de elementaire gebieden waarin D is
onderverdeeld en is gelijk aan nul buiten zo’n gebied. De hulptoestand heeft,
evenals het werkelijke golfveld, geen bronnen in de inbedding D,. Voor de medi-
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umeigenschappen in [D] en Do van de hulptoestand worden die van de inbed-
ding genomen. De ermee overeenkomende golfveldgrootheden, die gerelateerd
zijn aan de gelokaliseerde bronverdelingen in een medium zoals de inbedding,
zijn onze "gediscretiseerde” Greense functies. Er wordt aangenomen, dat deze
analytisch kunnen worden bepaald. Substitutie van deze keuzen voor de hulp-
toestand in het reciprociteitstheorema levert relaties op tussen de waarden van
de akoestische golfveldgrootheden, gewogen over ieder van de definitiegebieden
van de gelokaliseerde bronverdelingen en de contrast- en primaire bronnen in
[D]. Deze relaties dienen als de niet-lokale randvoorwaarden voor onze hybride

eindige-elementenmethode.

De combinatie van de twee oplossingsmethoden, een eindige-differentie- of
een eindige-elementenmethode voor het begrensde domein met een gecompliceerd
medium en een analytische voor de eenvoudige inbedding, staat bekend als een
hybride methode. In dit proefschrift wordt zo’n methode gepresenteerd, die nu-
meriek akoestische golfproblemen in ruimte en tijd oplost in een configuratie
die bestaat uit vloeistof- en/of vastestofgedeelten. De vloeistoffen en de vaste
stoffen worden lineair, lokaal en instantaan reagerend genomen en tijdinvariant
in hun mechanische gedrag. In één of ander begrensd domein D5C wordt het
medium willekeurig inhomogeen en anistroop ondersteld. De inbedding van dit
domein is een vloeistof of een vaste stof met zulke eenvoudige eigenschappen,
dat haar Greense functie geconstrueerd kan worden met behulp van analytische
methoden. .

De akoestische golfvelden in het vloeistofdomein worden gekarakteriseerd
door hun deeltjessnelheid en hun scalaire spanning. De akoestische golfvelden in
de vaste stof worden gekarakteriseerd door de dee]tjéssnelheid en hun tensoriéle
spanning. Deze grootheden worden beschouwd als de fundamentele toestands-
grootheden. We kiezen het begrensde domein van numerieke berekening D zo-
danig, dat D¢ C D. De berekening van de golfvelden in D wordt uitgevoerd
door een eindige-elementenmethode die in het bijzonder geschikt is om de voor-
waarden op willekeurig gevormde randen en vlakken van het vaste/vaste stof-,

vloeistof /vloeistof- en het vaste stof/vioeistoftype te hanteren.

In een aantal technische problemen, meestal van het statische, d.w.z. tijdon-

afhankelijke, type kan de eindige-elementenmethode gebaseerd worden op een
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variationeel principe. Zo’n principe zegt, dat de oplossing van het probleem een
stationair punt is van een passend geconstrueerde functionaal (bijvoorbeeld het
minimum van de potentiéle energie opgeslagen in het systeem). Voor problemen
waarvoor geen variationeel principe beschikbaar is, wordt de methode van de
gewogen residuen gewoonlijk benut om tot een eindige-elementenformulering te
komen. Bij onze aanpak zullen we als uitgangspunt een akoestisch ruimte-tijd
reciprociteitstheorema van het tijdcorrelatietype gebruiken. In een reciproci-
teitstheorema van dit type komen twee toestanden voor die in één en hetzelfde
domein in ruimte en tijd kunnen bestaan. We identificeren één van de twee
toestanden met het werkelijke akoestische golfveld waarvoor een numerieke be-
nadering moet worden geconstrueerd, terwijl het andere wordt beschouwd als
een hulptoestand die passend te kiezen overblijft. We laten zien, dat speciale
keuzen voor de hulptoestanden leiden tot een zekere weegprocedure toegepast op
de vergelijkingen die de golfbeweging bepalen, d.w.z. de bewegingsvergelijking
en de deformatievergelijking. Vervolgens worden er speciale lokale represen-
taties voor het akoestische golfveld ontwikkeld, die speciaal geschikt zijn voor
het hanteren van de voorwaarden die gelden op discontinuiteitsvlakken in sterk
inhomogene media.

Met het oog op de tijdinvariantie van de configuratie waarin het golfveld
voorkomt, discretizeren we de geometrie in elementaire subdomeinen die cylin-
drisch zijn in de tijdrichting in de vier dimensionale ruimte-tijd. In de driedi-
mensionale ruimte nemen we het tetraeder als het elementaire subdomein. Met
deze keuze bestaat de gediscretiseerde geometrie uit prisma’s in ruimte-tijd.
In overeensternming hiermee, worden de lokale functies genomen als het pro-
dukt van een functie van de plaats en een functie van de tijd. De hoekpunten
van de tetraeders vormen de knooppunten van de plaatsdiscretisatie. In ieder
hoekpunt van een tetraeder dat samenvalt met een knooppunt dat zich niet op
een discontinuiteitsvlak in de materiaaleigenschappen bevindt (een enkelvoudig
knooppunt), worden de vectoriéle en tensoriéle toestandsgrootheden gerepresen-
teerd door hun componenten ten opzichte van een gekozen Cartesiaans achter-
grondassenstelsel. In ieder hoekpunt van een tetraeder dat samenvalt met een
knooppunt dat zich op een vlak van discontinuiteit in de materiaaleigenschap-

pen bevindt (een meervoudig knooppunt), worden de vectoriéle en tensoriéle
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toestandsgrootheden die continu zijn door dit vlak heen opnieuw gerepresen-
teerd ten opzichte van het gekozen Cartesiaanse achtergrondassenstelsel, terwijl
diegenen die één of meer componenten hebben die een eindige sprong kunnen
vertonen door dit vlak heen, worden gerepresenteerd ten opzichte van passend
gekozen lokale basisvectoren. De richtingen van deze lokale basisvectoren worden
zodanig gekozen, dat er in de resulterende representaties van de toestandsgroot-
heden exact aan de continuiteitsvoorwaarden op het vlak van discontinuiteit in

de materiaaleigenschappen wordt voldaan (d.w.z. in machineprecisie).

Voor een éénduidige (numerieke) oplossing van het golfprobleem in het in-
homogene en anisotrope begrensde domein van numerieke berekening D hebben
we randvoorwaarden nodig op zijn buitenrand dD. In onze hybride methode
representeren we de toestandsgrootheden op 8D door integraalbetrekkingen die
de gediscretiseerde Greense functies van de inbedding en de gelokaliseerde bron-
verdelingen die de inhomogeniteiten in D representeren bevatten. Veronderstel,
dat de inbedding een vloeistof is, dan definiéren we in de vloeistofgedeelten van
D3C contrastvolumebronnen die van nul verschillen in die subdomeinen waar
de vloeistofeigenschappen een contrast vertonen ten opzichte van de inbedding.
Omdat de invloed van de vastestofgedeelten in DSC niet kan worden beschreven
met behulp van contrastvolumebronnen, wordt deze gerepresenteerd door op-
pervlakte bronnen van het vloeistoftype op de vloeistof /vaste stof overgangen.
Als de inbedding een vaste stof is, definiéren we in de vastestofgedeelten van
D5€ contrastvolumebronnen die van nul verschillen in die subdomeinen waar
de vastestofeigenschappen een contrast vertonen ten opzichte van de inbedding
en modelleren we de invloed van de vloeistof gedeelten in DS¢ met behulp
van oppervlaktebronnen van het vastestoftype op de vaste stof /vloeistof over-
gangen. De relevante integraalvoorstellingen volgen uit de akoestische ruimte-
tijdreciprociteitstheorema’s van het tijdconvolutietype door in deze theorema’s
hulptoestanden te kiezen die overeenkomen met geschikte gelokaliseerde bron-
verdelingen (de gediscretiseerde Greense functies) van de inbedding. Voor een
homogene inbedding kunnen deze analytisch worden berekend. Om het akoesti-
sche golfveld in de inbedding te bepalen, benutten we daarna de oppervlakte- en
volumebronintegraalrepresentaties, gebruik makend van de nu bekende waarden

van het akoestische golfveld op de randen van de oppervlaktebronnen en in de
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contrastvolumebrondichtheden.

Numerieke resultaten illustreren de methode voor een aantal tweedimensio-
nale configuraties. Voor de gevallen van een oppervlaktebron van eindige breedte
op de rand van een halfoneindige vloeistof of een halfoneindige vaste stof en op
het scheidingsvlak van een halfoneindige vloeistof en een halfoneindige vaste
stof is ook de analytische oplossing van het probleem bepaald met behulp van
de Cagniard-De Hoop methode. Deze gevallen dienen als test voor de correctheid
en de nauwkeurigheid van de numerieke programmatuur.




