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When elastic solids are sheared, a nonlinear effect named after Poynting gives rise to normal stresses or
changes in volume. We provide a novel relation between the Poynting effect and the microscopic Grüneisen
parameter, which quantifies how stretching shifts vibrationalmodes. By applying this relation to random spring
networks, aminimalmodel for, e.g., biopolymergels and solid foams,we find that networks contract or develop
tension because they vibrate faster when stretched. The amplitude of the Poynting effect is sensitive to the
network’s linear elastic moduli, which can be tuned via its preparation protocol and connectivity. Finally, we
show that the Poynting effect can be used to predict the finite strain scalewhere thematerial stiffens under shear.
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The Poynting effect refers to the tendency of a sheared
elastic solid to expand or contract in the direction normal to
a shearing surface, or to develop normal stress if the surface
is held fixed [1,2]. A similar phenomenon known as
Reynolds dilatancy occurs during plastic (versus elastic)
deformation of granular media [3,4]. The “positive”
Poynting effect was first observed in metal wires, which
lengthen or push outwards at their ends when twisted [2].
More recently, the negative Poynting effect (contraction or
tension) was seen in semiflexible polymers from the
cytoskeleton and extracellular matrix [5].
Models of the Poynting effect contain phenomenological

elements or strong approximations [5–11]. Suggested causes
in fiber networks include asymmetry (hence, nonlinearity) in
the fibers’ force extension curve [5,7], fiber alignment in the
initial condition [11], and nonaffinity in networks stabilized
by bending [12,13]. While these ingredients may be suffi-
cient to induce the Poynting effect, we find that they are not
necessary. This point is made by Fig. 1(a), which depicts an
isotropic spring network in 2D subjected to pure shear
at constant volumetric strain ϵ ¼ 0. The springs are
purely harmonic and initially isotropic, and there are no
bending interactions. Nodes that develop tension, labeled
with a circle, greatly outnumber nodes under compression
(squares), suggesting a negative Poynting effect. And indeed
a plot of thepressure changeΔp is negative [Fig. 1(b)].While
the shear stress q grows linearly with the shear strain γ, Δp
grows quadratically due to isotropy, which requires pressure
or volume changes to be even in γ.
In this Letter we introduce a new micromechanical

approach to the Poynting effect, applicable for any elastic
interaction between network elements. We focus on the
initial growth of Δp and ϵ through the coefficients

χϵ ¼
��∂2p

∂γ2
�

ϵ

�
0

and χp ¼
��∂2ϵ

∂γ2
�

p

�
0

: ð1Þ

χϵ and χp are evaluated in the initial condition (“0”). Their
subscript distinguishes strain control (fixed ϵ ¼ 0) from
stress control (fixed Δp ¼ p − p0 ¼ 0). We derive exact
expressions for the coefficients in hyperelastic solids (e.g.
rubbers, solid foams, and tissue), which have reversible
stress-strain relations. Note that particulate media are
generally not hyperelastic due to shear-induced rearrange-
ments. We relate χϵ and χp to a network’s vibrational modes
and the microscopic Grüneisen parameter Γn [14], which
quantifies how volumetric strain shifts the frequency ωn of
the nth mode,

Γn ¼ −
��

1

ωn

∂ωn

∂ϵ
�

γ

�
0

: ð2Þ

We validate our predictions numerically in random net-
works of linear springs (Fig. 1), which are widely studied as
minimal models of, e.g., polymer networks, foams, and
glasses [15–23]. We show that the sign of the Poynting
effect in spring networks is negative and set by the
Grüneisen parameter, which can be motivated theoretically.

(a) (b)

FIG. 1. (a) Pure shear strain γ applied to an unstressed spring
network. Each node’s area is proportional to its contribution to
the pressure p; circles (squares) are tensile (compressive). (b) The
initial growth of the shear stress q is linear in γ, while p is
quadratic and negative (tensile).
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We focus on marginally rigid spring networks close to the
isostatic state (mean coordination z ¼ zc þ Δz, with zc ≈ 4
in 2D), and study scaling with Δz.
Spring networks.—For concreteness, we first illustrate

the Poynting effect in random spring networks. We con-
sider networks of N ¼ 1024 harmonic springs in a periodic
unit cell with initial side lengths L1 ¼ L2 ¼ L. Networks
are prepared in two ways. Packing derived (PD) networks
are prepared by generating bidisperse packings of soft
repulsive disks close to the jamming transition [24–26].
Each contact between disks is then replaced by a spring
with stiffness k and a rest length l0

ij equal to its initial
length lij, so p0 ¼ 0 [14,23,27–29]. To prepare randomly
cut (RC) networks, we start from a PD network with mean
coordination z ≈ 6 and randomly remove springs, with a
bias towards highly connected nodes [17,19,20]. All
numerical results are presented in dimensionless units by
setting k and the average disk size in the initial packing to
unity. PD and RC networks are indistinguishable by eye,
but their shear modulus G ∼ Δzμ and bulk modulus
K ∼ Δzμ0 have qualitatively different dependence on excess
connectivity Δz (Fig. 2, open symbols). In PD networks, G
vanishes continuously with μPD ¼ 1, while K jumps dis-
continuously to zero (μ0PD ¼ 0) [30]. In contrast, in RC
networks both G and K vanish continuously, with μRC ¼
μ0RC ≈ 1.1 [17,19,20]. We will exploit these differences to
test our predictions for the Poynting coefficients.
We consider deformations combining pure shear strain

and volumetric expansion, such that lattice vectors of the
unit cell are transformed by the deformation gradient

F ¼ ð1þ ϵÞ
�
1þ γ 0

0 ð1þ γÞ−1
�
: ð3Þ

The corresponding Cauchy stress tensor is

σ ¼
�−p − q 0

0 −pþ q

�
: ð4Þ

When networks are sheared using strain control, ϵ is held
fixed at zero while γ is increased incrementally. At each
step the elastic energy

P
ijVij ¼ ðk=2ÞPijðlij − l0

ijÞ2 is
minimized with respect to the node positions using FIRE

[31]. The resulting p and q are determined from σαβ ¼
1=ðL1L2Þ

P
ijfijlijðn̂ij;αn̂ij;βÞ, where fij ¼ −∂Vij=∂lij

and n̂ij is a unit vector pointing from node i to j. For
stress controlled simulations, γ and ϵ are also allowed to
vary while the energy is minimized subject to p ¼ 0 and a
prescribed q [32]. Because finite-sized systems are never
perfectly isotropic, plots of p or ϵ versus γ contain a linear
contribution with a prefactor that vanishes as N → ∞ [33].
To estimate the Poynting coefficients, we symmetrize p and
ϵ by averaging the response to shearing both “forward”
(γ > 0) and “backward” (γ < 0).
Figure 2 presents our first main result, the Poynting

coefficients for PD and RC networks over a range of Δz. In
all cases the Poynting effect is negative. There is an
apparent equality between χϵ and Kχp (motivated below),
albeit with fluctuations at the lowest z. There is a notable
difference in how the PD and RC Poynting coefficients
scale with Δz. In PD networks χϵ and Kχp diverge, with an
empirical fit to 1=ΔzλPD giving λPD ≈ 0.85. In contrast, in
RC networks χϵ and Kχp are flat (λRC ¼ 0). Hence, the
Poynting coefficients depend on both preparation and
shearing protocols, and in three out of four cases they
diverge at the isostatic point.
Microscopic theory.—We now develop exact expres-

sions for the Poynting coefficients, beginning with the
relation between χϵ and χp. In a hyperelastic material, the
pressureΔp ¼ ð1=2Þχϵγ2 due to shearing at fixed ϵmust be
equal to the pressure from a two-step process: first shearing
to γ at constant p, followed by a volumetric strain ϵ ¼
−ð1=2Þχpγ2 that reverses the volume change induced in the
first leg. The second step changes pressure by Δp¼−Kϵ¼
ð1=2ÞKχpγ

2, and therefore χϵ ¼ Kχp.
We next relate χϵ to the shear modulus GðϵÞ ¼

ð1=2Þ½ð∂q=∂γÞϵ�γ¼0 after a volumetric strain. The total
differential of the strain energy density is dW ¼ S∶dE,
where E ¼ ðFTF − 1Þ=2 is the Green-Lagrange strain. The
second Piola-Kirchoff stress S is related to the more
experimentally relevant Cauchy stress via σ ¼ FSFT=J,
where J ¼ detF. Hence,

dW ¼ 2ð1þ ϵÞ2
�
−

pdϵ
1þ ϵ

þ qdγ
1þ γ

�
: ð5Þ

Using the Maxwell relation of Eq. (5), one finds

(a) (b)

FIG. 2. The shear modulus G, bulk modulus K, and Poynting
coefficients χϵ and χp as a function of excess coordination Δz for
(a) packing derived and (b) randomly cut spring networks.
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χϵ ¼ −2G0ð0Þ − 4Gð0Þ; ð6Þ

where the prime indicates differentiation with respect to ϵ.
Earlier work neglected the difference between the various
stress and strain measures in nonlinear elasticity, but still
arrived at the same result [6,8]. Numerical evaluation of
Eq. (6) is in good agreement with direct measurements of χϵ
and Kχp, as shown in Fig. 2.
We now relate χϵ to discrete degrees of freedom.

Network elasticity is encoded in the extended Hessian
H ¼ ∂2U=∂q2, where the 2N þ 1-component vector q
contains the node positions and shear strain γ [34]. The
shear modulus can be written as a sum over the finite
frequency eigenmodes of H, 1=G ¼ ðv=NÞPnΛ2

n=ω2
n,

where v ¼ JL2=N, ω2
n is the squared eigenfrequency of

the nth eigenvector, and Λn=N is its component along the
strain coordinate [34]. Letting DðωÞ, Λ2ðωÞ, and ΓðωÞ
denote the density of states and averages of Λ2

n and the
Grüneisen parameter Γn in the interval ½ω;ωþ dωÞ, and
replacing sums with integrals, we find

1

G
¼ v

Z
∞

0

DΛ2

ω2
dω; ð7Þ

and, from Eq. (6),

χϵ ¼ 2vG2

Z
∞

0

Γ
ω2

�
2 −

∂ lnΛ2D
∂ lnω

�
Λ2Ddω: ð8Þ

Equation (8) is a central result: it explicitly relates the
Poynting effect to vibrational modes. Note that the sign of
χϵ is controlled by Γ and the logarithmic derivative of Λ2D.
Application to networks.—We now evaluate Eq. (8) in

the context of spring networks, focusing on the scaling of
χϵ with Δz. Close to the isostatic state, both PD and RC
networks display an anomalous abundance of “soft modes”
that dominate the response to forcing [17,34–36]. The
modes appear above a characteristic frequency ω�, and for
scaling analysis the density of states is well approximated
by a window function between ω� and ω0 ∼Oðk1=2Þ
[35–37]. Following Ref. [34], we assume that all soft
modes couple similarly to shear, so Λ2 ∼ const. Hence,
Eqs. (7) and (8) give ω� ∼ G and

χϵ ∼G2

Z
ω0

ω�

Γ
ω2

dω: ð9Þ

The sign and form of Γ can be rationalized with scaling
arguments. Perturbing a network along mode n carries an
energetic cost ΔU ∝ ω2

n, so Γ ∼ −ω−2ð∂ΔU=∂ϵÞ. ΔU can

be expanded in ukij and u⊥ij, the relative normal and
transverse motions, respectively, between connected nodes.

The well-known result is ΔU ¼ ð1=2ÞPij½kðukijÞ2 −
ðfij=lijÞðu⊥ijÞ2�, where the force fij and length lij are

evaluated prior to the perturbation [38]. In a network that
has previously undergone a small volumetric strain ϵ from
its unstressed state, the typical force will be proportional to
the pressure p ¼ −Kϵ, and so ∂ΔU=∂ϵ ∼ Kðu⊥Þ2N. Soft
modes strongly resemble floppy motions (which neither
stretch nor compress springs), with typical transverse
motions u⊥ ∼ 1=N1=2, independent of ω [27,36]. Therefore

Γ ∼ −K=ω2; ð10Þ

and, by Eq. (9),

χϵ ∼ −K=G: ð11Þ

This remarkably simple expression for χϵ correctly predicts
the sign of the Poynting effect and captures all of the
phenomenology in Fig. 2. It relates the qualitatively
different behavior of χϵ in PD and RC networks to the
differences in their shear and bulk moduli, predicting λRC ¼
0 and λPD ¼ μPD ¼ 1. On a qualitative level, it explains that
the Poynting effect in spring networks is negative because
tension is stabilizing. Finally, the strength of the Poynting
effect grows near isostaticity because tension couples to
transverse motions, which dominate soft modes and cause
strong nonaffine fluctuations [17,29,36].
The above scaling arguments rely on two essential

approximations, namely, that DΛ2 ∼ const and Γ ∼
−K=ω2 above ω� ∼G. We now validate them by direct
numerical evaluation. In Fig. 3,DΛ2 is plotted as a function
of ω=G for both PD and RC networks. As expected, in both
cases there is a broad plateau above ω�. In Fig. 4 we plot
the ratio of Γ to −K=ω2; Γ is estimated from a linear fit
of ωn versus ϵ after a series of small volumetric strain steps.
In PD networks the ratio approaches a positive constant as
Δz → 0, indicating that Eq. (10) becomes increasingly

FIG. 3. The product DΛ2 versus eigenfrequency ω in PD and
RC networks at varying coordination z. D is the density of states
and Λ2 is a measure of modes’ coupling to shear.
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accurate as the isostatic point is approached. At finite Δz
there is a slow upturn with increasing ω. We attribute this to
a subdominant correction to scaling, consistent with the
observation that a power law fit to χϵ and Kχp in PD
networks gives a somewhat smaller value of λPD than 1. The
same ratio has a more complex form in RC networks,
including a sign change for the lowest z, but it also
approaches a low frequency plateau in the isostatic limit.
Finite strain.—The Poynting coefficients quantify the

leading order dependence of Δp and ϵ on γ. We now show
that the Poynting coefficient χϵ predicts the onset of strain
stiffening when a network is sheared at fixed volume.
There has been no prior study of PD networks at finite

strain, while studies of RC networks did not report normal
stresses. RC shear stresses were shown to stiffen beyond
some vanishing strain scale γ� [17] (unlike sphere packings,
which soften [39,40]). The secant modulus q=γ in RC
networks satisfies q=ðGγÞ ¼ Qðγ=γ�Þ, with Q ∼ 1 for
x ≪ 1 and Q ∼ jxjθ with θ > 0 for x ≫ 1 [17]. It is natural
to make a similar ansatz for the pressure,

2p
χϵγ

2
¼ Pðγ=γ�Þ; ð12Þ

where P ∼ 1 for x ≪ 1 and P ∼ jxjϕ for x ≫ 1.
The scaling functions Q and P are plotted in Fig. 5. In

Ref. [17] it was argued that γ� ∼ Δz, which agrees with our
RC network data but fails for PD networks. Instead, we find
that data from both network types collapse with

γ� ∼
ffiffiffiffiffiffiffiffi
GK

p

jχϵj
∼ Δzν; ð13Þ

with ν ¼ λþ ðμþ μ0Þ=2. In order for shear stress and
pressure to remain finite when Δz → 0, we must have θ ¼
μ=ν and ϕ ¼ −λ=ν. These give θPD ≈ 0.74 and ϕPD ≈
−0.63 (using λPD ¼ 0.85), as well as θRC ≈ 1 and ϕRC ≈ 0.

These are all in good agreement with numerics (dashed
lines in Fig. 5).
To motivate γ�, we expand the secant modulus in pðγÞ

to find

q
2Gγ

∼ 1þ χ2ϵγ
2

GK
þOðγ4Þ: ð14Þ

Here we have neglected numerical prefactors and used
Eq. (6), assuming G0ð0Þ ≫ Gð0Þ (appropriate near isosta-
ticity). Balancing terms on the right-hand side yields
Eq. (13), an extrapolated strain scale where the initial
linear form of the stress-strain curve breaks down. A link
between normal stresses and stiffening was also evidenced
in Ref. [41].
Conclusion.—We have derived exact expressions for the

Poynting coefficients in hyperelastic materials, and vali-
dated them numerically in two classes of spring networks.
Both display a negative Poynting effect, whose origin can be
traced to the stabilizing influence of tension on a network’s
vibrational modes. The amplitude of the effect is controlled
by the coupling between tension and relative transverse
motions, which explains the correlation between normal
stress and nonaffinity [13], and results macroscopically in a
coefficient χϵ that scales with the ratioK=G. Equation (8) is
applicable in any 2D hyperelastic material—hence our
results can lend insight into the Poynting effect in
other elastic networks, including fiber networks (e.g.,
Refs. [12,13,42–45]). The scaling arguments for DΛ2 and
Γ presented here are specific to spring networks; they
must be modeled or evaluated anew for each material.
Our calculations and numerics are all in 2D, but extension
to 3D is straightforward andwe do not expect the underlying
physics to change.
We have shown that Poynting coefficients and stiffening

behavior are highly sensitive to the linear elastic moduli.
Recent work has demonstrated how to prepare spring
networks using a biased cutting protocol to target essen-
tially any positive value of K=G [46,47]. Our results

FIG. 4. The Grüneisen parameter Γ for PD and RD networks,
scaled by the prediction of Eq. (10) and plotted for ω > ω�.
Symbols match the legends in Fig. 3.

PD RC

FIG. 5. Master curves for shear stress q and pressure p of PD
and RC networks sheared to finite strain γ at fixed ϵ ¼ 0. The
dashed lines on the left have slopes 0.74 and −0.63. On the right
the slopes are one and zero.
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indicate that the same techniques could be used to select for
desirable nonlinear mechanical properties.
One can ask whether the elastic Poynting effect gives

insight into Reynolds dilatancy. As noted above, our
approach does not apply to irreversible deformations.
More heuristically, we note that whereas volumetric
expansion stabilizes elastic systems, it destabilizes particu-
late matter by opening contacts. This suggests a sign
difference, and indeed materials like sand generally dilate
under shear unless prepared in a loose state.
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