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Abstract

During the last decade, the proliferation of smartphones, social media and streaming
services has provoked an explosion of multimedia data. This large amount of image
and video sources combined with more powerful and inexpensive computational
capabilities brought by the cloud computing paradigm has facilitated the rapid
growth of new machine learning models capable of extracting information faster
and more accurately. However, the complexity to develop machine learning models
has also grown, involving multiple steps, from the acquisition and preparation
of data to the training, evaluation and deployment of models. To alleviate this,
the leading database providers have started to integrate the predictive capabilities
of machine learning directly into their systems. This new approach is known as
in-database machine learning, and it brings new interesting properties such as
the exploitation of the inherent relational structure of data or the preservation
of its privacy and integrity since the inference occurs directly where the data
lives. In this work, we present a cloud-native approach to perform in-database
machine learning. We have extended SQLFlow, a bridge between SQL engines and
machine learning toolkits to support models trained to solve image recognition
tasks over image datasets, which meta-information is persisted on a relational
database. Furthermore, we have encapsulated the de�nition of machine learning
models on cloud-native work�ows that are able to exploit the GPU resources
available in a Kubernetes environment. Our research evaluates the scalability of the
proposed system regarding the total execution time and GPU utilization. Besides,
we are interested in exploring the design of optimized machine learning query plans,
where the goal is to choose the optimal among multiple models that cover a range
of speci�c classes to predict from attending its accuracy and execution cost. For
that purpose, we have implemented a model repository containing di�erent model
variations and evaluated di�erent strategies to optimize the model selection. Our
experiments show that optimizing the model selection will lead to more accurate
and faster results, especially when a query covers a high number of classes and the
number of models that are able to answer them is limited.
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1
Introduction

In the last decade, we have experienced an explosion of multimedia data. The rise
of smartphones, social media and streaming services has facilitated the access to a
enormous valuable amount of images and video sources. To this date, a billion of
users have uploaded more than 50 billion photos to Instagram [6] and 500 hours
of video content are uploaded to YouTube every minute worldwide [7]. The large
availability of multimedia data in combination with the more powerful and inexpen-
sive computational capabilities brought by the cloud computing paradigm [8] has
made the �eld of machine learning experience a rapid growth. More concretely, in
the area of deep learning, which brings new predictive applications on the domain
of image recognition. With the increasing popularity of machine learning, the main
database providers have put huge e�ort to integrate the predictive capabilities of
machine learning models directly into relational databases. However, the develop-
ment of machine learning models has become complex enough, involving multiple
steps such as the acquisition and preparation of data, the training of the model,
its evaluation and deployment. To facilitate this, the usage of cloud work�ows
orchestration engines has emerged as a promising solution to automate all the
steps involved in this process.

In this work, we present a cloud-native approach to perform in-database ma-
chine learning. We have extended SQLFlow [9], a bridge between SQL engines and
machine learning toolkits, to support deep learning models able to perform image
recognition tasks over image datasets, which meta-information is persisted on a
relational database. Our system translates extended SQL code into cloud-native
work�ows capable of running image classi�cation tasks using the GPU resources
available in the cluster. Ultimately, our research aims to bring machine learning
functionalities closer to the database, which is where the data truly lives.
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1.1 Problem statement
Relational data is the most widely data type used across machine learning prac-
titioners. According to the Kaggle 2017 survey on the state of data science and
machine learning [10], the majority of data science tasks involves working around
relational data. Consequently, we can observe that in the last years, the main
database providers have started to integrate machine learning capabilities on top
of their solutions. Recently, Oracle has added support for the deployment and life
cycle management of machine learning models via REST APIs hosted on its cloud
database. Similarly, Microsoft SQL Server o�ers the possibility to run machine
learning models as Python and R scripts stored as procedures.

Nevertheless, learning on data in relational databases has received little consid-
eration from the deep learning community [11]. This is because deep learning
methods normally expect their input as �xed-size vectors and not in a tabular form.
Besides, the format of some input data can be presented as images or video �les
which is a challenge itself to store and maintain on relational database systems.

1.2 Research�estions
In this work, we aim to investigate how to transparently integrate in a cloud
environment the predictive capabilities of deep learning models trained to solve
image recognition tasks with data of images persisted on a relational database.
Based on this challenge we have de�ned the following research questions:

RQ1: How cloud-native work�ows can facilitate machine learning inference tasks
over images which meta-information is persisted in a relational database?

RQ2: How can we perform inference tasks over images in a fast, scalable and
SQL-driven way?

RQ3: How can we model and process machine learning queries taking into account
the trade-o�s between execution and accuracy among multiple models?

1.3 Thesis Outline
Our report is structured as follows. Chapter 2 explains the background knowledge
and concepts within the scope of our work. Chapter 3, presents the design and
implementation of our in-database machine learning system capable of running
image classi�cation tasks in a relational way. Chapter 4 focuses on the evaluation
and experiments performed to determine the optimal distribution of inference
tasks and the design and optimization of machine learning query plans navigating
di�erent trade-o�s. Finally, Chapter 5, summarize the conclusion of our research
and point out some directions for future work.
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2
Background

This chapter introduces the relevant background knowledge for the purpose of our
work. First, in Section 2.1, we brie�y introduce the �eld of multimedia databases and
the challenges and issues encountered when storing multimedia data on a relational
database. Next Section 2.2, presents the state of the art of machine learning to solve
image recognition tasks. Section 2.3 introduces the topic of in-database machine
learning and o�ers a classi�cation based on a literature review. Finally, Section 2.4
explains the notion of cloud-native work�ows and its applications on orchestrating
machine learning tasks.

2.1 Multimedia Database Systems
Since the late 80s [12], there have been many e�orts from the research commu-
nity to explore the integration of multimedia information with relational database
systems [13]. Relational databases are designed to mainly manage textual and
numerical data. However, due to the heterogeneous nature of multimedia data this
integration its not as straight forward as it initially seems. A relational database
system that supports multimedia data needs to extends its capabilities to consis-
tently store, transport, retrieve and display the information regarding its nature.

Taking into account the di�erences mentioned above, we can de�ne a Multimedia
Database as a collection of interrelated multimedia data items such as text, im-
ages, graphic objects, video or audio. Consequently, we can de�ne a Multimedia
Database Management System (MDBMS) as the framework who provides support
for the creation, storage, access, query, and control of multimedia data [14]. There
a multiple criteria on the classi�cation of Multimedia Database Systems, but for
the purpose of this work will attend regarding the level of integration of the media
�le within the database.



2

4 2 Background

2.1.1 Classification of Multimedia Databases
We can classify multimedia database systems regarding the level of integration of
the media �le within the database:

• No integration. This scenario does not store multimedia data on a database.
Instead, it maintains the raw data on a separate �le system and only retains
the inherent meta-information on the database.

• Semi-integrated. In this approach we keep the meta-information of the
multimedia data on a relational representation, but also the raw data is stored
in the database using a BLOB (Binary Large OBject) data type.

• Fully Integrated. This type of multimedia database covers not only the
storage of multimedia data but it also adds e�ective techniques for indexing
and retrieval the information by type the of content or speci�c domain [15].

2.1.2 Storing Multimedia Data on Relational Databases
We can �nd in literature examples like Oracle Multimedia [16] that follows a fully
integrated approach when storing multimedia data on a relational database. The
authors point out some limitations such as the number of �les a �le system can
handle, recovery and backup tasks or security issues coordinating the �le system
with the database. However, a relational database is not usually considered an
ideal repository to store any kind of multimedia information. Historically, the
general advise has been not to store multimedia data directly on a database due to
performance issues when retrieving high volume of data.

According to Sears et al. [17], the main determinant factor between storing or
not in a database is the storage fragmentation. Their study shows that BLOB �les
smaller than 256KB are e�ciently handled by a database, meanwhile a �le system is
a better option for BLOB �les greater than 1MB. If there is a need to handle a high
volume of multimedia information, the most common approach is to completely
decouple the multimedia data from a relational database and keep them distributed
on a �le server. Some real examples that illustrates this problematic are Haystack
[18] and f4 [19], the storage systems developed by Facebook to handle billions of
multimedia BLOB �les.
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2.2 Machine Learning for Image Recognition
Machine Learning is the study of computer algorithms that enable systems the
ability to automatically learn and improve through experience [20]. Machine
learning allows systems to make autonomous decisions by �nding underlying
patterns in data. We can classify machine learning in di�erent sub-�elds based on
their learning approach:

• Supervised learning uses a given set of instances labeled with an expected
output value to �nd a function that maps new input data with the desired
result.

• Unsupervised learning uses only unlabelled input data to �nd the under-
lying structure to group the input data.

• Reinforcement learning is concerned with the training of machine learn-
ing models to make a sequence of decisions. It studies how an agent can
learn to achieve goals in a complex and uncertain environment [21].

Machine learning has applications in many di�erent �elds such as recommendation
systems, online fraud detection, automatic language translation or image recogni-
tion. For the purpose of our work we are going to discuss only the algorithms that
are relevant to perform image recognition.

Image Classification Object Detection Image Segmentation

Figure 2.1: Tasks to solve on image recognition problems.

Image recognition is the ability of a system to identify and detect objects or features
in a digital image or video [22]. It comprizes the following tasks (see Figure 2.1):

• Image Classi�cation. It is the identi�cation of a unique class to which an
image belongs.

• Object Detection. It deals with detecting one or more instances of semantic
objects of a certain class in an image.

• Object Segmentation. It consists on locating the elements of an image to
its nearest pixel.
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2.2.1 Deep Learning
From all the existing machine learning methods, deep learning is the one who has
dramatically improved the state-of-the-art on image recognition. Deep learning
uses multiple layers of arti�cial neural networks (ANN) to model a complex non-
linear relationships among data [23].

X2

X1

X3

Input Values

Input Layer Hidden Layer 1 Hidden Layer 2 Output Layer

Figure 2.2: Multilayer Perceptron (MLP) [1].

Figure 2.2 illustrates a multilayer perceptron (MLP), one of the simplest deep learn-
ing models [1]. It is composed by three or more layers: an input and output layer
and one or more hidden layers. The input layer does not perform any computation,
it just maps the input values and forward them to the next layer. Between the
input and output layers we have the hidden layers with an arbitrary number of
neurons. It’s here where the learning occurs by applying weights to the input
and redirect them to an activation function as the output. The activation function
introduces non-linearity into the network allowing the model learn more complex
tasks. Finally, the output layer is responsible of producing the result regarding
what we want to predict. Deep learning is outperforming traditional machine
learning algorithms such as logistic regression or support vector machines. In
the last decade, we have accumulated vast amounts of data and more inexpensive
computational power, enabling training models more e�ciently and accurately.
The creation of deep learning models is an iterative process where we usually come
up with a possible neural network architecture; we implement it and validate it by
running an experiment that tells us how well the model performed. If the results
are not good enough, we change the architecture and validate it again and again.
Therefore, having a large amount of computational power drives us to �nd a better
solution in a much faster time [24].
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2.2.2 Convolutional Neural Networks
In this section we are going to introduce the concept of Convolutional Neural
Networks (CNN), a deep learning architecture that has become the state-of-the-art
to perform image recognition tasks. They are specially good at �nding patterns on
images, such as lines, circles or gradients and because they are designed to process
input values as structured arrays they can work directly over raw images, without
having to preprocess them [25].

Figure 2.3: Convolutional neural network architecture [2].

The architecture of a Convolutional Neural Network is described in Figure 2.3. It
can be described as a multi-layered feed forward neural network made by sequen-
tially stacking several layers on top of each other. In the hidden layers we �nd
convolutional layers, pooling layer, and two or more fully connected layers.

1 1 1 0 0

0 1 1 1 0

0 0 1 1 1

0 0 1 1 0

0 1 1 0 0

1 0 1

0 1 0

1 0 1

4 3 4

2 4 3

2 3 4

1 1 1 0 0
0 1 1 1 0
0 0 1x1 1x0 1x1

0 0 1x0 1x1 0x0

0 1 1x1 0x0 0x1

Input X Filter Feature MapInput Filter/Kernel

X = =

Figure 2.4: Convolution operation over the input data [3].
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Convolutional Layer
The Convolutional Layer is the core building block of a Convolutional Neural
Network. Convolution is a mathematical operation on two functions that express
how the shape of one is modi�ed by other. For the purpose of neural networks, the
convolution (See Figure 2.4) is applied on the input data using a kernel or �lter to
produce a future map. We can apply one or more �lters, depending on what we are
trying to detect. After applying all the �lters we will have a set of activation maps
that we will stack along the depth dimension to form the �nal array. Finally, we
will immediately apply an activation function such as recti�ed linear unit (ReLU)
to bring non-linearity properties to the output.

Pooling Layer
After the convolutional layer, a CNN performs pooling to reduce the dimension of
the feature maps. By doing this, we are able to reduce the number of parameters,
shortening the total training time and preventing over�tting. The most common
type of pooling is max pooling, which takes the max value in a pooling window (See
Figure 2.5), but we can use other types of pooling layers such as average pooling to
compute the average of the elements in the region of the feature map.

2 2 7 3

9 4 6 1

8 5 2 4

3 1 2 6

9 7

8 6

2x2 Max Pool

Figure 2.5: 2x2 max pooling operation.

Fully-Connected Layer
Finally, at the end of a CNN and before computing the �nal output probabilities, its
common to add one or more layers fully connected to the previous one in order to
learn possible non-linear combinations between the learned features and the sample
classes. The fully connected layers acts as a classi�er for the features detected on
the previous layers [26].
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2.2.3 CNN Models for Image Recognition
This section o�ers an overview of some popular CNN models to solve image recog-
nition tasks. The �rst model we �nd in the literature is LeNet-5, proposed in 1998 by
LeCun et al. [27], to perform handwritten character recognition. It was composed
by several convolutional layers, pooling and three fully connected layers. LeNet-5
is the foundational CNN model, however it was not able to outperform classical
machine learning algorithms such as support vector machines.

A decade later, Alex et al. [28] proposed AlexNet, a model that applied the basic
principles of CNN towards using ReLu as the activation function to solve the gradi-
ent vanishing problem and GPU capabilities to accelerate the training. It won the
ImageNet 2012 competition. Two years later, in 2014 the Visual Geometry Group
(VGG) proposed a series of CNN model that won the ImageNet 2014 challenge.
VGG [29] removed the LRN layer and reduced the number of parameters by half
towards using a smaller padding value on the kernels to compute the feature maps.
Since then, many other models have emerged. In 2016 He et al. [30] proposed
ResNet a CNN model which introduced the concept of residual blocks, which are
skip-connection blocks that learn residual functions with reference to the layer
inputs [30]. In contrast to conventional CNN models where there are as many
connections as layers, Huang et al. proposed DenseNet [31], who introduced the
concept of Dense Convolutional Network and connected each layer to every other
layer in a feed-forward way. DenseNet achieved a higher performance requiring
less memory and computational power to be trained. Based on this models, a series
of CNN architectures emerged to perform object detection tasks. Frameworks such
as YOLO [32], SSD [33], Faster-RCNN [34] or MobileNet [35] use region proposal
methods to general potential candidates to extract features from using VGG, ResNet
or DenseNet as their backbone models.

Model Task Dataset Model Size Layers Year

AlexNet [28] Image Classi�cation ImageNet 238 Mb 8 2012
VGG-16 [29] Image Classi�cation ImageNet 540 Mb 16 2014
ResNet [30] Image Classi�cation ImageNet 100 Mb 50 2015
DenseNet [31] Image Classi�cation ImageNet 64.5 Mb 121 2017
YOLO [32] Object Detection COCO 247 Mb 106 2015
SSD [33] Object Detection COCO 131 Mb 19 2015
Faster-RCNN [34] Object Detection COCO 364 Mb 55 2015
MobileNet [35] Object Detection COCO 90 Mb 28 2017

Table 2.1: Most relevant CNN models to perform image recognition tasks.



2

10 2 Background

2.3 In-database Machine Learning
As we introduced in the previous section, the recent progress in the �eld of ma-
chine learning has brought new analytical applications to explore. A novel area
that recently is gaining more interest by the academia [36] [37] and the industry
[38] [39] is the so-called in-database machine learning, which tries to integrate
the predictive capabilities of machine learning algorithms with relational databases.

In many practical situations, machine learning models are trained or used to predict
over multiple data sources that are persisted in a relational database. The input of
a machine learning model is usually represented in the form of a multidimensional
array or tensor, which means than the input data that comes from the di�erent
tables might need to be joined into a single relation [40] to process it immediately
by running a machine learning algorithm on it.

The main advantages of in-database machine learning are:

1. Preservation of the privacy and integrity of data, since all the operations are
perform close to the database engine.

2. Usage of algebraic properties to exploit the inherent relational structure of
data and for the optimization of processing multiple queries.

3. Leave the implementation details of machine learning models on a more
abstract level, reducing the gap between data scientist and database engineers
to operate with them.

2.3.1 Machine Learning & Relational Data
The Kaggle 2017 survey on the state of data science and machine learning [10], claims
that among of 16,000 machine learning practitioners, 65.5 % of the overall data
used to solve predictive tasks is relational data. Relational data inherently bene�ts
from the human e�ort pursued to enrich and normalize its underlying domain
knowledge [4].

We have identi�ed from the academic literature [37] [4] [41] two well de�ned
approaches to solve machine learning problems from the perspective of a database
system [42]. The �rst one is an agnostic approach that treats the machine learning
tasks as a black-box and only collects the materialized output from the database to
process it. The other one is aware of the structure of the relational data inside the
database and exploits it to achieve a better performance on the execution.
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Agnostic In-database Machine Learning
The agnostic approach (Fig 2.6) to apply machine learning algorithms over relational
data consists on �rst constructing a training and validation datasets and persist
them on a database in the form of tables. Once we have the data accordingly nor-
malized, we can run a feature extraction query to materialize the subset of examples
to train or infer from and pass it to a machine learning toolkit to collect results [43].

Users

Friends

Posts

Reactions

Feature Extraction Query

Users ⋈ Posts ⋈ Friends ⋈ Reactions
ML Toolkit

Materialized Output

Result

Model

Figure 2.6: Agnostic approach for in-database machine learning [4].

The advantage of the agnostic approach is that combines two well-independent
systems, the database engine to retrieve and store the data and the machine learning
toolkit to process it. Regarding this, the agnostic approach can ideally work for
any dataset or machine learning model. On the other hand, the main disadvantage
is that we need to fully materialize the feature extraction query, instead of using
the query processing capabilities of the database engine (e.g, compute the feature
extraction using aggregate functions) to optimize the database workload [37].

Structure-aware In-database Machine Learning
The second approach (Fig 2.7) to apply machine learning algorithms over relational
data is based on the observation that the feature extraction process involves a high
degree of redundancy in the computation and representation of the materialized
output to learn or infer from [44]. By exploiting the algebraic properties that
underlies the relational model, the structure-aware approach aims to reduce the
redundancy in the representation and computation of the query results [41].

Figure 2.7 illustrates the structure-aware approach. The system computes the
model speci�cation into a set of aggregate functions, one per feature or interaction.
This process is known as model reformulation and it take advantage of the data
dependencies to re-parameterize the model, so the model learns over a smaller set
of determining features and exploits join dependencies to avoid redundancy in the
representation of the query result. After, the model aggregates over the batch of
queries and iterates over a gradient descent method until the it converges [4].
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Figure 2.7: Structure aware in-database machine learning, adapted from [4].

The main advantage of an structure-aware approach is the avoidance of the full
materialization of the feature extraction query. Examples like LMFAO [45] claims
to only take 6.13 seconds to compute the batch of aggregate queries and 50 mil-
liseconds for the model paremeters, in contrast with the agnostic approach on a
PostgreSQL database that took 152 seconds to compute the join and 7249 seconds
to calculate the model parameters of the fully materialized feature-extraction query
[37].

2.3.2 In-Database Machine Learning Systems
In the literature [46] [5], we �nd that in-database machine learning systems are
mainly classi�ed into three categories (see �gure 2.8) depending on the server-side
development e�ort needed to integrate machine learning capabilities:

• Integrated systems. In this approach (left part of �gure 2.8), the query
processing engine and the machine learning system are implemented on top
of a common infrastructure. The integrated system process both SQL queries
and execute machine learning algorithms within the same computational
framework [5].

• UDAF-based systems. Represented at the right part of �gure 2.8. Its an
in-database machine learning system where the machine learning algorithms
are implemented as user-de�ned aggregate functions (UDAFs). The UDAFs
are customized extensions that extend the query processing engine with
machine learning capabilities.

• Pure SQL systems. In this approach (right part of �gure 2.8), the machine
learning algorithms are implemented exclusively on SQL code and therefore
the query processing engine remains unchanged.
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Figure 2.8: A classi�cation of in-database machine learning systems [5].

Integrated systems o�er the most granular level of union between machine
learning algorithms and database engines. A relevant example found in the litera-
ture is Shark [47], the predecessor of the Apache Spark SQL project [48], which
follows the principle of pushing computation to data and combines e�cient SQL
query processing using Resilient Distributed Datasets (RDD) with sophisticated
distributed machine learning algorithms such as linear regression, logistic regres-
sion and k-means clustering. Another example of an integrated-system is the
Teradata Machine Learning Engine [38], which uses a SQL-MapReduce approach
to enhanced its SQL Engine with more than 100 pre-built analytical functions to
solve di�erent machine learning tasks [49]. The main disadvantage of integrated-
system is the highly coupled implementation of the machine learning algorithms
with the database engine, which makes it hard to extend. Another disadvantage is
the high cost that supposes migrating from an existing database engine to a new one.

The pure-SQL approach is gaining more popularity, since the main cloud database
providers have started to add machine learning capabilities on top of their database
solutions. The most relevant one is Google BigQuery ML, presented in July 2018
[50]. The authors explain in [51] that re-implementing Big Query to fully inte-
grate machine learning algorithms was not feasible and instead they decided to
implement some of the most common machine learning algorithms such as linear
regression, logistic regression or support vector machine with pure SQL code [46].
The main advantage is the elimination of UDAFs and that experimentally, the
pure-SQL approach scales better without running into single machine bottlenecks
compared to the UDAF-based approach [5]. On the contrary, the development of
the BigQuery ML project proves that it is not feasible to implement sophisticated
machine learning algorithms only in SQL code and its latest versions o�er the
possibility to import custom Tensor�ow models [52] in a similar way as de�ned on
the UDAF-based approach.
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2.4 CloudNativeWorkflows forMachineLearning
One of our goals is to understand the role of cloud native work�ows to orchestrate
machine learning tasks. In this section, we explain Kubernetes, the main framework
in the open source community to develop cloud native applications. We de�ne
what a cloud work�ow is and we give an overview of the main work�ow engines
to orchestrate machine learning tasks.

2.4.1 Kubernetes
Kubernetes is an open source container orchestration engine to automatize the
deployment, scaling, and management of containerized applications [53]. It has
its origins in Borg, a uni�ed container management system develop internally at
Google to handle long-running services and batch jobs [54]. Kubernetes follows a
master-slave architecture (see Figure 2.9), where the master node act as an entry
point that controls workloads across multiple worker nodes.

Kubernetes Master

Kubernetes Node

kubectl

etcd
API Server

Controller
Manager Scheduler

Kubelet Proxy

Pod

Container

Container

Pod

Container

Container

Kubernetes Node

Kubelet Proxy

Pod

Container

Container

Pod

Container

Container

Figure 2.9: Kubernetes high-level architecture.

The main components of the master node are:

1. Kubernetes API Server. It exposes an API that let users manipulate the
state of Kubernetes resources such as pods, namespaces, con�gmaps or
events.
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2. Etcd. A consistent and highly-available key value store to handle the state
of the cluster.

3. Schuduler. It monitors unscheduled pods and their allocation on available
nodes among the cluster. It also watches for the availability of resources in
the node and anti-a�nity speci�cations de�ned in the deployment.

4. Controller Manager. A daemon that contains a set of core control loops to
regulate the desired state of objects in the cluster.

The worker nodes have the following basic components:

1. Kubelet Agent. It is an agent that runs on each worker node and commu-
nicates with the API server. It also ensures that every container runs as
speci�ed in its con�guration �le.

2. Kube Proxy. It maintains the network rules on each worker nodes and
facilitates the communication of the pods inside and outside the cluster.

3. Container Runtime. It is responsible for running the containers and down-
loading the images from their repository.

Kubernetes o�ers di�erent abstractions to build and orchestrate workloads. A
workload in Kubernetes is a running application, and it can be de�ned as single
component or several of them. They run as a set of Pods, which are a group of one
or more containers that share storage and network resources. Workload resources
are used to create and manage one or more pods. There are multiple types of
workload controllers, e.g, Deployment controller which is used to manage repli-
cated applications, StatefulSet to deploy scalable pods with persistent storage or
DaemonSet to ensure that a copy of a pod is running across multiple worker nodes.

Kubernetes pods are created and destroyed regarding the state of the cluster. If
we want to expose our pods as a logical set outside our cluster we have to use the
Service resource. The Service will have an speci�c name and a unique IP address
that will not change meanwhile the service is up and running. The default type of
Kubernetes service is the ClusterIP, which exposes a service which is only accessible
within the cluster. If we want to expose it via a static port from the node where
it resides we can use a NodePort service, or a LoadBalancer type if we want to
expose it via a cloud provider load balancer. Ultimately, Kubernetes allow modern
applications to easily scale when their requirements grow as well as increase the
agility and e�ciency of their software development teams.
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2.4.2 Machine Learning Workflows
A work�ow is a procedure that manages repetitive processes and tasks de�ned
in a particular order. The concept of work�ow has been used in a wide range of
disciplines, e.g, to model processes in engineering and manufacturing areas as
well as to de�ne complex business management processes in organizations. For
the purpose of our work, we are going to focus on its applications to orchestrate
machine learning tasks.

A machine learning work�ow consist of sequence of tasks that aim to improve the
accuracy of a model. Figure 2.10, illustrates this process. Notice that in most the
cases the training of a model is an iterative process, therefore we have to repeat
some steps until we achieve a satisfactory result on the model performance.

Datasets

Data Pre-
Processing

Feature
Extraction

Feature 
Selection Model Training Deploy &

Monitoring
Model

Evaluation

Data 
Acquisition

repeat until achieve a satisfactory model performance

Data Preparation

Figure 2.10: A typical machine learning work�ow.

A typical machine learning work�ow involves the following steps:

Data Acqisition
In this step we perform the extraction and collection of the data to be used to train
our model. The data can be from a structured source, e.g a dataset, or from an
unstructured source, for example the data collected from scraping a website.

Data Preparation
This step involves the pre-processing of the acquired data to represent it in an
usable form, the extraction of speci�c features or attributes that can be utilized by
the model and the selection of the most representative ones to train the model.

Model Training
The training of a machine learning model consist of optimising an speci�c cost
function using the data obtained in the previous steps.
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Model Evaluation
After the training a machine learning, we proceed to evaluate the performance of
the model and iterate over the previous steps in case the obtained results are not
good enough.

Deployment & Monitoring
The last step is an operational task aiming to track the status of the model in a
production environment in order to discover unexpected errors. Besides, this step
aims to prevent a phenomena known as model drift, which refers to a degradation
on the model predictions due to unseen data or changes in the environment and
other external factors.

2.4.3 Kubernetes Workflow Engines for Machine Learning
In this section, we are going to review the main orchestration engines for machine
learning available in Kubernetes. The main characteristics that we are interested
to review are related to the work�ow de�nition, its execution and capability to
recover and re-execute in case of failure. Table 2.2 includes a resume of the main
characteristics available on each system.

Apache Airflow
Apache Air�ow [55] is an open-source work�ow management platform written in
Python. The work�ows are represented as DAGs (Directed Acyclic Graphs) and
contains execution units call Tasks. Each DAG describes the execution order of the
tasks and its dependencies. Air�ow handles the triggering of work�ows through
an scheduler, and uses a local or remote executor to run them. By default, Air�ow
does not support dynamic work�ows, since it will build the DAG before running
it. However, developers can use air�ow variables to store the state in which the
pipeline will transit on run time. In a similar way, Air�ow does not give a default
fault tolerance strategy, since it implement di�erent executors, however, by using
the Kubernetes executor the tasks can be isolated on pods and easily restarted.
As the work�ows are written in Python, it can easily support embedding custom
scripts on them. Finally, as Air�ow is the most used work�ow orchestration engine
in the industry, it supports a seamless integration with most of the cloud and
database providers.

Luigi
Luigi [56] is a Python based work�ow engine to build complex pipelines of batch
jobs. The pipelines are written in terms of targets, which corresponds to the state
of a step of the work�ow and tasks, where the computation is done. In contrast to
Air�ow, Luigi supports dynamic work�ow since the tasks are instantiated dynami-
cally. The tasks are targets de�ned as Python functions, and it supports work�ow
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parameterization as well as embedding scripts on the tasks. Because the scheduler
runs locally toward the work�ow, it does not support fault-tolerance by default.
This lack of distributed execution makes Luigi much harder to scale compared to
Air�ow.

Argo Workflows
Argo Work�ows is an open source container-native work�ow engine for orches-
trating parallel jobs on Kubernetes [57]. In contrast with Air�ow or Luigi, the DAG
in Argo is de�ned as yaml �le with a set of steps and the possible dependencies
between them. Each step in the work�ow is a container which can capture inputs
and emit outputs that are passed to other steps. Argo Work�ows is implemented as
a Custom Resource De�nition on Kubernetes, and therefore each step executes as a
pod. As it is developed with Kubernetes in mind, it provides an easy mechanism to
re-run failed pods, but compared to other solutions it does not integrate seamless
with other databases or storage systems, having to perform the connections or
other operations in the container itself.

Kubeflow
Kube�ow [58] provides a toolkit to build machine learning work�ows on Kuber-
netes. The work�ows are de�ned using the Kube�ow Pipelines SDK, in terms
of input parameters and a list of steps. Internally it uses Argo Work�ows as its
work�ow engine, having the same bene�ts than Argo plus an speci�c interface writ-
ten in Python focused on solving typical machine learning tasks, e.g, experiment
tracking, hyperparameters tuning or model deployment.

Air�ow Luigi Argo Kube�ow
Dynamic Work�ows No Yes Yes Yes
Work�ow Parameters No Yes Yes Yes

Fault Tolerance Not by
default No Yes Yes

Embedded Scripts Yes Yes Yes Yes
Language
De�nition Python Python Yaml Python

Artifact
Storage PostgreSQL PostgreSQL Kubernetes MySQL

Intregation With
Other Systems Yes Yes No No

Table 2.2: A resume of the main characteristics available for each system.
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3
Design and Implementation

In this chapter, we discuss the design and implementation of our in-database
machine learning system capable of running image classi�cation tasks in a relational
way. First, we introduce the system requirements to proceed explaining in depth
the architecture and its di�erent components. Later, we discuss the dataset retrieval
process, the model implementation and the execution of the cloud work�ows.

3.1 Introduction
In the previous chapter, we introduced the �eld of in-database machine learning, a
new approach to integrate machine learning algorithms over relational databases.
Besides, we explained the concept of cloud native work�ows and their applications
to orchestrate machine learning tasks. Therefore, we acknowledge new possibilities
in the research of in-database machine learning systems that leverage prediction
tasks over multimedia data persisted in a relational database using cloud native
work�ows.

At the moment of writing this dissertation, most of the in-database machine learning
systems only support basic machine learning algorithms such as linear regression,
k-means clustering or simple neural network architectures. None of these are
suitable to address image classi�cation or object detection tasks, where the state of
the art approaches make use of deep learning models based on convolutional neural
networks (CNN). Recently, in-database machine learning systems like BigQuery
ML o�er the possibility to run custom models based on Tensor�ow. However, it
has some technical limitations such as the models are limited to 250MB, they must
be stored in Google Cloud Storage and only support core TensorFlow operations.
These restrictions prevent us from using some of the most popular architectures
for image recognition tasks such as Mask R-CNN, SSD or yolov5.
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3.2 Reqirements
In line with the limitations mentioned in the previous section, we have identi�ed
the characteristics of an in-database machine learning system capable of running
image classi�cation tasks in a relational way. In this section, we transcribe these
features in terms of functional and non-functional requirements.

3.2.1 Functional Reqirements
(FR1) Image storage and relational query processing. We address the problem

of running images recognition tasks over a set of images persisted in a rela-
tional way. Therefore, the system needs to handle the storage and retrieval
of images from the perspective of a relational database problem.

(FR2) In-database machine learning for image recognition. Besides the stor-
age and retrieval of images, our in-database machine learning system needs
to leverage the raw information of the images with machine learning algo-
rithms to perform inference tasks. It needs to implement a common interface
to materialize a subset of images, run pre-trained image classi�cations mod-
els and collect the predictions on a result table. All this process needs to be
done from a single entry point, such an extended SQL query language or in
a programmatic way using an Domain Speci�c Language (DSL).

(FR3) Parallelization of inference tasks. The system needs to handle multiple
images recognition tasks independently of the amount of users connected to
the database.

(FR4) Accelerate Inference Tasks on GPU. A key property of an in-database
machine learning system should be to exploit GPU resources to accelerate
machine learning tasks. Moreover, for the purpose of image recognition, most
of the deep learning implementations make use of the GPU parallelization
model to maximize the amount of images inferred on a single batch.

3.2.2 Non-Functional Reqirements
(NFR1) Extensibility for other machine learning models. To bene�t from the

multiple existing models to solve image classi�cation tasks, the system needs
to o�er a structured and straightforward way to de�ne its incorporation.

(NFR2) Cloud platform independent. The deployment of the in-database machine
learning system needs to be independent of speci�c cloud platforms.
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3.3 System Architecture
Our in-database machine learning system (Figure 3.1) is built upon di�erent com-
ponents to integrate multiple operations. From keeping the images and its meta-
information on a relational way to executing inference tasks as Kubernetes work-
�ows and monitoring their state. In this section, we provide an in-depth explanation
of each component, its role on the overall implementation and the tasks it performs.

Inference Workflows

SQLFlow
Server

Multimedia
Queries

Persistent
Volume

Workflow
Controller

Argo Server
MySQL
Database

Node
Exporter

Monitoring
Prometheus

Server Grafana

ML
Workflow
Inference

Figure 3.1: In-database machine learning system architecture for image detection tasks.

From a general perspective, the entrypoint of our system are the multimedia queries
sent from a client to the SQLFlow server. The server translates the queries into Argo
work�ows that are executed over the cluster. In the work�ows, we encapsulate the
machine learning tasks to infer from the set of images given by the query. Finally,
we keep the prediction results on a table in the database and monitor the state and
performance of all the architectural components using Prometheus server to store
metrics, Node Exporter to collect them and Grafana for its visualization.
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3.3.1 SQLFlow Server
The SQLFlow server is the core component of our architecture and the framework
we have based most of our work on. SQLFlow is a bridge that connects a SQL
engine, e.g, MySQL or Apache Hive, with TensorFlow and other machine learning
toolkits [9]. SQLFlow extends the classical SQL syntax to enable model training and
inference. It keeps a loose integrating between the machine learning algorithms and
the underlying SQL engine by translating a SQL query into a work�ow program.

SQL Statement SQLFlow Parser Extended
SQL?

Execute on 
Database Engine

Code Generator
(Couler)

Workflow
Translation

Workflow
Execution Engine

(Argo)
End

Yes

No

Figure 3.2: SQLFlow server steps representation.

The process of translating the SQL queries into work�ow programs is represented
in Figure 3.2. The SQLFlow server receives an SQL statement, parses it and check if
it corresponds to an extended SQL statement de�ned by a train, predict, explain or
run machine learning clause (see Example ??). If the statement is a standard one, it
use its corresponding engine parser noted as a third party parser and immediately
send the statement to be executed on the database engine. If the statement is an
extended SQL statement it combines the third party parser (so the syntax remains
consistent) with an extended syntax parser to parse the machine learning clause
[59]. After, the parsed SQL program will generate an intermediate representation
that will be translated into a Couler program who provides a uni�ed interface for
constructing Argo work�ows. Finally, the work�ow speci�cation will be submitted
into the kubernetes cluster for its execution.

The example 3.1 illustrates the extended machine learning clauses available in
SQLFlow. This approach of creating special SQL clauses to perform machine learn-
ing tasks is inspired by Google BigQuery ML. As we discussed on the previous
chapter, BigQuery ML follows a pure SQL approach and it uses extended SQL
clauses like CREATE MODEL to specify the characteristics of a machine learning
model. In a similar way, SQLFlow de�nes the TRAIN clause to train a model using
the result from a SELECT statement. The PREDICT clause makes a prediction using
a previously trained model. The EXPLAIN clause display a visualization of the
output of a machine learning model using the SHAP project (SHapley Additive
exPlanations) and the RUN clause extends the SQL syntax to support complex
end-to-end machine learning implementations which involves custom data trans-
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formations.
SELECT ... TO TRAIN model_definition

WITH parameters
COLUMN features LABEL target
INTO model_name;

SELECT ... TO PREDICT field USING model_name;
SELECT ... TO EXPLAIN model_name WITH parameters;
SELECT ... TO RUN docker_image

CMD parameters
INTO result_table;

Example 3.1: Extended machine learning SQL clauses in SQLFlow [9].

In the previous chapter, we gave a classi�cation for in-database machine learning
systems based on the level of integration between the machine learning algorithms
and the database engine (Section 2.3.2). Regarding SQLFlow, we can classify it as a
hybrid since it borrows concepts from the pure SQL, UDAF-based and integrated
approach. From the pure SQL, although in SQLFlow the machine learning algo-
rithms are not implemented only in SQL, it uses an extended SQL language to de�ne
and trigger the life-cycle of the machine learning tasks. From the UDAF-based
approach, the TO RUN clause encapsulates the model implementation on Docker
images for complex end-to-end system. And from the integrated approach because
the machine learning models and the database engine are loosely coupled but they
both run on a common infrastructure in the Kubernetes cluster.

For the purpose of our work, we have modi�ed the SQLFlow code generator and
work�ow translations steps to support machine learning models trained for image
classi�cation tasks. Due to the complexity of these models, the TO TRAIN and TO
PREDICT clauses were not the most feasible approach since these clauses work as a
high level abstraction of the Keras Modes API [60]. Instead, we prefer the �exibility
of the TO RUN clause, which o�er us a structure way of implementing pre-trained
models to solve multiple image classi�cation tasks and give us the �exibility to
build a model repository based on the tagging strategy we establish when building
and releasing the docker images.

As a summary and prelude for the next sections, we have used the SQLFlow
extended syntax as a query language to collect the meta-information of our images.
We have changed the code generator and work�ow translations steps to �t models
pre-trained to solve image classi�cation tasks. Finally, we take the prediction results
and store them on a result table de�ned in the original extended SQL query.
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3.3.2 Argo Workflow Controller & Argo Server
The second component of our architecture is the Argo work�ow controller that
manages the life-cycle of the work�ows and the Argo server to expose a user inter-
face (see Figure 3.4) and REST API to interact with the controller. As we explained
in the previous section, the SQLFlow server parses the extended SQL statements,
generates an intermediate representation of the query and then �lls a template to
create a Couler description. After it will uses that description to generate an Argo
work�ow yaml speci�cation (see Figure 3.3). The Argo work�ows encapsulates the
di�erent steps to run the machine learning models over a subset of the image data
from the database.

  import couler.argo as couler
  couler.run_container(image="docker/whalesay", 
  command=["cowsay"], args=["hello world"])
  couler.config_workflow(cluster_config_file="%s")

   apiVersion: argoproj.io/v1alpha1
   kind: Workflow
   metadata:
     generateName: sqlflow-
   spec:
    entrypoint: sqlflow
    hostNetwork: true
    templates:
      - name: sqlflow
        steps:
          - - name: sqlflow-3-3
              template: sqlflow-3
              arguments:
                parameters:
                  - name: para-sqlflow-3-0
                    value: 'hello world'
      - name: sqlflow-3
        inputs:
          parameters:
            - name: para-sqlflow-3-0
        container:
          image: docker/whalesay
          command:
            - cowsay
          args:
            - "{{inputs.parameters.para-sqlflow-3-0}}"
        tolerations:
          - effect: NoSchedule
            key: key
            operator: Equal
            value: value

Couler Description

Argo Workflow Specification

Workflow
Translation

Figure 3.3: From Couler python description to Argo Work�ow speci�cation.

The right part of Figure 3.3 illustrates an Argo work�ow speci�cation. It is de�ned
as a Kubernetes custom resource de�nition, and it consists of a template of steps
with the instructions de�ned in terms of containers that receive inputs as argu-
ments and optionally send outputs to other steps.
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Figure 3.4: Argo work�ows user interface.

3.3.3 MySQL Database
The third component of our architecture is the MySQL database (see Figure 3.5).
The database serves the purpose of keeping the access and storage to the image
datasets. For the deployment of our database we have followed an Infrastructure
as code approach [61] where the entire system is described in a declarative way.

Kubernetes API

Service

MySQL

Database Pod

Persistent
Volume

3306/TC
P

POD_IP:3306

Images Dataset

Figure 3.5: MySQL database and its persistent volume on Kubernetes.

In our case, all the image datasets are embedded as SQL scripts on the docker image,
and we recreate them on an initialization script de�ned as the default entrypoint in
the container. For this reason, we don’t need to manually import the datasets after
the initialization of the database and therefore all the data is available every time
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the container restarts. We have decided not to integrate the raw images as BLOB
�les in the dataset, and instead we follow a more cloud native approach where the
raw images are stored on a persistent volume resource on the Kubernetes cluster
and in the database we only keep references to the paths where they are located.
Due to this, the whole database scales much better since initializing it with BLOB
�les would be very time consuming and would require a lot of memory on the
node where the database is allocated. In this way, the persistent volume can be
de�ned as a cloud network resource, e.g, a S3 or Google Cloud Storage bucket or
any distributed object storage server implemented as a Kubernetes operator such
as MinIO [62].

3.3.4 Prometheus & Grafana
The last component of our architecture corresponds with a set of services that facil-
itates the monitoring and collection of metrics in our cluster. The Argo work�ows
emit by default a set of metrics related with the state of the controller, by installing
Prometheus server, towards Prometheus node exporter we can easily scrap them
from an speci�c endpoint de�ned in the Argo server. Figure 3.6, shows the Grafana
dashboard to visualize the state of the controller and the running work�ows.

Figure 3.6: Grafana dashboard to monitor Argo Work�ows.
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3.4 Dataset Retrieval
After introducing the di�erent components of our architecture, we need to collect
multiple image datasets and import them into our in-database machine learning
system to manipulate them on a relational way. The datasets that we have collected
are not only relevant for the purpose of image classi�cation but also in the context
of object-recognition, broadening the question of scene understanding to more
complex contexts.

Dataset Year Instances Classes Size Format

VOC [63] 2012 17112 20 500x500 PNG
COCO [64] 2017 123287 80 640x640 JPEG

Table 3.1: Image datasets added into our in-database machine learning system.

Regarding this, we have incorporated two of the most relevant datasets (see Table
3.1) in the literature that are based on images containing complex scenarios and
that follow a multi-object classi�cation approach. The �rst dataset that addresses
these issues is the PASCAL VOC [63], which provides a common set of tools for
accessing the dataset and its annotations and o�ers a standardized way to evaluate
new methods through the PASCAL VOC Evaluation Server [65]. The second dataset
and the one we have based most of our work on is the Common Objects in COntext
(COCO) [64]. The COCO dataset represents an evolution from the Pascal VOC
project, it contains 80 di�erent classes and more than 120,000 instances, aiming
to train more capable models in terms of what the model can predict and more
accurate performance on their evaluation since it counts with much more samples.

After identifying the relevant datasets for our research, we have to transform
them from its raw format into one compatible with our database system. The end
goal is to have the data represented in a relational format so it can be manipulated
using a SQL language. The procedure to import the datasets into the database
system consists on the following steps:

1. Download raw images and its annotation. The �rst step consist on down-
loading the VOC and COCO raw images and its respective annotations. For
each training, validation and test partition we will create a separate database.
Afterwards, as we previously explained in section 3.3.3, we upload the raw
image �les into our �le server.

2. Convert annotations to COCO JSON format. For each training, valida-
tion and test dataset we ensure that the annotations are in the COCO JSON
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format, which is an standard notation used to facilitate the training of the
models. As it is obvious the COCO dataset comes in this format, but not
VOC. We made an script to convert annotations written in PASCAL VOC
XML notation to COCO JSON.

3. Transform COCO JSON objects to database tables. After we have the
annotation in COCO JSON, we proceed to incorporate the annotations for
each train, validation and test dataset as a separate database in our MySQL
instance. We made use of pandas and the sqlalchemy library for the creation
of the tables. Figure 3.7 shows a class diagram with the database schema of
the annotations.

4. Clean and export train/validation databases as sql scripts. In order to
have the data available just right after deploying the database in the cluster,
we clean and export all the train/validation databases as sql scripts, so the
database service can be initialize with them for each deployment of the
system.

5. Add sql scripts to the database Docker�le. The last step consists on
adding the sql scripts into our Docker�le, build, push and re-deploy the
database service to the kubernetes cluster.
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#  area

#  bbox
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-  image_id

#  file_name
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#  contributor
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0 .. *
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Figure 3.7: Class diagram of the database schema after processing the dataset.
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3.5 Workflow Execution
Once the image datasets are transformed into tables we can manipulate them in a
relational way and run extended SQL statements to perform inference tasks. In this
section, we describe in more detail the whole process of translating the extended
SQL statements into the Argo work�ows and its execution in the Kubernetes cluster.

As we explained in Section 3.3.1, our work extends the TO RUN clause from
SQLFlow to support the execution of machine learning models trained to solve
image detection and object classi�cation tasks. Therefore, the entrypoint of our
system are extended SQL statements as shown in Example 3.2. We can di�erentiate
three parts on them, the �rst one (lines 1-2) corresponds with the instance selection
of the samples we are going to infer from. We can take advantage of the inherent
relational structure of our data and apply common SQL clauses like ORDER BY or
ASC on them. The second part (lines 3-8) corresponds with the model execution,
here we specify a Docker image and an entrypoint script that will trigger the
machine learning inference task. Finally, the last part (line 9) corresponds with a
table in the database that will persists the prediction results.

1 SELECT * FROM coco_val.images
2 ORDER BY images.image_id ASC
3 TO RUN hebafer/yolov5-sqlflow:latest
4     CMD "run_yolov5.py",
5     "--dataset=coco_val",
6     "--image_dir=/datasets/coco/val/val2017",
7     "--repository=ultralytics/yolov5",
8     "--model=yolov5s"
9 INTO result_table;

Example 3.2: Extended SQL statement with TO RUN clause.

The process of translating the extended queries into work�ows is illustrated on
Figure 3.8. The client receives extended SQL statements with the TO RUN clause (see
Example 3.2), and before reading them it checks that it can establish a connection
with the database. If the database is up and running, the client connects to the
SQLFlow server and submits an Argo work�ow. The SQLFlow server parses the
extended SQL statement, generates an Intermediate Representation and creates
a Couler code description. As we explained in Section 3.3.2, Couler is a library
written in python to specify Argo work�ows. With the yaml speci�cation of
the work�ow, the SQLFlow server calls the Kubernetes API to submit it into our
cluster. The work�ow runs based on the Docker image and the entrypoint from
the extended SQL statement. The work�ow connects to the database, retrieve the
desired samples and call the machine learning models to retrieve predictions on
them. Finally, it persist the prediction results on the result table de�ned in the
extended SQL statement and returns the work�ow result to the client.



3

30 3 Design and Implementation

Client

sql statement

Argo WorkflowsSQLFlow Server Database

assertConnectable

readStatement
runStatementOnServer SubmitWorkflow

Parse

GenerateCode

GenerateYAML

Submit

Run ML Workflow

Persist Results

Figure 3.8: Sequence diagram of the work�ow execution.

We have extended the work�ow translation of the SQLFlow server to support
image classi�cation and object detection tasks. As we discussed in Section 3.3.3,
we decided not to store our images as BLOB �les to enhance the scalability of the
database. Instead, our image datasets only contains a reference to the absolute
path inside a Kubernetes Persistent Volume that maintains the image raw �les.
In order to deal with the raw image �les we have to develop an strategy so the
machine learning models within the work�ow have access and can infer from them.

For this purpose, we have modi�ed the Couler library which is in charge of gener-
ating the Argo work�ows and the internal Couler template �lled with Intermediate
Representation of the extended SQL statetements to support attaching Persistent
Volumes into the Argo work�ows, so the base container de�ned in the extended
SQL statement can load and manipulate in a convenient way the image �les with-
out having to manipulate them directly from the database. We have included the
complete work�ow yaml speci�cation of the Example 3.2 in the Appendix A.
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3.6 Model Implementation
In the previous section, we explained in detail the execution of the work�ows that
run image classi�cation and object detection tasks. As we have seen, the machine
learning models are encapsulated in Docker containers. This approach address a
double goal: �rst, we want to abstract the implementation details of the machine
learning models from users who might not have the required knowledge on this
�eld but they know how to work around data. In our case, the containers act as a
black box that run machine learning models given an input and an output de�ned
by the extended SQL statements. The second goal is to facilitate the incorporation
of new models into our system. We o�er a public repository [66] containing our
model implementations so other users can collaborate and add future machine
learning models that outperforms the ones we currently have.

Model Labels Framework Backbone

Faster-RCNN COCO Tensor�ow ResNet101
SSD COCO/VOC Tensor�ow/Pytorch ResNet50

yolov3 COCO Pytorch Darknet-53
yolov5 COCO Pytorch CSPDarknet

Table 3.2: Machine learning models added into our system.

Since our database has incorporated VOC and COCO as its main image datasets, we
have collected machine learning models (see Table 3.2) available in the Tensor�ow
Model Garden [67] and Pytorch Hub [68] that have been pretrained on them. All
the model implementations follow the same sequence of step described in Figure 3.9.
Once the work�ow is initialized, it connects to the database and runs the SELECT
clause from the extended SQL statement to retrieve the instances we want to infer
from. Later, it loads the set of images into the model and collects the prediction
result. We manipulate the results on a Dataframe to keep a similar tabular structure
as we have in the database. Finally, it connects to the database again and persists
the results into the result table given in the extended SQL statement.

Workflow

Initialization

Image Instance
Retrieval

Load Images

into Model

Collect Prediction
Results

Persist Prediction
Results on Database

Figure 3.9: Sequence of steps for the model implementation.
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3.7 Conclusion
In this chapter, we have presented an in-database machine learning system capable
of dealing with the storage and retrieval of images in a relational way and per-
forming image classi�cation and object detection tasks. In section 3.2, we de�ned a
set of requirements that our system had to ful�ll. We are going to summarize our
conclusions with regards to those requirements:

FR1. Image storage and relational query processing. In Section 3.3.3 and
Section 3.4, we explained the approach we have followed to store and retrieve
information from the image datasets. We have transformed the image datasets
into tables to query them using SQL statements and in order to scale up our
system we decide to store the raw image �les in a kubernetes persistent
volume that its attached to the work�ows when they run machine learning
tasks.

FR2. In-database machine learning for image classi�cation. As we have
seen in Section 3.5 and Section 3.6 the extended SQL statements are translated
into work�ows that runs on the Kubernetes cluster. The work�ow execution
is de�ned by a base docker image that runs the image classi�cation task an
persists the prediction results in a database table.

FR3. Parallelization of inference tasks. Each work�ow execution (see Section
3.5) runs independently from each other, therefore the only limitation on the
number of work�ows we can run is based on the number a work�ows the
Kubernetes scheduler can allocate in a node.

FR4. Accelerate Inference Tasks on GPU. The Kubernetes nodes where our
work�ows runs have allocated GPU resources that the work�ows can exploit
to accelerate the machine learning inference tasks.

NFR1. Extensibility for other machine learning models. As we have seen
in Section 3.6, the machine learning models are encapsulated in Docker
images. Therefore, anyone can extend our approach and implement in the
future other models that outperform the ones we currently have.

NFR2. Cloud platform independent. Since our system architecture (Section
3.3) and all its components are deployed in Kubernetes, our solution is
completely independent from the main cloud providers such as Amazon
Web Services, Google Cloud Platform or Microsoft Azure.
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4
Evaluation

4.1 Introduction
In this section, we evaluate the performance of our in-database machine system in
two di�erent scenarios. First, we want to determine the optimal dataset partitioning
on multiple inference tasks to classify the whole image dataset. Secondly, we want
to evaluate the system performance under the execution of multiple cost-optimized
query plans.

4.2 Experimental Setup
We have deployed our Kubernetes cluster on a virtual machine instance with GPU
capabilities from the High Performance Computing (HPC) platform provided by
SURFsara. The characteristic of the cluster are described in Table 4.1. In order to
have GPU enabled nodes we have built a custom docker imaging packaging k3s (a
lightweight kubernetes distribution) and the NVIDIA Container Runtime [69].

OS Image Ubuntu 18.04.5 LTS
Kernel Version 4.15.0-151-generic
Kubernetes Version 1.21.2
Master Nodes 2
Worker Nodes 3
CPU 5
Memory 40Gb
Ephemeral Storage 100Gb
GPU 1x RTX 2080 ti (11Gb)

Table 4.1: Overall available resources in the Kubernetes cluster.
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4.3 OptimalDatasetPartitioningon InferenceTasks
As we discussed in Chapter 2, the growing volume of data bene�ted the develop-
ment of new machine learning techniques. However, the scale and complexity
involved in building machine learning systems increased as well. One of the great
challenges in the research of large-scale machine learning system is handling the
massive amount of data that is involved [70].

When it comes to distribute large chunks of data on machine learning models
across multiple nodes there are two well known strategies:

• Data Parallelization. In this approach, the same machine learning model
is loaded among multiple workers, then the data is splitted into multiple
chunks and forwarded to each worker node to be processed.

• Model Parallelization. In model parallelization the same dataset is repli-
cated into the worker nodes which operate with di�erent parts of the model.
The �nal model is the result of aggregating all the model parts.

SELECT * FROM images

TO RUN hebafer/yolov5-     
sqlflow:latest

    CMD "run_yolov5.py",

    "--dataset=coco_test",

    "--model=yolov5s",

    "--batch_size=32"

INTO result;

Database

Partition_1

Partition_2

Partition_N

Workflow_1

Workflow_N

Workflow_2

.

.

.

.

.

.

.

.

.

.

.

.

Images Table

SELECT * FROM images
WHERE image_id 
BETWEEN 1 AND 100

SELECT * FROM images
WHERE image_id 
BETWEEN 101 AND 200

SELECT * FROM images
WHERE image_id 
BETWEEN 201 AND N

Figure 4.1: Parallelization of work�ows by partitioning the dataset.

Our evaluation, described in Figure 4.1, will follow a Data Parallelization ap-
proach to optimize the execution time on classifying an entirely image dataset. The
goal is to �nd the best balance between partitioning the dataset and the time it takes
for each work�ow to solve its inference task. Since our cluster has a limited amount
of resources (in terms of CPU, memory and GPU), we cannot heavily increase the
number of work�ows because each of them require a �xed amount of GPU memory
to load the model (around 500 MiB) and this value dynamically grows depending on
the amount of images (per batch) that we load on the available GPU. If a work�ow
cannot allocate enough resources, it will fail and we will need to reschedule it on
the cluster negatively impacting the overall performance.
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4.3.1 Experiment Design
In this section we describe how we proceed with the experiment. We have used the
COCO test dataset [64], previously described in Section 3.4 and we have divided
the 40670 instances among 2, 4, 8 and 16 partitions. To overcome the GPU memory
limitation, we have de�ned di�erent �xed batch sizes (32, 64, 128 and 256) for each
partition and analyzed how the amount of allocated GPU memory grows when
more images are loaded into the GPU.

The Example 4.1 illustrates an extended SQL query that retrieves half of the COCO
testing dataset (partitioning the dataset in 2) with a batch size of 32 samples. The
model to infer from that we are going to use to evaluate our work on is YOLO.
1 SELECT * FROM images.coco_test
2 WHERE image_id BETWEEN 1 AND 290580
3 TO RUN hebafer/yolov5-sqlflow:latest
4 CMD "run_yolov5.py",
5     "--dataset=coco_test",
6     "--image_dir=/datasets/coco/test/test2017",
7     "--model=yolov5s",
8     "--write_mode=append",
9     "--batch_size=32"

10 INTO result;

Example 4.1: Extended SQL statement to retrieve half of COCO test dataset and predict from Yolov5
with a batch size of 32.

As we explained in Chapter 3 (Section 3.5), the extended SQL queries are
translated into Kubernetes work�ows that perform image classi�cation tasks. The
partitioning of the dataset is done by retrieving a subset of samples from the
database (see SELECT clause of Example 4.1), and therefore the amount of partitions
will determine the amount of work�ows to execute. However, the amount of
work�ows that we can execute in parallel is limited by the available GPU memory
at run time. Taking into account this limitation, we have proposed di�erent batch
sizes regarding the maximum GPU memory available.

Batch Size 32 64 128 256
GPU Memory Consumption (MiB) 2133 2512 4869 8519

Table 4.2: GPU Memory utilization for di�erent batch sizes.

We have run single work�ows with image batches of 32, 64, 128 and 256 to
observe the amount of GPU memory consumed. The values are re�ected in Table
4.2, we can observe that the amount of GPU memory scales linearly when the batch
size does. Our system is capable of processing batches up to 256 images, if we
increase it to a higher value, the work�ow will fail since it will try to allocate more
gpu memory than the one we have available (see Table 4.1).
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4.3.2 Execution time among multiple partitions
The results from the experiment are described in Table 4.3 and Figure 4.2. We can
clearly see that partitioning the whole dataset on multiple work�ows and increasing
the batch size improves the execution time. However, we can observe that the best
execution time does not correspond with the highest partition value and batch size.
Increasing the GPU batch size increments the amount of GPU memory allocated
by a work�ow but decreases the number of work�ows we can run in parallel.

GPU Batch Size
32 64 128 256

Partitions

2 781.50 677.50 656.0 693.0
4 303.75 318.25 437.0 710.0
8 308.50 235.25 411.0 798.0
16 296.75 272.25 498.5 1094.0

Table 4.3: Run time execution (s) for multiple partitions and gpu batch sizes

Figure 4.2: Run time execution (in seconds) among multiple partitions and batch sizes.
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We have obtained the best execution time (lower amount of time to classify the
40670 samples from the COCO test dataset) for a partition of 8 work�ows and a
batch size of 64. As we explained before, the number of work�ows we can run in
parallel is limited by the amount of GPU memory available in the cluster. The batch
size of 64 maintains a good ratio between the GPU memory used to load the model
and the images to retrieve the predictions from and the number of work�ows that
can run at the same time to classify the whole dataset faster.

GPU Batch Size
32 64 128 256

Partitions

2 4266 5024 9738 17038
4 8532 10048 19476 34076
8 17064 20096 38952 68152
16 34128 40192 77904 136304

Table 4.4: Total GPU Memory Usage (MiB)

Figure 4.3 and Table 4.4 show the total GPU memory consumed by the work-
�ows. We can see a direct increment when the batch size and number of partitions
grow. However, if we compare this results with the total execution time from
Table 4.1 we clearly see that due to the limited GPU memory in our cluster not by
partitioning more and increasing the results we are going to lower down the overall
execution time. Our approach aims to �nd the best ratio between the number of
partitions and the batch size so we get the best out of our limited resources.
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Figure 4.3: Total GPU Memory Usage (in MiB).
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4.4 Cost Optimization on different�ery Plans
In this section we are going to evaluate the capabilities of our system to run ma-
chine learning based query plans navigating the trade-o�s between accuracy and
cost (execution time) among multiple machine learning models. The end goal is
to �nd an optimized query plan capable to answer predicates by choosing from a
repository of models which are constrained regarding the cost that takes to run a
model and the subset of classes it can answer.

For example, considering the following scenario, where we have di�erent ma-
chine learning models trained to answer a set of predicates or classes with an
assigned cost to execute that model (see Table 4.5).

Model Classes Cost
M1 car, truck, bicycle 100
M2 dog, cat, bird 100
M3 person, car 50
M4 person, bicycle, backpack 75

Table 4.5: Machine learning models trained
to answer a set of classes with a �xed cost.

Predicates
person AND bicycle

(person AND dog) OR (person AND cat)
(car OR truck) AND person

(backpack AND bicycle) OR person

Table 4.6: Set of predicates to answer.

If we have a list of predicates (Table 4.6) with clauses made out of the classes the
models can answer, the goal is to model an optimal machine learning based query
plan (Figure 4.4) to �nd out which models we have to select in order to retrieve
a set of images that ful�ll the predicate condition minimizing the total execution
cost.

OR

AND AND

person dog person cat
(M3, 50)


(M4, 75)

(M2, 100) (M3, 50)


(M4, 75)


(M2, 100)

Figure 4.4: Tree representation of a machine learning based query plan.
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4.4.1 Model Repository Construction
We construct a model repository by introducing modi�ed submodels of YOLO
trained on the COCO dataset. For our evaluation, we add variations of YOLO
regarding the following properties:

• Cost. It refers to the execution time needed to classify a single image. The
goal is to minimize it, since we want to reduce the total time needed to
classify the set of images for a given predicate. To increase or decrease the
cost, we introduce random latency values ranging from 1 to 50 seconds that
will delay the total run time execution of the model.

• Accuracy. Its a value from 0 to 1 that denotes the probability of a model
missclassifying an image. The higher the accuracy is, the more con�dence
we will have on the prediction result. The model with accuracy equal to one
is our chosen base model (YOLO) which we are introducing the variations
from.

• Class Coverage. It refers to a set of classes the model can identify. Since
we have trained YOLO on the COCO dataset, our class coverage set will be
a subset from the 80 classes available in YOLO. Figure 4.5 illustrates the 80
classes of COCO and its distribution among the training dataset.
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Figure 4.5: Distribution of classes in the COCO training dataset.
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To implement the models regarding our constraints, we have extended the
work�ow execution process described in Chapter 3. We have modi�ed the base
Docker image to introduce the constraints for the latency, cost and class coverage.
1 SELECT * FROM coco_val.images
2 TO RUN hebafer/yolov5-sqlflow-variation:latest
3     CMD "run_yolov5_variation.py",
4     "--dataset=coco_val",
5     "--image_dir=/datasets/coco/val/val2017",
6     "--repository=ultralytics/yolov5",
7     "--model=yolov5s",
8     "--latency=50",
9     "--accuracy=0.75",

10     "--class_coverage=1,2,3,4,5"
11 INTO result_table;

Example 4.2: Extended SQL statement to run a Work�ow with the model constraints.

The Example 4.2 shows an extended SQL statement that runs the modi�ed model
with new parameters. The details of the implementation and the base Docker
image are available in our public repository [66]. For the latency, we inject a
delay in seconds during the execution of the container, for the accuracy, we adjust
the �nal value of the predicted class regarding the given probability. Finally, the
class coverage parameter establish the number of classes the model is internally
capable to predict. Based on this parameters, we have created di�erent variations
of YOLO, we randomly assign values for the latency (from 1 to 50), the accuracy or
missprediction (from 0.8 to 1) and a random subset of classes from COCO. Figure 4.6
shows the distribution of the di�erent variations of YOLO that we have randomly
generated regarding the cost and the accuracy. The speci�c parameters for each
model from the repository are available in the Appendix B.
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Figure 4.6: Distribution of constrained models regarding accuracy and cost.
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4.4.2�ery Plan Evaluation
After building our model repository, we are going to evaluate di�erent strategies
to generate query plans that will select the optimal machine learning models that
satisfy a predicate. As explained in the previous section, each machine learning
model from the repository can answer a subset of the classes that form a predicate.
The goal is to �nd the best combination of machine learning models that answer
the predicate, considering that each of them will have a di�erent cost and accuracy.
To �nd those values, we run the 125 models from the repository on the COCO
valuation dataset and collect its performance metrics to see assign respectively
its cost (execution time) and accuracy. For the purpose of our experiment, we are
going to evaluate four di�erent predicates (see Table 4.7), we can observe that by
increasing the number of classes on a predicate it reduces the total possible query
plans we can combine.

Index Predicate Result

Q1 book OR person 2824

Q2 (cup AND person) AND (remote OR bird) 140

Q3 (dining table OR person) AND (clock OR handbag) 820

Q4 (dog AND person) OR (tra�c light AND sport ball)
AND ((boottle OR knife) AND (horse OR kite)) 164

Table 4.7: Sample predicates to evaluate.

Once we set the cost and accuracy for each model from the model repository,
we proceed to formulate the query plans in terms of a linear optimization problem.
Having the predicate and model repository as inputs, the goal is to retrieve the
models with the best accuracy minimizing the cost. To design the query plans, we
apply three di�erent strategies:

• Baseline. The baseline strategy follows a greedy approach where it only
prioritizes choosing the models with the highest possible accuracy. It takes
into account the restriction on the cost but it will not explore the combination
of di�erent models to minimize it.

• Basic optimization. The second strategy explores the combination of mul-
tiple models that satisfy the given predicate and minimize the total cost.

• Selectivity and order optimization. Our last strategy applies the basic
optimization but also takes into account the selection and order execution
of the chosen models. In this scenario, we aim to reduce the total cost by
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forwarding to the next model selected in the query plan a the subset of
images that have been already answered by the previous one.
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Figure 4.7: Comparison between di�erent strategies to generate the query plan.

Figure 4.7 shows the results of evaluating the query plans generated for each
predicate de�ned in Table 4.7. We can observe that the order and selectivity
strategy always retrieves the most accurate models for each constrained cost (50,
100 and 150), outperforming the baseline and basic optimizations. For the case
where we have a predicate both containing multiple classes (Q3 and Q4) and having
a very strict cost (50), it makes more sense applying an optimization technique.
Since otherwise, the baseline strategy will always be as good as the optimized one
because there are no restrictions on the cost and both approaches will select the
same models.
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4.4.3 Evaluation of the Model Repository on Different Dis-
tributions

Finally, we are going to evaluate if the distribution of the model repository impacts
the model selection when generating the machine learning query plan. We want
to discover which models will be selected by the optimizer and what are their
characteristics. We have synthesized the model repository and previous queries
applying two sampling strategies:

• Uniform sampling. This is the strategy we used to generate the model
repository in Section 4.4.1. We uniformly sampled the classes each model can
predict and then we assign the accuracy based on the Gaussian distribution.

• Power-law sampling. Our second strategy samples the classes using the
power-law distribution:

y = ax
a−1

Where a is equal to 5. The accuracy and cost are assigned as in the uniform
sampling strategy.

When the classes are sampled uniformly, the majority of the classes are detected
by most of the models. By using the power-law sampling strategy, we limit the
classes a model can answer to, resulting into only a small number of models that
are able to predict a wide range of classes. Figure 4.8 illustrates the model selection
performance over our two constraints (accuracy and cost) using both sampling
strategies. Each bar is a box plot where the end of the box plot are the 25th and
75th percentile. The blue color represents the baseline and the orange and red the
optimized ones.

Constrained on cost Constrained on accuracy

Figure 4.8: Model selection performance over objective against di�erent sampling strategy combina-
tions.
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We see that when the cost is constrained, the optimized approaches are able to
select models with a higher accuracy than the baseline. Similar results are shown
when the accuracy is constrained, because the optimized approaches select mod-
els with a lower accumulated cost. For each combination of sampling strategies,
while using the power-law sampling strategy to build the model repository, the
baseline and optimized approaches show poorer results in terms of accuracy and
cost. This is because the power-law sampling strategy limits the number of mod-
els that can answer a wide range of predicates, and therefore o�ers poorer results. -
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Figure 4.9: Run time of the optimized approaches against the combination of di�erent sampling
strategies.

Figure 4.9 illustrates the run time of query plans when the number of classes
in a predicate scales. We can observe that the total execution time increases for a
higher number of classes in a predicate. It is worth mentioning that a power-law
sampling strategy leads to a skew distribution of the predicate coverage of models.
If some predicates are answered only by a small range of model it will save time
when optimizing the query plan, since there will be only a few number of models
to choose that can satisfy it.



5

45

5
Conclusion & Future Work

This section summarizes our main �ndings by answering the research questions
stated in Chapter 1 and discusses some possible future lines of work.

5.1 Conclusion
To conclude, we are going to revisit and answer our initial research questions:

RQ1. How cloud-native work�ows can facilitate machine learning infer-
ence tasks over images which meta-information is persisted in a re-
lational database?

In Chapter 2, we discuss the role of cloud-native work�ows to orchestrate
machine learning tasks. We can observe that machine learning work�ows
bring a standardized way of managing the life-cycle of a machine learning
models, covering its de�nition, training, evaluation and deployment. To
better understand its role in a cloud native environment, we give a clas-
si�cation of the main work�ow engines with its particular characteristics
available on Kubernetes. Later, in Chapter 3 we explain the role of Argo,
our work�ow controller and its impact in the overall architecture, giving
our system the capability to systematically perform inference tasks over our
image datasets. Our work�ow de�nition encapsulates in Docker images all
the necessary dependencies to perform its task, from the connection with
the database, to the model execution and the retrieval of the inference results
and its persistence in form of a database table. Besides, using a standardized
approach for the work�ow de�nition facilitates the extension of our system
with future machine learning models.
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RQ2. How can we perform inference tasks over images in a fast, scalable
and SQL-driven way?

This research question is mainly answered in Chapter 3 and evaluated in
our �rst experiment in Chapter 4. Our work extends the SQLFlow project
to support deep learning models trained to solve image recognition tasks.
First, we incorporate and represent our image datasets in a relational format,
structuring them as a set of interrelated tables. To overcome scalability issues,
we decided not to keep the images as BLOB �les inside the database and
instead store them on a Persistent Volume in the cluster. To perform the
inference tasks, we use the extended SQL syntax de�ned in SQLFlow. As
explained in Section 3.5, each inference task corresponds with an extended
SQL query that is transformed into an Argo work�ow. We have modi�ed the
work�ow translation to attach persistent volumes containing the images �les
and to exploit the GPU capabilities of our cluster. The run time execution
and scalability of the system are evaluated in Section 4.3. We designed
an experiment to �nd out the optimal partition of the dataset on multiple
inference tasks. Each partition runs an inference task over a subset of images
with a speci�c GPU batch size. In the experiment, we observe that the run
time execution and scalability of the inference tasks are constrained by the
total amount of GPU memory available in the cluster.

RQ3. How canwemodel and processmachine learning queries taking into
account the trade-o�s between execution and accuracy among mul-
tiple models?

In order to answer our last research question, we conduct an experiment in
Section 4.4 that evaluates the capabilities of our system to run machine learn-
ing based query plans navigating the trade-o�s between accuracy and cost
among multiple machine learning models. We construct a model repository
by introducing variations of a base model regarding the amount of classes
it can predict and its execution time and accuracy (both measure on classi-
fying the validation dataset). We extend the work�ow execution process to
introduce those constraints as new parameters in our base Docker image.
After that, we apply three di�erent strategies to generate the query plans
that will select which models from the repository are capable of answering
a given predicate. Finally, to evaluate the generation of the query plans we
change the distribution of the models in the repository to discover which
models will be selected over others.
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5.2 Future Work
The present work has focused on the design and implementation of an in-database
machine learning system capable of running image classi�cation tasks on a rela-
tional way. During the implementation and evaluation of the system, new questions
arose, which are not answered in favor of focusing on the purpose of our work. In
this section, we explain some future ideas to explore:

Model training over relation data

The present work discusses the characteristics of an in-database machine
learning system capable of running image classi�cation tasks on a relational
way. We did not focus on exploiting the possibilities of directly training
machine learning models from relational data. However, as we are encapsu-
lating the machine learning inference tasks on containers, we could follow
a similar approach and de�ne work�ows capable of training and pushing
models to a public repository to use them to infer from.

Evaluation of our in-database machine learning system at the Edge

While writing this dissertation, we identi�ed an increasing interest in the
research community to evaluate deep learning models for image classi�-
cation tasks on resource constraint devices [71] [72]. Besides of existing
technologies such as KubeEdge [73], aiming to integrate Kubernetes with the
Edge computing paradigm, our work is designed to run aware of a cluster en-
vironment, and it could serve as the foundation to evaluate the performance
of an in-database machine learning system running at the Edge.

Optimize the model selection of query plans using chaos engineering

The last part of our work, evaluates the capability of an in-database machine
learning system to execute query plans choosing among multiple models
constrained by its execution time and accuracy to solve an inference task.
While doing the evaluation, we found out that our constraints are closely
related to the principles of chaos engineering [74], which is the discipline of
experimenting on a system in order to build con�dence in the capability to
withstand turbulent conditions in production [75]. Platforms such as Chaos
Mesh [76], o�er the possibility to inject chaos into Kubernetes infrastructure
in a manageable way. We could use Chaos Mesh to introduce latency and
accuracy disturbance in the cluster instead of in an application level as it is
currently done.
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Argo Workflow

1 apiVersion: argoproj.io/v1alpha1
2 kind: Workflow
3 metadata:
4 - name: sqlflow
5 inputs: {}
6 outputs: {}
7 metadata: {}
8 steps:
9 - - name: sqlflow-1-1

10 template: sqlflow-1
11 arguments: {}
12 - name: sqlflow-1
13 inputs: {}
14 outputs: {}
15 metadata: {}
16 container:
17 name: ''
18 image: 'hebafer/yolov5-sqlflow:latest'
19 command:
20 - bash
21 - '-c'
22 - |-
23 step -e "SELECT * FROM coco_val.images
24 ORDER BY images.image_id ASC
25 TO RUN hebafer/yolov5-sqlflow:latest
26 CMD \"run_yolov5.py\",
27 \"--dataset=coco_val\",
28 \"--image_dir=/datasets/coco/val/val2017\",
29 \"--repository=ultralytics/yolov5\",
30 \"--model=yolov5s\"
31 INTO result_table;"
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32 env:
33 - name: SQLFLOW_DATASOURCE
34 value: 'mysql://root:root@tcp(DB_IP:3306)/?maxAllowedPacket=0'
35 - name: SQLFLOW_DB_PORT
36 value: 'tcp://SQLFLOW_IP:3306'
37 - name: SQLFLOW_DB_PORT_3306_TCP
38 value: 'tcp://SQLFLOW_IP:3306'
39 - name: SQLFLOW_DB_PORT_3306_TCP_ADDR
40 value: SQLFLOW_IP
41 - name: SQLFLOW_DB_PORT_3306_TCP_PORT
42 value: '3306'
43 - name: SQLFLOW_DB_PORT_3306_TCP_PROTO
44 value: tcp
45 - name: SQLFLOW_DB_SERVICE_HOST
46 value: SQLFLOW_IP
47 - name: SQLFLOW_DB_SERVICE_PORT
48 value: '3306'
49 - name: SQLFLOW_DB_SERVICE_PORT_DATABASE
50 value: '3306'
51 - name: SQLFLOW_PARSER_SERVER_PORT
52 value: '12300'
53 - name: SQLFLOW_SERVER_PORT
54 value: 'tcp://SQLFLOW_SERVER_IP:80'
55 - name: SQLFLOW_SERVER_PORT_80_TCP
56 value: 'tcp://SQLFLOW_SERVER_IP:80'
57 - name: SQLFLOW_SERVER_PORT_80_TCP_ADDR
58 value: SQLFLOW_SERVER_IP
59 - name: SQLFLOW_SERVER_PORT_80_TCP_PORT
60 value: '80'
61 - name: SQLFLOW_SERVER_PORT_80_TCP_PROTO
62 value: tcp
63 - name: SQLFLOW_SERVER_SERVICE_HOST
64 value: SQLFLOW_SERVER_IP
65 - name: SQLFLOW_SERVER_SERVICE_PORT
66 value: '80'
67 - name: SQLFLOW_SERVER_SERVICE_PORT_SERVER
68 value: '80'
69 - name: NVIDIA_VISIBLE_DEVICES
70 value: all
71 - name: NVIDIA_DRIVER_CAPABILITIES
72 value: 'compute,utility'
73 resources: {}
74 volumeMounts:
75 - name: sqlflow-pv
76 mountPath: /datasets
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Model Repository

model latency accuracy tasks
1 yolov3 21 0.98 7
2 yolov3 36 0.82 45 68 57 13 10 23 7 24 74 20 32 12 65 60 24 2 10 54 70 66 71 48 54 15 5 17 42 20 48 22

13 53 10 55 61 56 21 25 14 13 43 6 77 56 59 15 24 9 66 71 53 69 36
3 yolov3 1 0.81 21 40 77 49 47 77 40 78 45 16 28 45 67 66 78 46
4 yolov3 15 0.83 0 29 63 75 35 53 33 2 48 54 32 28 55 31 28 74 8 32 8 77
5 yolov3 8 0.98 50 79 41 64 24 20 44 15 30 14 19 26 7 53 47 60 34 32 19 67 24 38 47 5 79 63 32 42 74 66

30 17 68 64 60 78 17 39
6 yolov3 5 0.82 35 28 22 38
7 yolov3 10 0.88 41 74 77 70 25 48 50 62 44 54 0 16 19 9 51 10 68 23 14 63 21 46 3 56 46 54 79 71 14 77

15 25 53 58 29 44 37 22 54 76 12 59 26 76 71
8 yolov3 17 0.99 39 43 76 38 69 33 43 26 56 69 73
9 yolov3 20 0.91 52 27 43 1 26 30 64 22 52 3 70 12 39 48 61 70 13 36 23 22 66 53 9 41 57 76 11 36 16 30

57 35 41 2 36 46 27 72 28 2 13 41 36 40 18 38
10 yolov3 27 0.94 63 46 2 28 78 75 58 42 26 21 58 16 37 11 22 6 14 75 35 63 32 49 0 22 70 36 18 27 28 52

50 46 7 16 29 11 61 14 30 8 40 48 30 23 66 64 12 17 33 10 28 75 5 5 42
11 yolov3 21 0.86 52 57 56 78 10 72 48 19
12 yolov3 34 0.94 12 25 77 16 4 27 50 68 3 58 12 2 76 61 15 74 12 18 30 59 5 16 60 43 31 44 24 62 79 21

19 77
13 yolov3 11 0.97 33 4 39 67 34 34 42 78 38 48 5 8 40 69 5 7 78 37 78 33 27 51 77 30 43 46 9 67 3 67 54 63

28 37 64 37 18 78 70 52 10 32 46 63 18 36 29 39 28 54 29 55 27 60
14 yolov3 44 0.8 12 17 71 7 56 51 32 76 62 51 30 22 5 22 76 22 18 29 18 52 31 49 45 51 15 71 48 28 27 43

19 79
15 yolov3 2 0.95 70 11 65
16 yolov3 33 1.0 15 51 45 63 42 22 40 44 16 17 0 71 14 36 26 32 1 48 22 34 21 68 67 48 18 11 11 52 76 68

45 64 40 7 7 33 58 7 34 4 5 61
17 yolov3 21 0.95 50 76 45 21 71 25 1 13 38 27 38 33 1 31 38 28 75 31 51 66 67 32 74 32 5 0 37 72 43 24

16 41 24 21 27 46 35 62 68 62 32 45 42 57 25 32 33 6 65 51 31 7
18 yolov3 28 0.86 13 3 28 15 29 66 61 58 34 30 57 49 46 41 20 40 50 4 9 0 21 74 21 33 38 37 43 33 41 71

69 70 23 39 31 37 38 56 28 36
19 yolov3 7 0.96 66 10 0 16 30 3 78 59 53 69 49 74 46 27 33 72 68 39 32 7 33 62 14 77 43 61 36 12 53 26

12 25 1 41 55 55 64 15 40 60 70 49 50 32 20 52 38 65 57 52 19 64 42 47 21 1 38 12 18 77
77 39 15 37 36 1 32 30 7 50 50 32 43 41

20 yolov3 10 0.82 69 1 51 30 49 71 21 18 46 44 9 4 77 63 23 59 64 31 1 78 68 54 25 27 56 8 55 76 46 49 11
8 61 74 23 5 42 46 21 51 73 42 13 18 23 45
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21 yolov3 40 0.89 52 33 54 14 57 61 40 72 65 22 2 1 72 51 71 77 62 48 0 42 39 3 57 43 53 43 74 75 59 66
74 5 26 67 31 11 3 54 1 13 59 56 8 38 4 70 76 73 5 79 59 31 7 66 32 46 75 44 64 37 47 73
15 65 52 69 66 28 19 17 5

22 yolov3 48 0.98 79 10 29 17 46 7 17 61 64 7
23 yolov3 16 0.86 29 55 28 43 55 5 50 63 52 34 77
24 yolov3 34 0.86 37 54 4 43 11 29 76 32 50 51 42 23 43 28 64 58 51 22 10 31 9 6 30 67 18 12 73 74 65 53

42 6 9 36 59 8 53 18 21 67 14 20 9 42 66 20 16 58 77 42 35 75 28 34 44 8 30 64 77 18 38
11 56

25 yolov3 43 0.83 52 76 68 25 69 31 59 62 29 66 32 71 60 72 27 68 38 60 9 67 78 63 20 35 55 28 45 56 51 4
79

26 yolov5x 21 0.98 24
27 yolov5x 36 0.82 20 44 15 30 14 19 26 7 53 47 60 34 32 19 67 24 38 47 5 79 63 32 42 74 66 30 17 68 64 60

78 17 39 35 28 22 38 41 74 77 70 25 48 50 62 44 54 0 16 19 9 51 10
28 yolov5x 1 0.81 68 23 14 63 21 46 3 56 46 54 79 71 14 77 15 25
29 yolov5x 15 0.83 53 58 29 44 37 22 54 76 12 59 26 76 71 39 43 76 38 69 33 43
30 yolov5x 8 0.98 26 56 69 73 52 27 43 1 26 30 64 22 52 3 70 12 39 48 61 70 13 36 23 22 66 53 9 41 57 76

11 36 16 30 57 35 41 2
31 yolov5x 5 0.82 36 46 27 72
32 yolov5x 10 0.88 28 2 13 41 36 40 18 38 63 46 2 28 78 75 58 42 26 21 58 16 37 11 22 6 14 75 35 63 32 49

0 22 70 36 18 27 28 52 50 46 7 16 29 11 61
33 yolov5x 17 0.99 14 30 8 40 48 30 23 66 64 12 17
34 yolov5x 20 0.91 33 10 28 75 5 5 42 52 57 56 78 10 72 48 19 12 25 77 16 4 27 50 68 3 58 12 2 76 61 15 74

12 18 30 59 5 16 60 43 31 44 24 62 79 21 19
35 yolov5x 27 0.94 77 33 4 39 67 34 34 42 78 38 48 5 8 40 69 5 7 78 37 78 33 27 51 77 30 43 46 9 67 3 67 54

63 28 37 64 37 18 78 70 52 10 32 46 63 18 36 29 39 28 54 29 55 27 60
36 yolov5x 21 0.86 12 17 71 7 56 51 32 76
37 yolov5x 34 0.94 62 51 30 22 5 22 76 22 18 29 18 52 31 49 45 51 15 71 48 28 27 43 19 79 70 11 65 15 51

45 63 42
38 yolov5x 11 0.97 22 40 44 16 17 0 71 14 36 26 32 1 48 22 34 21 68 67 48 18 11 11 52 76 68 45 64 40 7 7

33 58 7 34 4 5 61 50 76 45 21 71 25 1 13 38 27 38 33 1 31 38 28 75
39 yolov5x 44 0.8 31 51 66 67 32 74 32 5 0 37 72 43 24 16 41 24 21 27 46 35 62 68 62 32 45 42 57 25 32 33

6 65
40 yolov5x 2 0.95 51 31 7
41 yolov5x 33 1.0 13 3 28 15 29 66 61 58 34 30 57 49 46 41 20 40 50 4 9 0 21 74 21 33 38 37 43 33 41 71

69 70 23 39 31 37 38 56 28 36 66 10
42 yolov5x 21 0.95 0 16 30 3 78 59 53 69 49 74 46 27 33 72 68 39 32 7 33 62 14 77 43 61 36 12 53 26 12 25

1 41 55 55 64 15 40 60 70 49 50 32 20 52 38 65 57 52 19 64 42 47
43 yolov5x 28 0.86 21 1 38 12 18 77 77 39 15 37 36 1 32 30 7 50 50 32 43 41 69 1 51 30 49 71 21 18 46 44 9

4 77 63 23 59 64 31 1 78
44 yolov5x 7 0.96 68 54 25 27 56 8 55 76 46 49 11 8 61 74 23 5 42 46 21 51 73 42 13 18 23 45 52 33 54 14

57 61 40 72 65 22 2 1 72 51 71 77 62 48 0 42 39 3 57 43 53 43 74 75 59 66 74 5 26 67 31
11 3 54 1 13 59 56 8 38 4 70 76 73

45 yolov5x 10 0.82 5 79 59 31 7 66 32 46 75 44 64 37 47 73 15 65 52 69 66 28 19 17 5 79 10 29 17 46 7 17
61 64 7 29 55 28 43 55 5 50 63 52 34 77 37 54

46 yolov5x 40 0.89 4 43 11 29 76 32 50 51 42 23 43 28 64 58 51 22 10 31 9 6 30 67 18 12 73 74 65 53 42 6 9
36 59 8 53 18 21 67 14 20 9 42 66 20 16 58 77 42 35 75 28 34 44 8 30 64 77 18 38 11 56
52 76 68 25 69 31 59 62 29 66

47 yolov5x 48 0.98 32 71 60 72 27 68 38 60 9 67
48 yolov5x 16 0.86 78 63 20 35 55 28 45 56 51 4 79
49 yolov5x 34 0.86 75 31 76 52 38 74 70 26 57 30 64 38 18 41 57 48 42 52 22 64 70 61 60 27 0 26 50 20 26

65 77 18 60 59 62 38 23 68 69 61 66 19 36 17 21 77 26 32 8 8 20 68 54 74 23 13 11 42 10
24 47 68 43

50 yolov5x 43 0.83 13 6 2 67 4 28 35 77 46 78 6 20 23 63 71 6 21 64 50 9 67 33 71 8 51 33 61 7 59 41 27
51 yolov5x6 27 0.93 51 40 71 45 9 46 58 21 54 0 19 19 27
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52 yolov5x6 36 0.83 21 18 67 35 29 22 56 10 42 72 31 12 7 8 61 23 34 3 55 68 15 24 62 26 47 35 16 78 57 24
55 49 52 24 15 67 73 46 20 66 12 25 0 77 11 24 54 47 77 40 59 79 31 56 33 38 20 14 9 67
79 3 47 70 42 5 20 57 59 54 77 24 58

53 yolov5x6 30 0.99 79 36 58 51 63 73 55 78 70 27 23 53 69 68 23 46 39 66 77 26 24 17 1 45 58 21 17
54 yolov5x6 27 0.9 56 33 43 75 2 26 26 52 55 7 62 31 79 76 46 70 69 55 74 15 14 56 1 75 76 18 62 45 65 52

28 38 20 51 59 64 14 52 44 16 64 30 10 45 78 59 42 64 5 76 55 42 20 68 18 49 15 17 61
55 yolov5x6 21 0.88 7 64 55 2 4 16 77 68 30 52 36 59 31 35 32 50 51 5 33 0 9 31 35 60 38 11 44 43 7 62 56 52

24 43 51 10 49 18 10 61 39 6 7 79 12 0 3 51 15 67 59 66 15 61 64 19 44
56 yolov5x6 32 0.85 61 21 0 63 1 60 76 22 14 24 46 32 70 54 24 77 35 57 31 39 14 48 13 19 15 41 35 25 51 34

22 33 61 78 7 32 3 67 57 46 21 58 64 40 78 78 62 62 47 27 71 42 14 51 18 78 10 35 49 79
4 5 29 53 72 29 38 78 54

57 yolov5x6 22 0.95 42 64 68 44 73 50 50 35 72 15 39 2 35 79 15 15 66 34 18 74 18 25 17 49 37 20 40 52 23
18 79 51 32 37 30 40 50 73 68 15 63 64 20 54 23 6 24 0 48

58 yolov5x6 44 0.89 28 1 73 21 0 76 32 40 30 53 33 22 3 34 49 70 37 33 12 37 79 65 6 79 3 32 44 29 46 67 66
28 57 43 20 52 31 25 63 52 59 17 22 54 13 30 23 50 21 71 3 23 12 77 7 52 30 26 8

59 yolov5x6 48 0.91 73 39 56 60 25 65 27 18 1 34 2 17 11 53 59 11 3 0 51 32 5 11 69 9 46 74 32
60 yolov5x6 19 0.8 38 42 63 23 40 63 63 31 18 40 5 79 74 40 25 68 49 46 13 21 49
61 yolov5x6 39 0.92 51 14 30 10 4 7 54 59 41 35 56 13 11 52 66 21 34 61 60 74 8 75 27 25 36 14 3 72 43 8 55

17 60 32 27 52 50 79 26 37 24 56 40 52 38 19 44 20 63 21 65 68 18 68 16 78 59 56 44 35
39 61 32 67 53 62 75 8 34 33

62 yolov5x6 26 0.92 25 67 1 8 27 29 77 10 61 16 79 74 76 0 30 3 64 38 67 30 21 26 10 69 33 36 9 0 55 69 10
3 39

63 yolov5x6 28 0.92 77 37 16 25 46 7 43 0 56 14 55 55 52 78 53 60 0 14 60 66 39 71 7 16 66 61 69 50 58 79
14 77 12 11 79 34 6 69 44 70 72 12 46 7 29 60 73 46 47 73 76 45 36 39 37 6 43 58 1 29
48 55 45 8 34 29 0 79 19 4 71 1 8 26 40 32

64 yolov5x6 46 0.99 70 7 38 29 3 74 50 16 49 42 70 8 31 25 34 54 70 5 63 24 46 20 22 0 69 22 27 25 64 45 38
57 52 52 32 69 79 5 33 64 53 53 53 12 33 51 55 54 12 10 78 71

65 yolov5x6 4 0.94 29 12 63 7 70 63 64 44 69 75 34 14 59 33 24 3 41 30 22 53 36 6 38 31 62 47 62 34 71 42
20 50 22 2 63 0 5 72 52 9 11 40 76 61 2 22 47 29 1

66 yolov5x6 5 0.87 75 1 52 64 75 78 62 76 48
67 yolov5x6 1 0.89 36 49 14 73 21 32 71 0 46 24 37 16 52 68 7 60 9 34 63 66 68 13 66 0 34 70 16 37 17 38

14 37 62 0 33 49 77 31 57 58 73 76 28 76 53 58 31 13 38 59 46 62 61 39 71 2 59 25 57 32
30 52 41 78 57 45 25 73 74 6 2 30 77 78 42

68 yolov5x6 41 0.94 18 56 42 4 11 24 22 6 4 79 28 53 30 21 27 5 35 72 48 51 24 76 40 28 40 47 23 28 37 5 23
68 20 13 56

69 yolov5x6 39 0.81 29 28 54 28 63 60 69 72 79 48 52 57 39 78 61 57 5 76 25 79 37 44 60 15 41 63 7 2 46 75
52 66 25 37 3 25 64 0 52 46 17 54 35 78 60

70 yolov5x6 43 0.93 50 46 23 65 0 32 12 75 25 55 69 5 14 2 64 58 24 45 14 77 32 72 38 20 24 71 27 37 16 54
52 73

71 yolov5x6 48 0.93 5 66 50 2 32 7 36 66 73 11 35 42 39 52 20 73 7 52
72 yolov5x6 40 0.84 69 57 62 16 28 45 68 67 61 69 38 74 63 72 12 34 24 34 22 40 75 77 38 75 21 15 55 68 68

11 36 57 27 79 1 12 1 8 63 15 27 7 14 75 12 61 20 37 62 66 33 57 74 72 5 0 2 4 64 57 35
30 4 75 14 2 52 54 15 0 59

73 yolov5x6 23 0.83 62 1 67 41 44 6 56 49 47 72 59 38 10 65 59 73 34 50 51 51 24 55 68 65 37 57 44 57 41 32
27 55 63 76 56 26 62 53 22 38 20 58 43 19 45

74 yolov5x6 39 0.86 77
75 yolov5x6 6 0.87 75 37 34 58 1 40 37 58 7 24 24 41 27 32 14 25 13 78 36 24 3 56 31 28 76 2 60 59 72 40

15 37 7 38 47 60 60 48 8 68 39 63 54 13 61 40 73 74
76 yolov5m 21 0.98 68 24 25 33 18 78 46 78 7 77 8 38 49 14 17 45 57 77 26 31 58 23 37 42 26
77 yolov5m 36 0.82 46 18 24 39 75 39 6 68 39 46 21 67 73 24 71 32 12 65 7 2 20 3 35 17 17 55 43 52 25 29

51 67 47 20 71 79 8 23 60 56 9
78 yolov5m 1 0.81 46 60 65 62 21 13 22 27 25 17 32 14 52 25 60 68 24 57 63 12 18 26 77 25 0 22 14 74 39

75 19 9 71 53 66 27 2 71 19 14 13 22 61 11 28 44 2 3 10 31 29 55 29 33 41 65 49 25 48
53 48 0 38 7 21 5 15 77 63

79 yolov5m 15 0.83 30 32 72 44 40 67 24 78 67 50 48 35 52 31 1 64 31 18 66 15 43 39 20 1 0 45 29 26
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80 yolov5m 8 0.98 7 52 3 21 79 62 69 67 8 72 43 76 72 58 68 58 63 52 37 47 51 23 70 0 23 22 59 8 2 18 3 14
79 67 34 64 44 42 34 78 44 60 67 42 22 41 68 41 39 42 67 13 25 38 75 5 22 39 73 14 47
71 1 33 70 60 19 15 53 69 20

81 yolov5m 5 0.82 35 38 49 58 12 75 53 24 22 33 24 30 0 35 45 63 8 41 14 62 10 29 30 37 39 10 67 54 77 45
73 68 23 64 32 14 30 38 0 37 66 42 61 18 0 45 71 70 53

82 yolov5m 10 0.88 0
83 yolov5m 17 0.99 42 40 39 24 40 72 31 4 29 35 35 48 30 47 0 79 7 52 9 24 51 75 14 61 40 12 27 44 0 54 64

16 17 59 37 72 39 43 70 23 30 73 63 48 44 16 59 44 48 17 51 48 6 76 66 35 44 78 0 38 18
36 48 3 51 48 3 57 16 63 21 33 31

84 yolov5m 20 0.91 68 38 71 69 53 12 46 40 17 78 61 35 58 31 30 48 30 20 6 74 35 36 73 38 71 56 71 67 49
61 47 0 65 21 21 39 76 60 2 40 77 43 59 66 78 50 22 37 13 15 46 38 54 27

85 yolov5m 27 0.94 29 48 15 73 29 51 49 64 13 52 59 34 3 64 57 0 9 38 17 13 42 52 9 38 25 57 51 69 53 69
29 62 76 20 55 1 62 54 10 31 69 47 48 10 40 25 72 22 49 55 3 28 24 20 65 9 11 21 58 64
78 71 0 42 34 66 57 6 70 2 12 4 0 34 76 8 23 61

86 yolov5m 21 0.86 27 15 11 53 47 60 29 50 69 38 74 47 5
87 yolov5m 34 0.94 59 11 35 51 73 12 35 16 9 58
88 yolov5m 11 0.97 48 21 47 71 56 51 67 3 50 53 79 39 2 30 47 65 41 56 41 79 44 79 33 54 15 27 37 5 64 34

42 44 42 44 52 57 2 64 73 49 31 31 41 39 14 2 47 35 50 32 32 41 42 16 28 31 11 38 16 56
9 64 26 2 38 30 53 31 30 36 15 21 47

89 yolov5m 44 0.8 73 44 4 66 43 18 59 29 77 9 23 8 14 47 72 37 41 30 39 5 33 74 19 37 15 12 64 0 69 50 47
18 68 67 66 74 69 55 65 50 48 4 50 56 78 38 10 24 39 58 55 0 38 70 73

90 yolov5m 2 0.95 55 15 49 55 6
91 yolov5m 33 1.0 32 29 78 19 28 78 41 24 10 69 15 46 29 44 19 74 79 44 12 77 49 31 53 78 2 69 22 42 2 20

56 39 37 26 21 3 62 28 9 54 1 28 6 44 67 32 29 69 12 15 74 16 23 15 11 4 71 24 37
92 yolov5m 21 0.95 63 60 49 78 11 0 47 23 12 56 28 35 8 16 6 21 34 47 45 42 25 35 75 26 53 74 66 77 60 52

49 36 60 47 69 34 61 32 47 18 73 12 41 57 70 2 34 66 71 14 26 39 58 45 52 13 9 25 47
93 yolov5m 28 0.86 64 39 21 45 44 68 67 70 35 34 24 61 73 20 76 72 58 55 15 41 63 27 71 73 60 79 22 34 55

7 37 0 75 73 63 57 64 39 14 22 26 15 76 26 49 32 25 52 60 77 5 46 64 10 1 56 72 56 21
37 72 74 14 14 49 45 30 77 71 58 62 42

94 yolov5m 7 0.96 18 58 75 12 28 45 49 22 76 56 38 11 19 50 74 40 59 2 8 75 71 29 10 72 63 13 35 61 27 5
48 36 67 6 38 18 71 53 15 52 46 74 53 3 24 43 25 26 1 6 18 34 31 43 51 36

95 yolov5m 10 0.82 8 2 19 62 75 25 35 79 62
96 yolov5m 40 0.89 76
97 yolov5m 48 0.98 76 74
98 yolov5m 16 0.86 70 47
99 yolov5m 34 0.86 78 31 33 43 9 56 46 37 36 10 50 77 19 45 34 35 7 71 1
100 yolov5m 43 0.83 3 46 61 6 3 8 36 48 14 15 48 43 43 57 67 46 50 2 0 58 18 45 65 27 58 20 43 11 46 37 40

6 44 30 58 33 65 21 57 0 77 67 15 70 3 47 42 1 47 16 68 21 61 29 44 66 34 77 38 10 21
16 78 7 53 53 67

101 yolov5m6 21 0.98 77 12 28 13 61 6 57 45 61 51 6 57 40 7 4 7 18 51 72 2 46 18 29 35 11 52 76 37 78 69 24
69 29 77 24 42 10 65 53 20 13 26

102 yolov5m6 36 0.82 6 31 49 65 54 0 50 37 76 70 20 54 15 45 29 70 14 13 76 47 43 75 62 25 25 72 42 61 44 44
53 32 28 5 20 61 7 51 50 21 9 77 11

103 yolov5m6 1 0.81 67 35 37 41 9 15 76 29 52 25 37 15 22 36 45 66 3 58 72 72 16 74 32 62 6 73 37 2 45 13
41 33 3 4 30 65 69 74 36 65 56 77 70 16 42 57 5 29 69 41 51 46 58 39 15 75 52 56 25 79
36 4 11 42 22 28

104 yolov5m6 15 0.83 56 32 58 68 66 22 2 73 1
105 yolov5m6 8 0.98 33 7 63 69 5 42 15 35 46 23 20 4 23 25 46 31 25 18 11 53 45 6
106 yolov5m6 5 0.82 20 5 67 11 44 44 26 56 53 37 46 11 64 56 22 56 76 74 71 36 50 31 23 28 0 39 61 32 66 58

46 79 37 53 33 34 25 78 19 52 75 63 79 41 38 39
107 yolov5m6 10 0.88 6 8 0 42 18 44 43 5 2 62 36 59 19 23 30 17 39 55 23 16 9 30 48 49 37 51 21 0 31 18 39 44

49 44 23 36 69 74 68 61 43 46 53 74 12 35 17 11 4 26 65 16 75 25 63 24 16 79 56 19 33
65 29 38 53 69 64 19 54 75 69 70 22 28 73 57

108 yolov5m6 17 0.99 50 20 29 32 43 47 46 57 79 1 12 39 19 55 59 57 66 57 53 55 2 33 44 53 37 62 73 60 69 72
12 48 8 64 26 52 17 27 42 48 53 14 45 28

109 yolov5m6 20 0.91 15
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110 yolov5m6 27 0.94 33 70 14 79 65 13 26 51 23 10 72 51 29 19 2 36 22 56 58 21 34 39 54 28 11 59 2 3 10 27
1 61 70 12 30 67 79 61 57 7 42 3 53 12 74 75 59 34 69 50 21 75 43 3 6 1 65 18 53 7 70 46
25

111 yolov5m6 21 0.86 34 55 71 63 11 12 49 79 67 54 69 41 31 33 73 9 74 1
112 yolov5m6 34 0.94 19 11 72 41 23 35 58 29 14 1 49 39 27 57 19 32 11 51 64 76 60 8 39 18 3 46 40 31 42 62

23 16 31 75 6 18 45 64 53 43 50 42 13 7 0 5 13 8 38 66 59 66 5 25 6 15 74 59 19 50 22 2
75

113 yolov5m6 11 0.97 75 50 41 8 47 27 9 70 18 78 69 61 35 35 56 53 22 13 48 21 7 6 77 28 43 70 28 73 6 53
114 yolov5m6 44 0.8 13 72 54 50 48 38 57 34 68 65 51 24 47 38 38 31 78 78 8 36 72 37 77 34 39 19 67 31 70

64 55 59 56 26 77 30 52 31 43 0 51 10 72 39 76 13 69 69 49 11 12 59 13 31 19 25 64 66
18 36 48 14 40 45 78 63 0 54

115 yolov5m6 2 0.95 20 23 55 59 40 37 2 34 69 43 40 60 45 18 68 26 60 45 58 23 1 40 13 77 62 51 47 61 57 64
23 1 2 67 4 8 77 14 13 6 68 28 73 34 58 48 9 14 31 24 24 22 74 25 19 74 61 7 53

116 yolov5m6 33 1.0 61 75 68 17 43 28 17 52 48 59 21 71 9 10 20 15 46 38 19 60 6 23 31 0 71 9 67 65 2 65 47
25 19 4 52 70 4 22 62 59 40 69 70

117 yolov5m6 21 0.95 23 76 31 58 27 72 30 18 56 44
118 yolov5m6 28 0.86 36 59 56 56
119 yolov5m6 7 0.96 1 48 8 54 23 53 70 23 42
120 yolov5m6 10 0.82 68 61 30
121 yolov5m6 40 0.89 72 26 35 21 60 32 18 9
122 yolov5m6 48 0.98 29 74 30 58 39 25 73 73 53 75 77 60 26 6 67 77 33
123 yolov5m6 16 0.86 51 36 33 40 13 64 51 73 6 56 21 59 30 45 68 57 19 31 70 60 75 33 17 78 0 41 67 62 34 24

72 12 50 63 64 33 59 35 19 6 23 60 18 62 9 23 40 76 6 79 34 6 32 12 70 51
124 yolov5m6 34 0.86 45 17 6 57 57 72 6 18 30 6 13 53 61 40 38 16 47 38 0 65 48 69 31 65 0 75 76 19 63 38 54

12 21 18 45 59 60 12 28 11 13 60 59 2
125 yolov5m6 43 0.83 60

Table B.1: Model variations of YOLO generated for the model repository.
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