
Faculty of Electrical Engineering, Mathematics and Computer Science

Circuits and Systems
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ens.ewi.tudelft.nl/

CAS-2020-4786610

M.Sc. Thesis

Deep Learning Based Sound Identification

Shaoqing Chen

Abstract

Environmental sound identification and recognition aim to detect sound
events within an audio clip. This technology is useful in many real-
world applications such as security systems, smart vehicle navigation and
surveillance of noise pollution, etc. Research on this topic has received
increased attention in recent years. Performance is increasing rapidly as
a result of deep learning methods. In this project, our goal is to realize
urban sound classification using several neural network models. We se-
lect log-Mel spectrogram as the audio representation and use two types
of neural networks to perform the classification task. The first is the con-
volutional neural network (CNN), which is the most straightforward and
widely used method for a classification problem. The second type of net-
work is autoencoder based models. This type of model includes the vari-
ational autoencoder (VAE), β -VAE and bounded information rate varia-
tional autoencoder (BIR-VAE). The encoders of these systems extract a
low dimensionality representation. The classification is then performed
on this so-called latent representation. Our experiments assess the per-
formances of different models by evaluation metrics. The results show
that CNN is the most promising classifier in our case, autoencoder-based
models can successfully reconstruct the log-Mel spectrogram and the la-
tent features learned by encoders are meaningful as classification can be
achieved.

Deep Learning Based Sound Identification

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

SIGNALS AND SYSTEMS

by

Shaoqing Chen
born in Jinan, China

This work was performed in:

Circuits and Systems Group
Department of Microelectronics & Computer Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Delft University of Technology

Copyright © 2020 Circuits and Systems Group
All rights reserved.

DELFT UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF

MICROELECTRONICS & COMPUTER ENGINEERING

The undersigned hereby certify that they have read and recommend to the Faculty of Electri-
cal Engineering, Mathematics and Computer Science for acceptance a thesis entitled “Deep
Learning Based Sound Identification” by Shaoqing Chen in partial fulfillment of the re-
quirements for the degree of Master of Science.

Dated: 30-October-2020

Chairman:
prof.dr.W.B. Kleijn

Advisor:

Committee Members:
dr.ir. R. Heusdens

dr. F. Fioranelli

Abstract

Environmental sound identification and recognition aim to detect sound events within an au-
dio clip. This technology is useful in many real-world applications such as security systems,
smart vehicle navigation and surveillance of noise pollution, etc. Research on this topic has
received increased attention in recent years. Performance is increasing rapidly as a result of
deep learning methods. In this project, our goal is to realize urban sound classification using
several neural network models. We select log-Mel spectrogram as the audio representation
and use two types of neural networks to perform the classification task. The first is the con-
volutional neural network (CNN), which is the most straightforward and widely used method
for a classification problem. The second type of network is autoencoder based models. This
type of model includes the variational autoencoder (VAE), β -VAE and bounded informa-
tion rate variational autoencoder (BIR-VAE). The encoders of these systems extract a low
dimensionality representation. The classification is then performed on this so-called latent
representation. Our experiments assess the performances of different models by evaluation
metrics. The results show that CNN is the most promising classifier in our case, autoencoder-
based models can successfully reconstruct the log-Mel spectrogram and the latent features
learned by encoders are meaningful as classification can be achieved.

iii

Acknowledgments

I hereby express my sincere gratitude to all the people who have supported me and accompa-
nied me during my study in the master program. I would like to first thank professor Bastiaan
Kleijn, who is my supervisor and guided me through my thesis. In our weekly meeting, he
gave me insightful feedback and constructive suggestions, leading me to improve my meth-
ods and obtain new findings. Also, I’m grateful to the Ph.D. student Wangyang Yu, who
has helped me with various practical problems in programming and shared her experience in
research. I would also like to express my deep gratefulness to George Boersma and Rinus
Boone and the company Munisense, who offered me the chance to do this project. Last but
not the least, I would like to thank my family for constant support and unconditional love.

Shaoqing Chen
Delft, The Netherlands
30-October-2020

iv

Contents

Abstract iii

Acknowledgments iv

1 Introduction 1
1.1 Motivations . 1
1.2 Related work . 2
1.3 Objectives . 3
1.4 Outline . 4

2 Data and Audio Feature 5
2.1 Audio Datasets . 5
2.2 Audio Feature . 6

2.2.1 Waveform . 6
2.2.2 Spectrogram . 8
2.2.3 Mel spectrogram . 10
2.2.4 Delta feature . 14
2.2.5 Discussion . 16

2.3 Pre-processing . 16
2.3.1 Procedures . 16
2.3.2 Data augmentation . 17

2.4 Summary . 18

3 Neural Network Models 19
3.1 Convolutional Neural Network . 19

3.1.1 Architecture . 19
3.1.2 Loss function . 21
3.1.3 Discussion . 21

3.2 Variational Autoencoders . 22
3.2.1 Background . 22
3.2.2 Architecture . 22
3.2.3 Loss Function . 23
3.2.4 Disentanglement and β -variational autoencoder 26
3.2.5 Bounded information rate variational autoencoder 27
3.2.6 Discussion . 30

3.3 Summary . 30

4 Experimental Setups 31
4.1 Pre-processing . 31
4.2 Convolutional neural network model . 34
4.3 Autoencoder based model . 35
4.4 Evaluation metrics . 39

v

4.4.1 Classification evaluation . 39
4.4.2 Reconstruction evaluation . 40

4.5 Summary . 41

5 Results 42
5.1 Convolutional Neural Networks models . 42

5.1.1 Results . 42
5.1.2 Discussion . 44

5.2 Autoencoder-based models . 44
5.2.1 Variational Autoencoder and β -Variational Autoencoder 44
5.2.2 Bounded Information Rate Variational Autoencoder 45
5.2.3 Visualizations of results . 46
5.2.4 Discussion . 57

5.3 Summary . 57

6 Conclusion and Future Work 58
6.1 Conclusion . 58
6.2 Future work . 59

A Visualization of Data Augmentation 63

B Visualization of Generated Spectrograms 68

vi

List of Figures

2.1 Waveform visualizations . 7
2.2 Spectrogram visualizations . 9
2.3 10 Mel Filter banks visualization. 12
2.4 30 Mel Filter banks visualization. 12
2.5 Log-Mel spectrogram visualizations . 13
2.6 Delta feature visualizations . 15
2.7 Diagram of pre-processing procedure . 17

3.1 Convolution operation. 20
3.2 Architecture of autoencoders, . 22
3.3 Architecture of variational autoencoders . 23
3.4 Architecture of bounded information rate variational autoencoder. 28

4.1 Log-Mel spectrograms in 28-by28 dimension 32
4.2 Log-Mel spectrograms in 64-by-64 dimension 33

5.1 Confusion matrix of CNN. 43
5.2 Original 28-by-28 log-Mel spectrograms in training set 47
5.3 Reconstruction of 28-by-28 log-Mel spectrograms in training set with SNR

= 19.12 dB . 48
5.4 Original 28-by-28 log-Mel spectrograms in test set 49
5.5 Reconstruction of 28-by-28 log-Mel spectrograms in test set with SNR =

17.44 dB . 50
5.6 Original 64-by-64 log-Mel spectrograms in training set 52
5.7 Reconstruction of 64-by-64 log-Mel spectrograms in training set with SNR

= 17.11 dB . 53
5.8 Original 64-by-64 log-Mel spectrograms in test set 54
5.9 Reconstruction of 64-by-64 log-Mel spectrograms in test set with SNR =

15.74 dB . 55
5.10 Confusion matrix of autoencoder-based model 56

A.1 Visualization of audio time stretched by 0.81 64
A.2 visualization of audio time stretched by 1.23 65
A.3 Visualization of of audio pitch shifted by 2 66
A.4 Visualization of audio pitch shifted by -2 . 67

B.1 Generated 28-by-28-dimensional log-Mel spectrogram 69
B.2 Generated 64-by-64-dimensional log-Mel spectrogram 70
B.3 Generated 64-by-64-dimensional log-Mel spectrogram 71

vii

List of Tables

2.1 Number of audio samples in each fold. 5
2.2 Class name, class IDs and number of samples. 6

4.1 Parameters in pre-processing. 31
4.2 Samples in training set and testing set. 34
4.3 Parameters in convolutional neural network. 35
4.4 Parameters of encoder for 28-by-28 input. 36
4.5 Parameters of encoder for 64-by-64 input. 36
4.6 Parameters of decoder for 28-by-28 input. 37
4.7 Parameters of decoder for 64-by-64 input. 37
4.8 Parameters of fully connected classifier. 39

5.1 Classification accuracy of CNN on 28-by-28 input. 42
5.2 Classification accuracy of CNN on 64-by-64 input. 42
5.3 Classification report of CNN. 43
5.4 Results of VAE and β -VAE on 28-by-28 input. 45
5.5 Results of VAE and β -VAE on 64-by-64 input. 45
5.6 Results of BIR-VAE on 28-by-28 input. 46
5.7 Results of BIR-VAE on 64-by-64 input. 46
5.8 Classification report of autoencoder-based model. 56

viii

Introduction 1
In this chapter, we will give an introduction to our work, which is urban sound identification
using deep learning method. We first point out the motivation and usefulness of our project.
Then, we conduct literature research on the related work, discussing the existing methods
and their results. Afterward, the objective of our thesis is given. The last section lists the
organization of the thesis.

1.1 Motivations

Sound identification and recognition is a technology that is based on audio signal processing
methods, combined with traditional machine learning algorithms or deep neural networks.
The related topics in sound identification tasks include the data signal analysis techniques,
feature extraction approaches and classification algorithms. The goal of this technology is to
have knowledge of the sound events in the environment and detect certain types of sound that
are interesting. It is beneficial in many different applications, for example, in health care,
the sound features of human organs can be a helpful assistance to monitor body conditions
[1–3]; in security and surveillance systems, the sound classification system gives information
on the events taking place in the surroundings [4, 5], such that decisions and actions can
be made; speech recognition is changing the way people interact with electronic devices,
allowing human to talk to a device that interprets the requests and responds to commands
[6]; for artificial intelligence system like smart vehicle, recognizing urban environments is
crucial for navigation safety [7].

Modern methods to perform classification commonly are based on large scale neural
network models that use deep learning algorithms [8]. In 1997, Tom M. Mitchell, computer
scientist and professor at Carnegie Mellon University (CMU), gave the following definition
of machine learning: ”A computer program is said to learn from experience E with respect
to some class of tasks T and performance measure P, if its performance at tasks in T,
as measured by P, improves with experience E.” The machine learning or deep learning
algorithms perform learning tasks, such as classification in our case, using a training data
set, gaining experience and improvement during the process of training. After the training
process, the model has sufficiently learned as indicated by the performance measure, then it
can be used to execute a similar task on new data. Based on this idea, deep learning methods
are becoming more and more popular as the available data set is growing larger and larger,
together with the development of computational power such as graphics processing unit
(GPU) and cloud computing. With a huge dataset and powerful computational support, deep
neural network models can be efficiently trained and computed, leading to state-of-the-art
performance.

1

In this project, we consider the application of deep learning-based methods to the
classification and identification of sound in a municipality. The goal of this project is to
achieve the classification of urban sounds using different neural network models. The
practical application and usefulness of this work are that it can be used by Munisense, a
company that specializes in sensor networks, especially those for environmental sound and
urban noise measurements, to provide information that can be used to set policies such as
speed limits, call-out of emergency services or law enforcement.

1.2 Related work

Motivated by various artificial intelligence applications related to urban information pro-
cessing, the topic of urban sound classification and identification becomes a research field
that has received more and more attention in recent years [9]. There are numerous works
on this topic, where the implementations of different methods were conducted, and their
results are compared. Algorithms with their advantages and disadvantages together with the
performances are discussed in the literature. In this section, we will provide a brief literature
review on the related work of sound identification.

The task of urban sound identification and classification is challenging as this type of
audio sound is less structured and full of interfering noise. To ensure the effectiveness of the
classifier model, it’s important to find discriminating and informative audio representation
as feature and apply the classification task with robust algorithm and model. Therefore,
researchers focused on finding powerful machine learning and deep learning methods on
one hand and, on the other finding high dimensional and distinguishing audio features. To
facilitate the classification performance, the choice of audio features input to the classifiers
is crucial. The commonly used audio representations are raw waveform, spectrogram, Mel
spectrogram and Mel-frequency cepstral coefficients (MFCCs). Compared to audio wave-
form, the time-frequency representations retain more information and lower in dimension.
Although a large and complex model can learn features directly from the raw waveform,
huge computational expense is expected [10]. A comparison among different time-frequency
representations was made in [11], where the convolutional neural network (CNN) was used
as classifier. The results showed that Mel spectrograms outperformed the spectrograms
and MFCC and gave good performances across different datasets. The MFCC applies the
discrete cosine transform (DCT) to the Mel spectrograms, this operation decorrelates the
spectral energies and loses the local pattern in time-frequency representation [12]. Mel
spectrogram contains more distinguishable details than spectrogram because of the Mel filter
banks.

In recent years, many works have proven that deep neural network-based models are
more promising than traditional classifiers in solving complex classification problems.
Support vector machines (SVM), Gaussian mixture models (GMM) and k-means clustering
are widely used conventional machine learning algorithms for classification tasks. However,
in sound classification applications, these classifiers are vulnerable to the presence of noises
and sensitive to the temporal dynamics of the audio, resulting in a lack of robustness [13–16].
With the popularity of deep learning-based models, an increasing number of investigations

2

have exploited such methods in urban sound identification tasks. The most popular and
straightforward deep learning model for classification tasks is the CNN, which is commonly
used in computer vision and image classification applications. It is also a promising model
for our task as a sound can be interpreted as a 2-D time-frequency representation, where
localized spectrum patterns can be learned.

In environmental sound classification research, [17] was the very first work to evalu-
ate the performance of urban sound classification task using CNN. Its model consists of
two convolutional layers with max-pooling and followed by two fully connected layers.
Log-Mel spectrogram and its delta information were used as audio representation feature
to be the input for CNN. The experiment was based on three publicly available datasets,
ESC-50, ESC-10 [18], and UrbanSound8K [19]. For each dataset, accuracies of 80.5%,
64.9% and 72.7% were obtained respectively. [20] proposed a CNN architecture with eight
convolutional layers, every two convolutional layers were followed by a max-pooling layer,
the performances of this proposed CNN were compared with VGG [21]. The results showed
that the proposed CNN performs better than VGG, evaluated on three datasets ESC-50,
ESC-10 and UrbanSound8K using spectrogram as the input, the accuracies of the proposed
CNN were 76.8%, 88.7% and 74.7% respectively. Large and deep CNN models used in
the image classification are also applied to sound identification, good performance can be
achieved as well. In [22], researchers applied AlexNet [23] and GoogLeNet [24] to the
spectrograms of audio, and evaluated on the datasets ESC-50, ESC-10 and UrbanSound8K.
The best accuracies were given by GoogLeNet, which were 73%, 91%, and 93% respectively
on each dataset. For the same setups, GoogLeNet achieved higher classification accuracy
than AlexNet, the reason for this is that GoogLeNet is considerably deeper and has many
more layers than AlexNet.

Some works directly used raw waveforms in time-domain as input to the classification
model. [10] first used CNN to classify raw waveforms of environmental sounds. The model
consists of 34 layers, where convolutional operations were 1-D convolution. The result
on UrbanSound8K was 71.8%, which was comparable to [17] using log-Mel spectrogram
inputs and 2-D convolution. However, the neural network model was much larger compared
to two convolutional layers in [17]. [25] divided the waveform into overlapped frames by
sliding window and used 1-D CNN that directly learned features from waveforms. The
model achieved 89% of accuracy on UrbanSound8K, competitive to other results from
methods using spectrogram representations and 2-D CNN. However, the input was a long
sequence of vector and the computational cost was huge.

1.3 Objectives

In this project, to achieve the classification of urban sounds, we will explore several deep
learning methods, including the CNN and autoencoder-based models. We define our models
using different parameters and architectures, and investigate how the performances can be
influenced. Based on the evaluation metrics, comparison and analysis of the results will be
discussed.

3

Most of the urban sound classification and identification tasks are based on CNN as
classifier, with spectrograms as input. However, autoencoder-based models such as the
variational autoencoder (VAE) are rarely used in the tasks of audio classification based on
spectrograms. VAE [26] is a model that jointly trains an inference network and a generative
network. During the training process, the inference network learns the probability distri-
bution of the input data and outputs a vector whose data is sampled from this distribution,
those samples are called latent variables. Then the generative network reconstructs the input
based on latent variables provided by the inference network. After the training, the first
network has learned the distribution of the data, which can be the feature extractor for a
classification task. In our work, we will first build a CNN as our baseline model to achieve
the urban sound classification. Then, autoencoder-based models with different architecture,
hyper-parameters and optimization functions will be built and perform feature learning and
classification on spectorgrams. To investigate the performance of neural network models,
we will use different evaluation metrics.

1.4 Outline

The rest of the thesis is organized as follows.

• Chapter 2 introduces the dataset that we will use in this project. The relevant feature
representations of audio are studied, their definitions and derivations are given, advan-
tages and disadvantages are discussed. Also, the signal processing pipeline is listed.

• Chapter 3 gives a thorough study of the neural network models that are involved in this
project. We describe each model’s architectures and derive their loss functions.

• Chapter 4 defines the experimental setups, including signal processing to obtain audio
representations and parameters of neural network models’ architecture. Also, evalua-
tion metrics to assess model performances are introduced.

• Chapter 5 presents the results of the experiments and gives discussions on the perfor-
mances of the different models.

• Chapter 6 ends the thesis by giving the conclusion and future work.

4

Data and Audio Feature 2
In this chapter, we will first introduce the dataset that will be used in this project, which is
the Urbansound 8k. Then different representations of sound signals that can be used as input
to deep neural networks are explained and motivated, at the same time, visualizations are
provided. In the end, we give the procedures and operations of the audio signal processing.

2.1 Audio Datasets

For the research of detection and classification of acoustic scenes and events (DCASE),
there are numerous open-source datasets available. The most popular and the most widely
used datasets for this research topic are ESC-50, ESC-10 [18] and UrbanSound8K [19, 27],
all of those are taken from [28], which is a website that collects field recordings uploaded by
different contributors.

In this work, as our interest is the urban sound environment, we will choose Urban-
Sound8K dataset to be the main focus as our work. [27] has proposed and motivated this
dataset and produced a detailed and taxonomy of urban sounds, the dataset can be found
and downloaded from [19]. There are 8732 sound clips in this dataset, each of the clip is no
longer than 4 seconds and separated in 10 folders. The number of audio clips in each folder
is listed in table 2.1.

Fold Number Number of Samples
fold 1 873
fold 2 888
fold 3 925
fold 4 990
fold 5 936
fold 6 823
fold 7 838
fold 8 806
fold 9 816
fold 10 837

Table 2.1: Number of audio samples in each fold.

An important property of this dataset is that the audio clips are labeled, which allows us
to perform supervised learning. Moreover, the types of audio class included in this dataset
are relevant to the sound that we are interested in, which are the common urban noises. The
10 classes of labeled urban sounds are: air conditioner, car horn, children playing, dog bark,
drilling, engine idling, gun shot, jackhammer, siren, and street music, each of them has a

5

unique numeric class identity (ID) from 0 to 9. The class names and the corresponding
numeric class IDs, together with the number of samples for each class are listed in table
2.2. These 10 classes of sounds were evenly pre-sorted into the 10 folds, which allows us to
perform cross-validation or choose the training set and testing set base on the fold number.

Class Name Numeric Class ID Number of Samples
Air conditioner 0 1000

Car horn 1 429
Children playing 2 1000

Dog bark 3 1000
Drilling 4 1000

Engine idling 5 1000
Gun shot 6 374

Jackhammer 7 1000
Siren 8 929

Street music 9 1000

Table 2.2: Class name, class IDs and number of samples.

2.2 Audio Feature

In this section, some common representations of audio signals are explained. The study of
these terms follows the order of audio waveform, spectrogram, Mel spectrogram, the delta
feature. Each subsection studies the definition of these features and visualizes them, the
advantage and disadvantages of choosing each feature as input to the neural network are
motivated.

2.2.1 Waveform

The waveform of a signal is a graph that displays its shape as a function of time, showing
how the signal changes in amplitude over time. From the perspective of an audio signal,
the audio waveform shows how the loudness of the sound changes with respect to time.
Visualization of 10 different classes in waveform is shown in Figure 2.1, where each audio
is sampled from a sampling frequency of 22.05kHz.

The waveform only contains the information of how audio changes with respect to
time, but the information in frequency is lacking, thus it is a less discriminating representa-
tion compared to the spectrogram. Consider a deep neural network that is complex enough
so that it is capable of directly learning the underlying features from the waveform and the
classification task could be performed [10, 25], however, the required complexity for the
model and the computational cost is tremendous, and a large amount of input samples are
expected. Thus, to efficiently achieve classification, time-frequency spectral features are
more promising, which will be discussed in the following subsections.

6

(a) Waveform of air conditioner (b) Waveform of car horn

(c) Waveform of children playing (d) Waveform of dog bark

(e) Waveform of drilling (f) Waveform of engine idling

(g) Waveform of gun shot (h) Waveform of jackhammer

(i) Waveform of siren (j) Waveform of street music

Figure 2.1: Waveform visualizations
7

2.2.2 Spectrogram

The spectrogram is a representation of a signal that displays signal strength over time at
various frequencies. Spectrograms can be two-dimensional graphs with a third variable
represented by color. One dimension represents the time which is on the horizontal axis,
and the other dimension indicates the frequency at the vertical axis. The third variable
shows the amplitude or the power of a certain frequency at a particular time, represented
by color intensity or brightness of each pixel point in the two-dimensional graphs. Thus, a
spectrogram visualizes sound’s frequency spectrum as a function of time. In a spectrogram,
not only can we identify where the energy is distributed over frequency, but also see how
energy levels vary across time.

Given an audio signal, which is a set of sampled points denoted as x(n), to generate a
spectrogram, the steps and calculations are as follows:

1. Split the original signal x(n) into overlapping short-time frames with equal length. Each
contains N samples, which is denoted as the frame length. The overlap length between
two frames is usually 50% of the frame length N. The samples in each frame are
represented as

xα(n) =
{

x
(
n+(α−1)∗ N

2

)
, n ∈ [0,N−1]

0, otherwise (2.1)

where α is the index number of one short-time frame, and xα(n) denotes samples in
the α th frame taken from original signal x(n).

2. Each frame is applied with a window function w(n), such as Hann window, in order to
overcome spectral leaks through sidelobes [29]. Then, the Fourier Transform is applied
to each short-time frame.

Xα(k) =
N−1

∑
n=0

xα(n)w(n)e− j2πkn/N k = 1,2 . . .
N
2

(2.2)

3. The power spectrum density is obtain by taking the square of the magnitude of the
frequency spectrum. In each short-time frame, its power spectrum density is denoted
as Pα(k), which is given as follows

Pα(k) = ‖Xα(k)‖2 (2.3)

4. Finally, the spectrogram is obtained by transferring the power into the decibel scale,
which is a unit measuring the intensity of a sound. This decibel scale is inspired by
human’s perception of loudness. The human ear has a large dynamic range in sound
reception, the ratio between the sound intensity that leads to permanent damage and
the limit of smallest audible sound is close to 1 trillion (1012) [30], which is an enor-
mous measurement range. To easily express this range, and conveniently measure an
exponentially changing sound loudness over time, the base 10 logarithmic scale is mo-
tivated.

PdB
α (k) = 10log10(Pα(k)) (2.4)

8

(a) Spectrogram of air conditioner (b) Spectrogram of car horn

(c) Spectrogram of children playing (d) Spectrogram of dog bark

(e) Spectrogram of drilling (f) Spectrogram of engine idling

(g) Spectrogram of gun shot (h) Spectrogram of jackhammer

(i) Spectrogram of siren (j) Spectrogram of street music

Figure 2.2: Spectrogram visualizations
9

A spectrogram visualization of the same set of samples in Figure 2.1 is shown in Figure 2.2.
Compared to waveform, the spectrogram is a more discriminating representation of an audio
as it extracts time-frequency spectral features of audio and displays the energy distribution.
However, the horizontal axis displays frequency in a linear scale, while human perception of
pitch is not equally sensitive to all sound frequencies. Thus, this can be further modified into
more compact feature.

2.2.3 Mel spectrogram

The Mel spectrogram involves applying the Mel filter banks to a spectrogram, converting
the frequency (Hz) scale into Mel scale. This is a non-linear transformation that is motivated
by human’s auditory system, where frequencies are not perceived in a linear scale. It is
more noticeable for a human to distinguish the sound in lower frequencies, ranging from
500 and 1000 Hz, than in higher frequencies ranging from 7500 and 8000 Hz. The range of
frequencies that can be heard by humans is generally from 20 to 20,000 Hz [31], and the
sensitivity is gradually lost as the frequency increases. Thus, applying the Mel filter bank is
beneficial as it highlights the variations in lower frequencies and gives more discriminating
and informative audio representation.

The Mel scale is transformed from the frequency scale by (2.5)

m(f) = 2595log10

(
1+

f
700

)
, (2.5)

the Mel scale can be transformed back to the frequency by (2.6)

f (m) = 700
(

10m/2595−1
)
. (2.6)

Based on the above transformation formulas, next we can generate and calculate the Mel
filter bank.

Mel filter bank is a set of triangular filters, each of the filter is centered and reaches
the peak at its center frequency and decreases to zero linearly at the two neighboring filters’
center frequency. Those center frequencies of triangular filters are spaced non-linearly as
they are obtained by the linearly placed Mel scale and calculated by (2.6). The linearly
placed Mel scale is decided by the frequency limits and the number of Mel filters defined.

We specify the parameters that are needed in order to build the Mel filter bank. As-
sume a spectrogram is given, the sampling rate fs and the short-time frame length N are
known. We first define the number of Mel filters, denoted as NMel . The highest frequency
component in a sampled signal is half of its sampling rate according to Nyquist sampling
theorem, fmax = fs/2 and the lowest frequency is fmin = 0. Given all the parameters above,
the Mel filter banks are built by the following steps.

10

1. Based on (2.5), given the maximum and minimum frequency fmax and fmin, we can
calculate the corresponding maximum and minimum Mel value, denoted as mmax and
mmin respectively.

mmax = 2595log10

(
1+

fmax

700

)
, (2.7)

mmin = 2595log10

(
1+

fmin

700

)
. (2.8)

2. Specify the number of Mel filters NMel , generate number of NMel + 2 linearly spaced
points between mmax and mmin, where each point m(i) is

m(i) = mmin +(i−1)∗ mmax−mmin

NMel +2
, i = 1,2 . . .NMel +2 (2.9)

3. Based on (2.6), convert each linearly spaced m(i) point back to frequency scale, denoted
as h(i).

h(i) = 700
(

10m(i)/2595−1
)
, i = 1,2 . . .NMel +2 (2.10)

4. Calculate the non-linearly spaced center frequencies for the triangular filters, denoted
as f (i)

f (i) =
⌊
(NFFT +1)∗h(i)

fs

⌋
, i = 1,2 . . .NMel +2 (2.11)

5. Finally, given all the center frequency points f(i), the Mel filters, denoted as Hm(k), are
generated and calculated by the following formula

Hm(k) =

0 k < f (m−1)

k− f (m−1)
f (m)− f (m−1) f (m−1)≤ k ≤ f (m)

f (m+1)−k
f (m+1)− f (m) f (m)≤ k ≤ f (m+1)

0 k > f (m+1)

m = 1,2 . . .NMel (2.12)

where m denotes the index number of a Mel filter and k is the point in that filter.

11

Here we visualize two examples of Mel filter banks. The parameters are set as follows.
Assume the sampling rate fs is 8000 Hz, the length of short-time frame N is 1024. The
first example has 10 Mel filters, and the second has 30. The visualization of Mel filters’
triangular windows and intensity are both shown in Figure 2.3 and 2.4 respectively.

(a) Triangular overlapping window (b) Intensity of Mel filter banks

Figure 2.3: 10 Mel Filter banks visualization.

(a) Triangular overlapping window (b) Intensity of Mel filter banks

Figure 2.4: 30 Mel Filter banks visualization.

The Figure 2.3a and Figure 2.4a shows 10 and 30 overlapping triangular curves respec-
tively, Figure 2.3b and Figure 2.4b shows their intensity. From the figures, we can observe
that in lower frequencies, the center frequency points are more tightly spaced, and their
filters are narrower. When applying this Mel filter bank to the spectrogram, the variation of
spectrum in lower frequencies are more concerned than that in higher frequencies.

12

(a) Mel spectrogram of air conditioner (b) Mel spectrogram of car horn

(c) Mel spectrogram of children playing (d) Mel spectrogram of dog bark

(e) Mel spectrogram of drilling (f) Mel spectrogram of engine idling

(g) Mel spectrogram of gun shot (h) Mel spectrogram of jackhammer

(i) Mel spectrogram of siren (j) Mel spectrogram of street music

Figure 2.5: Log-Mel spectrogram visualizations
13

After defining the Mel filter bank, we apply it to the power spectrum obtained by (2.3)
with the matrix multiplication, where each point in the Mel spectrogram MEL(m,α) is cal-
culated as

MEL(m,α) = Hm(k) ·Pα(k), (2.13)

then take the logarithmic scale to transform the power into decibel unite, resulting in the log-
Mel spectrogram,

MELdB(m,α) = 10log10(MEL(m,α)). (2.14)

Visualization of log-Mel spectrogram is shown in Figure 2.5, which is obtained by applying
64 Mel filter banks to the spectrogram in 2.2. Benefited from the Mel scale, which high-
lights and emphasizes variations on components in lower frequencies, the characteristics of
power distribution with respect to time and frequency are more distinctive compared to the
spectrogram in 2.2.

2.2.4 Delta feature

Delta feature of the audio is also known as differential and acceleration coefficients because
it describes the dynamical changes in the spectrogram with respect to time. This feature
can be calculated by taking the difference between a time frame MELdB(α) in the log-Mel
spectrogram and a previous time frame that is s steps ahead of it, denoted by MELdB(α− s),
where s is usually chosen to be 3. The calculation is defined by the following formula,

∆α = MELdB(α)−MELdB(α− s). (2.15)

A visualization of the delta feature is shown in Figure 2.6.

From the figures we can see trajectories of how the log-Mel spectrogram changes over
time. As spectrograms only carry the information of power spectral envelope of one single
frame, which are static features, while the delta feature contains dynamic information.
Combining those two may carry more information of the sound, and the neural networks’
performance can be improved [32, 33]. However, this will introduce a bigger input and
requires more parameters of the model, resulting in an increase of computational complexity.

14

(a) Delta of air conditioner (b) Delta of car horn

(c) Delta of children playing (d) Delta of dog bark

(e) Delta of drilling (f) Delta of engine idling

(g) Delta of gun shot (h) Delta of jackhammer

(i) Delta of siren (j) Delta of street music

Figure 2.6: Delta feature visualizations
15

2.2.5 Discussion

In this section, various audio features that can be extracted from a sound sample have been
studied. Among all the audio features we have discussed, the log scaled Mel spectrogram
is the most promising one as it aligns with the mechanism of the human’s auditory sys-
tem. The human’s’ perception of pitch is not in a linear extent, instead, more variations in
lower frequencies are captured than in higher frequencies. Thus, Mel spectrogram puts more
attention on lower frequencies, giving a more discriminating representation than the spectro-
gram whose frequency axis is linearly scaled. The use of logarithm operation is to convert
the power in Mel spectrogram into decibel scale, allowing convenient expression of a large
range and the exponentially changing power in a signal. Moreover, the delta feature can also
be used together with log-Mel spectrogram, as it illustrates the dynamical variations in the
static spectrogram.

2.3 Pre-processing

In this section, we will give the procedures and operations of our pre-processing system for
audio files in Urbansound8k dataset in order to prepare the input for neural networks. We
introduce the procedures that are taken in the signal processing task, converting data from
raw audio into log-Mel spectrogram, at the same time the involved parameters are specified.
Also, we consider data augmentation strategies to expand our dataset.

2.3.1 Procedures

The steps and operations involved in our pre-processing task will be discussed. The goal of
pre-processing is to transform all the audio samples into log-Mel spectrogram with consistent
dimension. The steps are explained as follows and the notations are specified.

1. Sample all of the audio files at a sampling frequency denoted as fs, obtaining the audio
waveform x(n).

2. We want to obtain audio representations consistent in dimension, but durations of audio
samples in the dataset are not the same. We define a duration of L seconds, which is
the duration that all the clips are trimmed into. For samples that are originally shorter
than L, they are repeated until exceed L.

3. Define the short-time frame length N and the overlap length as half of N, obtain the
power spectrum by (2.1), (2.2) and (2.3).

4. Decide the number of Mel filters NMel and apply the Mel filters to the power spectrum,
obtaining the Mel spectrogram.

5. Extract a subset segment of length L from the audio to make the dimensions consistent,
this segment includes the loudest part of the original audio. It is achieved by a sliding
window that selects

⌊
2L

fs∗N

⌋
short-time frames with the maximum power in the Mel

spectrogram.

6. Convert the Mel spectrogram into decibel scale, resulting in log-Mel spectrogram.

16

A diagram of this procedure is shown in Figure 2.7. In each step, the notations of parameters
are specified, and the expected audio representations after each operation are given.

Figure 2.7: Diagram of pre-processing procedure

2.3.2 Data augmentation

Data augmentation is an approach that is used to expand the dataset without collecting new
data, which helps to reduce overfitting and gives better generalization. This is achieved by
applying slight modifications to the existing data, resulting in an increase of the diversity
in the dataset. To expand the existing Urbansound8k dataset, we apply some deformations
to the waveform of the original audio samples, which are namely time stretching and pitch
shifting.

Time stretching is a time scale modification that stretches or compresses the duration
of a given audio signal, resulting in the slow down or speed up of the sound, while preserving
the pitch of the original signal. Pitch scaling is the opposite, which is a process of raising
or lowering the pitch of the audio sample without changing the duration or the speed. To
note that the deformation parameters must be properly chosen such that the augmentations
do not lose the semantic validity of the label. Thus the time stretching factors that we choose
are 0.81, 1.23, and the pitch scaling factors are -2, 2, which are suggested by [34]. The
visualizations of the resulting log-Mel spectrogram are shown in Appendix A. From the vi-

17

sualizations, we can discover that the fundamental shape and pattern of the spectrogram was
not changed. However, the horizontal axis indicating the time was stretched or compressed
by the time stretch effect, and the frequency distribution was shifted upwards or downwards
by the pitch shift effect.

2.4 Summary

The dataset and the audio features were investigated in this chapter, and pre-processing pro-
cedures were given. In this project, we base our work on the dataset of Urbansound8k as
its contents are most relevant. The audio samples are processed into the representation of
the log-Mel spectrogram, which will be used as the input to our neural network models.
Log-Mel spectrogram was chosen because it aligns with the human auditory system with
respect to pitch and gives the most discriminating representations in our urban noise case.
The pre-processing procedures that transform the audio samples into the expected feature in
a consistent dimension were detailed step by step. Data augmentation was considered to help
expand the dataset by applying distortions to the original samples, pitch shifting and time
stretching are applied to the waveform.

18

Neural Network Models 3
In this chapter, we will study the neural network models that are involved in this project,
including convolutional neural network (CNN) and autoencoder-based models. CNN is the
most straightforward model to perform classification and identification tasks and its oper-
ations can efficiently learn the structure and pattern of an image. The autoencoder-based
models include variational autoencoder (VAE), β -VAE and bounded information rate vari-
ational autoencoder (BIR-VAE). These models consist of two networks, which are encoder
and decoder. The autoencoder-based models can reconstruct the input data and learn its un-
derlying feature.

3.1 Convolutional Neural Network

In this section, we will introduce components and operations in a CNN model, which mainly
include convolution operation, non-linear activation, and pooling operation together with its
optimization function. Based on these components, we will build and define a CNN model
to perform classification task in the subsequent experimental part.

3.1.1 Architecture

The architecture of CNN can be separated into two parts, one is the feature learning part
and the other is the classification part. The first part mainly consists of convolutional and
pooling operation, and the second part is a fully connected network, which only consists of
fully connected layers and their activation functions.

The convolution operation is the most important building blocks of CNN. This pro-
cess learns and extracts the underlying patterns of the image and identifies boundaries. The
operation uses a matrix called filter or kernel to slide over the input across its width and
height, and produces a feature map, which is the response of that kernel. The feature map
is calculated by a dot product, or the element-wise multiplication, between the filter matrix
and the patch in the image that a kernel covers, and then all the elements are summed into a
scalar value, comprising one pixel of the feature map. A simple example of this operation is
visualized by Figure 3.1

19

Figure 3.1: Convolution operation.

The hyper-parameters in this opertion are the kernel size, denoted as K, which is the
dimension of the filter matrix; the number of kernels Cout , which decides how many feature
maps that an operation learns; the stride size S, indicating the number of pixel that the filter
slides each time. The padding operation is used to control the dimension of the output size
by padding the input with zeros around the border, the size of which denoted as padding size
P . Now given an input image or feature map with size (Cin,Hin,Win), the resulting output
size (Cout ,Hout ,Wout) after a convolutional operation is calculated by

Hout =
⌊

Hin+2×P[0]−K[0]
S[0] +1

⌋
,

Wout =
⌊

Win+2×P[1]−K[1]
S[1] +1

⌋
.

(3.1)

After each convolution operation, an activation function is applied, which is usually Recti-
fied Linear Units (ReLU) activation expressed as f (x) = max(0,x). This brings non-linear
property that makes the features more intense and cuts off unnecessary details by setting a
threshold at zero.

The pooling layer usually follows a convolution layer. The operation of pooling is to
down-sample and reduce the dimensionality of the feature map, such that the computational
efficiency can be increased and prevent over-fitting, which is the phenomenon where the
model performs well on the training set but poorly on the test set. The pooling operation
results in a compressed feature map, but still contains the essential features and significant
information of the image so that the detection and classification can be realized. The most
common type of pooling is max-pooling, which takes the maximum value in a portion of the
image covered by the pooling window. These pooling window sizes are hyper-parameters
that need to be specified beforehand, which decides the reduction size of the feature maps.

The classification part of a CNN is the fully connected network, this network learns a
set of weight based on the features learned by the previous feature learning network and
outputs the predicted label. The convolutional layers output a set of feature maps, before
passing them through the fully connected layers they should be flattened into one vector. The
fully connected layers are simply composed of neuron unites and ReLU activation functions.
To prevent over-fitting, dropout operation is used, which is an operation that randomly skips

20

some number of neurons in a layer during training [35]. As in our classification case with 10
classes, the last layer’s activation function should be softmax, which is expressed as

softmax(x)i =
exp(xi)

∑
n
j=1 exp

(
x j
) . (3.2)

The softmax activation is used to predict the probabilities of a class label. The x is the input
vector to the last fully connected layer and n is its dimension. i is a class label, the value
output by the above softmax function is the probability of the ith class.

3.1.2 Loss function

As there are 10 different classes of audio to identify in the data set, which leads to a multi-
class classification problem. Thus, as we discussed previously, the last layer’s activation
function should be softmax, which outputs the probability of the predicted class. We denote
a vector indicating the predicted probability of each class as ŷ, where each element is ŷi.
The dimension of this vector corresponds to the number of classes of the data set. This ŷ
is calculated by softmax and compared with the one-hot encoded class label of the ground
truth denote as y, where each element is yi and yi = 1 if the class label index is i and y j 6=i = 0.

To measure the difference between the output prediction and ground truth, we use the
cross-entropy as loss function. Assuming the number of a class is n, the cross-entropy loss
is express as follows

Loss =−
n

∑
i=1

yi · log ŷi. (3.3)

This process can be simply understood as returning the probability of the estimated class label
because only one value in the one-hot encoded vector is one while the others are zero. The
cross-entropy loss is a good measure of how different two discrete samples are distributed
from each other. The negative sign ensures that the loss decreases when distributions get
closer to each other. Thus, minimizing this loss encourages the estimated class label to be
close to the ground truth label, which is expected to ideally predict the probability of the
ground truth label as one while the other class is zero.

3.1.3 Discussion

CNN is generally composed of two parts, one is the feature learning part and the other is the
classification part. The feature learning part is capable of capturing patterns of images by
its convolution operation and reduce the number of parameters by pooling operations. The
classification part is a fully connected network, which learns a set of weights of the features.
CNN learns the mapping from input image data to the output label, which is a discriminative
feed forward model. We start with CNN in our experiment as it is the most straightforward
model to perform classification task.

21

3.2 Variational Autoencoders

In this section, we first introduce the variational autoencoder’s functionality and motivate the
usefulness of this model in classification tasks. Then, we explain its architecture and derive
the optimization formula. On top of the fundamental theories, its variations and new models
are introduced.

3.2.1 Background

Variational autoencoder (VAE) [26] is a framework that jointly trains two models, which are
encoder and decoder. Encoder of VAE is an inference model that learns the latent distribution
of the data and outputs latent variables that are sampled from this distribution. Decoder is
a generative model that reconstructs the input data during training, where the reconstruction
is based on latent variables given by encoder. After the training, the decoder can also gen-
erate new samples that are similar to the input data. The process of training this framework
involves two terms, the first is reconstructing the input data at the output, the second is a
constraint that enforces the latent distribution to be close to the prior distribution of latent
variables [36, 37]. After training the VAE, the encoder has learned latent distribution of
the data, and it can represent meaningful features about the inputs in a lower dimension. In
classification task, the encoder can be used as the feature extractor.

3.2.2 Architecture

The architecture of VAE [26] is motivated by the approximation of a posterior probability
density and the architecture of autoencoder [8, 38]. We first introduce the architecture of the
autoencoder, and then derive the approximation of this posterior probability function that
motivates the architecture VAE.

An autoencoder is an unsupervised neural network that is trained to reconstruct its in-
put at the output. However, this is not an exact copy of input because some of its details
are lost. This process is done by first represent the input data using a lower-dimensional
vector by a deterministic mapping, then reconstruct the original input from this vector. The
architecture of the autoencoder is shown in Figure 3.2

Figure 3.2: Architecture of autoencoders,

where x is the input and x
′

is input’s reconstruction at the output, z is the latent vector.
The cost function of the autoencoder is referred to as the reconstruction loss, which is
generally selected to be the mean-squared error between the output and input, measuring

22

how close the reconstructed input is to the original input.

Consider the case where the data x is generated by a random process, involving an
unobserved continuous latent variable z, whose distribution is the prior probability distribu-
tion pθ(z), and x is generated from the distribution pθ(x|z), both of those distributions are
assumed to be differentiable. We are interested to obtain this generative process’s parameter
θ and the posterior probability density of z given x, which is expressed as

pθ (z|x) =
pθ (z)pθ (x|z)

pθ (x)
. (3.4)

However, the denominator pθ (x), which is called evidence, is intractable because the inte-
gral pθ (x) =

∫
pθ (x|z)pθ (z)dz is unavailable and z is unknown. Hence the true posterior

probability density pθ (z|x) is intractable. To tackle this problem, an approximation of
pθ (z|x) is introduced, which is an inference model, denoted as qφ (z|x), where φ are the
parameters that define this model. In the perspective of autoencoder model, the qφ (z|x) and
pθ (x|z) are interpreted as the probabilistic encoder and decoder respectively, data z are the
latent variables. The encoder qφ (z|x), parameterized by φ , outputs a set of parameters that
describe the probability distribution of z given the input data x, for example, mean µ and
standard deviation σ of a Gaussian distribution. The decoder pθ (x|z), parameterized by θ ,
describes the distribution over x given z, reconstructing the input x at the output given the
latent variable z. In the scenario where the latent variable z is under Gaussian distribution,
the architecture of a VAE is shown in Figure 3.3

Figure 3.3: Architecture of variational autoencoders

3.2.3 Loss Function

In this section, we are going to derive and explain the loss function of an VAE. In the pre-
vious section, we discussed that the architecture of VAE was motivated by an approxima-
tion of an intractable posterior probability distribution pθ (z|x) using variational inference.
The approximation of this true pθ (z|x) is denoted as qφ (z|x). To measure how close our
approximated distribution qφ (z|x) is to the true distribution pθ (z|x), and evaluate this ap-
proximation, we introduce the Kullback-Leibler divergence, in short, Kl divergence. The Kl
divergence is the expectation of the logarithmic difference between the probabilities, and it
quantitatively measures the distance between two probability distributions and how different
they are. The Kl divergence is always positive and the closer the two distributions are, the

23

smaller its value is. Now expressing two distribution as p1(x) and p2(x), the KL divergence
is

KL(p1(x)||p2(x)) = Ex∼p1(x) log
p1(x)
p2(x)

. (3.5)

We propose our variational inference problem as minimizing the KL divergence between
qφ (z|x) and pθ (z|x), and the optimum q∗

φ
(z|x) leads to the minimum value of the KL

divergence, the problem can be started as

q∗φ (z|x) = argminKL(qφ (z|x)‖pθ (z|x)). (3.6)

As previously discussed, the pθ (z|x) is not available because it requires the calcula-
tion of the evidence pθ (x), which is intractable. Thus, the KL divergence in (3.6) cannot
be calculated or optimized directly. Instead, we further derive the loss function into a
term called the evidence lower bound (ELBO) and the natural logarithm of evidence term
log pθ (x). The derivation is as follows

KL(qφ (z|x)‖pθ (z|x)) = Ez∼qφ (z|x) log
qφ (z|x)
pθ (z|x)

= Ez∼qφ (z|x) logqφ (z|x)−Ez∼qφ (z|x) log pθ (z|x)

= Ez∼qφ (z|x) logqφ (z|x)−Ez∼qφ (z|x) log
pθ (z,x)

pθ (x)

= Ez∼qφ (z|x) logqφ (z|x)−Ez∼qφ (z|x) log pθ (z,x)+ log pθ (x)

=−ELBO+ log pθ (x).
(3.7)

In (3.7), the ELBO is

ELBO = Ez∼qφ (z|x) log pθ (z,x)−Ez∼qφ (z|x) logqφ (z|x), (3.8)

which is the only term in the KL divergence of (3.6) that depends on qφ (z|x) and skips the
intractable term log pθ (x). We can rewrite (3.7) as

log pθ (x) = KL(qφ (z|x)‖pθ (z|x))+ELBO . (3.9)

Since the KL divergence is always non-negative, the ELBO is a lower bound of the evidence,

log pθ (x)≥ ELBO = Ez∼qφ (z|x) log pθ (z,x)−Ez∼qφ (z|x) logqφ (z|x). (3.10)

24

The optimization problem in (3.6) can then be equivalently interpreted from the mini-
mization of KL divergence that contains intractable evidence term into the maximization
of the ELBO, which is tractable in this case. And we further derive the loss function by
rewriting the ELBO in the (3.9) into

ELBO =−KL(qφ (z|x)‖pθ (z|x))+ log pθ (x)

=−KL(qφ (z|x)‖
pθ (z)pθ (x|z)

pθ (x)
)+ log pθ (x)

=−KL(qφ (z|x)‖pθ (z))+Ez∼qφ (z|x) log pθ (
pθ (x|z)
pθ (x)

)+ log pθ (x)

=−KL(qφ (z|x)‖pθ (z))+Ez∼qφ (z|x) log pθ (x|z)− log pθ (x)+ log pθ (x)

=−KL(qφ (z|x)‖pθ (z))+Ez∼qφ (z|x) log pθ (x|z),

(3.11)

Maximizing the ELBO involves two terms. The first term is maximizing the negative
KL divergence between qφ (z|x) and the prior probability distribution of the latent variable
pθ (z), which is equivalent to minimizing the positive of it. The second term is to maximize
the expected log-likelihood, indicating the probability that the input can be reconstructed at
the output. The expectation is taken over the decoder’s distribution pθ (x|z) with respect to
the encoder’s distribution qφ (z|x). In order to perform gradient descent optimization, the
lost function of VAE is to minimize the negative of the ELBO. The final loss function of
VAE is formulated as (3.12),

LVAE(φ ,θ) =−Ez∼qφ (z|x) log pθ (x|z)+KL(qφ (z|x)‖pθ (z)). (3.12)

In optimizing the loss function 3.12, the gradient is taken with respect to the varia-
tional parameters φ and generative parameters θ, then the two parameters are updated
jointly. Hence it is important to make sure the ELBO is differentiable with respect to these
two parameters. However, since z are stochastic variables randomly sampled from distri-
bution qφ(z|x), we need to express z in a deterministic way to make sure the expectation
with respect to qφ (z|x) in (3.12) is differentiable. The reparameterization trick introduces
an auxiliary variable ε , with ε ∼ p(ε), to express the random variable z deterministically. In
Gaussian distributed case, the encoder qφ (z|x) outputs the parameters mean µ and standard
deviation σ that describes this Gaussian distribution N(µ,σ2)

z ∼ qφ (z | x) = N
(
z;µ,σ2I

)
. (3.13)

The latent variable z is sampled from this distribution, thus z ∼ N(µ,σ2). Expressing in
unite Gaussian as

z−µ

σ
∼ N(0,1), (3.14)

25

let p(ε) = N(0,1), then ε ∼ N(0,1). To obtain latent variable z, instead of directly sample
from qφ (z|x), we use the ε , which is a set of data randomly sampled from the unit Gaussian
N(0,1). Then shift ε by the latent distribution’s mean µ , and scale it by the latent distribu-
tion’s standard deviation σ . The latent variable z can be obtain as

z = µ +σ � ε ε ∼ N(0,1), (3.15)

where� represents the element-wise product. With this reparameterization trick interpreting
the random variable z in a deterministic way, the expectation term in (3.12) can be written in
an expression that is differentiable with respect to parameter φ, which is described by µ and
σ , as they are learned by the encoder network parameterized by this φ. The expectation term
can now be expressed as

Ez∼qφ (z|x) log pθ (x|z) = Eε∼N(0,1) log pθ (x|µ +σε
(l))

' 1
L

L

∑
l=1

log pθ (x|µ +σε
(l)) ε

(l) ∼ N(0,1),
(3.16)

where L is the mini-batch. With this expression the gradients with respect to φ and θ can be
taken and the two parameters can be optimized jointly.

3.2.4 Disentanglement and β -variational autoencoder

Disentanglement is a notation that refers to a representation of data where each variable in
this representation is only sensitive to one factor and at the same time, invariant to other fac-
tors [39, 40]. This requires the neural network models to recognize the independent factors
of variations underlying in the data. In generative modeling and disentangled representation
learning, such as the case of VAE model, a set of observable high dimensional data, denoted
as x, is generated through a generative process, from a set of lower dimensional data denoted
as z. This z is often not observable but describes the factors of variations of x. Successful
disentangled representation requires z to capture the variations and underlying factors of x,
such that z contains the essential information that describes the x, at the same time, in a
lower dimension and compact interpretable structure.

A modification of VAE that encourages disentanglement is the β -VAE [41, 42]. The
derivation of its loss function is similar to the incentive of VAE. The idea is to reconstruct
the original input data at the output, at the same time, keep the distribution describing the
encoder qφ (z|x) and the prior probability distribution of the latent variable pθ (z) as close
as possible, which is measured by the KL divergence. This KL divergence is under a small
constraint δ . The initial optimization function is formulated as follows

maxφ ,θ Ez∼qφ (z|x) log pθ (x | z)

subject to KL
(
qφ (z | x)‖pθ (z)

)
< δ

(3.17)

Re-write the (3.17) as a Lagrangian with a Lagrangian multiplier β under the KKT condition.

26

The optimization problem with constraint can be formulated into

F(φ ,θ ,β ,x,z) = Ez∼qφ (z|x) log pθ (x | z)−β
(
KL
(
qφ (z | x)‖pθ (z)

)
−δ
)
. (3.18)

As β and δ are positive, maximizing the (3.18) is equivalent to maximizing the following
equation

F(φ ,θ ,β ,x,z) = Ez∼qφ (z|x) log pθ (x | z)−β
(
KL
(
qφ (z | x)‖pθ (z)

)
−δ
)

= Ez∼qφ (z|x) log pθ (x | z)−βKL
(
qφ (z | x)‖pθ (z)

)
+βδ

≥ Ez∼qφ (z|x) log pθ (x | z)−βKL
(
qφ (z | x)‖pθ (z)

) (3.19)

Maximizing the lower bound of the Lagrangian in (3.19) is equivalent to minimizing the
negative of it, which gives our loss function for the β -VAE

Lβ−VAE(φ ,θ) =−Ez∼qφ (z|x) log pθ (x | z)+βKL
(
qφ (z | x)‖pθ (z)

)
, (3.20)

where the β is considered as a hyper-parameter. If the β = 1, it corresponds to the original
VAE; in the set-up of β -VAE, it’s usually β ≥ 1. Varying the value of β changes the de-
gree of stress and constraint on the latent space during training. A greater β encourages the
disentanglement, and trade-off between the reconstruction quality and the extent of disentan-
glement. In our experimental part, we will investigate how different β value would affect the
reconstruction and classification performances.

3.2.5 Bounded information rate variational autoencoder

It was pointed out that the objective function of variational autoencoder, with the goal of
maximizing the ELBO 3.11, may lead to two problems, amortized inference failures and
information preference property [43–45]. Amortized inference failures, or exploding latent
space problem is the case where the approximated distribution qφ (z|x) is very different from
the true posterior density pθ (z|x). This occurs because that the ELBO can be maximized
by optimizing the likelihood of the reconstruction, regardless of the KL divergence. Even
though qφ (z|x) is inaccurate and the KL divergence is not updated, a large ELBO can still
be achieved. The second problem is information preference property, which refers to the case
where the KL divergence is close to zero and latent variables z and data x are independent.
Thus, the latent variable z is uninformative and does not represent any information about the
data x. This is indicated by the cost function of VAE, where the term KL(qφ (z|x)‖pθ (z|x))
and KL(qφ (z|x)‖pθ (z)) should be zero when ELBO is maximal, which occurs only when
z is independent from x.

The mutual information maximization based VAEs are proposed to alleviate the two
problems pointed out above. In information theory, mutual information is a measure of the
amount of information that one random variable contains about another, which quantitatively

27

indicates the dependency between two variables [46]. Mutual information is applied to
the VAE in order to evaluate the dependency between the latent variable z and the input
data x. The bounded information rate VAE (BIR-VAE) [45] incorporates the maximization
of mutual information between z and x, intending to enforce the latent variable to learn
meaningful information of the input data. This model interprets the latent space as a
communication channel, where the information rate in the latent space is constrained by
a pre-defined signal-to-noise ratio. In the following content, we are going to illustrate the
architecture of BIR-VAE and derive its optimization function.

In VAE, encoder qφ (z|x) outputs two sets of variables describing Gaussian distribu-
tion, one is the mean and the other is the standard deviation, both of which are learned by
the network. Where the architecture of BIR-VAE differs is that the encoder network of
BIR-VAE only learns the mean of the distribution. While the standard deviation, instead
of learned by the network, is fixed and pre-determined, denoted as ε, which is defined as
Gaussian distributed noise, ε∼N

(
0,σ2

ε

)
. We denote the network that learns the mean µ as

µφ (·), the output of which is y = µφ (x). The noise ε is added to y, giving the latent variable
z = y+ε. The architecture is illustrated in Figure 3.4

Figure 3.4: Architecture of bounded information rate variational autoencoder.

The variance of the noise ε satisfies the condition σ2
ε < 1. The information rate constraint

I in the latent space is determined by this variance and the dimension of the latent layer d,

I =
d
2

log2

(
1

σ2
ε

)
. (3.21)

Based on (3.21) we can set the variance of to the noise σ2
ε = 1/4

I
d

The objective function of BIR-VAE maximizes two terms. First is the likelihood that
the input can be reconstructed at the output, denoted as EpD(x)Eqφ (z|x) [log pθ (x|z)], where
pD(x) is the data distribution over the input data x, and qφ (z|x) and pθ (x|z) are the
encoder and decoder respectively. The second is the mutual information between the latent
variable and the input data under joint distribution qφ (x,z) with weighing ω denoted as
ωIqφ

(z;x). This objective is subjected to two constraints, one is that the distribution of
the latent variable qφ (z) is unite Gaussian N(0,I), the other is that qφ (z|x) is Gaussian

28

distributed with arbitrary mean and a variance σ2
ε that is fixed and pre-determined. The

objective function and constraints are given as

maxφ ,θ EpD(x)Eqφ (z|x) [log pθ (x|z)]+ωIqφ
(x;z)

subject to qφ (z) = N(0,I)

Eqφ (z|x)

[(
z−Eqφ (z|x)[z]

)2
]
= σ2

ε I

. (3.22)

To transform and simplify 3.22, we introduce Maximum Mean Discrepancy (MMD)
[47], which is a term that measures how different two distributions are. Given two sets of
data, x and y, both are sampled from two different distributions P(x) and Q(y) respectively,
the MMD is expressed as

MMD(P‖Q) = EP(x),P(x′)
[
k
(
x,x′
)]

+EQ(y),Q(y′)
[
k
(
y,y′
)]
−2EP(x),Q(y) [k (x,y)]

=
1

Nx (Nx−1)
k
(
x,x′
)
+

1
Ny (Ny−1)

k
(
y,y′
)
− 2

NxNy
k (x,y)

(3.23)

where Nx and Ny are the number of samples in x and y respectively, the k (x,x′) is denoted
as kernel. The common option is a Gaussian kernel denoted as

k
(
x,x′
)
= e−

‖x−x′‖
2σ2 . (3.24)

The MMD will be equal to zero if and only if the two distributions are the same. The equality
constraint in 3.22, qφ (z) = N(0,I) = pθ (z) is satisfied when the MMD between qφ (z) and
N(0,I) is zero. Thus, transforming the equality constraint into MMD term and the optimiza-
tion function 3.22 can be written into Lagrangian form

maxφ ,θ EpD(x)Eqφ (z|x) [log pθ (x|z)]+ωIqφ
(x;z)−λMMD

[
qφ (x)‖N(0,I)

]
subject to Eqφ (z|x)

[(
z−Eqφ (z|x)[z]

)2
]
= σ2

ε I

.

(3.25)

Mutual information term Iq(x;z) can be written into the summation of two differential en-
tropy terms,

Iqφ
(x;z) = hqφ (z)(z)+EpD(x)

[
hqφ (z|x)(z)

]
. (3.26)

The first term hqφ (z)(z) is the differential entropy of z, which is fixed when the condition
qφ (z) = N(0, I) is satisfied. The second term involves the differential entropy of z given
x, denoted as hqφ (z|x)(z), which is also fixed because the distribution qφ (z|x) is Gaussian

29

distributed with pre-determined variance σ2
ε . Thus the mutual information Iq(x;z) can be

omitted from the optimization problem. The calculation of the mutual information is not
necessary if the constraints are satisfied, making it computationally more efficient.

The objective function can be written as

maxφ ,θ EpD(x)Eqφ (z|x) [log pθ (x|z)]−λMMD
[
qφ (z)‖N(0,I)

]
subject to Eqφ (z|x)

[(
z−Eqφ (z|x)[z]

)2
]
= σ2

ε I

, (3.27)

where we jointly optimize two terms, one is the reconstruction likelihood, which is the same
as the original VAE, and the other is MMD between the latent variable distribution and the
unite Gaussian. A hyper-parameter λ is introduced to make values of the first term and
the second term on the same scale, under the condition that the variance of the encoder is
pre-determined and fixed.

In the model of BIR-VAE, the architecture is set up to satisfy the constraint in the
(3.27) as shown in Figure 3.4, where the variance of z is pre-defined. The optimization
function of BIR-VAE can be finally formulated as minimizing (3.28)

LBIR−VAE(φ ,θ) =−EpD(x)Eqφ (z|x) [log pθ (x|z)]+λMMD
[
qφ (z)‖N(0, I)

]
. (3.28)

3.2.6 Discussion

The architectures of VAE and its variants generally consist of two parts, one is the encoder
and the other is the decoder. The encoder is an inference model that learns the latent dis-
tribution of the input and outputs latent variables at the latent space. During training, the
decoder reconstructs the input based on the latent variables. The cost functions involve two
terms, the first is related to the reconstruction of the input data, the second is a regularization
term that enforces the latent distribution to be close to a prior distribution. VAE and β -VAE
use KL divergence to measure the distance between the distribution of latent variables and
prior distribution. By increasing the hyper-parameter β , more weights can be put onto the
KL divergence term. BIR-VAE measures this distance by MMD and interprets latent space
as a communication channel where information rate is constrained.

3.3 Summary

In this chapter, we gave a study for the theory of the neural network models that are involved
in this project, including CNN and autoencoder-based models. CNN is a discriminative
model that performs classification in a most straightforward manner. The autoencoder-based
models, including VAE, β -VAE and BIR-VAE, are investigated regarding to their architec-
tures and cost functions. In the classification task, the encoders can be used as the feature
extractor.

30

Experimental Setups 4
Having studied all the theoretical backgrounds of the audio representations and the neural
network models, we will set up our experiment in this chapter. We first specify the param-
eters and operations involved in signal processing. Then, define the architecture and hyper-
parameters of our neural network models. In the end, we introduce evaluation metrics that
are used to compare the networks’ results.

4.1 Pre-processing

In this section, we will give parameters that are required to transform the audio sample into
the desired audio representation. We use two sets of pre-processing parameters to obtain two
different dimensions of the log-Mel spectrogram. One is the dimension of 28-by-28 and the
other is 64-by-64. In the Table 4.1, all parameters involved in the pre-processing are listed.

Parameter 28-by-28 setup 64-by-64 setup

Sampling frequency (fs) 22.05kHz 22.05kHz
Short-time length (N) 1024 1024
Overlap length (N/2) 512 512
Extract clip length (L) 0.65s 1.48s

Number of Mel filters(NMel) 28 64

Table 4.1: Parameters in pre-processing.

The sampling frequency fs is 22.05kHz, the number of samples in a short-time frame N
is 1024 and the overlap is half of it. We extract a sub-segment from the original audio clips,
the two lengths are considered, which are 0.65 seconds and 1.48 seconds. The number of
short-time frame is calculated by

⌊
2L

fs∗N

⌋
. The number of Mel filters is 28 and 64 respectively.

The visualization of 28-by-28-dimensional data is shown in Figure 4.1 and 64-by-64
is shown in Figure 4.2.

31

(a) Air conditioner in 28-by28 dimension (b) Car horn in 28-by28 dimension

(c) Children playing in 28-by28 dimension (d) Dog bark in 28-by28 dimension

(e) Drilling in 28-by28 dimension (f) Engine idling in 28-by28 dimension

(g) Gun shot in 28-by28 dimension (h) Jackhammer in 28-by28 dimension

(i) Siren in 28-by28 dimension (j) Street music in 28-by28 dimension

Figure 4.1: Log-Mel spectrograms in 28-by28 dimension
32

(a) Air conditioner in 64-by-64 dimension (b) Car horn in 64-by-64 dimension

(c) Children playing in 64-by-64 dimension (d) Dog bark in 64-by-64 dimension

(e) Drilling in 64-by-64 dimension (f) Engine idling in 64-by-64 dimension

(g) Gun shot in 64-by-64 dimension (h) Jackhammer in 64-by-64 dimension

(i) Siren in 64-by-64 dimension (j) Street music in 64-by-64 dimension

Figure 4.2: Log-Mel spectrograms in 64-by-64 dimension
33

The delta feature’s step is set to three. For data augmentation, the time stretching factors
are 0.81, 1.23, and the pitch scaling factors are -2, 2. Our practical process on audio data
is done in python, using the package Librosa [48], which is a popular tool in audio related
research and practical applications. We choose fold 9 and fold 10 as our test set and the other
8 folds as training set. An overview of the number of samples in training set and test set of
each class is shown in Table 4.2.

Class Name Training set Testing set
Air conditioner 800 200

Car horn 364 65
Children playing 800 200

Dog bark 800 200
Drilling 800 200

Engine idling 818 182
Gun shot 311 63

Jackhammer 822 178
Siren 764 165

Street music 800 200
In total 7079 1653

Table 4.2: Samples in training set and testing set.

4.2 Convolutional neural network model

Our CNN model consists of 3 convolutional layers and 2 fully connected layers. The
input to the CNN model is a three-dimensional tensor, each dimension corresponds to the
number of channels, height and width of the log-Mel spectrogram respectively. At the
input, the number of channels is one, heights and widths are 28-by-28 or 64-by-64. As the
spectrogram is a 2-dimensional representation, the convolutional and max pooling operation
in the program will be 2-D. These two operations will result in a reduction of feature map,
its output dimension in height and width are calculated by (3.1). The number of channels
changes with the defined number of filters in each convolutional layer. The structure and
parameters of our defined CNN are listed in Table 4.3.

34

Layer type Parameters 28-by28 setup 64-by-64 setup

Input (1, 28, 28) (1, 64, 64)
Conv 2d filter number = 64, kernel size = (3, 3), stride = 1 (64, 26, 26) (64, 62, 62)

Activation ReLU (64, 26, 26) (64, 62, 62)
Maxpooing pooling size = (2, 2), stride = 1 (64, 13, 13) (64, 31, 31)

Dropout rate = 0.5 (64, 13, 13) (64, 31, 31)
Conv 2d filter number = 128, kernel size = (3, 3), stride = 1 (128, 11, 11) (128, 29, 29)

Activation ReLU (128, 11, 11) (128, 29, 29)
Maxpooing pooling size = (2, 2), stride = 1 (128, 5, 5) (128, 14, 14)

Dropout rate = 0.5 (128, 5, 5) (128, 14, 14)
Conv 2d filter number = 256, kernel size = (3, 3), stride = 1 (256, 3, 3) (256, 12, 12)

Activation ReLU (256, 3, 3) (256, 12, 12)
Maxpooing pooling size = (2, 2), stride = 1 (256, 1, 1) (256, 6, 6)

Dropout rate = 0.5 (256, 1, 1) (256, 6, 6)
Flatten 256 9216
Dense unites = 512 512 512

Activation ReLU 512 512
Dropout rate = 0.5 512 512
Dense unites = 128 128 128

Activation ReLU 128 128
Dropout rate = 0.5 128 128
Dense unites = 10 10 10

Activation Softmax 10 10

Table 4.3: Parameters in convolutional neural network.

The loss function of our multi-class classification problem is the cross-entropy loss given
in (3.3). The optimizer we use is ADAM [49] with a learning rate of 0.001. The batch size
is 512. We initially set the number of training epochs to be 300, and add early stopping to
monitor the validation loss and set the patience to be 64, which means if the validation loss
doesn’t improve for 64 epochs, the training process will be terminated even though the 300
epoch is not completed.

4.3 Autoencoder based model

In this section, we are going to define the architecture of the autoencoder-based models
including encoder network decoder network. The encoder consists of 3 convolutional layers
followed by 2 fully connected layers. The last layer’s dimension is the latent dimension,
which is a hyper-parameter that we will investigate in next chapter. For the two input setups,
we use different parameters in the network. For larger input, we use bigger kernel size
and step size such that the dimension could be efficiently reduced. The architectures and
parameters of our defined encoders are listed in Table 4.4 and Table 4.5 respectively.

35

Layer type Parameters 28-by28 setup

Input (1, 28, 28)
Conv 2d filter number = 32, kernel size = (5, 5), stride = 2 (32, 12, 12)

Batch Norm 2d feature number = 32 (32, 12, 12)
Activation ReLU (32, 12, 12)
Conv 2d filter number = 64, kernel size = (5, 5), stride = 1 (64, 8, 8)

Batch Norm 2d feature number = 64 (64, 8, 8)
Activation ReLU (64, 8, 8)
Conv 2d filter number = 128, kernel size = (3, 3), stride = 1 (128, 6, 6)

Batch Norm 2d feature number = 128 (128, 6, 6)
Activation ReLU (128, 6, 6)

Flatten 4608
Dense unites = 1024 1024
Dense unites = latent dimension latent dimension

Table 4.4: Parameters of encoder for 28-by-28 input.

Layer type Parameters 64-by-64 setup

Input (1, 64, 64)
Conv 2d filter number = 32, kernel size = (7, 7), stride = 2 (32, 29, 29)

Batch Norm 2d feature number = 32 (32, 29, 29)
Activation ReLU (32, 29, 29)
Conv 2d filter number = 64, kernel size = (5, 5), stride = 2 (64, 13, 13)

Batch Norm 2d feature number = 64 (64, 13, 13)
Activation ReLU (64, 13, 13)
Conv 2d filter number = 128, kernel size = (5, 5), stride = 1 (128, 9, 9)

Batch Norm 2d feature number = 128 (128, 9, 9)
Activation ReLU (128, 9, 9)

Flatten 10368
Dense unites = 1024 1024
Dense unites = latent dimension latent dimension

Table 4.5: Parameters of encoder for 64-by-64 input.

The decoder is a reverse of the encoder, as it reconstructs the encoder’s input based on
encoder’s output. The dimension of the latent variables input to the decoder corresponds to
the latent dimension, which matches the output dimension of the encoder. The first two layers
of the decoder are the fully connected layer, then the vector is reshaped to a tensor with the
dimension that was flattened at encoder’s fully connected layer. To reconstruct the input, the
up-sampling operation called transposed convolutional operation is used. Comparing with
(3.1), output dimension is calculated as (4.1)

36

Hout = (Hin−1)×S[0]−2×P[0]+K[0],

Wout = (Win−1)×S[1]−2×P[1]+K[1].
(4.1)

In order to match the dimension of the input, 4 transposed convolutional layers are needed
in the decoder. The operations and the resulting outputs are given in Table 4.6 and Table 4.7
respectively for two data setups.

Layer type Parameters 28-by28 setup

Dense unites = 1024 1024
Dense unites = 4608 4608

Reshape (128, 6, 6)
Transpose Conv 2d filter number = 128, kernel size = (3, 3), stride = 1 (128, 8, 8)

Batch Norm 2d feature number = 128 (128, 8, 8)
Activation ReLU (128, 8, 8)

Transpose Conv 2d filter number = 64, kernel size = (5, 5), stride = 1 (64, 12, 12)
Batch Norm 2d feature number = 64 (64, 12, 12)

Activation ReLU (64, 12, 12)
Transpose Conv 2d filter number = 32, kernel size = (5, 5), stride = 2 (32, 27, 27)

Batch Norm 2d feature number = 32 (32, 27, 27)
Transpose Conv 2d filter number = 1, kernel size = (2, 2), stride = 1 (1, 28, 28)

Table 4.6: Parameters of decoder for 28-by-28 input.

Layer type Parameters 64-by-64 setup

Dense unites = 1024 1024
Dense unites = 10368 10368

Reshape (128, 9, 9)
Transpose Conv 2d filter number = 128, kernel size = (5, 5), stride = 1 (128, 13, 13)

Batch Norm 2d feature number = 128 (128, 13, 13)
Activation ReLU (128, 13, 13)

Transpose Conv 2d filter number = 64, kernel size = (5, 5), stride = 2 (64, 29, 29)
Batch Norm 2d feature number = 64 (64, 29, 29)

Activation ReLU (64, 29, 29)
Transpose Conv 2d filter number = 32, kernel size = (7, 7), stride = 2 (32, 63, 63)

Batch Norm 2d feature number = 32 (32, 63, 63)
Transpose Conv 2d filter number = 1, kernel size = (2, 2), stride = 1 (1, 64, 64)

Table 4.7: Parameters of decoder for 64-by-64 input.

The optimization functions of β -VAE and BIR-VAE are expressed as (3.12) and (3.28),
both functions involve minimizing the reconstruction error between the input and output
of the model. In our practical implementation, this term is expressed as the mean square

37

error between the input and output. The regularization term of β -VAE is the KL divergence
between the encoder’s distribution and the prior distribution, where the prior distribution
pθ (z) is assumed to be unite Gaussian. This KL divergence term is derived as follows,

KL(qφ (z|x)‖pθ (z)) =
∫

qφ (z|x)
(
logqφ (z|x)− log pθ (z))

)
dz

=
∫

qφ (z|x)
(
logqφ (z|x))

)
dz−

∫
qφ (z|x)(log pθ (z)))dz

=
∫

N
(
µ,σ2) logN

(
µ,σ2)dz−

∫
N
(
µ,σ2) logN(0,I)dz

=−1
2
(
1+ logσ2)+ 1

2
(
µ2 +σ2)

=−1
2
(
1+ logσ2−µ2−σ2) ,

(4.2)

and implement as KL(qφ (z|x)‖pθ (z)) = −1
2

(
1+ logσ2−µ2−σ2). The MMD is ex-

pressed as (3.23) and its kernel is (3.24), where the σ in the kernel is 1.

In our experiments, we will first implement β -VAE and BIR-VAE using various hyper-
parameter values, evaluating the their reconstruction performance by the signal-to-noise
ratio (SNR), which is explained in the next subsection. To train the autoencoder-based
models, the optimizer is ADAM with a learning rate of 0.0003. The batch size is 512 and we
will train for 300 epochs.

After training the autoencoders, we use the trained encoder as feature extractor to per-
form classification. The mean learned by the encoders is used as the input to the classifier.
We will use the fully connected layers as classifier. During the update, the parameters in the
encoder are fixed and only the fully connected layers are updated. The classifier is trained
for 100 epochs using the stochastic gradient descent (SGD) with a learning rate of 0.1.
Parameters in the fully connected classifier are given in Table 4.8.

38

Layer type Parameters output shape

Dense unites = 1024 1024
Activation ReLU 1024
Dropout rate = 0.5 1024
Dense unites = 256 256

Activation ReLU 256
Dropout rate = 0.5 256
Dense unites = 64 64

Activation ReLU 64
Dropout rate = 0.5 64
Dense unites = 10 10

Activation Softmax 10

Table 4.8: Parameters of fully connected classifier.

4.4 Evaluation metrics

In this section, we are going to introduce the evaluation metrics that are involved in assessing
the models’ performance. The classification performance is measure by accuracy, precision,
recall and F1-score, the confusion matrix gives a visualization of where the misclassifica-
tion occurs. The reconstruction performance is evaluated by the average SNR across the
dataset. Evaluation metrics give mathematical and numerical representations of the models’
performance, allowing us to compare the results straightforwardly.

4.4.1 Classification evaluation

The classification performance is usually decided by the following criterion.

• Accuracy: Accuracy is the ratio between the correct prediction and the total number of
samples in the dataset, indicating how often the classifier makes a correct prediction.
When the dataset has more than 2 classes, and each class has an unequal number of
samples, accuracy alone is not sufficient.

• Confusion matrix: The confusion matrix visualizes the correct and incorrect predictions
in each class. Each element in the matrix is denoted as ci j which represents the number
of ground truth in class i that were predicted to be in the class j. In our case where
there are 10 classes involved in the classification, the index i and j range from 1 to 10.

• Precision: The precision of one class is calculated by the ratio between the number of
correct prediction and the total number of instances that are predicted to be this class.
The precision of class i is calculated by

Precision =
cii

∑
10
i=1 ci j

(4.3)

A low precision indicates that other classes of data are more likely to be misclassified
as this class i, the confidence of the prediction is relatively low.

39

• Recall: Recall is the number of correct predictions divided by the total number of the
samples in that class. The recall of class i is calculated by

Recall =
cii

∑
10
j=1 ci j

(4.4)

A low recall value suggests that samples in this class i usually fail to be correctly
classified.

• F1-score: F1-score is the harmonic mean of the precision and recall, where an F1-score
reaches its best value at 1 when the relative contribution of precision and recall to the
F1-score are equal, and its worst score is at 0 when either precision or recall is 0. The
F1-score is given as

F1 =
2

1
recall +

1
precision

= 2 · precision · recall
precision + recall

(4.5)

4.4.2 Reconstruction evaluation

To evaluate the reconstruction performance of the autoencoders, we use the signal-to-noise
ratio to compare the reconstructed log-Mel spectrogram with the original one. In signal
processing and communication, SNR is used to compare the level of a desired signal with
the level of noise, which is defined as the ratio of signal power to the noise power and often
expressed in decibels.

We will quantitatively evaluate the reconstruction performance by the autoencoder-
based models in a perspective of communication and signal processing. Assume we have a
dataset X containing a number of N spectrograms, each denoted as Xi. One spectrogram
passes through the autoencoder and its reconstruction is denoted as X̂i. The difference
between the original and reconstruction is consider as noise denoted as Ni, this can be
expressed as Equation 4.6,

X̂i =Xi +Ni. (4.6)

Both the signal and noise are 2-dimensional matrices, we will use the square of Frobenius
norm to represent the power. A matrix M , with a dimension of (m,n) and each element is
denoted as mi j, its Frobenius norm is calculated as

‖M‖F =

√
m

∑
i=1

n

∑
j=1

∣∣mi j
∣∣2 (4.7)

with the given definition, we obtain the power of the original spectrogram and the noise by,

PXi = ‖Xi‖2
F,

PNi = ‖Ni‖2
F.

(4.8)

40

and represent the SNR in decibel form

SNRdB
i = 10log10

PXi

PNi

. (4.9)

To evaluate the reconstruction performance throughout the entire dataset X, we take the av-
erage SNR

SNRdB =
1
N

N

∑
i=1

SNRdB
i . (4.10)

4.5 Summary

In this chapter, we pre-processed the audio data and obtained the desired feature representa-
tion in two different dimensions. Then, we built up the neural network and define the training
process. The evaluation metrics to quantitatively compare classification and reconstruction
results were studied.

41

Results 5
In previous chapters, we have introduced the basic concepts and gave the experimental setup.
In this chapter, the outcomes of the experiments will be reported and illustrated. We first
train the convolutional neural network model using the log-Mel spectrogram and delta fea-
tures. Then, autoencoder-based models are implemented with different hyper-parameters.
The results include the values of evaluation metrics, and comparative visualizations between
the original spectrograms and reconstructions are shown.

5.1 Convolutional Neural Networks models

In this section, we will describe the performance of the CNN model defined in 4.3. We first
use the log-Mel spectrogram. Then, we further investigate how the delta features and the
data augmentation affect classification. To train the CNN using the log-Mel spectrogram and
its delta features, we add an extra input channel and combine the two features, making the
CNN’s input into a 2-channel image.

5.1.1 Results

The classification results of CNN using 28-by-28-dimensional and 64-by-64-dimensional
inputs are listed in Table 5.1 and Table 5.2 respectively.

Original data Original data + delta Original data + aug

Train accuracy 92.64% 88.13% 84.44%
Test accuracy 68.24% 68.91% 67.17%

Table 5.1: Classification accuracy of CNN on 28-by-28 input.

Original data Original data + delta Original data + aug

Train accuracy 99.10% 98.46% 91.80%
Test accuracy 75.20% 75.26% 67.80%

Table 5.2: Classification accuracy of CNN on 64-by-64 input.

42

The accuracy of using a 64-by-64-dimensional log-Mel spectrogram is 75.20%. We give
the evaluation metrics based on this result. The confusion matrix is shown in Figure 5.1 and
the classification reports containing precision, recall and F1-score values are given in Table
5.3

Figure 5.1: Confusion matrix of CNN.

Class name precision recall F1-score support

air conditioner 0.67 0.51 0.58 200
car horn 0.86 0.83 0.84 65

children playing 0.59 0.85 0.70 200
dog bark 0.76 0.81 0.78 200
drilling 0.79 0.71 0.75 200

engine idling 0.87 0.70 0.77 182
gun shot 0.95 0.97 0.96 63

jackhammer 0.71 0.94 0.81 178
siren 0.86 0.81 0.83 165

street music 0.77 0.61 0.68 200

Table 5.3: Classification report of CNN.

43

5.1.2 Discussion

By comparing the overall accuracy, we find that the larger dimensional input produces
a higher accuracy. For the same CNN model, a test accuracy of 68.24% was obtained
using 28-by-28-dimensional input and 75.20% using 64-by-64-dimensional. Hence the
improvement was 7% higher. The results obtained from 2-channel input show a slight
improvement, while the data augmentation did not improve the accuracy. The best classifi-
cation accuracy obtained in this experiment is 75.26% by CNN using the combination of the
64-by-64-dimensional log-Mel spectrogram and its delta features.

From the classification report, we can find that the lowest precision comes from the
children playing: the confusion matrix shows that street music has the most samples
misclassified as children playing. The lowest recall values are from the classes of air
conditioner and street music: samples of air conditioner are mostly misclassified as dog
bark, jackhammer and street music. The air conditioner has the worst F1-score, which is the
most difficult class to identify.

5.2 Autoencoder-based models

In this section, we we will discuss the experiment of autoencoder-based models. We inves-
tigate the reconstruction and classification performances by implementing a set of different
hyper-parameters. The values of evaluation metrics are given, and the comparison between
the original spectrograms and their reconstructions are visualized.

5.2.1 Variational Autoencoder and β -Variational Autoencoder

We now discuss different latent dimensions based on the given architectures of encoders
and decoders, and set different β values in optimization function (3.20). The results of
reconstruction and classification on 28-by-28-dimensional input are given in Table 5.4.

The best reconstruction performance with the highest SNR is 17.36 dB, achieved by
the VAE model with latent dimension 128. The model with 256 latent dimension and β

value of 10 gives the best performance in classification, achieving an accuracy of 64.85% on
the test set.

44

Latent dimension β Train SNR (dB) Test SNR (dB) Train accuracy Test accuracy

16 1 15.88 14.51 80.94% 56.99%
32 1 17.68 16.08 88.56% 60.19%
64 1 18.41 16.96 95.23% 63.40%
128 1 18.50 17.36 97.46% 63.46%
256 1 18.30 16.84 98.30% 61.58%
512 1 17.96 16.83 98.62% 61.95%
64 10 17.94 16.75 95.56% 62.86%
128 10 18.47 16.85 97.84% 64.73%
256 10 17.74 16.32 99.01% 64.85%
64 100 16.73 15.45 92.98% 63.10%
128 100 16.80 15.48 94.35% 62.25%
256 100 16.01 14.85 95.82% 61.34%

Table 5.4: Results of VAE and β -VAE on 28-by-28 input.

Next, we investigate the performance of VAE and β -VAE using 64-by-64-dimensional
log-Mel spectrogram. The result are shown in Table 5.5. The model with β = 10 and a latent
dimension of 256 gives the best SNR of 15.85 dB and an accuracy of 65.34%.

Latent dimension β Train SNR (dB) Test SNR (dB) Train accuracy Test accuracy

128 1 16.52 15.18 97.20% 59.89%
128 10 16.87 15.53 98.41% 62.55%
256 1 16.11 14.82 98.88% 62.67%
256 10 17.12 15.85 99.43% 65.34%
512 10 16.36 14.76 99.01% 62.61%

Table 5.5: Results of VAE and β -VAE on 64-by-64 input.

5.2.2 Bounded Information Rate Variational Autoencoder

The optimization function of BIR-VAE is given as (3.28). We fix the hyper-parameter
λ = 106 to balance the values of reconstruction loss and regularization term, and investigate
the effect of latent dimension and information rate, which are denoted as d and I respectively
in the table and σ is calculated by (3.21). We first implement the BIR-VAE using 28-by-28-
dimensional input, the SNR and accuracy are listed in Table 5.6.

The best reconstruction performance is given by the BIR-VAE with latent dimension
of 128, an information rate of 256 with σ = 0.25, the SNR is 17.44 dB. The highest accuracy
is 62.61%, given by the BIR-VAE with a latent dimension of 256 and information rate of
1024 with σ = 0.06.

45

d I σ Train SNR (dB) Test SNR (dB) Train accuracy Test accuracy

64 32 0.7 18.23 16.73 90.62% 59.71%
64 64 0.5 17.51 16.33 91.35% 61.34%
64 128 0.25 17.60 16.27 92.26% 60.62%
64 256 0.06 17.86 16.57 91.72% 60.74%

128 64 0.7 17.13 15.84 92.97% 58.98%
128 128 0.5 17.66 16.27 93.49% 60.56%
128 256 0.25 19.12 17.44 94.87% 62.13%
128 512 0.06 18.42 17.11 95.34% 61.95%
256 128 0.7 17.68 16.51 94.05% 59.77%
256 256 0.5 17.01 15.54 94.14% 60.38%
256 512 0.25 18.68 17.17 95.55% 62.19%
256 1024 0.06 17.52 16.47 96.45% 62.61%

Table 5.6: Results of BIR-VAE on 28-by-28 input.

We also implemented the the BIR-VAE on 64-by-64-dimensional input. The classifica-
tion accuracy and the SNR are given in Table 5.7. We can find that the model with a latent
dimensionality of 128 and information rate of 256 achieved the best accuracy by 62.19%
and highest SNR by 15.74 dB.

d I σ Train SNR (dB) Test SNR (dB) Train accuracy Test accuracy

128 128 0.5 16.72 15.55 97.10% 61.40%
128 256 0.25 17.11 15.74 97.39% 62.19%
128 512 0.06 16.56 15.35 98.26% 61.96%
256 1024 0.06 16.81 15.61 98.26% 61.52%

Table 5.7: Results of BIR-VAE on 64-by-64 input.

5.2.3 Visualizations of results

In this part, based on the best reconstruction performance, we provide a visual comparison
of the reconstructed log-Mel spectrograms and the original ones. Also, we will give the
values of evaluation metrics of the result with the highest accuracy.

The best reconstruction performance on 28-by-28-dimensional log-Mel spectrograms
is obtained by BIR-VAE, with latent dimension of 128 and information rate of 256. An SNR
of 19.12 dB is achieved on the training set, the visualizations comparing them are Figure 5.2,
which is the original spectrograms, and the reconstructed ones are shown in Figure 5.3. The
test set is reconstructed with an SNR of 17.44 dB. Original samples in test set are illustrated
in Figure 5.4, their reconstructions are shown in Figure 5.5. We also use the decoder of this
model to generate new samples, which are shown as Figure B.1 in Appendix B.

46

(a) Original of air conditioner (b) Original of car horn

(c) Original of children playing (d) Original of dog bark

(e) Original of drilling (f) Original of engine idling

(g) Original of gun shot (h) Original of jackhammer

(i) Original of siren (j) Original of street music

Figure 5.2: Original 28-by-28 log-Mel spectrograms in training set
47

(a) Reconstruction of air conditioner (b) Reconstruction of car horn

(c) Reconstruction of children playing (d) Reconstruction of dog bark

(e) Reconstruction of drilling (f) Reconstruction of engine idling

(g) Reconstruction of gun shot (h) Reconstruction of jackhammer

(i) Reconstruction of siren (j) Reconstruction of street music

Figure 5.3: Reconstruction of 28-by-28 log-Mel spectrograms in training set with SNR = 19.12 dB
48

(a) Original of air conditioner (b) Original of car horn

(c) Original of children playing (d) Original of dog bark

(e) Original of drilling (f) Original of engine idling

(g) Original of gun shot (h) Original of jackhammer

(i) Original of siren (j) Original of street music

Figure 5.4: Original 28-by-28 log-Mel spectrograms in test set
49

(a) Reconstruction of air conditioner (b) Reconstruction of car horn

(c) Reconstruction of children playing (d) Reconstruction of dog bark

(e) Reconstruction of drilling (f) Reconstruction of engine idling

(g) Reconstruction of gun shot (h) Reconstruction of jackhammer

(i) Reconstruction of siren (j) Reconstruction of street music

Figure 5.5: Reconstruction of 28-by-28 log-Mel spectrograms in test set with SNR = 17.44 dB
50

For input in size 64-by-64, the highest SNR is given by BIR-VAE with latent dimension
of 128 and information rate of 256. SNR of 17.11 dB is achieved on the training set and
15.74 dB on the test set. Original 64-by-64-dimensional spectrograms in training set and test
set are shown in Figure 5.6 and Figure 5.8 respectively. Their reconstructions are illustrated
in Figure 5.7 and Figure 5.9. New samples with dimension of 64-by-64 are generated by the
decoder of this model, which are shown as Figure B.2 in Appendix B.

51

(a) Original of air conditioner (b) Original of car horn

(c) Original of children playing (d) Original of dog bark

(e) Original of drilling (f) Original of engine idling

(g) Original of gun shot (h) Original of jackhammer

(i) Original of siren (j) Original of street music

Figure 5.6: Original 64-by-64 log-Mel spectrograms in training set
52

(a) Reconstruction of air conditioner (b) Reconstruction of car horn

(c) Reconstruction of children playing (d) Reconstruction of dog bark

(e) Reconstruction of drilling (f) Reconstruction of engine idling

(g) Reconstruction of gun shot (h) Reconstruction of jackhammer

(i) Reconstruction of siren (j) Reconstruction of street music

Figure 5.7: Reconstruction of 64-by-64 log-Mel spectrograms in training set with SNR = 17.11 dB
53

(a) Original of air conditioner (b) Original of car horn

(c) Original of children playing (d) Original of dog bark

(e) Original of drilling (f) Original of engine idling

(g) Original of gun shot (h) Original of jackhammer

(i) Original of siren (j) Original of street music

Figure 5.8: Original 64-by-64 log-Mel spectrograms in test set
54

(a) Reconstruction of air conditioner (b) Reconstruction of car horn

(c) Reconstruction of children playing (d) Reconstruction of dog bark

(e) Reconstruction of drilling (f) Reconstruction of engine idling

(g) Reconstruction of gun shot (h) Reconstruction of jackhammer

(i) Reconstruction of siren (j) Reconstruction of street music

Figure 5.9: Reconstruction of 64-by-64 log-Mel spectrograms in test set with SNR = 15.74 dB
55

The highest accuracy is 65.34%, achieved by the β -VAE with 256 latent dimension and
a β value of 10 using 64-by-64 sized input. We give its confusion matrix in Figure 5.10 and
classification report in Table 5.8. Using the decoder of this model, new spectrograms with
dimension of 64-by-64 are generated, which are shown as Figure B.3 in Appendix B.

Figure 5.10: Confusion matrix of autoencoder-based model

Class name precision recall F1-score support

air conditioner 0.61 0.34 0.43 200
car horn 0.82 0.85 0.83 65

children playing 0.56 0.71 0.63 200
dog bark 0.83 0.66 0.74 200
drilling 0.57 0.45 0.50 200

engine idling 0.74 0.73 0.73 182
gun shot 0.89 0.90 0.90 63

jackhammer 0.67 0.82 0.74 178
siren 0.64 0.79 0.71 165

street music 0.54 0.64 0.58 200

Table 5.8: Classification report of autoencoder-based model.

56

5.2.4 Discussion

The reconstruction performances of autoencoder-based models using 28-by-28-dimensional
input reached the highest SNR of 17.44 dB. This result came from the BIR-VAE with 128
latent dimension and an information rate of 256. β -VAEs obtained the highest SNR of 17.36
dB, which is competitive to the best result from BIR-VAE. When autoencoder-based models
are implemented with 64-by-64-dimensional spectrograms under the same hyper-parameters,
the reconstruction performances degraded. When reconstructing the spectrograms with size
64-by-64, the best achieved SNR was 15.85 dB. Observing the reconstructed images and
compare them with the original ones, we can find that the reconstructions looked smoother
and lower in resolution and some details may be lost, but the basic structure and pattern of
the spectrograms are retained.

The highest accuracy achieved by autoencoder-based models was 65.34%. This result
came from the β -VAE with latent dimension of 256 and a β value of 10 using spectrograms
of size 64-by-64. Compared to the accuracy 75.20% obtained by the CNN model using the
same input, this result is lower. A best result obtained by autoencoder-based model using
spectrogram in 28-by-28 dimension was 64.85%, compared with an accuracy of 68.24%
achieved by CNN model using the same data, the result of autoencoder-based model is 3.4%
lower but comparable. Reviewing the confusion matrices and classification reports, we can
discover the lowest precision value was scored by the class of street music, while the lowest
recall value was obtained by air conditioner.

5.3 Summary

In this chapter, we have conducted the experiments of sound classification based on CNN
and autoencoder-based models for different input representations. We first implemented
CNN to perform classification on log-Mel spectrogram. The best accuracy obtained by CNN
was 75.26% using 64-by-64-dimensional log-Mel spectrogram combined with its delta fea-
tures, while the CNN using only the log-Mel spectrogram with the same dimension achieved
75.20%, indicating that the choice of input providing extra informative features may improve
the classification performance. Compared with the results using the spectrogram of size 28-
by-28, the accuracy achieved by CNN was 68.24%, which was 7% lower than that using
64-by-64 sized input, suggesting that the spectrogram with more Mel filter banks and longer
audio segment may provide more information about the audio and contribute to higher ac-
curacy. The best accuracy achieved by autoencoder-based models was 65.34% and the best
reconstruction performance was 17.44 dB in average SNR. Comparative visualizations be-
tween original and reconstructed spectrograms were shown. This comparison showed that
the fundamental pattern and the power distribution in the spectrogram can be reconstructed,
but at a lower resolution and with some details lost. In general, the CNN yielded higher
accuracy than autoencoder-based models, thus CNN is the most promising model to classify
the spectrograms in our setup. The encoders were able to learn meaningful features about the
spectrograms and classification could be realized.

57

Conclusion and Future Work 6
6.1 Conclusion

In this project, we studied the task of urban sound classification and identification using
different deep learning-based methods. The feature of urban sound that we mainly used was
the log-Mel spectrogram as it aligns with human’s auditory system where the perception
is much more sensitive for lower frequencies. The Mel-scaled spectrogram highlighted
variations in lower frequencies. Other inputs such as delta features and augmented data were
also considered. Several neural network models were implemented to achieve classification
of urban sounds based on audio representations. The models involved in this task were
CNN and autoencoder-based models. CNN is the most straightforward and efficient model
to perform classification tasks. Autoencoder-based models included VAE, β -VAE and
BIR-VAE, which were trained to reconstruct the original input spectrogram at their output
and learn a low-dimensional feature set in the latent space. After finishing the training
process of an autoencoder-based model, the encoder had learned meaningful features about
the spectrogram and a fully connected classifier was applied to achieve classification based
on the latent features learned by the encoder. To have knowledge on the performances
of different models, we adopted evaluation metrics to evaluate the results with respect
to classification and reconstruction. The classification was evaluated by accuracy in the
beginning, in addition a confusion matrix gives a visualization of where misrecognition
occurs. A classification report includes precision, recall and F1-score. The average SNR
was used to evaluate the reconstruction performance of autoencoder-based models in a
communication and signal processing perspective, and visualizations of comparison between
the original spectrogram and their reconstructed ones were also provided.

In our experiments, we first conducted pre-processing on audio samples, the audio
samples were processed into the log-Mel spectrograms in a consistent dimension. We
considered two spectrum sizes: the first was 28-by-28 the second was 64-by-64. These
dimensions indicate 28 or 64 Mel filters were applied to the spectrogram, and the lengths of
sub-segment extracted from original audio were 0.65 seconds and 1.48 seconds respectively.
Then, we defined the architecture of neural network models including CNN, encoders and
decoders of the autoencoder-based models. Both the CNN and the encoder were built
up by three convolutional layers and two fully connected layers, and decoder consisted
of four transposed convolutional operations. For autoencoder-based models, we tested
a set of hyper-parameters to investigate how the performance might be affected. Our
results showed that the best classification performance was achieved by a CNN using
64-by-64-dimensional log-Mel spectrogram combined with its delta feature as input, where
accuracy of 75.26% was reached. Accuracy of 75.20% was achieved by CNN using only
the 64-by-64-dimensional log-Mel spectrogram, which is close to the best result. Compared

58

to the accuracy 68.24% obtained from CNN using 28-by-28-dimensional input, the result
from 64-by-64 was 7% higher. The best accuracy achieved by autoencoder-based models
was 65.34%. This came from β -VAE with β value of 10 and latent dimension of 512
using log-Mel spectrogram in size 64-by-64. The reconstruction performance was evaluated
by average SNR, the highest achieved value was 17.44 dB by the BIR-VAE with latent
dimension of 128 and information rate of 256 using 28-by-28 sized input. The SNR
degraded when applied with larger input size. BIR-VAE with the same latent dimension
and information rate achieved the highest SNR on 64-by-64 sized input, which was 15.74 dB.

From the results we can conclude that among our experimental implementations, the
most promising model to perform classification was CNN, with the input of log-Mel
spectrogram larger in number of Mel filters and longer in length. Moreover, the delta
features describing dynamical changes in a spectrogram could aid the classification. The
autoencoder-based models could learn the underlying features of the spectrogram by
the encoder and provide meaningful latent features to perform classification, achieving
competing accuracies compared to CNN. A reasonable quality reconstruction of the log-Mel
spectrogram can be realized. Although this is perceived as a smoother and more blurry
reconstruction, the fundamental time-frequency patterns and structures in the spectrogram
can be recreated.

6.2 Future work

Research directions that are worthy of further study and have the potential to improve
performance mainly focus on two aspects, one is to investigate the signal processing and
audio features, the other is to explore the neural network models. The experimental results
showed that CNN using combination of log-Mel spectrogram and its delta feature as input
have achieved the best accuracy. This accuracy was slightly higher than the accuracy of
using only log-Mel spectrogram. This is likely because the dynamical information of the
spectrogram provided extra features about an audio sample in the second channel. Thus, the
accuracy may be further improved by using a combination of different audio representations,
allowing CNN to learn multiple features in different channels. Other audio representations
that could be further investigated are Chroma features, gammatone spectrogram and raw
waveform. With more input features, neural network models can be built deeper in order to
sufficiently learn the features in the multi-channel input. As the input and neural network are
both larger, the classification accuracy has a huge possibility to be improved.

The autoencoder-based models also have the potential to be further improved. A more
complex model can be obtained by adding more layers to the encoder and decoder or
changing the number of filters in each convolutional layer. A larger model can better
learn the underlying features or achieve a reconstruction preserving more details in the
spectrogram. Hyper-parameters such as latent dimension, β and information rate can be
further tested by setting more different values and find the best combination that leads to
the highest accuracy in terms of SNR. Other parameters such as filter sizes and stride sizes
in each convolutional layer reduce the size of feature map, which can also be modified and
train with different values when the input dimension of the spectrogram differs.

59

Bibliography

[1] Muqing Deng et al. “Heart sound classification based on improved MFCC features
and convolutional recurrent neural networks”. In: Neural Networks 130 (2020),
pp. 22–32.

[2] Daniel Chamberlain et al. “Application of semi-supervised deep learning to lung
sound analysis”. In: 2016 38th Annual International Conference of the IEEE Engi-
neering in Medicine and Biology Society (EMBC). IEEE. 2016, pp. 804–807.

[3] Jia-Ming Liu et al. “Cough signal recognition with gammatone cepstral coeffi-
cients”. In: 2013 IEEE China Summit and International Conference on Signal and
Information Processing. IEEE. 2013, pp. 160–164.

[4] Regunathan Radhakrishnan, Ajay Divakaran, and A Smaragdis. “Audio analysis
for surveillance applications”. In: IEEE Workshop on Applications of Signal Process-
ing to Audio and Acoustics, 2005. IEEE. 2005, pp. 158–161.

[5] Elizabeth Baum et al. “Sound identification for fire-fighting mobile robots”. In:
2018 Second IEEE international conference on robotic computing (IRC). IEEE. 2018,
pp. 79–86.

[6] Egor Lakomkin et al. “On the robustness of speech emotion recognition for
human-robot interaction with deep neural networks”. In: 2018 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS). IEEE. 2018, pp. 854–
860.

[7] Letizia Marchegiani and Ingmar Posner. “Leveraging the urban soundscape: Au-
ditory perception for smart vehicles”. In: 2017 IEEE International Conference on
Robotics and Automation (ICRA). IEEE. 2017, pp. 6547–6554.

[8] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,
2016.

[9] Gerhard P Hancke, Gerhard P Hancke Jr, et al. “The role of advanced sensing in
smart cities”. In: Sensors 13.1 (2013), pp. 393–425.

[10] Wei Dai et al. “Very deep convolutional neural networks for raw waveforms”.
In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE. 2017, pp. 421–425.

[11] Muhammad Huzaifah. “Comparison of time-frequency representations for envi-
ronmental sound classification using convolutional neural networks”. In: arXiv
preprint arXiv:1706.07156 (2017).

[12] Ossama Abdel-Hamid et al. “Convolutional neural networks for speech recogni-
tion”. In: IEEE/ACM Transactions on audio, speech, and language processing 22.10
(2014), pp. 1533–1545.

[13] Antonio J Torija, Diego P Ruiz, and Ángel F Ramos-Ridao. “A tool for ur-
ban soundscape evaluation applying support vector machines for developing a
soundscape classification model”. In: Science of the Total Environment 482 (2014),
pp. 440–451.

[14] Michael J Bianco et al. “Machine learning in acoustics: Theory and applications”.
In: The Journal of the Acoustical Society of America 146.5 (2019), pp. 3590–3628.

60

[15] Jia-Ching Wang et al. “Environmental sound classification using hybrid
SVM/KNN classifier and MPEG-7 audio low-level descriptor”. In: The 2006 IEEE
international joint conference on neural network proceedings. IEEE. 2006, pp. 1731–
1735.

[16] Justin Salamon and Juan Pablo Bello. “Unsupervised feature learning for urban
sound classification”. In: 2015 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE. 2015, pp. 171–175.

[17] Karol J Piczak. “Environmental sound classification with convolutional neural
networks”. In: 2015 IEEE 25th International Workshop on Machine Learning for Sig-
nal Processing (MLSP). IEEE. 2015, pp. 1–6.

[18] Karol J. Piczak. ESC: Dataset for Environmental Sound Classification. Version V2.
2015. DOI: 10.7910/DVN/YDEPUT. URL: https://doi.org/10.7910/DVN/YDEPUT.

[19] URBANSOUND8K DATASET. URL: https://urbansounddataset.weebly.com/
urbansound8k.html.

[20] Zhichao Zhang et al. “Deep convolutional neural network with mixup for envi-
ronmental sound classification”. In: Chinese Conference on Pattern Recognition and
Computer Vision (PRCV). Springer. 2018, pp. 356–367.

[21] Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks for
large-scale image recognition”. In: arXiv preprint arXiv:1409.1556 (2014).

[22] Venkatesh Boddapati et al. “Classifying environmental sounds using image recog-
nition networks”. In: Procedia computer science 112 (2017), pp. 2048–2056.

[23] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classifica-
tion with deep convolutional neural networks”. In: Advances in neural information
processing systems. 2012, pp. 1097–1105.

[24] Christian Szegedy et al. “Going deeper with convolutions”. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2015, pp. 1–9.

[25] Sajjad Abdoli, Patrick Cardinal, and Alessandro Lameiras Koerich. “End-to-end
environmental sound classification using a 1D convolutional neural network”. In:
Expert Systems with Applications 136 (2019), pp. 252–263.

[26] Diederik P Kingma and Max Welling. “Auto-encoding variational bayes”. In:
arXiv preprint arXiv:1312.6114 (2013).

[27] J. Salamon, C. Jacoby, and J. P. Bello. “A Dataset and Taxonomy for Urban
Sound Research”. In: 22nd ACM International Conference on Multimedia (ACM-
MM’14). Orlando, FL, USA, 2014, pp. 1041–1044.

[28] freesound. URL: https://freesound.org/.
[29] Marvin HJ Gruber. Statistical digital signal processing and modeling. 1997.
[30] Eileen Daniel. “Noise and hearing loss: a review”. In: Journal of School Health 77.5

(2007), pp. 225–231.
[31] Stuart Rosen and Peter Howell. Signals and systems for speech and hearing. Vol. 29.

Brill, 2011.
[32] Kshitiz Kumar, Chanwoo Kim, and Richard M Stern. “Delta-spectral cepstral

coefficients for robust speech recognition”. In: 2011 IEEE international conference
on acoustics, speech and signal processing (ICASSP). IEEE. 2011, pp. 4784–4787.

61

https://doi.org/10.7910/DVN/YDEPUT
https://doi.org/10.7910/DVN/YDEPUT
https://urbansounddataset.weebly.com/urbansound8k.html
https://urbansounddataset.weebly.com/urbansound8k.html
https://freesound.org/

[33] Yoonchang Han and Kyogu Lee. “Acoustic scene classification using convolutional
neural network and multiple-width frequency-delta data augmentation”. In: arXiv
preprint arXiv:1607.02383 (2016).

[34] Justin Salamon and Juan Pablo Bello. “Deep convolutional neural networks and
data augmentation for environmental sound classification”. In: IEEE Signal Pro-
cessing Letters 24.3 (2017), pp. 279–283.

[35] Nitish Srivastava et al. “Dropout: a simple way to prevent neural networks from
overfitting”. In: The journal of machine learning research 15.1 (2014), pp. 1929–
1958.

[36] Carl Doersch. “Tutorial on variational autoencoders”. In: arXiv preprint
arXiv:1606.05908 (2016).

[37] Diederik P Kingma and Max Welling. “An introduction to variational autoen-
coders”. In: arXiv preprint arXiv:1906.02691 (2019).

[38] Geoffrey E Hinton and Richard S Zemel. “Autoencoders, minimum description
length and Helmholtz free energy”. In: Advances in neural information processing
systems. 1994, pp. 3–10.

[39] Yoshua Bengio, Aaron Courville, and Pascal Vincent. “Representation learning:
A review and new perspectives”. In: IEEE transactions on pattern analysis and
machine intelligence 35.8 (2013), pp. 1798–1828.

[40] Irina Higgins et al. “Towards a definition of disentangled representations”. In:
arXiv preprint arXiv:1812.02230 (2018).

[41] Irina Higgins et al. “beta-vae: Learning basic visual concepts with a constrained
variational framework”. In: (2016).

[42] Christopher P Burgess et al. “Understanding disentangling in β -VAE”. In: arXiv
preprint arXiv:1804.03599 (2018).

[43] Xi Chen et al. “Variational lossy autoencoder”. In: arXiv preprint arXiv:1611.02731
(2016).

[44] Shengjia Zhao, Jiaming Song, and Stefano Ermon. “Infovae: Information maxi-
mizing variational autoencoders”. In: arXiv preprint arXiv:1706.02262 (2017).

[45] Daniel T Braithwaite and W Bastiaan Kleijn. “Bounded information rate varia-
tional autoencoders”. In: arXiv preprint arXiv:1807.07306 (2018).

[46] Thomas M Cover and Joy A Thomas. Elements of information theory. John Wiley
& Sons, 2012.

[47] Arthur Gretton et al. “A kernel two-sample test”. In: Journal of Machine Learning
Research 13.Mar (2012), pp. 723–773.

[48] Brian McFee et al. “librosa: Audio and music signal analysis in python”. In:
Proceedings of the 14th python in science conference. Vol. 8. 2015, pp. 18–25.

[49] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimiza-
tion”. In: arXiv preprint arXiv:1412.6980 (2014).

62

Visualization of Data
Augmentation A
In this appendix, we visualize the audio samples that are applied with data augmentation,
which includes time stretch by factors of 0.81 and 1.23 and pitch shift by factors of 2 and
−2, which were discussed in Chapter 2. Comparing with the original log-Mel spectrograms
in Figure 2.5, the visualizations of time stretched samples by factors of 0.81 and 1.23 are
shown in Figure A.1 and A.2 respectively, the effect of pitch shift on audio sample by factors
of 2 and −2 are visualized in Figure A.3 and Figure A.4.

63

(a) Air conditioner time stretched by 0.81 (b) Car horn time stretched by 0.81

(c) Children playing time stretched by 0.81 (d) Dog bark time stretched by 0.81

(e) Drilling time stretched by 0.81 (f) Engine idling time stretched by 0.81

(g) Gun shot time stretched by 0.81 (h) Jackhammer time stretched by 0.81

(i) Siren time stretched by 0.81 (j) Street music time stretched by 0.81

Figure A.1: Visualization of audio time stretched by 0.81
64

(a) Air conditioner time stretched by 1.23 (b) Car horn time stretched by 1.23

(c) Children playing time stretched by 1.23 (d) Dog bark time stretched by 1.23

(e) Drilling time stretched by 1.23 (f) Engine idling time stretched by 1.23

(g) Gun shot time stretched by 1.23 (h) Jackhammer time stretched by 1.23

(i) Siren time stretched by 1.23 (j) Street music time stretched by 1.23

Figure A.2: visualization of audio time stretched by 1.23
65

(a) Air conditioner pitch shifted by 2 (b) Car horn pitch shifted by 2

(c) Children playing pitch shifted by 2 (d) Dog bark pitch shifted by 2

(e) Drilling pitch shifted by 2 (f) Engine idling pitch shifted by 2

(g) Gun shot pitch shifted by 2 (h) Jackhammer pitch shifted by 2

(i) siren (j) Street music pitch shifted by 2

Figure A.3: Visualization of of audio pitch shifted by 2
66

(a) Air conditioner pitch shifted by -2 (b) Car horn pitch shifted by -2

(c) Children playing pitch shifted by -2 (d) Dog bark pitch shifted by -2

(e) Drilling pitch shifted by -2 (f) Engine idling pitch shifted by -2

(g) Gun shot pitch shifted by -2 (h) Jackhammer pitch shifted by -2

(i) Siren pitch shifted by -2 (j) Street music pitch shifted by -2

Figure A.4: Visualization of audio pitch shifted by -2
67

Visualization of Generated
Spectrograms B
In this appendix, we visualize the generated log-Mel spectrograms by the autoencoder-based
models that achieved the best reconstruction performance and highest classification accuracy
in previous experiment. On both dimensions of 28-by-28 and 64-by-64, the BIR-VAE
with latent dimension of 128 and information rate of 256 achieved the highest SNR. The
visualization of generated 28-by-28-dimensional log-Mel spectrograms are shown in Figure
B.1 and 64-by-64-dimensional ones are shown in Figure B.2. The highest classification
accuracy was achieved by the β -VAE with 256 latent dimension and a β value of 10 using 64-
by-64 sized input, the generated 64-by-64-dimensional spectrograms are shown in Figure B.3

68

Figure B.1: Generated 28-by-28-dimensional log-Mel spectrogram

69

Figure B.2: Generated 64-by-64-dimensional log-Mel spectrogram

70

Figure B.3: Generated 64-by-64-dimensional log-Mel spectrogram

71

	Abstract
	Acknowledgments
	Introduction
	Motivations
	Related work
	Objectives
	Outline

	Data and Audio Feature
	Audio Datasets
	Audio Feature
	Waveform
	Spectrogram
	Mel spectrogram
	Delta feature
	Discussion

	Pre-processing
	Procedures
	Data augmentation

	Summary

	Neural Network Models
	Convolutional Neural Network
	Architecture
	Loss function
	Discussion

	Variational Autoencoders
	Background
	Architecture
	Loss Function
	Disentanglement and -variational autoencoder
	Bounded information rate variational autoencoder
	Discussion

	Summary

	Experimental Setups
	Pre-processing
	Convolutional neural network model
	Autoencoder based model
	Evaluation metrics
	Classification evaluation
	Reconstruction evaluation

	Summary

	Results
	Convolutional Neural Networks models
	Results
	Discussion

	Autoencoder-based models
	Variational Autoencoder and -Variational Autoencoder
	Bounded Information Rate Variational Autoencoder
	Visualizations of results
	Discussion

	Summary

	Conclusion and Future Work
	Conclusion
	Future work

	Visualization of Data Augmentation
	Visualization of Generated Spectrograms

