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NIRF: Detecting Cameras That Hide Behind Screen

Hanting Ye, Niels van der Kolk, Qing Wang
Delft University of Technology, The Netherlands

Abstract

Hidden spy cameras are a growing global threat to personal
privacy. With the emergence of translucent screen technol-
ogy, a new security risk has arisen: cameras can now hide
behind devices’ screens like TVs and monitors that are com-
mon in private places, e.g., hotel rooms. The screen’s covering
over the hidden camera not only makes the cameras behind it
unnoticeable to human eyes but also makes existing camera
detection methods less effective. Inspired by recent advances
in representing real-world scenes accurately using neural
networks, we propose Neural Infrared Reflectance Field (NIRF)
to learn the intricate optical properties of the screen and the
cameras hidden behind it. Through NIRF, we design a new
camera detection system by leveraging the unique reflective
properties of behind-screen cameras and screens. We evalu-
ate NIRF with thorough experiments on five smartphones.
Our NIRF archives over 90% detection rate and is robust to
different conditions, including varied backgrounds, ambient
light levels, screen protectors, and screen contents. Besides,
we conduct a field study by deploying 18 common spy cam-
eras behind a 65-inch translucent TV and recruiting 27 people
to compare NIRF with commercial hidden camera detectors.
NIRF achieves an 89.5% detection rate, significantly outper-
forming the best commercial hidden camera detector that
only has a 14.4% detection rate of behind-screen cameras.

CCS Concepts

« Human-centered computing — Mobile computing; «
Security and privacy — Privacy protections.
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Screen

Hidden camera

Figure 1: Illustration of the cameras hiding behind screens.

1 Introduction

Hidden spy cameras recording people in private spaces have
increasingly become a global problem. For instance, in South
Korea alone, a total of 5,541 hidden camera-related crimes
were reported in 2021 [14]. Locations such as Airbnb accom-
modations are particularly attractive to hackers for installing
these hidden cameras. A 2019 survey of rental accommoda-
tions revealed that 11% of visitors had actually discovered a
hidden camera during one of their stays [28].

When entering an unfamiliar room, people worried about
spy cameras often check devices like telephones, power sock-
ets, and smoke alarms for possible hidden cameras. However,
one crucial point has been overlooked: the screens, the main
interface for displaying information, are rarely considered
as a potential hiding spot for spy cameras. Screens are com-
monly found in hotel rooms and Airbnb rentals, as well as
in meeting rooms. It’s hard for people to imagine that a hid-
den camera could be placed behind a screen because the
screen can block the camera, making the camera useless.
However, recent advancements in translucent screen tech-
nology have made it possible to hide spy cameras behind
screens! Translucent screen has been gradually applied to
various electronic display devices, including but not limited
to smartphones, laptops [55], and TVs [26], to maximize the
screen-to-body ratio to improve the user experience. This
technology allows a small part of the device’s screen to be
made translucent, still allowing light to pass through and
reach the front camera placed behind/under the screen for
selfies. Though the screen is translucent and light can pass
through it, the front (selfie) camera placed behind the screen
is invisible to human eyes, as highlighted in [39, 42, 51]. This
reality creates a significant potential for behind-screen cam-
eras to become a new attack vector in spy camera crimes.
The screen’s cover makes the camera even less noticeable,
as the behind-screen camera cannot be seen whether the
screen is ON (displaying content) or OFF (in standby mode)
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[42, 51]. Combined with the small size of spy cameras—the
lens diameter is often just 1 mm [7, 44, 54]—a translucent
screen region only needs to be about 1 mm?. Furthermore,
public discussions and online forums have expressed grow-
ing concerns that this technology could be integrated not
only into smartphone screens but also into any other types
of screens, including TVs and monitors, potentially enabling
covert surveillance [24, 25]. This raises significant privacy
risks, as such hidden cameras could be deployed in sensitive
locations like hotel rooms or top-secret spaces, as shown in
Figure 1. Meanwhile, since people naturally face and look at
screens, a behind-screen hidden camera could capture more
private details than traditional hidden cameras. Therefore,
although this is currently a hypothetical attack, it is neces-
sary to proactively design behind-screen camera detection
tools to address this potential threat.

On the other hand, several hidden camera detection meth-
ods have been proposed to address the threat of unlawful
recording by traditional hidden cameras. One common tech-
nique involves analyzing wireless traffic generated by the
camera’s data transfer [11, 19, 27, 31, 46, 49]. However, a
camera hidden behind a screen could use wired connections
or store videos locally on memory cards, eliminating the
need for WiFi or 4G connections. Meanwhile, the screen pro-
vides ample space for wired connections or memory storage.
More importantly, this method can only detect the presence
of hidden cameras but not their exact locations. Other recent
studies have explored detecting leakage signals from camera
operations, such as thermal analysis [66] or electromagnetic
emanation [34], to locate hidden cameras. However, these
commonly used detection methods on the market are well-
known and effective only when cameras are active. Hackers
can easily bypass them by turning off the camera, making
it undetectable while the user checks for hidden cameras.
Hidden cameras can be remotely controlled or scheduled
to activate after a delay, enabling illegal recording—such as
one hour after the user enters the room, when they have
let their guard down. Many cameras on the market include
scheduling functionality that can be exploited for delayed
activation [15]. Therefore, the ideal solution would be to
detect hidden cameras, whether they are turned ON or OFF.

Recently, an interesting work successfully leveraged Time-
of-Flight (ToF) sensors, which are widely available in the com-
mercial market and used in modern smartphones, to locate
cameras hidden inside pre-identified suspicious objects [47]
based on the camera’s high-intensity retro-reflection. The
reason behind that is the camera lens must remain exposed
to capture light in order to record video. Consequently, a hid-
den camera has to reflect the light emitted by the ToF sensor.
Though interesting, a significant challenge arises when the
camera hides behind a translucent screen: the glossy surface
of the screen also generates high-intensity reflections, which
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significantly degrades the camera detection performance (cf.
Section 6). Thus, it is essential to design new approaches
that can precisely detect behind-screen cameras, regardless
of whether they are wired or wireless, powered ON or OFF.

Detecting cameras that hide behind screens is challenging.
Without the obstruction of a screen, the hidden camera has
already only been observable within a limited angle, specifi-
cally within a Field-of-View (FoV) cone projected from the
hidden camera. However, when the camera is hidden behind
the screen, the larger reflections from the screen (the screen
size is relatively larger) block the observation of tiny reflec-
tions from the camera (the camera size is relatively smaller).
This further narrows the already restricted observation angle,
making it much more difficult to detect behind-screen hidden
cameras. Thus, the first challenge posed by the screen reflec-
tions is where is the right position to observe the high-intensity
reflection from the hidden camera.

Furthermore, even if we are in the right position to observe
the high-intensity reflection from the hidden camera, the
high-intensity reflection from the screen is still there. We
can still see high-intensity reflections from the screen and
the behind-screen camera simultaneously. Then, the second
challenge is how can we accurately distinguish the reflection of
hidden behind-screen cameras from the noisy screen reflections.

The key to overcoming screen reflections lies in our ob-
servation that while the screen’s reflections shift with the
movement of the ToF sensor, the camera’s reflections remain
stationary. This makes the detection process highly depen-
dent on the sensor’s position. Inspired by recent advance-
ments in neural radiance fields, which have proven highly
effective in representing 3D scenes, we propose Neural In-
frared Reflectance Field (NIRF) to address the challenges posed
by complex screen reflections. NIRF is designed to learn the
intricate optical properties, such as the transmittance and
reflectance of objects like the screen and the hidden camera
behind it. In NIRF, we can resolve the challenges of where to
find and how to distinguish the hidden behind-screen camera
by predicting light reflected from both the screen and the
behind-screen camera from any observed positions.

However, although NIRF can capture the optical properties
of all objects in the scene, it represents them implicitly, i.e.,
we cannot explicitly control or isolate any specific object in
NIRF, such as the hidden camera. To obtain an image of a
particular object in NIRF, we need to render a ray through
the implicit scene, allowing it to interact with objects, and
then capture the reflected light to form an image—a process
known as ray tracing!. Therefore, the third challenge we face
is how to accurately identify the hidden behind-screen camera
in the implicit NIRF scene representation.

IRay tracing is a computer graphics technique used to simulate the path of
light through a scene to calculate shadows, reflections, etc., of objects [1].
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To address this challenge, we propose a two-stage detec-
tion method. In the first stage (coarse-grained), we observe
that there are double reflections, from both the screen and the
behind-screen hidden camera. Due to the extremely short
time difference between the double reflections, they are dif-
ficult to distinguish using the direct ToF sensor output. To
overcome this, we exploit the phase outputs of our NIRF to
detect the subtle depth difference between the screen and
behind-screen camera caused by the double reflections. This
allows us to search for suspicious camera locations in NIRF.
In the second stage (fine-grained), we use ray tracing to pin-
point hidden camera from all suspicious locations. As light
rays pass through both the screen and behind-screen cam-
era represented in NIRF, we observe a variation pattern in
the transmittance and reflectance. This pattern is consistent
regardless of the ray’s starting position or direction as long
as it passes through both the screen and the hidden camera.
This enables us to accurately pinpoint the hidden camera’s
location and filter out noise from screen reflections.

To the best of our knowledge, we are the first to iden-
tify the critical security risks posed by spy cameras hidden
behind screens. With all our design components presented
above, we implement NIRF using an off-the-shelf ToF sensor
and evaluate its performance and robustness on five state-of-
the-art full-screen smartphones. Our NIRF achieves over 90%
detection accuracy for behind-screen hidden cameras while
maintaining a false positive rate below 5%. Furthermore, we
conduct a field study by hiding 18 popular spy cameras with
different parameters (e.g., lens size ranging from 1 mm to 12
mm) behind a 65-inch translucent screen and recruiting 27
participants to compare our NIRF with three Commercial Off-
The-Shelf (COTS) hidden camera detectors and naked-eye
detection. In the field study, NIRF achieves an 89.5% behind-
screen camera detection rate, significantly outperforming
the best COTS hidden camera detector, which only yields a
14.4% detection rate of behind-screen cameras.

2 Background

Spy cameras (hidden behind translucent screen). There
is growing concern over the privacy risks posed by hidden
spy cameras in locations such as hotels and Airbnb rentals
[7, 12, 40, 52]. Spy cameras can be categorized as either (i) in-
conspicuous cameras, which are stealthily hidden in discreet
locations, or (ii) camouflaged cameras, which are disguised
as everyday objects like picture frames, smoke detectors, or
alarm clocks. The former could be easily detected by existing
tools on the market [2—4] or by some recent research efforts
[11, 31, 47]. However, the latter, camouflaged cameras, pose
a greater challenge due to their customizable nature. Hackers
can modify their size, shape, and placement to blend seam-
lessly into ordinary objects, making detection more difficult.
Recently, advancements in translucent screen technology
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have enabled the integration of cameras behind device screens
[62, 65]. These devices utilize a small translucent screen area
to cover the camera, enabling the translucent screen to dis-
play content while still allowing light to reach the camera
for photography [58]. The screen naturally acts as a cover,
making behind-screen camera act as a camouflaged cam-
era. This creates an opportunity for hackers to customize
TVs, conference monitors, and other screen-based devices for
surveillance by concealing spy cameras behind the screen.
Camera’s retro-reflections. Retro-reflection, also known
as “cat-eye reflection”, occurs when almost all incident light
is reflected directly back to its source. In a spy camera com-
posed of a lens and an image sensor, the lens gathers all
incident light, while the image sensor acts as a reflective
surface to form a retro-reflection system. The retro-reflected
light’s energy is significantly stronger than other ambient
diffuse reflections [29]. These reflections are clearly visible
within a limited Field of View (FoV). The best way to detect
these retro-reflections is to use a Time-of-Flight (ToF) sensor,
as adopted in [47], because the ToF sensor naturally includes
a light source that emits infrared light to illuminate the scene
and a camera that detects the reflected infrared light.
Neural Radiance Fields (NeRF). It was developed in [37]
to model a scene’s optical radiance field by training a fully
connected feedforward artificial neural network with a se-
ries of the scene’s images taken from different angles. NeRF
treats each image pixel as the result of ray tracing process,
which encapsulates the scene features such as object opacity,
transmittance, and reflectance of the optical radiance field.
Once trained on a few images, NeRF can predict the outcome
of ray tracing from any other directions and synthesize a
complete image from a given viewpoint. NeRF has achieved
remarkable success in view synthesis and 3D model render-
ing [6], immersive street views [36], facial reconstruction
[17], human body modeling [41], and channel modeling [68].

3 When Cameras Hide Behind The
Translucent Screen

In this section, we describe what we encounter when detect-
ing behind-screen hidden cameras using their retro-reflections.
Although a ToF sensor can still capture the retro-reflections
from behind-screen cameras, the reflections from the translu-
cent screen—which ‘covers’ the camera—challenge identify-
ing the correct reflections we need to detect hidden cameras.

3.1 Reflectivity of the Screen

As a glossy surface, the screen emits a strong specular reflec-
tion in response to the light emitted by the ToF sensor. When
this strong reflection is captured by the ToF sensor, a complex
reflection pattern of the screen is observed. This pattern is in-
fluenced by the shape and arrangement of the screen’s pixels
[8]. As shown in Figure 2, the detected reflection patterns of
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Figure 2: Reflection patterns of various smartphone models.
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ToF
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ToF
Figure 3: Illustration of the screen’s effect on the camera’s
optical reflection FoV. The orange area is the screen’s specular
reflection FoV, while the yellow area is the behind-screen
camera’s reflection FoV. The screen’s ‘covering’ on the camera
greatly reduces the camera’s original reflection FoV.

different smartphone screens vary. The retro-reflection from
the hidden camera is usually very small, typically occupying
no more than 9 pixels [47]. The small, intense reflections
at the edges of the reflection patterns can produce spurious
reflections, leading to potential misjudgments.

3.2 Effect on the Reflection Field-of-View

The strong specular screen reflection also significantly affects
the reflection Field-of-View (FoV) of behind-screen cameras.
Without the ‘covering’ of the screen, the camera’s reflections
can be captured by the ToF sensor within a cone-shaped area.
However, for behind-screen cameras (the screen ‘covers’ the
cameras), there is a cone centered around the 0° angle where
specular reflections dominate, making a camera’s reflections
indistinguishable. As shown in Figure 3, the screen’s specular
reflection completely obscures the camera’s retro-reflection
in the orange area, making it invisible. Only in the yellow
area—the cone’s side lobes, called visible region—can the cam-
era’s tiny reflection be detected. Finding the visible region
in various real-life scenarios is challenging without prior
knowledge of the camera’s location.

3.3 Key Observations for Camera Detection

In the presence of screen reflections, it is crucial to accurately
identify which reflection originates from the behind-screen
hidden camera rather than from the screen itself. Below, we
present our key observations that can be exploited to identify
the correct reflection from the behind-screen hidden camera.
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Figure 4: Double reflections: the reflections from different
parts of the screen and the behind-screen hidden camera.
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Figure 5: Observations: (a) The phase output can be used to ob-
serve the depth difference caused by double reflections; (b) As
the ToF sensor moves, the position of the behind-screen cam-
era’s retro-reflections remains static relative to the screen,
while the screen’s specular reflections change dynamically.

Observation 1: Double reflections. Except for the specular
screen reflection, the ToF sensor also detects double reflec-
tions from the unique sandwich structure of the translucent
screen and the hidden camera behind it, as shown in Figure
4. One portion of the incident light is retro-reflected from
the surface of the translucent screen, while the other portion
passes through the screen and reaches the hidden camera.
This light is then converged by its lens and fully reflected
back from its image sensor surface to the ToF sensor. These
double reflections allow the ToF sensor to detect tiny depth
differences in the final depth map, representing the distance
between the screen and the hidden camera. However, these
subtle differences are often hard to observe in the ToF’s depth
map. Inspired by ToF-based texture recovery work [60, 61],
we can utilize the phase output of the ToF to reveal clear
depth differences, as shown in Figure 5(a).

Observation 2: Retro-reflection consistency. When the ToF
sensor moves relative to the screen, the specular reflection
from the screen shifts, while the retro-reflection from the
hidden camera remains fixed, as shown in Figure 5(b). This
retro-reflection consistency helps identify the camera’s vis-
ible region during ToF movement. In the visible region (cf.
Section 3.2), regardless of the ToF sensor’s movement, the
retro-reflection of the hidden camera stays constant. To ef-
fectively track and verify this retro-reflection consistency,
users must capture these reflections from multiple perspec-
tives when they temporarily appear within visible regions.
However, it is challenging since users may not know when
the ToF is within the camera’s visible region. In real-world



NIRF: Detecting Cameras That Hide Behind Screen

scenarios, the size of the visible regions is significantly af-
fected by the screen’s reflectivity, as well as the angle and
distance of the ToF sensor relative to the screen.

Recently, many works on advanced Neural Radiance Fields
(NeRF) have relied on RGB and depth images to enhance
scene reconstruction performance[5, 13, 32]. Instead of us-
ing both RGB and depth images, we propose using only phase
data captured by a ToF sensor to address the aforementioned
camera detection-specific challenges: the infrared light emit-
ted by a ToF sensor is used to construct a Neural Infrared
Reflectance Fields (NIRF), which generates a sufficiently ac-
curate observation of the target screen surfaces. NIRF learns
optical properties, such as transmittance and reflectance,
of objects like the screen and the hidden camera behind it.
Through our NIRF, we can predict the infrared light reflected
by the screen and the behind-screen camera, as captured by
the ToF sensor at any position and viewpoint, even unseen
ones. This capability will enable us to infer the positions of
behind-screen hidden cameras based on the observation we
have presented in this subsection.

4 Modelling The NIRF

To model the Neural Infrared Reflectance Fields (NIRF), we
first discretize the screen scene into a finite number of small
3D voxels. Given the ToF sensor’s position and direction
(i.e., shooting angle), these voxels are used to re-render the
images that would be captured from the corresponding po-
sition and direction. A ToF sensor is combined with an IR
light source and an IR camera. and movements of the ToF
sensor will cause changes in lighting conditions. For this, we
then derive in Section 4.1 the scene’s appearance in response
to allocating a point light source with the ToF sensor using
the inverse square law of light propagation. Meanwhile, the
ToF sensor has multiple successive windows for receiving
reflected light and uses the phase shift of the reflected light
to calculate the distance. As mentioned in Observation 1,
we need to utilize phase outputs from these windows to
learn rich-detailed optical properties. Therefore, we derive
the phase output of ToF in Section 4.2 and design a new
neural phase rendering procedure that models phase out-
puts captured by a ToF sensor in Section 4.3. Lastly, since
ToF changes its position over time during the actual camera
detection process, we integrate a time variable to facilitate
better training of the time-dependent network (Section 4.4).

4.1 Infrared Light Source

A ToF sensor responds only to the light from its own IR
point source and not to any ambient illumination. For an IR
light source in the ToF sensor positioned at o, each voxel is
illuminated from a single direction. Since the IR camera that
acts as the receiver is collocated with the IR light source in
the ToF sensor, as shown in Figure 6(a), the incident radiance
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from the incident direction w; at a position o; = 0+ w;s (i.e.,
a voxel) along the ray that meets the inverse square law of
light fall-off is given by

I 05— 0
o ol W
where I represents the emitted intensity of the IR light source,
and () is the Dirac distribution describing light coming
from only a single direction.

Li(os, w;) = wi),

llos — oll?

4.2 ToF Phase Output

The IR light source sends a modulated light signal into the
environment, and a ToF sensor measures the time it takes for
the light to reflect back. The measurement of the ToF sensor
can be expressed as h(t) = fOT f(r—t)g(r)dr, where h(t) rep-
resents a convolution process that describes the ToF sensor’s
response to the light it emits. Here, () = % sin(2zft) + %
is the modulated temporally-varying intensity function of
the light source with modulation frequency f, and g(t) =
sin(2zft + ¢) is the ToF exposure response function. To
measure the phase shift between the incident light and its
response in order to calculate the time-of-flight, f(t) and
g(t) are periodic functions with the same period T. Given
the constant speed of light c, the temporal information is de-
termined by the traveled path length s and derived as ¢ = s/c.
After capturing different phase offsets {0, /2, 7, 37/2}, the
measurements are:

top(s) = (A(0)—h(m)) i (h (3)-» (37”)) = exp (iz’zfs). )

Therefore, the response at every pixel is the phase output 1
(the phase offset from 0 to 7) and phase output 2 (the phase
offset from /2 to 37/2) of a voxel in the scene.

4.3 Neural Phase Rendering
Given the ToF pose, a phase output is generated by trac-

ing rays through the object and computing the reflectance
observed along the ray as follows:

Sf
L(o,we) = / 0(03)Le (05, We) ot (2llos — oll)ds
Sn

/ :f o(05)

where L. (05, W) = /S b(o,w;, w,)L;(0s, w;)dw; represents
the IR light radiated from a voxel in a direction w,. Here,
S is the unit sphere of incident directions. b(0s, w;, W,) is
the bidirectional reflectance distribution function [1, 9] that
describes how much light is reflected into each outgoing
direction w, from each incoming direction w; at voxel o;.
In the case of retro-reflection from a translucent screen and

Ty (0, 05)*b(0, w,)I exp (w)

= ds, (3)

llos — of?

Ly (0s,we)

behind-screen camera, where w, = —w;, as shown in Figure
6(a). L, (os, w,) represents the reflectance from voxel o in



ACM MobiCom ’25, November 4-8, 2025, Hong Kong, China

Infrared reflectance field F

ToF position

Ray direction

o(t))

Time control

o(t,)

(a) (b) -

Hanting Ye, Niels van der Kolk, Qing Wang

= 3

Qutput

Neural phase rendering

T e
Reflectance

Opacity

i

‘ (c)

Figure 6: An overview of the representation and rendering procedure of our proposed NIRF (Neural Infrared Reflectance Field):
(a) Sampling opacity and reflectance at various points along the ToF rays in §4.1; (b) Feeding ToF position, ray direction, and
time control into a network to learn the infrared reflectance fields for scene representation, producing the reflectance and
opacity distribution along the ray in §4.2 and §4.3; (c) Ray tracing through the learned field generates a phase output in §4.4.

direction w,. T,(0,05) = exp (— fsi o(ot)dt) describes the
accumulated transmittance for light progragating from posi-
tion o to o, for near and far bounds t € [sy,s¢]. As shown
in Figure 6(b), L, characterizes the visual appearance of dif-
ferent materials (e.g., shiny or matte). (o) is the opacity
function, which controls the opacity at voxel os, and large
values of o represent opaque regions, while small values
represent transparent ones. NIRF using phases provides a
better way to model the complex reflectance response in sce-
narios involving screens and cameras hidden behind them,
as mentioned in Section 3.3.

4.4 Training the NIRF Network

Following NeRF, we build an MLP-based (i.e., fully connected
feedforward artificial neural network) NIRF network, de-
noted as F, to learn the complex reflectance L, and opacity
of objects (e.g., screens and behind-screen hidden cameras)
within the entire infrared reflectance field. The developed
network F is a function of ToF sensor position o and ray di-
rection w,, and it outputs both the opacity o(os) and the re-
flectance L, (05, W) of a voxel o in light ray passing through
o in direction w,. These two important optical properties
functions can be used to render phase outputs of a scene
from any given ToF position and direction, as shown in Fig-
ure 6(c). Further, we follow [33] to add a temporal variable ¢
which is optimized per frame to predict a position- and time-
dependent blending weight o(7) to blend the NIRF network’s
outputs L(o, w,) . This allows us to control the network’s
output to vary with time. Given a set of phase measurements
for a scene captured by a ToF sensor at different time in-
stances, we use NIRF to sample a set of ToF rays, render the
phase output, and minimize the L2 loss between the rendered
and measured phases. To train our NIRF network F, we must
obtain the ToF sensor poses (i.e., ToF sensor position and
ray direction). Typically, input poses for training are recov-
ered using multiple captured RGB images [48]. However, this
method cannot be directly applied to ToF sensor poses, as
any recovered ToF poses outside the depth measurement
range [s,, S¢] cannot be used in the training process. Given

625

that the ToF phase output contains depth information that
can assist in determining the ToF pose [16, 59], we optimize
ToF poses from scratch within the training loop.

5 Detecting Behind-Screen Camera
5.1 Screen Detection

The learned NIRF in Section 4 is an implicit neural repre-
sentation of a scene containing screens and behind-screen
cameras. As a result, we cannot explicitly control the position
of the screen within the model. However, devices equipped
with screens can be installed in various environments and
recorded by the ToF sensor from different angles or distances
by users in real-life scenarios. To address this, we detect the
screen within the phase output of the NIRF using the Seg-
ment Anything Model (SAM) [45]. SAM is a promptable
model based on zero-shot learning, meaning it can predict
masks for objects belonging to classes that were not seen
during training. As illustrated in Figure 7(a), screen masks
are generated for images captured by a ToF sensor at differ-
ent positions and angles. At the start of the screen detection
stage, the user indicates that the screen in the scene needs to
be detected, and this selection is input into SAM as prompts.
In the subsequent stages, the screen masks corresponding
to these objects are tracked, and the presence of cameras
hidden behind the screen is detected within the masked area.

5.2 Coarse-Grained Camera Detection

As discussed in Section 3.2, the FoV of a hidden camera
behind the screen is limited and can often only be observed
within a narrow range, named as visible regions. Therefore,
we need to conduct a coarse-grained search in obtained NIRF
to locate the suspicious positions that may contain the hidden
camera. We use the time variable 7 to control the movement
of the ToF sensor until it is positioned within a visible region.

How to know ToF sensor is in the visible region? This can
be determined by the slight depth difference between the
screen and the camera behind it (as discussed in Observation
11in Section 3.3). As illustrated in Figure 7(b), there is a phase
difference between phase output 1 and phase output 2 on the
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times in §5.1; (b) The obtained screen output is converted
acteristics of the hidden camera in coarse-grained detection
applied to eliminate false positives caused by noise.

screen, caused by the depth difference between the screen
and the behind-screen camera. Given the extremely small
size of the translucent screen region and the small size of
the hidden camera, the detected blobs are typically very
small. This small size feature further aids in identifying the
visible regions. Using these observations, we superimpose
the difference between phase output 1 and 2, generated at
each time instance 7, to identify the suspicious location of
the behind-screen camera on the screen.

Reflection grid. To facilitate the coarse-grained search and
localization of the visible region, we propose a reflection
grid, which tracks the position of reflections. As shown in
Figure 7(c), this grid is based on the screen detected in Sec-
tion 5.1. The aspect ratio of the screen should match that
of the grid. The screen mask generated via SAM, with the
largest squareness, will determine the grid’s aspect ratio.
This square screen mask, with a length U and width V, is
divided into M X N cells, where M is the number of rows
and N is the number of columns. The dimensions of each
cell are U/M x V /N, and each cell is denoted as c; ; where i
is the row and j is the column. However, a challenge arises
in mapping the detected screen mask to this grid. Since the
output of NIRF is generated from various views, the shape
of the detected screen mask may be distorted and deviate
from the grid’s rectangular structure. To address this, we
employ homography decomposition [35], denoted as My. Mp,
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describes the spatial relationship between multiple views of
the same object and is used to map the screen detected from
different viewing angles to a standard reflection grid.

We consider a reflection to be detected only when all pix-
els of the detected reflection blob fall within the cell. This
approach is necessary because the retro-reflection from the
translucent screen and the camera behind it is very small.
This method helps avoid large noise caused by specular re-
flections from the screen. Once the reflections have been
localized, the location of a reflection found on the screen,
cij = 1,size(MyL) < % X %, can be translated to a location
inside the cell using the computed transformation matrix.

5.3 Fine-Grained Camera Detection

After identifying all suspicious camera positions on the screen,
there are still a lot of false positives arise from the leakage

of the strong screen reflections, as shown in Figure 7(c).

Therefore, we need a fine-grained camera detection stage to

remove all noises and find the true camera hidden behind

the screen. This stage is based on two key observations:

o Consistent retro-reflection position across different ToF po-
sitions: The distinctive behavior of a retro-reflection from
the translucent screen and camera behind it is that the
reflections remain in the same location on the screen.
These reflections should be found within the same cell
in the reflection grid, regardless of how the ToF sensor’s
position is moved within the NIRF.

o Consistent optical properties across ray tracing in differ-
ent directions: Even when ToF sensors at different loca-
tions emit rays at varying shooting angles through the
translucent screen and the camera behind it, consistent
optical properties, such as transmittance and reflectance,
should be observed. Specifically, the accumulated trans-
mittance of the rays will first decrease slightly when
passing through the translucent screen and then decrease
further when passing through the screen and reaching
the camera. From a reflectance standpoint, when the rays
pass through the translucent screen, a small peak will be
detected due to the screen’s retro-reflection, and when
the rays reach the camera, a larger peak will be detected
due to the stronger retro-reflection of the hidden camera.

Based on the first observation, we generate multiple cam-
era poses around the searched time 7 from the coarse-grained
detection stage, as shown in Figure 8(a). From each camera
pose, we emit light rays from all suspicious areas to sample
reflection points along the ray, as shown in Figure 8(b). Us-
ing the second observation, we look for consistency in the
optical properties of rays generated from different directions.
As shown in Figure 8(c), for transmittance, we expect two
drops: one after encountering the screen and another after
passing through the behind-screen camera. For reflectance,
we expect a small peak from the screen reflection, followed
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Figure 8: Multi-view ray tracing process: (a) The ToF sensor generates multiple ToF poses, representing multi-view observations
within the visible region of the behind-screen camera; (b) Ray tracing is performed on the suspicious cell, where a sampled
ray is emitted from the ToF sensor and passes through the suspicious cell; (c) The transmittance and reflectance calculated
at the sampling points along the ray’s path are used to verify the existence of the behind-screen camera. Here, s represents
the ray distance—smaller s indicates a sampling point closer to the ToF light source, while larger s indicates a sampling point
farther away. As the ray passes through the translucent screen and reaches the behind-screen camera, significant changes in

transmittance and reflectance can be observed.

by a larger peak from the behind-screen hidden camera re-
flection. If these patterns are observed, it indicates that the
ray from this pose has successfully detected the spy camera.
To confirm that a suspicious cell indeed contains a hidden
camera and not a random error, we rely on the fact that there
will always be a visible region where the ToF sensor can fully
capture the camera’s retro-reflections, as the ToF sensor is
inside the behind-screen camera’s FoV. For the set of frames
captured within the visible region of the behind-screen cam-
era, the corresponding reflection cell should be consistent
across rays generated from all poses in multiple time slots
7, showing the patterns of the same reflectance and trans-
mittance. Therefore, we conclude that a camera is hidden in
this cell if more than half of the times corresponding to the
cell identified in Section 5.2 show reflection consistency.

6 Performance Evaluation
6.1 Evaluation Setup

The used behind-screen hidden cameras. We use exist-
ing behind-screen cameras on five full-screen smartphones
(ZTE AXON20/30/40, Xiaomi MIX4, and Samsung Fold4) as
our targeted behind-screen hidden cameras, as shown in Fig-
ure 9(a). All these smartphones feature a translucent screen
region that conceals the front camera, making it difficult to
detect. Each translucent screen has a high resolution of 400
pixels per inch. All the cameras can capture high-resolution
images exceeding 10 megapixels (MP) and have wide-angle
lenses offering a FoV between 60 and 90 degrees.
Time-of-Flight (ToF) sensor. We select the Pieye Nim-
bus 3D ToF sensor [43] as the hidden screen camera detec-
tor. As shown in Figure 9(b), this sensor has a resolution
of 352%288, comparable to the ToF sensors found in mod-
ern smartphones. Both the high dynamic range mode and
exposure time on this ToF sensor are set to be automatic.
Implementation. We follow the setup of previous work
[47] to let the ToF sensor move around 60 cm away from
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the screen but within a 120-degree FoV range in front of
the screen to record phase data, as shown in Figure 10(c).
We extract 120 frames from the front-scanned recordings
at intervals of 3 frames, where 100 frames are randomly
selected for training, and the remaining 20 frames are for
testing the NIRF model.? After capturing the image, the Pi-
eye Nimbus 3D ToF sensor uploads scanned images to the
server, where an NVIDIA A10 GPU is used for training and
detecting the behind-screen camera. 64 points are sampled
on each ray with a configuration similar to NeRF [37]. The
Adam optimizer is adapted to optimize the weights of NIRF
with a learning rate of 0.001. After 5000 iterations, we halve
the learning rate. Other hyper-parameters remain at default
values (e.g., f1 = 0.9, 2 = 0.999, and ¢ = 0.9).

Metrics. We use two metrics in the evaluation: (1) Detec-
tion rate: A successful detection of the behind-screen camera
refers to when a method accurately identifies the presence of
a hidden camera and correctly pinpoints its location, match-
ing the actual position of the behind-screen camera. This is
also known as a True Positive. The detection rate refers to
the percentage of successful detections within a given set
of measurements, which ideally should be 100%; (2) False
positive: A false positive arises when the system incorrectly
identifies a location on the screen as containing a camera,
but this location does not correspond to the actual position
of the behind-screen camera. The false positive rate refers
to the percentage of false positives among all outputs gener-
ated by the system, with an ideal target of 0%. This metric
is particularly critical in hidden camera detection, as false
alarms not only waste the user’s time and effort but also
undermine the credibility of the detection method.

2We observed that using fewer training inputs requires more iterations to
reach the same rendering performance but may miss finer details, which is
also aligned with recent studies [22]. Given that the training loop for NIRF
is nearly the same time regardless of the number of training images, we
opted for 100 training frames to ensure a comprehensive NIRF.
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We compare the performance of two solutions: (1) Our
NIRF: As detailed in the previous sections, our solution lever-
ages infrared-based ToF sensor captures to construct a neural
infrared reflectance field. By designing both coarse-grained
and fine-grained stages, we can detect the camera hidden
behind the translucent screen based on the principle of ray
tracing within the constructed neural infrared reflectance
field; (2) Combined filter: This approach also uses the ToF
output but applies only the conventional combined filter
scheme to reduce noise from screen reflections [47].

6.2 Preliminary Evaluation

We test NIRF across different smartphone models to assess
its performance, using five different smartphones (see Figure
9(a)). As illustrated in Figure 10(a), the detection rate of our
NIRF exceeds 90%. The combined filter solution, however,
produces varying results depending on the specific reflection
patterns of each screen. The detection rate is above 80% on
the AXON40, but it is lower on the other four smartphones,
with the Fold4 achieving a detection rate of less than 20%.
Also, our NIRF demonstrates an extremely low false posi-
tive rate across different devices, thanks to the verification
of the screen’s reflective properties and the behind-screen
camera using the neural infrared reflectance field (as shown
in Figure 10(b)). On the other hand, the combined filter gen-
erally results in a false positive rate exceeding 10%. This
occurs because there is significant noise from various reflec-
tion patterns, and a simple combined filter cannot effectively
eliminate all noise from these complex patterns. As shown in
Figure 2, specular reflection patterns from the ZTE AXON30
and AXON20 have strong, wide vertical components that in-
terfere more than those from other smartphones, thus often
leading to false identification as camera reflections. Mean-
while, Samsung Fold4 and Xiaomi MIX4 exhibit larger and
stronger reflection patterns compared to ZTE AXON40, re-
sulting in higher false positives.

6.3 Ablation Study

In this section, we evaluate the effectiveness of two designed
stages, i.e., the first coarse-grained stage (S1), and the second
fine-grained stage (S2), for behind-screen camera detection
based on AXON40 smartphone. The results are shown in Fig-
ure 11. We observe that the performance of NIRF degrades

(b) The Nimbus ToF (c) Top view of ToF
sensor scan range
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Figure 10: Performance under different smartphones.

when either S1 or S2 is removed, indicating that both com-
ponents contribute significantly to camera detection. Specif-
ically, without S1, the detection rate drops significantly to
below 20% because most observations in the NIRF field fail
to detect the camera’s presence due to the limited visibil-
ity of the behind-screen camera. Without S2, although the
camera’s presence may still be detected, the output is accom-
panied by a large number of false positives (>80%) caused by
screen reflections, which can severely affect user judgment.

6.4 Robustness Evaluation

Next, we evaluate NIRF’s robustness performance in detect-
ing behind-screen hidden cameras under various conditions.
Impact of background. Considering that the screens
are often placed in different environments where the back-
ground wall may be built with various materials, we evaluate
the performance of NIRF under different wall materials like
paper, wood, steel, cement, and glass, as shown in Figure 14.
The evaluation results are presented in Figure 12(a). We can
observe that the hidden camera detection rate of our NIRF
remains above 80% across different wall materials. In con-
trast, the combined filter method shows a detection rate of
less than 40% under cement and glass walls due to the more
complex reflections these materials introduce. Furthermore,
the false positive rate of our NIRF stays below 5% across all
wall materials, while the combined filter method results in a
false positive rate exceeding 10%, as shown in Figure 12(b).
Impact of ambient light. We also evaluate the robust-
ness of NIRF under different ambient light conditions: (1)
Darkness (light intensity: ~5 lux), (2) Low light (150 lux), (3)
Medium light (=550 lux), and (4) Bright light (on a sunny day,
~2800 lux). The evaluation results are shown in Figure 13.
Our NIRF can successfully detect the behind-screen hidden
camera with almost a 100% detection rate (Figure 13(a)) re-
gardless of the ambient light conditions, and the false posi-
tive rate is below 3% (Figure 13(b)). This is mainly because
NIRF exploits infrared light for camera detection, which is
resilient to the changes in ambient light. As a comparison,
the combined filter shows unstable filtering performance,
leading to degraded detection under certain ambient lighting
conditions, and the false positive rate can reach up to 20%.
Impact of screen protector. We further evaluate the ro-
bustness performance of NIRF when a screen uses different
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protectors, as shown in Figure 15. We consider three repre-
sentative types of screen protectors: (1) Normal; (2) Anti-blue,
which reduces the blue light to protect users’ eyes; and (3)
Privacy-preserving, which obscures the screen’s displayed
contents when viewed from angles exceeding a certain field
of view. We also consider screen protectors made from differ-
ent materials — plastic and glass — as they have different light
reflection properties. The evaluation results are given in Fig-
ure 16. We can easily observe that despite the changes in the
screen’s reflection patterns caused by different screen protec-
tors, our NIRF can reliably detect the behind-screen hidden
camera with high detection rates and low false positive rates.
However, the compared combined filter method struggles
with interference caused by various reflection patterns in-
troduced by the screen protector, leading to much lower
detection rates and much higher false positive rates. Mean-
while, the unstable performance arises because filter-based
methods cannot consistently isolate camera retroreflection
from different screen reflection patterns. High-frequency
noise at the screen reflection’s wide edges increases false
positives, further contributing to instability.

Impact of screen content. We also evaluate the per-
formance of NIRF in a very challenging scenario when the
screen displays different contents. We consider five scenar-
ios, as shown in Figure 17 and described below: (1) Screen
displaying videos, and (2) Static screen content with different
colors displayed on the screen where the camera is hidden
behind. The screen’s brightness is set to 100% to maximize
the potential interference. The evaluation results are shown
in Figure 18, demonstrating the superior robust performance
of NIRF over the combined filter method in detecting hidden
behind-screen cameras under different screen contents.
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7 Field Study: Evaluation with a 65-inch
Translucent Screen

To further evaluate NIRF’s performance with real-world set-
tings, we recruit 27 participants to conduct a field study using
a 65-inch translucent screen and 18 commodity spy cameras.

7.1 Evaluation Setup

Used cameras and placement. We select the most popular
18 spy cameras that are available on Amazon. These cameras
are widely used in surveillance systems [18], popular prod-
ucts [23], or DIY spy cameras [21]. These selected cameras
are shown in Figure 19; they have different attributes such
as optical properties, connectivity, and data storage capac-
ity. Specifically, @ and @ are wireless cameras, while other
cameras only have wired connections. In the evaluation, we
randomly hide these cameras behind a 65-inch translucent
screen built by VideowindoW [57] that has great potential
to be used as TV, conference monitors, and displays in smart
home applications [53]. The placement of the 18 spy cameras
behind the translucent screen is shown in Figure 20. With
each camera hidden behind the screen, human eyes cannot
locate them when standing before the screen.

Baselines: Commercial Off-The-Shelf (COTS) camera
detectors. We choose three COTS detectors as the baselines:
a K18 detector, a T1 detector, and an X17 detector, as shown
in Figure 20. They all are equipped with red LEDs to perform
camera detection (referring as “lighting mode”). In addition,
T1 and K18 have one more antenna and feature a Received
Signal Strength Indicator (RSSI) mode. Detectors in the light-
ing mode detect reflections from cameras; in RSSI mode,
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Figure 18: Performance under different screen contents.

detectors keep beeping when the RSSI exceeds a certain
threshold at a specific distance from the cameras.

Pipeline of the Field Study. We conduct a field study
to assess the effectiveness of our NIRF and the three COTS
hidden camera detectors. We recruited 27 participants from
our university (16 females and 11 males, aged between 22
and 31) through our university mailing lists, social networks,
and advertising boards in our department building®. The field
study was conducted in a laboratory setting. Participants
visited the laboratory either during the daytime or at night.
We controlled the amount of natural light by opening or clos-
ing windows and adjusted the intensity of artificial ceiling
lighting based on each participant’s preference during the
field study. After the participants are trained on how to use
these detectors and our NIRF, they are asked to find the spy
cameras hidden behind the screen. Emulating the typical
process of detecting hidden cameras in unfamiliar areas such
as hotel rooms, the experiment is divided into five stages:
Stage 1: Once entering the area, participants are given 5 min
to inspect the entire screen with their naked eyes and asked
if they believe any spy cameras are hidden behind. If they do,
they point out the suspected camera locations. All cameras
are active for half the time and inactive for the other half.
Stage 2: We deactivate all 18 spy cameras. Participants are
taught how to use the detectors for the task of “Find sus-
picious hidden cameras behind the 65-inch translucent TV
within 15 min.” They are unaware of the number of hid-
den spy cameras placed in the room. The experiment begins
once the participant is familiar with the detection process.
Participants use the X17, T1, and K18 detectors in order of
increasing functional complexity, with a maximum of 5 min
per device. After using each detector, they report if they de-
tect hidden cameras behind the screen; if so, annotate the
cameras’ locations.

Stage 3: We activate cameras ®-@ and alternately activate
the wireless cameras @ and @), ensuring each group (camera
@ active, camera () active, both cameras active) appears nine

3The user study is approved by our Institutional Review Board (IRB).
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times throughout the entire experiment. Each participant
reenters the room and uses the detectors to inspect the screen
for 15 minutes. After using each detector, they report any
detected hidden spy cameras and annotate their locations.
Stage 4: With all 18 cameras either activated or deactivated,
participants use our designed NIRF to build a neural re-
flectance field to detect the hidden-behind-screen cameras.
Stage 5: Participants finally describe their use experience
and rate the utility of the detectors and our NIRF. All the
recordings of the behind-screen cameras are permanently
deleted after the experiment.

7.2 Evaluation Results

The evaluation metrics we use include the detection rate, cal-
culated as the average detection rate, the number of correct
detections for each camera, false positives, and utility.

Average detection rate. The results are shown in Fig-
ure 21. When using only the naked eyes, the cameras hidden
behind the screen cannot be detected by all participants, re-
gardless of whether the cameras are ON or OFF. When the
cameras are OFF, the average detection rates of X17, T1, and
K18 are extremely low, with K18 achieving the highest rate
at 9.7%. This low detection rate is due to the screen’s strong
reflective characteristics and low light transmittance, obscur-
ing the weak reflections from the cameras behind the screen
when using the COTS detectors. When the cameras are ON,
the average detection rate of T1 increases from 0 to 6%, while
K18’s rate slightly improves to 14.4%. Despite this increase,
the overall average detection rate remains low, primarily
because only cameras @ and @ have wireless connections.

We also observe an interesting phenomenon: the screen
significantly attenuates the wireless signals, making it difficult
for the detectors to detect changes in the RSSI even when the
antenna touches the front of the screen. Despite the screen be-
ing only one centimeter thick, this short distance is enough
for the screen to attenuate the wireless signals significantly.
However, when the detectors are moved behind the screen
and closer to cameras @ or (@, it continuously beeps, making
these cameras easier to locate. As a comparison, our NIRF
effectively detects spy cameras regardless of their connectiv-
ity type and ON/OFF states. We further illustrate the correct
detections for each hidden spy camera in Figure 22. While
the camera parameters and behind-screen positions do in-
fluence NIRF’s performance, the overall average detection
rate is 89.5%, which is substantially higher than those of the
COTS detectors and naked-eye observation.

We further explore the relationship between the number
of activated wireless cameras and the average detection rate.
The evaluation results are shown in Figure 23. When only
one wireless camera is activated, the average detection rates
of K18 and T1 stay below 20%, though K18 performs better
due to its higher sensitivity. When both wireless cameras
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Spy camera ID @ ® ® ) ® ® D ® ®
Resolution 2MP 2MP 12MP | 12MP | 2MP | 2MP | 2MP | 2MP | 5MP
Lens diameter (mm) 10 9 4 3 1 12 3 1 1
Field of view (°) 140 150 140 150 NA 160 65 63 60
Connectivity Wireless | Wireless | Wire | Wire | Wire | Wire | Wire | Wire | Wire
Storage (TF card) 128G 128G 32G 32G 32G | 64G | 64G 64G 64G
Spy camera ID © (&) @ (&) @ (&) ©® ) (&)
Resolution 5MP 2MP 5MP | 5MP | 2MP | 2MP | 8MP | 12MP | 12MP
Lens diameter (mm) 1 10 1 9 1 1 1 3 5
Field of view (°) 60 160 63 160 78 78 62 75 120
Connectivity Wire Wire Wire | Wire | Wire | Wire | Wire | Wire | Wire
Storage (TF card) 64G 64G 64G | 64G | 64G | 64G | 64G | 64G | 64G

Im

Figure 20: Setup for the user study: (left) locations (front view)
of the spy cameras placed behind the translucent TV; (right)
baseline off-the-shelf camera detectors.

@ and @ are activated simultaneously, the increased signal
activity further boosts the average detection rate, with K18’s
detection rate rising to 66.7%. Notably, our NIRF is not af-
fected by the number of the activated cameras, consistently
achieving an average detection rate above 80%.

False positive. The results are shown in Table 1. Based
on our post-experiment analysis, false positives observed by
naked eyes mainly come from dust on the screen and the re-
flection of the screen to the indoor environment, which leads
to misjudgment of some areas of the screen as the location of
hidden cameras. For COTS detectors, false positives mainly
come from the RSSI mode of T1 and K18 to perceive wire-
less signals over the air. K18 has a higher adjustable range
of signal sensitivity, which produces more false positives.
For example, K18 keeps beeping when close to some regular
objects due to the nearby electronics like the participant’s
own smartphone. Most participants said they could sense the
presence of the camera using K18 but could not determine
its exact location and could only make a rough guess. Such
coarse-grained indicators lead to more false positives and
downgrade the utility.

Utility. After the experiments, we also survey the par-
ticipants’ use experience using a 5-point Likert scale (1: not
helpful at all; 5: absolutely helpful). The X17 detector has an
overall score of 1.21, T1 has an overall score of 1.78, and K18
has an overall score of 3.04; our NIRF scores 4.85. This shows
NIRF is ‘helpful’ in detecting behind-screen hidden cameras.
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Table 1: The False Positive (FP) of different methods.

Camera ON
Eyes | X17 [ T1 | K18 | NIRF
4 [ 0o J9ol2a] 2

Camera state Camera OFF
Method Eyes | X17 [ T1 | K18 | NIRF
No. of FP 4 [ 3]0o]16] 2

8 Discussions

Transferability. Our system works well when NIRF is trained
on different smartphones, environments, and backgrounds,
as shown in our evaluation. This is because the SAM model
generates screen masks that focus solely on the screen, thereby
eliminating the influence of the broader environment and
background. Furthermore, transferring a single NIRF across
different scenes remains a substantial challenge. Potential so-
lutions include pre-training on large, scene-diverse datasets,
employing incremental learning to dynamically adapt to
environmental variations, and utilizing transfer learning to
improve model reusability across different environments. We
will explore these directions in our future work.
Curved/Larger screens. Curved screens may further
complicate the reflection pattern of the screen, and our so-
lution may need some adjustments to adapt. One potential
solution might be to optimize the reflectance field that NIRF
needs to learn. For potentially larger screens (e.g., much
larger than 65-inches) in the future, we may need other
large-scene modeling techniques that split the screen into
sub-regions and use distinct subnetworks to model and com-
posite them, such as Block-NeRF [50]. Since these screens
are not widely available, we leave them for future research.
Lightweight deployment. NIRF can be deployed on mo-
bile devices by utilizing their ToF sensors. The phase inputs
for NIRF are indirectly derived from depth and intensity
maps, which can be obtained through dedicated ToF APIs,
such as the ARCore Depth API [67] on Google-certified mod-
els (e.g., the Samsung S20 Ultra), or through the Camera2
API on Android smartphones. In addition, many lightweight
RGB-based NeRF models have been launched recently that
could be directly deployed on mobile devices [10, 38]. One
typical example is Instant-NGP [38] that can train an RGB-
based NeRF in five seconds. These advancements will further
expand and facilitate NIRF applications on mobile devices.
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Figure 21: Detection rate vs.
different detectors.

9 Related Work

Detection via RF signals relies on wireless spy cameras
transmitting information via WiFi and exposing their wire-
less traffic patterns [11, 19, 27, 31, 46, 49]. However, this
method often fails to localize spy cameras and has a high
false positive rate, frequently triggered by surrounding IoT
devices or WiFi routers. It is fundamentally limited to detect-
ing only wireless spy cameras. Notably, a survey found that
a large number of spy cameras on the market do not support
WiFi connectivity, instead saving videos locally [66]. Mean-
while, for cameras hiding behind a screen, the vast space
behind the screen provides extremely convenient conditions
for the wired connection of the hidden spy camera and the
use of large TF card storage. Another approach involves
detecting electromagnetic leakage signals from hidden spy
cameras. CamRadar [34] detects electromagnetic leakage
from a camera’s clock signal. However, this approach re-
quires the camera to be active to emit leaked signals, and
the presence of a screen significantly attenuates them. As
discussed in Section 7, even when a COTS camera detector
is placed directly in front of the screen, it could fail to detect
the signals emitted from wireless cameras.

Detection via thermal emission. Thermal cameras have
been used to detect hidden spy cameras by capturing their
thermal emissions [20, 66]. HeatDeCam [66] scans the area
to identify these thermal features. However, this method also
requires the camera to be active to have thermal emission.
In practice, hackers can remotely control hidden cameras,
either through wired connections (such as via the control
line of a TV or monitor) or by using a timing function (e.g.,
activating the camera a set number of minutes after the user
turns on the room lights or TV). This strategy prevents users
from detecting hidden cameras when they initially inspect
their environment, such as once entering a hotel room. By
activating the camera only after the user has checked the
unfamiliar environment and become less cautious, the risk
of exposure to hidden cameras is significantly reduced.

Detection via optical reflections focuses on spotting
reflections from hidden camera lenses [47, 56]. LAPD [47]
used ToF sensors to detect camera lenses by identifying high-
intensity reflections. However, our work deals with translu-
cent screens and cameras hidden behind it, which pose new
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Average detection rate (%)

@ @ D&
Activated wireless camera index

Figure 22: Number of correct detections of each behind-screen Figure 23: Detection rate vs.
hidden camera when the cameras are ON.

activated wireless cameras.

challenges. LAPD’s combined filter struggles with the com-
plex reflection patterns of screen covers, complicating the
detection. Our approach leverages the unique reflective prop-
erties of the screen and camera behind it, using ray tracing
based on a neural infrared reflectance field to detect hidden
cameras behind the screen effectively.

Through-screen computing was proposed in [64]. This
concept refers to the processing of light signals for vari-
ous computing purposes such as communication, sensing,
and imaging, where light originates from the physical world,
passes through the translucent screen, and reaches the behind-
screen optical sensors. Among these applications, through-
screen visible light communication and sensing systems were
proposed to overcome challenges and improve light-based
connectivity [30, 63, 65]. Meanwhile, screen perturbation
was also proposed for future devices equipped with translu-
cent screens to enhance visual privacy protection [62]. How-
ever, NIRF focuses on a new branch of through-screen com-
puting, aiming to address the risk of behind-screen cameras
potentially functioning as hidden surveillance cameras.

10 Conclusion

In this work, we studied how to detect the cameras hiding
behind translucent screens. By analyzing the reflection re-
sponses from both the screen and the behind-screen hidden
cameras in physical environments, we constructed Neural
Infrared Reflectance Fields (NIRF) to capture their transmit-
tance and reflectance properties. Building upon this, we de-
signed and implemented a NIRF-based detection method to
identify the hidden cameras behind screens, testing with five
smartphones and a 65-inch translucent screen. Our method
achieved high detection rates across different conditions. We
believe NIRF can raise more awareness of behind-screen cam-
eras and stimulate many follow-up studies to detect them.
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