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Abstract

Radiotherapy is an important treatment type for patients with cancer. An advantage of state
of the art proton therapy with respect to traditional photon therapy is the spatial energy de-
position of protons, which is characterized by the Bragg peak. Due to this particular course of
energy deposition, the tumor can be irradiated more precisely and as a consequence more healthy
tissue can be spared. A drawback is that proton therapy is more sensitive to uncertainties like
misalignment of the patient, which is referred to as a set-up error. Robust optimization is the
current way to account for such uncertainties during which a few discrete error scenarios are
included in the planning. Due to the nature of the uncertainties, probabilistic optimization, on
the other hand, is more promising, since it can handle many more scenarios with their occurrence
probability taken into account as well.

To investigate probabilistic planning, Polynomial Chaos methods were used in this research.
Polynomial Chaos can approximate a stochastic response, depending on for example the set-
up error, by a series expansion in terms of polynomials. The advantage is that typically the
Polynomial Chaos Expansion (PCE) can be evaluated much faster than the stochastic response
itself. In this research an investigation is done how PCE can be used with probabilistic treatment
planning for proton therapy.

First, an overview is given on how PCE can be used to describe probabilistic objective func-
tions. It has been found that in general it is possible to describe random set-up errors with
PCE without the need of considerably additional computational power. Moreover, polynomials
in dose are especially suitable when fractionation is taken into account.

Second, a simple one-dimensional geometry consisting of a tumor with a surrounding organ
has been considered. The effects of fractionation on the dose distribution has been calculated
with PCE and the results were in accordance with earlier research by Unkelbach et al. (2018).

Third, a simplified three-dimensional geometry which mimics a spinal cord with surround-
ing tumor has been optimized probabilistically with PCE. The expected value of the sum of
the quadratic differences between the dose and the prescribed dose has been minimized. The
effects of probabilistic optimization became clear from both the nominal and the expected dose
distribution. This objective function (i.e. the expected value of a quadratic function of the dose)
turned out to be extremely suitable for probabilistic optimization with PCE, however its clinical
relevance is less clear.

Last, a real skull base meningioma patient has been considered. As objective function, a
percentile of the dose volume parameter has been used with PCE. This function demonstrated a
bumpy dependence on the beam intensity and it has been proven that it cannot have a negative
gradient. Consequently, a high step size is recommended to approximate the gradient and,
if needed, the Hessian. Probabilistic treatment plans were obtained with a single probabilistic
objective, with two probabilistic objectives and with nominal constraints and objectives on OARs.
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The results have been compared with a robust treatment plan according to the recipes of Ter Haar
et al. (2018). It has been found that the probabilistic treatment plan shows a more conformal dose
distribution, since it does not exhibit any preferred direction, contrary to the robust treatment
plan. As a consequence, the automatic extension of the tumor is smaller. A clear benefit has
been demonstrated in favor of the probabilistic treatment plan. Besides that, a major advantage
of probabilistic optimization with respect to robust optimization is that it makes it possible to
directly steer to a probabilistic goal independent of the patient and the treatment site. The
computation time of probabilistic planning (in the order of 1-3 weeks) is unfortunately still too
high for clinical practice.
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Nomenclature

Symbols

δk,l Kronecker delta

∆lev Increased quadrature level for the single dimensional directions of a Smolyak sparse
grid

µξ Expected value of uncertainty parameter ξ

σξ Standard deviation of uncertainty parameter ξ

ξ Uncertainty vector

ξ(s) Realization or random sample of uncertainty vector

ξ(t) Uncertainty vector for fraction t

ξ̃ Combined uncertainty vector for multiple fractions

B Index set of beamspots

Dα% Dose volume parameter

D Dose deposition matrix

Dij ij-th element of dose deposition matrix

d Dose vector

di i-th element of dose vector (i.e. voxel dose)

E[·] Expected value

ên Unit vector along the n-th dimension

L Grid level

Mξ[·] Arbitrary statistical measure over uncertainty vector ξ

N (µ, σ2) Gaussian distribution with mean µ and standard deviation σ

Nb Number of beamspots

Ns Number of samples
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Nv Number of voxels

O Polynomial order

P i
t%{·} t-th percentile of the set of elements distinguished by the index i

SR Set-up robustness

T Index set of fractions

T Number of fractions

V Index set of voxels

Var(·) Variance

x Beam intensity vector

xj j-th element of beam intensity vector (i.e. beamspot intensity)

Abbreviations

CDF Cumulative distribution function

CT Computed tomography

CTV Clinical target volume

DPH Dose population histogram

DVH Dose volume histogram

GTV Gross tumor volume

IMPT Intensity modulated proton therapy

LxEyOz L = x, ∆lev = y and O = z

MR Magnetic resonance

OAR Organ-at-risk

PCE Polynomial Chaos Expansion

PDF Probability density function

PTV Planning target volume
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Chapter 1

Introduction

Approximately half of all cancer patients undergo radiotherapy treatment during their course of
illness [3–5], either for cure or as a palliative treatment to relieve the patients from symptoms
such as pain caused by the cancer. In 2008 the mortality numbers from cancer in Europe are
estimated to be 1.7 million deaths [6]. Generally, the most common types of treatment for
cancer are surgery, chemotherapy and radiotherapy [7]. Each of these has its own advantages
and disadvantages. For example, surgery could spare healthy tissue in contrast to radiotherapy.
On the other hand, radiotherapy is non-invasive which might be preferable for certain patients.
This research will focus on the latter, radiotherapy. Radiation therapy may be given if the patient
is too old to undergo surgery or if surgery is technically not possible due to the location of the
tumor. Besides, radiotherapy against microscopic extensions of the tumor is common as well.

There are multiple types of radiotherapy. The patient could for example be irradiated with
photons, protons and carbon-ions [8]. Nowadays, photon therapy is the conventional way of
radiotherapy: many more patients are treated with photons than with protons for example.
However, proton therapy is upcoming in the Netherlands. Recently the first three proton therapy
centers have been opened in Groningen, Delft and Maastricht and the first patients have already
been treated. However, proton therapy is considerably older, it was first proposed by Wilson
in 1946 [9, 10].

Unlike photons, protons have a mass and are positively charged. The main difference between
photon and proton therapy is their way of depositing their energy to the body. Photons deliver
their energy gradually along their trajectory. On the other hand, protons undergo stronger
interactions and the energy of a proton beam is released at a more specific depth along its path.
This typical curve is called the Bragg peak. Figure 1.1 shows the difference between the energy
deposition of a photon and a proton beam. It can be seen that after the Bragg peak of a proton,
almost no energy is deposited anymore. On the contrary, after the proximal peak of the photon
beam, relatively much energy is still deposited.

The prompt drop after the Bragg peak is in principle one of the advantages of proton therapy
with respect to conventional radiotherapy. More healthy tissue can be spared this way. However,
this also causes proton therapy to be much more sensitive to uncertainties. Some examples of
uncertainties are errors in patient alignment and range errors of the proton beam.

For photon therapy it is common that a bigger volume is irradiated than only the tumor,
to account for such errors. However, this approach is not applicable to proton therapy [12].
Currently, so-called robust treatment planning is used to account for these kind of errors in
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Figure 1.1: Comparison of the energy deposition of photon and proton beams. On the x- and y-axis
respectively the depth along the trajectory in the body and the fraction of the deposited dose are shown.
The dashed line corresponds to a single Bragg peak of a proton beam. Combining such single Bragg
peaks could result in the solid blue line, a spread-out Bragg peak (SOBP). Figure from [11].

proton therapy. It defines a few error scenarios. An error scenarios is a specific realization of
the considered uncertainties. Robust treatment planning performs a worst-case optimization
over the error scenarios and it minimizes the worst-case of the objective function. This means
that for the resulting treatment plan an adequate target coverage is guaranteed in all predefined
error scenarios. However, the probability that one of these scenarios actually takes place during
treatment is not taken into account and in fact is exactly zero.

So-called probabilistic treatment planning tries to overcome these limitations of robust treat-
ment planning and assumes the uncertainties to follow a certain probability density function.
An optimization is performed which includes all possible scenarios instead of a few predefined
error scenarios. This can be computationally quite expensive and so-called Polynomial Chaos
Expansion (PCE) can alleviate the computational effort. Polynomial Chaos Expansion is a
mathematical tool which serves as a meta-model for a black box model of which the input is
stochastic. Van der Voort et al. (2015) and Ter Haar et al. (2018) have used Polynomial Chaos
Expansion to describe the dose distribution in a patient. Besides, Van der Voort et al. (2015)
devoted one chapter to probabilistic treatment planning in combination with PCE, where the
conditional value-at-risk of the LTCP function was considered as objective function.

In this research, the theory, possibilities and applications of probabilistic treatment planning
in combination with Polynomial Chaos Expansion for proton therapy are investigated. The
structure of this thesis is as follows. In Chapter 2 proton therapy is discussed, both the theory
and the application. Chapter 3 describes the working principles of treatment planning. Chapter 4
elaborates on the mathematics involved in Polynomial Chaos Expansion. Subsequently, the
possible objective functions which can be used in probabilistic treatment planning in combination
with Polynomial Chaos Expansion are described in Chapter 5. Then, the methodology of the
applications which are investigated in this research are explained in Chapter 6. Next, the results,
discussions, conclusions and recommendations for future research follow.
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Chapter 2

Proton therapy

2.1 Radiotherapy

A patient diagnosed with cancer can be treated with radiation therapy. Radiation induces
damage in the DNA of tumor cells. This can either be direct on the cellular molecules or
indirectly using produced free radicals [5]. Both ways can lead to cell death.

Typically there are two types of radiotherapy, internal and external radiotherapy. The type of
radiotherapy which is given to the patients depends on many factors: the type and size of cancer,
the patient’s health and medical history and other factors. Regarding internal radiotherapy, a
radioactive source irradiates the patient from inside the body. Such a treatment can either be
given locally of systemic. Locally means that the radioactive source is inserted in or next to the
tumor. This is called brachytherapy. For systemic radiotherapy, the source travels through the
patient’s blood. With external radiotherapy on the other hand, the patient is irradiated by an
external machine [14]. This research focuses on external radiotherapy.

Besides the way the patient is irradiated, internally or externally, there are also different
types of particles which are used as radiation, for example photons, protons and electrons. Most
commonly, photon therapy is used. It consists of electromagnetic waves, which are massless.
Besides, photons are charge-less and undergo few interactions. As a consequence, a substantial
part of the photon beam passes through the patient. The dose deposition profile of photons has
a specific shape. There is a pristine peak in dose deposition, after which the dose deposition
gradually decreases. This is shown in Figure 1.1.

Besides photons, also protons are used for radiation therapy. Protons are positively charged
particles with a mass. Protons exhibit a very typical dose deposition profile. In contrast to
photons, the entrance dose is low and at a certain depth there is a sharp and high peak, which
is called the Bragg peak. After the peak, the energy deposition quickly decreases to zero. The
depth at which the Bragg peak occurs is dependent on the initial energy of the proton. Since
tumors are typically bigger than the width of the Bragg peak in any dimension, multiple energies
should be combined to form a so-called spread-out Bragg peak. The energy deposition of a proton
beam is also shown in Figure 1.1 in Chapter 1. From that figure, it becomes clear that the dose
given to normal tissue is lower for protons, partly because of the lower entrance dose and partly
because of the distal fall-off of the dose deposition after the Bragg peak.
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2.2 Physics of the proton beam
When a proton propagates through matter, it undergoes different kind of interactions with
electrons or nuclei. In this section, the most dominant interactions are briefly discussed.

The inelastic Coulombic interaction of a proton with an electron frequently occurs. It is a
major cause for the decrease in kinetic energy of the proton. As the rest mass of a proton is
1832 times greater than the rest mass of an electron, most protons are not deflected by this
interaction [15]. A schematic representation of this interaction is shown in Figure 2.1a. The
elastic Coulombic interaction of a proton with a nucleus is caused by the repulsive force between
the positively charged proton and nucleus. This force will deflect the trajectory of the proton.
A schematic representation of this interaction is shown in Figure 2.1b. The non-elastic nuclear
reactions with a nucleus are less frequent [15]. The proton enters the nucleus and subsequently
a gamma ray, a proton, a neutron or another ion might be emitted. A schematic representation
of this interaction is shown in Figure 2.1c.

Thus, these interactions cause a proton to be slowed down, to be deflected or to be absorbed.
Whether an interaction actually occurs is not deterministic but stochastic. The path of each
proton is therefore different. As a consequence, in proton therapy it is more common to consider
proton beams instead of single protons. The range of the beam is defined as the depth at which
half of the protons have no kinetic energy anymore [15]. The stopping power of the proton
beam, defined as the energy loss per unit length, increases for lower energies [16]. This relation
is approximately proportional to the inverse of the square of the velocity [15, 17], explaining the
Bragg peak.

The range and dose deposition profile of a proton beam (i.e. the Bragg curve) can be com-
puted with the stopping power. The stopping power itself also depends on the physical properties
of the absorbing material: the electron density and the effective atomic numbers. To calculate
the stopping power a conversion needs to be made from Hounsfield units of a Computed Tomog-
raphy (CT) scan to units of stopping power. In this conversion many types of uncertainties can
arise [18]. For example, research has shown that variations in the tissue composition lead to an
increase of the uncertainty in the computed stopping power [19]. Calculating the stopping power
with a mono-energetic CT scan is also an important source of uncertainty [20].

(a) (b) (c)

Figure 2.1: Dominant types of interactions of a proton with matter. (a) Inelastic Coulombic scattering.
(b) Elastic Coulombic scattering. (c) Non-elastic nuclear reactions. Figures from [15].

2.3 Intensity modulated proton therapy
This research focusses on so-called intensity modulated proton therapy (IMPT). It is based upon
the pencil beam scanning technique. A pencil beam is a narrow unscattered beam of protons
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which can be aimed at any location within the tumor. Since protons are positively charged
particles, their direction and kinetic energy can be controlled by electric and magnetic fields.
Each pencil beam, or beamspot, can be characterized by its radiation angle, lateral position
and energy. For intensity modulated proton therapy, a weight is assigned to each pencil beam,
also called the intensity. This weight is proportional to the number of protons in the beam and
therefore also to the deposited dose. These pencil beams and their optimal weights can deliver a
dose distribution which is conformal to the tumor shape and has the prescribed dose levels. The
essence of IMPT is finding the optimal weights of the beamspots.

2.3.1 Gantry
The patient is irradiated within the so-called gantry. This machine is able to irradiate the tumor
from multiple angles. The couch, on which the patient lies, as well as the gantry itself is able
to rotate. Every possible radiation angle can be defined by the combination of the couch and
gantry angle. Besides the angle, also the lateral position of the beam can be varied.

2.4 Skull base meningioma
In this research, the focus will be on a patient with a skull base meningioma, which can be either
benign or malignant [21]. Typically, it is not possible to completely remove such a tumor with
surgery. Radiotherapy is a common treatment for patients with skull base meningioma, either
alone or after subtotal resection [22]. The survival rate after 10 years is approximately 70%
[22, 23]. Usually, the treatment is given in multiple fractions, such that healthy tissue has the
opportunity to repair itself as much as possible between the fractions. The number of fractions
typically ranges from 25 to 30 [24].

Due to the characteristics of proton therapy as described in this chapter, proton therapy is
preferred over photon therapy for this type of tumor [25, 26].

2.5 Uncertainties
As discussed in Section 2.2, certain uncertainties could arise when the stopping power is com-
puted. This leads to uncertainties in the calculated range of the proton beam. Different types
of uncertainties within proton therapy are treated in this section.

2.5.1 Set-up error
A set-up error is due to a misalignment of the patient, either during the CT scan or during
the treatment. A set-up error could be split in two components, a systematic component and
a random component. The systematic component is constant for all fractions of a treatment.
The random component differs between fractions. Figure 2.2 shows a schematic representation
of the components of a set-up error. Two realizations of a systematic set-up error with each three
realizations of a random set-up error are shown.

Systematic set-up error

For treatment planning a CT scan is made of the patient. When the patient is misaligned during
this CT scan, this error will cause a shift in the finally deposited dose, since the treatment plan
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Figure 2.2: A set-up error can be decomposed into a systematic and a random component. Two
realizations of a systematic error are shown, each with three realizations of a random error. Note that in
this figure Σi and σi represent realizations instead of standard deviations of respectively the systematic
and random set-up error.

is made according to that particular CT scan. This is called a systematic set-up error, since it
is present and constant for all fractions of the treatment. Another cause for a systematic set-up
error is the motion of the skin with respect to the organs [27].

A systematic set-up error can be denoted by ξ and generally has three components ξ1, ξ2
and ξ3 corresponding to the three dimensions of Euclidean space, measured in millimeter (mm).
These components are stochastic variables and are assumed to have a certain probability density
function (PDF). For this research these components are assumed to be Gaussian distributed with
zero mean and zero mutual correlation, which is in accordance with clinical data [28]. This can
be expressed as in Equation (2.1). Here, diag(k) denotes the diagonal matrix with elements of
the vector k on the main diagonal.

ξ = (ξ1, ξ2, ξ3)
T ∼ N

(
0,diag

(
Σ2

x,Σ
2
y,Σ

2
z

)T) (2.1)

Random set-up error

In contrast to systematic errors, random errors are not constant over fractions but differ. This
error arises if the patient during a fraction is not positioned the way it was during the CT
scan. A random error can also be denoted by ξ and also has three components in Euclidean
space. Analogously to systematic errors, these components of the random error are also assumed
to be described by Gaussian distributions with zero mean and zero correlation, as shown in
Equation (2.2).

ξ = (ξ1, ξ2, ξ3)
T ∼ N

(
0,diag

(
σ2
x, σ

2
y, σ

2
z

)T) (2.2)

Although the same variable ξ is used for random errors and systematic errors, they are inherently
different. In general, ξ is used to denote any uncertainty.

2.5.2 Range error
When the computed range of the proton beam does not coincide with the actual range, one
can speak of a range error. There are multiple causes for range errors. It could be due to the
conversion from Hounsfield units to stopping power, but wrong calibration of the machine could
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give rise to range errors as well. A distinction is made between absolute and relative range errors.
Here only relative range errors are described.

Relative

The Hounsfield scale resulting from a CT scan can be used directly for photon therapy. However,
for proton therapy a conversion to stopping power is required, as already mentioned. This
conversion is not exact, but is based upon algorithms or Monte Carlo simulations [29]. Both
introduce uncertainties. The relative range error originates from this conversion of Hounsfield
scale of the CT scan to proton stopping power. This type of range error is systematic, since it is
constant over fractions. A consequence of the relative range error is that the computed range of
the proton beam is an over- or underestimate of the real range.

2.5.3 Delineation error
A CT image gives the physician an insight on where the tumor and the organs are situated in
the patient’s body. On every slice of the CT scan another part of the body is visible. Before the
patient gets radiotherapy, the tumor and other organs need to be delineated by a physician.

The tumor visible on the CT scan is called the gross tumor volume (GTV). Due to finite
resolution and sometimes low contrast of CT scans, the delineated contour of the GTV demon-
strates inter-observer variation. This is a type of delineation error. Research has assessed the
inter-observer variability of the delineation of the GTV for brain tumors [30].

Tumors may be delineated on magnetic resonance (MR) scans if these are not visible on CT
scans. The geometric distortion of MR images is another cause of delineation uncertainty.

The clinical target volume (CTV) contains the visible tumor or the GTV including some
margins around to include possible microscopic extensions of the tumor, which are not visible
on the scans. As one might expect, due to interpretation differences among physicians, the
delineated contour of the CTV is physician specific. This is also a type of delineation error.

Several studies have been done to quantify this phenomenon for breast cancer [31–33]. In
these articles both inter- and intra-observer variation are examined quantitatively.

When a patient gets a second CT scan, so-called auto-segmentation software can be used to
automatically delineate the tumor, based on the delineation done on the first CT scan. The CTV
delineated by the software might also differ from one delineated by a physician. This is another
cause of variation in tumor contours [34].

2.6 Handling uncertainties
As discussed, uncertainties such as set-up errors and range errors can give rise to a shift or
distortion of the desired dose profile.

Conventional treatment planning does not account for possible uncertainties. The plan is
made with the assumption that the patient will be at exactly the right position during treatment
and the range of the radiation particles will be exactly as calculated. However, if any error
occurs, the treatment plan will not be robust against this uncertainty, which means that the
treatment goals, such as a high dose in the CTV, are not achieved.

To account for uncertainties in photon therapy, a bigger volume than the CTV is irradi-
ated [27]. It is based upon the idea that the CTV will be covered by this bigger volume, regard-
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Figure 2.3: The impact of a range error on the dose deposition profile for a photon beam and for a
proton beam. Figure from [36].

less of any errors. This bigger volume is called the planning target volume (PTV). It entails the
CTV including some margin.

Research has shown that handling uncertainties using the PTV approach does not result in
proper treatment plans with IMPT [35], since the energy deposition of protons highly depends
on the density variations inside the body. Besides, possible range errors have a bigger impact on
the dose deposition for protons than for photons. This is caused by the steeper slope of the dose
deposition along the depth. This effect of a range shift on the dose deposition for photons and
protons is shown in Figure 2.3.
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Chapter 3

Treatment planning

In this chapter all important aspects related to treatment planning are discussed. First an
overview is given of the important treatment parameters, which is followed by an elaboration on
treatment planning itself.

3.1 Clinical treatment parameters

Treatment parameters are characteristics of a treatment plan. They can for example give infor-
mation about the desired dose or about the actual given dose.

3.1.1 Beam intensity vector

The patient can be irradiated from multiple angles, multiple positions and with multiple energies.
Each unique combination of angle, position and energy is called a beamspot, characterized by the
index j ∈ B = {1, ..., Nb} with Nb the number of beamspots. The beam intensity vector contains
the intensities corresponding to the different beamspots, measured in Monitor Unit (MU):

x = (x1, ..., xNb)
T
. (3.1)

The elements of the beam intensity vector are physically constrained to be non-negative [37],
since extracting energy from the body is not possible with radiotherapy. A beamspot is also
referred to as a pencil beam.

3.1.2 Uncertainty vector

Uncertainties like the set-up error and the range error are denoted by the uncertainty vector ξ.
The number of elements of this vector depends on the uncertainties which are considered. For
example, when the range error and the three-dimensional systematic set-up error are taken into
account, the number of elements of this vector equals four.

Regarding terminology, the scenario in which no errors occur (ξ = 0) is referred to as the
nominal scenario.
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3.1.3 Dose deposition matrix
One can calculate the contribution of a beamspot to the deposited dose in a certain voxel. This
can be represented by a matrix D with elements Dij . Here, i ∈ V = {1, ..., Nv} corresponds to a
certain voxel and j ∈ B = {1, ..., Nb} corresponds to the beamspot, with Nv and Nb the number
of voxels and beamspots respectively. Thus, Dij is the contribution of beamspot j to the dose
received by voxel i, measured in Gray per Monitor Unit (Gy ·MU−1).

D = [Dij : i ∈ V, j ∈ B] (3.2)

The elements of the dose deposition matrix are non-negative. The dose deposition matrix is the
variable where the uncertainty in set-up and range is introduced. After all, the contribution
of a beamspot to the dose in the different voxels changes if for example the patient is shifted.
Therefore, a more correct notation would be D = D(ξ).

3.1.4 Dose distribution
The dose or dose distribution, measured in Gray (Gy), received by a certain structure is the
matrix-vector product of the dose deposition matrix and the beam intensity vector:

d(x, ξ) = D(ξ)x or di(x, ξ) =
∑
j∈B

Dij(ξ)xj . (3.3)

3.1.5 Prescribed dose
The prescribed dose represents the dose which is desired in a certain voxel or structure. As
one might expect, the prescribed dose in the tumor is usually high, while the prescribed dose
in organs, which need to be spared, is low. A dose can either be prescribed to a structure as a
whole or to specific voxels within. The former is denoted by:

dp , (3.4)

while the latter is denoted by:
dp =

(
dp
1 , ..., d

p
Nv

)T
. (3.5)

3.1.6 Dose volume parameters
To examine the quality of a treatment plan, it might be desirable to have information about which
volume fraction of a structure receives a certain dose. This kind of information is contained in
the parameter Dα%, with α ∈ [0, 100]. It is defined as the maximum dose that is received by at
least α% of the volume. In other words: the maximum lower bound of the dose received by α%

of the volume. The formula for the parameter Dα% is as follows:

Dα% = P i
(100−α)% {di : i ∈ V} , (3.6)

where the operator P i
t%{·} is used to denote the t-th percentile of the set of values distinguished

by the index i. For convenience, the dependence of Dα% and di on the beam intensity vector x

and uncertainty vector ξ is omitted.
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3.1.7 Dose volume histogram
The dose volume histogram (DVH) is a graphical representation of the dose volume parameters.
It summarizes the three-dimensional dose distribution in a two-dimensional graph. Spatial in-
formation of the dose distribution in the structure is not contained in the graph. It is a plot
of the volume fraction α% against the dose volume parameter Dα%. It can be interpreted as
a cumulative histogram of the dose in the voxels di. Figure 3.1 shows an example of a dose
volume histogram, for the GTV and the right hippocampus. Ideally, the shape of the DVH for
the tumor would be a horizontal line with a sudden drop at a high dose. On the other hand, the
ideal shape of the DVH of a non-tumorous organ would be opposite, a steep fall-off followed by
a horizontal tail.
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Figure 3.1: Dose volume histogram for the GTV and the right hippocampus.

3.1.8 Dose population histogram
The dose population histogram (DPH) is a curve which gives information about the probability
distribution of a parameter. It is the same type of graph as a dose volume histogram, but on
the vertical axis the probability or the population is presented instead of the volume. A data
point (x, y) on the curve of a DPH means that the parameter of interest equals at least x with a
probability of y. It can be interpreted as a cumulative distribution function, which is mirrored
with respect to the horizontal line with cumulative probability equal to 0.5.

A population could refer to a set of different patients, but in this research different realizations
of the systematic error are meant.

3.2 Treatment planning
This section provides information about all the necessary steps of treatment planning, from the
start to the end.

3.2.1 CT scan and delineation
First, a CT scan is made of the patient. Typically only a part of the body is imaged. A
requirement for this CT scan is that all parts which receive dose are visible on the scan. For a
meningioma patient, this will be the head and neck. All organs of interest are to be delineated
by a physician.
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Obviously this includes the tumor visible on the scan, the GTV. Besides, from clinical ex-
perience physicians are aware of possible microsocopic extensions of the tumor, which are not
visible on the image. These expected microscopic extensions are site specific. The GTV in-
cluding expected microscopic extensions are delineated as well, forming the CTV. Typically, for
meningioma patients the CTV coincides with the GTV [38, 39].

Besides, so-called organs-at-risk (OARs) are to be delineated. These include all organs, which
are to be spared from radiation. Two types of organs-at-risk can be distinguished, serial and
parallel organs [40]. Serial organs lose functionality when even a small volume receives a high
dose. Thus, the potential risk for serial organs is dominated by the highest dose. Examples are
the spinal cord and optic nerves. On the other hand, for parallel organs a local dose within the
organ only affects the functionality of that part of the organ. For parallel organs, the risk is
dominated by the average dose in the entire organ. Examples are the lungs and liver.

It should be noted that the CT scan is made up of images of adjacent cross-sectional slices
of the body. The tumor and organs are delineated on these two-dimensional images. Algorithms
exist that combine these two-dimensional delineated images to construct a three-dimensional
delineated organ.

3.2.2 Automated treatment planning using the iCycle algorithm

Erasmus Medical Center uses the in-house developed treatment planning software environment
called Erasmus-iCycle in Matlab. The main functionality is the multi-criteria optimization ac-
cording to a predefined wish-list. Besides, it offers a range of other features, of which some
examples are briefly explained in this section.

Wish-list

The wish-list is the actual configuration of the optimization algorithm. It contains all dose related
requirements of the treatment and needs to be defined by the physician or medical physicist.
iCycle distinguishes two types of criteria. A constraint is a criterion that should always be met,
while an objective is a criterion which has to be reached as close as possible. Constraints and
objectives can be set for structures individually. For example, a constraint could be set on the
minimum dose in the GTV, while an objective could be set on the mean dose in a certain organ-
at-risk. Furthermore, a priority has to be assigned to each objective, which indicates the order in
which the objectives will be optimized. If a higher priority is assigned to an objective, there is a
higher chance the goal will be reached. An example of a simplified wish-list is shown in Table 3.1.
Regarding the constraints, minimize and maximize indicate whether the limit is respectively an
upper or lower bound. The application in which the wish-lists for iCycle are defined is called
Lucy.

Such a wishlist is specific for the tumor site, but is not patient-specific. As a consequence,
the constraints and objectives of a wish-list are different for different types of tumors, while they
are similar for different patients with the same type of tumor [41].

In general, maximizing a function is equivalent to minimizing the function multiplied by -1
[42, 43]. iCycle makes use of this logic. From now on, when a statement is made about minimizing
a certain function, this also applies to maximizing the opposite.

14



Table 3.1: An example of a simplified wish-list for a meningioma patient. Note the difference between
constraints and prioritized objectives. Here, d̄(x,0) denotes the mean dose.

Constraints

Volume Type Limit

GTV Maximize mini di(x,0) 0.95 · 50.4 Gy
Optic Nerve (L) Minimize maxi di(x,0) 50 Gy
Optic Nerve (R) Minimize maxi di(x,0) 50 Gy

Objectives

Priority Volume Type Goal

1 Brainstem Minimize d̄(x,0) 1 Gy
2 Cerebellum Minimize d̄(x,0) 1 Gy

Multi-criteria optimization

iCycle uses a multi-criteria optimization approach. The optimization consists of two phases. In
the first phase, objectives are optimized in decreasing order of priority. First, the first objective
is optimized, within the prescribed constraints. Once the assigned goal has been reached, this
objective is set into a constraint. This constraint is slightly relaxed with respect to the reached
value of the objective, in order to leave room for optimization of other objectives. Subsequently,
the second objective is optimized. However, for this optimization there is one more constraint
which should be met. This extra constraint originates from the first objective. Once the second
objective has reached its goal, this objective is set into a constraint as well. These steps are
repeated until all objectives have been optimized. It might be clear that an objective with
a lower priority is less likely to reach its goal, since more constraints are to be met. In the
second phase, all objectives which could have been optimized in the first phase further than its
initial goal, are further optimized [41]. iCycle requires the gradient and Hessian matrix of the
objectives and constraints to determine the proper direction of optimization in beam intensity
space. These need to be provided either as an exact representation or as an approximation using
finite differencing.

Beam direction selection

iCycle is able to automatically select the optimal beams (i.e. beam directions). This is an
iterative process, in which beams are added and the least contributing beams are omitted [41]. It
is also possible to prescribe the beam directions manually. This information is often known from
clinical experience. Besides, it saves computation time. For this research the beam directions
are prescribed manually.

Beamspot resampling

The beamspots corresponding to a certain beam direction can be selected automatically in a
similar way. An iterative process entails the addition of new spots and removal of the least con-
tributing spots [44, 45]. This process is called pencil beam resampling or beamspot resampling.
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Voxel reduction

Another feature of iCycle is called voxel reduction. It randomly picks a representative subset of
the voxels of a certain structure for computational reasons. This saves memory and computation
time. This feature can be regulated per organ.

3.2.3 Conventional treatment planning
Conventional treatment planning has already been discussed briefly in Chapter 2. In this section
a more detailed explanation is given.

Conventional treatment planning does not account for possible errors to occur. This means
that uncertainties in for example the set-up (i.e. alignment of the patient) or the proton range
are not considered in the treatment planning.

Consider an objective function f(x, ξ). First of all, this function depends on the beam
intensity vector x, but it also depends on the uncertainties ξ via the dose deposition matrix D(ξ).
When this objective function is minimized in conventional treatment planning, mathematically
this could be expressed as follows:

minimize
x

f(x,0) . (3.7)

Note the absence of the uncertainty dependence due to the substitution of ξ = 0. The resulting
treatment plan is guaranteed to satisfy the objective only if no error actually occurs, which is
statistically never the case.

Conventional treatment planning is possible with iCycle.

3.2.4 Robust treatment planning
Robust treatment planning does account for possible errors. A finite number of predefined
scenarios are considered. A scenario is a realization of the possible errors that could occur.
In the minimax approach to robust optimization, a worst case optimization is performed. This
means that the worst case value of a certain objective is minimized [2, 13, 46], within the possibly
imposed constraints. This can be expressed mathematically as follows:

minimize
x

max
s

{
f(x, ξ(s)) : s ∈ S

}
, (3.8)

where f(x, ξ) is an arbitrary objective function and where S denotes the set of considered sce-
narios.

Satisfaction of the objective is guaranteed when one of the scenarios in S actually occurs. In
other words: the resulting treatment plan is robust against these scenarios. However, none of
these scenarios will statistically ever happen. While it can be verified how an obtained robust
treatment plan performs for other scenarios or in the probabilistic sense, a robust treatment plan
is inherently robust solely against the finite number of predefined scenarios in S.

Robust treatment planning is the current way of handling errors in proton therapy. This
method has been implemented in iCycle. Since iCycle uses a multi-criteria optimization, it per-
forms the minimax worst case optimization objective-wise: the worst case of the current objective
is minimized within the worst case of the constraints. For the systematic set-up errors, iCycle
typically considers seven scenarios, which have to be defined by the so-called set-up robustness
(SR) setting. Table 3.2 shows the considered scenarios for a robust treatment plan in iCycle.
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Table 3.2: The considered scenarios for robust treatment planning in iCycle, when only systematic
set-up errors are accounted for.

Scenario s x-shift ξ1 (mm) y-shift ξ2 (mm) z-shift ξ3 (mm)

1 0 0 0
2 SR 0 0
3 −SR 0 0
4 0 SR 0
5 0 −SR 0
6 0 0 SR

7 0 0 −SR

3.2.5 Probabilistic treatment planning
Probabilistic treatment planning differs from robust treatment planning. First of all, each uncer-
tainty parameter is assumed to be distributed according to a probability density function (PDF).
In principle, this could be any distribution. However, only continuous distributions are realistic.
After all, a discrete distribution does not allow a continuous spectrum of scenarios. As discussed
in Chapter 2, Gaussian distributed uncertainty inputs are assumed, with zero correlation. This
is in accordance with literature [47, 48]. Second, in contrast to robust treatment planning, all
possible scenarios are accounted for in the treatment plan. For any continuous distribution, this
would be an infinite number of scenarios.

Besides the assumed probability density function, a choice should be made regarding what
kind of statistical measure is desired to be optimized. Any statistical measure is possible. Some
examples are listed below:

• Expected value,

• Conditional expected value,

• Expected value plus or minus a multiple of the standard deviation,

• Mode,

• Median,

• Percentile.

Each of these statistical measures can be expressed mathematically. The operator Mξ[·] is
used to denote an arbitrary statistical measure over the uncertainty vector ξ. For probabilistic
treatment planning, the minimization problem would be described as follows:

minimize
x

f (Mξ [g(x, ξ)]) , (3.9)

where f(·) is an arbitrary function and g(x, ξ)) is a stochastic variable at least depending on the
uncertainty vector ξ. The dose or the minimum dose are examples of such a stochastic variable.

Depending on the statistical measure which is minimized for, one can make probabilistic
statements about the resulting probabilistic treatment plan. For example: the tumor coverage
is within certain limits with a 95% probability or the optic nerve is expected to be spared. Of
course only if a feasible solution exists and the optimization converges, the resulting treatment
plan is guaranteed to satisfy such objectives.
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iCycle doesn’t offer any features for probabilistic treatment planning. Implementing this
functionality in iCycle is a major part of this research.

As already discussed, the dependence on the uncertainty parameters comes in via the dose
deposition matrix. The so-called dose engine of iCycle is able to compute the dose deposition
matrix corresponding to a certain set-up and range error. This is computationally expensive.
As expressed in Equation (3.9) for probabilistic treatment planning, a statistical measure of the
stochastic variable is needed. Since no explicit analytical expression is available for the dose
deposition matrix as function of the uncertainty, the statistical measure cannot be computed
analytically. Using Monte Carlo methods is one solution to the problem. However, approximating
statistical measures, e.g. an expected value, with Monte Carlo takes a lot of time, since many
samples of the dose deposition matrix are required from the dose engine. Polynomial Chaos
Expansion (PCE) can be used to bypass this problem. It is a mathematical tool which constructs
a meta-model of a black box problem depending on an uncertainty parameter.
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Chapter 4

Polynomial Chaos Expansion

This chapter covers the needed theory about Polynomial Chaos Expansion. Substantial parts
are based on literature [2, 13, 49–51]. In this research, the openGPC package is used for the
construction and evaluating of PCEs [52, 53]. It has been coded by Z. Perkó in Matlab.

4.1 Probability theory
In order to describe uncertainties properly, an overview of probability theory is given. A proba-
bility space is defined as (Ω,F , P ). A random outcome within the sample space Ω is denoted by
θ ∈ Ω. Such an outcome can be described by a vector ξ, with N the number of dimensions:

ξ(θ) = (ξ1(θ), ..., ξN (θ))T . (4.1)

The set of corresponding events is denoted by F , which is a σ-algebra on Ω. The probability
measure P is a function which maps the set of events on their probability to occur, P : F → [0, 1].
For this research, the quantities of interest are real valued stochastic responses R(θ):

R(θ) : Ω → R . (4.2)

Usually, the stochastic responses R(θ) are restricted to square-integrable functions, i.e. to the
L2 space which is defined as in Equation (4.3).

L2(Ω, P ) = {R(θ) : [R(θ) : Ω → R] ∧ [⟨R,R⟩ < ∞]} (4.3)

The inner product in the L2 space is defined in Equation (4.4).

⟨Q,R⟩ =
∫
Ω

Q(θ)R(θ) dP (θ) =

∫
D
Q(ξ (θ))R(ξ (θ)) pξ(ξ) dξ (4.4)

Here, D is the domain of random variables, which describe the sample space Ω. From now
on, the dependence of ξ on θ is omitted, because it suffices to describe the random outcomes
with only the random variable ξ. In this research, mutually independent random variables ξj
are assumed. The corresponding probability density function (PDF) is denoted by pξj (ξj). The
joint probability density function of the random variable ξ is the product of the individual PDFs,
since they are independent:

pξ(ξ) =

N∏
j=1

pξj (ξj) . (4.5)
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Some quantities of interest of a stochastic response are the mean and the variance, which are
denoted by µR and Var(R) respectively. The mean of a stochastic response is defined as the
expected value of this response: approximately the average outcome of many samples. The
variance describes to which extent these outcomes differ from each other. The mean can be
defined as:

µR = E[R] =

∫
D
R(ξ)pξ(ξ) dξ , (4.6)

and the variance as:

Var(R) = E
[
(R− E [R])

2
]
=

∫
D
(R(ξ)− µR)

2
pξ(ξ) dξ . (4.7)

A more common measure to describe the spread is the standard deviation σR =
√

Var(R).
In the following chapters, when the domain of integration is not explicitly stated, one may

assume the whole domain D is meant.

4.1.1 Additivity of Gaussian distribution

In this research all random variables ξj are assumed to be Gaussian distributed. Therefore, this
section provides some properties of such a distribution.

In general, the PDF of a Gaussian distributed variable X, is shown in Equation (4.8).

pX(x) =
1

σ
√
2π

e
1
2

(
x−µX
σX

)2

(4.8)

Let X ∼ N (µX , σ2
X) and Y ∼ N (µY , σ

2
Y ). Every Gaussian distributed stochastic variable can

be formed from a standard Gaussian variable, W ∼ N (0, 1):

X = µX + σXW . (4.9)

When one considers the sum of two Gaussian distributed variables Z = X + Y , this obtained
variable has the following interesting properties:

Z ∼ N (µZ , σ
2
Z) , (4.10)

µZ = µX + µY , (4.11)
σ2
Z = σ2

X + σ2
Y . (4.12)

4.2 Polynomial Chaos Expansion
The basic principle of Polynomial Chaos Expansion (PCE) is to describe the dependence of
the stochastic response R(ξ) on the uncertainty vector ξ as a series expansion with expansion
coefficients rk and basis vectors Ψk(ξ), as shown in Equation (4.13).

R(ξ) =

∞∑
k=0

rkΨk(ξ) (4.13)
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4.2.1 Basis vectors
The basis vectors Ψk(ξ) are products of univariate polynomials ϕj,γkj

, each belonging to the
random variable ξj . The multi index γkj is the polynomial order of the j-th polynomial for the
basis vector Ψk(ξ). This is represented by Equation (4.14).

Ψk(ξ) =

N∏
j=1

ϕj,γkj
(ξj) (4.14)

Not every family of polynomials can be chosen. For convergence to R(ξ), orthogonality of the
polynomials is recommended. A property of orthogonal polynomials is that the inner product of
two polynomials is only non-zero when the order is equal, as stated in Equation (4.15), where
hj,n represents the norm of the j-th polynomial of the n-th order.∫

ϕj,m(ξj)ϕj,n(ξj)pξj (ξj) dξj = h2
j,nδm,n ∀j ∈ {1, ..., N} (4.15)

The Kronecker delta is denoted by δk,l. The orthogonality of the basis vectors can be derived
from the orthogonality of the univariate polynomials, as shown in Equations (4.16) to (4.20).
Equation (4.17) uses the fact that the stochastic variables ξj are independent. Regarding Equa-
tion (4.19),

∏N
j=1 δγkj ,γlj

= δk,l holds because every basis vector Ψk is unique. The norm of the
basis vector is defined as hk =

∏N
j=1 hj,γkj

.

∫
Ψk(ξ)Ψl(ξ)pξ(ξ) dξ =

∫
pξ(ξ)

N∏
j=1

ϕj,γkj
(ξj)

N∏
j′=1

ϕj′,γlj′ (ξj′) dξ (4.16)

=

N∏
j=1

∫
ϕj,γkj

(ξj)ϕj,γlj
(ξj)pξj (ξj) dξj (4.17)

=

N∏
j=1

h2
j,γkj

δγkj ,γlj
(4.18)

= δk,l

N∏
j=1

h2
j,γkj

(4.19)

= δk,lh
2
k (4.20)

Both the left-hand side and the right-hand side of Equation (4.13) can be multiplied by
Ψl(ξ)pξ(ξ) and be integrated over ξ. When using the orthogonality of Equation (4.20), one
obtains an expression for the coefficients as in Equation (4.21).

rk =
⟨R(ξ),Ψk(ξ)⟩
⟨Ψk(ξ),Ψk(ξ)⟩

=

∫
R(ξ)Ψk(ξ)pξ(ξ) dξ∫
Ψk(ξ)Ψk(ξ)pξ(ξ) dξ

(4.21)

The expansion, described by Equations (4.13) and (4.21), is still an exact representation of the
stochastic response, under the assumption that R(ξ) is continuous and integrable. However, to
be useful in practice, the expansion is truncated to include only a finite number P + 1 of basis
vectors:

R(ξ) ≈
P∑

k=0

rkΨk(ξ) . (4.22)
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The multi index γkj is used to define which orders to include in the expansion. The set of o-th
order basis vectors is defined as follows:

Γo =


N∏
j=1

ϕj,γkj
:

N∑
j=1

γkj = o

 . (4.23)

The full O-th order set of basis vectors is defined as:

Γ(O) =
∪

o∈{0,1,...,O}

Γo =


N∏
j=1

ϕj,γkj
:

N∑
j=1

γkj ≤ O

 . (4.24)

The number of basis vectors included in a full O-th order basis set is given by Equation (4.25).

P + 1 =
(N +O)!

N !O!
(4.25)

4.2.2 Mean and variance

The mean and variance of a Polynomial Chaos Expansion can be calculated easily. An expression
for the mean of a PCE is derived in Equations (4.26) to (4.30).

µR =

∫
R(ξ)pξ(ξ) dξ (4.26)

=

∫ ∞∑
k=0

rkΨk(ξ)pξ(ξ) dξ (4.27)

=

∞∑
k=0

rk

∫
Ψ0(ξ)Ψk(ξ)pξ(ξ) dξ (4.28)

=

∞∑
k=0

rk⟨Ψ0(ξ),Ψk(ξ)⟩ (4.29)

= r0 (4.30)
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An expression for the variance of a PCE is derived in Equations (4.31) to (4.39).

σ2
R =

∫
(R(ξ)− µR)

2
pξ(ξ) dξ (4.31)

=

∫
R(ξ)2pξ(ξ) dξ − 2

∫
µRR(ξ)pξ(ξ) dξ +

∫
µ2
Rpξ(ξ) dξ (4.32)

=

∫ ∞∑
k=0

rkΨk(ξ)

∞∑
k′=0

rk′Ψk′(ξ)pξ(ξ) dξ − 2µR

∫ ∞∑
k=0

rkΨk(ξ)pξ(ξ) dξ + µ2
R

∫
pξ(ξ) dξ

(4.33)

=

∞∑
k=0

∞∑
k′=0

rkrk′

∫
Ψk(ξ)Ψk′(ξ)pξ(ξ) dξ − 2µR

∞∑
k=0

rk

∫
Ψ0Ψk(ξ)pξ(ξ) dξ + µ2

R (4.34)

=

∞∑
k=0

∞∑
k′=0

rkrk′⟨Ψk(ξ),Ψk′(ξ)⟩ − 2µR

∞∑
k=0

rk⟨Ψ0,Ψk(ξ)⟩+ µ2
R (4.35)

=

∞∑
k=0

∞∑
k′=0

rkrk′h2
kδk,k′ − 2µ2

R + µ2
R (4.36)

=

∞∑
k=0

r2kh
2
k − µ2

R (4.37)

=

∞∑
k=0

r2kh
2
k − r20h

2
0 (4.38)

=

∞∑
k=1

r2kh
2
k (4.39)

When a PCE is truncated to include only P +1 basis vectors as in Equation (4.22), the mean
is not affected. However, the truncation does influence the variance:

σR ≈
P∑

k=1

r2kh
2
k . (4.40)

4.2.3 Wiener-Askey scheme
As stated in Section 4.2.1, orthogonal pylonomials are recommended for convergence of the
Polynomial Chaos Expansion to the stochastic response of which a PCE is constructed. Moreover,
fast convergence is guaranteed only for certain sets of polynomials. This optimal choice of
the polynomials is provided by the Wiener-Askey scheme [54]. These sets of polynomials are
orthogonal with respect to some common PDFs. According to the Wiener-Askey scheme, when
using the polynomials corresponding to the suspected underlying PDF of the random variable ξj ,
faster convergence is expected. For example, probabilists’ Hermite polynomials are orthogonal
with respect to the Gaussian distribution and faster convergence is expected when ξ is Gaussian
distributed. A part of the Wiener-Askey scheme is shown in Table 4.1.

Hermite polynomials

As already stated in Section 4.1.1, the random variables ξj are assumed to be Gaussian dis-
tributed. The Wiener-Askey scheme prescribes to use probabilists’ Hermite polynomials. These
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can be defined in multiple ways, for example by a recurrence relation as in Equations (4.41).

He0(ξj) = 1

He1(ξj) = ξj

Hek+1(ξj) = xHek(ξj)− kHek−1(ξj) ∀k ∈ N
(4.41)

They can also be calculated explicitly as in Equation (4.42).

Hek(ξj) = (−1)ke
ξ2j
2

dk

dξkj
e−

ξ2j
2 ∀k ∈ N (4.42)

The first six probabilists’ Hermite polynomials are shown in Table 4.2 and Figure 4.1.
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Figure 4.1: The first six probabilists’ Hermite polynomials.

4.3 Numerical integration
Typically, no explicit expression is known for the stochastic response. It is assumed to be a
black box, to which an input ξ is provided in order to obtain an output R(ξ). Therefore,
exact calculation of the integral in the numerator of Equation (4.21) is not possible. Hence,
numerical integration is used to approximate this integral. Equation (4.21) can also be written
as Equation (4.43), due to the mutually independent random variables ξj .

rk =

∫
...
∫
R(ξ)

∏N
j=1 ϕj,γkj

(ξj)pξ(ξ) dξ1...dξN∫
Ψk(ξ)Ψk(ξ)pξ(ξ) dξ

(4.43)

Table 4.1: The Wiener-Askey scheme provides the polynomial for a Polynomial Chaos Expansion with
fast convergence [54]. Here, a, b ∈ R holds.

Distribution Askey Polynomial Supported domain

Beta Jacobi [a, b]

Gamma Laguerre [0,∞)

Gaussian Probabilists’ Hermite (−∞,∞)

Uniform Legendre [a, b]
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The denominator equals the square of the norm of the k-th order polynomial. Section 4.3.1
covers a method to approximate one-dimensional integrals for the calculation of the numerator
of Equation (4.43). Section 4.3.2 covers the extension to multi-dimensional integrals.

4.3.1 Quadrature

Quadratures can be used to approximate one-dimensional integrals [2, 13, 53]. This section
focuses on one-dimensional integrals of the form of Equation (4.44), with f(ξ) some function
depending on the single variable ξ. It is approximated with a finite sum of the products of the
function value at ξ

(i)
lev ∈ [a, b] and weight w

(i)
lev.

I(1)f =

∫ b

a

f(ξ)pξ(ξ) dξ ≈ Q
(1)
lev =

nlev∑
i=1

f
(
ξ
(i)
lev

)
w

(i)
lev (4.44)

Here, the superscript (1) denotes the dimensionality of the integral, the superscript i distin-
guishes the quadrature points from each other, lev indicates the quadrature level. The number
of quadrature points ξ

(i)
lev is denoted by nlev. A higher quadrature level means more quadrature

points, which is beneficial for the accuracy of the approximation, but is on the other hand compu-
tationally more intensive. As one might expect, the quadrature points and weights depend on the
probability density function and quadrature rule that is chosen. Multiple quadrature rules exist
to approximate such an integral. Two properties are important to keep in mind when choosing
a certain rule: the accuracy and so-called nestedness. Nestedness is to which extent quadra-
ture points recur for different levels. For example, full nestedness means that every quadrature
point of a certain level lev also belongs to a higher level lev + 1. Zero nestedness means that
different levels don’t have common quadrature points. Two examples of quadrature rules are
the Gauss-Hermite rule and the Clenshaw-Curtis rule. The Guass-Hermite rule demonstrates
low nestedness, as only the origin (ξ = 0) recurs at each level. Figure 4.2 shows the Clenshaw-
Curtis and the Gauss-Hermite quadrature points. The former are suitable for an integral with
the standard Gaussian distribution as weight function. The latter are constructed on an interval
[−3, 3].

The Gaussian quadrature rule is used throughout this thesis. The quadrature levels are
chosen such that nlev = 2 · lev − 1.

Gaussian quadratures are especially suitable for integrating polynomials: they demonstrate
exactness up to polynomial order 2nlev − 1 = 4 · lev − 3 [55].

Table 4.2: The first six probabilists’ Hermite polynomials.

Order Expression

He0(ξj) 1

He1(ξj) ξj
He2(ξj) ξ2j − 1

He3(ξj) ξ3j − 3ξj
He4(ξj) ξ4j − 6ξ2j + 3

He5(ξj) ξ5j − 10ξ3j + 15ξj
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Figure 4.2: Clenshaw-Curtis and Gauss-Hermite quadrature points for several quadrature levels. The
Clenshaw-Curtis quadrature points are constructed on the interval [−3, 3] and are fully nested. The
Gauss-Hermite quadrature points are constructed for a standard Gaussian distribution as weight func-
tion.

4.3.2 Cubature
In Section 4.3.1, one-dimensional numerical integration with quadratures has been treated. How-
ever, in this research all problems are multidimensional. So-called cubatures are the extension
of quadratures to multiple dimensions. Such cubatures can be derived by tensorization of the
single dimensional quadratures, as shown in Equation (4.45).

Q
(N)
lev f =

(
Q

(1)
lev1

⊗ ...⊗Q
(1)
levN

)
f (4.45)

Here, levj denotes the quadrature level along the j-th dimension. These levels levj are not neces-
sarily the same for each dimension. For example, the grid (2, 2, ..., 2) means that quadrature level
2 is assigned to each dimension. When the grid (3, 2, ..., 2) is used, quadrature level 2 is assigned
to each dimension except from the first dimension, in which a higher accuracy could be required.
For N = 3, the notation Perm(3, 2, 2) is used to denote the set of all permutations of such grids
and therefore it contains all grids with a single dimension with a quadrature level 3, while the
others have a quadrature level of 2. As a consequence, Perm(3, 2, 2)={(3, 2, 2), (2, 3, 2), (2, 2, 3)}
holds.

The multidimensional integral of a function f(ξ) with weight function pξ(ξ) can be approxi-
mated with a full N -dimensional cubature grid as follows:

I(N)f =

∫
...

∫
f(ξ)pξ(ξ) dξ1...dξN (4.46)

≈ Q
(N)
lev f (4.47)

=
(
Q

(1)
lev1

⊗ ...⊗Q
(1)
levN

)
f (4.48)

=

nlev1∑
i1=1

...

nlevN∑
iN=1

f
(
ξ
(i1)
1,lev1

, ..., ξ
(iN )
N,levN

)
w

(i1)
lev1

...w
(iN )
levN

(4.49)

=

n∑
i=1

f(ξ(i))w(i) . (4.50)

The N sums over the quadrature points of Equation (4.49) are replaced by a single sum over
n =

∏N
j=1 nlevj

cubature points in Equation (4.50), where a cubature point is denoted by ξ(i)
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and where the weight w(i) is the product of the weights of the individual quadrature points. This
full N -dimensional cubature grid leads to many function evaluations, namely n =

∏N
j=1 nlevj

.
An example of a three-dimensional full grid with lev = (4, 4, 4)T is shown in Figure 4.3a.

4.3.3 Smolyak sparse grids
In order to bypass the need of many function evaluations, sparse grids can be used. They are
based upon the so-called sparsity-of-effects principle, which means that lower order terms are
usually dominant in most models [56, 57]. This means that not all cubature points are equally
important. Cubature points corresponding to high quadrature levels in many dimensions are
omitted for this purpose. In this way a sparse grid arises. There exist multiple types of sparse
grids [58, 59]. In this research Smolyak sparse grids are used. These are based on difference
formulas instead of the quadratures. The following relation is used:

∆
(1)
lev = Q

(1)
lev −Q

(1)
lev−1 with Q

(1)
0 f = 0 . (4.51)

From this recurrence relation, one can derive an expression for Q
(1)
lev in terms of differences:

Q
(1)
lev =

lev∑
l=1

∆
(1)
l . (4.52)

Substituting Equation (4.52) into Equation (4.48) yields:

Q
(N)
lev f =

lev1∑
l1

...

levN∑
lN

(
∆

(1)
l1

⊗ ...⊗∆
(1)
lN

)
f (4.53)

=
∑

l∈IFull(G)

∆
(N)
l f , (4.54)

with
IFull(lev) = {l : lj ≤ levj ∀j ∈ {1, ..., N}} . (4.55)

Here, l = (l1, ..., lN )T is a multi index with elements lj indicating the quadrature level of the
difference term in the j-th dimension.

A Smolyak sparse grid is created by modifying the set of multi indices over which l is summed
in Equation (4.54). For a Smolyak sparse grid this set is represented by ISm(L), where L indicates
the so-called grid level [2, 13, 49].

ISm(L) =

l :

N∑
j=1

lj ≤ L+N − 1

 (4.56)

Evidently, a higher grid level L means that more quadrature levels are included. On the other
hand, this also leads to more function evaluations. It may not be obvious what Equation (4.56)
actually means. One starts with the grid (1, ..., 1). Subsequently, there are L − 1 levels which
are to be divided among the N dimensions. For example, for L = 3 and N = 3 the Smolyak
sparse grid consists of the grids Perm(3, 1, 1) = {(3, 1, 1), (1, 3, 1), (1, 1, 3)} and Perm(2, 2, 1) =

{(2, 2, 1), (2, 1, 2), (1, 2, 2)}. The number of function evaluations, equal to the number of cubature
points, are summarized in Table 4.3. Algorithms exist to compute all cubature points efficiently.
An example of a three-dimensional Smolyak sparse grid with L = 4 is shown in Figure 4.3b.
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Figure 4.3: Three-dimensional grids. (a) Full grid with lev = (4, 4, 4)T . (b) Smolyak sparse grid with
L = 4.

4.3.4 Extended Smolyak sparse grids

A property of a Smolyak sparse grid is that the maximum quadrature level for a single dimension
is equal to the chosen grid level L. In general, the single dimensional grids are Perm(L, 1, ..., 1).
One might wish a more accurate approximation of the single dimensional terms. This might
be desirable when single dimensional terms are considered important, but a higher grid level
is computationally too costly. With so-called extended Smolyak sparse grids, it is possible to
increase the accuracy in the single dimensional directions and simultaneously keep the build-up
of cubature points within limits. Suppose a Smolyak sparse grid with grid level L is created.
This means that the single dimensional grids are Perm(L, 1, ..., 1). Let the increase in quadrature
level in the single dimensional directions be denoted by ∆lev. Now, the quadrature levels in the
single dimensional directions can be increased. This yields the grids Perm(L + ∆lev, 1, ..., 1),
which replace the grids Perm(L, 1, ..., 1). A higher accuracy is expected, while the number of
extra cubature points is equal to only 2∆levN . The set of l over which has to be summed for an
extended Smolyak sparse grid is denoted by IExtSm(L,∆lev):

IExtSm(L,∆lev) = ISm(L) ∪ Perm(L+∆lev, 1, ..., 1) \ Perm(L, 1, ..., 1) . (4.57)

Table 4.3: The number of cubature points for different grid levels and numbers of dimensions when a
Smolyak sparse grid with Gauss-Hermite quadrature rule is used [2, 13].

Grid level L

N 2 3 4 5

1 3 7 13 21
2 5 17 45 101
3 7 31 105 297
4 9 49 201 1341
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4.4 Hyperbolic trimming
In Section 4.3.3 it has been discussed how full grids are transformed into sparse grids by leaving
out certain cubature points. The same methodology could be applied to the domain of basis
vectors. A way to do this is called hyperbolic trimming [60]. Let the q-quasi-norm be defined as
in Equation (4.58) with q ∈ (0, 1] [56].

||γk||q =

 N∑
j=1

γq
kj

 1
q

(4.58)

Hyperbolic trimming of the Polynomial Chaos basis vectors means that only those vectors remain
which meet the requirement of Equation (4.59).

||γk||q ≤ O (4.59)

It could be verified that q = 1 holds for a full O-th order basis set. Figure 4.4 visualises the effect
of hyperbolic trimming on the PC basis set for various values of q. The blue dots represent the
basis vectors which are contained in the two-dimensional Polynomial Chaos basis set.
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Figure 4.4: Polynomial Chaos basis set with O = 6 for different values of the hyperbolic trim factor q.
The blue dots show which basis vectors are to be included in the expansion. The polynomial order of ξ1
and ξ2 is presented on the horizontal and vertical axis respectively.

4.5 Notation
Throughout this thesis, the abbreviation LxEyOz is used to summarize the main settings of a
PCE. It indicates that a Smolyak sparse grid is used with grid level L = x and extended single
dimensional level ∆lev = y. A full Polynomial Chaos basis set is used with O = z.
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Chapter 5

Probabilistic functions with PCE

In treatment planning, objective functions and constraints are used to steer to a solution which
meets all clinical wishes, at least to a desired extent. Several possible functions are treated in
this chapter, that could serve both as objective function or as constraint in the optimization to
obtain a probabilistic treatment plan.

5.1 General overview
Any function which depends on the uncertainty parameters can be used for probabilistic treat-
ment planning. This comes down to all functions depending on the dose, since the dose depends
on the dose deposition matrix and the dose deposition matrix depends on the uncertainty pa-
rameters. Let g(x, ξ) denote such a function.

As already discussed in Chapter 3, a clinical decision should be made what kind of statis-
tical measure is desirable to optimize for. The objective function which is either minimized or
maximized is f (Mξ [g(x, ξ)]), with f(·) any function. Some examples of statistical measures are
listed below:

• Expected value:∫
D g(x, ξ)pξ(ξ) dξ,

• Conditional expected value:(∫
D1

pξ(ξ) dξ
)−1 ∫

D1
g(x, ξ)pξ(ξ) dξ with D1 ⊂ D,

• Expected value plus or minus a multiple of the standard deviation:∫
D g(x, ξ)pξ(ξ) dξ ± a

∫
D (g(x, ξ)− µg)

2
pξ(ξ) dξ with a ∈ R,

• Mode:
The function value g(x, ξ) corresponding to the global maximum of its probability density
function pg(g): argmaxg pg(g),

• Median:
P s
50%

{
g(x, ξ(s)) : s ∈ {1, ..., Ns}

}
with Ns samples,

• Percentile:
P s
β%

{
g(x, ξ(s)) : s ∈ {1, ..., Ns}

}
with Ns samples and β ∈ [0, 100].
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Since the explicit dependence of the dose deposition matrix on the uncertainty vector is not
known, these statistical measures cannot be calculated analytically. Monte Carlo simulation using
samples of the dose deposition matrix from the dose engine is computationally very expensive,
as described in Chapter 3. Polynomial Chaos Expansion can alleviate the computational effort
of these statistical measures, since sampling from a PCE is faster than sampling dose deposition
matrices from the dose engine. Besides, one could easily calculate the expected value and the
standard deviation from the coefficients of the PCE, as described in Chapter 4. It is not always
evident of what object a PCE is to be constructed. One could for example construct a PCE
of the function g(x, ξ) as a whole. The advantage is that the computation of the statistical
measures is very fast, once the PCE has been constructed. The disadvantage is that the beam
intensity vector is contained in the PCE, which means that a PCE has to be constructed for every
iteration of the optimization. Besides, the calculation of the gradient and/or Hessian matrix,
either analytically or by finite differencing, is typically more complicated. On the other hand,
a PCE can be constructed of a part of the function g(x, ξ), which depends on the uncertainty
parameter.

Some examples of probabilistic objective functions which can be used with Polynomial Chaos
Expansion are discussed throughout this chapter. Since most optimization algorithms require a
gradient and possibly a Hessian matrix to be provided, these derivations are also included. Note
that for the following examples that consider a minimum, for example a minimum dose, the same
applies to a maximum.

5.2 Expected quadratic dose
The quadratic objective function is the sum over the voxels V of the squares of the differences
between the dose and the prescribed dose dp. It might be desirable to minimize the function f ,
which is the expected value of the quadratic objective function:

f(x) =

∫ ∑
i∈V

wi

∑
j∈B

Dij(ξ)xj − dp
i

2

pξ(ξ) dξ (5.1)

=

∫ ∑
i∈V

wi

∑
j∈B

∑
j′∈B

DijDij′xjxj′ − 2dp
i

∑
j∈B

Dijxj + (dp
i )

2

 pξ(ξ) dξ (5.2)

=

∫ ∑
j∈B

∑
j′∈B

[∑
i∈V

wiDijDij′

]
xjxj′ − 2

∑
j∈B

[∑
i∈V

wid
p
iDij

]
xj +

∑
i∈V

wi(d
p
i )

2

 pξ(ξ) dξ

(5.3)

A PCE can be constructed of the two parts in square brackets of Equation (5.3):

∑
i∈V

wiDij(ξ)Dij′(ξ) =

∞∑
k=0

R
(k)
jj′Ψk(ξ) (5.4)

∑
i∈V

wid
p
iDij =

∞∑
k=0

r
(k)
j Ψk(ξ) (5.5)

The matrix R(k) contains the Polynomial Chaos coefficients of the k-th order corresponding to
the first part of Equation (5.3). This matrix is symmetric, so only half of the elements need

32



to be computed. The vector r(k) contains the Polynomial Chaos coefficients of the k-th order
corresponding to the second term of Equation (5.3). The size of R(k) and r(k) is respectively
the number of beamspots squared and the number of beamspots. Substituting these Polynomial
Chaos Expansions into Equation (5.3), yields:

f(x) =

∫ ∑
j∈B

∑
j′∈B

[ ∞∑
k=0

R
(k)
jj′Ψk(ξ)

]
xjxj′ − 2

∑
j∈B

[ ∞∑
k=0

r
(k)
j Ψk(ξ)

]
xj +

∑
i∈V

wi(d
p
i )

2

 pξ(ξ) dξ

(5.6)

= h2
0

∑
j∈B

∑
j′∈B

R
(0)
jj′xjxj′ − 2h2

0

∑
j∈B

r
(0)
j xj +

∑
i∈V

wi(d
p
i )

2 (5.7)

with h2
0 representing the norm of the zero-th basis vector. The derivative of Equation (5.7) is

derived in Equation (5.8). The symmetry of the matrix R(0) is used.

∂

∂xn
f(x) = h2

0

∑
j∈B

R
(0)
jn xj + h2

0

∑
j′∈B

R
(0)
nj′xj′ − 2r(0)n = 2h2

0

∑
j∈B

R
(0)
nj xj − 2r(0)n (5.8)

The elements of the Hessian matrix are expressed in Equation (5.9).

∂2

∂xm∂xn
f(x) = 2h2

0R
(0)
mn (5.9)

Note that only the zero-th order coefficient of the Polynomial Chaos Expansions are needed for
the objective function, its gradient and its Hessian matrix.

5.3 Minimum expected dose
It might be desirable to include the minimum expected dose in a structure V in the optimization.
In this case the function f is used:

f(x) = min
i∈V

∫ ∑
j∈B

Dij(ξ)xjpξ(ξ) dξ = min
i∈V

∑
j∈B

xj

∫
Dij(ξ)pξ(ξ) dξ (5.10)

A PCE can be constructed of the elements Dij of the dose deposition matrix.

Dij(ξ) =

∞∑
k=0

R
(k)
ij Ψk(ξ) (5.11)

The matrix R(k) contains the Polynomial Chaos coefficients of the k-th order. Note that this is
a different matrix than the one used in Section 5.2. Substituting the PCE of Equation (5.11)
into Equation (5.10), yields:

f(x) = min
i∈V

∑
j∈B

xj

∫ ∞∑
k=0

R
(k)
ij Ψk(ξ)pξ(ξ) dξ = min

i∈V
h2
0

∑
j∈B

R
(0)
ij xj (5.12)

In general, for a certain x the minimum of a set of arbitrary functions gi(x) equals the low-
est function value for that particular x. Moreover, the min- and max-function are continuous,
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limx→x0
(mini∈V gi(x)) = mini∈V gi(x0). The derivatives with respect to the beamspot inten-

sities are not defined on a finite number of single points. However, they are defined on the
intermediate intervals.

min
i∈V

gi(x) = gl(x)(x) with l(x) ∈ V : gl(x) ≤ gi(x) ∀i ∈ V (5.13)

∂

∂xn
min
i∈V

gi(x) =

{
∂

∂xn
gl(x)(x) if ∃l(x) ∈ V : gl(x) < gi(x) ∀i ∈ V \ {l(x)}

undefined otherwise (5.14)

If these properties of the min- and max-function are applied to the original problem of Equa-
tion (5.12), this yields Equation (5.15)

∂

∂xn
f(x) =

{
h2
0R

(0)
l(x)n if ∃l(x) ∈ V :

∑
j R

(0)
lj xj <

∑
j R

(0)
ij xj ∀i ∈ V \ {l(x)}

undefined otherwise
(5.15)

The Hessian matrix equals zero for all elements if the condition from Equation (5.15) is satisfied.

5.4 Expected minimum dose

It might be desirable to include the expected value of the minimum dose in a structure V in the
optimization. In this case the function f is used:

f(x) =

∫
dξ pξ(ξ)min

i∈V

∑
j∈B

Dij(ξ)xj (5.16)

A PCE can be constructed of the minimum dose in the structure.

min
i∈V

∑
j∈B

Dij(ξ)xj ≈
∞∑
k=0

r(k)(x)Ψk(ξ) (5.17)

The scalar r(k) equals the Polynomial Chaos coefficient of the k-th order. Substituting this
Polynomial Chaos Expansion in Equation (5.16), yields:

f(x) =

∫
dξ pξ(ξ)

∞∑
k=0

r(k)(x)Ψk(ξ) (5.18)

= h2
0r

(0)(x) (5.19)

The derivative of this function is not that obvious. According to the Leibniz rule, the order
of integration and differentiation can be interchanged if both the integrand and the derivative
of the integrand are continuous [61]. However, the derivative with respect to xn of the min-
function is not continuous, as demonstrated in Equation (5.14). Although validity is therefore
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not guaranteed, the Leibniz rule is nevertheless used:

∂

∂xn
f(x) =

∂

∂xn

∫
dξ pξ(ξ)min

i∈V

∑
j∈B

Dij(ξ)xj (5.20)

=

∫
dξ pξ(ξ)

∂

∂xn
min
i∈V

∑
j∈B

Dij(ξ)xj (5.21)

=

∫
dξ pξ(ξ)

∂

∂xn

∑
j∈B

Dl(x,ξ)j(ξ)xj (5.22)

=

∫
dξ pξ(ξ)Dl(x,ξ)n(ξ) , (5.23)

with l(x, ξ) ∈ V such that
∑

j Dlj(ξ)xj <
∑

j Dij(ξ)xj for all i ∈ V \ {l(x, ξ)}. The domain
of the integral of Equation (5.23) might also contain single points where the derivative of the
min-function is not defined, as demonstrated in Equation (5.14). Therefore, the integrand of
Equation (5.23) could exhibit jump discontinuities. This integral can be approximated with
numerical integration using a Gaussian quadrature rule. The Hessian matrix equals zero for all
elements if the derivative of the min-function is defined.

It would also be possible to approximate the gradient with a finite difference scheme.

5.5 Expected mean dose
It might be desirable to include the mean expected dose in a structure V in the optimization. In
this case the function f is used:

f(x) =

∫
1

Nv

∑
i∈V

∑
j∈B

Dij(ξ)xjpξ(ξ) dξ (5.24)

=
1

Nv

∑
j∈B

xj

∫ ∑
i∈V

Dij(ξ)pξ(ξ) dξ (5.25)

A PCE can be constructed of the sum of the columns of the dose deposition matrix.

∑
i∈V

Dij(ξ) =

∞∑
k=0

r
(k)
j Ψk(ξ) (5.26)

The vector r(k) equals the Polynomial Chaos coefficient of the k-th order. Substituting this
Polynomial Chaos Expansion in Equation (5.25), yields:

f(x) =
1

Nv

∑
j∈B

xj

∫ ∞∑
k=0

r
(k)
j Ψk(ξ)pξ(ξ) dξ (5.27)

=
1

Nv
h2
0

∑
j∈B

r
(0)
j xj (5.28)

The derivative of the expected value of the mean of the dose in the structure is straightforward.

∂

∂xn
f(x) =

1

Nv
h2
0r

(0)
n (5.29)

The Hessian matrix equals zero for all elements.
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5.6 Mean expected dose
One might also be interested in the mean of the expected value of the dose in a structure V.
This equals the expected mean dose of Equation (5.28). The derivative is also equivalent to the
derivative of the expected mean dose of Equation (5.29). The Hessian matrix equals zero as well.

5.7 β%-probabilistic dose volume parameter
It might be desirable to include dose restrictions to a certain fraction of a structure V in the
optimization. A dose parameter such as Dα%(ξ) suits for this purpose. This is the maximum dose
which at least α% of the structure receives. A β%-probabilistic Dα% is defined as the maximum
Dα% that is given at least with a β% probability. Mathematically it would be described as the
(100−β)-th percentile of the dose volume parameter Dα%, i.e. P s

(100−β)%

{
P i
(100−α)%

{
di(ξ

(s)
}}

with ξ(s) random samples of the uncertainty vector.
Some interesting and useful parameters are the 95%-probabilistic D98%(ξ), which is abbrevi-

ated as the probabilistic near-minimum dose. Another example is the 5%-probabilistic D2%(ξ),
which is abbreviated as the probabilistic near-maximum dose.

Because the β%-probabilistic Dα% is calculated using percentiles, it is not possible to express
it analytically.

5.7.1 PCE of dose deposition matrix
First, PCEs of the elements Dij(ξ) of the dose deposition matrix are constructed, as in Equa-
tion (5.11).

Dij(ξ) =

∞∑
k=0

R
(k)
ij Ψk(ξ) (5.30)

Subsequently, Ns samples from these Polynomial Chaos Expansions are drawn randomly. These
are denoted by D

(s)
ij ∈ {D(1)

ij , ..., D
(Ns)
ij }. The near-minimum dose of the structure V is calculated

for every realization s as follows:

D
(s)
α% = P i

(100−α)%

∑
j∈B

D
(s)
ij xj

 . (5.31)

The β%-probabilistic Dα%, f(x), is determined by taking the (100− β)-th percentile of the set{
D

(s)
α% : s ∈ {1, ..., Ns}

}
.

f(x) = P s
(100−β)%

{
D

(s)
α%

}
= P s

(100−β)%

P i
(100−α)%

∑
j∈B

D
(s)
ij xj


 (5.32)

As no explicit analytical expression is present for the β%-probabilistic Dα%, the same holds
for the derivative with respect to the beam intensity vector. The components of the gradient
of the β%-probabilistic Dα% are approximated using finite differences. The step size is denoted
by h, while the unit vector along the n-th element of the beam intensity vector is denoted by ên.
Equation (5.33) shows a forward finite difference scheme:

∂

∂xn
f(x) ≈ f(x+ hên)− f(x)

h
, (5.33)
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which yields:

∂

∂xn
f(x) ≈

P s
(100−β)%

{
P i
(100−α)%

{∑
j∈B D

(s)
ij xj +D

(s)
in h

}}
h

−

P s
(100−β)%

{
P i
(100−α)%

{∑
j∈B D

(s)
ij xj

}}
h

. (5.34)

5.7.2 PCE of dose volume parameter
The β%-probabilistic Dα% could also be computed in a different way, but again using Polynomial
Chaos Expansion. Instead of constructing a PCE of the dose deposition matrix and sampling from
this PCE, it is also possible to construct a PCE of the Dα% itself, as shown in Equation (5.35).

Dα%(x, ξ) =

∞∑
k=0

r(k)(x)Ψk(ξ) (5.35)

The scalar r(k)(x) equals the Polynomial Chaos coefficient of the k-th order. Subsequently, Ns
samples from this Polynomial Chaos Expansion are calculated. These are denoted by D

(s)
α% ∈

{D(1)
α%, ..., D

(Ns)
α% }. The β%-probabilistic Dα%, f(x), is determined by taking the (100 − β)-th

percentile of the set
{
D

(s)
α% : s ∈ {1, ..., Ns}

}
.

f(x) = P s
(100−β)%

{
D

(s)
α%

}
(5.36)

Because no explicit analytical expression exists for the Dα%, the gradient and Hessian are ap-
proximated with a forward finite difference scheme:

∂

∂xn
f(x) ≈ f(x+ hên)− f(x)

h
. (5.37)

The Hessian matrix can be calculated similarly.
It should be noted that the parameter Dα% depends on the beam intensity vector and there-

fore the same holds for the coefficients r(k)(x). However, the actual dependence of r(k)(x) on
x is unknown. Consequently, a PCE needs to be constructed for every x which is contained
in the finite difference scheme of the gradient and Hessian. For a forward difference scheme,
Nb + 1 PCEs are to be constructed for the gradient, with Nb the number of elements of the
beam intensity vector. If the Hessian is needed as well, this number increases to 1

2N
2
b + 3

2Nb +1

PCEs [62].

5.8 β%-probabilistic minimum dose
It might be desirable to include the β%-probabilistic minimum dose in a structure V in the
optimization. The β%-probabilistic minimum dose is the maximum dose in a structure that is
given at least with a (100 − β)% probability. Because the β%-probabilistic minimum dose is
calculated using the percentile function, it is not possible to express the probabilistic minimum
dose analytically.

First, PCEs of the elements Dij(ξ) of the dose deposition matrix are constructed.

Dij(ξ) =

∞∑
k=0

R
(k)
ij Ψk(ξ) (5.38)
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Subsequently, Ns samples from this Polynomial Chaos Expansion are calculated. These are
denoted by D

(s)
ij ∈ {D(1)

ij , ..., D
(Ns)
ij }. The minimum dose of the structure V is calculated for every

realization s. The probabilistic minimum dose, f(x), is determined by taking the (100 − β)-th
percentile of the set

{
mini∈V

∑
j∈B D

(s)
ij xj : s ∈ {1, ..., Ns}

}
.

f(x) = P s
(100−β)%

min
i∈V

∑
j∈B

D
(s)
ij xj

 (5.39)

As no explicit analytical expression is present for the probabilistic minimum dose, this also
holds for the derivative with respect to the beam intensity vector. The components of the gradient
of the probabilistic minimum dose are approximated using finite differences. The scalar h and
the unit vector ên are defined in the same way as in Section 5.7.

∂

∂xn
f(x) ≈ f(x+ hên)− f(x)

h
(5.40)

=
P s
(100−β)%

{
mini∈V

(∑
j∈B D

(s)
ij xj +D

(s)
in h

)}
− P s

(100−β)%

{
mini∈V

∑
j∈B D

(s)
ij xj

}
h

(5.41)

The Hessian matrix can be calculated similarly.
Alternatively, one could also construct a PCE of the minimum dose itself. Subsequently, the

(100− β)-th percentile from random samples from this PCE should be calculated.

5.9 Handling multiple fractions
A treatment plan could consist of multiple fractions, periodically delivered to a patient. This
section describes how to handle these fractions properly with Polynomial Chaos Expansion. In
this section, ξ(t) is used to denote the fractional uncertainty vector, contrary to previous sections
where ξ(s) was used to denote a random sample of the uncertainty vector.

5.9.1 General
Consider a tumor, which is to be irradiated, subject to a set of errors ξ = (ξ1, ..., ξN ). Consider
a function g(x, D(ξ)). The dependence on the dose deposition matrix is explicitly stated for
clarification. One could define an objective function f (Mξ [g(x, D(ξ))]), which is a function
of any statistical measure of g(x, D(ξ)). For the optimization of this treatment consisting of
only a single fraction, this objective function is to be minimized. The mathematical problem is
summarized in Equation (5.42).

minimize
x

f (Mξ [g(x, D(ξ))]) (5.42)

When the same problem is to be optimized for multiple fractions, the mathematical formula-
tion changes slightly, if the considered errors are not systematic but differ among the fractions.
Consider a set of fractions T , distinguished by the index t ∈ T = {1, ..., T}. Each fraction is
subject to a different and independent error ξ(t) =

(
ξ
(t)
1 , ..., ξ

(t)
N

)T
. These set-up errors lead to
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different dose deposition matrices D(ξ(t)). The dose d, which is delivered in the end, is the sum
of the doses of the fractions d(t) = 1

T D(ξ(t))x.

di =
∑
t∈T

d
(t)
i =

∑
t∈T

1

T

∑
j∈B

Dij(ξ
(t))xj =

∑
j∈B

(
1

T

∑
t∈T

Dij(ξ
(t))

)
xj (5.43)

The finally delivered dose equals the matrix-vector product of the mean of the dose deposition
matrices and the beam intensity vector. This effective dose deposition matrix D̃ij(ξ̃) is defined
in Equation (5.44):

D̃ij(ξ̃) =
1

T

∑
t∈T

Dij(ξ
(t)) , (5.44)

where ξ̃ is the combined random error for the whole treatment and is formed by a vertical
concatenation, in this thesis denoted with

f
, of the random errors of the individual fractions:

ξ̃ =
n

t∈T
ξ(t) . (5.45)

Note that the combined random error is a vector of size T · N . Substituting the effective dose
deposition matrix into g(x, D(ξ)) and subsequently calculating the statistical measure over all
fractions, yields the adjusted objective function f

(
Mξ̃

[
g(x, D̃(ξ̃))

])
. Equation (5.46) describes

the mathematical formulation of this optimization problem for a treatment consisting of multiple
fractions.

minimize
x

f
(
Mξ̃

[
g(x, D̃(ξ̃))

])
(5.46)

Considering the expected value instead of an arbitrary statistical measure, yields Equation (5.47).

minimize
x

f

(∫
g(x, D̃(ξ̃)pξ̃(ξ̃) dξ̃

)
=

minimize
x

f

(∫
...

∫
g(x, D̃(ξ(1), ..., ξ(T ))pξ(1)(ξ(1))...pξ(T )(ξ(T )) dξ(1)...dξ(T )

)
(5.47)

As Equations (5.46) and (5.47) show, more uncertainty parameters are introduced when
fractionating is taken into account. Such statistical measures can be calculated with PCE in
different ways. One could construct a PCE of the fractional dose deposition matrix D(ξ(t)) or of
the fractional dose d(t)(ξ(t)). A drawback is that if sampling is required for the computation of
the statistical measure, one would need T times more samples than for a single fraction treatment.
After all, for each sample of the finally delivered dose d, T samples are needed of either D(ξ(t))

or d(t)(ξ(t)). Since the dose deposition matrix contains usually many elements (i.e. Nv · Nb),
sampling would be computationally expensive in terms of memory.

Instead of constructing a PCE of a fractional quantity, one could also construct a PCE of
g(x, D̃(ξ̃)) as a whole. In that case, it should be noted that for the random error of each fraction
N separate stochastic variables should be assigned for the PCE. The number of dimensions of
the PCE therefore increases with the number of fractions and equals T · N . So calculating the
Polynomial Chaos coefficients will require more cubature points, as quantified in Table 4.3.

However, the mutual order of the fractions is physically irrelevant. This means that it does
not matter in which order the different fractions are received by the patient. This also has a
consequence on the mathematics involving the PCE. When multiple fractions are considered,
the set of cubature points contains multiple permutations of the same combination. Since the
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order of the fractions is irrelevant, different permutations of a single cubature point yield the
same stochastic response. Consequently, less function evaluations are needed than described in
Table 4.3.

As an example, consider a treatment consisting of two fractions (i.e. T = 2) subject to a
three-dimensional set-up error (i.e. N = 3). Suppose two set-up errors for a single fraction,
m ∈ R3 and n ∈ R3, with m ̸= n. Since the order of the fractions is physically irrelevant, the
cubature points m||n and n||m yield the same effective dose deposition matrix. Therefore, the
stochastic response of these two cubature points is equal.

The number of function evaluations increases for higher number of fractions, however, for
T ≥ L − 1, it remains constant, as shown in Table 5.1. This constant increases with the grid
level and the number of dimensions. A mathematical explanation is provided in Appendix B.
For L = 5 and N = 3, the number of function evaluations is 780 for T ≥ L− 1. For L = 5 and
N = 4, the number of function evaluations is 1607 for T ≥ L− 1.

Table 5.1: The number of required function evaluations (Nfval) and the number of cubature points
(Ncub) against the number of fractions (T ) for a PCE with L = 5 and ∆lev = 1, considering a three-
dimensional random error (N = 3). For T ≥ L− 1, the number of function evaluations is constant.

T T ·N Ncub Nfval

1 3 303 303
2 6 2393 669
3 9 9079 765
4 12 24465 780
5 15 53951 780

The number of cubature points and function evaluations does not necessarily increase for
every function of which a PCE is constructed when considering multiple fractions. Section 5.9.2
treats an example of a function for which the number of dimensions of the PCE does not increase
with the number of fractions considered.

Infinite fractions

For the hypothetical case of infinite fractions, the uncertainty in the delivered dose reduces
to zero. The finally delivered dose equals the expected value of the dose distribution, E[d] =

E[D(ξ)]x. After all, the expected value of a stochastic variable is the mean of an infinite number
of samples. The mathematical formulation of the optimization reduces to Equation (5.48).

minimize
x

f (g (x,E[D(ξ)])) (5.48)

5.9.2 Expected quadratic dose

In Section 5.2, the expected value of the quadratic objective function has been treated. This
function is particularly suitable when treatment planning is done for multiple fractions. For this
example, a one-dimensional tumor with an evidently one-dimensional set-up error (i.e. N = 1)
is considered.
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Substituting Equation (5.44) into (5.3), yields:

f(x) =

∫  1

T 2

∑
j∈B

∑
j′∈B

xjxj′

∑
t∈T

∑
t′∈T

[∑
i∈V

wiDij(ξ
(t))Dij′(ξ

(t′))

]
−

2

T

∑
j∈B

xj

∑
t∈T

[∑
i∈V

wid
p
iDij(ξ

(t))

]
+
∑
i∈V

wi(d
p
i )

2

 pξ̃(ξ̃) dξ̃ (5.49)

Some rearrangements yield:

f(x) =
1

T 2

∑
j∈B

∑
j′∈B

xjxj′

∑
t∈T

∑
t′∈T

[∫ ∑
i∈V

wiDij(ξ
(t))Dij′(ξ

(t′))pξ̃(ξ̃) dξ̃

]
−

2

T

∑
j∈B

xj

∑
t∈T

[∫ ∑
i∈V

wid
p
iDij(ξt)pξ̃(ξ̃) dξ̃

]
+
∑
i∈V

wi(d
p
i )

2 (5.50)

It should be noted that the dose deposition matrices of the fractions, {D(ξ(t)) : t ∈ T }, are
uncorrelated and mutually independent. However, they depend each on a Gaussian distribution
with the same mean and variance. Therefore, the following holds for αjj′tt′ , the first term in
square brackets of Equation (5.50):

αjj′tt′ =

∫ ∑
i∈V

wiDij(ξ
(t))Dij′(ξ

(t′))pξ̃(ξ̃) dξ̃ (5.51)

=

∫ ∫ ∑
i∈V

wiDij(ξ
(t))Dij′(ξ

(t′))pξ(t)(ξ
(t))pξ(t′)(ξ

(t′)) dξ(t)dξ(t
′)
∏

l ̸=t,t′

∫
pξ(l)(ξ

(l)) dξ(l)

(5.52)

=

∫ ∫ ∑
i∈V

wiDij(ξ
(t))Dij′(ξ

(t′))pξ(t)(ξ
(t))pξ(t′)(ξ

(t′)) dξ(t)dξ(t
′) (5.53)

=

{
C

(1)
jj′ ∀t, t′ ∈ T : t = t′

C
(2)
jj′ ∀t, t′ ∈ T : t ̸= t′

(5.54)

Similar rearrangements can be applied to βjt, the second term in square brackets of Equa-
tion (5.50):

βjt =

∫ ∑
i∈V

wid
p
iDij(ξ

(t))pξ̃(ξ̃) dξ̃ (5.55)

=

∫ ∑
i∈V

wid
p
iDij(ξ

(t))pξ(t)(ξ
(t)) dξ(t)

∏
l ̸=t

∫
pξ(l)(ξ

(l)) dξ(l) (5.56)

=

∫ ∑
i∈V

wid
p
iDij(ξ

(t))pξ(t)(ξ
(t)) dξ(t) (5.57)

= cj ∀t ∈ T (5.58)
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One could expand the sums over T of Equation (5.50), into which Equations (5.54) and (5.58)
can be substituted. This results in Equations (5.59) and (5.60).

f(x) =
1

T 2

∑
j∈B

∑
j′∈B

xjxj′

(
TC

(1)
jj′ + (T 2 − T )C

(2)
jj′

)
− 2

T

∑
j∈B

xjTcj +
∑
i∈V

wi(d
p
i )

2 (5.59)

=
∑
j∈B

∑
j′∈B

xjxj′

(
1

T
C

(1)
jj′ +

(
1− 1

T

)
C

(2)
jj′

)
− 2

∑
j∈B

xjcj +
∑
i∈V

wi(d
p
i )

2 (5.60)

Polynomial Chaos Expansion can be used to approximate the elements of the matrices C
(1)
jj′

and C
(2)
jj′ . For this purpose, a PCE of the integrand of Equation (5.53) is to be constructed for

both two scenarios, t = t′ and t ̸= t′. For the former scenario the dimensionality of the PCE is
reduced to 1, while for the latter it is reduced to 2. Subsequently, the elements of the matrices
C

(1)
jj′ and C

(2)
jj′ can be approximated with the zero-th coefficients of the computed PCEs.

Analogously, the elements of the vector cj can be approximated with the zero-th order PCE
coefficients of the integrand of Equation (5.57). This PCE is only single dimensional.

For the hypothetical case of infinite fractions, the limit of Equation (5.60) to infinity is to be
taken. The cross terms C

(2)
jj′ disappear. This result can also be obtained with Equation (5.48).

Similar derivations apply to objective functions which are expected values of a polynomial of
degree p in dose. Analogously, the dimensionality of the PCE can be reduced to p ·N .

Regarding Equation (5.53), it would also be possible to change the order of integration and
summation. Then, the two-dimensional integral can be split up into two identical one-dimensional
integrals. If PCE would be used to approximate these integrals, the dimensionality would indeed
further reduce to one, or in general to N . However, the number of PCEs to be calculated could
increase. In general, for handling multiple fractions with the expected value of a polynomial
in dose of degree p, the choice whether to split up the p-dimensional integral into p identical
one-dimensional integrals is a trade-off which depends on the the number of dimensions N , the
degree p and the ratio between the number of beamspots and the number of voxels. For example,
if N = 1 and Nv > Nb, the number of required PCEs increases when one would split up the
integral in p identical one-dimensional integrals. On the other hand, the number of cubature
points would be considerably less.

5.9.3 Examples: reduction of variables

Examples 5.1 and 5.2 demonstrate that generally it is not possible to replace the random errors
of the different fractions by one variable which describes all.

Example 5.1. Suppose that the dose deposition in each voxel is linear with the uncertainty,
Dij(ξ) = aijξ + bij. Let the uncertainty be Gaussian distributed: ξ(t) ∼ N (µξ, σ

2
ξ ) for all t ∈ T .∫

1

T

∑
t∈T

Dij(ξ
(t))pξ(t)(ξ

(t)) dξ(t) =
1

T

∑
t∈T

∫
Dij(ξ

(t))pξ(t)(ξ
(t)) dξ(t) (5.61)

=
1

T

∑
t∈T

∫
(aijξ

(t) + bij)pξ(t)(ξ
(t)) dξ(t) (5.62)

= aijµξ + bij (5.63)
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Let ξ̄ = 1
T

∑
t∈T ξ(t) and as a consequence ξ̄ ∼ N (µξ,

σ2
ξ

T ).∫
Dij(ξ̄)pξ̄(ξ̄) dξ̄ =

∫
(aij ξ̄ + bij)pξ̄(ξ̄) dξ̄ (5.64)

= aijµξ + bij (5.65)

Equations (5.61) and (5.64) yield the same answer. Therefore, for a linear dependence of the
fractional dose deposition on the uncertainty parameter, it is possible to combine the fractional
uncertainty parameters into a mean uncertainty parameter ξ̄.

Example 5.2. Suppose a non-linear dependence of the dose deposition in each voxel on the
uncertainty, for example Dij(ξ) = ξ2. Let the uncertainty be Gaussian distributed: ξ(t) ∼
N (µξ, σ

2
ξ ) for all t ∈ T .∫

1

T

∑
t∈T

Dij(ξ
(t))pξ(t)(ξ

(t)) dξt =
1

T

∑
t∈T

∫
Dij(ξ

(t))pξ(t)(ξ
(t)) dξ(t) (5.66)

=
1

T

∑
t∈T

∫
(ξ(t))2pξ(t)(ξ

(t)) dξ(t) (5.67)

= µ2
ξ + σ2

ξ (5.68)

Let ξ̄ = 1
T

∑
t∈T ξ(t) and as a consequence ξ̄ ∼ N (µξ,

σ2
ξ

T ).∫
Dij(ξ̄)pξ̄(ξ̄) dξ̄ =

∫
ξ̄2pξ̄(ξ̄) dξ̄ (5.69)

= µ2
ξ +

σ2
ξ

T
(5.70)

Equations (5.66) and (5.69) yield a different answer. Therefore, in general, for a non-linear or
unknown dependence of the fractional dose deposition on the uncertainty parameter, it is not
possible to combine the fractional uncertainty parameters into a mean uncertainty parameter ξ̄.

Despite this not being an actual proof, these two examples show that combining uncertainty
variables of different fractions into one variable, which describes the mean of the uncertainties over
the fractions, is only possible when the dose deposition is linearly dependent on the uncertainty.
However, obviously this is not the case, due to the Gaussian lateral spread-out of the beams.

5.9.4 Evaluating a treatment plan
For evaluating a treatment plan consisting of T fractions subject to a random error consisting of
N dimensions, it is not possible to construct a PCE with only N variables such that one could
draw one sample and obtain information about the treatment.

However, earlier research showed that considering only one fraction and therefore including
only N variables in the PCE for the dose, sampling T times from this PCE allows to obtain
information about the treatment as a whole [2, 13]. In fact, it should be noted that this way comes
down to the construction of a PCE of a fractional quantity instead of a treatment quantity. An
example of a fractional quantity is the fractional dose and an example of a treatment quantity is
the treatment dose. Obtaining information about a treatment quantity with PCE by considering
only N variables, is only possible when the relation between the treatment quantity and the
fractional quantity is known.
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For example: the relation between the treatment dose and the individual fractional doses is
known (i.e. sum) and therefore multiple samples could be drawn from a PCE of the fractional
dose and summing them yields the treatment dose. On the other hand, the relation between
the treatment dose volume parameter and the fractional dose volume parameter is unknown and
therefore it is not possible to obtain information about the treatment dose volume parameter by
sampling from a PCE of the fractional dose volume parameter.
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Chapter 6

Applications

This chapter describes the methodologies for three applications treated in this research.

6.1 Multiple fractions in 1D

Recently, research has shown the consequences of incorporating a random one-dimensional set-up
error probabilistically when minimizing the expected value of a quadratic function in dose [1]. It
is a one-dimensional problem with a tumor surrounded by non-tumorous tissue.

This problem is reworked in Matlab in order to investigate whether similar results can be ob-
tained using Polynomial Chaos Expansion. A one-dimensional, discrete voxel-grid is constructed.
The domain ranges from -60 to 60 mm and the voxel width is 0.5 mm. The tumor is located
between -30 mm and 30 mm.

The tumor is irradiated by Nb = 36 equidistantly spaced beamspots, with 2 mm distance.
For this problem, the lateral spread-out of the proton beamspots is assumed to be Gaussian with
a standard deviation of 3 mm. Since a discrete voxel-grid is used, dose conservation needs to be
imposed in each voxel. This means that the mean dose in each voxel is assigned to the center
of that voxel. The mean dose is approximated using the Gauss-Legendre quadrature rule with 2
points [63].

This one-dimensonal set-up error is assumed to be Gaussian distributed with zero mean and
a standard deviation equal to σx = 3 mm. These settings will also be provided to all PCEs which
are to be constructed for this problem.

The expected value of the quadratic differences between the dose and the prescribed dose is
minimized for a fractionated treatment, as described in Section 5.9.2. First, a Polynomial Chaos
Expansion is to be constructed of the integrand of Equation (5.53). Two cases are distinguished;
the integrand depending on either one or two fractions. In both cases, the integrand depends
on the indices j, j′ ∈ B and is invariant under interchange of these indices. This results in
1
2N

2
b + 1

2Nb = 666 two-dimensional PCEs and an equal number of one-dimensional PCEs. The
integral is approximated with the zero-th coefficients of the PCEs. Another option would be
to split the integral of Equation (5.53) into two identical one-dimensional integrals. Then, a
PCE of the dose deposition matrix could be calculated, which would require more PCEs, i.e.
Nv ·Nb = 8676.
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Second, a Polynomial Chaos Expansion is to be constructed of the integrand of Equa-
tion (5.57). This leads to Nb = 36 one-dimensional PCEs. Again, the integral is approximated
with the zero-th coefficients of the PCEs.

The Matlab optimizer fmincon is used to find the beam intensity vector which minimizes
Equation (5.60). Some arguments can be provided to this optimizer. The starting point of the
optimizer is set to be the zero vector. The beam intensity vector is restricted to be non-negative.

After the optimization, the obtained solution can be evaluated, for example as the nominal
dose, the expected dose or the variance of the dose.

Expected dose

The expected dose equals the matrix-vector product of the expected value of the dose deposition
matrix and the beam intensity vector. The expected value of the dose deposition matrix is
approximated with the zero-th order coefficients of Polynomial Chaos Expansions of the elements
of the dose deposition matrix.

Variance

The variance of the finally delivered dose in each voxel is proportional to the variance of the dose
of each fraction, as derived in Equation (6.1). Use of the definition of the variance and some
rearrangements, yield the sum over an integral and the expected dose squared.

Var (di) = Var

(∑
t∈T

d
(t)
i

)
=
∑
t∈T

Var
(
d
(t)
i

)
=

1

T 2

∑
t∈T

∑
j∈B

∑
j′∈B

xjxj′

∫
Dij(ξ

(t))Dij′(ξ
(t))pξ(t)(ξ

(t)) dξ(t) −

∑
j∈B

E[Dij(ξ
(t))]xj

2
 (6.1)

Subsequently, a PCE is to be constructed of the integrand of Equation (6.1). Equation (6.2)
shows that the integral is approximated with the zero-th order coefficients of this PCE, which is
denoted by R

(0)
ijj′ .

Var (di) ≈
1

T

∑
j∈B

∑
j′∈B

xjxj′R
(0)
ijj′ −

∑
j∈B

E[Dij ]xj

2
 (6.2)

Note again the invariance under interchange of the indices j, j′, which means that almost half of
the coefficients does not need to be calculated.

6.2 Simplified 3D geometry
This section describes a model that mimics the case of a tumor at the abdominal side of the
spinal cord in a body. The spinal cord is considered to be an organ-at-risk (OAR). The three-
dimensional geometry is simplified. A cross sectional slice is shown in Figure 6.1. The tumor
and the OAR are shown in red and blue respectively.

A discrete voxel-grid is constructed of the geometry. Each voxel is a cube with sides of 2 mm.
The resulted number of voxels is Nv = 5022.
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Figure 6.1: Cross-section of simplified geometry of a tumor with an OAR and surrounding tissue. This
cross section looks the same for all y ∈ [2, 14]. Outside this interval, only the OAR is present.

The geometry is irradiated by a grid of equidistant beamspots with multiple energies. They
enter the body at z = 0 and propagate in positive z-direction. This grid is defined in Equa-
tion (6.3).

xj = −36 + 3j ∀j ∈ {1, 2, ..., 23} (6.3)
yi = −1 + 3i ∀i ∈ {1, 2, ..., 5} (6.4)
zk = 87 + 3k ∀k ∈ {1, 2, ..., 11} (6.5)

Here, (xi, yj) is the lateral position of the beamspot and zk is the depth at which the beam has
deposited all its energy. So the set of beamspots B = {(xi, yj , zk)} consists of Nb = 23 · 5 · 11 =

1265 beamspots.
The energy deposition profile along the depth z of the proton beamspot is calculated according

the so-called pencil beam algorithm [64, 65]. A uniform density is assumed throughout the
geometry. The range straggling of the proton beamspot, as described by Bortfeld (1997), is
assumed to be σ = 3 mm, while the accuracy parameter is assumed to be ϵ = 0.01. The pencil
beam algorithm calculates the integral depth dose for a certain beamspot for various depths.

The lateral spread-out of the proton beamspots is assumed to be Gaussian distributed. The
standard deviation is modelled to be depth dependent: it increases for higher depth. The stan-
dard deviation of the lateral spread-out at entrance of the body is 3 mm. Since a discrete
voxel-grid is used, dose conservation needs to be imposed in each voxel. This means that the
mean dose in each voxel is assigned to the center of that voxel. The mean dose is approximated
using the three-dimensional Gauss-Legendre quadrature rule with 8 points [63].

A systematic set-up error ξ in the horizontal direction (x) is considered. The deposited dose
is allocated proportionally to the corresponding voxels, in presence of a variation in set-up. The
error is assumed to be Gaussian distributed with zero mean and Σx = 3 mm, so ξ ∼ N (0, 32).

For this problem, the expected value of the sum of the squares of the difference between the
voxel dose and the prescribed dose is minimized. Section 5.2 describes how Polynomial Chaos
Expansion can be used to solve this problem. Polynomial Chaos Expansions are to be constructed
of the two terms in square brackets of Equation (5.3). The first term results 1

2N
2
b +

1
2Nb = 800745

PCEs, taken into account the symmetry of the object. The second term results in Nb = 1265

different PCEs. Since the expected value is approximated, only the zero-th order coefficients
suffice. Subsequently, the expected value described by Equation (5.7) is minimized with the
Matlab optimizer fmincon.

The optimizer requires a gradient or an approximation for the gradient. If no gradient is
provided by the user, the optimizer approximates the gradient itself with a finite difference
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scheme. For this problem, the gradient, as expressed in Equation (5.8), is provided to the
optimizer. This alleviates the computational cost and decreases the uncertainty.

After the optimization, the obtained solution can be evaluated, for example as the nominal
dose, the expected dose or the variance of the dose.

Expected dose

The expected dose equals the matrix-vector product of the expected value of the dose deposition
matrix and the beam intensity vector. The expected value of the dose deposition matrix is
approximated with the zero-th order coefficients of Polynomial Chaos Expansions of the elements
of the dose deposition matrix.

6.3 Patient in iCycle
For a real demonstration of the applicability of probabilistic treatment planning, a skull base
meningioma patient is considered.

iCycle, the in-house treatment planning software of Erasmus Medical Center, is used. There
was no existing compatibility of iCycle with the openGPC software. This link has been made
ourselves. This section describes the methodology for obtaining a probabilistic treatment plan.
For comparison, robust treatment plans have also been made. That methodology is not described
here, but follows the same methodology as described by Ter Haar et al. (2018).

First of all, the CT data and the delineated organs are loaded into iCycle. The CT data is
required for the computation of the stopping power units. The delineated organs define all the
structures for which constraints or objectives can be set.

Second, a wish-list is to be defined in Lucy. This application lets the user set the constraints
and objectives for the different structures. Different wish-lists have been used. They are discussed
in Chapter 7.

The voxel reduction feature, as described in Chapter 3, is turned off for all structures, for
which a probabilistic constraint or objective is included in the wish-list. This feature introduces
more uncertainty.

The beamspot resampling feature, as described in Chapter 3, is turned off as well, for both
the probabilistic and the robust treatment plans. Ideally, this feature would be turned on.
However, this research focuses on handling probabilistic constraints or objectives with Polynomial
Chaos Expansion. The construction of the PCE requires samples of the dose deposition matrix
corresponding to the cubature points. If beamspot resampling would be turned on and the set of
beamspots would differ among the iterations, computation of the samples of the dose deposition
matrix by the dose engine would be computationally quite expensive. Instead, the same set of
beamspots is used for the treatment planning.

Since beamspot resampling is turned off, the set of beamspots which is to be used for the
probabilistic treatment plans, has to be selected manually. These beamspots are selected by
running a full nominal wish-list, as shown in Table A.2 in Appendix A, with the beamspot
resampling feature turned on. The beamspots which result from this optimization, are used as
input for the probabilistic treatment plans. In order to include enough beamspots that cover the
GTV in (almost) all possible scenarios in the probabilistic treatment plan, the GTV is expanded
with a ring of 4 mm in the full nominal wish-list. The assumption is made here that a certain
set-up error of the body leads to an equally big shift of the beamspot within the body. Due

48



to the heterogeneous density of the body, this is actually not true. However, assuming such an
equal relation between the set-up error and the shift of the Bragg peak, guarantees the GTV
expanded with a ring of 4 mm to cover the beamspots with a probability of 99.9%, when a
three-dimensional set-up error is considered with standard deviation equal to 1 mm, which is
reasonable according to literature [66].

6.3.1 Implementation of β%-probabilistic Dα% into iCycle
Multiple probabilistic functions have been implemented in iCycle.

Here, only the function for the β%-probabilistic Dα% is discussed. The output of the function
is the β%-probabilistic Dα% and optionally its gradient and its Hessian. Its input is the beam
intensity vector and some parameters which will be explained later in this section.

The pseudocode of Algorithm 6.1 summarizes the implemented function in iCycle which cal-
culates the β%-probabilistic Dα% and if needed the gradient and Hessian. This section provides
a walkthrough of this implemented function.

Algorithm 6.1 Calculate β%-probabilistic Dα%

1: X = [x0]

2: if Gradient then
3: Expand matrix X with beam intensity vectors
4: if Hessian then
5: Expand matrix X with beam intensity vectors
6: function openGPC
7: Generate cubature points {ξk}
8: function computeResponses
9: for all ξ ∈ {ξk} do

10: Compute (100− α)-th percentile of
∑

j Dij(ξ)Xjl over index i

11: Calculate PCE coefficients
12: Sample from all PCEs
13: Compute (100− β)-th percentile
14: if Gradient then
15: Calculate gradient
16: if Hessian then
17: Calculate Hessian matrix

Since a PCE is constructed of Dα% as a whole, the dependence on the beam intensity vector
is not contained in the PCE anymore. As a consequence, for all beam intensity vectors, for
which a function evaluation is required in the approximation gradient and/or Hessian by finite
differencing, a separate PCE is to be constructed. A set is constructed of all beam intensity
vectors for which a PCE of the Dα% is to be made. The size of this set depends on whether the
gradient and/or Hessian is required as output.

Subsequently, Polynomial Chaos Expansions of Dα% are constructed for all beam intensity
vectors contained in the just discussed set. For this purpose, a matrix is constructed, which is a
horizontal concatenation of all beam intensity vectors. The number of columns equals the number
of beam intensity vectors. If solely the gradient is required and a forward difference scheme is
used to approximate it, the different beam intensity vectors are contained within matrix X:
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X =
[
x0 · · · x0

]
+
[
0 diag(h, ..., h)T

]
. (6.6)

Subsequently, a parallelized loop is executed over the different cubature points, as line 9 and 10
of Algorithm 6.1 show. In each iteration of this loop, the matrix product of the dose deposition
matrix corresponding to the current cubature point and the matrix X is calculated and the
(100−α)-th percentile is calculated of this matrix along the voxel dimension (i.e. index i). This
resulting row vector is stored for each iteration of the loop in a matrix. This matrix contains the
the responses to the different cubature points along the first dimension. The number of columns
equals the number of beam intensity vectors for which a PCE is needed. The coefficients of the
PCEs are calculated with these responses.

Now we have obtained PCEs of the Dα% for the different beam intensity vectors. For each
PCE a number of samples is drawn. The number of samples can be provided as a variable
to the function. The (100 − β)-th percentile is calculated for the sample set. This yields the
β%-probabilistic Dα% for all different beam intensity vectors.

Subsequently, the gradient and Hessian matrix are calculated using finite differencing in a
computationally efficient way with parallelized loops. It turns out that the gradient of the
β%-probabilistic Dα% always has to be non-negative, which is proven in Section 6.3.2. In case
the finite differencing still yields a negative derivative, an option has been implemented, which
enforces requirements on the gradient and Hessian. Four options regarding monotonicity en-
forcement can be distinguished:

1. No requirements are enforced,

2. Each negative element of the gradient is set to zero:

∂f

∂xn
=

max{f(x0 + hên), f(x)} − f(x)

h
,

3. Each negative element of the gradient is set to zero and these adjustments are also em-
braced in the Hessian:

∂f

∂xn
=

max{f(x0 + hên), f(x)} − f(x)

h
,

∂2f

∂xm∂xn
=

1

h2
(f(x0 + hêm + hên)−max{f(x0 + hêm), f(x0)}−

max{f(x0 + hên), f(x0)}+ f(x0)) ,

4. Positive monotonicity is enforced everywhere:

∂f

∂xn
=

max{f(x0 + hên), f(x)} − f(x)

h
,

∂2f

∂xm∂xn
=

1

h2
(max{f(x0 + hêm + hên), f(x0 + hêm), f(x0 + hên), f(x0)}−

max{f(x0 + hêm), f(x0)} −max{f(x0 + hên), f(x0)}+ f(x0)) .
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Regarding the sampling, two options have been implemented: either deterministic sampling
or non-deterministic sampling. With deterministic sampling, the same samples of the uncertainty
vectors are used every iteration of the optimization.

Every time the implemented function, summarized in Algorithm 6.1, gets called, the same
dose deposition matrices corresponding to the cubature points are needed for the computation
of the PCEs. This set of dose deposition matrices can be provided to the function to avoid that
the dose engine has to calculate these every time the function is called.

Linear constraints and objectives, like a minimization of the maximum dose as shown in
Equation (6.7), are often included in wish-lists.

minimize
x

max
i

di(x,0) (6.7)

To solve such problems, iCycle introduces an extra decision variable t. The new decision vector
becomes y = (x1, ...xNb , t)

T . A differently formulated but equivalent optimization problem
follows, as shown in Equation (6.8).

minimize
y

[
0 · · · 0 1

]
y

subject to
[
D(0) −1

]
y < 0

(6.8)

Here, −1 is a vector with Nv elements, each equal to −1. A functionality has been implemented
into Algorithm 6.1, which guarantees proper working when extra decision variables are added
for linear constraints and objectives. This functionality is needed when the maximum dose in a
structure and the β%-probabilistic Dα% in a structure are minimized simultaneously.

The function is coded such that the parameters α and β can be provided in the wish-list in
Lucy.

6.3.2 Non-negative gradient β%-probabilistic Dα%

If the intensity of a beamspot is increased, one would expect that the total deposited dose
increases as well. Therefore, a negative gradient of a DVH-like parameter is intuitively not
natural. This is stated in Theorem 6.1 and is followed by a mathematical proof.

Theorem 6.1. Let d(r,x, ξ) =
∑

j Dj(r, ξ)xj be the dose with xj ≥ 0 for all j and Dj(r, ξ) ≥ 0

for all j, r, ξ. The parameter Dα%(x, ξ) is non-decreasing, in other words ∂Dα%(x,ξ)
∂xj

is non-
negative for all j,x, ξ.

Proof. Let x0 be an arbitrary non-negative beam intensity vector and let k denote an ar-
bitrary element of this vector with corresponding unit vector êk. Let V =

∫
d(r,x,ξ)<∞ d3r

be the volume of the considered structure. For all α ∈ [0, 100], the dose volume parameters
are defined as:

Dα%(x, ξ) = inf

{
D ∈ R :

∫
d(r,x,ξ)≤D

d3r ≥
(
1− α

100

)
· V

}
.
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Since x0 + hêk ≥ x0 for any h > 0, d(r,x0 + hêk, ξ) ≥ d(r,x0, ξ) for all r, ξ. Therefore,
the following holds for all ξ:{

D ∈ R :

∫
d(r,x0+hêk,ξ)≤D

d3r ≥
(
1− α

100

)
· V

}
⊆{

D ∈ R :

∫
d(r,x0,ξ)≤D

d3r ≥
(
1− α

100

)
· V

}
.

Consequently, Dα%(x0 + hêk, ξ) ≥ Dα%(x0, ξ) for any h > 0 and for all ξ. Therefore,
∂Dα(x,ξ)

∂xj
≥ 0 for all j,x, ξ.

For Theorem 6.1 and its proof, a continuous dose profile d(r,x, ξ) and a continuous dose depo-
sition profile Dj(r, ξ) are assumed. However, in clinical practice such a continuous dose profile
is not known. Theorem 6.1 also applies to a discretized voxel grid with corresponding dose
distribution di(x, ξ) and dose deposition matrix Dij(ξ). Its proof is analogous.

A positive gradient of the dose volume parameters has been proven now. A similar approach
can proof Theorem 6.2, a non-negative gradient of the probabilistic dose volume parameters.

Theorem 6.2. Let Dα%(x, ξ) be the dose volume parameter as defined in the proof of Theo-
rem 6.1. The β%-probabilistic Dα%(x, ξ) is denoted by fβ(x). fβ(x) is non-decreasing, in other
words ∂fβ(x)

∂xj
is non-negative for all j,x.

Proof. Let x0 be an arbitrary non-negative beam intensity vector and let k denote an
arbitrary element of this vector with corresponding unit vector êk. For all β ∈ [0, 100],
the β%-probabilistic Dα%(x, ξ) is defined as:

fβ(x) = inf

{
D ∈ R :

∫
Dα%(x,ξ)≤D

pξ(ξ) dξ ≥
(
1− β

100

)}
.

Theorem 6.1 states that Dα%(x0 + hêk, ξ) ≥ Dα%(x0, ξ) for any h > 0 and for all ξ.
Therefore, the following holds:{

D ∈ R :

∫
Dα%(x0+hêk,ξ)≤D

pξ(ξ) dξ ≥
(
1− β

100

)}
⊆{

D ∈ R :

∫
Dα%(x0,ξ)≤D

pξ(ξ) dξ ≥
(
1− β

100

)}
.

Consequently, fβ(x0 + hêk) ≥ fβ(x) for any h > 0. Therefore, ∂fβ(x)
∂xj

≥ 0 for all j,x.

For computational reasons, the β%-probabilistic Dα%(x, ξ) is not calculated as in Theorem 6.2
and its proof. Instead, a finite set of samples are drawn from a Polynomial Chaos Expansion of
Dα%(x, ξ). In that case, Theorem 6.2 is still valid. Its proof is analogous.
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Chapter 7

Results

In this chapter the results are presented of the three applications discussed in Chapter 6.

7.1 Multiple fractions in 1D
The example, addressed by Unkelbach et al. (2018), has been reworked, as described in Sec-
tion 6.1. Similar results have been found.

The prescribed dose in the tumor is dp = 1. Elsewhere the prescribed dose equals zero. The
weights wi assigned to the voxels inside and outside the tumor are respectively 1 and 0.01.

For all PCEs involved in this problem, the grid level is L = 8. This is rather conservative,
especially since solely the zero-th coefficients are required. However, as this problem is small, it
does not influence the computation time considerably.

Figure 7.1 shows the results for different number of fractions. The tumor is presented as the
shaded area in the graphs. In blue, the nominal dose is shown, which corresponds to a random
error equal to zero for every fraction. The expected dose distribution is presented in red. The
standard deviation for the dose in every voxel is shown in green.
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Figure 7.1: Probabilistic treatment plans for different number of fractions. The expected value of
a quadratic function in dose has been optimized. The prescribed dose in the tumor, the shaded area
(−30 ≤ x ≤ 30), is 1. In blue, the nominal dose is shown, which corresponds to a random error equal to
zero for every fraction. The expected dose distribution is presented in red. The standard deviation for
the dose in every voxel is shown in green. The standard deviation of the horizontal Gaussian distributed
error is σx = 3 mm. This example has been reworked from the problem described by Unkelbach et
al. (2018) and the results are the same.
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Figure 7.1 shows that the standard deviation of the dose in each voxel decreases for higher
number of fractions. This can be explained as follows. The finally delivered dose can be inter-
preted as an estimate of the expected dose, the so-called sample mean. The standard deviation
of the sample mean is inversely proportional with the square root of the number of samples,
which corresponds to the number of fractions in this problem. As expected, the standard devi-
ation of the dose decreases to zero for an infinite number of fractions. This is also explainable
physically. If the number of fractions goes to infinity, the random set-up errors of the fractions
can be neglected.

In Figure 7.1 it can be observed that the nominal dose expands around the tumor for a single
fraction treatment. This resembles a conventional treatment plan, for which a PTV is used to be
defined. However, there is a difference, since for probabilistic treatment planning a PTV does not
need to be defined manually, as demonstrated in this section. Instead the automatic extension
of the tumor results from the optimization of the CTV itself including the set-up uncertainty.
A single fraction treatment is equivalent to a treatment subject to a systematic error. If only
one fraction is considered, a random set-up error causes the nominal dose distribution to shift
equally. As a consequence, the standard deviation of the dose is higher in a neighbourhood
where the nominal dose shows a steeper slope. The size of this neighbourhood depends on the
standard deviation of the random error. After all, bigger shifts of the dose distribution are likely,
if the standard deviation of the random error is higher. Figure 7.1 demonstrates this observation
for a single fraction treatment: the standard deviation is maximal where the magnitude of the
gradient is highest.

For a higher finite number of fractions of a probabilistic treatment plan, the fall-off of the
nominal dose at the edge of the tumor is steeper: the regions outside the tumor receive less dose.
As a consequence, the edge could be underdosed for fractions with a large set-up error. However,
the average dose of all fractions is optimized. So, to compensate the possible underdosage at the
edge for some fractions, horns arise near the edge. These horns become more visible for higher
number of fractions. This phenomenon has also been described and simulated in earlier research
[1, 67, 68].

As the number of fractions increases, the horns at the edge are emphasized more. These horns
trigger a negative horn towards the interior. Subsequently, such a reduction in dose triggers a
new horn towards the interior of the tumor. This oscillatory behaviour is more prominent as
the number of fractions increase. This phenomenon has also been described by Lof, Lind, and
Brahme (1995).

The computation time is recorded as well and is presented in Table 7.1.

Table 7.1: Computation time for one-dimensional treatment planning for the optimization of the
expected value of a quadratic function in dose. A finite and infinite number of fractions are distinguished.
Both the time needed for construction of the PCE and for optimization have been recorded.

Finite T Infinite T

PCE Optimization PCE Optimization

4.5 s 2.2 s 0.6 s 2.2 s
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7.2 Simplified 3D geometry
This section presents the results of the three-dimensional simplified geometry representing a
tumor at the abdominal side of the spinal cord, as described in Section 6.2. The expected value
of the sum of the quadratic differences between the dose and the prescribed dose is minimized,
as described in Section 5.2.

For this problem, the prescribed dose in the tumor is set to dp = 60 Gy. Elsewhere, the
prescribed dose is set to 0 Gy. The weight wi assigned to the voxels of the tumor and the organ-
at-risk is set to 1, while the weight assigned to the voxels outside the tumor and the OAR is set
to 5 · 10−3.

For all PCEs involved in this problem, the grid level is set to L = 5. This is reasonable,
especially since only the zero-th coefficients of the PCEs are needed.

Figures 7.2a and 7.2b shows the nominal dose distribution and the expected dose distribution
for a cross-sectional view (y = 8 mm) of the geometry. The tumor and the organ-at-risk are
delineated with a white line. The shape of the tumor and OAR in Figure 7.2 is different from
the one in Figure 6.1, due to the finite resolution of the voxel-grid. A conformal target coverage
is achieved and the organ-at-risk is spared.

Figure 7.2c shows a conventional treatment plan. For this plan the sum of the quadratic
differences of the dose and the prescribed dose in the voxels is minimized, without any uncer-
tainty taken into account (ξ = 0). When one compares this conventional treatment plan with
the nominal dose distribution of the probabilistic treatment plan (Figure 7.2a), the automatic
expansion of the tumor in the probabilistic treatment plan is notable, as also described in Sec-
tion 7.1. This means that no planning target volume had to be defined and instead, the tumor
has been expanded automatically, as a consequence of probabilistic optimization.

Besides, the nominal dose distribution of the probabilistic treatment plan shows that the
automatic expansion of the tumor reaches less far at the interior edge of the tumor than at the
exterior edge of the tumor. This is a consequence of the higher weight assigned to the voxels of the
OAR. The steeper fall-off of the dose at the interior edge of the tumor, could cause underdosage
of the tumor when a large set-up error is present. To compensate possible underdosage here, a
slightly higher dose is received just inside the tumor near the interior edge. Figure 7.3 shows the
same dose plots as Figure 7.2, however, the dose scale is smaller such that small differences in
dose in the tumor are more clearly visible.

The expected dose distribution is more homogeneous than the nominal dose distribution, as
expected. After all, averaging occurs for the expected value, which smoothens out the hetero-
geneities in the dose distribution.

The weights wi assigned to the voxels of the different structures (i.e. tumor, OAR or outside
both) can be adjusted to obtain the desired treatment plan. As an example, if the weight of the
voxels outside the tumor and the OAR is decreased, the automatic expansion of the tumor reaches
further, since a high dose outside the tumor is less penalized. If the weight of the organ-at-risk
voxels is increased, the automatic expansion of the tumor at the interior side of the tumor reaches
less far, since a high dose in the OAR is penalized more. Since the objective function is linear
with respect to the weights of the voxels, only the ratio between the weights has importance.

Figure 7.4 shows the dose volume histogram of the expected dose distribution in the tumor of
both the probabilistic and the conventional treatment plan. It can be observed that the expected
dose of the probabilistic treatment plan is more homogeneous and is closer to the prescribed dose
of 60 Gy than the expected dose the conventional treatment plan. This is explainable, since for
the conventional treatment plan no set-up errors have been taken into account while for the
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(a) Nominal dose of probabilistic treatment plan
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(b) Expected dose of probabilistic treatment plan
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(c) Nominal dose of cobventional treatment plan

Figure 7.2: Cross-sectional views of the plane described by y = 8 mm. The prescribed dose in the
tumor is 60 Gy. The weights wi assigned to the voxels of the tumor and OAR are set to 1, while the
weights of the voxels outside both are set to 5 ·10−3. (a,b) Nominal and expected dose of a probabilistic
treatment plan for which the sum of the quadratic differences of the voxel dose and the prescribed
dose has been minimized. (c) Nominal dose of a conventional treatment plan for which the sum of the
quadratic differences of the voxel dose and the prescribed dose has been minimized.
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(a) Nominal dose of probabilistic treatment plan
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(b) Expected dose of probabilistic treatment plan
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(c) Nominal dose of cobventional treatment plan

Figure 7.3: Same as Figure 7.2, but with other dose scale. Cross-sectional views of the plane described
by y = 8 mm. The prescribed dose in the tumor is 60 Gy. The weights wi assigned to the voxels of the
tumor and OAR are set to 1, while the weights of the voxels outside both are set to 5·10−3. (a,b) Nominal
and expected dose of a probabilistic treatment plan for which the sum of the quadratic differences of the
voxel dose and the prescribed dose has been minimized. (c) Nominal dose of a conventional treatment
plan for which the sum of the quadratic differences of the voxel dose and the prescribed dose has been
minimized.
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probabilistic treatment plan the difference between the expected dose and the prescribed dose
has been minimized [1].
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Figure 7.4: Dose volume histogram of the expected dose distribution in the tumor of the probabilistic
and the conventional treatment plan.

The expected value of the sum of the quadratic differences of the dose and the prescribed
dose in each voxel is technically a suitable function for probabilistic treatment planning. First
of all, the function is convex with respect to the beam intensity vector x. A convex function is
easier to minimize, since the obtained minimum is always the global minimum, if the feasible
region is a convex set [69]. Besides, since the function is smooth and an analytical expression is
known, the function is differentiable as well. This speeds up the optimization.

However, the expected value of the sum of the quadratic differences of the dose and the
prescribed dose in each voxel is a function with little clinical relevance. After all, the function
value itself does not have a one-to-one relation with the spatial dose distribution and therefore
it does not have an easy to interpret clinical meaning.

The computation time is recorded as well and is presented in Table 7.2.

Table 7.2: Computation time for three-dimensional treatment planning when optimizing the expected
value of a quadratic function in dose. Both the time needed for construction of the PCE and for
optimization have been recorded. These computations have been run on the cluster of Erasmus MC,
with 6 processors and 50 GB of memory reserved. The computation time of the conventional treatment
plan was 351.7 s.

PCE Optimization

21.8 s 219.9 s

7.3 Patient in iCycle

The results of a simplified one-dimensional and three-dimensional problem have been described
in previous sections. This section elaborates on the results following from data of a real skull
base meningioma patient.
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7.3.1 95%-probabilistic D98% using PCE
In Chapter 5, two methods have been described how PCE can be used for treatment planning
with the probabilistic near-minimum dose, either via a PCE of the dose deposition matrix or via
a PCE of the near-minimum dose. This section presents the results.

Polynomial Chaos Expansion can be used for treatment planning with the probabilistic near-
minimum dose, as described in Section 5.7. For this purpose, a Polynomial Chaos Expansion
could be constructed of the near-minimum dose. The quality of the approximation of the PCE has
to be validated for different grid levels and polynomial orders. For this purpose, three different
Polynomial Chaos Expansions are constructed of the same dose volume parameter D98%. The
beam intensity vector which is used resulted from the conventional treatment plan, of which the
wish-list is described in Table A.2 in Appendix A.

First, a PCE of the dose deposition matrix has been constructed with L = 4, ∆lev = 1 and
O = 5. For this PCE, 111 cubature points are involved, which means that 111 realizations of
the dose deposition matrix are to be calculated by the dose engine. Subsequently, a Polynomial
Chaos Expansion is constructed of D98% with L = 5, ∆lev = 1 and O = 6. For this PCE, 303
cubature points are involved. The realizations of the dose deposition matrix corresponding to
these 303 cubature points are calculated with the PCE of the dose deposition matrix instead
of the dose engine. Figure 7.5a shows the dose volume parameter D98% as a function of the
uncertainty vector, either calculated using the dose engine or using a PCE.

Second, a PCE of the D98% itself has been constructed directly with L = 5, ∆lev = 1 and
O = 6. For this PCE, 303 cubature points are involved, which requires 303 realizations of the dose
deposition matrix from the dose engine. Figure 7.5b shows the dependence on the uncertainty
vector.

Third, another PCE of the D98% itself has been constructed with L = 6, ∆lev = 1 and O = 7.
For this PCE, 741 cubature points are involved, which requires an equal number of realizations
of the dose deposition matrix from the dose engine. Figure 7.5c shows the dependence on the
uncertainty vector.

The second PCE (L5E1O6), shown in Figure 7.5b, is preferred. If the first and second PCE
(Figures 7.5a and 7.5b) are compared, we observe that the error between the PCE approximation
and the exact D98% is small for both PCEs. The major difference is the required number
of realizations of the dose deposition matrix from the dose engine. These samples need to be
computed only once for every patient. So the impact on the computation time of the optimization
of a full wish-list is considerably small. Besides, there is not much improvement of the accuracy
of the third PCE with respect to the second PCE.

In general, the β%-probabilistic Dα% cannot be calculated analytically, since the probability
density function of the Dα% is unknown. Therefore, a finite number of samples is drawn from
the Polynomial Chaos Expansion of Dα%. The (100 − β)-th percentile of this sample set is
an estimate for the β%-probabilistic Dα%. This estimate itself is a stochastic variable with a
non-zero variance. This variance is expected to depend on the sample size. For this reason, the
influence of the sample size on the the spread of the estimate for the β%-probabilistic Dα% is
investigated.

Figure 7.6 shows ten realizations of the empirical cumulative distribution function of the
D98% for different number of samples Ns. The value of an estimate for the 95%-probabilistic
D98% is the intersection of a realization and the horizontal line characterized by a cumulative
probability equal to 0.05. The purple dot in Figure 7.6 is a realization of the 95%-probabilistic
D98% with Ns = 107. This value can be interpreted as a benchmark. The spread is defined as the
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Figure 7.5: The dose volume parameter D98% of the GTV as a function of ξ1, ξ2 and ξ3, which
correspond to the systematic set-up error in the x-, y- and z-direction respectively. The beam intensity
vector resulted from a conventional optimization of the wish-list from Table A.2. (a) L = 5, ∆lev = 1

and O = 6 using samples of a lower order PCE of the dose deposition matrix (L = 4, ∆lev = 1 and
O = 5). (b) L = 5, ∆lev = 1 and O = 6. (c) L = 6, ∆lev = 1 and O = 7. Based on these results,
L5E1O6 was chosen and used in this research.
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maximum difference between the realizations of the 95%-probabilistic D98%. In accordance with
expectation, the spread of the 95%-probabilistic D98% appears to decrease for a higher number
of samples. For Ns = 5 · 105 samples, the spread is below 0.01 Gy. The choice of the number of
samples is a trade-off between computation time and uncertainty. Ns = 5 · 105 is preferred and
is used throughout this thesis.
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Figure 7.6: Ten realizations of the empirical cumulative distribution function of the D98% for different
number of samples Ns. These samples are obtained by sampling from a Polynomial Chaos Expansion
(L5E1O6) of the D98% parameter. The beam intensity vector resulted from a conventional treatment
plan of which the wish-list is described in Table A.2. The purple dot is a realization of the fifth percentile
for Ns = 107 samples. Based on these results, a sample size of Ns = 5 · 105 was chosen and used in this
research.

Since our approximation of the 95%-probabilistic D98% itself is a stochastic variable, its
derivative with respect to the beam intensity vector is stochastic as well. Figure 7.7 shows ten
realizations of the first 30 elements of the gradient of the 95%-probabilistic D98%, calculated
with a forward finite difference scheme for different step sizes h. The values of the elements of
the gradient are connected for clarification. It appears that the spread decreases for higher step
sizes.

Figure 7.8 shows the 95%-probabilistic D98% as a function of the 19-th element of the beam
intensity vector for different scales. The horizontal axis represents the difference with respect to
the initial intensity of the 19-th beamspot. Figure 7.8c shows that the 95%-probabilistic D98%

appears to be almost linear with the 19-th beamspot on a larger scale. However, on a smaller
scale a bumpy behaviour is observed.

For a part of the domain shown in Figure 7.8c, the 95%-probabilistic D98% has a negative
derivative. However, Theorem 6.2 in Chapter 6 states that the gradient of a probabilistic dose
volume parameter always has to be non-negative. Such graphs have also been analyzed for a
higher number of samples (N = 107). It turns out that this bumpy behaviour with negative
slopes of the 95%-probabilistic D98% does not reduce considerably. The reason why negative
slopes are observed in contrary to Theorem 6.1 might be that a PCE is used to approximate the
D98%. Small errors could cause the probabilistic D98% to decrease.

The part of the curve of Figure 7.8a with a negative slope corresponds to the dominantly
present negative value of the 19-th element of the gradient for a step size of h = 0.1, in Figure 7.7.
A positive gradient is observed for higher step sizes, as one would expect from the graphs of
Figure 7.8.

Whether the dependence of the 95%-probabilistic D98% on the beam intensity is close to
linear for all beamspots, needs to be checked. For this purpose, a linear fit of the functional
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Figure 7.7: Ten realizations of the first 30 elements of the gradient of the 95%-probabilistic D98% for
different step sizes. The elements of the gradient are connected for clarification.

dependence is constructed for all beamspots. Besides, a cubic fit of the functional dependence is
constructed. The so-called R2-value is a measure for the successfulness of the fit in explaining
the variation in the data [70]. This parameter can take up values between 0 and 1, where the
latter corresponds to a good fit. It turns out that the R2-value of the linear fit is above 0.75 for
211 of the 235 beamspots, which corresponds to almost 90%. Hence, for 24 out of 235 beamspots
the R2-value is below 0.75. Figure 7.9 is a histogram of the linear coefficients of the fits for all
beamspots. It turns out that the linear coefficients of the beamspots with a R2-value below 0.75,
are below 2 · 10−4, which correspond to the first two bins of Figure 7.9. A slope of 2 · 10−4 is
assumed to be negligible small.
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Figure 7.8: Dependence of the 95%-probabilistic D98% on the intensity of the 19-th beamspot. These
graphs are obtained by sampling from a Polynomial Chaos Expansion (L5E1O6) of the D98% parameter
with Ns = 5 · 105.
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Besides, the linear coefficient of all beamspots for which the R2-value of the cubic fit increases
with more than 30% with respect to the R2-value of the linear fit, is below 2 · 10−4. So, all
beamspots for which there is room for improvement of a higher order fit, show a negligible small
slope.
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Figure 7.9: Histogram of the linear coefficients of the linear fit of the dependence of the 95%-
probabilistic D98% on the intensity of the different beamspots. The total number of counts is the
number of elements of the beam intensity vector, which equals Nb = 235.

An example of a linear fit with a coefficient above 0.75 is shown in Figure 7.10a. The variations
are well described by the fit. On the other hand, Figure 7.10b shows a linear fit with a coefficient
below 0.75. It is obvious that the fit doesn’t describe the variations of the probabilistic D98%

well. However, the variations are negligible small and are solely caused by noise.
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Figure 7.10: Linear fits of the functional dependence of the 95%-probabilistic D98% for two elements
of the beam intensity vector. (a) R2-value above 0.75. (b) R2-value below 0.75.

The bumpy behaviour on a small scale of the 95%-probabilistic D98% justifies a big step size
for approximating the gradient and Hessian with a finite difference scheme. Since the probabilistic
D98% is almost linear with respect to the beam intensity, it is justifiable to use a forward difference
scheme instead of a central difference scheme. Besides, the forward difference scheme requires
less function evaluations, as discussed in Chapter 5.

Computation time

The computation time of one iteration, as described by Algorithm 6.1, has been recorded and
is summarized in Table 7.3. It turns out that the computation time increases substantially
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if the Hessian is required. If the Hessian matrix is desired, the construction of the PCEs is
computationally most expensive, followed by the calculation of the 5-th percentile of the samples.

Algorithm 6.1 describes a parallelized loop over the cubature points. The responses corre-
sponding to the cubature points can also be computed with a parallelized loop over the beam
intensity vectors for which a PCE of the D98% is to be constructed. This increases the computa-
tion time slightly. For higher grid levels, a parallelized loop over the cubature points alleviates
the computational effort considerably.

It has also been investigated whether it is computationally beneficial to compute the 95%-
probabilistic D98% and its gradient and Hessian using a PCE of the dose deposition matrix, as
described in Section 5.7.1. This takes more than 50 hours for solely Ns = 104 samples. Due to
the size of the dose deposition matrix of the GTV (Nv = 11781 and Nb = 235), storing many
samples simultaneously in the memory is not possible. Therefore, the samples need to be drawn
in batches.

7.3.2 Simple wish-lists
This section describes probabilistic treatment plans resulting from a wish-list with either one or
two probabilistic objectives.

One probabilistic objective

First, a rather basic wish-list (Table 7.4) has been run in iCycle. As first objective, the so-called
logarithmic tumor control probability function, as defined in Equation 7.1, is minimized for GTV
without any uncertainties taken into account (i.e. ξ = 0).

LTCP(x, ξ) = 1

Nv

∑
i∈V

exp (−γ (di(x)− dp)) (7.1)

This LTCP function is convex and the minimum is easily found [71]. The sensitivity parameter γ
is set to 0.5 and the prescribed dose dp is set to 50.4 Gy. This objective is imposed to drive
the optimization efficiently in the proper direction. To prevent the optimization problem to
be unbounded, a constraint is set on the maximum nominal dose. Subsequently, the 95%-
probabilistic D98% is maximized to be above 0.95 · 50.4 Gy. This wish-list, as described in
Table 7.4, has been run with multiple combinations of settings.

First of all, iCycle offers a so-called ForceNonConvex functionality which could improve con-
vergence of non-convex objective functions. This functionality has a positive effect on the con-
vergence.

Table 7.3: Computation of one iteration of the 95%-probabilistic D98% by sampling from a PCE
(L5E1O6) of the D98%, with Ns = 5 · 105. A distinction is made whether the gradient and Hessian are
required. These computations have been run on the cluster of Erasmus MC, with 16 processors and 120
GB of memory reserved.

Function value Gradient Hessian Time (s)

• 6
• • 21
• • • 943
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Table 7.4: Simple wish-list for a probabilistic treatment plan with one probabilistic objective on the
GTV.

Constraints

Volume Type Limit

GTV Minimize maxi di(x,0) 1.07 · 50.4 Gy

Objectives

Priority Volume Type Goal

1 GTV Minimize LTCP(x,0) 1
2 GTV Maximize P s

5%{D98%(x, ξ(s)} 0.95 · 50.4 Gy

Besides, the four options regarding the monotonicity enforcement of the probabilistic dose
volume parameter as introduced in Section 6.3.1, have been tested. For higher step sizes (h = 10

and h = 16), the optimization converged for all four options. The computation time of the
optimization for which no monotonicity was enforced is fastest. With a smaller step size h = 1,
the optimization did not converge for all four options. It seems that for a small step size, even
when monotonicity is enforced, the bumpy behaviour of the probabilistic 95%-probabilistic Dα%

drives the optimization in the wrong direction.
It has also been tested whether the optimization succeeds when the Hessian matrix is manually

set to a zero matrix or an identity matrix. Neither leads to convergence. iCycle also offers the so-
called UseHessApprox functionality, which bypasses the need for the computation of the Hessian
with PCEs. Instead, iCycle uses the gradient to approximate the Hessian. As one could expect
from Table 7.3, this improves the computation time considerably. For higher step sizes (h = 10

and h = 16), the optimization converges. However, when this functionality is combined with
monotonicity enforcement of the gradient, the optimization does not converge.

Figure 7.6 shows that for Ns = 5 · 105 there is still some spread in the realizations of the
95%-probabilistic D98%. To get rid of this noise, every iteration of the 95%-probabilistic D98%,
described in Algorithm 6.1, the same samples of the uncertainty vector ξ has been used to
calculate the samples of the Dα% with the PCE. This is referred to as deterministic sampling.

Table 7.5 summarizes the settings which have been used to compute the probabilistic dose
volume parameter for the results of probabilistic treatment planning described in Sections 7.3.2
and 7.3.3.

Table 7.5: Settings of the probabilistic dose volume parameter applicable to all results described in
Sections 7.3.2 and 7.3.3.

Name Setting

PCE L5E1O6

ForceNonConvex enabled
UseHessApprox disabled
Monotonicity enforcement disabled
Deterministic sampling enabled
Number of samples Ns 5 · 105

Step size h 16

65



Figure 7.11 shows the nominal scenario of the treatment plan which resulted from the op-
timization with the wish-list defined in Table 7.4, with Ns = 5 · 105, h = 16, ForceNonCon-
vex functionality enabled, UseHessApprox disabled and without monotonicity enforcement. A
conformal target coverage is observed. Since the fifth percentile of the near-minimum dose is
maximized, an automatic expansion of the GTV is visible, which ensures that the GTV receives
the prescribed dose in 95% of the possible scenarios.
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Figure 7.11: Probabilistic treatment plan obtained with the wish-list described in Table 7.4. An axial,
sagittal and coronal cross-section through the center of mass of the GTV in the nominal scenario are
shown. The following settings are used for the probabilistic dose volume parameter: Ns = 5 ·105, h = 16,
ForceNonConvex enabled, UseHessApprox disabled and no monotonicity enforcement.

Figure 7.12 shows the probabilistic dose volume histogram of the probabilistic treatment plan
of which the wish-list is described in Table 7.4. The bandwidth corresponds to a 90% confidence
interval, as the 5-th and 95-th percentile of the dose volume parameter are calculated for every
α separately. Thus, the probability that a realization of the Dα% for a specific volume α falls
within the bandwidth is 90%. No statement can be made about the probability that a realization
of the dose volume histogram itself falls within the entire bandwidth for all α. It is observed that
for lower α the bandwidth increases, since only the nominal dose is constrained. After all, from
the wish-list we know that a high dose, i.e. above 1.07 · 50.4 Gy, in the GTV is not penalized in
any other scenario than the nominal scenario.
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Figure 7.12: Probabilistic DVH corresponding to the probabilistic treatment plan of which the wish-list
is described in Table 7.4. The left and right edge of the bandwith correspond to respectively the 5-th
and 95-th percentile of samples from a PCE of the dose volume parameter. The dotted curve shows the
nominal scenario and the dot is the value which has been optimized.
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The computation time for the treatment plan corresponding to Table 7.4 was 30 hours. The
number of iterations needed to maximize the probabilistic objective was 84. The optimization has
been performed on the cluster of Erasmus MC, with 6 processors and 50 GB memory reserved.

Two probabilistic objectives

Table 7.6 shows almost the same wish-list as Table 7.4 but with two probabilistic objectives.
Besides a probabilistic lower bound on the dose in the GTV, also a probabilistic upper bound
is imposed. A constraint on the nominal dose is kept to prevent the optimization of the LTCP
function to be unbounded.

Table 7.6: Simple wish-list for a probabilistic treatment plan with two probabilistic objectives on the
GTV.

Constraints

Volume Type Limit

GTV Minimize maxi di(x,0) 1.07 · 50.4 Gy

Objectives

Priority Volume Type Goal

1 GTV Minimize LTCP(x,0) 1
2 GTV Maximize P s

5%{D98%(x, ξ(s))} 0.95 · 50.4 Gy
3 GTV Minimize P s

95%{D2%(x, ξ(s))} 1.07 · 50.4 Gy

Figure 7.13 shows an axial, sagittal and coronal cross-section through the center of mass
of the GTV in the nominal scenario. These dose distributions do not show any remarkable
visual differences with respect to those corresponding to a treatment plan with one probabilistic
objective (Figure 7.11).
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Figure 7.13: Probabilistic treatment plan obtained with the wish-list described in Table 7.6. An axial,
sagittal and coronal cross-section through the center of mass of the GTV in the nominal scenario are
shown. The following settings are used for the probabilistic dose volume parameter: Ns = 5 ·105, h = 16,
ForceNonConvex enabled, UseHessApprox disabled and no monotonicity enforcement.

However, the probabilistic dose volume histogram is considerably different. Figure 7.14 shows
the probabilistic DVH of the treatment plan with two probabilistic objectives imposed. It is
observed that the bandwidth for lower α has decreased, as expected. It can be concluded that
by imposing both a probabilistic lower bound and a probabilistic upper bound on the dose in the
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GTV, a more homogeneous dose distribution can be achieved in probabilistic sense, for which
the size of the bandwidth is a measure.
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Figure 7.14: Probabilistic DVH corresponding to the probabilistic treatment plan of which the wish-list
is described in Table 7.6. The left and right edge of the bandwith correspond to respectively the 5-th
and 95-th percentile of the dose volume parameter. The dotted curve shows the nominal scenario and
the dots are the values which have been optimized.

The computation time for the treatment plan corresponding to Table 7.6 was 136 hours,
which is more than 5 days. The number of iterations needed to optimize the probabilistic D98%

and D2% was respectively 91 and 64. The optimization has been performed on the cluster of
Erasmus MC, with 8 processors and 60 GB memory reserved.

7.3.3 Extended wish-list
Realistic wish-lists also take into account organs-at-risk. Therefore, an extended wish-list has
been run with constraints and objectives not only on the GTV but also on the optic nerves and
the brainstem. For this wish-list, the 98%-probabilistic D98% has been maximized, as shown in
Table 7.7. Two cases are distinguished, each with a different goal for the maximum nominal dose
of the brainstem.

A robust treatment plan functions as a benchmark. This treatment plan resulted from the
wish-list described in Table A.1 in Appendix A. The robustness recipe from Ter Haar et al. (2018)
has been used which imposes the 98%-probabilistic D98% to be above 0.95·50.4 Gy by maximizing
the nominal dose robustly with SR = 3 mm. The resulting treatment plan is scaled such that
the 98%-probabilistic D98% equals the value reached in the probabilistic treatment plan. Again,
two cases are distinguished, each with a different goal for the maximum nominal dose of the
brainstem.

Case 1

Figure 7.15 shows an axial, sagittal and coronal cross-section through the center of mass of the
GTV in the nominal scenario of the probabilistic and robust treatment plan, which resulted from
the wish-lists (case 1) described in Table 7.7 and A.1 respectively.

A rather conformal target coverage is visible in the probabilistic treatment plan. Again, the
automatic extension of the GTV is observed. Besides, the considered organ-at-risks appear to
be spared in the cross-sections of Figure 7.15a. However, single cross-sections do not contain all
information about the dose distribution in the entire organ.
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Table 7.7: Extended wish-lists for probabilistic treatment plans with one probabilistic objective on the
GTV. Nominal constraints and objectives are imposed on some OARs. Two cases are distinguished, each
with a different goal for the maximum nominal dose of the brainstem. The resulting treatment plans are
compared with robust treatment plans from the wish-lists described in Table A.1.

Constraints

Limit

Volume Type Case 1 Case 2

GTV Minimize maxi di(x,0) 1.07 · 50.4 Gy 1.07 · 50.4 Gy
Optic Nerve (L) Minimize maxi di(x,0) 50 Gy 50 Gy
Optic Nerve (R) Minimize maxi di(x,0) 50 Gy 50 Gy

Objectives

Goal

Priority Volume Type Case 1 Case 2

1 GTV Minimize LTCP(x,0) 1 1
2 GTV Maximize P s

2%{D98%(x, ξ(s))} 0.95 · 50.4 Gy 0.95 · 50.4 Gy
2 Brainstem Minimize maxi di(x,0) 50 Gy 46 Gy

Figure 7.16 shows the probabilistic dose volume histograms for the organs considered in the
wish-lists of the probabilistic and robust treatment plan. The horizontal bandwidth corresponds
to a confidence interval of 96% of the Dα%. As imposed, the left edges of the bandwidth of
the D98% of the probabilistic and robust plan intersect. A slightly steeper fall-of of the DVH is
observed for GTV of the probabilistic plan. For both plans, the DVH of the left optic nerve show
a similar course. The right optic nerve receives less of the lower dose spectrum in the probabilistic
treatment plan. On the other hand, the brainstem receives in the probabilistic treatment more
dose. Figure 7.17 shows that indeed more dose in the spectrum around 20 Gy is received by the
brainstem in the probabilistic treatment plan, which is also observed in the DVH of Figure 7.16.
An explanation might be that a probabilistic optimization equally weights all directions in which
a set-up error could occur. This is in contrast to a robust optimization which only considers
axial set-up errors. Since in this geometry axial displacements of the GTV have considerably
less effect on the brainstem than non-axial displacements, the brainstem receives less dose in the
robust treatment plan.

In general, it is expected that a specific level of the 98%-probabilistic D98% is more easily
achieved with probabilistic treatment planning than with robust treatment planning, since the
whole spectrum of scenarios is taken into account, which can be interpreted as more degrees of
freedom for the optimization. On the other hand, if the OARs are not planned probabilistically
or robustly, the robust plan might spare an OAR more than a probabilistic plan does if that
OAR is situated along a non-axial direction of the GTV.

Besides, the probabilistic treatment plan of Figure 7.15a shows a more conformal target
coverage than the robust treatment plan of Figure 7.15b. The automatic extension of the GTV
follows the same shape as the GTV itself in the probabilistic plan, while in the robust treatment
plan a larger volume receives a high dose. This can be explained as follows. For a probabilistically
optimized objective, all possible scenarios are taken into account, while for the robust treatment
plan only a finite number of scenarios are taken into account. As a consequence, the probabilistic
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Figure 7.15: An axial, sagittal and coronal cross-section through the center of mass of the GTV in
the nominal scenario are shown. (a) Probabilistic treatment plan from the wish-list (case 1) described
in Table 7.7, with the following settings for the probabilistic dose volume parameter: Ns = 5 · 105, h =

16, ForceNonConvex enabled, UseHessApprox disabled and no monotonicity enforcement. (b) Robust
treatment plan from the wish-list (case 1) described in Table A.1, with the set-up robustness set to
SR = 3 mm.

automatic extension of the tumor does not demonstrate a preferred direction, contrary to a robust
automatic extension. Moreover, the weighing of the scenarios is different. The probabilistic dose
volume histograms of rings around the GTV (Figure 7.18) show the more conformal target
coverage of the probabilistic treatment plan. Example 7.1 on page 76 shows intuitively why a
larger volume receives a high dose in a robust treatment plan.

From the probabilistic DVH of the right optic nerve in Figure 7.16, it is not immediately
clear whether the total dose received is higher for the probabilistic or the robust treatment plan.
After all, in a probabilistic sense, the probabilistic treatment plan receives more dose in the high
dose spectrum (i.e. above 30 Gy), while the robust treatment plan receives more dose in the
low dose spectrum (i.e. below 30 Gy). The total dose received in a structure cannot directly
be read from a dose volume histogram. The mean dose is one-to-one related to this quantity
and is therefore a suitable measure for the total dose. Figure 7.19 shows the dose population
histogram, which has been introduced in Section 3.1.8. For the GTV the D98% is shown, while
for the other organs the mean dose is shown. It can be observed that the expected mean dose in
the brainstem is lower for the robust treatment plan, while the expected mean dose in the right
optic nerve is lower for the probabilistic treatment plan. The structure called elsewhere is the
volume of the brain in which dose is deposited outside the four considered organs. Although it is
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Figure 7.16: Probabilistic DVH corresponding to the probabilistic and robust treatment plan of which
the wish-lists (case 1) are described in respectively Table 7.7 and Table A.1. The left and right edge of
the bandwith correspond to respectively the 2-nd and 98-th percentile of the dose volume parameter.
The dotted curve shows the nominal scenario.

a slight difference, the mean dose in this structure is lower for the probabilistic treatment plan.
Besides, it applies to a much bigger structure.

The computation time for the probabilistic treatment plan corresponding to Table 7.7 (case 1)
was 115 hours, which is more than 4 days. The number of iterations needed to optimize the
probabilistic objective was 222. The optimization has been performed on the cluster of Erasmus
MC, with 8 processors and 60 GB memory reserved.

71



0

20

40

60
GTV
Brainstem

(a) Probabilistic

0

20

40

60
GTV
Brainstem

(b) Robust

Figure 7.17: Axial cross-section of the probabilistic and robust treatment plan corresponding to the
wish-lists (case 1) from respectively Table 7.7 and Table A.1.
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Figure 7.18: Probabilistic DVH corresponding to the probabilistic and robust treatment plan of which
the wish-lists (case 1) are described in respectively Table 7.7 and Table A.1. Different rings around the
GTV are considered. The left and right edge of the bandwith correspond to respectively the 2-nd and
98-th percentile of the dose volume parameter. The dotted curve shows the nominal scenario.
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Figure 7.19: Dose population histogram of different organs and outside these organs corresponding
to the probabilistic (red line) and robust (blue line) treatment plan of which the wish-lists (case 1) are
described in respectively Table 7.7 and Table A.1. For the GTV the D98% is considered and for the other
organs the mean dose d̄. Note that the scale of the horizontal axis is different from that of Figure 7.16.
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Case 2

Figure 7.20 shows an axial, sagittal and coronal cross-section through the center of mass of the
GTV in the nominal scenario of the probabilistic and robust treatment plan, which resulted from
the wish-lists (case 2) described in Table 7.7 and Table A.1 respectively.
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Figure 7.20: An axial, sagittal and coronal cross-section through the center of mass of the GTV in
the nominal scenario are shown. (a) Probabilistic treatment plan from the wish-list (case 2) described
in Table 7.7, with the following settings for the probabilistic dose volume parameter: Ns = 5 · 105, h =

16, ForceNonConvex enabled, UseHessApprox disabled and no monotonicity enforcement. (b) Robust
treatment plan from the wish-list (case 2) described in Table A.1, with the set-up robustness set to
SR = 3 mm.

Again, the probabilistic treatment plan shows a more conformal target coverage than the
robust treatment plan, which results in a smaller automatic extension of the GTV. This can
also be observed in the probabilistic dose volume histograms of rings around the GTV, shown in
Figure 7.21.

Figure 7.22 shows the probabilistic dose volume histograms of the GTV and the OARs in-
cluded in the wish-lists. For the probabilistic and robust treatment plan, the left edge of the
bandwidth of the D98% of the GTV coincides. The brainstem receives less dose in the proba-
bilistic treatment plan, contrary to case 1 (see Figure 7.16). The left optic nerve receives less
dose as well in the probabilistic treatment plan, while for case 1 (Figure 7.16) the dose volume
histograms of the right optic nerve for the probabilistic and robust treatment plans look the
same.

Figure 7.19 shows dose population histograms. For the GTV the D98% is shown, while for
the other organs the mean dose is shown. The 98%-probabilistic D98% of the GTV is equally
high for the probabilistic and robust treatment plan, while the expected value of the D98% is
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Figure 7.21: Probabilistic DVH corresponding to the probabilistic and robust treatment plan of which
the wish-lists (case 2) are described in respectively Table 7.7 and Table A.1. Different rings around the
GTV are considered. The left and right edge of the bandwith correspond to respectively the 2-nd and
98-th percentile of the dose volume parameter. The dotted curve shows the nominal scenario.

higher for the probabilistic treatment plan. Furthermore, the mean dose in every organ-at-risk
is lower for the probabilistic treatment plan. The structure called elsewhere is again the volume
of the brain in which dose is deposited outside the four considered organs. In this structure the
total deposited dose is also lower for the probabilistic treatment plan.

The probabilistic dose volume histograms and the dose population histograms show that the
probabilistic treatment plan outperforms the robust treatment plan for case 2 of the extended
wish-lists. Apparently, the probabilistic treatment plan shows more improvement in probabilistic
sense than the robust treatment plan when a lower goal on the maximum nominal dose in the
brainstem is imposed.

The computation time for the probabilistic treatment plan corresponding to Table 7.7 (case 2)
was approximately 3 weeks. The number of iterations needed to optimize the probabilistic
objective was 222. The optimization has been performed on the cluster of Erasmus MC, with 8
processors and 60 GB memory reserved. This optimization entailed the whole optimization of
the wish-list of case 1 from Table 7.7 with extra iterations to lower the maximum nominal dose
in the brainstem. The part of the optimization that is common with the optimization of the
wish-list of case 1, took 10 days, which is twice the computation time of case 1. This difference
in computation time might be due to different hardware used in the computing cluster or due to
a varying number of jobs on the computing cluster, which may cause a variable performance.
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Figure 7.22: Probabilistic DVH corresponding to the probabilistic and robust treatment plan of which
the wish-lists (case 2) are described in respectively Table 7.7 and Table A.1. The left and right edge of
the bandwith correspond to respectively the 2-nd and 98-th percentile of the dose volume parameter.
The dotted curve shows the nominal scenario.
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Figure 7.23: Dose population histogram of different organs and outside these organs corresponding
to the probabilistic (red line) and robust (blue line) treatment plan of which the wish-lists (case 2) are
described in respectively Table 7.7 and Table A.1. For the GTV the D98% is considered and for the other
organs the mean dose d̄. Note that the scale of the horizontal axis is different from that of Figure 7.16.
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Example: difference probabilistic and robust optimization

For both cases of the extended wish-list, the volume which receives a high dose of the probabilistic
plan is smaller than that of the robust plan. Example 7.1 shows an intuitive explanation.

Example 7.1. This three-dimensional example shows that the automatic extension of the GTV
is bigger for a robust treatment plan than for a probabilistic treatment plan. The assumption
is made that a set-up error of the patient can be interpreted as an equal shift of nominal dose
distribution. In reality, this is not true mainly because of two reasons. First, a shift does not
affect the dose distribution if the beam direction is parallel to the set-up error. Second, even if
the beam direction is perpendicular to the set-up error, a set-up error does not cause a simple
translation of the nominal dose distribution due to heterogeneities in density.

Consider a spherical GTV with radius r1 subject to a Gaussian set-up error with zero mean. A
larger volume is irradiated when a 95%-probabilistic minimum dose is required at a certain level.
To achieve this level, the smallest irradiated area would be a sphere with radius r2 > r1. The
extension, characterized by r2− r1, depends on the required confidence interval. For a confidence
interval of 95% with a three-dimensional set-up error with standard deviation of 1 mm, the
extension would be r2 − r1 = 2.795 mm.

A probabilistic optimization considers all possible scenarios in probability space and therefore is
able to irradiate the whole extension. As a consequence, the automatic extension of a probabilistic
treatment plan would ideally be the smallest irradiated volume corresponding to a 2.795 mm
extension, which is presented as the red shaded area in Figure 7.24.

On the other hand, a robust optimization considers only a small number of scenarios, such
as the scenarios highlighted in blue in Figure 7.24. It is assumed that the set-up robustness SR

is high enough that the objective can be reached. In general, these scenarios do not cover the
entire ring characterized by r2 − r1 = 2.795 mm. Therefore, parts within this ring (A1) are not
irradiated, which require parts outside the ring (A2) to be irradiated in order to meet the 95%

probability, as shown in Figure 7.24. Since the magnitude of the set-up errors associated with
A2 is bigger than the magnitude of the set-up errors associated with A1, the probability density
of the set-up errors which are covered by A2 is lower than the probability density of the set-up
errors covered by A1 due to the Gaussian error with zero mean. To guarantee a target coverage
with 95% probability, the volume of A2 is necessarily bigger than the volume of A1.

Concluding, under these assumptions, the automatic extension of the GTV is bigger for a
robust treatment plan than for a probabilistic treatment plan if the 95%-probabilistic minimum
dose is required at a certain level. As a matter of fact these assumptions are not valid, then this
example serves as an intuitive explanation.

A2

A1

Probabilistic
Robust
GTV

Figure 7.24: A cross-sectional view of the automatic extension of the GTV for a probabilistic and a
robust treatment plan.
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Chapter 8

Discussions and conclusions

In this chapter, the main findings and conclusions of this research are summarized and a reflection
on these is provided.

Methodology results

First of all, a methodology has been provided which shows that a variety of objective functions
can be used with Polynomial Chaos Expansion for probabilistic treatment planning. Any statis-
tical measure of a function depending on the uncertainty vector is suitable. Per type of objective
function, a specific choice should be made of what part of the function a PCE should be con-
structed. This could either be a global PCE, which means that a PCE is constructed of the
probabilistic function as a whole. In general, the construction of such a PCE and sampling from
this PCE is computationally less expensive, but on the other hand a PCE is to be constructed in
every iteration. One could also construct a more local PCE, for example of the dose deposition
matrix. Since this matrix generally has many elements, the construction and evaluation of the
PCE is computationally more expensive, but on the other hand it is not necessary to construct
a PCE every iteration. It is also possible to construct a PCE of a part of the probabilistic func-
tion which is in between the two extrema of a global and a local PCE. Besides considerations
regarding required computational power, approximation errors of the PCE are also important
for the choice of which part of the function a PCE is to be constructed. If the part for which
a PCE is constructed also includes the beam intensity vector, a PCE is to be constructed ev-
ery iteration and the approximation error is different every iteration, which is not beneficial for
the optimization. This type of noise can be prevented by constructing a PCE for parts of the
objective function which do not depend on the beam intensity.

Second, we have demonstrated that it is possible to probabilistically handle multiple fractions,
each subject to an independent random error, with PCE. It turns out that the computational cost
does not increase proportional with the number of fractions. In general, more variables are to
be assigned for the PCE, to be specific the number of fractions times the number of dimensions,
i.e. T ·N . More variables within the PCE require more cubature points for a certain desirable
grid level. It has been found that the set of cubature points contains different permutations of
the same combination of random errors amongst the fractions. These different permutations of
a certain combination result in the same stochastic response. As a consequence, the number
of function evaluations required for the construction of the PCE is less than the number of
cubature points. If the number of fractions is greater than or equal to the grid level minus one
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(i.e. T ≥ L−1), the number of function evaluations does not increase anymore for higher number
of fractions. Although a considerable number of cubature points is not needed, these are still
calculated by the openGPC package, which is computationally expensive.

Third, the expected value of polynomials in dose of degree p turns out to be an objective
function which is extremely suitable for handling multiple fractions probabilistically with PCE.
For such functions, it is not necessary to assign T ·N variables to the PCE. The dimensionality of
the PCE can be reduced to p ·N or even further to N . This choice depends on many parameters:
the degree of the polynomial, the number of dimensions of the random error and the ratio between
the number of beamspots and the number of voxels.

Demonstrative results

For the simplified three-dimensional geometry of the spinal cord with surrounding tumor subject
to a one-dimensional systematic set-up error, it has been shown that the expected value of the
quadratic differences between the dose and the prescribed dose is a suitable objective function
for probabilistic treatment planning, since it is convex and analytical which is beneficial for
optimization. Polynomial Chaos Expansion is extremely useful to describe this function. A
smart choice can be made of which parts a PCE is to be constructed such that less PCEs are
required and no PCEs have to be reconstructed every iteration. This resulted in a probabilistic
treatment plan which did not require much computational power. The plan shows perfect OAR
sparing and conformal target coverage. As expected, the expected dose distribution is more
homogeneous than the nominal dose distribution. Weights which could be assigned to each voxel
can be adjusted to prioritize for example target coverage or OAR sparing.

For the real skull base meningioma patient, it has been shown that probabilistic treatment
planning leads to treatment plans which show a high level of conformal target coverage, enough
OAR sparing and minimal dose to surrounding tissue. These plans were obtained by maximizing
the probabilistic D98% in the GTV. It has been shown that the probabilistic treatment plan
outperforms the robust treatment plan.

• The probabilistic D98% is clinically a perfect measure for the GTV to optimize and PCE
can be used to compute it. For this purpose, sampling is required, either from a PCE of the
dose deposition matrix or from a PCE of the D98% itself. Sampling from a PCE of the dose
deposition matrix turned out to require too much memory. Polynomial Chaos Expansion
is able to describe the D98% well with L = 5, ∆lev = 1 and O = 6, which requires 303 real-
izations of the dose deposition matrix from the dose engine. Calculating the probabilistic
D98% including its gradient and Hessian takes about 16 minutes with Ns = 5 · 105 samples.

• The probabilistic D98% is a non-convex function. Besides, calculating it with PCE, results
in a bumpy functional dependence on the beam intensity, which is expected to be caused
by both the sampling and the approximation of the D98% with the PCE. As a consequence,
the probabilistic D98% is hard to optimize. However, it has been observed that on a larger
scale the 95%-probabilistic D98% is close to linear with respect to the beam intensity.
Moreover, it has been proven that a probabilistic dose volume parameter cannot have a
negative gradient. These two findings justify to use a forward finite difference scheme with
a high step size to approximate the gradient and the Hessian matrix. A step size of h = 16

is used. Besides, it has been observed that enabling the ForceNonConvex and disabling the
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UseHessApprox functionality of iCycle yield the best convergence. Monotonicity enforce-
ment of the probabilistic dose volume parameter does not improve the convergence.

• Imposing a logarithmic tumor control probability function on the GTV in the nominal sce-
nario as first objective is a good method to drive the optimization efficiently in the proper
direction. A constraint on the maximum nominal dose is required to prevent the opti-
mization to be unbounded. As second objective, the probabilistic D98% can be imposed.
The optimization corresponding to this wish-list converged. The treatment plan shows an
automatic extension of the GTV. We have shown that it is also possible to impose a second
probabilistic objective on the GTV which minimizes the 5%-probabilistic D2%. This results
in a steeper fall-of of the dose volume histogram and therefore in a more homogeneous dose
distribution in a probabilistic sense.

• Constraints and objectives on the organs-at-risk in the nominal scenario have been added
to the wish-list containing an objective on the 98%-probabilistic D98% of the GTV. The
resulting treatment plan have been compared to a robust treatment plan following the
robustness recipes of Ter Haar et al. (2018). The probabilistic treatment plan shows a
more conformal GTV coverage. The volume which receives a high dose is smaller than in
the robust treatment plan, while the 98%-probabilistic D98% is equal for both treatment
plans. This is due to the fact that a robust treatment plan has preferred directions for
the automatic extension of the GTV, which depend on the scenarios. This can cause a
difference in the dose distribution of nearby OARs, in favor of either the probabilistic or
the robust treatment plan. The overall mean dose is however lower for the probabilistic
treatment plan.

• If iCycle reaches a certain value for an objective, this value is set into a constraint and
is slightly relaxed (e.g. by 1%), in order to leave room for the optimization of the next
objective. Such a relative relaxation in a probabilistic optimization does not have the
same impact on the dose distribution as a similar relaxation in a robust optimization. A
relaxation of 1% in terms of 98%-probabilistic D98% differs from a relaxation of 1% in terms
of minimum voxel dose over seven scenarios. The actual influence of these relaxations on
the treatment plans has not been investigated.

Clinical results

The results of this research have shown that one of the major clinical advantages of probabilis-
tic optimization with respect to robust optimization is that it is possible to directly impose a
probabilistic goal, for example that the GTV coverage is adequate with 98% probability. The
robustness recipe prescribes robustness settings, from which one may expect a treatment plan
which meets the same probabilistic goal for the GTV, but which is not guaranteed. Besides, ro-
bustness recipes are site and population specific, while it is expected that probabilistic treatment
planning can be applied to any treatment site and to any patient. Furthermore, probabilistic
treatment planning has more potential, since probabilistic objectives could be imposed not only
on the GTV but on any structure, while robustness recipes are focused on the GTV coverage
only.
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The results have also shown that probabilistic treatment planning with PCE cannot be used
yet in clinical practice, since the computation time is still too long. For the extended wish-list
which included a probabilistic objective on the GTV, nominal constraints on the optic nerves
and a nominal objective on the brainstem, the computation time was 115 hours which is too
long in clinical practice. The optimization of the extended wish-list with a lower goal on the
maximum nominal dose in the brainstem took even longer. In Chapter 9 a recommendation is
made on how to alleviate the required computational effort.
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Chapter 9

Future research

In this chapter, recommendations for future research are provided.

Fractionation with PCE

As a first recommendation regarding fractionation with PCE, a functionality has to be imple-
mented in the openGPC package which bypasses the need for computation of all cubature points
when only some of them are required. As discussed, it has been found (see Table 5.1) that the
number of function evaluations Nfval remains constant for T > L− 1 when considering multiple
fractions with PCE. However, the number of cubature points Ncub rapidly increases. For higher
number of fractions, it is computationally very expensive to run the openGPC package, since
all cubature points are calculated. However, only Nfval cubature points are actually needed.
Thus, in general it is possible to consider a higher number of fractions with Polynomial Chaos
Expansion, but the openGPC package is not yet suitable for it.

Besides, it has to be confirmed whether the accuracy of the PCE changes when the polyno-
mial order and also the grid level are kept the same when considering multiple fractions. It is
expected that it is not required to increase these, due to the symmetry among the fractions and
corresponding set-up errors.

Alleviation of computational cost

The computation time of a probabilistic optimization is still too high, as posed in Chapter 8.
The voxel reduction functionality of iCycle has been disabled for the GTV for the probabilistic
optimizations, therefore all voxels of the GTV were considered. It is recommended to enable
this functionality. Then iCycle picks a representative subset of voxels of the GTV, which could
considerably reduce the required memory and therefore also the computation time of an iter-
ation. The subset of voxels does not change over iterations and therefore no adjustments to
Algorithm 6.1 or to iCycle have to be made. However, the introduced uncertainty of reducing
the number of voxels on the final probabilistic treatment plan still has to be quantified.

As stated in Section 7.3.1, the calculation of the (100 − β)-th percentile takes up a large
part of the computation time of Algorithm 6.1. It is recommended to investigate whether the
computational cost associated with (100−β)-th percentile can be lowered without significant loss
of accuracy. Other methods exist to estimate a percentile. For example, a considerably smaller
number of samples can be drawn with the Wilks approach to obtain a conservatively estimated
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bound [72]. Furthermore, one could approximate a percentile with µ+k ·σ with k ∈ R depending
on the assumed or fitted probability density function of the dose volume parameter Dα%(ξ).

Improvement of probabilistic treatment plan

For the real patient data in iCycle, a probabilistic objective was set only on the GTV. It is
recommended to include probabilistic constraints or objectives on every organ. Ideally, these
criteria would be in terms of percentiles in probability space. After all, such criteria are clinically
more relevant than criteria in terms of for example expected value. However, depending on
the object of which a PCE is constructed, this can be computationally more expensive, since
sampling is required. A first next step could be to minimize the maximum expected dose instead
of the maximum nominal dose in the brainstem and the optic nerves. This does not require
any additional implementation in iCycle. The nominal dose matrix only has to be substituted
in iCycle by the expected dose matrix for all desired organs. By doing so, iCycle’s approach to
solve linear objectives, as described by Equation 6.8, can be used.

It is recommended to include other uncertainties as well. This research only considered
probabilistic optimization with set-up errors, which can be interpreted as a translational shift of
the beams. However, one might also want to consider rotational set-up errors of the body, which
can be interpreted as a rotational shift of the beams. Range errors are also common to consider.
Both rotational set-up errors and range errors can be included easily in probabilistic optimization,
since such errors are also introduced in the dose deposition matrix, just like translational set-up
errors. This is not necessarily the case for delineation errors. Such an error is inherently different
and it has to be investigated what a proper way is to describe such errors and how to take them
into account in probabilistic optimization.

To get a better understanding of the differences in terms of OAR sparing between a proba-
bilistic and robust treatment plan, it is recommended to investigate in detail what the influence
of the axial preferred directions of robust optimization on the dose distribution in nearby OARs is
and above all what the differences are with respect to a probabilistic optimization. For this pur-
pose, a simplified small three-dimensional geometry with a tumor and an organ can be used. The
position of the OAR with respect to the tumor can be varied in order to be able to qualitatively
describe the differences in dose distribution.

In this research, the beamspots used in the probabilistic optimizations resulted from a con-
ventional treatment plan. Such an approach turned out to work well for this patient, but this is
not guaranteed for all patients. After all, it highly depends on the chosen beam directions and
the heterogeneities in density the body. As a possible solution, it is recommended to implement
the functionality of beamspot resampling in combination with the probabilistic dose volume pa-
rameter function in iCycle. This would imply that every iteration a different set of samples
of the dose deposition matrix needs to be provided to the probabilistic dose volume parameter
function (described by Algorithm 6.1). Beamspot resampling may improve the convergence of
the probabilistic optimization, since more degrees of freedom are involved. On the other hand,
this may increase the computation cost.

A high step size has been used to approximate numerically the gradient and Hessian of the
probabilistic dose volume parameter. If the optimization approaches the optimum, it might be
that this step size is too big that it does not measure differences on a smaller scale. Therefore,
it might be interesting to investigate whether it is beneficial to use adaptive step sizes for the
last few iterations, possibly with enforcement of monotonicity for the gradient and Hessian. A
slightly better treatment plan may result.
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Appendix A

Other wish-lists

Table A.1: Extended wish-lists for a robust treatment plan with scenarios s ∈ {1, ..., 7} from Table 3.2
with SR = 3 mm. Two cases are distinguished, each with a different goal for the maximum nominal
dose of the brainstem. The resulting treatment plans are compared with probabilistic treatment plans
from the wish-lists described in Table 7.7. The results are presented in Section 7.3.3.

Constraints

Limit

Volume Type Case 1 Case 2

GTV Minimize maxi di(x,0) 1.07 · 50.4 Gy 1.07 · 50.4 Gy
Optic Nerve (L) Minimize maxi di(x,0) 50 Gy 50 Gy
Optic Nerve (R) Minimize maxi di(x,0) 50 Gy 50 Gy

Objectives

Goal

Priority Volume Type Case 1 Case 2

1 GTV Minimize LTCP(x,0) 1 1
2 GTV Maximize mins mini di(x, ξ

(s)) 0.95 · 50.4 Gy 0.95 · 50.4 Gy
2 Brainstem Minimize maxi di(x,0) 50 Gy 46 Gy
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Table A.2: Wish-list for a conventional treatment plan of a meningioma patient. The CTV has been
extended with a ring of 4 mm. This wish-list has been run with the functionality beamspot resampling
enabled. The beamspots which resulted from this optimization have been used for the probabilistic
treatment plans. Here, d̄(x,0) denotes the mean dose.

Constraints

Volume Type Limit

GTV Maximize mini di(x,0) 0.97 · 50.4 Gy
GTV-ring (0-4 mm) Maximize mini di(x,0) 0.97 · 50.4 Gy
Optic Nerve (L) Minimize maxi di(x,0) 50 Gy
Optic Nerve (R) Minimize maxi di(x,0) 50 Gy
Optic Chiasm Minimize maxi di(x,0) 50 Gy

Objectives

Priority Volume Type Goal

2 GTV Minimize maxi di(x,0) 1.05 · 50.4 Gy
2 GTV-ring (0-4 mm) Minimize maxi di(x,0) 1.05 · 50.4 Gy
2 GTV-ring (0-5 mm) Minimize maxi di(x,0) 0.9 · 50.4 Gy
2 GTV-ring (5-10 mm) Minimize maxi di(x,0) 0.6 · 50.4 Gy
2 GTV-ring (10-15 mm) Minimize maxi di(x,0) 0.3 · 50.4 Gy
2 External Minimize maxi di(x,0) 1.05 · 50.4 Gy
3 Hippocampus (Combined) Minimize d̄(x,0) 10 Gy
4 Hippocampus (L) Minimize d̄(x,0) 1 Gy
4 Hippocampus (R) Minimize d̄(x,0) 1 Gy
5 Optic Chiasm Minimize d̄(x,0) 1 Gy
5 Optic Nerve (L) Minimize d̄(x,0) 1 Gy
5 Optic Nerve (R) Minimize d̄(x,0) 1 Gy
6 Unspecified Tissue Minimize d̄(x,0) 1 Gy
7 Brainstem Minimize d̄(x,0) 1 Gy
8 Retina (L) Minimize d̄(x,0) 1 Gy
8 Retina (R) Minimize d̄(x,0) 1 Gy
9 Lens (L) Minimize d̄(x,0) 1 Gy
9 Lens (R) Minimize d̄(x,0) 1 Gy
10 Cochlea (L) Minimize d̄(x,0) 1 Gy
10 Cochlea (R) Minimize d̄(x,0) 1 Gy
11 Cerebellum Minimize d̄(x,0) 1 Gy
11 MU Minimize maxi di(x,0) 1
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Appendix B

Fractionation with PCE

This chapter is a continuation of Section 5.9.1
In general, as discussed in Chapter 4, a grid (a1, ..., aN ) is part of a Smolyak sparse grid

characterized by the grid level L =
∑N

j=1 aj −N + 1.
If the considered uncertainties are N -dimensional and T fractions are considered, a Smolyak

sparse grid can be denoted as follows:{
(L(1), ...,L(T )) :

T∑
t=1

|L(t)| − T + 1 = L

}
, (B.1)

with L(t) = (L
(t)
1 , ..., L

(t)
N ) and |L(t)| =

∑N
j=1 L

(t)
j −N + 1.

In Section 5.9.1, it has been demonstrated that different permutations of the same combina-
tion of cubature points yield the same stochastic response. This reasoning can also be extended
in terms of grids. For T = 3 and for an arbitrary number of dimensions N , the grids described
by Equations (B.2) to (B.4) yield sets of cubature points with the same stochastic response.{

(L(1),L(2),L(3)) : |L(1)| = 3, |L(2)| = 1, |L(3)| = 1
}

(B.2){
(L(1),L(2),L(3)) : |L(1)| = 1, |L(2)| = 3, |L(3)| = 1

}
(B.3){

(L(1),L(2),L(3)) : |L(1)| = 1, |L(2)| = 1, |L(3)| = 3
}

(B.4)

Therefore it suffices to consider only one of these permutations. The permutation which is
considered and kept in the sparse grid is characterized by |L(1)| ≥ |L(2)| ≥ ... ≥ |L(T−1)| ≥ |L(T )|.
By doing so, the reduced Smolyak sparse grid with grid level L is formed:{

(L(1), ...,L(T )) :

T∑
t=1

|L(t)| − T + 1 = L, |L(1)| ≥ |L(2)| ≥ ... ≥ |L(T−1)| ≥ |L(T )|

}
. (B.5)

Consider a random error of N dimensions. For the PCEs a grid level L is used. Let the
number of fractions be equal to the grid level minus two, i.e. T = L− 2. The reduced Smolyak
sparse grid consists of the grids described in Table B.2a.

Now consider a treatment consisting of T = L − 1 fractions. The grids which are contained
in the corresponding reduced Smolyak sparse grid are described in Table B.2b.

If grids 1 to Ngr of Table B.2a are compared with grids 1 to Ngr of Table B.2b, it can be
observed that these grids are almost identical, except that the total grid level of the added
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fraction equals |L(L−1)| = 1 for these grids. Since nlev = 2 · lev − 1, the number of different
cubature points corresponding to grids 1 to Ngr are the same for Tables B.2a and B.2b. However,
it can also be observed that an extra grid is contained in Table B.2b (i.e. grid Ngr + 1). This
extra grid results in more different cubature points associated with a reduced Smolyak sparse
grid corresponding to T = L− 1 than with one corresponding to T = L− 2.

Now, consider a treatment consisting of T = L fractions. The grids which are contained in
the corresponding reduced Smolyak sparse grid are described in Table B.2c.

If we compare the grids corresponding to T = L−1 with those corresponding to T = L, it can
be noticed that no extra grids are added and that the grid levels are the same for the first L− 1

fractions. The total grid level of the added fraction equals |L(L)| = 1 for all grids corresponding
to T = L. Since nlev = 2 · lev− 1, the total number of different cubature points contained in the
reduced Smolyak sparse grid corresponding to Table B.2b and B.2c are the same.

The same reasoning applies if the grid level is increased to T = L + 1: the number of
different cubature points remains the same. In general, we can conclude that for a certain
number dimensions N and a certain grid level L with ∆lev, the number of different cubature
points contained in the reduced Smolyak sparse grid is constant for any T ≥ L− 1. It should be
noted that this constant increases if the number of dimensions, the grid level or the extra level
increases. If this finding is applied to PCE, this means that the number of function evaluations
Nfval(N,L,∆lev) only depends on the number of dimensions, the grid level and the extra level
for T ≥ L− 1.

Although this statement is not properly mathematically proven, it is supported by data. It has
been tested for different number of dimensions and for different grid levels whether the number
of different cubature points in a reduced Smolyak sparse grid remains constant for T ≥ L − 1.
It appears that this is indeed true. The number of function evaluations for T ≥ L− 1 is shown
in Table B.1 for different grid levels and number of dimensions.

Table B.1: The number of required function evaluations Nfval as a function of the number of dimen-
sions N and the grid level L with extra level ∆lev, for T ≥ L− 1. Note that Nfval equals the number of
different cubature points in the reduced Smolyak sparse grid.

Nfval

(L,∆lev) N = 1 N = 2 N = 3 N = 4

(4, 1) 30 91 192 341
(5, 1) 77 306 780 1607
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Table B.2: Grids (L(1), ...,L(T )) contained within the reduced Smolyak sparse grid for any N and
for any L. The number of different cubature points is equal for the reduced Smolyak sparse grids
corresponding to T = L− 1 and T = L.

(a) T = L− 2

# |L(1)| |L(2)| |L(3)| |L(4)| |L(5)| · · · |L(L−2)|

1 L 1 1 1 1 ... 1
2 L− 1 2 1 1 1 ... 1
3 L− 2 3 1 1 1 ... 1
4 L− 2 2 2 1 1 ... 1
5 L− 3 4 1 1 1 ... 1
6 L− 3 3 2 1 1 ... 1
7 L− 3 2 2 2 1 ... 1
...

...

Ngr 3 2 2 2 2 ... 2

(b) T = L− 1

# |L(1)| |L(2)| |L(3)| |L(4)| |L(5)| · · · |L(L−2)| |L(L−1)|

1 L 1 1 1 1 ... 1 1
2 L− 1 2 1 1 1 ... 1 1
3 L− 2 3 1 1 1 ... 1 1
4 L− 2 2 2 1 1 ... 1 1
5 L− 3 4 1 1 1 ... 1 1
6 L− 3 3 2 1 1 ... 1 1
7 L− 3 2 2 2 1 ... 1 1
...

...

Ngr 3 2 2 2 2 ... 2 1
Ngr +1 2 2 2 2 2 ... 2 2

(c) T = L

# |L(1)| |L(2)| |L(3)| |L(4)| |L(5)| · · · |L(L−2)| |L(L−1)| |L(L)|

1 L 1 1 1 1 ... 1 1 1
2 L− 1 2 1 1 1 ... 1 1 1
3 L− 2 3 1 1 1 ... 1 1 1
4 L− 2 2 2 1 1 ... 1 1 1
5 L− 3 4 1 1 1 ... 1 1 1
6 L− 3 3 2 1 1 ... 1 1 1
7 L− 3 2 2 2 1 ... 1 1 1
...

...

Ngr 3 2 2 2 2 ... 2 1 1
Ngr +1 2 2 2 2 2 ... 2 2 1
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