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Preface

At the end of my studies, I had no clue what experimental research really was like;

studies at ETH Zürich were mainly theoretical (especially, since I am one of the

“old guys”, that did not have to do a Bachelor project). But during my diploma

project, I experienced how exciting it can be to work on your own experiment

in a lab. I was sure, I wanted to continue on this path. So I started to search

for a PhD project. Having looked at several places, I decided to come to the

Quantum Transport group in Delft. The quality of research in QT was famous

and the research projects sounded very exciting. And, equally important, there

seemed to be a very cooperative and friendly atmosphere in this group, which

hosted people from all over the world.

So in 2006, I started my work on Carbon Nanotubes here in Delft. The long-

term goal was to build spin-qubits in carbon nanotubes, possibly with longer spin

coherence times than in other semiconducing quantum dot systems. It was not

completely clear how exactly to do this, but there were some promising ideas and

we started to implement them in real experiments. During my first year, I also

got to know the other side of science: Nothing was really working out for us,

samples got destroyed at every stage of fabrication, measurements did not show

the results we expected. But almost exactly after one year, we started having

success with our work and obtaining the results, presented in this thesis. Looking

back, I can say that carbon nanotubes are a challenging but extremely exciting

and many-sided topic to work on.

First, I would like to thank my advisor, Leo Kouwenhoven. Your insight

in physics and intuition for the relevant experiments are a great guidance for a

student. Your trust to let me present our work to the outside and to take my own

decisions from the beginning was very motivating. At the same time, you always

stayed positive and came up with some alternative path when experiments were

not going as expected. Also, it was great to see you back again on the football

field last year!

This research would not have been possible without the help of many collab-

orators from QT and outside. First of all, I would like to thank Gary, postdoc of

5



Preface

the QT Nanotube-team and advocate of ultra-clean CNTs. We spent more than

four years of Nanotube-research together and I learned a lot from you: Fabrica-

tion, low-noise measurement techniques, operating a dilution fridge, assembling

a measurement setup and much more. Only your spyview habits, I did not really

adopt. I wish you all the best for your family and good luck with setting up

your own research group! Pablo and Sami, thanks a lot for introducing me to the

world of carbon nanotubes and the crash-course during my first 6 months in QT.

I always enjoyed the discussions about the theory side with Björn, Patrick and

Fabian from Leiden as well as with Yuli from upstairs. From the MED and MB

groups here in Delft, I would like to mention Herre van der Zant, Andreas, Benoit,

Christian, Mascha and Iddo. For the collaboration on the 13C - project, I thank

Prof. Daniel Loss for the idea and Prof. Charlie Marcus and Hugh Churchill for

the samples (also for the ALD in 2007!) and discussions. Marc, Marco and Roel

from the Delft Nanofacility helped a lot with countless fabrication issues during

the last years. We had two temporary guests in our team: Marcus (thanks for

showing me the Finnish center in Rotterdam) and Salvo (“Mr. cleanroom”), it

was great to have you here! I also was supervisor of two Master students, Diego

and Willem-Jan. I really appreciated your contributions! Now, there are two

new people continuing the nanotube transport project: Edward (bringing British

accent to QT) and Tang; I am sure you will have a lot of success!

QT is not only a great place to do research but I also enjoyed many social

activities and events during the past years. Hans Mooij, it is impressive how you

have built such a great place for research and how many outstanding research

groups have emerged from your group. Also many thanks to the other staff

members who form the “frame” of QT: Lieven, Ronald, Kees and Ad.

During my PhD, I spent a lot of time inside and outside the TU with the

inhabitants of the “QT house”, who all started their PhDs around the same

time as me: Pol, I really enjoyed all the football games, on the field as well as

in front of a TV or at the Amsterdam Arena! Umberto, I remember a lot of

interesting movies (Calvaire is still the highlight) and discussions. Katja (thanks

for all the advice about the last steps of a promotion) and Lan (I am sorry that I

dont like any Chinese food except Beijing duck), thanks for organizing countless

BBQs! My office was not only a pleasant place to work, but also for non-scientific

discussions. Thanks to Han (who finally also “arrived” at the nanotubes), Stevan

(who also was my housemate for 2 years) and Victor. With Juriaan, Maarten

and Maarten, I shared the experience of writing up a thesis and facing the related

obstacles (to get from PROM-01 to PROM-06). Having similar systems, goals

and problems, I had a lot of interaction with the Nanowire-team, Stevan, Juriaan

and Sergey; the “wires and tubes” have been a really nice group! Amelia and
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Stijn, good luck with the unfolded nanotubes! Gilles and Maria, I hope you will

see a lot of nanotube-photons! Reinier and Wolfgang, good luck with building

futuristic devices! The GaAs-team has set a high standard for spin-qubits; Lars,

Floris and Mohammad, I am sure you will continue on that track. I played

a lot of Friday-afternoon football games with Floor, Floris Z., Pol, Lan, Stijn,

Ewan, Yvonne, Thomas, Tomoko and many others. During my PhD, I had the

opportunity to visit some great conferences. I remember interesting discussions

with Shahal Ilani, Carola Meyer, Vikram Deshpande and many others; Hubert,

thanks for Strassbourg! There are not only scientists in QT: Yuki, Angele and

Ria, thanks for administrative support. Bram, during four years I have not

encountered one technical problem, you would not find a solution to! Also many

thanks to Remco and Peter. Many experiments in QT would not be possible

without Raymond Schouten, our electronics wizard. From ETHZ, I would like

to thank Klaus Ensslin and Renaud Leturcq for supervising my Diploma-thesis.

Finally, I wish all the other PhD-students and post-docs from QT a lot of success

with their projects; it has been a great time for me in QT!

Although I was very busy during the last years, I am happy I am still in touch

with friends from Hamburg and Zürich. Beni (thanks for your advice on the life

after physics) and Hesham (remember the Mexican flag?), I remember many

Sunday-afternoon cooking sessions and beers at the Limmat! Flo and Sebastian,

it was alway nice to meet you back in HH.

Finally, I would like to mention the people that are most important to me: I

thank my parents and my brother for their love and their confidence in me; every

time I was back in Hamburg, I always felt at home immediately! Kata, thanks

for all the time we spent together and your love and support. Nagyon szeretlek!

Georg Götz

May 2010
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Chapter 1

Introduction

1.1 Nanoscience and Nanotechnology

The research described in this thesis has been carried out at the Kavli Institute of

Nanoscience at Delft University of Technology. Nanoscience and Nanotechnology

have become extremely popular terms in the world of science (and beyond) during

the last one or two decades [1, 2]: There are institutes of Nanoscience, scientific

journals dedicated to Nanotechnology and new study programs at universities.

But is Nanoscience really a new scientific discipline?

Nanoscience and Nanotechnology deal with objects which are, at least in one di-

mension, of nanometer size. This means these objects approach the size of single

or a few molecules. But this alone does surely not justify to call Nanoscience a

new scientific discipline. What is crucial is that for objects of the size of a few

nanometers, many properties require a fully quantum mechanical description.

This is, because the quantum mechanical wavelength of electrons in the object

now starts to become comparable to the object size. Another characteristic of

Nanoscience is that at the length scale of single molecules, the traditional bound-

aries between the classical scientific disciplines Physics, Chemistry and Biology

start to break down. Doing Nanoscience, it is possible to trace back many bio-

logical or chemical properties to the laws of Physics.

Nanoscience can be found in almost any area of science and technology: funda-

mental physics, electrical engineering, genetics, process engineering or pharmacy,

just to name a few. In Physics, one of the most important aspects of Nanotechno-

logy is the possibility to manufacture devices that are tailor-made to investigate

one particular effect. E.g. in a quantum dot, which is often also called an arti-

ficial atom, it is possible to systematically investigate the energy spectrum and

interactions of a well-defined number of confined electrons in a controlled and

adjustable environment.

13



1. Introduction

Another important line of research is the development of new electronic, mechan-

ical and optical devices. On the one hand, commercial state-of-the-art electronic

devices are nowadays approaching the borderline to Nanotechnology, such that

understanding and controlling quantum mechanical effects becomes inevitable.

On the other hand, in the regime of non-classical physics, entirely new types

of devices become possible. Two prominent examples are quantum cryptography

and the quantum computer.

But in the field of Physics there are no fundamentally new concepts related to

nano. However, thanks to Nanotechnology, an entirely new world of experiments

has become accessible for physicists now. Many of the classic, text-book examples

of quantum mechanics can today be realized “on chip” and measured in the lab.

Besides the technological implications this opens the door for a better and deeper

understanding of existing concepts in Physics.

1.2 Carbon Nanotubes

Figure 1.1: Carbon Nanotubes (a) Atomic force microscopy image of a CNT on a
SiO2 surface. (b) Scanning tunneling microscopy image of a CNT, resolving the atomic
structure. The scale bar is 1 nm. (from ref. [3]). (c) The structure of a single-wall
CNT (schematic).

Carbon nanotubes (CNTs) are often named as the paradigm for an object

in Nanotechnology. They are small hollow cylinders made out of carbon atoms,

arranged in a hexagonal lattice structure. In fact, a single-walled CNT (the

cylinder wall consists of a single layer of carbon atoms) is one large molecule.

CNTs measure only a few nm in diameter and posses remarkable electrical and

mechanical properties. Since their discovery in 1991 [4] (single-wall CNTs: 1993

[5]), CNTs have been used for many fundamental experiments (concerning e.g.

quantum dots, electron-electron interactions in 1D, the Kondo effect or super-

14



1.3 Outline

conductivity) as well as for new devices (biosensors, scanning probe microscopy

tips, water filters and many more).

In this thesis, we are interested in the electrical properties of single-wall CNTs

at low temperatures. Besides fundamental physics, this research area is interest-

ing for new types of electronic devices, such as spin based quantum information

processing. During the last 10 years, a lot of research has been carried out on

the electronic properties of CNTs. But new exciting results just keep appearing.

One reason for this is the great progress in device fabrication that still is been

made. CNT-QDs have become more tunable (work on tunable tunnel barriers and

charge detection has made great progress during the last years) and also it has

been possible to reduce disorder in these devices. A number of research groups is

today able to fabricate CNT-QDs in the few electron regime. But there are still

many open questions to answer: What is the exact role of electron-electron inter-

actions at low carrier densities? Can spin-orbit interaction be used for spin-based

quantum information processing? Is it possible to cool the mechanical vibrations

of a CNT by means of an electrical current? And these are just a few examples,

there is much more to investigate.

1.3 Outline

The outline of this thesis is as follows:

In Chapter 2 we explain the basic properties of CNTs, with the focus on elec-

tronic properties and QDs. The discussion includes both theoretical concepts as

well as fundamental experimental results.

Chapter 3 gives an overview of the fabrication of QD devices in CNTs. Tech-

niques to fabricate top-gate devices with a charge detector as well as methods to

obtain very clean CNT-QDs are presented here.

In Chapter 4, 5 and 6 we present experiments on a CNT-QD coupled to

a charge detector. The charge detector is a metallic single-electron transistor

(SET) which is sensitive to single electrons on the CNT-QD. We start by demon-

strating the principle of charge detection with a simple CNT-QD, followed by a

discussion of backaction effects. It appears that backaction from the SET to the

CNT is small and that the SET is sensitive to the noise in the current through

the CNT, as well.

Finally, we use charge detection to investigate real-time electron tunneling

on extremely long timescales, showing the stability and tunability of gate-defined

QDs in CNTs. Also, we perform excited state spectroscopy on isolated CNT-QDs.

15



1. Introduction

In Chapter 7 we present measurements on very clean, suspended CNT-QD

devices. These devices have been fabricated with a scheme that aims at minimiz-

ing disorder in the CNTs. Both single and double QDs are shown to reach the

few-electron regime. P-n junctions are used to create tunable tunnel junctions

inside the CNT. In small bandgap CNTs, we are able to investigate a process

that is similar to Klein tunneling in relativistic quantum mechanics.

Chapter 8 describes the status of experiments aiming at combining clean, sus-

pended CNTs with local (electrical) gates. We use a device with five local gates

underneath a clean CNT to create a tunable triple QD in the few-electron regime.

At the end, we discuss the future of these devices for experiments on spin ma-

nipulation in CNTs.
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Chapter 2

Carbon Nanotubes and single electrons

2.1 Carbon nanotubes

Carbon is the sixth element of the periodic table and belongs to the group IV

which means it has four electrons in its outer shell. It has the remakable prop-

erty that it can form stable objects of three dimensions (graphite, diamond),

two dimensions (graphene), one dimension (CNTs) and zero dimensions (carbon

molecules, such as fullerenes). In this thesis, we are interested in its one dimen-

sional form, CNTs [4, 6, 7]. They can be described as carbon atoms forming a

hexagonal lattice, wrapped up to a hollow cylinder (figure 2.1 a). A single-wall

CNT has a diameter of 1 - 5 nm and a length between 100 nm and 1 cm. On

the length scale of a unit cell CNTs are still three dimensional objects (as in

fact anything in this world is a three dimensional object). However, already on a

length scale of a few 100 nm, CNTs can be described as one dimensional objects

very well.

2.1.1 The crystallographic structure of carbon nanotubes

To discuss the electronic band structure of CNTs [8] we start with the band

structure of graphene and then deduce the electronic properties of CNTs. But

first we look at the crystallographic structure (for a more detailed review, see

e.g. [9] or [10]). A single sheet of carbon atoms is called graphene. The atoms

are arranged in a hexagonal structure with a lattice constant of a ' 0.25nm.

A hexagonal structure can be described as a triangular lattice with a two atom

basis (A and B). The two lattice vectors are ~a1 and ~a2 (figure 2.2). This means,

any atom in the graphene lattice can be reached by an integer combination of

these two vectors, starting from either atom A or B. The reciprocal lattice is also

a triangular lattice (with lattice vectors ~b1 and ~b2).

17



2. Carbon Nanotubes and single electrons

Now we construct a CNT from a sheet of graphene. This is not the way

CNTs are made in reality but a very useful way of describing their electronic

and crystallographic structure. Graphene can be rolled up to a cylinder in many

different ways. We pick an arbitrary carbon atom and define it to be our origin,

(0,0). We choose a second point of the lattice (which we can reach by an integer

combination n~a1 + m~a2 of unit vectors from the origin) and label this point

(n,m). Furthermore, one chooses (without loss of generality) n ≥ m. The vector
~C connecting (0,0) and (n,m) is called the wrapping vector. The graphene sheet

is wrapped up to a cylinder such that the atoms (0,0) and (n,m) are on top of

each other and the CNT axis points along the direction perpendicular to ~C. This

is called a (n,m) CNT or also a CNT with chirality (n,m) (figure 2.1 b). We

have to mention that for the way we fabricate CNTs (CVD growth, see chapter

3 for details) there is no control over the chirality of our CNTs. We get CNTs

with a certain diameter distribution but within this distribution all chiralities are

probably distributed equally.

C = na +ma1 2

a b

a1

a2

Figure 2.1: Carbon nanotubes (a) Carbon nanotubes are hollow cylinders, formed
by a hexagonal structure of carbon atoms. (b) A CNT is constructed from a graphene
sheet. The wrapping vector ~C is wrapped onto itself, thereby generating a CNT. The
axis of the CNT is pointing perpendicular to ~C.

2.1.2 The electronic band structure of carbon nanotubes

The electronic band structure of graphene [11] is our starting point for under-

standing the band structure of CNTs. Again, we refer to [9] and [10] for a more

detailed description. Each carbon atom has four electrons in its outer shell. Three

of them occupy the sp2 orbitals, forming bonds to its three neighboring atoms.

The last valence electron occupies the pz orbital (which is oriented perpendicu-

lar to the graphene plane) and mixes with the pz states of the other atoms in

18



2.1 Carbon nanotubes

the lattice, thereby forming delocalized electron states, so called π-bonds. Only

these states contribute to the electric conductivity because their energy is located

around the Fermi energy (EF ).

A B

a1

a2

b1

b2

First 
Brillouin zone

K'

K

a b

x

y

kx

ky

Figure 2.2: Real space lattice and reciprocal lattice (a) The real space lattice
of graphene and its two lattice vectors. Each unit cell hosts two atoms, A and B. (b)
Reciprocal space lattice. The first Brillouin zone is hexagonal and has two inequivalent
corner points, K and K’.

To discuss the band structure we take a look at the reciprocal space lattice

(figure 2.2b). The first Brillouin zone is hexagonal. Conductance and valence

band touch each other at a discrete set of points which coincide with the corners

of the first Brillouin zone. These special points are called “K points”. The Fermi

surface consists of only these K points. Of the six K points in the first Brillouin

zone only two are inequivalent. These two points are called K and K’. The

dispersion E(kx, ky) around the K points is conical, i.e. linear in |~k|. Graphene

is a semimetal or zero bandgap semiconductor. Its bandstructure is summarized

in figure 2.3.

What happens to the dispersion if we wrap up graphene to a CNT? Let us

consider a coordinate system for ~k, with its two components pointing along and

around the CNT axis: ~k =
(
k‖, k⊥

)
. This coordinate system is rotated with

respect to the (kx, ky) coordinate system by an angle θ which depends on the

CNT chirality. While k‖ is still continuous, k⊥ becomes quantized.

πdk⊥ = 2πi; i = 0,±1,±2, ... (2.1)

This means the dispersion relation of a CNT consists of discrete, equally

spaced vertical planecuts through the dispersion relation of graphene, resulting

19



2. Carbon Nanotubes and single electrons

K

K'

E = EF

a b

Figure 2.3: The bandstructure of graphene (a) The energy dispersion relation of
graphene as a function of the wavevector k. The Fermi surface consists of six points, the
so called K-points. Around these points the energy dispersion is conical. (b) Contour
plot of the valence states from (a). Lighter colors correspond to higher energies. Out
of the six K-points two are inequivalent: K and K’. Figure adapted from [12]

in a set of one-dimensional subbands (figure 2.4). For the energy scales we are

interested in, only the subbands next to K and K’ are relevant (the energy of

the following (second) subband is higher by about 1eV or 10000K). Now, if a

subband exactly intersects with K (because of symmetry, then also a subband

intersects with K’), there is no bandgap and the CNT is metallic. Otherwise,

there is a finite bandgap and the CNT is semiconducting (figure 2.5). The nature

of a CNT follows from its chirality by a simple rule: A (n,m) CNT is metallic

if n − m = 3q, where q is an integer. Otherwise it is semiconducting, with a

bandgap EG, depending on its diameter [9]:

EG = 2γ0a/
(√

3d
)
' 0.8eV/d [nm] (2.2)

Here γ0 ≈ 2.9eV is the transfer integral from the graphene tight binding

model. Every longitudinal state is twofold degenerate because of the identical

band structure around K and K’. This degeneracy, which is often called the

“valley-degeneracy”, has a very intuitive explanation, since the origin of the

discrete planecuts is the quantization of k⊥, the perpendicular component of

the wavevector: One can talk about a state with an electron going clockwise

around the CNT and another with an electron going counter-clockwise. There-

fore, these states also possess an orbital magnetic moment [13]: µorb = evF d/4 '
0.2meV × d[nm], for electrons at the Fermi energy. Here vF =

√
3/2 × aγ0/~ is
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2.1 Carbon nanotubes

k

k

2/d

K

K'k

k

2/d

K

K'

kx

ky

kx

ky

a b

Figure 2.4: Quantization of k⊥ Top view contour plot of the graphene band struc-
ture in the first Brillouin zone (figure 2.3). Quantization of k⊥ defines equally spaced
planecuts through the graphene band structure. These planecuts are the 1-D bands of
the CNT band structure, as shown in figure 2.5. Note that the relative orientation of
the (kx, ky) and (k‖, k⊥) coordinate systems depends on the chirality. We have sketched
the situation for zero parallel magnetic field. (a) Metallic CNT (armchair): a subband
intersects with the K (and K’) point. (b) Semiconducting CNTs: no subband inter-
sects with the K (and K’) point. The subbands which are closest to K and K’ define
the bandgap EG.

the Fermi velocity of graphene. For a typical CNT with a diameter of a few nm

µorb is much larger than the spin magnetic moment.

Magnetic field dependence of the band structure

An external magnetic field has a remakable effect on the electronic states of a

CNT (figure 2.6). For the moment we ignore the electron spin and only consider

the orbital magnetic moment. In a magnetic field, equation 2.1 is modified to:

πdk⊥ + 2πΦ/Φ0 = 2πi; i = 0,±1,±2 (2.3)

Here 2πΦ/Φ0 is the so called Aharonov-Bohm flux, acquired by electrons

traveling around the CNT circumference. It is related to B‖, the magnetic field

component pointing along the CNT axis, via Φ = πd2B‖/4. Φ0 = h/e is the

magnetic flux quantum. This means the intersection planes from figure 2.4 will

shift proportional to B‖ (figure 2.6). For a metallic CNT this just means that
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2. Carbon Nanotubes and single electrons
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Figure 2.5: Low energy spectrum of CNTs (a) Metallic CNTs: There is a pos-
sible value of k⊥ whose subband passes exactly through K and therefore there is no
bandgap. (b) Semiconducting CNTs: There is no subband passing through the K-
points and therefore a finite bandgap exists. The vertical intersection of the cone
defines a hyperbolic dispersion relation.

a band gap will open up and its magnitude increases linearly with B‖. For a

semiconducting CNT the situation is a bit more complicated. For one of the two

symmetry points (let us say K’) the bandgap will increase with magnetic field.

However, for K the bandgap first decreases with B‖ until it is zero. For higher

fields the bandgap for K then increases again. Eventually, if the zero field gap is

small, one will observe the point where the bandgap vanishes for K at a field value

achievable in the lab (see section 2.1.3). The different situations for metallic and

semiconducting CNTs are shown in figure 2.6. The change of the bandgap with

magnetic field depends on the CNT diameter:

dEG

dB‖
=

dEG

dk⊥

dk⊥
dB‖

= ±2

√
3γ0a

2

πed

2h
= ±2evF d

4
= ±2µorb (2.4)

To give an idea of this effect, for a CNT with d = 2nm, EG changes with a

slope of dEG/dB‖ = 0.8mV T−1.
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Figure 2.6: Dependence of the band structure on the parallel magnetic
field On the left side, a schematic of the cone of the graphene band structure is shown.
The vertical dashed lines indicate at which position of the cone the allowed quantized
wavevector k⊥ of the first subband intersects (for both K and K’). On the right side, the
energy dispersion vs parallel wave vector k‖ is shown. (a) Metallic CNT (b) Metallic
CNT, finite magnetic field: A bandgap opens up (c) Semiconducting CNT (d) Semi-
conducting CNT, finite magnetic field: for one K-point the bandgap increases, for the
other K-point the bandgap decreases.

23



2. Carbon Nanotubes and single electrons

EG

BÔ

EG

BÔ

a b

SCB0

SBB0

Figure 2.7: Bandgap EG as a function of parallel magnetic field (a) Metallic
CNTs: The bandgap increases linearly with B‖ until the first subband gets further away
from the K-points than the second subband. From this point on, EG decreases again.
K-K’ degeneracy is maintained, even for finite magnetic field. (b) Semiconducting
CNTs: The bandgap decreases with B‖ until the first subband passes through the K-
point. If B‖ is increased further, EG increases again. The field B0, where EG = 0, is
huge for semiconducting (SC) CNTs (∼ 2000T for d = 1nm), but can be on the order
of a few T for small bandgap (SB) CNTs.

In figure 2.7, we summarize how the bandgap depends on parallel magnetic

field for both metallic and semiconducting CNTs.

2.1.3 Small bandgap CNTs
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Figure 2.8: Magnetic field dependence of the gap of a small bandgap CNT
Low temperature measurement of the current through a small bandgap CNT-QD. The
first three electron and hole states are shown as a function of parallel magnetic field
and applied back gate voltage (BG). The bandgap EG (which can be estimated by sub-
tracting half the addition energies of the first electron and first hole from the measured
total gap between the first electron and first hole state) is minimal but clearly finite at
B0 ≈ 0.75T . Using α = 0.2 (obtained from the charging energy of the first hole), we
find - after subtracting the addition energy - a minimal bandgap of ∼ 35meV .

As discussed above, for CNTs (n,m) with n−m = 3q, one expects that they
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2.1 Carbon nanotubes

are metallic, i.e. have no bandgap. However, in reality 1 many CNTs have a

small bandgap of typically 10− 50meV 2.

k

E

k

E

EG

k

E

k

E

EG

a

b

Figure 2.9: Small bandgaps in CNTs (a) Shift: If the quantized value of k⊥ misses
the K-point by small amount (e.g. caused by mechanical deformations) there is a small
bandgap at zero magnetic field (dashed line). The gap will be zero for some finite
magnetic field B0 (solid line). (b) Interactions: If electron-electron interactions modify
the bandstructure such that there is finite gap at EF , the bandgap is nonzero at any
magnetic field.

What is the origin of this gap? It is known that curvature [16, 17] and me-

chanical deformations such as strain [18] or twist [19] can create a bandgap of this

magnitude. The mechanical deformations shift the positions of the K-points in k-

space. This changes the magnitude of the bandgap. For metallic (non-armchair)

CNTs, the quantized wave vector will now miss the K-points and therefore a

small bandgap will exist (figure 2.9 a). For curvature induced bandgaps, the

magnitude of this bandgap is proportional to 1/r2 [16, 17]. For all these me-

chanical deformations, the K-K’ degeneracy is maintained and conduction and

valence bands still meet at single points in k-space [12]. Just the position of these

points is shifted. Therefore, by applying a parallel magnetic field (which shifts

the allowed quantized wavevector states in k-space) one should be able to return

1This observation has been reported by a number of groups (e.g. [14, 15]) and is also found
by us; both for the clean, suspended CNTs and as well for CNTs deposited on a substrate.

2We know that these bandgaps do not correspond to CNTs that are semiconducting by
chirality: The CNTs have a diameter of 1 - 4 nm; this would correspond to a gap of 200 - 800
meV for semiconducting chirality.
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2. Carbon Nanotubes and single electrons

to zero bandgap for some field B‖ = B0 [12, 16].

However, for experimental data this is very often not the case: One finds that

the minimal gap occurs at a magnetic field B0 6= 0, but this minimal gap re-

mains finite (figure 2.8). So it seems that mechanical deformations alone cannot

cause these observed small bandgaps. An explanation might be found by taking

electron-electron interactions into account (section 2.3.2).

2.1.4 Spin-orbit coupling and the symmetries of the spec-

trum

Until now, we have treated the spin and valley (K-K’) quantum numbers com-

pletely independently of each other. This means that the electronic states in a

CNT are fourfold degenerate at zero magnetic field: Each state is twofold de-

generate with respect to the valley (K and K’) and each of these states can be

occupied by a spin-up and a spin-down electron. The fourfold degenerate state

splits into four states when a parallel magnetic field is applied, because of the

magnetic moments related to spin and orbital quantum numbers (see also figure

2.12). Although this model has successfully described a number of experiments,

it is inaccurate because it neglects spin-orbit interaction. Rather than discussing

the detailed theory of spin-orbit interaction in CNTs, we discuss its form, its

implications for the spectrum and the consequences for implementation of spin

based quantum information processing in CNTs.

Spin-orbit interaction for atomic carbon is weak (spin-orbit splitting ∆ ∼ 10meV )

because of its low atomic number, and is almost vanishing for graphene (because

of the symmetries in the graphene lattice) [20]. However, there is a peculiar effect

resulting from the curvature of CNTs.

It has been predicted [20, 22, 23] and confirmed experimentally [21] that the

spin and orbital momenta of electrons in CNTs are coupled. The main findings

are summarized in figure 2.10. For electrons, a parallel configuration of spin and

orbital momenta is favored over an antiparallel configuration by an energy ∆SO at

zero magnetic field. The spin-orbit splitting, ∆SO, depends only on the diameter:

∆SO = 1.6meV/d [nm] (2.5)

So, in fact the spectrum of a CNT is two-fold degenerate at zero magnetic field

(thereby maintaining Kramers degeneracy) and the four states have a linear de-

pendence on a parallel magnetic field, determined simply by their combined spin

and orbital magnetic momentum. Spin-orbit coupling in CNTs can be described
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Figure 2.10: Spin-orbit coupling in CNTs (a) In CNTs, the spin couples to the
valley. (b) Energies for spin-up and spin-down states for the two valleys K and K’ at
zero magnetic field. Spin-orbit interaction results in different allowed k⊥-values for spin
up and down. (c) Magnetic field dependence of the four states. The different slopes
are given by the combined spin and orbital magnetic momenta of the states. (d) One
and two electron ground states as function of magnetic field. The two electron ground
state changes its valley at BSO. (a)-(c) from [21]

by a spin-dependent topological flux, S‖ΦSO, which modifies the quantization

condition 2.1 for the transversal wave vector [21]:

πdk⊥ + 2πS‖ΦSO/Φ0 = 2πi; i = 0,±1,±2 (2.6)

Here S‖ = ±1 for the spin moment parallel/antiparallel to the orbital moment

and ΦSO ≈ 10−3Φ0 [22]. Spin-orbit coupling not only modifies the excited states

of the first electron but is also visible in the ground state energies of multiple

electron states. In particular, for the two electron ground state, the two electrons

occupy different valleys below a characteristic field BSO. Above BSO the two

electrons occupy the same valley (figure 2.10 d). This is oberservable by following
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2. Carbon Nanotubes and single electrons

the two-electron ground state as a function of magnetic field. The magnitude of

the spin-orbit field is given by

BSO = ∆SO/2µorb ' 4T/(d[nm])2 (2.7)

Experimental observation of the spin-orbit splitting is not easy and requires

very clean samples since the observability of the spectrum shown in figure 2.10

can be masked by K-K’ mixing [21]. Finally, it should be noticed that the spin-

orbit coupling also breaks electron-hole symmetry because it favors for holes the

opposite configuration (antiparallel spin and orbital momenta) than for electrons

(figure 2.10). The presence of spin-orbit coupling opens up the possibility of all

electrical coherent spin manipulation (EDSR) [24] in CNTs. A detailed proposal

using spin-orbit coupling in bent CNTs and predicting Rabi frequencies of MHZ

up to GHZ can be found in [25].

2.2 Longitudinal quantization: Quantum dots
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Figure 2.11: Longitudinal quantization (a) For a CNT with finite length, also
the k‖ component of the wavevector becomes quantized. This leads to a quantized
energy spectrum; a quantum dot (QD) is formed. (b) The addition energy of the
QD is the sum of the charging energy and the quantum mechanical level spacing:
µ(N +1)−µ(N) = EC +∆E. Electron transport is only possible if the electrochemical
potential, µ, for adding an electron to the QD is inside the bias window (Coulomb
blockade). The degeneracies of these quantized states in CNTs are discussed in figure
2.12.

Until now, we have assumed that the CNT is infinitely long and thereby

forms a quasi one-dimensional system. Now we consider a small isolated section
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2.2 Longitudinal quantization: Quantum dots

of length L, coupled to leads by tunnel junctions. The leads can either be the

left and right sections of a long CNT or a metal contact. The junctions can be

formed by Schottky barriers at the metal-CNT interface [26, 27], p-n junctions

inside the CNT (see chapter 7 of this thesis) or electrostatic barriers in the CNT

(induced by the voltages on local gates) [28, 29]. Such a small section of a CNT

forms a quantum dot (QD) [30].

The longitudinal confinement leads both to a considerable charging energy and to

a discrete energy level spectrum. The quantized energy spectrum of a CNT-QD

can be calculated from the Schroedinger equation for given confinement potential,

electron number and CNT bandstructure. E.g. for a hard wall confinement, the

wavevector along k‖ is quantized in steps of ∆k‖ = π/L. If we assume a linear

energy dispersion (metallic or small bandgap CNTs) we find for the energy level

spacing:

∆E =
dE

dk‖
∆k‖ =

hvF

2L
≈ 1.7meV

L[µm]
(2.8)

Despite its simplicity, this model describes many experiments surprisingly

well. Different models include a harmonic confinement potential or electron-

electron interactions (for instance by using a self-consistent electrostatic confine-

ment potential) but the numeric values for the level spacing are very similar to

the one found above [31]. Also, the charging energy might depend on N, the

number of electrons on the CNT-QD.

The charging energy EC is not directly related to the length of the CNT-QD but

rather is inversely proportional to the total self-capacitance CΣ of the CNT-QD.

CΣ depends not directly on L but on the capacitances to source, drain and gates

(which depend on L). However, the charging energy is in general larger for shorter

CNT segments.

If ∆E is larger than temperature (for CNT-QDs, this is already fulfilled at a few

Kelvin) and tunnel coupling, this system is called a quantum dot. If only the

charging energy is larger than temperature and tunnel coupling, one calls this

a “single electron transistor” (SET). Electron transport through QDs and SETs

is governed by Coulomb blockade, which we will not discuss here but refer to

[32, 33] or [34] for an overview.

In figure 2.12, we show the first two orbital states in a QD, both for elec-

trons and holes. We show the magnetic field dependence of these states both in

a parallel and a perpendicular field. Also, the two situations with and without

spin-orbit coupling are compared. Without spin-orbit coupling, each orbital state
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2. Carbon Nanotubes and single electrons
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Figure 2.12: First two electron and hole energy levels in a CNT-QD On the
left side of each diagram, the dependence of the states on a perpendicular magnetic field
is shown, whereas the dependence on a parallel magnetic field is sketched on the right
side. Sets of four states are split by ∆E, the orbital level spacing resulting from the
quantization along the CNT-axis. (a) No spin-orbit coupling. At zero magnetic field,
each orbital state is fourfold degenerate. In case of a perpendicular magnetic field (left),
K-K’ degeneracy remains, while different spin states are split by the Zeeman energy
∆EZ . In a parallel field, also the K- and K’-states split, according to their orbital
magnetic moment (right). (b) With spin-orbit coupling. In a parallel magnetic field
(right), we have the spectrum discussed in figure 2.10. Note that spin-orbit coupling
breaks electron-hole symmetry. For a perpendicular field (left) there are two states
which are twofold degenerate. They split nonlinearly in the perpendicular field, since
B⊥ and BSO are perpendicular to each other.

is fourfold degenerate at zero magnetic field. When a magnetic field is applied,

these four states split, according to their spin and orbital magnetic momenta.

Since the orbital magnetic moment only couples to a parallel field, a twofold de-

generacy remains even at a finite perpendicular field.

Spin-orbit coupling splits each orbital state into two sets of twofold degenerate

states at zero magnetic field, which are split in energy by ∆SO. In a parallel

magnetic field, the slope of the four states is determined by their combined spin
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2.3 Pauli blockade and spin qubits

and orbital magnetic moment. Even at finite parallel fields, spin-orbit coupling

does not mix spin states since both spin-orbit coupling and external field lead to

quantization of the spin in the direction along the CNT-axis.

In a perpendicular magnetic field, the states again remain twofold degenerate.

However, in contrast to the case without spin-orbit coupling, the energy de-

pendence on a perpendicular field is not linear. This is, because B⊥ and BSO

are perpendicular to each other. The splitting is in this case given by ∆EZ =

2gµB

√
B2
⊥ + B2

SO. Now, spin states are mixed by spin-orbit coupling, since B⊥

points perpendicular to the CNT-axis while (the valley-dependent) BSO points

parallel to the CNT-axis. The nonlinear splitting as a function of magnetic field

could also explain the findings of a reduced g-factor in few electron CNT-QDs

[27] since these results were obtained under the assumption of a linear Zeeman

splitting.

We conclude this section, summarizing the most important parameters for

CNTs-QDs.

Symbol numeric value description

a 2.46
◦
A graphene lattice constant

vF 8× 105m/s [9] Fermi velocity of graphene

EG(d) 0.8eV/d[nm] Semiconducting bandgap as a

function of CNT diameter

µorb(d) ±0.2meV/T × d[nm] orbital magnetic moment

∆E(L) 1.7meV/L[µm] Longitudinal level spacing

(metallic CNTs, hard wall confinement)

∆SO(d) 1.6meV/d[nm] [20, 21] Spin-orbit splitting

Table 2.1: Carbon nanotube parameters and constants

2.3 Pauli blockade and spin qubits

CNTs have been proposed as a promising material for devices in spin based quan-

tum information processing. The main reason for this is that CNTs containing

only 12C (and therefore no nuclear spins) can be fabricated. Thereby, the main

source of spin decoherence in QD systems [35, 36, 37, 38] would be eliminated.

However, in CNTs there are other issues that may cause difficulties for spin based

quantum devices.

A key tool for investigating and probing the physics of a single, confined electron

31



2. Carbon Nanotubes and single electrons

spin is Pauli blockade (sometimes also called spin blockade)[39], as shown in fig-

ure 2.13. In a double QD the transition from a (1,1) triplet to a (0,2) triplet is

blocked, since the Pauli exclusion principle for the (0,2) triplet requires a higher

orbital to be occupied. This has usually a much higher energy and is therefore

inaccessible. Spin blockade can be lifted by transforming a (1,1) triplet into the

(1,1) singlet (the transition to the (0,2) singlet is energetically possible) and is

thereby a tool to probe spin states in QDs.

Figure 2.13: Spin blockade in QDs (a) Spin blockade for finite detuning ∆LR.
Only from the (1,1) singlet (S11) an electron can tunnel to the (0,2) singlet (S02). The
transition from the (1,1) triplets (T11) to the (0,2) triplets (T02) is energetically not
possible. For the (0,2) triplets, a higher orbital must be occupied to maintain the
overall antisymmetry of the wavefunction. (b) For zero detuning the (1,1) and (0,2)
singlets hybridize. The triplets remain blocked. Figure from [40]

We discuss two particular aspects of this effect in CNTs: The role of the

additional valley (K-K’) degeneracy and the singlet-triplet splitting in CNTs.

2.3.1 The effect of K-K’ degeneracy

As discussed above, there is an additional quantum number in CNT-QDs com-

pared to other QD systems: an electron can occupy a state belonging to either

of the two K-points. This is called the valley- (or isospin-) degeneracy. Let us

neglect spin-orbit coupling for the moment. If we consider only the lowest longi-

tudinal modes, there are 16 possible states for the separated (1,1) configuration

(instead of 4, if there was only spin and no valley) [41, 42]. These states are listed

in table 2.2. Which of these states can evolve into the (0,2) configuration (we
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2.3 Pauli blockade and spin qubits

assume that interdot tunneling conserves spin and valley) without occupying a

higher longitudinal mode? To answer this question, one has to look at the sym-

metry of these states under exchange of the two electrons. The Pauli exclusion

principle requires that the total wavefunction for two electrons is antisymmetric

under exchange. The total wavefunction is the product of a spin, a valley and an

orbital part:

Ψ = Ψspin ⊗Ψvalley ⊗Ψorbital (2.9)

Therefore, if the combined spin and valley part of the wavefunction is sym-

metric, the (longitudinal) orbital part has to be antisymmetric - a requirement

that in the (0,2) configuration can only be met if also the next higher (longi-

tudinal) orbital is occupied. One finds that 10 out of the 16 states must have

an antisymmetric orbital part of the wavefunction (table 2.2) and therefore their

transition from (1,1) to (0,2) is blocked [41, 42, 43].

How can the blockade be lifted? If either the spin or the valley part of the

wavefunction changes its symmetry, the combined spin and valley wavefunction

changes its symmetry and both electrons can access the same orbital sate and

(0,2) is accessible. Therefore, either a “spin-flip” or a “valley-flip” can lift the

spin blockade. A detailled theoretical discussion of this “spin-valley blockade”

can be found in [43].

Now let us consider spin-orbit coupling. At zero magnetic field the states

K ↑ and K ′ ↓ are lower in energy by ∆SO compared to K ′ ↑ and K ↓. Let us

first look at the situation where electrons only occupy the lowest energy states.

Then, we have four possible (1,1) states, comparable to the usual spin blockade

situation (table 2.3, states 1-4). Out of these four states only the antisymmetric

one can evolve into (0,2). To lift spin blockade (and staying within the lowest

energy states), both spin and valley have to flip.

It might be more realistic to consider all four single electron states, although they

are not degenerate. In a typical spin blockade experiment in a double QD, a bias

much larger than ∆SO is applied. If we take this into account we have again 16

possible states, 6 of them having an antisymmetric spin and valley part of the

wavefunction (table 2.3).

Now we discuss the situation where a parallel magnetic field B‖ � BSO is applied.

Here the states K ↑ and K ↓ are the only ones we need to consider (they are

much lower in energy than K ′ ↑ and K ′ ↓). This means we are in a situation,

equivalent to the “conventional” spin blockade, without any effect from the valley

quantum number: The spin singlet can evolve from (1,1) to (0,2) while the three

triplets are blocked in (1,1). Spin-orbit coupling can facilitate spin relaxation [23]
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2. Carbon Nanotubes and single electrons

spin ⊗ valley symmetry

1 (↑↓ − ↓↑)(KK) -1

2 (↑↓ − ↓↑)(K’K’) -1

3 (↑↓ − ↓↑)(KK’ - KK’) -1

4 (↑↑)(KK’-K’K) -1

5 (↓↓)(KK’-K’K) -1

6 (↑↓ + ↓↑)(KK’-K’K) -1

7 (↑↑)(KK) +1

8 (↑↑)(K’K’) +1

9 (↑↑)(KK’+KK’) +1

10 (↓↓)(KK) +1

11 (↓↓)(K’K’) +1

12 (↓↓)(KK’+KK’) +1

13 (↑↓ + ↓↑)(KK) +1

14 (↑↓ + ↓↑)(K’K’) +1

15 (↑↓ + ↓↑)(KK’+K’K) +1

16 (↑↓ − ↓↑) (KK’-K’K) +1

Table 2.2: Two-electron states (without spin-orbit coupling) Spin and valley
part of two-electron wavefunctions in a CNT. We separate spin and valley components;
the 16 possible states can be understood as a spin singlet or triplet times a valley
singlet or triplet. From this, one can easily find the symmetry under particle exchange.
Normalization is omitted for brevity.

and thereby lift spin blockade.

In case of a perpendicular magnetic field, spin states are mixed by spin-orbit

coupling (see previous section), which can lift spin blockade by introducing non

spin-conserving interdot tunneling [44]. Comparable situations have been studied

in InAs QDs [45, 46]. A theoretical study of the influence of spin-orbit coupling

in CNTs on Pauli blocakde can be found in [43].

Finally, also the hyperfine interaction between the (13C -) nuclear spins and the

electron spin can lift Pauli blockade [47, 35]. Theoretical work suggests that this

hyperfine interaction in CNTs can not only mix different spins but also - because

of the short-range nature of the hyperfine interaction - mixes different valleys

[42]. However, Pauli blockade can be restored by applying a sufficient parallel

magnetic field, which splits different spin- and valley-states.
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2.3 Pauli blockade and spin qubits

spin ⊗ valley symmetry

1 (K ↑ K ′ ↓ −K ′ ↓ K ↑) -1

2 (K ↑ K ′ ↓ +K ′ ↓ K ↑) +1

3 (K ↑ K ↑) +1

4 (K ′ ↓ K ′ ↓) +1

5 (K ↑ K ↓ +K ↓ K ↑) +1

6 (K ↑ K ↓ −K ↓ K ↑) -1

7 (K ↑ K ′ ↑ +K ′ ↑ K ↑) +1

8 (K ↑ K ′ ↑ −K ′ ↑ K ↑) -1

9 (K ↓ K ′ ↓ +K ′ ↓ K ↓) +1

10 (K ↓ K ′ ↓ −K ′ ↓ K ↓) -1

11 (K ′ ↑ K ′ ↓ +K ′ ↓ K ′ ↑) +1

12 (K ′ ↑ K ′ ↓ −K ′ ↓ K ′ ↑) -1

13 (K ↓ K ′ ↑ +K ′ ↑ K ↓) +1

14 (K ↓ K ′ ↑ −K ′ ↑ K ↓) -1

15 (K ↓ K ↓) +1

16 (K ′ ↑ K ′ ↑) +1

Table 2.3: Two-electron states in presence of spin-orbit coupling We consider
all four single-electron states. As in the situation without spin-orbit coupling, we have
16 possible states. 6 of these states have an antisymmetric spin and orbital wavefunction
part. However, because of spin-orbit coupling, the states have different energies: states
1 - 4 have the lowest energy, states 5 - 12 are hinger in energy by ∆SO and states 13 -
16 by 2∆SO. Note, that now - when we use the spin orbit states as a basis - the states
1,2, 13 and 14 cannot be factorized into a spin- and valley-part.

2.3.2 Singlet-triplet splitting and Wigner molecules

Since CNTs are one-dimensional systems, electron-electron interactions play a

very different role compared to QDs in three dimensional systems. Electron-

electron interactions become particularly important in the limit ∆E/EC � 1,

i.e. when the charging energy is the dominant energy scale. This regime is

valid for long CNTs and low carrier densities. Here we discuss the splitting EST

between the (0,2) singlet and (0,2) triplet and its role for spin blockade.

A key requirement for observing spin blockade is a sufficiently large EST . Al-

though the spacing of longitudinal modes is large in CNTs, EST can be affected

substantially by electron-electron interactions. In a shell filling model, singlet-

triplet splitting is often expressed as the energy difference of two single electron
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2. Carbon Nanotubes and single electrons

wavefunctions minus an exchange term [48]: EST = ∆Eorb − EK
3. EK results

from the difference in Coulomb repulsion between the two electrons in the singlet

and triplet states 4: For the triplet state, a higher longitudinal mode has to be

occupied and the orbital wavefunction is antisymmetric. This results in a reduced

Coulomb energy compared to the singlet, where both electrons can occupy the

same orbital state and the wavefunction is symmetric (in a strict sense, “exchange

interaction” refers to the energy difference of the symmetric and antisymmetric

wavefunctions of the type φ1φ2 ± φ2φ1 due to Coulomb interactions; to avoid

confusion, we instead use the term EK for our situation [48]).

Figure 2.14: Singlet and triplet wavefunctions Two-electron wavefunctions
φ(x1, x2) in a CNT-QD as a function of the two electron coordinates x1, x2. Numeri-
cal simulations by T. Balder [31] (a) Triplet: the two electrons occupy two separated
sections of the CNT. The wavefunction is antisymmetric. (b) Singlet: again the two
electrons occupy two separated sections of the CNT, instead of having overlapping
wavefunctions. In fact, the wavefunction is - apart from the (anti)symmetry - almost
indistinguishable from the one for the triplet. (Note, that the color scales are different
in (a) and (b))

We discuss the singlet-triplet splitting on the basis of numerical simulations

[31, 49, 50, 51] of the two electron states in a CNT-QD. One finds that for a

typical CNT-QD with a length of ∼ 100nm, EST is only ∼ 5µeV . However, the

level spacing between the first two longitudinal modes is ∼ 10meV , i.e. more

three orders of magnitude larger. An explanation for this effect can be found

when looking at the charge distribution for the singlet and the triplet: Figure

2.15 shows that rather than being smeared out over the whole length of the CNT-

QD, the two electrons are spatially separated for both the singlet and the triplet.

3we do not include a Zeeman splitting here, i.e. at a finite magnetic field we only refer to
the T0 triplet.

4in a double QD there can also be a contribution from hybridization of the (1,1) and (0,2)
states, which we will neglect in our discussion here
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2.3 Pauli blockade and spin qubits

Hence it is not appropriate to describe the two-electron states using the single

electron wavefunctions and include some modification EK . It is more that the

Coulomb interaction is the dominant contribution and forces the two electrons in

two entirely new, spatially separated orbitals [49, 50, 51, 52]. These orbitals are

similar for the singlet and triplet (figure 2.14); this is the reason that EST almost

vanishes (exchange effects are now negligible since the wavefunctions hardly over-

lap). This effect is reminiscent of a Wigner crystal [53], where Coulomb repulsion

leads to a lattice of localized electrons . Therefore, we call this two electron state

a “Wigner molecule”. Besides the charge distribution, a key feature of such a

Wigner-molecule in a CNT is a spin- and valley-polarized ground state (already

at very small magnetic fields) [49, 51]. This effect has been found both for har-

monic [31, 50, 51] and potential-well like [49] confinement potentials. [49, 50, 51]

have also included the effect of spin-orbit coupling in their models.

Figure 2.15: Singlet and triplet charge distributions Numerical results for the
two-electron charge distribution in a CNT-QD with harmonic confinement potential
[31]. Higher confinement energies correspond to smaller QDs (a) Very small QD: dif-
ferent charge distribution for singlet and triplet. (b) At smaller confinement energies,
the charge distribution for the singlet starts to separate. (c) Already for a 100 nm
large QD the singlet and triplet charge distributions are indistinguishable. This is a
“Wigner molecule”. As a consequence, EST vanishes.

For an experimentalist who wants to use spin blockade as a tool to investi-

gate spin states, the crucial question is whether there are any parameters one

can change to enhance EST . The first parameter one can change is the size of

the QD. In a smaller QD it costs more kinetic energy (zero point motion) for

the two electrons to sit in almost separate orbitals next to each other. At some

point this kinetic energy is larger than the Coulomb repulsion and the electron

wavefunctions will start to overlap (shell filling) and thereby EST will increase
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2. Carbon Nanotubes and single electrons

(figure 2.15). This crossover happens at a dot size of ∼ 20nm for a suspended

CNT.

Figure 2.16: Transition to a Wigner-molecule (a) Phase diagram for a CNT-QD
with harmonic confinement. Below the lines, the N-electron ground state is a Wigner
molecule. R = 3nm was assumed. Graph from ref. [51]. (b) Critical length in a
2-electron CNT-QD: Above the critical length, L, the two-electron ground state is a
spin- and valley-polarized Wigner-molecule with vanishing EST . Numerical calculation
of L as a function of the interaction parameter α ≈ 2.2/ε and the CNT radius, R. The
effect of spin-orbit coupling is included, as well. Graph from ref. [49].

Another possibility is to screen the electron-electron interactions by embed-

ding the CNT in a material with a large dielectric constant. The simulations in

figures 2.14 and 2.15 have been carried out for a suspended CNT, i.e. the dielec-

tric constant of the environment is ε = 1. One can define a critical length, above

which the two electron ground state is a “Wigner molecule” with a spin- and

valley polarized ground state and vanishing EST . This critical length depends

exponentially [49] on ε, as shown in figure 2.16. One finds that ε ∼ 5 gives a

critical length on the order of 100 nm, i.e. the typical size of CNT-QDs in recent

experiments. Possible materials to embed the CNT in are e.g. silicon dioxide

(ε = 3.9) or aluminium oxide (ε = 9.3). Indeed, spin blockade has been observed

in CNTs covered with such a dielectric [54] but not in suspended CNTs (chapter

7 of this thesis).

Mott insulating state

Another consequence of electron-electron interactions could be linked to the

small-bandgap CNTs, discussed earlier in this chapter. It has been claimed that

the existence of small, non closing bandgaps in CNTs (as shown in section 2.1.3)
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2.3 Pauli blockade and spin qubits

can be explained by a Mott insulating state [15]. Such a state has been predicted

theoretically for CNTs [55]. In general, a Mott insulator is a type of material

which is expected to be a conductor when not taking electron-electron interactions

into account; but the Coulomb repulsion of the electrons opens up a gap (usually

at half-filling, when there is one electron per lattice site) [56]. For CNTs, such

a insulating state around EF would open up a gap in the band structure (not

only a shift of the quantized wave vector), as shown in figure 2.9b. However,

there is also experimental data showing CNTs without any gap, i.e. true metallic

behavior [57]. Therefore, this subject is still asking for further investigation.
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Chapter 3

Fabrication

In this chapter, we describe the fabrication of our CNT samples. We have used

two very different types of devices: For the first type, CNTs are grown on a

substrate and thereafter electrical contacts, top gates and SET charge detectors

are fabricated. For the second type of devices, structures like trenches, contacts

and gates are fabricated first and the CNT are grown over these structures in the

very last fabrication step. For the first type of devices, we use very much standard

recipes. Therefore, we will not give a detailed step-by-step description of the

fabrication but instead present the used techniques (electron beam lithography,

double angle shadow evaporation) and discuss the limitations they impose on

possible devices. Thereafter, we will explain how we grow the CNTs. Again, this

is a well tested standard recipe. In the second part of this chapter, we present the

fabrication of gates and trenches in Si/SiO2 substrates for the suspended CNT

devices. Finally, we discuss the fabrication of narrow gates for suspended CNT

devices.
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3. Fabrication

3.1 Electron beam lithography

To fabricate a CNT device, a number of different small structures have to be

defined on a Si/SiO2 substrate. The method to do this is electron beam (ebeam)

lithography. Each ebeam lithography cycle consists of the steps shown in figure

3.1. The smallest structures we can define by this method are around 35 nm.

One can improve this number down to ∼ 20nm by optimizing the ebeam focusing,

which is usually done by focusing on on-chip markers close to the exposed areas.

The relative alignment accuracy between different ebeam steps is typically better

than 50 nm, if we use alignment markers close enough to the exposed areas.

resist

      Si / SiO2

e-beam after
development

metal
evaporation after

lift-off
a b c d

Figure 3.1: Electron beam lithography (a) A double layer of resist is spun on
the substrate and the desired pattern is exposed with a beam of high energy electrons.
(b) A chemical developer removes the irradiated areas of the resist. Since the bottom
layer is more sensitive to ebeam radiation there is a so called undercut (c) One or more
layers of metal (or dielectric) are evaporated on top of the developed resist layer. (d)
A chemical solvent (usually acetone) removes the resist with the metal on top of it.
Metal remains on the sample only at the predesigned areas. The undercut ensures a
proper lift-off.

Disorder and fabrication

For the CNT-on-substrate type of devices, we have to do four ebeam lithog-

raphy cycles after CNT growth (ohmic contacts, top-gates, SETs and bonding

pads). We observe from low-temperature transport measurements that the dis-

order in the CNTs is very high after these processing steps. Already short CNT

segments (typical CNT-QDs have a length of less than 500nm) break up in mul-

tiple QDs at low carrier densities. Only at high carrier densities, when the Fermi

energy is higher than the disorder potential, the CNTs behave as single QDs.

This is demonstrated in figure 3.2. It should be noted, that this data is taken

from a semiconducting CNT. Semiconducting CNTs are generally more suscep-
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3.1 Electron beam lithography

Figure 3.2: Disorder at different electron densities Stability diagrams of a CNT
with two top-gates (TG1 and TG2) which are separated by 400nm. The sample is
the same, we have used for the experiments in chapter 6. The stability diagrams
are obtained with a SET charge detector, positioned between the two top-gates (and
therefore sensitive to the CNT segment between the top-gates). (a) shows an AFM
image of the device. The electron density is controlled with the back gate voltage
(BG). If disorder is weak, we expect a single QD behavior, i.e. diagonal lines in the
stability diagrams. (b) High electron density (BG = 6.25 V): Diagonal lines indicate
single QD behavior. (c) Intermediate electron density (BG = 5V). The CNT starts to
break up into a coupled double QD. (d) Low electron density (BG = 2.5 V): Disorder
is dominant. The CNT section between the two TGs has broken up in multiple islands.
This is evident from the multiple and crossing sets of charging lines in the stability
diagram.

tible to disorder than metallic / small bandgap CNTs [58]. Therefore it would

be desirable to use small bandgap CNTs, however for the top-gate design this is

not possible since we found that small bandgaps (≤ 40 meV) are not enough to

pinch off a barrier with top gates 1 (with a typical width of 40nm). On the other

hand, for the clean, suspended CNTs, where we define barriers by pn-junctions,

1this is necessary e.g. for relaxation time measurements
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3. Fabrication

we find this is possible very well with small bandgap CNTs. Because of the small

disorder, the width of pn-junction in a suspended CNT can be made much larger

than the typical width of topgates in the CNT-on-substrate type of devices.

There are two main reasons why ebeam lithography based fabrication can

induce disorder in CNTs: (i) The chemical processing leaves some residue of

resist (or chemicals used for development and lift-off) on top of the CNT (ii) the

ebeam radiation can induce defects in the CNTs [59].

To prevent fabrication induced disorder, we obtained the best results by growing

the CNTs in the very last fabrication step, as described in chapter 7. Also,

covering CNTs with a noncovalent functionalization layer followed by an Al2O3

layer, deposited by atomic layer deposition, has shown to yield clean QD devices

[54].

3.2 SET fabrication

      substrate

e-beama

resist

      substrate

developmentb

      substrate

c 1st evaporation

      substrate

d oxidation

      substrate

e 2nd evaporation

      substrate

f after lift-off

junction

Figure 3.3: Fabrication of small Al / Al2O3 junctions (a) A double layer of resist
is spun on the substrate and a bridge shaped pattern is exposed with a beam of high
energy electrons. (b) A chemical developer removes the irradiated areas of the resist.
It is necessary that all bottom layer resist under the bridge is removed. (c) A first
layer of Al is evaporated under an angle (d) Controlled oxidation creates a thin layer
of Al2O3 (e) The second Al evaporation step, this time with an opposite evaporation
angle. A junction is created under the resist bridge. (f) Chemical lift-off finishes this
fabrication cycle.
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3.3 Carbon nanotube growth

We use aluminium single electron transistors (Al-SETs) as charge detectors

for CNT-QDs. An Al-SET consists of a small aluminium island, connected to

leads via Al2O3 tunnel junctions. These junctions have a size of about 60nm

× 60nm. To fabricate these junctions with ebeam lithography one has to use

a double angle shadow evaporation technique [60], as shown in figure 3.3. We

use resist bridges with a width of 70 nm. To fabricate those resist bridges, a

bottom layer resist has to be used which can have a large enough undercut. We

use a 250nm thick layer of PMGI as bottom layer. This resist has the advantage

that the undercut can be controlled by a developer which does not attack the

top layer resist (PMMA) and thereby allows to fabricate resist bridges with good

precision and reproducibility. After ebeam exposure, the pattern in the top layer

is developed in MIBK : IPA (1:3) for 70 seconds (followed by 70 seconds in IPA),

with a successive development in Concentrate : H2O (1:1) for 3 min (followed by

60 seconds in H2O). This results in a 500nm large undercut in the PMGI bottom

layer.

The next step is the double angle evaporation. We evaporate two layers (30nm

and 40nm) of aluminium, under angles of ±15◦. In between the two evaporation

steps we do a controlled oxidation for 12 min at an oxygen pressure of 100µbar.

This results in a junction resistance of∼ 100kΩ. To change the junction resistance

we typically change the junction area by either changing the evaporation angle

or the resist bridge width. In principle it is also possible to vary the junction

resistance by changing the oxygen pressure during the oxidation step.

3.3 Carbon nanotube growth

We fabricate our CNTs using chemical vapor deposition (CVD) growth [61].

First, spots for the catalyst, from which the CNTs will grow, are defined in a

PMMA mask via ebeam lithography. The catalyst consists of 40 mg Fe(NO3)3·9H2O,

4 mg MoO2 (acac)2 and 30 mg Alumina nanoparticles (Degussa Aluminium Ox-

ide C), dissolved in 30 ml methanol. A few droplets of the catalyst are deposited

on the substrate with the developed PMMA mask. After baking 10 min at 150◦

we do a lift-off in hot acetone, leaving catalyst only at the predefined spots on

the substrate. Special care has to be taken not to end up with catalyst all over

the sample (the catalyst sticks extremely well to SiO2) and not only at the pre-

defined spots. We usually ensure this by doing a two step lift-off. First, we move

the sample quickly through a beaker of warm acetone inside a sonicator. Then

the sample is immediately (without letting it become dry) transfered to a second

beaker of acetone, where it is left for 5 min.
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3. Fabrication

For growth, the sample is put in a quartz tube inside a furnace. The CVD growth

is performed at 900 ◦C under 700 sccm H2 and 520 sccm CH4 gas flow for 12 min.

Heating up and cooling down is done under Ar flow. Now, from the catalyst

spots CNTs have grown in random direction with typical lengths of 1 - 20 µm.

The CVD growth parameters (catalyst composition, temperature and gas flow

rates) are optimized to produce a high yield (> 90%) of single-wall CNTs with

diameters of 1 - 5 nm. The peak of the diameter distribution is between 1 and

2 nm [61]. There is no control over the CNT chirality, meaning we probably get

a random distribution of chiralities (within the given diameter distribution). In-

deed, we find that roughly ∼ 1/3 of the CNTs are metallic or small bandgap and

∼ 2/3 are semiconducting, as expected. The CVD growth works equally well for

growing CNTs on a flat SiO2 substrate or over predefined W/Pt metal contacts

and trenches.

SiO2

a

SiO2

Gas
900°

b c

5mm

Figure 3.4: CVD growth of CNTs (a) Small islands of catalyst are deposited at
predefined positions via ebeam lithography (b) A mixture of growth gases flows over
the sample at high temperatures inside a furnace. CNTs grow from the catalyst spots.
(c) AFM image of CVD-grown CNTs. From the catalyst island several CNTs have
grown in random directions. The typical length is between 1 and 20 µm. The four
markers at the corners are for alignment purposes.
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3.4 Etching of silicon structures

3.4 Etching of silicon structures
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Figure 3.5: Etching of structures into Si/SiO2 substrates (a) Resist layer profile
and ebeam irradiation. (b) Chemical development after ebeam irradiation (c) Creating
an etch mask in the W layer for the second etch. (d) Creating a mask in the photoresist
layer for the Si / SiO2 etch. (e) Etching through the Si and SiO2 layers. (f) Removing
the leftover photoresist

Here we describe the method used to etch small structures (trenches and

gates) into a Si/SiO2 substrate. This is used for the clean, as-grown CNT sam-

ples in chapter 7. The fabrication scheme is shown in figure 3.5. First, the desired

pattern is defined by ebeam lithography in a PMMA top layer. Then, the pattern

is transfered to a underlying 7nm thick layer of W by a Fluorine based dry etch.

In a second dry etching step, the pattern is now transfered to a 500nm thick

layer of photoresist, using an oxygen plasma. The photoresist will now serve as

an etch mask for the Si/SiO2 etch, which is done by dry etching with an CHF3 /

O2 plasma. The O2 is necessary to prevent the formation of teflon on the sam-
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ple. By carefully adjusting the amount of O2, the anisotropy of the etch can be

improved significantly. This is, because the oxygen ions in the plasma etch the

photoresist also in the horizontal direction which leads to a non-vertical etch of

the underlying Si/SiO2.

While this fabrication scheme works well for creating split-gates (as used in chap-

ter 7), it is not suitable for creating narrow gates. We find that gates with a width

of less than 400nm (and a typical length of 5 µm) show carrier localization at tem-

peratures below 1K. Probably the gates break up in several electrically isolated

islands, which means they can not be used as local gates for QD devices.

3.5 Fabrication of narrow gates for clean, sus-

pended CNT devices

Figure 3.6: Thin metal films after heating up to 900◦C in the CVD oven. SEM
images (a) A 50nm thick film of Co (on a SiO2 substrate) after CVD-growth. Despite
the high melting point of > 1400 ◦C, the thin film has transformed to a layer of
disconnected islands. (b) Rhenium: although thin layers are not affected visibly by the
CVD-growth, the grain-size is too large for the fabrication of narrow gates.

To perform experiments with tunable single and double QDs in clean CNTs, it

is desirable to combine local electric gates with a fabrication scheme where CNTs

are grown in the last fabrication step across a predefined trench (as described in

chapter 7). Also, these gates should ideally be suited for applying high-frequency

pulses, to make experiments like relaxation-time measurements or coherent spin

manipulation possible.

The main challenge is to find a metal or alloy, such that even even narrow ('
100nm) gates survive the high temperatures (900◦ C) during the CVD-growth

of the CNTs. Some metals, e.g. Cr or Co have a high (>1000 ◦ C) melting

point, but thin films of these metals partially melt, thereby forming a carpet
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devices

of disconnected islands. For other metals, e.g. Re, thin films survive the high

temperatures but they have a too large grain size for the fabrication of narrow

gates. Typical problems are shown in figure 3.6.

Figure 3.7: Fabrication of narrow gates from W. SEM images of test- and
final devices (a) A ∼ 200nm wide gate is fabricated from a 50 nm thick layer of W
by a reactive ion etching process. (b) The chip is covered with a dielectric (here:
Si3N4); both sputtering and ALD result in a conformal covering of the structures. The
high temperatures (900 ◦C) inside the CVD oven have not lead to any damage of the
structure. (c) SEM image of five gates, fabricated with the method described above.
The gray-black patterned areas are W; areas where the W has been etched show up
black. The smallest gates, still working reliable, are around 100nm wide, with a pitch
of 250nm. (d) A complete device: CNTs are bridging a trench between two W/Pt
contacts. In this case, the CNT is touching the dielectric at the bottom of the trench
(CNTs show up brighter in SEM images, when they touch a dielectric). Note that the
quality of the W/Pt on the Si3 N4 after CVD growth is worse than on a SiO2 substrate.

The best results so far are obtained with sputtered tungsten (W). The fab-

rication steps are shown in figure 3.7. A 50nm thick layer of W is sputtered

on a SiO2 surface and afterwards the desired gate pattern is created by ebeam

lithography and reactive ion etching, using the same etch mask as in section 3.4.

Afterwards, the gates are covered with a dielectric, typically PECVD - SiO2,
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Al2O3 or sputtered Si3N4. Gates with dimensions of 100nm× 5µm have a room-

temperature resistance of ∼ 700Ω which is further reduced to < 200Ω below 1K.

This means the gates are also suitable for application of high-frequency electrical

pulses. Also, voltage differences up to > 10V can be applied to these gates (with

a spacing of 100-150 nm) without observing electrical leakage.

Fabrication now continues by deposition of contacts made of W/Pt (5nm/25

nm) and etching a trench into the dielectric between the contacts. The trench

should be deep enough, to ensure that the CNTs do not touch the dielectric at

the bottom of the trench if one aims for ultra-clean devices. Experience shows

that a ratio of 3:1 between the width and depth of the trench is sufficient for the

majority of the grown CNTs to be fully suspended. If one wants to have CNTs

in contact with the dielectric substrate (to screen electron - electron interactions,

as discussed in chapter 2.3) it is important to make sure that the dielectric which

is covering the gates does not have any sharp edges to prevent kinks in the CNT.

After catalyst deposition at predefined spots near the trench, CNTs can be grown

on the samples (see section 3.3).

It seems still possible to reduce the width and spacing of the W-gates to obtain

smaller QD devices. Both optimizing the etching process (thinner resist mask and

different plasma conditions to increase the anisotropy of the etch) and switching

to a evaporation-based fabrication [46, 62] might bring an improvement.

3.6 Room temperature characterization

Not every CNT device is suited for low-temperature measurements. Since wire

bonding and cooling down devices to cryogenic temperatures is time consuming,

it is desirable to preselect as much as possible by comparably easy and fast tests

at a room-temperature (RT) probe station. By measuring the conductance as a

function of gate voltage one can determine whether a CNT is semiconducting or

metallic / small bandgap. For small bandgap CNTs, one can also get a rough

estimate of the bandgap magnitude. Furthermore, the measured conductance

gives an indication of the quality of the CNT-metal contacts.

For the CNT-on-substrate type of devices, we use RT measurements after the

fabrication of metal contacts to select semiconducting CNTs for further process-

ing. The testing of top-gates is more critical: we found that applying voltages

to the top-gates under ambient conditions often results in damage of the CNTs,

possibly via electrical break-through due to the very thin insulating layer between

top-gates and CNTs.

For the suspended CNTs, where CNT-growth is the last fabrication step, we

50



3.6 Room temperature characterization

Figure 3.8: Room temperature testing (I) At room temperature, we perform
measurements of the CNT conductance versus the voltage applied to a gate (usually
the back gate or split-gates). Such a measurement is also called a “transistor curve”.
Here, we show measurements from suspended CNT devices. (a) A semiconducting
(solid line) and a small bandgap (dashed line) CNT. For semiconducting CNTs, we
find usually no measurable n-type conductance (positive gate voltages) if the contact
metal (here W/Pt) is making better contact for holes than for electrons due to its
work function. (b) A step in the transistor curve indicates that there is more than one
CNT between the contacts. The step is due to the different bandgaps and/or different
positions of the Dirac point (with respect to zero gate voltage) of the CNTs. Such
devices are not selected for low-temperature measurements (c) Measurement of the
small bandgap device from (a) at 2K. On the p-side conductance is high, while on the
n-side electrons are added to a QD potential. The first few electrons are clearly visible,
indicating the low level of disorder in this device.

use room temperature measurements to select small bandgap CNTs with low

contact resistance. Also it is sometimes possible, to exclude devices with more

than one CNT crossing the trench between the metal contacts. Our experience

with these ultra-clean CNTs is that devices with a smooth room temperature

transistor curve, small contact resistance and a Dirac point near zero gate voltage

are likely to reach the few electron regime at low temperatures without showing

significant disorder (figure 3.8). When CNTs are grown at the last step across

several narrow gates, RT measurements can also yield information about the

position of the CNT with respect to these gates, as shown in figure 3.9.
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Figure 3.9: Room temperature testing (II) For devices, where CNTs are grown
over several narrow gates, the RT transistor curves can provide information over the
position of the CNT with respect to the gates. We show transistor curves of CNTs
which are suspended over three narrow gates. The current is measured as a function of
the voltage, applied to the three gates (a bias voltage of 1mV is applied between source
and drain). (a) Gate pattern. SEM image. The middle gate and the outer gates run
from opposite directions into the trench. (b) All three gates couple equally strong to
the (semiconducting) CNT. Therefore, we conclude that the CNT is placed above the
gate area. (c) The middle gate (G2) is coupling much stronger to the (small bandgap)
CNT than the two outer gates (G1 and G3): the CNT is running between the two
ohmic contacts outside the central gate area.
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Chapter 4

Charge detection with single electron

transistors

4.1 Charge detection in CNT-QDs

Transport measurements are a powerful tool and can provide a great variety of

information on single and double QD systems. However, there are also situations

where transport measurements cannot provide the desired information. First,

transport measurements are not suitable for single shot measurements (e.g. sin-

gle shot spin readout). Also it is not possible to investigate processes (e.g. a

tunneling rate or a relaxation time) which are slower than the timescale given by

the minimal measurable current.

Therefore, it can be desirable to read out the charge state of a QD independently

of the current by an external charge detector. This is some device sitting next

to the QD and telling us its charge state. In principal, any device with a highly

gate-dependent resistance and strong capacitive coupling to the QD can fulfill

this task. A change of the electron number on the QD will induce a change in the

resistance of the detector, which then can be measured. It should be mentioned

that a charge detector measurement is not restricted to single shot measurements.

A charge detector can also be used to investigate processes which are faster than

its measurement time; in this case the charge detector will just measure an aver-

age property (comparable to a transport measurement).

What are possible charge detectors for CNT-QDs? Quantum Point contacts

(QPCs) are the most basic nanoscale devices with a gate dependent resistance.

For QDs in GaAs-2DEG heterostructures, they have proven to be excellent charge

detectors [63, 64]. For CNTs, however, a QPC does not seem a suitable choice.

CNTs would have to be fabricated on top of a heterostructure instead of the
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Figure 4.1: Schematic of charge detection A charge detector is a device which is
capacitively coupled to the QD and thereby allows a readout of the charge state of the
QD

usual Si/SiO2 substrates. Also geometrically, using a QPC is difficult to combine

with typical top-gate designs, used for CNTs and nanowires [65, 66]. Therefore,

we decided to use a metallic single electron transistor (SET) in close vicinity to

the CNT-QD as a charge detector [67, 68, 69].

4.2 Aluminium single electron transistors

We briefly discuss the properties of aluminium single electron transistors (Al-

SETs) and the implications for charge detection. Al-SETs consist of a small

metallic island connected to a source and a drain via Al2O3 tunnel junctions

(figure 4.2 a). The tunnel junctions are fabricated by a standard double angle

shadow evaporation technique, resulting in a few nm thick oxide layer which forms

the junctions. An additional side gate allows to tune the electrical potential on

the island. The island has a typical size a few (100nm)2 and can have almost any

shape. The tunnel junctions have a size of at least 50nm × 50nm, limited by the

grain size of Aluminium (we found that smaller junctions give a very unreliable

junction resistance). The total thickness of the Aluminium is around 70nm for

our fabrication recipe (see chapter 3 for details). If the junctions are sufficiently

opaque (i.e. with a conductance of the order of the conductance quantum e2/h

or lower), the Al-SET will show Coulomb blockade at low temperatures. In

particular, the conductance exhibits Coulomb oscillations as a function of the
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Figure 4.2: Aluminium single electron transistors (a) Scanning electron micro-
graph of an Al-SET. A doubling of the structures results from the shadow evaporation.
(b) dI/dV for a SET as a function of applied bias voltage and perpendicular magnetic
field. Dark colors correspond to high dI/dV . At high magnetic fields, a small gap exists
around zero bias voltage due to Coulomb blockade. At low magnetic fields, there exists
(in addition to the Coulomb gap) also the superconducting gap. The transition from
the superconducting to the normal conducting state takes place between 50 and 150
mT. (c) dI/dV as a function of applied bias and gate voltage. Dark colors correspond
to high dI/dV . At low temperatures (here T = 40mK) Coulomb interaction blocks
the current inside the white, diamond-shaped regions, where the electron number on
the island is fixed. A perpendicular magnetic field of 0.5 T was applied.

electrical potential on the island. The typical charging energy is EC = 100 −
500µeV . This means Coulomb blockade will vanish at temperatures above ∼ 1K.

The total capacitance of such a SET is CΣ = e2/EC ≈ 10−15F , with its largest

contribution coming from the capacitance to the back gate. Figure 4.2 c shows

the charge stability diagram of a typical Al-SET. We should mention that because

of the small kF in metals, no effects related to the quantization of energy levels
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4. Charge detection with single electron transistors

will play a role. An important parameter of the SET is the junction resistance,

R. A large R results in a good sensitivity but on the other hand also reduces

the signal and can thereby decrease the signal to noise ratio. We found that

a junction resistance of ∼ 100kΩ results in acceptable charge sensitivities on

the one hand, and can be fabricated with a good reproducibility on the other

hand. Aluminium is superconducting at low temperatures. Bulk aluminium has

a critical temperature of TC = 1.2K and a critical magnetic field of BC = 10mT.

For our Al-SETs we use thin aluminium films with a total thickness of ∼70nm.

Compared to bulk aluminium, these thin films have a similar TC but a higher

critical magnetic field. This is shown in figure 4.2c, where we extract BC ≈ 0.1T

for a temperature of 50mK (the field orientation is perpendicular to the film).

In our measurements, we typically operate the Al-SET in the normal conducting

state by applying a magnetic field of at least 0.3T.

4.3 Sensitivity

SET NT

CNT,SET

Gate

CGate,NT

CGate,SET

Figure 4.3: Circuit diagram Schematic circuit diagram of a SET coupled to a
CNT-QD. Both SET and CNT-QD are coupled to source and drain contacts by tunnel
junctions. The capacitance between CNT-QD and SET is CNT,SET . A (back- or side-)
gate is is used to tune the CNT but also has a finite capacitance to the SET. We
often also use an additional gate which couples mainly to the SET (not shown in this
diagram).

In this section, we explain what the term “sensitivity” of a charge detector

means [70] and how it can be optimized. The capacitance 1 between the CNT-QD

1The relation between the charge and voltage of several capacitively coupled components is
described by the capacitance matrix. One can think of each element of the capacitance matrix
CA,B = QA/VB as the amount of charge induced on component A, divided by the voltage
applied to component B, while the voltages on all other components are set to zero. Because of
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4.3 Sensitivity

and the SET is defined as

CNT,SET =
QNT

VSET

=
QSET

VNT

= CSET,NT (4.1)

Here QNT (SET ) is the charge on the CNT (SET) and VSET (NT ) is the electrical

potential on the SET (CNT). Note, that we have used that the capacitance matrix

is symmetric. The self capacitances of the CNT-QD and SET are defined as

CNT,Σ =
QNT

VNT

; CSET,Σ =
QSET

VSET

(4.2)

The coupling between CNT-QD and SET is defined as the amount of charge

QSET , induced on the SET when a charge QNT is put on the CNT-QD. From

Equations 4.1 and 4.2 we find for the coupling

αNT,SET =
QSET

QNT

=
CSET,NT

CNT,Σ

(4.3)

However, there cannot be a detection without a backaction (basically, this

follows from the symmetry of the capacitance matrix). Since we measure the

current through the SET, the electron number on the SET is fluctuating between

N and N+1 (if we apply a sufficiently low bias). Similarly to equation 4.3, the

change of one electron on the SET induces a charge on the CNT-QD: QNT =

QSET CSET,NT /CSET,Σ. In terms of voltage this is

VNT = QSET
CNT,SET

CSET,ΣCNT,Σ

(4.4)

This is something to keep in mind for experiments, where small energy tran-

sitions on the CNT-QD are possible: The fluctuating charge on the SET island

is some extra charge noise in the environment that can induce such transitions!

Now we want to explain what we call the “sensitivity” of a charge detec-

tor. Basically it means how long we have to average the current through the

detector to measure a change of the electron number by one on the CNT-QD.

Because of noise this time is not arbitrarily short, but we have to average over

the linearity of the charge-voltage relation, this is equivalent to the excess charge ∆QA induced
on A, when the voltage on B is changed by ∆VB and all the other components are at an
arbitrary but fixed voltage. In the following we will for brevity talk about the “capacitance”
between components A and B, but one should keep in mind that we are always meaning the
corresponding element of the capacitance matrix.
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4. Charge detection with single electron transistors

some finite time. Let us consider the noise in the current of the SET, δISET =√
< (ISET− < ISET >)2 >/

√
B, where B is the bandwidth. This current noise

can be converted into an equivalent charge on the SET-island via δQSET =

(dISET /dVG)−1 ∆V
−1δISET . Here ∆V is the gate voltage difference, needed to

put one more electron on the SET island. Together with the coupling αNT,SET

this gives the sensitivity δq of the charge detector :

δq = α−1
NT,SET δQSET [e/

√
Hz] (4.5)

From equations 4.1 and 4.5 it is clear that for a good sensitivity we need a

high coupling, low noise and a strong gate dependence of the detector.
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4.4 Experimental demonstration

4.4 Experimental demonstration

Figure 4.4: Demonstration of charge detection on a CNT-QD (a) Scanning
electron micrograph of the device: A QD is defined in a small-bandgap CNT between
source and drain contacts. An Al-SET is placed in close proximity to the CNT. (b)
CNT-QD: dI/dV through the CNT as a function of applied bias and gate voltage. High
dI/dV corresponds to bright colors. Coulomb diamonds indicate a single QD with a
charging energy of 5−10meV . (c) Measurement of the current through SET (top) and
CNT (bottom) as function of applied gate voltage. For the CNT, peaks in the current
indicate where the electron number changes by one. In ISET , the large scale oscillations
are due to Coulomb blockade of the SET. Additionally, sharp phase shifts in ISET occur
exactly at the positions where the electron number on the CNT-QD changes. These
shifts are due to capacitive coupling of single electrons on the CNT-QD to the SET.
The measurement of the upper curve was taken with zero bias voltage applied to the
CNT. (d) Zoom in on a charge detection event.
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4. Charge detection with single electron transistors

We demonstrate the working principle of the SET charge detector for a simple

system: We have defined a QD in a CNT by source and drain contacts, that is

by means of the Schottky barriers at the metal-CNT interface [26, 27]. CNTs

are grown on a Si/SiO2 substrate by CVD growth. The CNTs are contacted by

evaporating Cr / Au (5 / 30 nm) electrodes. An additional sidegate allows to tune

the electrical potential on the CNT-QD. Next to the CNT, we have fabricated

an Al-SET by a shadow angle evaporation technique. The measurements are

carried out in a dilution refrigerator with a base temperature of about 40 mK.

A magnetic field of 0.5T has been applied to keep the Aluminium in the normal

conducting state.

In figure 4.4 we demonstrate how the Al-SET serves as a charge detector for

single electrons on the CNT-QD. First, we demonstrate the QD behavior of the

CNT by usual transport measurements, as shown in figure 4.4 b. In figure 4.4

c we show how the SET reflects the charge state of the CNT-QD. The effect of

single electrons added to the CNT-QD can be seen in the current through the

Al-SET. The charge of a single electron, added to the CNT-QD, causes a phase

shift in the Coulomb oscillation of the SET and thereby a change in ISET . For a

bias voltage of 50µV applied to the SET, a charge detection event corresponds to

a change in ISET of a few pA (if we are at the steepest slope of a SET Coulomb

oscillation). We find a coupling of about αNT,SET = 0.08, i.e. one electron on the

CNT-QD induces the equivalent of 0.08 electrons on the SET island. This is in

good agreement with electrostatic simulations for such a device.

4.4.1 Noise and sensitivity

We have fabricated a number of devices and estimated the SET sensitivity in the

low frequency range. We have measured the noise at the operation point with a

bandwidth of ∼ 10Hz and assumed a white noise spectrum at these frequencies

to calculate the sensitivity. For our SET charge detectors, we usually find a cou-

pling of αNT,SET = 0.01 ... 0.2, limited by the distance between CNT-QD and

SET. The accuracy of the AFM imaging of the CNT positions and the alignment

precision of the ebeam lithography require a minimal distance between SET and

CNT of about 150nm.

The SET sensitivity to electrons on the SET island is typically between 10−2e−/
√

Hz

and 10−4e−/
√

Hz for our devices. The theoretical limit for a SET with similar

device parameters as ours is ∼ 10−5e−/
√

Hz [70, 71]. This limit describes the

ideal situation where the sensitivity is limited by the SET’s own shot noise.

Therefore, for our SETs there must be other noise sources which are dominating,

probably charge noise in the environment. Also a better control over the tunnel
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4.4 Experimental demonstration

junction transparency and symmetry could improve the SET sensitivity. For the

sensitivity to electrons on the CNT-QD we find values of 10−1 − 10−2e−/
√

Hz,

demonstrating the good quality of our charge detectors.

4.4.2 Active feedback

From equation 4.5 it follows that the sensitivity is largest when the SET is at

the steepest point of its Coulomb oscillation ( = point of maximal sensitivity).

For a Lorentzian peak shape, this point is at approximately three quarters of the

maximum peak height. To operate the charge detector efficiently it is important

to keep it at this point of maximal sensitivity. A typical experiment measures

the charge state of the CNT-QD as a function of one or several gate voltages.

However, these gates also have a capacitance to the SET and therefore can move

it away from its point of maximal sensitivity. To compensate for this effect

we can use linear compensation and change the voltage on the SET side gate

(which couples mainly to the SET and has a very weak coupling to the CNT-

QD). However, we find in practice this approach not to work sufficiently precise,

especially when more than one gate voltage is changed. Therefore, we use active

feedback instead.

To keep the SET at the point of maximal sensitivity, we have incorporated

a feedback loop in our measurement software. We use the SET sidegate to keep

ISET at a value Iconst, corresponding to maximal sensitivity. The feedback is

then simply realized by modifying the voltage on the SET-sidegate by an amount

∆VSET on each measurement step:

∆VSET = (ISET − Iconst)G (4.6)

G is here the gain of the feedback loop. For positive G, the feedback loop will

converge to a point where ISET = Iconst and dISET /dVSET < 0. The numeric value

of G has to be chosen, taking specific parameters of the experiment into account

(coupling of the gate to the SET, sweep speed of the performed measurement).

Now, charging events of the CNT-QD appear in the feedback signal instead

of in ISET (figure 4.5).
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4. Charge detection with single electron transistors

Figure 4.5: Active feedback (a) Working principle of the feedback loop: The voltage
on the SET gate is constantly adjusted to keep ISET at a constant value. (b) Feedback
signal and ISET during a measurement, where we use the NT sidegate to change the
electron number on CNT-QD. ISET is kept at a ICONST by adjusting the voltage on
the SET-sidegate. The feedback signal has a constant slope (compensation for the
cross-coupling from the NT sidegate). The charging events now appear as sharp steps
in the feedback signal.

4.4.3 Quantum dots at the end of a CNT

Finally we demonstrate the use of the SET charge detector by looking at a sys-

tem not accessible to transport measurements at all: A CNT-QD connected to

only one lead [72], as shown in figure 4.6. Again, we have fabricated an Al-SET

in close proximity to the CNT. Phase shifts in ISET , of regular magnitude and

comparable to the ones showed in figure 4.4, appear as a function of the side

gate voltage. This suggests strongly that we detect single electrons, added to the

CNT segment. Measuring these charging events as a function of both side gates

(measurement not shown here) shows that the electrons in fact are added to a

double QD potential in the CNT.

Furthermore, in chapter 6 we present the use of Al-SETs for real time charge

detection, determination of tunneling rates and excited state spectroscopy.
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Figure 4.6: A QD at the end of a CNT (a) AFM image of the end section of a
CNT connected to one metal contact. Two gates allow to tune the electrical potential
on the CNT. Nearby, an Al-SET is fabricated. (b) Current through the SET as a
function of the voltage applied to one of the gates. Sudden changes in the current are
visible, comparable to those in figure 4.4
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Chapter 5

Coupling effects between a carbon

nanotube quantum dot and a SET

charge detector

We describe coupling effects between a CNT-QD and a SET charge detector. We

present experimental data showing that the backaction from the SET to the CNT-

QD is very small, even for a large electrical current passing through the SET. On

the other hand, a similar or even smaller current passing through the CNT has a

huge effect on the SET. We explain this asymmetry by the difference in charging

energies of the two device components and discuss possible mechanisms for this

effect.
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5. Backaction between a CNT-QD and a SET

5.1 Introduction and device

In the previous chapter, we have described how an Al-SET can be used to de-

tect single electrons in a CNT-QD. Here, we examine the backaction between

the Al-SET and the CNT-QD. Measurements have been carried out in a di-

lution refrigerator with a base temperature of 40 mK. To keep the Al in the

normal conducting state, a magnetic field of 0.5 T is applied in all measurements

presented in this chapter. The device and the working principle of the charge

detection are shown in figure 5.1. The coupling from the CNT-QD to the SET

is αNT,SET = 0.08, i.e. one electron added to the CNT-QD induces a charge of

0.08 electrons on the SET island. For a more extensive discussion, we refer to

the previous chapter.
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Figure 5.1: Carbon nanotube with SET charge detector (a) Scanning electron
micrograph of a CNT device with a SET charge detector. The distance between the
CNT and the SET is around 400nm. (b) Simultaneous measurement of ICNT and
ISET . Bias voltages of 1 mV and 75µV are applied to the CNT and SET, respectively.
The charge of one electron, added to the CNT-QD, causes a phase shift in the Coulomb
oscillations of the SET and thereby a change in current. This is due to the capacitive
coupling between the two device components.

5.2 Backaction effects

We have investigated how the two device components, the CNT-QD and the SET,

influence each other besides the charge detection. In particular, we examine the

effect of an electrical current passing though one device component on the other
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5.2 Backaction effects

component. Such a measurement is shown in figure 5.2.

Figure 5.2: Backaction (a) ICNT as a function of applied gate voltage and bias.
Coulomb diamonds with a charging energy of ∼ 10meV indicate a single QD. (b)
Measurement of ISET , performed simultaneously to (a). ISET is measured as a function
of applied gate voltage and CNT bias. The bias voltage applied to the SET is 20µV .
The large scale oscillations are Coulomb oscillations, resulting from the direct coupling
of the gate to the SET. Furthermore, a huge effect of ICNT on the SET can be seen:
A high ICNT causes both a higher noise in ISET and also an increase of ISET in its
Coulomb valleys. (c) Line cuts through (b) for bias voltages of 0, 7.5 and 15 mV
applied to the CNT, respectively. Traces have been offset for clarity, the dashed lines
indicate the zero current level for each trace. A high ICNT both raises level of ISET in
its Coulomb valleys and increases the noise dramatically. (d) A Coulomb peak in ICNT

for SET bias voltages of 0 mV (solid line) and 1 mV (dashed line) (corresponding to
ISET being 0 and 5nA, respectively). Backaction from the SET to the CNT is almost
absent.

First, we look at the backaction from the SET to the CNT-QD. An electrical

current through the SET, ISET , has almost no effect on the Coulomb peak shape

of the CNT-QD (figure 5.2 d). This is the case, even for ISET being two orders of

magnitude larger than during normal operation of the SET as a charge detector
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5. Backaction between a CNT-QD and a SET

1.

The situation changes dramatically when a current of similar magnitude is pass-

ing through the CNT. In figure 5.2 a and b, we show simultaneous measurements

of ICNT , the current through the CNT-QD, and ISET . We measure these two

currents as a function of the bias applied to the CNT-QD and the voltage on the

CNT-sidegete. The SET bias is kept constant. ICNT shows Coulomb diamonds,

indicating a QD with a charging energy of ∼ 10meV (figure 5.2 a). Outside the

Coulomb diamonds, ICNT increases up to +4nA (−9nA) for +15mV (-15mV)

bias voltage. The SET shows two effects (figure 5.2 b): First, Coulomb oscil-

lations are visible, due to the direct coupling of the CNT-sidegate to the SET

island. But in addition, a huge effect of ICNT on the SET is visible. A high ICNT

increases the noise in ISET significantly and also raises the level of ISET in its

Coulomb valleys, i.e. it lifts the Coulomb blockade of the SET. These effects be-

come most clear from figure 5.2 c, where we show ISET as function of the voltage

on the CNT-sidegate for different bias voltages applied to the CNT-QD.
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Figure 5.3: Correlation between ICNT and ISET (a) Simultaneous measurement
of ICNT (top) and ISET (bottom) in a region in gate space where ICNT varies strongly
with the applied gate voltage. It is apparent that a large ICNT lifts the value of ISET in
its Coulomb valleys while the value of ISET at its Coulomb peaks remains unchanged.
(b) ISET inside its Coulomb valley as a function of the current through the CNT-QD.
SET-bias: 50µV . The asymmetry for positive and negative currents is probably caused
by an asymmetry of the two contacts to the CNT.

1If we operate the SET as a charge detector, typical currents are of the order of 50pA. In
figure 5.2 d, we have ISET ≈ 5nA
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The clear correlation between the magnitude of ICNT and these backaction

effects is illustrated in figure 5.3. In figure 5.3 a, we show a simultaneous measure-

ment of ICNT and ISET as function of applied gate voltage; this time in a region

of gate voltage, where ICNT varies a lot with gate voltage (due to a changing

charging energy of the CNT-QD). Figure 5.3 b summarizes how the magnitude

of ISET inside a Coulomb valley depends on ICNT .

5.3 Mechanisms

First, we discuss the small backaction from the SET to the CNT-QD. We have al-

ready mentioned that one electron on the CNT-QD induces a charge of αNT,SET =

0.08 electrons on the SET island. This coupling allows us to use the SET as a

charge detector. However, there cannot be a working charge detector without

a backaction [73, 74] to the QD. Basically, this follows from the symmetry of

the capacitance matrix. An extra electron on the SET will induce a charge

QNT = e CSET,NT /CSET,Σ on the CNT. Therefore, the coupling of the SET to

the CNT is given by:

αSET,NT =
QNT

QSET

=
CSET,NT

CSET,Σ

= αNT,SET
CNT,Σ

CSET,Σ

(5.1)

From the charging energies of the CNT-QD (∼7.5 meV) and the SET (0.1

meV), we get CNT,Σ/CSET,Σ = 0.013, which gives αSET,NT ≈ 0.001. This means

the backaction effect of the SET on the CNT-QD is expected to be very small (if

we compare to the “action” from the CNT-QD to the SET). And indeed, this is

what we observe (figure 5.2 d). For the use as a charge detector this is desirable,

since the backaction of the detector to the QD should be as small as possible.

The reason for the small backaction is the small charging energy of the SET

in comparison to the CNT-QD. Replacing the SET with an object with larger

charging energy (e.g. a second CNT-QD) would therefore worsen these kind of

backaction effects (or one has to decrease the coupling CNT,SET ).

Now, we discuss the huge effect of ICNT on the SET. First, we would like to

point out that the much larger effect of the CNT on the SET than vice versa

can be understood from the difference in charging energies of these two device

components (figure 5.4a). To gain more insight in the specific processes that take

place, we discuss two mechanisms: (i) Effective heating due to the fluctuating

electron number on the CNT-QD and (ii) A photoionization process that can lift
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5. Backaction between a CNT-QD and a SET

Coulomb blockade

Effective heating

When a current is passing through the CNT-QD, the electron number on the

CNT-QD, NNT , is fluctuating by ∆NNT . The value of ∆NNT depends on the

applied bias voltage. The fluctuating NNT causes a fluctuating voltage on the

SET island:

∆VSET = e ∆NNT
CSET,NT

CNT,ΣCSET,Σ

= e ∆NNT αNT,SET
1

CSET,Σ

(5.2)

This fluctuating voltage can be understood as an effective heating of the

SET, since it smears out the energy over a range ∆VSET [75]. However, this

energy range is smaller than ESET
C , the charging energy of the SET, by a factor

∆NNT ×αNT,SET ≈ ∆NNT /12. Note, that in figure 5.2 a and b, the bias voltage

across the CNT is less than twice the charging energy of the CNT-QD, meaning

∆NNT ≤ 2 (if we neglect higher order tunneling processes). This means the

Coulomb oscillations should be smeared out over a range not larger than ∼1/6

of a Coulomb oscillation. So it seems that this mechanism alone cannot explain

the huge effects we observe.

Photoionization

The stochastic nature of electron tunneling causes the current through a QD

to exhibit temporal fluctuations, i.e shot noise. The shot noise can induce a cur-

rent through the SET inside the Coulomb blockade region via a photoionization

process [76]. An electron on the SET can absorb energy and leave the island;

subsequently a transient current can flow through the SET as long as the SET is

not in its ground state again, as shown in figure 5.4b. Since there is no quantized

excitation spectrum for a SET, this process can lead to a transient current at

any gate voltage setting (in contrast to a QD, where an excited state needs to be

resonant, in order to have a current flowing [76]). Since a SET has no quantized

energy spectrum, we expect no energy dependence of the tunneling rate (in a

QD, there can be a huge difference of the tunneling rates into ground states and

excited states [76]).

The shot noise spectral density of ICNT , SI , can be expressed as SI = 2eICNT F .

F is the Fano factor, which for elastic transport through a QD is between F = 0.5

(symmetric barriers) and F = 1 (highly asymmetric barriers) [77]. For inelastic

70



5.3 Mechanisms

cotunneling through a QD, F can also exceed 1 [78]. SI has a white spectrum

with a cut-off frequency, νCO, which is given by νCO = eV/h, corresponding to

the maximum frequency that can be emitted. Here V is the maximum voltage

drop that occurs for a tunneling event, such that V ≤ V CNT
Bias (depending on the

configuration of the QD). A more extensive discussion can be found in [79].

Let us have a look at the parameters of this process for our experiment. Due

to the small charging energy of the SET, ESET
C = 0.1 meV, the photoionization

process can lift the Coulomb blockade of the SET in its valleys already for very

small bias voltages applied to the CNT: already for V CNT
Bias ≥ ESET

C /e, the pho-

toionization process can take place across the entire Coulomb blockade region of

the SET. Furthermore, the increase of the shot noise spectral density SI with

ICNT is consistent with the increase of ISET inside its Coulomb valleys with ICNT

(figure 5.3 b).
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Figure 5.4: (a) The large difference in charging energies between the CNT-QD and
the SET is the reason for the asymmetry in backaction between these two device com-
ponents (b) Schematic of the photoionization process: A photon is absorbed by an
electron on the SET island, giving it enough energy to leave the island. Subsequently,
Coulomb blockade is lifted and a transient current can flow. (c) Different tunneling
processes that can take place when the SET island is ionized. There is no quantized
energy spectrum; an electron can tunnel on the SET at any energy inside the gray
energy window. If an electron enters at an energy below the dashed line, the SET is
in Coulomb blockade again. If it enters above the dashed line, it can tunnel out to the
right and thereby contribute to the transient current.

Conclusions

We have investigated how a CNT-QD and a SET charge detector influence each

other. The backaction from the SET to the CNT-QD is found to be very small due

to the huge difference in charging energies between these two device components.

This is very favorable for the use of the SET as a charge detector. On the

other hand, we found that a current passing through the CNT-QD has a huge
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5. Backaction between a CNT-QD and a SET

effect on the SET. We discussed two mechanisms for this effect: effective heating

due to direct gating of a SET by the fluctuating charge on the CNT-QD and a

photoionization process. In fact, the SET can be used as a detector for the shot

noise in the current through the CNT-QD, similar to the experiment presented in

[76]. However, since during operation of the SET as a charge detector the current

through the CNT-QD is typically very small, this effect does not spoil the charge

detection itself.
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Chapter 6

Real time electron tunneling and pulse

spectroscopy in carbon nanotube

quantum dots

G. Gotz, G.A. Steele, W.E. Vos & L.P. Kouwenhoven

We investigate a Quantum Dot (QD) in a Carbon Nanotube (CNT) in the regime

where the QD is nearly isolated from the leads. An aluminum single electron

transistor (SET) serves as a charge detector for the QD. We precisely measure

and tune the tunnel rates into the QD in the range between 1 kHz and 1 Hz,

using both pulse spectroscopy and real - time charge detection and measure the

excitation spectrum of the isolated QD.

This chapter (except section 6.5) has been published in Nano Letters, vol. 8 (11), p.4039 -
4042 (2008)
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6. Real time tunneling and pulse spectroscopy

6.1 Introduction and device fabrication

A quantum dot (QD) defined in a carbon nanotube (CNT) is a very interesting

and unique physical system for studying individual electron spins [20, 21, 22, 23,

80, 81]. In particular, the spin relaxation and coherence times are expected to

be as long as seconds [23, 80], which makes this system attractive for quantum

information processing. However, both precise control over the tunnel rate into a

QD and real - time read out of the charge state of the QD have not been demon-

strated yet for CNTs.

QDs can be defined in CNTs by using top gates (TGs) as shown in Figure 6.1.

Suitable voltages applied to these TGs create local tunnel barriers in semicon-

ducting CNTs. In this way, single and double QDs have been realized [28, 29, 82].

In this letter we use TGs to precisely tune the tunnel rates into a CNT-QD all

the way down to ∼ 1Hz. We use a metallic SET as a charge detector, sen-

sitive to single electron charges in the CNT-QD [67, 68, 69], since transport

measurements are not possible at such low tunnel rates. Finally, we measure

the excitation spectrum of a nearly isolated CNT-QD. Samples are fabricated on

highly p-doped Si substrates with 280 nm thermally grown silicon oxide, such

that the Si substrate can serve as a global back gate (BG). CNTs are grown from

Fe/Mo catalyst islands using chemical vapor deposition [61]. The CNTs are lo-

cated with atomic force microscopy and CNTs with diameters < 4nm (probably

single walled) are chosen for further sample fabrication. First, ohmic contacts are

made with thermally evaporated Pd (15 nm). The entire sample is then coated

with 35 nm Al2O3, deposited with Atomic Layer Deposition. Room tempera-

ture conductivity measurements as function of applied BG voltage allow us to

select semiconducting CNTs. We define two TGs and one SG by evaporating

Ti/Au (10/20 nm). In close proximity (< 500nm) to the CNT we fabricate an

aluminum single electron transistor (SET) using a standard double angle evapo-

ration technique [60]. Figure 6.1a shows an atomic force microscopy image of a

device from the same fabrication run as the one from which we present data here.

After evaporation of Ti/AuPd bonding pads, devices are wire bonded and cooled

down in a dilution refrigerator with a base temperature of 50 mK. The CNT-SG

is connected to a bias tee (at room temperature), allowing us to apply DC- and

AC-voltages at the same time to this gate. We show data from one device, but

similar circuits have been realized three times indicating the reproducibility of

our approach.
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6.1 Introduction and device fabrication

Figure 6.1: Sample characterization (a) Atomic force microscopy picture of a
device similar to the one from we present measurements here. The semiconducting
CNT is contacted with Pd ohmic contacts, separated by ∼ 3µm. Two 40 nm wide top
gates (TG1 and TG2) cross the CNT with a 400nm separation with a side gate (SG)
located between them. On the lower side of the picture, an Al - SET is fabricated
close to the CNT segment between the two TGs. (In contrast to the measured device,
this picture shows a sample with a dielectric only below the TGs instead of an Al2O3

layer covering the entire sample. Therefore, the CNT is clearly visible here.) (b)
Top: Current through the CNT (V CNT

SD = 2mV ) as function of applied back gate
voltage (all other gates at 0 V); bottom: current through the CNT (V CNT

SD = 2mV ))
as function of either the voltage applied to TG1 (blue) or TG1 (red). Traces are offset
for clarity. The other TG is set to 0 V, the back gate to 7.5 V. Both TGs pinch off the
current for voltages ≤ −2V whereas a large current flows for voltages ≥ −0.75V . This
demonstrates local, tunable barriers.
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6. Real time tunneling and pulse spectroscopy

6.2 A tunable CNT QD with a SET charge de-

tector

First, we characterize our device. Figure 6.1b shows the current through the

CNT, ICNT , versus back gate voltage, BG, and versus TG voltages. The two

TGs show similar behavior, albeit with a smoother pinch-off curve for TG2. The

oscillations in the trace for TG1 are likely due to disorder at low electron densities

[28]. This residual disorder leads to resonances and charging effects in the small

regions underneath the TGs.

Despite the remaining disorder, we create a QD in the CNT segment between the

two TGs by choosing appropriate TG voltages (figure 6.2a, inset). The addition

energy of a few meV is typical for a CNT-QD with a length of ∼ 500nm, i.e.

consistent with the distance between our TGs [28, 29, 82]. Moreover, we find

that the QD couples equally to both TGs (measurements not shown here), which

indicates that the QD is indeed formed between the two TGs. From the voltages

applied to the BG and SG, we estimate the number of electrons in the CNT-QD,

N, to be several 100. We use the SET as a charge detector for our CNT-QD

[67, 68, 69]. The SET consists of a small aluminum island, connected to source

and drain via Al2O3 tunnel junctions, with a charging energy of a few 100µeV .

An additional gate allows us to tune the electrical potential on the SET island.

In all measurements presented here, a perpendicular magnetic field of at least

0.2 T was applied, in order to keep the aluminum SET in the normal conducting

state.

Figure 6.2a shows simultaneous measurements of the CNT-current, ICNT , and

the SET-current, ISET , while changing the voltage on SG. ICNT shows Coulomb

peaks when one more electron is added to the QD. ISET , shows two features: first,

we see periodic Coulomb oscillations of the current, resulting from the capacitive

coupling of the SG to the SET island. Additionally, these oscillations undergo

a number of sharp phase shifts. The phase shifts coincide with the Coulomb

oscillations of the CNT-QD and are caused by the additional electron charge

on the CNT-QD. If this phase shift happens at a point of steepest slope of the

oscillations in ISET , the change in ISET and thus the sensitivity is maximal. In

all measurements, we apply an appropriate voltage to the SET side gate, such

that the investigated electron transition of the CNT-QD coincides with the SET

at a point of highest sensitivity. For this sample, the coupling between SET

and CNT-QD is about 0.2 (i.e. adding one electron to the CNT-QD induces an

effective charge of 0.2 electrons on the SET island). The low frequency sensitivity

to electrons on the CNT-QD is about 10−2e/
√

Hz , demonstrating a high quality
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6.2 A tunable CNT QD with a SET charge detector

of our charge detector. The sensitivity is obtained from noise measurements of

ISET at the operation point and is limited by the charge noise in our system.

Figure 6.2: Charge detection of single electrons in the CNT - QD (a) Si-
multaneous measurement of the current through the CNT (blue, V CNT

SD = 0.6mV )
ans SET (green, V SET

SD = 70µV ). Inset: differential conductance dI/dV of ICNT as
function of V CNT

SD and SG voltage. Regular Coulomb diamonds indicate a single QD
with an addition energy of ∼ 3mV , formed between the TGs. (b) Real time detec-
tion of electron tunneling into the CNT-QD. Almost entirely pinched-off TGs result
in extremely low tunneling rates, such that single tunneling events are visible in the
SET-current. The two levels in the SET-current correspond to the two configurations
of the CNT-QD being occupied with N or N+1 electrons. The three traces are taken
for different voltages, applied to TG2. The other topgate is completely closed (TG1
= -2400 mV) while we use TG2 to precisely tune the tunneling rate into the QD to
values around 1 Hz (top to bottom). Inset: Tunneling rate as a function of the voltage
on TG2. Rates are obtained from real-time traces. The blue data points correspond to
the three traces shown in (b).
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6. Real time tunneling and pulse spectroscopy

6.3 Real time charge detection

The charge sensing also works for opaque tunnel barriers. An extreme example is

shown in figure 6.2b with a real-time measurement [68, 83, 84] of the SET-current

when the CNT-QD potential is tuned close to a charge transition. We observe

single electrons tunneling in and out the CNT-QD in real time with tunneling

rates around Γ = 1Hz. The fact that we only see two stable levels in ISET

over such long timescales demonstrates the excellent stability of the combined

system of CNT-QD and charge detector. In particular, we do not observe any

bistabilities or disturbing effects from nearby charge traps. We precisely control

the tunneling rate by the voltages applied to the topgates (figure 6.2b, inset).

This demonstrates that it is possible to tune the TG-controlled barriers to tunnel

rates as slow as Γ ∼ Hz, i.e. the interesting range of the expected life time of

electron spins.

6.4 Pulse spectroscopy

Real-time detection of electron tunneling is a direct and elegant way for measuring

tunneling rates of nearly closed QDs. However, it is time consuming in terms of

data analysis and technically demanding already for frequencies in the kHz range

or higher. A more efficient data taking technique is based on a Lock-In (LI)

measurement as reported by Elzerman et al. [85] Again, we first pinch off one

barrier completely by applying a sufficiently negative voltage to TG1 (the barrier

with more disorder is now completely closed). We then tune TG2 to a desired

tunnel rate. The CNT source and drain are both kept at ground potential and

the SET charge detector is operated at a point of maximal charge sensitivity.

Additional to the DC voltage, we apply a square pulse with equal up-down-

times, τ , to SG. We measure the SET response to this pulse train using a LI

measurement at frequency f = 1/2τ . We denote this response as the SET-LI

signal. Schematically, the method is shown in figure 6.3. The essential point is

that electron tunneling into and out of the CNT-QD causes a dip in the SET-LI

signal.

This depth of the dip depends strongly on the ratio of the pulse frequency, f,

and the tunneling rate, Γ: If f � Γ, there is enough time for an electron to tunnel

into the QD during the high phase of the pulse. In this case the dip has a 100%

depth. Raising f above Γ, electron tunneling becomes too slow to occur within a

pulse cycle. As a result the dip depth will gradually decrease when increasing f

compared to Γ. Analytically, the dip depth is proportional to 1−π2/(Γ2τ 2−π2),

under the assumption that rates for tunneling in and out are equal [85].
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6.4 Pulse spectroscopy

Figure 6.3: Pulse spectroscopy scheme to determine the tunnel rate Γ (a)
Square pulses with equal up and down times, τ , are applied to the SG (top). Bottom:
Schematic response of ISET to the pulse train. When the electron number on the
CNT-QD remains constant (away from the charge transition), ISET is only changed
via the cross-coupling to the SG (dashed line). However, if we set the value of the SG
voltage close to a charge transition of the CNT-QD, electron tunneling will also affect
ISET . During the high phase of the pulse an electron can tunnel into the QD on a
timescale Γ−1 (the tunnel rate through the open barrier) and leave it again during the
low phase. This lowers (raises) ISET during the high (low) phase of the pulse (solid
line) To illustrate why this method id sensitive to the tunnel rate, we plot ISET for a
high tunnel rate (Γ � f , left) and a lower tunnel rate (Γ ≥ f , right). The schematic
energy diagrams show the electrochemical potential of the CNT-QD. (b) Expected SET
Lock-In (LI) signal as function of the DC voltage applied to the SG. The SET signal is
measured with a LI technique at frequency f = 1/2τ . Without electron tunneling, the
SET-LI signal stays constant. If electrons tunnel in and out the CNT-QD with a rate
Γ � f , the SET-LI signal is lowered and shows a deep dip (left). If Γ ≥ f (right), the
dip is less deep. And finally, if Γ < f , electron tunneling is too slow to occur within
a pulse cycle and the dip will disappear completely. Therefore, measuring the SET-LI
signal as a function of pulse frequency, f, allows us to determine Γ.

Figure 6.4a shows the SET-LI signal for different pulse frequencies. For low f

the effect of electron tunneling is large (pronounced dip) while the dip gradually

disappears when raising f. From the fit in figure 6.4c we obtain a tunnel rate

Γ = 1.4kHz. In order to set a desired value for the rate, we tune the voltage on

TG2. Indeed, figure 6.4b shows that the size of the dip can be set to any value,

each value corresponding to a particular rate. Again, this demonstrates the pre-
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Figure 6.4: Tuning and measuring the tunnel rate Γ (a) SET-LI signal for
different pulse frequencies f = 1/2τ as a function of the DC-voltage applied to the SG.
The SET is set to a configuration of highest sensitivity. For low pulse frequencies we
observe a deep dip due to electron tunneling into the CNT-QD. At higher frequencies
the dip gradually disappears. Curves are offset for clarity. (b) SET-LI signal for a
fixed pulse frequency f = 1 kHz for different voltages applied to TG2. By lowering
the voltage at TG2 (from left to right), the dip becomes less deep. This shows that
the tunnel rate into the CNT-QD changes from Γ � 1kHz (TG2 = -1339 mV) to
Γ ≤ 1kHz (TG2 = -1347) (note that when lowering the voltage on TG2, the charge
transition moves to a higher SG voltage due to the capacitive coupling of TG2 to the
CNT-QD). The green curves in a and b are taken at the same gate voltage and pulse
frequency. We have used TG1 = -1800 mV and BG = 5 V. (c) Fit of the analytic
expression for the dip depth in the LI signal to the measured data from a. The fit gives
a tunnel rate Γ = 1.4kHz. The 100% scale corresponds to the 100% arrow in a.

cise control over the tunnel rate in the interesting range of very long timescales.

So far we have only considered tunneling into the ground state (GS) of our CNT-

QD because we used relatively low pulse amplitudes. In the following, we in-

vestigate excited states (ES) of our closed CNT-QD. We use the same pulse

spectroscopy scheme as described above, but apply larger pulse amplitudes [85].

Now, we observe a shoulder-like feature in the dip of the SET-LI signal (figure

6.5a). This feature is due to an ES of the CNT-QD: If the pulse amplitude ex-

ceeds the splitting between GS and ES, the effective tunneling rate into GS and

ES is larger than the rate into the GS only. This results in a deeper dip in the
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6.4 Pulse spectroscopy

SET-LI signal.

Figure 6.5: Excited state spectroscopy (a) SET-LI signal for a high pulse ampli-
tude of 15 mV at B = 2.5T. The gate settings are BG = 6.25 V, TG1= -2225 mV, TG2
= -1870 mV and the pulse frequency is f = 0.5 kHz. The dip now shows a shoulder
like feature which is due to an increased tunnel rate into the CNT-QD when an excited
state becomes accessible. Tunneling into both GS and ES state has a higher effective
tunnel rate than tunneling into only the GS. Therefore, the dip becomes deeper when
tunneling into the ES becomes energetically possible as well. Inset: splitting between
GS and ES as function of magnetic field (b) Derivative with respect to the sidegate
voltage of the SET-LI signal as function of the DC voltage on the SG and pulse am-
plitude. Three lines are visible, whose meaning become clear when comparing to the
single trace in (a) and the schematic energy diagrams at the high and low phases of
the pulse. The leftmost black line represents the onset of tunneling into the GS (lowest
energy diagrams). The middle black line (which runs parallel to the first line) indicates
where the dip becomes deeper because tunneling into the ES is possible as well (middle
energy diagrams). The rightmost white line shows the end of the dip (highest energy
diagrams). The Zeeman splitting between GS and ES is indicated with the white arrow.
The trace in (a) is taken along the dashed-dotted line.

In figure 6.5b we plot the derivative of the SET-LI signal as function of pulse

amplitude and DC voltage on the SG. The excited state appears as a line, par-
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6. Real time tunneling and pulse spectroscopy

allel to the onset of the dip. The distance between this line and the onset of

the dip is the energy difference between GS and ES, converted to SG voltage by

a factor α, the capacitance lever arm of the SG to the CNT-QD. We identify

the nature of the excited state by investigating its dependence on perpendicular

magnetic field. We find that the splitting between GS and ES depends linearly

on the magnetic field (figure 6.5a, inset). Therefore, we conclude that GS and

ES are spin-up and spin-down states of the same orbital level in the CNT-QD.

Indeed, we expect that the Zeeman splitting at a magnetic field of a few Tesla

is much smaller than orbital excitations. If we assume a length of 500 nm for

our CNT-QD, the orbital level spacing is on the order of meV [28, 29]. For the

Zeeman splitting EZ = gµB, however, we expect EZ = 0.3meV at B = 2.5 T

(assuming g = 2 [21, 27, 86]). We can use the energy of the Zeeman splitting to

obtain the lever arm α of the SG to the isolated CNT-QD and find α = 0.065.

In conclusion, we have investigated a CNT-QD that is nearly isolated from

its leads. We have used an aluminum SET as a charge detector to read out the

charge state of the isolated CNT-QD and measured the tunnel rate into the CNT-

QD using both real-time charge sensing and pulse spectroscopy. We have found

that it is possible to tune an individual tunnel barrier with high accuracy to very

low tunnel rates, comparable to the expected spin relaxation and coherence times

in CNTs. Finally, we measured the spin states of the nearly closed CNT-QD.

We acknowledge technical assistance from R. Schouten, B. van der Enden and R.

Roeleveld. We thank R. Hanson for discussions, C. M. Marcus and H. Churchill

for allowing the use of their ALD - deposition equipment and M. Rinkiö for

experimental help and discussion.

6.5 Upper bound for the spin relaxation time T1

Finally, we want to comment on our attempts to measure the spin relaxation

time T1. We have applied a three step pulse scheme as decribed in the Appendix

to measure T1 using an averaging charge detector technique. We found that for

waiting times TW ≥ 500µs after injecting an electron into a statistical mixture

of GS (spin-dwon) and ES (spin-up) there was no measurable fraction left in the

ES. That means all electrons have relaxed to the GS (spin-up) within this time.

We know, that we have injected a substantial fraction into the ES from the LI-

measurements described above. Thus, our findings set an upper bound for the
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6.5 Upper bound for the spin relaxation time T1

spin relaxation time: T1 < 200µs. 1 We have carried out this measurement at

magnetic fields between 1.5 and 8 T and for different electron numbers N on the

CNT-QD.

This is in agreement with measurements of the singlet-triplet relaxation time in a
13C CNT, where the longest obtained relaxation time was 4µs [41]. Theoretically,

much longer spin relaxation times (several ms up to s) are expected, both for spin-

orbit interaction [23] and hyperfine interaction with the carbon nuclei [80] as the

spin relaxation mechanism. Possible reasons that T1 is considerably shorter in our

case could be for example: (i) interactions of the electrons with the surrounding

dielectric (ii) A different confinement potential, compared to the calculations in

[23] (iii) Additional relaxation mechanisms (e.g. spin-orbit mediated deflection

coupling [87]).

It would be interesting to measure T1 in a clean, suspended CNT, where the

few electron regime can easily be reached and interactions with the environment

are minimized due to the suspended sample geometry.

1our sample and measurement setup did not allow for resolving shorter T1 ’s with the used
charge detection technique.
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Chapter 7

Tunable few-electron double quantum

dots and Klein tunnelling in ultra-clean

carbon nanotubes

G.A. Steele, G. Gotz & L.P. Kouwenhoven

Quantum dots defined in carbon nanotubes are a platform for both basic scientific

studies [29, 48, 82, 88, 89] and research into new device applications [90]. In

particular, they have unique properties that make them attractive for studying

the coherent properties of single electron spins [21, 23, 24, 36, 38]. To perform

such experiments it is necessary to confine a single electron in a quantum dot with

highly tunable barriers, but disorder has until now prevented tunable nanotube-

based quantum-dot devices from reaching the single-electron regime [29, 82, 88,

89]. Here, we use local gate voltages applied to an ultra-clean suspended nanotube

to confine a single electron in both a single quantum dot and, for the first time,

in a tunable double quantum dot. This tunability is limited by a novel type of

tunnelling that is analogous to that in the Klein paradox of relativistic quantum

mechanics.

This chapter has been published in Nature Nanotechnology, Vol. 4, p. 363 - 367 (2009)
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7.1 Introduction and device fabrication
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Figure 7.1: Integrating local gates with ultra-clean carbon nanotubes. (a)
A schematic of the device. A predefined trench is etched to create two splitgates from
a 50 nm thick n++ polysilicon gate layer between two silicon oxide layers. A Pt metal
layer is deposited to act at as source and drain contacts, and a nanotube is then grown
from patterned catalyst. Device D1 has L = 1.5 µm, W = 300 nm, and D2 has L =
300 nm, W = 500 nm. (b) In a subset of devices, a single nanotube bridges the trench,
contacting the metal source and drain electrodes, as shown in this colourised SEM
micrograph. The micrograph shows an example of a device with the same dimensions
as device D1.

Single spins in carbon nanotube quantum dots are expected to be very stable

against both relaxation and decoherence [23]. Nuclear spins, the principal source

of spin decoherence [38, 36] in GaAs, can be completely eliminated and, further-

more, a strong spin-orbit interaction recently discovered in carbon nanotubes [21]

enables all-electrical spin manipulation [23, 24], while preserving long spin relax-

ation and decoherence times [23]. Electron spins in carbon nanotube quantum

dots are therefore attractive for implementation of a quantum bit (qubit) based

on spin for applications in quantum-information processing [90]. In double quan-

86
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tum dot systems, precise control of the tunnel coupling between the two quantum

dots, and between the quantum dots and the leads attached to them, is critically

important for spin readout schemes [48, 91, 92], and also to prevent loss of spin

and phase information through exchange of an electron with the leads.

Double quantum dots can also be used to explore novel quantum tunnelling

phenomena. In Klein tunnelling [93, 94, 95], for example, an electron tunnels

with a high probability through a long and tall potential energy barrier when the

height of the barrier is made comparable to twice the rest mass of the electron.

It is not feasible to create such a barrier for free electrons due to the enormous

electric fields required, but the low effective rest mass of the electrons in small

bandgap nanotubes makes the observation of such Klein tunnelling in nanotube

devices possible [95].

By depositing metallic gates isolated by a dielectric layer on top of a nanotube,

several groups have demonstrated tunable double quantum dots in nanotubes

lying on a substrate [29, 82, 88, 89]. These are tunable in the sense that the

height and width of energy barriers between dots can be controlled by the gate.

A disadvantage of this technique is that nanotubes in these devices suffer from

significant disorder induced by the substrate and by the chemical processing

required to fabricate the device. As the electron density is reduced, this random

potential dominates and breaks the segment of nanotube into multiple disorder-

induced “intrinsic” quantum dots before reaching the few-electron regime.

Wet etching of the device after fabrication to remove the substrate-induced

disorder has been used previously to obtain single electron quantum dots in car-

bon nanotubes [13, 27], although experience has shown that the yield of such

devices is quite low. Recently, a new fabrication method has been developed

for producing ultra-clean quantum dots in suspended carbon nanotubes with

a high yield in which all chemical processing is done before nanotube growth

[57]. Studying single quantum dots in these devices has uncovered new carbon

nanotube physics, including a strong spin orbit interaction due to the nanotube

curvature [21] and evidence of Wigner crystallization of electrons at low den-

sity [52]. While devices fabricated in this way are extremely clean, they have

some significant limitations: in particular, the confinement is produced only by

Schottky barriers, which cannot be easily tuned in-situ. Furthermore, due to an

insufficient number of local gates, it has not been possible to create a tunable

double quantum dot in these ultra clean devices.

To overcome these limitations, we have developed a new method of integrating

multiple local gates with the ultra clean fabrication. A schematic of the device

is shown in Figure 7.1. As described in the Methods section, we grow a carbon

nanotube over gates that are patterned in a thin doped silicon layer. Our cur-
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rent design provides three independent gates, although fabrication can easily be

modified to include a scalable number of gates inside the trench (see Supplemen-

tary Information). In this letter, we use these three gates in two different ways.

In device D1, with L = 1.5 µm, the gates are used to define a single electron

and single hole quantum dot where electrons and holes are confined by tunable

pn-junctions instead of Schottky contacts. In device D2, with L = 300 nm, we

rely on tunnel barriers from the Schottky contacts, but now use the three gates

to create a tunable single electron and single hole double quantum dot.

7.2 Single quantum dots defined by p-n junc-

tions

In all previous measurements of quantum dots in carbon nanotubes containing

a single electron, carriers were confined by Schottky barriers formed [21, 27] at

the metal contacts, or by potentials defined from trapped oxide charges [13]. In

figures 7.2 and 7.3, we demonstrate a single electron quantum dot defined only

by gate voltages. We begin by applying a negative voltage to the splitgates,

creating a p-type nanotube source and drain on top of the oxide. Sweeping the

backgate voltage VBG, shown in figure 7.2a, the current initially shows weak

modulations from resonances in the leads when the suspended segment is p-type

(ppp configuration), and is then completely suppressed as the suspended segment

is depleted (pip configuration). As we sweep further, we form a pnp quantum

dot showing clean Coulomb blockade, where single electrons in the suspended

segment are confined by p - n junctions to the leads. Figure 7.2c shows a stability

diagram as a function of both backgate and bias voltage, demonstrating that we

have reached the single electron regime. As the confinement potential and doping

profile are determined by our local gates, we can also confine single holes in an

npn configuration in the same device simply by inverting the gate voltages, shown

in figure 7.2d. In figure 7.3e we show the current as a function of the backgate

voltage and the voltage on the splitgates. In the left of the plot, the leads are

doped p-type, and a positive backgate induces a single electron pnp quantum

dot. In the right of the plot, the leads are doped n-type and a negative backgate

induces a single hole npn quantum dot. By adjusting the splitgate voltages, the

pn junction width, and thus the tunnel barriers, can be tuned while keeping the

electron number fixed (see figure 7.3f).
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Figure 7.2: Gate defined single-electron and single-hole quantum dots. (a)
Coulomb peaks of a pnp quantum dot in device D1 taken at a VSG1 = V SG2 = -50 mV
and VSD = 1 mV. The splitgates are used to dope the NT source and drain leads with
holes. As VBG is swept from negative to positive voltages, the suspended segment is
depleted giving a pip configuration, followed by a pnp configuration as single electrons
are filled in an n-type quantum dot, as illustrated in the energy diagrams in (b). (c)
Stability diagram of the pnp dot: the charging energy of the first electron E1e

c ∼ 40 meV
is remarkably large due to the weak capacitive coupling of the suspended segment to
the gates and the metal source drain layers. (d), The potential landscape in the device
can be completely controlled by the gate voltages: by reversing the gate voltages, single
holes are confined in a npn configuration.

7.3 Few electron double quantum dots

In device D2, we use the gates in our design for a different purpose: here, we

rely on less transparent Schottky contacts as incoming and outgoing tunneling

barriers, and now use the backgate and the two splitgates as three independent

local gates to create a double quantum dot potential in the nanotube with a

tunable interdot coupling. Figure 7.4 shows the current through the device as a

function of the two splitgate voltages. In the lower left and upper right regions of

the plots, the two splitgates dope the two segments of the nanotube with carriers

of opposite sign, resulting in a pn double quantum dot with an interdot barrier

formed from a pn junction. In the upper left (bottom right) corner, the two

splitgates dope both sides of the nanotube p-type (n-type). In figure 7.4a, VBG

is set to ground, which gives a potential in the middle of the nanotube that is
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Figure 7.3: (cont. of figure 7.2) (e), A 2D plot showing backgate sweeps at
different splitgate voltages and VSD = 10 mV. The two splitgates are set to the same
voltage. The stability diagrams in 7.2(c) and (d) are taken at VSG1/2 values indicated
by the dashed lines. (Resonances from residual disorder in the long NT leads can be
seen as oscillations as a function of VSG1/2 in the ppp and nnn configurations.) (f)
Using the splitgates, we can tune the width of the pn junction depletion region, and
hence the tunnel barriers: at VSG1 = V SG2 = -70 mV, the potential from the splitgates
is shallow, giving a wide depletion region and a current of 0.5 nA for the first electron
Coulomb peak at VSD = 10 mV. At VSG1 = V SG2 = -270 mV, the potential across
the pn junction is steeper, now giving a narrower depletion region and a current of 13
nA for the first electron. (The VSG1/2 = -270 mV trace has been offset in VBG and in
current.)

attractive for holes but repulsive for electrons. We consequently observe single

dot behavior for the first hole and weakly coupled double dot behavior for the

first electron. In figure 7.4b, we apply a positive backgate voltage, VBG = 250

mV. The potential in the middle of the nanotube is now repulsive for holes: the

first hole enters a weakly coupled double dot, while electrons fill a mostly single

dot potential. (At some gate voltages, the presence of the oxide creates a non

uniform potential which results in strongly coupled double dot instead of purely

single dot behavior. See section S1 of the Supplementary Information for further

discussion.) By changing VBG, we can continuously tune the interdot coupling in

the few-electron and few-hole regime from weakly coupled double dot to single

dot behavior.
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Figure 7.4: A tunable double quantum dot in the few-electron and few-hole
regime. Current as a function of the two splitgate voltages at VSD = 0.5 mV for device
D2. In device D2, electrons are confined in the nanotube by Schottky barriers at the
metal contacts, with a potential that is tunable using the three gates. Electron and
hole occupation numbers are determined from the transition to a pn double quantum
dot, as described in the Supplementary Information. (a) VBG = 0. At this voltage, a
barrier for electrons is induced in the middle of the device. Electrons are added to a
weakly coupled double dot potential, while holes are added to a single dot potential.
(b), VBG = 250 mV. A more positive VBG creates a double dot potential for holes and
a single dot potential for electrons. The interdot coupling for both the electron and
the hole double dot can be tuned continuously using the backgate voltage.

7.4 Klein tunneling

In figure 7.5, we investigate the tunable interdot coupling in our double quantum

dot more detail by studying current at the (0,1e) ↔ (1e,0) triple point transition

of a weakly coupled double quantum dot. In a weakly coupled double quantum

dot, current can only flow at specific values of the gate voltages, known as triple

points, where the levels in the two dots are aligned, allowing an electron to tunnel

from one dot to the other [96]. In figures 7.5a to c, VBG is made more negative,

creating a larger barrier for electron tunnelling between the dots, suppressing the
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7. Few electron double quantum dots and Klein tunnelling

current at the triple point. However, as we sweep VBG further, shown in figures

7.5d and e, the current increases again, despite creating an even larger barrier

for electron tunnelling.

The explanation of this curious increase of the current is a novel tunnelling

process analogous to the tunnelling paradox in high energy physics proposed by

Klein [93, 94, 95]. Specifically, we will define Klein tunnelling as any enhancement

of the tunnelling of an electron through a barrier due the so-called negative energy

solutions (positron states) that arise in relativistic quantum mechanics (see Sup-

plementary Information for further discussion). In figure 7.5, the enhancement

of the interdot coupling we observe at large tunnel barrier heights is an example

of Klein tunnelling in a carbon nanotube, where now the valance band of the

nanotube plays the role of the negative energy solutions in relativistic quantum

mechanics. What is unique about the data in figure 7.5 is that we have created

a direct implementation of Klein’s gedanken experiment in our double quantum

dot device, where we are able to tune continuously from the normal tunnelling

regime to the Klein tunnelling regime simply by changing the barrier height with

a gate voltage. We have also observed Klein tunnelling for holes (see Supplemen-

tary Information). In figure 7.5, what we observe is a kind of “virtual” Klein

tunnelling, where the electron virtually occupies a state in the empty valance

band in order to tunnel from the left to the right dot, similar to a cotunnelling

process [97]. In addition to our observations in a double quantum dot, the npn

data in figure 7.2 can be thought of as a type of Klein tunnelling in a different

regime, where the valance band is now occupied with holes, and where Klein tun-

nelling occurs by the electron sequentially tunneling across the two pn-junctions.

This also emphasizes the close relation between Klein tunnelling in high energy

physics and interband tunnelling phenomena in semiconductor physics, such as

Zener tunnelling in insulators [98] and direct interband tunnelling in an Esaki

diode [99].

Analyzing the current at the (0,1e) ↔ (1e,0) transition quantitatively using

the result from Stoof and Nazarov [100, 101], we calculate the tunnel rates ΓL and

ΓR of the barriers to the leads, and the interdot tunnel coupling tc, shown in figure

7.5h. At these gate voltages, we are in the limit of weak interdot coupling: tc ∼ 5

µV << ΓL, ΓR ∼ 0.6 mV. The interdot coupling, tc, is decreased from an initial

value of 9 µV to a minimum of 3 µV as a function of backgate, before the onset

of Klein tunnelling results in an increase up to 9 µV as we approach gate voltages

where an npn triple dot is formed. ΓL and ΓR are found to be independent of

the backgate voltage, indicating that the backgate is not influencing the Schottky

barrier transparency.

Finally, note that although we are in the appropriate double quantum dot
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coupling regime, we have not found evidence of spin blockade at any of the

expected transitions [39]. (A parallel magnetic field of 1.5T was applied to ensure

that the nanotube valley degeneracy was lifted). One possible explanation for this

is a singlet-triplet splitting in the (0,2e) state that is much smaller than the 3

mV single particle spacing we observe in the single electron quantum dot. This

could be an indication of Wigner crystal [52], in which the electron wavefunction

overlap is very small, and consequently the single-triplet splitting is strongly

suppressed. This possibility will be investigated further using devices with more

gates, which could allow us to probe the Wigner crystallization transition by

tuning the quantum dot confinement potential.

We have presented a new technique for confining single electrons and single

holes in ultra-clean carbon nanotubes. By eliminating disorder and incorporating

local gates, a new level control over single electron confinement has been achieved,

allowing us to observe a novel type of tunnelling in a single electron carbon nan-

otube device. Although our motivation for such a device comes from the spin

physics of carbon nanotubes [54], the fabrication itself could have a much broader

use in carbon nanotube applications, such as electrically doped pn junctions for

carbon nanotube optical emission [102], where low disorder and multiple gates

for electrical control of p-n junctions could allow the development of new types

of optically active devices.

Methods
Fabrication begins with a p++ Si wafer with 285 nm of thermal silicon oxide.

On top of this, a 50 nm thick n++ polysilicon gate layer is deposited, followed

by a 200 nm LPCVD-TEOS oxide layer. Using electron-beam lithography and

dry etching, a trench of approximately 300 nm deep is etched, forming the two

splitgates from the n++ Si gate layer. A 5/25 nm W/Pt layer is deposited to

serve as source and drain contacts, and nanotubes are then grown from patterned

Mo/Fe catalyst [61].

In about half of the devices, a single carbon nanotube is suspended across

the trench making electrical contact to the source and drain. Transport through

the devices is characterized at room temperature, and selected devices are cooled

to <300 mK for low temperature transport measurements. In total, we have

measured 11 devices at low temperatures, of which 4 reached the single electron

regime. Here we present data from two small bandgap devices: D1 with L = 1.5

µm, W = 300 nm and bandgap Eg = 60 mV, and D2 with L = 300 nm, W =

500 nm and Eg = 25 mV, where bandgaps are determined by subtracting the

charging energy from the size of the empty dot Coulomb diamond.
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Figure 7.5: Klein tunnelling in a single electron double quantum dot. Current
at the (1e,0) ↔ (0,1e) triple point for a single electron double quantum dot at VSD =
5 mV. (Note that the interdot capacitance Einter

c ∼ 0.2 mV is much smaller than the
bias, and thus the triple point bias triangles for the electron and hole cycle[96] strongly
overlap.) Transitions to the excited state of the outgoing dot are visible as lines in
the triangle running parallel to the baseline give a quantized level spacing of 3 mV,
consistent with a dot length of ∼500 nm. In (a) through (c), the backgate is made
more negative, creating a larger barrier for electron tunnelling. As a result, the current
through the double dot is decreased. In (d) and (e), however, the current begins to
increase again despite a larger barrier for electron tunnelling. (f), This increase in
current results from tunnelling of an electron below the barrier through a virtual state
in the valence band, analogous to Klein tunnelling in high energy physics. (g) Line cuts
of the triple point data in (a)-(e) showing the current for the ground state baseline
transition at different backgate voltages. The line cuts are taken along the dashed line
in (e). The x-axis shows the distance along this line converted into the energy detuning
between the left and right dot ground state levels. For the rightmost traces, interdot
tunnel coupling is mediated by normal electron tunnelling, while for the leftmost traces,
Klein processes provide the interdot tunnel coupling. (h) Parameters from a fit to the
Stoof-Nazarov equation. The interdot tunnel coupling initially decreases as the barrier
height increases (VBG = 125 to 27 mV), and then increases due to the onset of Klein
tunnelling as the barrier height becomes comparable to the bandgap (VBG = 27 to -45
mV).
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7.5 Supplementary information

S1 Determining electron numbers

Absolute electron numbers in the device are identified by the transition from a

nn or a pp single dot to a pn or np double dot, as shown in figure 7.6. For example,

at VSG1 = −250 mV and VSG2 ∼ 260 mV, we remove the last hole from the right

side of the nanotube, (p,p) → (p,0). As we sweep VSG2 further, at VSG2 ∼ 380

mV, we fill an electron into the right dot. Here we see an abrupt transition from

single dot behavior to double dot behavior, signaling the transition to a (p,n)

double dot. This transition allows us to clearly identify the electron numbers in

the device. The electron number assignment was also confirmed by large bias

Coulomb diamond measurements such as those shown in figure 7.2 of the main

text.
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Figure 7.6: A 2D splitgate sweep over a larger range used to determine electron
numbers from the transition to a pn double quantum dot. Data is taken at VBG = 50
mV and VSD = 0.5 mV.
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At VSG1 ∼ 500 mV, the device suffers from a “switch” in gate voltage: this

switch, which appeared on the third cooldown of the device, is likely due to a

charge trap in the oxide. Aside from this, the device is extremely stable. It is

also very robust with respect to thermal cycling: after 2 thermal cycles including

exposure to air, the barrier transparencies were unchanged and the position of

the first Coulomb peak moved by less than 50 mV in gate space.

Note also that although the backgate voltage used in figure 7.6 should result

in single dot behavior for holes, the data show some bending of the Coulomb peak

trajectories along the (p,p) to (0,p) and (p,0) transitions, indicating a strongly

tunnel coupled double dot type of behavior. It is also visible along the (n,n)

to (n,0) and (0,n) transitions in figure 7.4(b) of the main text, and at higher

electron numbers in figure 7.6. This results from a somewhat non uniform poten-

tial induced by the presence of the oxide under part of the tube, likely due to a

combination of trapped charges in the oxide and the abrupt change in dielectric

constant.

S2 Stoof-Nazarov Equation
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Figure 7.7: Fit of (0,1e) ↔ (1e,0) transition at VBG = 52 mV to the Stoof-Nazarov
theoretical result for a, positive and b, negative bias. A detuning independent inelastic
contribution to the current of 350 fA is clearly visible in the reverse bias trace. This
inelastic current is also present in a, but is more difficult to identify due to a nearby
excited state of the outgoing dot in forward bias.

To analyze the data quantitatively, we fit the current at the ground state to

ground state transition along the baseline of the triple point bias triangle as a

function of energy detuning ε to the expression from Stoof and Nazarov [100, 103].

By performing such an analysis, we are able to isolate the contribution of the

middle tunnel barrier from the measurement of the current through the double
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quantum dot. For a interdot tunnel coupling tc and tunnel rates ΓL,R to the left

and right leads, the elastic current in a double quantum dot is given by:

Iel(ε) =
et2cΓR

t2c(2 + ΓR/ΓL) + Γ2
R/4 + (ε/h)2

(7.1)

In the limit of weak interdot tunnel coupling, tc << ΓL, ΓR, this reduces to a

simple Lorentzian line shape of the form:

Iel(ε) =
4et2c/ΓR

1 + (2ε/ΓRh)2
(7.2)

A fit of the data to equation 7.2 for a single electron double dot is shown in figure

7.7. The fit was performed for ε < 0 to isolate the purely elastic contribution

to the current. For ε > 0, the fit deviates from the Lorentzian lineshape due to

inelastic processes [104].

S3 Relativistic tunnelling through a barrier and the Klein Paradox

Consider an electron of energy E and momentum ~k incident on a square

barrier of height V as shown in figure 7.8. We are interested in the probability

that the electron is transmitted to x > L using the Dirac equation. The solutions

of the Dirac equation have two branches [105]: a set of positive energy solutions

with E > 0 and a set of negative energy solutions with E < 0. The two branches

are separated by an energy gap 2mc2. The vacuum state is interpreted as having

the negative energy solutions filled with electrons (the “Dirac sea”), and a hole in

the Dirac sea is then interpreted as a positron. For a barrier height that is small

compared to 2mc2, shown in figure 7.8a, the Dirac equation gives a wavefunction

that decays exponentially inside the barrier: for an incident energy E � V , the

probability of the electron tunnelling to the region x > L is small. This is also

what is predicted by the non-relativistic Schroedinger equation.

However, if the barrier height becomes very large, so that V is comparable

to 2mc2, the negative energy solutions of the Dirac equation strongly modify the

tunnelling process. In particular, Klein noticed that for V ∼ 2mc2, as shown in

figure 7.8(b) and 7.8(c), an electron moving at non-relativistic speeds incident on

the barrier at position x = 0 can tunnel to x > L on the other side of the barrier

with nearly unity probability. In the context of the non-relativistic Schroedinger

equation, such a high tunnelling probability would be completely unexpected,

hence the idea of such tunnelling as a paradox.

The tunnelling enhancement can be divided in to two regimes, illustrated in

figures 7.8b and 7.8c. We will refer to the first, illustrated in figure 7.8b, as the
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a b c
Normal Tunnelling

(Klein) Tunnelling
Regime

Klein (propagating)
Regime

Figure 7.8: Relativistic tunnelling through a barrier. Positive energy solutions of
the Dirac equation are separated from the negative energy solutions by a an energy
gap 2mc2. We consider the probability that an electron incident on a barrier of height
V at x = 0 with energy E is transmitted to the region x > L. (a) For V � 2mc2,
the wavefunction inside the barrier decays exponentially with a decay length κ1 =√

2m(V − E)/~, as predicted by the non-relativistic Schroedinger equation. We refer
to this as the “Normal” tunnelling regime. (b) For V slightly less than 2mc2, the
wavefunction also decays exponentially inside the barrier. However, due to the nearby
negative energy solutions of the Dirac equation, the decay length is now much longer,
given by κ2 =

√
2m(2mc2 − V + E)/~, and the transmission probability is much higher

than that predicted by the Schroedinger equation. We refer to this as the (Klein)
Tunnelling regime. (c) For V > 2mc2, the electron now propagates inside the barrier
without decaying by occupying a negative energy solution of the Dirac equation. Inside
the barrier, the wavefunction is a plane wave eik′x with energy E′ = V − 2mc2 − E.
We refer to this as the Klein (propagating) regime.

(Klein) Tunnelling regime [106]. Here, the electron propagates inside the barrier

as an evanescent wave, but the transmission probability can be very high since

the decay length is significantly longer that that from the Schroedinger equation

due to the negative energy solutions. We will refer to the second regime, shown

in figure 7.8c, as the (propagating) Klein regime. Here, the wavefunction in the

barrier is oscillatory in nature and does not decay. Both cases are examples of

what we will call non-classical “Klein Tunnelling” in which the electron emerges

at x > L with a much higher probability than that predicted by the Schroedinger

equation.

The electronic spectrum of a carbon nanotube at low energies is also given by

a Dirac equation that is the same as that for normal electrons [23, 95], but with

2mc2 replaced by the bandgap Eg, and the speed of light c replaced by the Fermi

velocity of graphene vF (∼0.9×106 m/s). Free electrons in the Dirac equation
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correspond to electrons in the conduction band of the nanotube, and positrons

in the Dirac equation correspond to holes in the valance band. Thus, it should

be possible to observe phenomena analogous to the two Klein tunnelling regimes

of 7.8 b and c in a carbon nanotube device.

In figure 7.2 of the main text, we present data demonstrating a single hole npn

and single electron pnp quantum dot. The current that we observe at the Coulomb

peaks can be considered as an example of the (propagating) Klein regime illus-

trated in figure 7.8c, where the potential barrier from our gate voltages is larger

than the bandgap. Figure 7.2d from the pnp configuration corresponds to the

(propagating) Klein regime for positrons, and figure 7.2c from the npn configu-

ration corresponds to the same regime for electrons.

In figure 7.5 of the main text, we show an example of the (Klein) tunnelling

regime of figure 7.8b. In the data, we observe a continuous transition from the

normal tunnelling regime to that where the negative energy solutions of the Dirac

equation provide an enhancement of electron tunnelling, as in the original Klein

gedanken experiment. We also note that the unusual tunnelling process shown in

figure 7.8b, where the decay length in the barrier is increased due to the negative

energy states, has recently been proposed as a mechanism of generating exchange

coupling between two distant quantum dots in graphene nanoribbons [95]. Our

experiment demonstrates explicitly such tunnelling in a carbon nanotube.
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S4 Klein tunnelling for a single hole double quantum dot

In figure 7.5b, we show Klein tunnelling for a single hole double quantum

dot. Qualitatively, the process is the same as that for the single electron double

dot. In the single hole double dot, the tunnel rates to the leads are smaller by a

factor of 2-3 compared to the single electron double dot: in the device, the Fermi

level pinning at the metal contacts is such that electrons see a smaller Schottky

barrier. This can also be seen in figure 7.7, where the electron single dot peaks

show more current and broadening than those of the hole single dot.
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Figure 7.9: (a),(b) Klein tunnelling at the (0,1h) ↔ (1h,0) single hole double dot
transition and (c), parameters from a fit to the Stoof-Nazarov expression.
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Chapter 8

Towards local gate control over clean,

as-grown carbon nanotubes

In this chapter, we present measurements on the samples described in chapter

3.5. Clean, suspended CNTs are combined with narrow, local gates to achieve

tunability over all crucial QD parameters. Also, these gates allow application of

high frequency pulses. We demonstrate the functionality of a five-gate device by

realizing a tunable few-electron triple QD. At the end of this chapter, we discuss

the possibilities of theses devices for spin based quantum information processing.
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8.1 A tunable triple quantum dot

As described in the previous chapter, the tunability of an electrostatic barrier,

separating two sections of a CNT, is limited by tunneling through states in the

valence band (Klein tunneling). Here we explore this regime further by observing

the effect of discrete energy levels in the valence band. These discrete energy

levels are a manifestation of Coulomb blockade and level quantization in the

CNT section where the barrier is created.

Figure 8.1: Device: (a) SEM image of a device similar to the measured one. (b)
Schematic of the device: A CNT is grown over two W / Pt ohmic contacts, with a
trench in between. At the bottom of the trench, there are five local gates, G1 - G5,
with a width of ∼ 120 nm and a spacing of ∼ 140 nm.

The sample (figure 8.1) consists of a small-bandgap CNT crossing a trench

between two W/Pt contacts. Underneath the CNT, there are five ∼ 120 nm wide

gates, which allow us to locally adjust the electrical potential along the CNT.

The ohmic contacts are isolated from the gate layer by 250nm of Si3N4. The

horizontal distance between the two metal contacts is 1.4µm.

In the sample that we present data from, there is a second CNT connecting

the two metal contacts, running around the gate area (similar to the device shown

in figure 8.1a). We conclude this from a nonzero background current, when the

investigated CNT is in Coulomb blockade. This background current strongly

depends on VG1 and VG5, the voltages on G1 and G5, but hardly on VG2, VG3 and

VG4. Since G2, G3 and G4 run from the upper side into the trench but G1 and G5

from the lower side, we conclude that this second CNT is running around the gate

area on the lower side of the trench. In our measurements, we use G1 and G5 to

tune the barriers at the contacts, meaning that they are usually set to a constant

voltage during a measurement. Therefore, the current through the second CNT

does not obstruct most of the measurements presented here (mainly stability

diagrams). To make this background current even less visible, we typically do
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8.1 A tunable triple quantum dot

Figure 8.2: Transition from a triple to a single QD (a) dI / dVG4 as a function
of the voltages on G2 and G4. The voltages on the other gates are: VG1 = VG5 =
-1.5 V and VG3 = -0.15V. For VG2,VG4 < 1V, the entire CNT-section above G2-G4
is p-type. For VG2,VG4 > 1.2V, there are three different regimes visible. Close to the
depletion region, electrons are added to a n-p-n triple QD potential (as sketched in
(b)). When making G2 and G4 more positive, the middle section is depleted from
holes, because of the cross-coupling from G2 and G4 to the middle section of the CNT.
This is sketched in (c). Now electrons are added to a n-n double QD. Finally, when
making G2 and G4 even more positive, cross-coupling further lowers the barrier in the
middle; electrons feel a single QD potential (d). Hence the diagonal lines at the upper
right of the stability diagram.

not plot the current or conductivity but instead show the differential conductance

dI/dVGate. Measurements were performed at T = 2K.

We apply negative voltages to G1 and G5 to make the left and right segment of
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8. Local gate control over clean CNTs

the CNT (next to the contacts) p-type. Figure 8.2 shows a large stability diagram.

Depending on the voltage applied to G2 and G4, we observe different regimes:

In particular, for VG2, VG4 > 1.2 V, we observe the transition from a triple QD

via a double QD to a single QD. The reason for this transition is the finite cross-

coupling from G2 and G4 to the middle section of the CNT. For voltages < 1V on

these gates, the whole CNT-section above G2 - G4 is p-type. Raising the voltage

on G2 and G4 adds electrons to the left and right CNT segments while the middle

segment first stays p-type (triple QD), then is gradually depleted (now there is a

double QD potential) and finally also becomes n-type (resulting in a single QD

potential). The potential landscapes corresponding to these regimes are shown

in figure 8.2 b-d. In the following section, we discuss the triple QD behavior in

detail.

Triple QDs have been investigated in GaAs systems [107, 108, 109] and in the

many electron regime also in CNTs [110]. Besides scaling they are also interesting

from a quantum information point of view [109, 111, 112] Here we demonstrate

a tunable few-electron triple QD in the n-p-n configuration. The charge carriers

are electrons in the left and right QD, but holes in the middle QD. Since in this

configuration, the type of charge carriers is alternating in adjacent sections of the

CNT, all barriers are created by p-n junctions.

8.1.1 Stability diagrams

We discuss the stability diagrams (figure 8.3), obtained by plotting the conduc-

tance through the device as a function of VG2 and VG4. G3, which mainly couples

to the middle dot, is kept at a constant voltage for each of these plots. We denote

charge states by a set of three numbers (k,l,m), corresponding to the left, middle

and right QD. Positive numbers mean electrons, negative numbers holes. The

tunnel barriers are rather small, due to the small value of the CNT bandgap.

Therefore, most cotunneling lines between the different charge states of the triple

QD are clearly visible.

We start by observing that there are different slopes, corresponding to chang-

ing the number of charge carriers in each of the three QDs. Diagonal lines indicate

charge transitions which couple equally to G2 and G4 and are therefore identified

as charge transitions of the middle QD. Charging lines that couple mainly to G2

correspond to transitions of the left QD, lines that couple mainly to G4 corre-

spond to transitions of the right QD. We start by assigning the first diagonal

line (from the upper right) to emptying the middle section from the last hole

(k,-1,m) → (k,0,m). Also, the area where the left and right sections of the CNT

are emptied of charge carriers can be clearly identified. Now, we can assign a
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8.1 A tunable triple quantum dot

Figure 8.3: Stability diagrams of the n-p-n triple QD We plot dI/dVG4 as a
function of VG2 and VG4. We show stability diagrams for different VG3, demonstrating
the tunability of our triple QD. A bias voltage of 2 mV is applied across the CNT. VG1

= VG5 = -1.5V for all plots. (a) VG3 = 0V. The middle dot is depleted of holes before
electrons are added to a few-electron double QD. (b) VG3 = -0.2 V. Now the middle
QD is not emptied when the first electrons are added to the left and right QDs (e.g.,
we now find the state (1,-1,1) in the stability diagram). (c) VG3 = -0.25 V. (d) VG3

= -0.3 V.

charge state to each region of the stability diagram. The large anticrossings at

the top left regions of the stability diagrams indicate that the inter-dot coupling

between the middle and left QD is very large. Comparing stability diagrams with

different VG3 shows that a given charge transition of the middle QD (e.g. the

(k,-1,m) to (k,0,m) transition) moves to higher electron numbers of the left and

right QDs as VG3 is decreased.
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8. Local gate control over clean CNTs

8.2 Towards spin-manipulation

CNTs are a promising material for spin-based quantum information processing:

Spin-orbit coupling allows all-electrical spin manipulation and, if CNTs made

from purified 12C, nuclear spins are absent. In this section, we present future

plans to use the clean, as-grown samples presented above for spin manipulation.

In particular, we discuss the difficulties connected with electron-electron interac-

tions and electro-mechanical coupling.

Bandgap

For many of the following experiments, it is necessary to tune the tunneling

rates into and between the QDs over a wide range. In particular, it is desirable

to reduce the tunneling rates to values of Γ ≤ 5MHz, corresponding to a current

of I ≤ 1pA. This requires a minimal bandgap EG for the used CNTs. E.g. when

using a square barrier as a first simple approximation, one requires EG > 250meV

for a barrier width of 100nm 1. Instead of using CNTs with such a large bandgap,

one can also make the barriers wider. However, this requires a careful device

design since one wants to keep the QDs itself small, as discussed in the following.

8.2.1 Electron-electron interactions

Pauli blockade [39] is the most important and powerful mechanism to probe

spin states in QDs [48]. In section 2.3.2, we explained how electron-electron (e-

e) interactions in CNTs can significantly reduce the singlet-triplet splitting and

thereby prevent Pauli blockade. To change this, one either has to reduce the QD

size or screen the e-e interactions.

With the current devices, it seems difficult to reduce the QD size to ≤ 20 nm

and get a large enough singlet-triplet splitting for a 2-electron QD in a suspended

CNT. Nevertheless, a significant reduce in the QD size seems still within reach

(compare e.g. [62, 46]) by optimizing the fabrication recipe. The effect of e-e

interactions on shell filling in a QD is reduced for larger carrier densities, as shown

in [52] and [51]. This means it should be possible to observe Pauli blockade in a

large, suspended CNT-QD for higher electron numbers. Pauli blockade has indeed

been demonstrated for higher electron numbers in various systems [45, 54, 113].

Another possibility is to screen e-e interactions by a dielectric. Our fabrication

scheme easily allows to grow CNTs at the surface of such a dielectric (instead

1We have calculated the transmission for a barrier height of EG/2. For higher barriers, the
transmission increases again due to Klein tunneling.
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of growing them across a trench). The experiment in chapter 7 shows that it

is possible to reach the few-electron regime in as-grown CNTs, even when a

significant part of the CNT is not suspended but in contact with a dielectric

substrate. Experiments with ∼ 200 nm long CNT-QDs on a SiO2 substrate have

shown shell-filling behavior in the few-electron regime [21]. Since one can use

dielectrics with much higher ε than SiO2 (ε = 3.9), e.g. Al2O3 with ε = 9.3, it

should be possible to use even larger CNT-QDs. Also, completely embedding

the device in a thin layer of dielectric [114] (as the very last fabrication step) is

possible with our devices.

8.2.2 Electro-mechanical coupling

Suspended CNT-QDs show a large coupling between their mechanical motion

(namely, the bending mode phonons) and the electrical current [115, 116, 117].

This can easily obstruct detection of small signals such as Pauli blockade. This

effect will however be almost absent in CNTs on a substrate, since the bend-

ing mode phonons are highly damped then. But also in suspended CNTs, the

electro-mechanical coupling can be strongly suppressed. As shown in [117], the

backaction from mechanical motion on the electron transport through QDs in

the Coulomb blockade regime is suppressed when lowering the tunneling rates

through the QD(s). The instabilities disappear when the tunneling rate through

the QD, Γ, is lower than the mechanical resonance frequency, f0. For a 1µm long

CNT with f0 = 80 MHz, this requires a current I < 10pA, which is a typical

value for Pauli blockade experiments.

8.2.3 Schemes for coherent spin manipulation

Different schemes are possible to perform coherent spin manipulation in CNT

double QDs, many of them have been investigated already in GaAs QDs:

Spin rotations can be driven directly by a oscillating magnetic field [37], gen-

erated on-chip. This, however, is difficult to integrate in the current device design

with as-grown CNTs.

Another possibility is to create a magnetic field gradient and move the con-

fined electron forth and back through this field gradient with an oscillating electric

field. This creates an effective oscillating magnetic field, felt by the electron spin,

and can thereby induce spin rotations [118]. For a CNT, one would apply a

static magnetic field along the CNT-axis (thereby also splitting off one of the two

valley-states) and create a gradient in a magnetic field component perpendicular

to the CNT axis by putting a micromagnet in close vicinity.
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8. Local gate control over clean CNTs

The most promising scheme for spin manipulation uses spin-orbit coupling in

CNTs. In presence of spin-orbit coupling, spin rotations of a confined electron

can be induced by an oscillating electric field [24]. A detailed scheme making use

of spin-orbit coupling and bends in CNTs was proposed in [25]. The scheme uses

the fact, that the effective magnetic field (which consists of an applied external

field and an effective spin-orbit field) changes along a bent CNT. Rabi frequencies

of several MHz up to GHz have been proposed for realistic device geometries and

parameters. This approach also allows to link electron spins in different CNTs

via capacitive coupling, making two-qubit operations and scaling possible. While

bent CNTs seem difficult to achieve controllably in suspended CNTs, this is very

well possible for CNTs on a substrate.

As well as a single spin qubit, a two-electron singlet-triplet qubit has been

successfully demonstrated in GaAs double QDs [36]. This approach has already

been used to determine a inhomogeneous spin dephasing time of T ∗
2 = 3.2ns in

a 13C - CNT [41]. Since this dephasing time has been explained by hyperfine

interactions with the 13C nuclei, investigating purified 12C-CNTs might indeed

result in considerably longer spin dephasing times in CNTs.

Many of these experiments can be carried out by measuring the current trans-

port through a double QD. Nevertheless, it is desirable to make use of an external

charge detector, namely for investigating slow processes (if the coherence times

are very long) and single shot read out. Therefore, one important step will be to

integrate a charge detector with the clean, as-grown CNT devices.
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Appendix A

Pulse scheme to measure T1, using an

averaged charge detector signal

In this appendix, we describe a three level pulse scheme to measure a relaxation

rate T1 in a QD using a charge detector. We are not interested in single shot

measurments but in an averaged cherge detector signal. The rate equations de-

scribing this process are introduced and solved and we explain how to extract T1

from averaged charge detector measurements.
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A. Pulse scheme to measure T1

A.1 The pulse scheme

We want to measure the relaxation time T1 from an excited state (ES) to the

ground state (GS) of a QD. Long T1 (& 100µs) cannot be measured in transport

but one must use a charge detector. The pulse scheme to measure T1 has been

introduced by Elzerman et al. [91] and used in many different experiments.

The difference for us is that we do not want to obtain T1 from single traces but

instead measure an averaged charge detector signal. We find that it is not feasible

to measure only the average QD occupation (as a function of the waiting time

Twait) during the puls train since the fidelity for extrating T1 from this mesurment

is extrmely low 1. But one can make an averaged measurement in the sense that

one averages over many pulse cycles. It is assumed that one barrier of the QD is

completely closed, such that electron tunneling can only take place through the

other barrier.

VP

charge and relax
readout

ionize

W

Ãe

Ãg

Ãoff

Ãon

Ãi

tW tr ti

t = TW W
t = Tr R

t = Ti I

t

Figure A.1: 3-level pulse scheme During the “charge and relax” stage, both GS
and ES are below the Fermi level of the leads. An electron can enter either GS or ES.
If an electron enters ES it may relax to GS. Γe,Γg � W is required for a good fidelity
of the scheme. During the “readout” stage an electron in ES may tunnel out of the QD
and after some time an electron may enter the QD again into GS. This will be detected
by the charge detector. An electron in the GS cannot leave the QD. We assume an
splitting between GS and ES, which is lager than kBT . During the “ionize” stage, an
electron in GS or ES tunnels out, leaving the QD empty. Measureing the fraction of
electrons in ES after as a function of TW allows to determine W = 1/T1. The right
barrier to the QD is completely closed such that electron tunneling can only take place
through the left barrier.

1The reason why this works if one measures the current through a QD is that the current
carries one additional information compared an averaged charge detector signal: the direction
of electron flow.
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A.2 The rate equations

A.2 The rate equations

First, we give an overview over the symbols, used in this section:

Used symbols

Pi Probability that the dot is ionized

Pe Probability that the dot is filled in the excited state

W Relaxation rate (= 1/T1)

Γe Tunneling rate into the excited state (“charge and relax” stage)

Γg Tunneling rate into the ground state (“charge and relax” stage)

Γt = Γe + Γt; total tunneling rate into the QD (“charge and relax” stage)

Γoff Tunneling rate out of the excited stated during the “readout” stage

Γon Tunneling rate into the ground stated during the “readout” stage

Γi Tunneling rate out of the QD during the “ionize” stage

(we assume the same rate for the QD being in GS and ES

tw time (during the “charge and relax” stage)

tr time (during the “readout” stage)

ti time (during the “ionize” stage)

Table A.1: Symbols and abbreviations used in this section

Let us consider a pulse scheme as shown in figure A.1. During the first part

(“charge and relax”) of the pulse the rate equations are

Ṗi(tW ) = −ΓtPi (A.1)

Ṗe(tW ) = ΓePi −WPe (A.2)

Solving these equations gives the probabilities that the QD is ionized, in the

excited state or in the ground state during tW :

Pi(tW ) = Pi(0)e−ΓttW (A.3)

Pe(tW ) = Pi(0)
Γe

Γt −W
(e−WtW − e−ΓttW ) (A.4)

Pg(tW ) = 1− Pi(tW )− Pe(tW ) (A.5)

We have used the simplification that Pe(tW = 0) = 0.

Now we set up the rate equations for the second stage of the pulse (“readout”).

We will assume that both the rate for tunneling out of GS and tunneling into ES

113



A. Pulse scheme to measure T1

are zero. This is not necessary the case (e.g. when the splitting between GS and

ES is on the order of kBT or when taking second order processes into account,

these two rates are finite) but for CNTs with g = 2 this assumption can be met

already at moderate magnetic fields, if GS and ES are Zeeman-split levels.

Ṗi(tr) = −ΓOnPi + ΓOffPe (A.6)

Ṗe(tr) = −ΓOffPe −WPe (A.7)

Ṗg(tr) = WPe + ΓOnPi (A.8)

Solving these equations gives:

Pi(tr) = Ae−(ΓOff+W )tr + (Pi(TW )− A)e−ΓOntr (A.9)

Pe(tr) = Pe(TW )e−(ΓOff+W )tr (A.10)

Pg(tr) = 1− Pi(tr)− Pe(tr) (A.11)

with

A =
ΓOff

ΓOn − ΓOff −W
Pe(TW )

The third stage of the pulse (“ionization”) ist ment to empty the QD. If we

assume that there the same rate Γi for tunneling out of ES and GS, the probability

that the QD is empty after TI is simply given by:

Pi(TI) = 1− (1− Pi(TR))e−ΓiTI (A.12)

By making TI sufficiently large, one wants to ensure that the dot is empty at

the begin of the new pulse cycle.

A.3 Finding W = 1/T1

Now that we have solved the rate equations, we show how to find the relaxation

rate W. A typical solution of the rate equations is shown is figure A.2. For CNT-

QDs, we find typically that the rates Γe , Γg and Γi for tunneling into (out of)

the QD when the energy levels are far below (above) the Fermi level of the leads

are much larger that the rates ΓOn and ΓOff when the energy levels are close

to the Fermi energy. This allows us to make the “ionization” stage of the pulse

considerably shorter than the “readout” stage.
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Figure A.2: QD occupation probability during the pulse We plot the prob-
ability of having an electron in the QD during the different stages of the pulse. (a)
Occupation probability P during the three stages of the pulse. We have used the follow-
ing parameters: Γe = Γg = Γi = 10kHz, ΓOn = ΓOff = 3kHz, W = 1kHz. The legths
of the three pulse stages are: TW = 0.2 ms, TR = 1.6ms and TI = 0.7ms (b) Occu-
pation probability during the readout stage for different probabilities Pe, of having an
electron in ES after the “charge and relax” stage. We have assumed Pe(TW ) + Pg(TW )
= 1 for this plot. The size of the dip allows to determine Pe(TW ).

The fraction of electrons that are not relaxed after the “charge and relax”

stage shows up in a characteristic dip during the “readout” stage. To optimize

the visibility of the dip and the precision of the whole measurement scheme, it is

desirable to tune the tunnel rates such that ΓOn, ΓOff � W . Of course, ΓOn and

ΓOff should be smaller than the measurement bandwith of the charge detector

to resolve the dip. When measuring the charge detector signal, one has to take

into account that this signal typically not only reflects the QD occupation but

also some direct cross-coupling from the gate where the pulse is applied to.

In principle, if all the tunnel rates are known, Pe can be extracted just from the

dip height. However, if there is some uncertainty about ΓOn and ΓOff , it is more

accurate to make a fit to the dip. Measureing Pe as a function of TW now allows

to extract the relaxation time T1 = W−1 [91].
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Summary

Single Electron-ics with Carbon Nanotubes

In this thesis, we investigate the electrical properties of quantum dots (QDs)

made from carbon nanotubes (CNTs). Single-wall CNTs are hollow cylinders,

made out of a single layer of carbon atoms which are arranged in a hexagonal

structure. CNTs have diameters of only a few nm and posses remakable electrical

and mechanical properties. QDs, often also called artificial atoms, are small

structures containing a well-defined number of electrons with a discrete energy

spectrum. At temperatures below a few Kelvin, a short (≤ 1µm) segment of a

CNT forms such a QD.

The energy spectrum of a QD can provide informations about the electronic

structure of the CNT, as well as give insight into physical properties of electrons

in one- and zero-dimensional systems in general. Furthermore, there is the pos-

sibility of using the spin of confined electrons for new types of electronic devices,

e.g. quantum bits. CNTs are of particular interest for these applications: On

the one hand, CNTs without any nuclear spins can be fabricated, thereby elim-

inating the main source of spin decoherence in other QD systems. On the other

hand, spin and orbital degrees of freedom are coupled in CNT, which enables

spin manipulation with electric fields.

Until recently, the charge states and the spectra of CNT-QDs were investi-

gated by electrical transport measurements only. In this thesis, we make use of an

external charge detector in order to study a CNT-QD independently of current

transport. In our case, the charge detector is a metallic single electron transistor

(SET) which is capacitively coupled to the CNT. Charge detection is necessary

for investigating closed quantum dots where transport measurements are not

possible due to the low tunneling rates. This is important for slow processes or

single shot read-out of a QD. Also, charge sensing yields cleaner spectroscopy

data than transport measurements in the case that there exist resonances in the

leads, which is almost inevitable in one-dimensional systems. In our experiments,

we demonstrate that the tunneling rates into a CNT-QD can be tuned by elec-
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trostatic gates with high precision down to frequencies below 1 Hz. We show

this by reading out the charge state of a CNT-QD in real time. Also the excited

state spectrum of such a closed QD is measured with the charge detector. When

investigating backaction effects, we find that using a SET with a small charging

energy keeps the backaction to the CNT-QD low, while maintaining a sufficient

coupling for the charge readout. At the same time, the SET is also sensitive to

the shot noise in the current through the CNT-QD.

In the second part of this thesis, we describe a fabrication scheme that aims

at minimizing the fabrication-induced disorder in CNT devices. For CNTs this

is crucial, since they basically consist of surface only. This makes them very

susceptible to disorder induced from the environment. We first fabricate gates

and contacts and then grow the CNTs on top of these structures in the very

last fabrication step. Furthermore, to suspend the CNTs, we grow them across a

trench which is etched into the substrate. Originally, the fabrication scheme uses

separated areas of a highly doped silicon layer inside the substrate as gates. This,

however, imposes some limitations on possible devices. A new scheme allows us

to fabricate devices with a larger number of narrow metallic gates, enhancing the

tunability of the QD devices and also making the application of high-frequency

electrical pulses possible.

The absence of disorder in these devices allows to define few-electron single,

double and triple quantum dots in a CNT by electrostatics gates. Tunnel barriers

can be defined by p-n junctions, which is possible because of the ambiplolar

nature of CNTs. In the the same device, we can define both few-electron single

and double-QDs, depending on the voltages applied to the gates. Also, we can

define QDs with either electrons or holes as charge carriers. In particular it is

possible to create multiple QDs with alternating types of charge carriers (e.g.

p-n double QDs and n-p-n triple QDs). In a clean CNT with a small bandgap,

we demonstrate that tunneling through a barrier shows a phenomenon which is

similar to Klein tunneling in relativistic quantum mechanics.

Finally, we discuss the possibilities for experiments on coherent spin manipu-

lation with the clean, as-grown CNT devices. Different schemes - some of them

adapted from GaAs QD systems, some of them proposed exclusively for CNTs -

are considered and important problems are identified and analyzed.

Georg Götz

May 2010
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Enkele Elektron-ica met Koolstof Nanobuisjes

In dit proefschrift worden de elektronische eigenschappen van kwantum dots

(KDs) gemaakt van koolstof nanobuisjes (KNBs) onderzocht. Enkele-wand KNBs

zijn holle cilinders, gemaakt van slechts één laag koolstofatomen. De kool-

stofatomen zitten in een hexagonale raster structuur, zoals bij een honingraat.

KNBs hebben een diameter van slechts enkele nanometers en bezitten bijzondere

elektronische en mechanische eigenschappen.

KDs worden vaak ook kunstmatige atomen genoemd. Het zijn kleine struc-

turen waarin het aantal elektronen goed gedefinieerd is en de elektronen een

discreet energie spectrum hebben. Bij temperaturen beneden enkele Kelvin, kan

er een KD gevormd worden in een kort (≤ 1µm) stukje van één KNB.

Naast informatie over de elektronische structuur van de KNB kunnen ook de

fysische eigenschappen van elektronen in 1-dimensionale en 0-dimensionale sys-

temen uit het energie spectrum van één KD afgeleid worden. De KD in de KNB

is een model systeem voor het bestuderen van de fysica van laag dimensionale

systemen. Daarnaast is het mogelijk om de spin van gëısoleerde elektronen in

de KD te gebruiken in nieuwe elektronische systemen, zoals quantum bits. In

andere KD systemen zijn kernspins een belangrijke bron van spin-decoherentie.

Er kunnen echter KNBs gemaakt worden zonder kernspins. Ook is er spin-baan

wisselwerking in de KNB, die het mogelijk maakt om spin manipulatie met elek-

trische velden uit te voeren. Deze eigenschappen maken KNBs bijzonder geschikt

voor quantum bits.

Tot voor kort werden ladingstoestanden en de energie spectra van KNB-KDs

alleen maar onderzocht met elektrische transport metingen. In dit proefschrift

maken we gebruik van een externe ladingsdetector om de de KNB-KD te bestud-

eren. De ladingsdetector is een metallisch “single-electron-transistor” (SET), die

capacitief gekoppeld is aan de KNB. Voor het onderzoeken van gesloten KDs is

ladingsdetectie noodzakelijk. In deze KDs zijn transportmetingen niet mogelijk

vanwege de lage tunnel frequentie. Voor het bestuderen van langzame processen,
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of het in-één-keer uitlezen van een KD, is ladingsdetectie nodig. Daarnaast le-

vert ladingsdetectie schonere spectroscopie data op in vergelijking met transport

metingen. Dit is in het bijzonder zo wanneer er resonanties zijn in de contacten,

iets wat bijna onvermijdbaar is in 1-dimensionale systemen.

In onze experimenten laten we zien dat de tunnelfrequentie in een KNB-

KD nauwkeurig afgesteld kan worden met elektrostatische gates, tot frequenties

beneden 1Hz. Dit tonen we aan door de ladingstoestand van de KNB-KD real-

time uit te lezen. We meten ook het spectrum van de aangeslagen toestanden

van een gesloten KD met een ladingsdetector. We onderzoeken de terugwerkende

effecten en zien dat wanneer we een SET met een kleine ladingsenergie gebruiken,

de terugwerking op de KNB-KD klein is, terwijl we toch voldoende koppeling

hebben voor het uitlezen van de ladingstoestand. Tegelijkertijd is de SET gevoelig

voor shot noise in de stroom door de KNB-KD.

In het tweede deel van dit proefschrift beschrijven we een nieuwe fabricage-

techniek. Het doel van deze techniek is om door fabricage veroorzaakte wanorde

in de KNB systemen te minimaliseren. Dit is cruciaal voor KNBs omdat ze

voornamelijk uit een oppervlak bestaan. Dit maakt ze zeer gevoelig voor wanorde

veroorzaakt door de omgeving van de KNB. We beginnen met het fabriceren van

de gates en contacten en groeien de KNB op deze structuren in de allerlaatste

fabricagestap. Om hangende KNBs te maken, groeien we ze over een geul die

geëtst is in het substraat. Eerst hebben we gates te gemaakt van hooggedoteerde

silicium lagen in het substraat. Deze methode levert echter beperkingen op. Met

een andere methode kunnen we systemen maken met een groot aantal smalle

metallische gates, waardoor de afstelling van KDs eenvoudiger wordt. Deze gates

maken ook het gebruik van hoog frequente elektrische pulsen mogelijk.

De afwezigheid van wanorde in onze systemen maakt het mogelijk om met

gates, enkele-elektron, enkel, dubbel en drievoudige KDs te maken. Het ambipo-

laire karakter van KNBs maakt het mogelijk om tunnelbarrières te vormen met

P-N juncties. In hetzelfde systeem, kunnen we enkel-elektron enkel- en dubbel

KD’s maken. We kunnen ook elektron- of gat KDs maken. KNBs zijn bijzon-

der geschikt voor het maken van een reeks KDs met variërende ladingsdrager,

bijvoorbeeld P-N dubbel KD en N-P-N drievoudige KDs.

In een schone KNB met een kleine bandgap, tonen we aan dat het tunnelen

door een barrière vergelijkbaar is met Klein-tunnelen in relativistische kwantum

mechanica.

Ten slotte beschrijven we mogelijke experimenten waarin schone KNBs ge-

bruikt kunnen worden voor coherente spin manipulatie. Schemas die al toegepast

zijn op GaAs KDs, maar ook schemas die exclusief van toepassing zijn op KNB

KDs worden beschreven. De belangrijke problemen worden hier door ons gëıdenti-
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Georg Götz
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