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ABSTRACT
In this paper, we analyze the asymptotic behavior of the main characteristics of the
mean-variance efficient frontier employing randommatrix theory. Our particular inter-
est covers the case when the dimension p and the sample size n tend to infinity simul-
taneously and their ratio p/n tends to a positive constant c ∈ (0, 1). We neither impose
any distributional nor structural assumptions on the asset returns. For the devel-
oped theoretical framework, some regularity conditions, like the existence of the 4th
moments, are needed. It is shown that two out of three quantities of interest are biased
and overestimated by their sample counterparts under the high-dimensional asymp-
totic regime. This becomes evident based on the asymptotic deterministic equivalents
of the sample plug-in estimators. Using themwe construct consistent estimators of the
three characteristics of the efficient frontier. Furthermore, the asymptotic normality of
the considered estimators of the parameters of the efficient frontier is proved. Verify-
ing the theoretical results based on an extensive simulation study we show that the
proposed estimator for the efficient frontier is a valuable alternative to the sample esti-
mator for high dimensional data. Finally, we present an empirical application, where
we estimate the efficient frontier based on stocks from the S&P 500 index.
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1. Introduction

The efficient frontier is a key object of modern portfolio theory as derived by Markowitz (1952). Merton (1972)
shows that the efficient frontier is the upper part of the parabola in the mean-variance space defined by three
characteristics. In particular, using Merton’s notation, the efficient frontier is given by (cf. Merton 1972)

V = a − 2bR + cR2

ac − b2
, (1)

where the constants a = μ′�−1μ, b = 1′
p�

−1μ, and c = 1′
p�

−11p fully determine the location of the vertex
and the slope coefficient of the parabola in the mean-variance space. The vector μ denotes the p-dimensional
mean vector of asset returns and the p × p matrix � is the corresponding positive definite covariance matrix.
The vector 1p is the p-dimensional unity vector.

The three parameters a, b, and c do not possess an appropriate interpretation in the financial literature. For
that reason, we rewrite (1) as

(R − RGMV)2 = s(V − VGMV), (2)
where

RGMV = 1′
p�

−1μ

1′
p�

−11p
(3)
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is the expected return and

VGMV = 1
1′
p�

−11p
(4)

is the variance of the global minimum variance (GMV) portfolio. The parameter

s = μ′Qμ withQ = �−1 − �−11p1′
p�

−1

1′
p�

−11p
, (5)

denotes the slope parameter of the parabola in the mean-variance space. The parameters {RGMV ,VGMV , s} are
the objects of main interest in this paper.

Although the calculation of the set of parametersRGMV ,VGMV , s is straightforwardwhenμ and� are known,
their computation becomes a challenging task otherwise. Since the mean vector μ and the covariance matrix �

are unknown in practice, they must be estimated from return data before the efficient frontier is constructed.
The usual estimation technique is based on sample estimators or so-called plug-in estimators (see, e.g.Kan and
Smith 2008; Okhrin and Schmid 2006; T. Bodnar and Schmid 2008, 2009) which replace μ and � in (3)–(5) by
their sample counterparts. This estimation method yields the sample efficient frontier, specified by the sample
estimators R̂GMV , V̂GMV , and ŝ of RGMV , VGMV , and s, respectively.

The asymptotic behavior of the sample efficient frontier for finite dimension p under the assump-
tion of normality is investigated in Jobson and Korkie (1980) and Jobson (1991), while T. Bodnar and
Schmid (2008) and Kan and Smith (2008) study the finite sample distributional properties of the sample param-
eters {R̂GMV , V̂GMV , ŝ} of the efficient frontier. However, Basak, Jagannathan, and Ma (2005) and Siegel and
Woodgate (2007) show that the sample efficient frontier overestimates the true location of the efficient frontier
in themean-variance space. To correct this overestimation, Kan and Smith (2008) derives improved estimates for
the parameters of the efficient frontier. At the same time, O. Bodnar and Bodnar (2010) constructs an unbiased
estimator of the efficient frontier. Finally, Bayesian estimators of the efficient frontier were derived in Bauder
et al. (2019, 2021), and T. Bodnar, Lindholm, et al. (2022).

The finite-sample techniques work well only under the assumption of normally distributed asset returns,
which is not supported by in most applications. Typically, asset returns are skewed and heavy-tailed (e.g.C.
Adcock 2014; C. Adcock, Eling, and Loperfido 2015; Fama 1965; Markowitz 1991). T. Bodnar and Gupta (2009)
and Gupta, Varga, and Bodnar (2013) construct the efficient frontier under elliptical models and provide
inference procedures for its main parameters.

More challenging problems arise by considering the asymptotic properties of the sample efficient frontier
when the dimension of the portfolio p increases together with the sample size n. It is noted that the sample
estimators work well only if the number of assets p is fixed and significantly smaller than the number of obser-
vations n. This case is often used in statistics and is referred to the case of standard asymptotics (see, Le Cam and
Lo Yang 2000). In this regime, the traditional sample estimators are consistent for the main parameters of the
efficient frontier. As a result, for a small fixed dimension p ∈ {2, 3, 5} with a large n the sample estimator can be
used. However, it is unclear what to do if the number of assets in the portfolio are (very) large comparable to n.
Here, we are in a situation when both the number of assets p and the sample size n tend to infinity. This double
asymptotic has an interpretation when p and n are of comparable size, i.e. when p/n tends to a concentration
ratio c> 0.1 This regime of asymptotics is known as a high-dimensional asymptotic or ‘Kolmogorov’ asymptotic
(see, e.g.Bühlmann and van de Geer 2011; T. Bodnar, Dette, and Parolya 2019; T. Cai and Shen 2011). In this
setting, the sample estimators behave unpredictably and are far from the optimal ones. In general, the larger
the concentration ratio c becomes, the worse is the performance of the sample estimators. This is a well-known
problem in statistics called ‘the curse of dimensionality’ (see, e.g. Bellman 1961).

Under the presence of financial high-frequency (intraday) data, the curse of dimensionality can be reduced
by employing in-fill asymptotics, however, it requires to handle the impact of market microstructure noise (and
potentially ill-conditioned estimates). One of the first applications of high-frequency data to estimate huge-
dimensional covariancematrices is Hautsch, Kyj, andOomen (2012) who propose a blocking and regularization
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approach. Hautsch, Kyj, and Malec (2015) further extend this idea and show its statistical and economic use-
fulness in a global minimum variance framework. Recently, De Nard et al. (2022) generalize the multivariate
GARCH process by incorporating intraday data in the model specification, while Golosnoy, Gribisch, and
Seifert (2022) and Golosnoy and Gribisch (2022) apply the realized covariance matrix to construct realized
global minimum variance portfolio.

To handle the curse of dimensionality for the efficient frontier, we employ results from asymptotic random
matrix theory. Random matrix theory is a fast growing branch of probability theory with many applications in
statistics and finance. It studies the asymptotic behavior of the eigenvalues of random matrices under general
asymptotics (see, e.g. Bai and Silverstein 2010; G. Anderson, Guionnet, and Zeitouni 2010). The asymptotic
behavior of the functionals of the sample covariance matrices is analyzed in Marc̆enko and Pastur (1967),
Yin (1986), Girko and Gupta (1994, 1996a, 1996b), Silverstein (1995), Bai, Miao, and Pan (2007), Bai and Sil-
verstein (2010), Rubio and Mestre (2011), T. Bodnar, Gupta, and Parolya (2014), and T. Bodnar, Gupta, and
Parolya (2016), among others. Marc̆enko and Pastur (1967) formally derive the behavior of the limiting spectral
measure of the sample covariance matrix. It depends on the corresponding spectral measure of the popula-
tion covariance matrix, which is unknown. Silverstein (1995) proves the validity of the Mac̆enko and Pastur
(MP) equation under more general assumptions and show the strong convergence of the spectral measure of
the sample covariance matrix. Recently, high-dimensional optimal portfolio theory has attracted the attention
of researchers and practitioners of the financial sector (see, e.g. Ao, Yingying, and Zheng 2019; Ding, Li, and
Zheng 2021; El Karoui 2010; Glombek 2014; Jagannathan and Ma 2003; Kan and Wang 2024; Lassance, Van-
derveken, and Vrins 2024; T. Bodnar et al. 2019, 2021, 2025; T. Bodnar, Dette, et al. 2022; T. Bodnar, Okhrin, and
Parolya 2023; T. Bodnar, Parolya, and Schmid 2018; T. Bodnar, Parolya, and Thorsén 2024; T. T. Cai et al. 2020).
We use the above-mentioned theoretical results to find the asymptotic behavior of the sample efficient fron-
tier {R̂GMV , V̂GMV , ŝ} and to prove that R̂GMV is indeed a consistent estimator for RGMV , while V̂GMV and ŝ
are highly biased and inconsistent in high dimensions. We show that the additive and multiplicative biases are
solely functions of the concentration ratio c, thus we can construct consistent estimators handling these biases.
No distributional neither structural assumptions are imposed on the asset returns. Theoretically, we only need
the existence of the 4th moments. Moreover, under additional assumptions imposed on the distribution of the
asset returns we prove that the consistent estimators of the three parameters of the efficient frontier are mutu-
ally independent and asymptotically normally distributed under the high-dimensional asymptotic regime. Our
findings confirm that the Bayesian estimator of the efficient frontier, as derived in Bauder et al. (2021), is indeed
a consistent estimator from a frequentist perspective.

The rest of the paper is organized as follows. In Section 2, we provide the main assumptions and notations
used in the paper and formulate the main theoretical result on the asymptotic behavior of the efficient fron-
tier. At the end of Section 2, consistent estimators of the three parameters of the efficient frontier are presented,
whereas the results on the asymptotic normality are summarized in Section 2.1. In Section 3, we provide an
extensive simulation study to verify the rate of convergence as well as the performance of the obtained esti-
mators under high-dimensional asymptotics. Here, the performance of the derived estimator is compared with
existent estimation techniques for high-dimensional data. The results of the empirical study are presented in
Section 4. Section 5 provides concluding remarks. The proofs of the theoretical results are presented in the
appendix (Appendix).

2. Consistent estimation of the efficient frontier under large dimensional asymptotics

In this section, we present our main result on the asymptotics of the main characteristics of the efficient frontier.
Let the p × n matrix Yn be the observation matrix of the p-dimensional vector of the asset returns taken at

time points 1, . . . , n. The vector of the expected asset returns is denoted byμn, while�n denotes the covariance
matrix.2 We assume that the observation matrix is equal in distribution to

Yn
d.= �

1
2
nXn + μn1

′
n, (6)
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where the symbol ′ d.= ′ denotes the equality in distribution and the p × n matrix Xn contains independent and
identically distributed (i.i.d.) real random variables with zero mean and unit variance. Note that only the matrix
Yn is observable. We know neither Xn, �n nor μn.

Note that the observation matrix Yn has dependent rows, which is assured by the covariance matrix �n,
but independent columns. The assumption of the independence of the samples can be weakened to allow for
dependent elements of Xn by controlling the growth of the number of dependent entries but not their joint
distribution (see Friesen, Löwe, and Stolz 2013).Here, we stick to the assumption of independence of the random
samples to simplify the proof of the theoretical results.

The sample mean vector of the asset returns is given by

ȳn = 1
n
Yn1n, (7)

whereas the sample covariance matrix is defined as

Sn = 1
n
(
Yn − ȳn1′

n
) (
Yn − ȳn1′

n
)′ = 1

n
YnY′

n − ȳnȳ′
n. (8)

Using (7) and (8) we obtain the sample estimators for the three parameters of the efficient frontier given by

R̂GMV = 1′
pS−1

n ȳn
1′
pS−1

n 1p
, V̂GMV = 1

1′
pS−1

n 1p
, (9)

and

ŝ = ȳ′
nQ̂ȳn with Q̂ = S−1

n − S−1
n 1p1′

pS−1
n

1′
pS−1

n 1p
. (10)

Our theoretical findings are based on the following assumptions:

(A1) The population covariance matrix �n is a nonrandom p-dimensional positive definite matrix for all
dimensions p.

(A2) The elements of the matrix Xn have uniformly bounded 4 + ε, ε > 0 moments.
(A3) It existsMl,Mu ∈ (0,+∞) and q ∈ [0,+∞) such that

Mlpq ≤ 1′
p�

−1
n 1p,μ′

n�
−1
n μn ≤ Mupq.

All of these regularity assumptions are very general and fit many practical situations. Assumption (A1)
together with (6) is typical for financial and statistical problems and does not impose strong restrictions.
Assumption (A2) is a technical one. Our simulation study shows that this assumption can be relaxed for prac-
tical purposes. Assumption (A3) requires that the quantities used in the calculation of RGMV , VGMV , and s are
of the same order. This assumption is very general and imposes no additional constraints neither on the mean
vector μn (such that its Euclidean norm is bounded) nor on the covariance matrix �n (such that its eigenvalues
lie in the compact interval). The last point allows us to assume a factor model for the data matrix Yn which
implies that the largest eigenvalue of �n is of order p (c.f. Fan, Fan, and Lv 2008; Fan, Liao, and Mincheva 2013;
Fan, Zhang, and Yu 2012). Finally, assumption (A3) ensures that 1′

p�
−1
n μn is at most of order pq which follows

directly from the Cauchy-Schwarz inequality.
Themain result about the strong convergence of the sample estimators for the three parameters of the efficient

frontier is presented in Theorem 2.1.
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Theorem 2.1: Let q ≥ 0. Then, under the assumptions (A1)–(A3) it holds that∣∣∣∣R̂GMV − RGMV

∣∣∣∣ a.s.−→ 0 for p/n → c ∈ (0, 1) as n → ∞, (11)

pq
∣∣∣∣V̂GMV − (1 − c)VGMV

∣∣∣∣ a.s.−→ 0 for p/n → c ∈ (0, 1) as n → ∞, (12)

p−q
∣∣∣∣ŝ − 1

1 − c
s − p

n
�{0}(q)

∣∣∣∣ a.s.−→ 0 for p/n → c ∈ (0, 1) as n → ∞, (13)

where �A(.) denotes the indicator function of setA.

The proof of Theorem2.1 is given in the appendix (Appendix). Theorem2.1 establishes the asymptotic behav-
ior of the main characteristics of the efficient frontier as both the dimension and the sample size grow to infinity
simultaneously. It claims that the sample estimator of the expected return of the GMV portfolio R̂GMV is indeed
a consistent estimator under the high-dimensional asymptotic regime. In contrast, the sample estimators of the
other efficient frontier parameters are inconsistent. The estimator for the sample variance of the GMV portfolio,
V̂GMV , possesses a multiplicative bias 1

1−c , whereas the sample estimator of the slope parameter s has a multi-
plicative bias (1 − c). Consequently, if the concentration ratio c is close to one, both the estimators produce a
high bias implying inconsistency.

Fortunately, these biases can be easily handled using Theorem 2.1. Hence, consistent estimators R̂c, V̂c and ŝc
for the three parameters of the efficient frontier are presented in Corollary 2.1. This result follows directly from
Theorem 2.1.

Corollary 2.1: Under assumptions (A1)–(A3), consistent estimators of RGMV, VGMV and s are given by

R̂c = R̂GMV , (14)

V̂c = 1
1 − p/n

V̂GMV , (15)

ŝc = (1 − p/n)ŝ − p
n

�{0}(q). (16)

Assuming that the asset returns are normally distributed and the number of assets is fixed, i.e. c = 0, O.
Bodnar and Bodnar (2010) derive unbiased estimators for the three parameters of the efficient frontier given by

R̂u = R̂GMV , V̂u = n − 1
n − p

V̂GMV , and ŝu = n − p − 1
n − 1

ŝ − p − 1
n

, (17)

which are asymptotically equivalent to R̂c, V̂c, and ŝc for q = 0.
Returning to the equivalent Merton notation of the efficient frontier, we present in Corollary 2.2 the

corresponding consistent estimators of the parameters a, b, and c given in (1).

Corollary 2.2: Under the assumptions (A1)–(A3) the consistent estimators of the Merton’s constants a, b and c
are given by

âc = (1 − p/n)â, (18)

b̂c = (1 − p/n)b̂, (19)

ĉc = (1 − p/n)ĉ, (20)

where â = ȳ′
nS−1

n ȳn, b̂ = 1′
pS−1

n ȳn, and ĉ = 1′
pS−1

n 1p are the corresponding sample counterparts.
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The proof of Corollary 2.2 follows directly from the proof of Theorem 2.1 and Corollary 2.1. Both corollaries
provide equivalent results. Nevertheless, the parametrization discussed in Corollary 2.1 is more tractable. It is
easy to deduce that under the standard asymptotics p/n → 0 the consistent estimators of the parameters of the
efficient frontier coincide with their sample counterparts.

The obtained results make the practical implementation of the Markowitz portfolio analysis feasible. They
ensure the consistency of the estimators in the case of high-dimensional portfolios if the concentration ratio c =
p/n does not exceed 1. In the case c> 1, the sample covariance matrix is singular. Thus, it is more complicated
to find consistent estimators for the parameters of the efficient frontier. In this case, the naive choice would be
to replace the inverse sample covariance matrix by its pseudo-inverse, but the consistency of such replacement
is not obvious. We leave this question for future research.

2.1. Asymptotic normality

Below we prove that the consistent estimators of the three parameters of the efficient frontier are asymp-
totically normally distributed under the high-dimensional asymptotic regime. These results are formulated
as Theorem 2.2. Note that only for the proof of this theorem we impose an additional assumption on the
distribution of the entries of Xn, which are assumed to be standard normally distributed.

Theorem 2.2: Let the assumptions (A1)–(A3) are fulfilled. If q = 0 and xij ∼ N (0, 1), then it holds that

√
n

⎛⎝ R̂c − RGMV
V̂c − VGMV

ŝc − s

⎞⎠ d.−→ N

⎛⎜⎜⎜⎜⎝0,

⎛⎜⎜⎜⎜⎝
(
1 + s + c

1 − c

)
VGMV 0 0

0
2V2

GMV
1 − c

0

0 0 σ 2
s

⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠ ,

where

σ 2
s = 2 (c + 2s) + 2

(c + s)2

1 − c
(21)

for p/n −→ c ∈ (0, 1) as n → ∞.

The findings of Theorem 2.2 show that the consistent estimators for the three parameters of the efficient fron-
tier are independent under high-dimensional asymptotics. We observe that their asymptotic variances increase
as c approaches 1. On the other side, interesting results are obtained in the special case c = 0. Here, it holds that

√
n

⎛⎝R̂c − RGMV
V̂c − VGMV

ŝc − s

⎞⎠ d.−→ N
⎛⎝0,

⎛⎝(1 + s)VGMV 0 0
0 2V2

GMV 0
0 0 4s + 2s2

⎞⎠⎞⎠ ,

which coincides with the findings obtained for finite p under the standard asymptotic regime in T. Bodnar and
Schmid (2009). Comparing the above asymptotic distributionwith those presented in Theorem 2.2, we conclude
that ignoring the high-dimensional effect in the calculation of the asymptotic distribution yields a considerable
underestimation of the uncertainties of V̂c and ŝc, especially for values of c closed to 1. Finally, we also observe
that an additional additive bias is present in the sample estimator for s when the quadratic forms 1′

p�
−1
n 1p and

μ′
n�

−1
n μn are bounded, i.e. in case of q = 0.
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Finally, application of Slutzky’s Lemma (cf., Theorem 1.5 inDasGupta 2008) leads to themarginal confidence
intervals for RGMV , VGMV , and s given by

I1−α(RGMV) =
⎡⎣R̂c − z1−α/2√

n

√
1 + ŝc + c

1 − c

√
V̂c, R̂c + z1−α/2√

n

√
1 + ŝc + c

1 − c

√
V̂c

⎤⎦ ,

I1−α(VGMV) =
[
V̂c − z1−α/2√

n

√
2

1 − c
V̂c, V̂c + z1−α/2√

n

√
2

1 − c
V̂c

]
,

I1−α(s) =
⎡⎣ŝc − z1−α/2√

n

√
2
(
c + 2ŝc

)+ 2
(
c + ŝc

)2
1 − c

, ŝc + z1−α/2√
n

√
2
(
c + 2ŝc

)+ 2
(
c + ŝc

)2
1 − c

⎤⎦ ,

where zβ denotes the β-quantile of the standard normal distribution.

3. Finite sample performance

3.1. Estimation of RGMV, VGMV, and s

In this section, we examine the rate of convergence and the performance of the derived consistent estimators
given in Corollary 2.1. In order to analyze the large sample performance of the estimators, we use a quadratic
loss function.Without loss of generality, in our simulation study we take the covariance matrix�n as given with
the same proportion of the eigenvalues over all dimensions, namely 20% of eigenvalues are equal to 0.5, 40% to
1 and 40% to 5, respectively. This guarantees to keep the spectrum of the covariance matrix unchanged for all p.
The elements of the mean vector μn are generated from the uniform distribution, i.e. μi

n ∼ Unif[−0.2, 0.2] for
i ∈ {1, . . . , n}.

Three scenarios are considered in the simulation study, namely

Scenario 1 : The entries of Xn are generated independently fromN (0, 1).
Scenario 2 : The entries of Xn are generated independently from t3(0, 1/3) (t-distribution with 3 degrees of

freedom and scale parameter 1/3). This choice of the scale parameter ensures that the covariance
matrix of each column of Yn is equal to �n.

Scenario 3 : The columns of Yn are assumed to follow a CCC-GARCH(1,1) process with correlation matrix
�n computed from �n and conditional variance equations expressed as

hi,t = α0,i + α1,i(Yi,t−1
n − μi

n)
2 + β1,ihi,t−1 for i = 1, . . . , p and t = 1, . . . , n

with α0,i > 0 and α1,i,β1,i ∈ [0, 1) such that α1,i + β1,i < 1 for all i = 1, . . . , p. The parameters
α1,i are generated fromUnif[0.0, 0.1], while the parameters β1,i are simulated fromUnif[0.8, 0.89].
Finally, the values α0,i are calculated using�n, α1,i and β1,i ensuring that unconditional covariance
matrix of the simulated CCC-GARCH(1,1) process is equal to �n.

The model in Scenario 1 satisfies the conditions (A1)–(A3) and is used to study the speed of the convergence
of the obtained theoretical results. The stochastic models from Scenarios 2 and 3 are designed in such a way, that
at least one of the assumptions (A1)–(A3) is violated. In particular, in case of Scenario 2, the moments of order
(4 + ε) do not exist. For the model in Scenario 3, we additionally assume dependence between the columns of
matrix Yn. These two scenarios are used in the simulation study in order to investigate the robustness of the
obtained theoretical results to the violation of the imposed assumptions. The results of the simulation study are
based on 1000 independent repetitions performed for c ∈ {0.5, 0.9}.

In Figure 1, we present the results for the estimator R̂c. The solid line denotes the average quadratic loss while
the dotted lines present the 0.95 and 0.05 quantiles of the quadratic loss. In the top of the figure, the results for
the normal distribution are presented, whereas findings for the t-distribution and the CCC-GARCHmodel are
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given in the middle and in the bottom, correspondingly. In case of the normal distribution, we observe a fast
convergence speed of the estimator for moderate values of c = 0.5. The variance of the quadratic loss is small
and vanishes as the dimension increases. In the case of very noisy data, namely c = 0.9, the estimator R̂c also
reveals a fast convergence rate in the average quadratic loss. However, as it can be seen from the figure, this
estimator is quite noisy. Similar results are observed for the t-distribution and the CCC-GARCH process, where
only the convergence rate is little slower than for the normal distribution.

Figure 2 contains the simulation results for the estimator V̂c, which is a consistent estimator for VGMV . We
observe a similar behavior independently of the scenario used to simulate the data. As expected, better results
are presented in the case of the normal distribution, whereas the worst ones correspond to the CCC-GARCH
process, although the difference is not large. The convergence rate is relatively small for p< 200 in the case of
c = 0.5 and for p< 500 in the case of c = 0.9. If p increases the quadratic loss tends to zero.

The results obtained for ŝc in Figure 3 are stronger as those obtained for R̂c and V̂c. In the case of c = 0.5, the
quadratic loss function tends to zero already for small values of p, while for c = 0.9 larger values of p are needed.
Interestingly, the best results are present in the case of the CCC-GARCH model, where the convergence rate is
even larger than in case of the normal distribution.

In Figures 4–6 we plot the histograms of
√
n(R̂c − RGMV),

√
n(V̂c − VGMV), and

√
n(ŝc − s) as well as their

asymptotic densities presented in Theorem 2.2. Although the results of Theorem 2.2 are derived under the
assumption of normality, in Figures 4–6 we also include the results for the t-distribution and the CCC-GARCH
process. In Figure 4, we observe that the densities of the normal distribution provide very good approximations
of the corresponding histograms independently of the considered scenario. Furthermore, as expected, the vari-
ance in the case of c = 0.9 is much larger than in the case of c = 0.5. In contrast to the findings of Figure 4,
a good approximation by the normal distribution is present only in the case of the normal distribution. In the
case of

√
n(V̂c − VGMV), the histograms are shifted slightly to the left for the t-distribution and to the right for

the CCC-GARCHmodel (see Figure 6). Similar results are also present in Figure 6 for
√
n(ŝc − s). In particular,

a good approximation is observed in the case of a normal distribution, whereas the histogram is shifted to the
right in the case of the t-distribution and to the left in the case of the CCC-GARCH process.

To summarize the simulation results, we observe fast convergence of the proposed estimators for the three
parameters of the efficient frontier in the average quadratic loss. The convergence speed is controlled by the
existence of the moments of the distribution, i.e. the heavier its tails the slower the convergence rate. It is noted
that the estimators R̂c and ŝc can still be improved by applying a shrinkage estimator for the mean vector. A suit-
able shrinkage can significantly reduce the noise of the considered estimators for the parameters of the efficient
frontier and optimal portfolios (see, e.g.Golosnoy and Okhrin 2007; Kan and Smith 2008; O. Bodnar, Bodnar,
and Parolya 2022; T. Bodnar, Parolya, and Thorsén 2023).

3.2. Estimation of the efficient frontier

To further investigate the performance of the obtained estimators, we compare themwith state-of-art estimators
used for the estimation of the inverse covariance matrix, namely the nonlinear shrinkage estimator of Ledoit
and Wolf (2017, 2020), the empirical Bayes estimator of Efron and Morris (1976), and the ridge-type estimator
suggested by Kubokawa and Srivastava (2008).

The empirical Bayes estimator is obtained by

�̂EBE = n − p − 2
n − 1

S−1
n + p2 + p − 2

(n − 1)tr(Sn)
Ip, (22)

while the ridge-type of Kubokawa and Srivastava (2008) is computed as

�̂RTE = p
(
(n − 1)Sn + tr(Sn)Ip

)−1 , (23)
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Figure 1. The quadratic loss of R̂c for the normal distribution (above), for the t-distributionwith 3 degrees of freedom (in themiddle), and for the
CCC-GARCH process (below).

where Ip is the p-dimensional identity matrix. Finally, the nonlinear shrinkage estimator for the covariance
matrix of Ledoit and Wolf (2020) is given by

�̂LWE = H
(
diag(dor1 , . . . , d

or
p )
)−1

H
,
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Figure 2. The quadratic loss of V̂c for the normal distribution (above), for the t-distributionwith 3 degrees of freedom (in themiddle), and for the
CCC-GARCH process (below).

dori =

⎧⎪⎪⎨⎪⎪⎩
di

|1 − p/n − p/ndim̆F(di)|2 , if di > 0,

1
(p/n − 1)m̆F(0)

, if di = 0,
for i ∈ {1, . . . , p}, (24)
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Figure 3. The quadratic loss of ŝc for the normal distribution (above), for the t-distribution with 3 degrees of freedom (in themiddle), and for the
CCC-GARCH process (below).

where mF(z) is the limiting Stieltjes transform of the sample covariance matrix Sn which for a distribution
function G : R → R is defined by

mG(z) =
∫ +∞

−∞
1

λ − z
dG(λ); z ∈ C

+ ≡ {z ∈ C : �z > 0}.
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Figure 4. Histogram and the asymptotic density (see Theorem 2.2) of
√
n(R̂c − RGMV ) for the normal distribution (above), for the t-distribution

with 3 degrees of freedom (in the middle), and for the CCC-GARCH process (below). We put n = 1000.

The estimator of the mean vector is left unchanged and corresponds to the sample. Using the estimators �̂LWE
(�̂EBE or �̂RTE) and ȳn in (3)–(5) instead of �−1

n and μn, respectively, we obtain the nonlinear shrinkage, the
empirical Bayes, and the ridge-type estimators of the parameters of the efficient frontier.

In Figure 7, we consider the behavior of the whole efficient frontier by comparing the proposed estimator
with the three benchmarks presented above. Moreover, we also include the population efficient frontier and
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Figure 5. Histogram and the asymptotic density (see Theorem 2.2) of
√
n(V̂c − VGMV ) for the normal distribution (above), for the t-distribution

with 3 degrees of freedom (in the middle), and for the CCC-GARCH process (below). We put n = 1000.

its sample estimator. The results are presented for all three scenarios considered in Section 3.1 in the case of
c ∈ {0.5, 0.9} and n = 100.

As expected, we observe that the sample estimator performs very poorly in all of the considered cases. It
considerably overestimates the location of the true efficient frontier in the mean-variance space. In contrast, the
consistent estimator of the efficient frontier shows a very good performance in almost all of the considered cases.
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Figure 6. Histogram and the asymptotic density (see Theorem 2.2) of
√
n(ŝc − s) for the normal distribution (above), for the t-distribution with

3 degrees of freedom (in the middle), and for the CCC-GARCH process (below). We put n = 1000.

It nearly coincides with the population efficient frontier in the case of normally distributed data for both values
of c. In the case of the t-distribution, it slightly overestimates the location of the efficient frontier. Remarkably,
the deviations from the population efficient frontier are very small in all of the considered cases even for c = 0.9.
The nonlinear shrinkage estimator performs similarly to the consistent estimator proposed in the paper. How-
ever, it significantly overestimates the variance of the GMV portfolio in all of the considered cases leading to
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Figure 7. Estimated efficient frontier for the normal distribution (above), for the t-distribution with 3 degrees of freedom (in themiddle), and for
the CCC-GARCH process (below). We put n = 100.

considerable overestimation of the location of the vertex of the efficient frontier in the mean-variance space.
The consistent and nonlinear shrinkage estimators are followed by the empirical Bayes approach. Finally, the
ridge-type estimator underestimates the location of the population efficient frontier in the mean-variance space
for all considered cases.
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To summarize, we conclude that the proposed estimator for the efficient frontier shows significant improve-
ment over the sample estimator for large dimensional data. In the case of the normal distribution, it is a great
alternative to all of the considered benchmarks. Under heavy-tailed data, the proposed estimator is still much
better in comparison to the estimators based on the empirical Bayes estimator and the ridge-type estimator of
the inverse covariance matrix.

4. Empirical application

In this section, we apply the theoretical results of the paper to real data. Our goal is to estimate efficient fron-
tiers based on a large cross-section of stocks without relying on data from overly extended periods. Instead, we
seek to provide insights into the time-varying nature of efficient frontiers over relatively short intervals. This
approach excludes the use of daily data, where estimating efficient frontiers for hundreds of assets would neces-
sitate sample periods spanning several months or years. Consequently, we use one-minute intraday returns of a
broad cross-section of S&P 500 constituents over the period fromMarch 3, 2017, to June 6, 2022. This period is
particularly interesting as it encompasses the COVID-19 pandemic. The choice of this time interval highlights
the importance of short estimation periods while maintaining a large number of assets. Using daily data at the
end of the period would inevitably include observations from before the pandemic, leading to deteriorated esti-
mators of the actual frontier. This further underscores the relevance of high-frequency data and short estimation
windows for portfolio selection.

We use a p = 200-dimensional portfolio constructed based on the most frequently traded assets each day
of the sample window. We set n = 375, corresponding to the number of 1-minute intervals on a single trading
day from 9:45 to 16:00 (leaving out the first and last 15 minutes to avoid market opening and closure effects).
To weaken the influence of very large and very small values of asset returns on the estimation procedure, we
perform a proper truncation of large (in absolute terms) returns in the considered data sets that is commonly
referred to as winsorization. This method is widely used by quantitative portfolio managers (Chincarini and
Kim 2006, 180).

Intraday data at high-frequency, for example, 1-minute data, inducemarket-microstructure noise. A common
practice is to deploy 5-min observations (see Barndorff-Nielsen and Shephard 2002; T. Anderson et al. 2001).
Using returns at higher frequency causes the difficulty that the underlying data is clearly not i.i.d. due to serial
correlation and persistent variances.

Therefore, we alternatively consider 5−, 10-, 30-, and 60-minute returns, which are shown to be significantly
less autocorrelated but are still subject to volatility clustering. The latter effect does not alignwith the assumptions
underlying the proposed estimators. However, our simulation results in Section 3 provide promising evidence
that our estimator is sufficiently robust to violations from the underlying assumptions, particularly GARCH-
type effects.Moreover, high-frequency data are subject to intraday periodicities challenging the assumption of an
underlying deterministic covariancematrix. Bibinger et al. (2014) show that intraday seasonalities in covariances
are clearly less pronounced than seasonalities in variances. Since in our high-dimensional portfolio application,
the contribution of covariances clearly dominates the role of variances, we suggest that the effects of seasonalities
on our estimates should be of minor importance.

To make the estimates based on alternative sampling schemes comparable, we fix the ratio p/n with p = 200
and n = 375. This, however, requires utilizing data from neighboring days. In this case, we estimate the param-
eters using rolling windows, which are moved forward on a day-to-day basis. Hence, efficient frontiers based
on 5 minutes utilize data from rolling 5-day windows before the corresponding day. The resulting estimated
efficient frontier can be seen as the 5-min frontier averaged over the past 5 trading days. Accordingly, using 10-,
30-, and 60-minute returns result in estimates averaged over periods of 10-, 30-, and 60 trading days. To make
the resulting efficient frontiers comparable, the underlying returns are scaled to 60-min holding periods corre-
sponding to the lowest sampling frequency in the given context. The efficient frontier parameters RGMV ,VGMV ,
and s are alternatively estimated using the sample estimator, the proposed consistent estimator, the empirical
Bayes estimator, and the ridge-type estimator.

Figures 8–10 display the estimates based on our proposed estimator of the expected return, the variance, and
the slope of the global minimum variance portfolio for different frequencies. In both figures, we observe more
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Figure 8. Estimated expected return of the global minimum variance portfolio based on 5-, 10-, 30-, and 60-minute returns on first 200 stocks
from S&P500 from 03 March 2017 to 6 June 2022.

Figure 9. Estimated variance of the global minimum variance portfolio based on 5-, 10-, 30-, and 60-minute returns on first 200 stocks from
S&P500 from 03 March 2017 to 6 June 2022.

volatile behavior when the returns of higher frequency are used. Remarkably, the parameters of the efficient
frontier react to the financial crisis in different ways.While a large increase in the variance of the GMV portfolio
is observed, the changes in the other two parameters are not large, especially in the case of the slope parameter
of the efficient frontier whose behavior shows only minor changes during this period. Important is the fact that
the slope parameter decreases during the crisis. In general, however, the level and pattern of all characteristics
are similar for different data frequencies but with more variability for more frequent returns.
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Figure 10. Estimated slope parameter of the efficient frontier based on 5-, 10-, 30-, and 60-minute returns on first 200 stocks from S&P500 from
03 March 2017 to 6 June 2022.

Figure 11. Box plot of the estimated expected return of the global minimum variance portfolio based on 5-, 10-, 30-, and 60-minute returns on
first 200 stocks from S&P500 from 03 March 2017 to 6 June 2022.

In Figures 11–13, we present the box plots of the considered estimators for the three parameters of the efficient
frontier. In the case of the expected return of the globalminimumvariance portfolio (cf. Figure 11), the box plots
are almost identical with the exception of the empirical Bayes estimator withmore volatile behavior for all of the
considered frequencies. In contrast, the box plots in the case of the other two parameters of the efficient frontier
are very different (cf. Figures 12 and 13). Furthermore, we observe that the values of the estimated expected
return and the estimated variance of the global minimum variance portfolios get closer to zero with increasing
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Figure 12. Box plot of the estimated variance of the global minimum variance portfolio based on 5-, 10-, 30-, and 60-minute returns on first 200
stocks from S&P500 from 03 March 2017 to 6 June 2022.

Figure 13. Box plot of the estimated slope coefficient of the efficient frontier based on 5-, 10-, 30-, and 60-minute returns on first 200 stocks from
S&P500 from 03 March 2017 to 6 June 2022.

frequency. Surprisingly, the ridge-type estimators are the most volatile for the variance and the least volatile for
the slope. This effect is not present in the figure for the efficient frontier. Finally, as expected, the sample estimator
underestimates the GMV portfolio’s variance and overestimates the efficient frontier’s slope parameter.

The estimators for the efficient frontier are presented for several frequencies in Figure 14 in the case of June
3, 2022. The results of this figure are in line with the finding of the simulation study. Namely, the sample and the
empirical Bayes efficient frontiers are overoptimistic and deviate considerably from the consistent estimator of
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Figure 14. The sample, the consistent, the empirical Bayes, the ridge-type, and the non-linear shrinkage estimators for the efficient frontier based
on 5-, 10-, 30-, and 60-minute returns on 200 stocks from S&P500 calculated on June 3, 2022.

the efficient frontier. On the contrary, the ridge-type estimator and the non-linear shrinkage are too conservative
and reflect the specific behavior of the variance and the slope in the figures above.

5. Conclusions

The efficient frontier derived by Markowitz (1952) describes a set of portfolios that indicates the optimal asset
allocation for the investor. Under uncertainty, the efficient frontier must be estimated from a given data set.
In the case of a fixed number of assets p and a large sample size n, the sample estimator is a good intuitive
choice. However, when p grows together with n such that their ratio approaches a constant c ∈ (0, 1), the sample
estimator becomes a poor alternative.

To handle ‘the curse of dimensionality,’ we investigate the asymptotic behavior of the sample estimator for the
efficient frontier under large-dimensional asymptotics. We identify the asymptotic biases and correct them to
develop consistent estimators for the parameters of the efficient frontier. We prove that two of the three param-
eters of the efficient frontier are highly biased under the large-dimensional asymptotic regime and that their
biases are pure functions of the concentration ratio c ∈ (0, 1).

Finally, we provide a simulation study to investigate the convergence rate and the performance of the pro-
posed estimator for the efficient frontier. We take state-of-the-art estimators for high-dimensional data and
compare them with the suggested one. The proposed estimator, due to its simple form, appears to be a strong
alternative in the case of large-dimensional data.
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One possible direction of extension of the results derived in the paper is to incorporate high-order moments
in the construction of an efficient frontier. The importance of higher-order moments of the asset returns in
portfolio theory has recently been highlighted in the number of papers, see Patton (2004), C. Adcock (2005),
Jondeau and Rockinger (2006),Mencía and Sentana (2009), Harvey et al. (2010), andC. Adcock, Eling, and Lop-
erfido (2015), among others.While Patton (2004) studies the empirical importance of the skewness for portfolio
selection, C. Adcock (2005) presents severalmethods for including skewness in the decision process. Several the-
oretical findings for portfolio selection with higher moments are provided in De Athayde and Flôres Jr (2004),
Mencía and Sentana (2009), C. J. Adcock (2010), andC.Adcock (2014). In particular,Mencía and Sentana (2009)
and C. Adcock (2014) discuss the expression of the mean-variance-skewness efficient frontier. The derivation
of a consistent estimator of the high-dimensional mean-variance-skewness efficient frontier can be one of the
potential topics, left for future research.

Another direction of possible research may deal with the estimation of the efficient frontier under structural
constraints imposed on portfolio weights. In particular, Jagannathan and Ma (2003) argue that imposing linear
constraints on optimal portfolio weights may reduce the estimation risk, while the performance of optimal port-
folios under the transaction costs is investigated in Mei, DeMiguel, and Nogales (2016), DeMiguel et al. (2020),
DeMiguel, Martin-Utrera, and Uppal (2024), and O. Bodnar, Bodnar, and Niklasson (2025), among others. It is
expected that constraints imposed on portfolio weights will shorten the feasible set of portfolios and will change
the location of the efficient frontier in the mean-variance space by increasing the variance of the global min-
imum variance portfolio and reducing the expected return of the global minimum variance portfolio and the
slope coefficient of the efficient frontier. The statistical significance of these changes is a challenging topic that
can be considered in future research.

Notes

1. Note that this is not Merton’s constant c, which is written in calligraphic font.
2. Under large-dimensional asymptotics, both the dimension p and the sample size n tend to infinity. Therefore, it is natural to

assume, without loss of generality, that the dimension p ≡ p(n) is the function of the sample size n. Consequently, the mean
vector and the covariance matrix are indexed with n as well.
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Appendix
We start with three important lemmas investigating the asymptotic behavior of quadratic forms in Xn under the high-dimensional
asymptotic regime.

Lemma A.1: Assume (A1)–(A3). Let a nonrandom p × p-dimensional matrix �p and a nonrandom n × n-dimensional matrix �n
possess a uniformly bounded trace norms (sum of singular values) and let �n = Ip. Then it holds that∣∣tr (�p(1/nXnX′

n − zIp)−1)− m(z)tr
(
�p
)∣∣ a.s.−→ 0, (A1)∣∣tr (�n(1/nX′

nXn − zIn)−1)− m(z)tr (�n)
∣∣ a.s.−→ 0 (A2)

for p/n −→ c ∈ (0,+∞) as n → ∞ where

m(z) = (x(z) − z)−1 and m(z) = −1 − c
z

+ cm(z) (A3)

with

x(z) = 1
2

(
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√
(1 − c + z)2 − 4z

)
. (A4)

Proof of Lemma A.1: See, the proof of Lemma 1.1 in supplementary material of T. Bodnar, Okhrin, and Parolya (2023). �

Lemma A.2: Assume (A1)–(A3). Let θ and ξ be the universal nonrandom vectors from the set V = {p−q/2�
−1/2
n 1, p−q/2�

−1/2
n μn}.

Define x̄n = 1
nXn1 and S̃n = 1

nXnX′
n. Then it holds that∣∣ξ ′̃S−1

n θ − (1 − c)−1ξ ′θ
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for p/n −→ c ∈ (0, 1) as n → ∞.
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Proof of Lemma A.2: See, Lemma 1.2 in the supplementary material of T. Bodnar, Okhrin, and Parolya (2023). �

Lemma A.3: Assume (A1)–(A3). Let θ and ξ be the universal nonrandom vectors from the set V = {1,μn}. Let q ≥ 0. Then it holds
that

p−q ∣∣ξ ′S−1
n θ − (1 − c)−1ξ ′�−1

n θ
∣∣ a.s.−→ 0, (A8)

x̄′
n�

1/2
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1/2
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1 − c

, (A9)

p−qx̄′
n�

1/2
n S−1

n θ
a.s.−→ 0 (A10)

for p/n −→ c ∈ (0, 1) as n → ∞.

Proof of Lemma A.3: From the Sherman-Morrison formula we get
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.

Hence, using the results of Lemma A.2 we get
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for p/n −→ c ∈ (0, 1) as n → ∞. �

Proof of Theorem 2.1: The statement (12) follows immediately from (A8) with ξ = θ = 1p.
In order to prove (11), we consider
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.

The application of (A8) and (A10) leads to
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for p/n −→ c ∈ (0,+∞) as n → ∞, from which (11) follows.
Finally, we get
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The application of the results of Lemma A.3 leads to (13). The theorem is proved. �
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Lemma A.4: (a) Let Zp,n ∼ χ2
n−p (χ2-distribution with n−p degrees of freedom). Then

√
n
(

Zp,n
n − p

− 1
)

d.−→ N
(
0,

2
1 − c

)
for

p
n

−→ c ∈ (0, 1) as n → ∞. (A11)

(b) Let Fp,n ∼ Fp,n−p,nλ (non-central F-distribution with p and n−p degrees of freedom and non-centrality parameter nλ) with λ ∈
(0,∞). Then

√
n
(
n − p
p

Fp,n − 1 − n
p
λ

)
d.−→ N

(
0,

2
c

(
1 + 2

λ

c

)
+ 2

1 − c

(
1 + λ

c

)2
)

(A12)

for p
n −→ c ∈ (0, 1) as n → ∞.

Proof of Lemma A.4: (a) The statement follows directly from the properties of χ2-distribution and the fact that c< 1 which
ensures that n − p −→ ∞ for p

n −→ c ∈ (0, 1) as n → ∞.
(b) From the properties of the non-central F-distribution, we get

n − p
p

Fp,n
d.= f1/p

f2/(n − p)
,

where f1 ∼ χ2
p;nλ (non-central χ2-distribution with p degrees of freedom and non-centrality parameter nλ), f2 ∼ χ2

n−p, and f1,
f2 are independently distributed.

It holds that

√
n
(
n − p
p

Fp,n − 1 − n
p
λ

)
= 1

f2/(n − p)

(√
n
(
f1
p

− 1 − n
p
λ

)
− √

n
(

f2
n − p

− 1
)(

1 + n
p
λ

))
.

From Lemma A.4(a), we get

√
n
(

f2
n − p

− 1
)

d.−→ N
(
0,

2
1 − c

)
for

p
n

−→ c ∈ (0, 1) as n → ∞.

Furthermore, the application of Lemma 3 in T. Bodnar and Reiß (2016) leads to f2/(n − p) a.s.−→ 1 and

√
n
(
f1
p

− 1 − n
p
λ

)
d.−→ N

(
0,

2
c

(
1 + 2

λ

c

))
for p

n −→ c ∈ (0, 1) as n → ∞. Putting these results together and applying Slutsky’s lemma (see, e.g. Theorem 1.5 in
DasGupta 2008), we obtain the statement of Lemma A.4(b).
The following result is Lemma A1 in T. Bodnar and Schmid (2009) �

Lemma A.5: Let x1, . . . , xn be a random sample of independent vectors such that xi ∼ Np(μn,�n) for i = 1, . . . , n. Then for any p
and n with n> p it holds that

(a) V̂GMV is independent of (R̂GMV , ŝ).
(b) (n − 1)V̂GMV/VGMV ∼ χ2

n−p.

(c) n(n−p+1)
(n−1)(p−1) ŝ ∼ Fp−1,n−p+1,ns.

(d) R̂GMV |ŝ = y ∼ N (RGMV ,
1+ n

n−1 y
n VGMV ).

Proof of Theorem 2.2: From Lemma A.5(a), we get that V̂GMV is independent of (R̂GMV , ŝ) for any p and n and, hence, V̂GMV is
independent of (R̂GMV , ŝ) also under high-dimensional asymptotics. Moreover, from Lemma A.4(a) we get

√
n
(
V̂c − VGMV

)
= √

n
(

1
1 − p/n

V̂GMV − VGMV

)
= √

n

(
n

n − p
V̂GMV

VGMV
− 1

)
VGMV .

The application of Lemma A.5(b) leads to
√
n(V̂c − VGMV )

d.−→ N (0, 2
1−cV

2
GMV ).
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Similarly, we obtain
√
n
(
ŝc − s

) = √
n
((

1 − p
n

)
ŝ − p

n
− s
)

= √
n
(
n − p
p

ŝ − 1 − n
p
s
)

p
n
.

The application of Lemmas A.4(b) and A.5(c) leads to

√
n
(
ŝc − s

) d.−→ N
(
0, 2 (c + 2s) + 2

1 − c
(c + s)2

)
.

Finally, the application of Lemma A.5(d) leads to

√
n
(

R̂c − RGMV
ŝc − s

)
d.=
⎛⎜⎝
√
1 + n

n − 1
ŝc + p/n
1 − p/n

√
VGMV

√
nz0

√
n(ŝc − s)

⎞⎟⎠ ,

where
√
n
(

z0
ŝc − s

)
d.−→ N

((
0
0

)
,
(

1 0
0 σ 2

s

))
,

with σ 2
s as in (21). Now, the application of the δ-method (see, e.g. Theorem 3.7 in DasGupta 2008) and the fact that V̂GMV is

independent of (R̂GMV , ŝ) leads to the statement of the theorem. �
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