
Delft University of Technology
Master’s Thesis in Computer Science

A Framework for Cooperative 3D Mapping of
Unstructured Environments

Puneeth Nekkundi Somashekar

A Framework for Cooperative 3D Mapping of

Unstructured Environments

Thesis

submitted in partial fulfillment
of the requirements for the degree of

Master of Science
in

Embedded Systems

by
Puneeth Nekkundi Somashekar

Department of Physics and Electronics
Expertise center Technical Sciences

TNO
Stieltjesweg 1, 2628 CK Delft, The Netherlands

Embedded Software Section
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands

03 August 2011

c© 2011 Puneeth Nekkundi Somashekar.

A Framework for Cooperative 3D Mapping of

Unstructured Environments

Author: Puneeth Nekkundi Somashekar
Email: puneethns@gmail.com

11 August 2011

Abstract

Cooperative nature in robots is a much sought after feature. Weak-
ness of individual entities in the system could be over come by coopera-
tion, which also brings in reliability and speed. Application of Computer
Vision in robotics has brought in many new path breaking techniques,
especially into aerial robotics. It has also managed to upstage the use of
traditional inertial sensing methods for control and stabilization. With
more computation power being packed onboard the robotic platforms,
it is now possible to run some of the state-of-the-art Computer Vision
and Control algorithms on the platform itself. We present a hybrid solu-
tion involving a vision based markerless Simultaneous Localization and
Mapping algorithm and fudicial markers in a framework to achieve co-
operative 3D mapping of unstructured environments.

Graduation Committee

Chair: Prof. Dr. Ir. Arjan J.C. Van Gemund, Faculty EEMCS, TU Delft
Committee Member: Dr. Ir. Stefan Dulman, Faculty EEMCS, TU Delft
Committee Member: Dr. Ir. Tamas Keviczky, Faculty DCSC, TU Delft
Committee Member: Dr. Ir. Zoltan Papp, TNO

mailto:puneethns@gmail.com

Preface

Almost two years ago, I was preparing myself to leave for the Netherlands. I
now see that I was hardly prepared for the events that unfolded next. It has
been a great learning experience personally and academically, especially the
last few months. Without help from the following folks, time here would have
been more challenging.

I would like to first thank my supervisor at Delft University, Stefan Dul-
man, whose constant encouragement and persuasion has led me through this
project. Meetings with him would leave me brimming with confidence. Many
thanks to my supervisor at TNO, Zoltan Papp for giving me this opportunity,
his critical remarks on my work and for reviewing this thesis while vactioning.
Both have been extremely patient and instrumental during the draft of this
thesis. My thanks to Tamas Keviczky and Masoud Dorosti of DCSC for their
valuable time and inputs.

A special thanks to Arvid Halma at TNO, for his keen interest in my project,
for answering my queries regarding Computer Vision, for all the fruitful dis-
cussions and reveiwing my work. My thanks to Arjan Kodde, who helped me
in many ways. Cheers to Julio, Robin, Derek, Jeroen, Peter and all the folks
at Acoustic Department for making my experience at TNO a pleasant one.

My parents, without whom I would not have been here. Their kind words,
affection and encouragement have always got me through hard times. My
friends, for making me feel comfortable during the first year of stay in Delft.
Finally, I would like to thank Sowmya, my girlfriend, for being there for me
when I needed her the most.

Puneeth Nekkundi Somashekar
Delft, The Netherlands

17th August 2011

v

Contents

Preface v

Contents vii

List of Acronyms ix

1 Introduction 1

1.1 Cooperative Robotics . 1

1.2 Visual Simultaneous Localization and Mapping 2

1.3 Unmanned Aerial Vehicles . 3

1.4 Problem Statement . 4

1.5 Thesis contribution . 5

1.6 Thesis outline . 5

2 Related Work and Background 7

2.1 Related Work . 7

2.2 Background . 14

3 Aligning Point Clouds 23

3.1 Rigid body transformations . 23

3.2 The Iterative Closest Point Algorithm 25

3.3 Closed Form Solutions . 25

3.4 Discussion . 27

4 System Architecture and Implementation 29

4.1 System Architecture . 29

4.2 Implementation . 35

5 Experiments and Results 43

5.1 ARToolKitPlus marker identification range 43

vii

viii Contents

5.2 Accuracy of mappoints . 45
5.3 Factors affecting tracking in PTAM setup 47
5.4 Mappoint growth . 49
5.5 Aligning Maps . 50
5.6 Extension to ‘N’ maps . 54

6 Conclusions and Future Work 63
6.1 Conclusions . 63
6.2 Future Work . 65

Bibliography 67

List of Acronyms

CRC Cyclic Redundancy Check
DQ Dual Quaternions
EKF Extended Kalman Filter
FAST Features from Accelerated Segment Test
FEC Forward Error Correction
FPGA Field Programmable Gate Array
FPS Frames Per Second
GPS Global Positioning System
ICP Iterative Closest Point
IMU Inertial Measurement Unit
MAV Micro Aerial Vehicle
OM Orthonormal Matrices
PTAM Parallel Tracking and Mapping
PTAMM Parallel Tracking and Multiple Mapping
RANSAC Random Sample Consensus
SLAM Simultaneous Localization and Mapping
SVD Singular Value Decomposition
UAV Unmanned Aerial Vehicle
UQ Unit Quaternions
VTOL Vertical Take Off and Landing

ix

Chapter 1

Introduction

1.1 Cooperative Robotics

In practical application of robotics, such as rescue operations, detecting forest
fires, inspection of structures etc., having multiple robots would be beneficial.
Possible robot failures exist, either due to an internal issue (e.g., failure of
a sensor) or influence of the environment. In critical missions (e.g, rescue
operation) multiple robots can guarantee reliability of the system. Some tasks
such as exploration can be too complex for a single robot to accomplish. Other
tasks such as mapping of an environment can be accomplished faster with
robots coordinating with each other. In many cases, robots have inherent
weaknesses such as limited power onboard, effects of which can be mitigated
by deploying multiple robots. Building and using multiple low-cost robots can
be easier, cheaper and more flexible than having a single powerful robot to
perform a task.

Approaches to cooperative robotics can be broadly categorized into: (1)
homogeneous and heterogeneous, (2) swarm-type and intentional cooperation
[48] and, (3) hybrid cooperation. Robots in a homogeneous type are similar
whereas, the heterogeneous differ in type and abilities. An example for a
heterogeneous robotic team would consist of aerial and ground-based robots.
In case of swarm-type large number of robot are used for a task and typically
unaware of each others’ actions, whereas in intentional, robots are fewer and
interact with each other to be efficient at a task. Hybrid cooperation can
comprise of a number of combinations of the previous two categories.

With many benefits, cooperative robotics pose many challenges or we may
call them research opportunities. An early survey [49] outlines numerous re-
search areas within cooperative robotics. Figure 1.1 gives an overview of the

1

2 Introduction

Reconfigurable Robotics

Cooperative
Robotics

Learning
Object Transport and Manipulation

Communication

Localization, Mapping and
Exploration

Motion coordination

Architecture, Task Planning and
Control

Biological Inspirations

Figure 1.1: Research areas in Cooperative Robotics

survey. This research focuses on Localization, Mapping and Exploration area.
Localization is a process of estimating the location of a robot with respect
to a map, either a local or global map. Localization can also be relative
i.e. between agents. Localization is an essential requirement for a task to be
completed efficiently (e.g., mapping) and for intentional cooperation. Map-
ping involves gathering information from various sensors on a robot which is
representative of the environment, either 2D or 3D. Localization and Map-
ping are interdependent. Simultaneous Localization and Mapping (SLAM)
[18, 33, 43, 20] is a process where a robot incrementally builds a map of its
environment and localizes itself in the map at the same time.

1.2 Visual Simultaneous Localization and Mapping

Camera has become an important sensor in all forms of robots, from hobby
robots to large industrial ones. In many cases, it has become a primary sensor
for a robot. The two autonomous Mars rovers Spirit and Opportunity use
cameras for autonomously navigating and mapping the surface of Mars. The
advantages of a camera when compared to other 3D rangers (e.g., LIDAR,
Kinect sensor) is that its lighter, many times cheaper and has lower power
requirement. These have been the prime motivating factors to use camera as
the primary extroceptive sensor.

The Global Positioning System (GPS) is a satellite-based navigation system
made up of a network of 24 satellites. GPS was originally intended for military
applications, but later was made available for civilian use. GPS has been a

1.3. Unmanned Aerial Vehicles 3

Figure 1.2: ARDrone Quadrotor

default aid for autonomous navigation of robots outdoors. In GPS denied
environments (e.g., indoors), autonomous navigation of a robot is usually
made possible with vision or 3D range information of the surroundings. There
are several publications which address this scenario [4, 72], however, we focus
on Visual Simultaneous Localization and Mapping.

Visual SLAM aims at recovering camera pose as well as map visual feature
in the environment. A SLAM system which uses only a single camera is called
monocular SLAM [33, 20, 14]. In this research we use Parallel Tracking and
Mapping (PTAM) as the visual SLAM. Parallel Tracking and Mapping algo-
rithm is a monocular SLAM. PTAM does not use any inertial sensing, hence,
its also known as pure visual SLAM. It is a marker-less tracking system which
also works in an unknown environment. Along with camera pose estimation,
it also maps visual features in the environment.

1.3 Unmanned Aerial Vehicles

There has been a tremendous interest in autonomous Unmanned Aerial Ve-
hicle (UAV) for both military and civilian applications [25, 71, 41]. Quadro-
tor helicopters are a class of vehicles under Vertical Take Off and Landing
(VTOL) rotor-crafts category. It has two pairs of counter-rotating rotors with
fixed-pitch blades at four corners of the airframe. Quadrotors have become
indispensable in aerial robotics, typically have a span ranging from 15 cm to
60 cm. They are cheaper than their cousins, Micro Aerial Vehicle (MAV)
which have a span less than 15cm and weigh less than 100g and have low risk
of being seriously damaged (e.g., DelFly[15]).

Quadrotors are ideal mobile platforms in urban and indoor scenarios. They
are small enough to navigate through corridors and can enter structures through
windows or other openings and hence, make an excellent platform for surveil-
lance, aerial inspection, tracking, low altitude aerial reconnaissance and other

4 Introduction

applications.
Inspection of structures and searching for contamination in an environment

are some interesting applications where quadrotors have an advantage over
other robots. Quadrotors can easily navigate through a cluttered environment
and they’re capable of explore both indoors and outdoors.

Quadrotors come with their own set of limitations, namely, limited payload,
flight time and computational resources. Quadrotors are inherently unstable
and need active stabilization for a human operator to fly them. Quadrotors
are generally stabilized using feedback from Inertial Measurement Unit (IMU).
The active stabilization loop (low level control) can range from a simple im-
plementation on microcontroller [42] to a dedicated hardware implementation
on Field Programmable Gate Array (FPGA) [10].

Autonomous flight capability based on Computer Vision techniques (e.g.,
PTAM) require much more computational resource. Recently, more computa-
tion power is being packed onboard, e.g., Pixhawk Cheetah[50]. This platform
boasts a dual core processor onboard, in all other respects it is a flying laptop.
Considering vision based autonomous algorithms using major amount of com-
putational power, we want to keep our computational use to a minimum while
achieving real time performance and also allowing room for other applications
running onboard to interact with the environment.

1.4 Problem Statement

Consider a scenario where autonomous quadrotors have a visual SLAM al-
gorithm running to produce 3D map of point features in their own reference
frame. These agents do not need to be in communication range, though some
portions of their paths overlap.

The global map, which is a combination of map generated by the quadrotors
is a representative of the environment to be mapped. For aligning these maps
we must first establish a geometric relationship between them (a transforma-
tion). With the knowledge of transformation agents can share their 3D map,
further cooperate to map unexplored regions in the environment and improve
the global map. A consequence of aligning the maps of the quadrotors is that
they can localize each other in their maps.

The research questions answered in this thesis are:

• Can 3D mapping be achieved using a low cost quadrotor?
In literature, much of the work on 3D mapping using a quadrotor have
made use of expensive and specialized hardware. We would like to know
if 3D mapping can be achieved using an inexpensive consumer product.

• How are sparse noisy 3D world models aligned?
Previous work has made use of laser scanners to collect 3D information

1.5. Thesis contribution 5

which is usually dense and very precise. This work uses visual SLAM
which generates sparse noisy 3D data. We would like to know how such
noisy sparse 3D data can be aligned in computationally efficient manner.

• What are the possible system architectures for cooperative mapping?
Given that an environment can be mapped cooperatively with PTAM,
what are the possible configurations of the system with quadrotor as a
platform?

1.5 Thesis contribution

The contribution of this thesis is threefold:

• An important aspect of cooperative robotics is the use of multiple low
cost robots to do a complex task. For this reason, a low cost quadrotor
was chosen and the performance of the visual SLAM with this platform
was evaluated as a part of this thesis.

• For agents in a cooperative robotic mapping team to contribute to a
global map, it becomes necessary to bring all the agents into a common
reference frame. To this end, we propose a real-time and computa-
tionally inexpensive method to establish geometric relationship between
sparse world models produced by the visual SLAM using markers.

• We propose three architectures for cooperative 3D mapping based on
visual SLAM and characterize these architectures at high level. These
architectures address aspects such as communication, (computational)
power and payload capability of the platform.

1.6 Thesis outline

Rest of the thesis is organized as follows: In chapter 2, we start with a dis-
cussion on work related to cooperative 3D map building. It is followed by
background information on the platform used in this thesis, the monocular
SLAM PTAM and a discussion on marker based tracking systems.

Chapter 3 discusses techniques that are used for aligning point clouds and
we see how we can make use of markers as landmarks to align sparse point
clouds. In chapter 4, we identify functional blocks of an agent in the system
and configure them to form different architectures. It is then followed by an
implementation of a scheme.

Chapter 5 we evaluate the performace of the marker tracking system and the
monocular SLAM with the video stream from the onboard camera. We also
align two sets of scenes that origin from different agents using the technique
described in chapter 3. Finally, we end with some conclusions and future
work.

Chapter 2

Related Work and
Background

3D mapping of an indoor environment is a well researched topic and is ad-
dressed with a variety of solutions along with different combination of sensors
[12, 78, 7]. Generating 3D maps of indoor in real-time can be very useful espe-
cially in a rescue scenario, where the rescue worker can get an initial overview
of the situation. 3D mapping of an unknown environment by an autonomous
robot can be time consuming and a complex task. Cooperation among the
robots can potentially speed up and ease the task. Most research has been
focused on generating maps using a single quadrotor [19, 4, 77]. There are
two key issues to be addressed in the context of cooperative 3D mapping;(1)
creating a locally consistent map on the each of the robots and (2) combining
these locally built maps into a global map.

2.1 Related Work

We first investigate an early work on 3D cooperative mapping exclusively
using laser range finders targeting indoors. The visual SLAM PTAM has
been primarily used as localization system onboard a quadrotor [8, 1]. Weiss
et al. [77] use the 3D feature map and keyframes generated by PTAM to create
an intuitive map of the explored environment. However, they do not explore
application of PTAM for cooperative mapping or localization. A Kinect sensor
onboard a MAV is also an attractive option for dense 3D mapping of an indoor
environment. We look at one such application.

Occupancy grid map is a classic representation of a map in which a robot
assigns a x-y coordinate (in 2D) a binary occupancy value which indicates an

7

8 Related Work and Background

Figure 2.1: This picture show the 2D laser scanner and the 3D rotation mech-
anism on the robot [62].

object is present or not. Occupancy Grid Mapping[73] are a class of algo-
rithms in probabilistic robotics for mobile robots which address the problem
of generating maps from noisy and uncertain sensor measurement data, given
that the robot pose is known. In occupancy grid mapping, a map represents
a field of random variables, arranged in an evenly spaced grid. Each random
variable is binary and corresponds to the occupancy of the location it cov-
ers. Occupancy grid mapping algorithms implement approximate posterior
estimation for those random variables. It is a popular method to build maps
using robots [63, 73, 78, 40]

Ryde et al. [62] use multiple land based robots which cooperate to localize
each other and build a 3D global map of an environment. Ryde et al. uses
agents with a custom laser ranger setup and an algorithm that gives 3D data
(volumetric picture element or voxels) of their environment to build 3D occu-
pancy grid. The robotic team mapping the environment consists of two types
of robots: mapping robots and stationary robots. The mapping robots Figure
2.1 localizes itself in the environment using retroreflective (a surface which
reflects light with minimum scattering) cylinders used as beacons in Figure
2.2 and stationary robots. A stationary robot can be identified by the circu-
lar feature introduced by its retroreflective cylinders in the range data. By
locating this feature in range data, an exact position of the stationary robot
can be extracted.

Further, these stationary robots are uniquely identified as landmarks. The
challenge is to align successive laser scans and build a 3D map of the environ-
ment on the robot. This is done by locating two landmarks in a scan, the same
landmarks are identified in the subsequent scan. The change in pose is found
that is, its rotation and translation is found between the scan and added to
the global map. The robot can also use this information to localize itself with

2.1. Related Work 9

Figure 2.2: This figure show the retroreflective cylinders attached to the
robots. A stationary robot on the left can be located by robot on the right by
looking for a circular feature introduced by retroreflective cylinder.

respect to landmarks. This work has been extented further by incorporating
mutual observations of the robots.

An important contribution of Ryde el al. is use of agents as landmarks and
to do scan matching. This eliminates the need for successive scan matching to
create a global map, which is an expensive operation in terms of computation
power and memory. Using agents as landmarks can be useful in mapping
an unknown environment. Scan matching using agents as landmarks is only
suitable for land based robot as they can remain stationary for long periods
of time. The laser range finder and rotation mechanism would be too bulky
for a quadrotor.

Laser scanners can produce highly accurate geometric models of the envi-
ronment. Light weight 2D laser range finder[36] are available which can be
easily mounted on the quadrotors. Laser range finders onboard quadrotors
are being predominantly used for localization in 2D as well as mapping (2D
SLAM), obstacle avoidance and path planning[5, 27]. 3D map of an environ-
ment can be reconstructed by layering the 2D scan [4], however, these units
are expensive, consume a lot of power, and thus have a huge impact on the
flight time of the quadrotor.

Little et al. [40] present a system in which two robots sharing a world coordi-
nate frame build a 2D occupancy grid map. 3D information of the environment
is obtained using a calibrated stereo camera setup. Camera setup provides a
disparity image, difference of the two view of stereo camera. Brightness in the

10 Related Work and Background

Figure 2.3: The picture depicts a sample scene on the left. On the right is
the view of the scene through PTAM after being mapped. The color dots
represent the features in the scene which have been added to the map. [77]

disparity image indicate distance to object from camera. This image is then
compressed into 1D map consisting of maximum disparity versus image col-
umn called a radial map. With information from the radial map, occupancy
grids are updated. The edges found in the 2D occupancy grid called “corners”
are used for localization of the robot in the map. A specific pair of corners is
used as home base. The robots starts with initializing itself with respect to
a home base, hence, share the same coordinate frame. They exhibit a simple
cooperation by contributing their updates to a shared map.

Authors of [57] use stereo camera measurements on land-based robot to
build 3D occupancy grids of the environment and participating robots share
this information to efficiently explore an environment. However, they assume
robots are externally localized through a global localization system.

Weiss et al. [77] use the visual SLAM PTAM to build a 3D mesh of the
environment using point features, which is then textured to give an intuitive
feel of the environment to the user. Weiss et al. also use PTAM with a Linear
Quadratic Gaussian Controller with Loop Transfer Recovery (LQR/LTR) [8]
for autonomous (trajectory following) vision based navigation onboard. Our
work can be considered as an extension to the autonomous setup used in this
work, essentially adding more agents and enabling cooperation among them
for mapping.

Weiss et al. use the sparse 3D point cloud from PTAM to create a 3D mesh.
The mesh generated is proposed to be used for autonomous obstacle avoidance.
This can be accomplished by preventing the quadrotor from flying through the
mesh. In Figure 2.3 a scene is mapped by PTAM, the color pixels represent
features which have been added to the map. First step in the process is to
project the 3D points generated by PTAM on to a main plane [77] to reduce
the dimensionality. Reducing dimensionality brings down the computational
time. Delaunay Triangulation [67] is run on these points to generate a 2D
mesh. The third dimension is then added using only the edge information

2.1. Related Work 11

Figure 2.4: The point cloud on the left is the result of the scene in Figure
2.3 being mapped by PTAM. On the right, the point cloud is then meshed.
Notice the elevation in the mesh, this is due to the keyboard in the scene. [77]

Figure 2.5: The 3D mesh is then textured with keyframes from PTAM, on the
left with low and on the right with high resolution image. [77]

of Delaunay Triangulation. Once the 3D mesh is ready, the keyframes from
PTAM are then used to texture the surface of the mesh (Shown in Figure 2.5).
Mesh generation and texturing is done off-board on a 2GHz dual-core laptop
in real-time, which also runs the visual SLAM.

Kinect sensor[65] is an inexpensive sensor from recent times that is capable
of providing accurate 3D range information using a continuously-projected
infrared structured light (a known pattern of pixels). Figure [2.6a] shows
a quadrotor with kinect onboard developed by the Robust Robotics Group,
MIT[56]. Visual odometry is a process of deducing camera pose relative to
incoming images, this is done onboard in real time and is used along with IMU
to control the quadrotor. This enables fully autonomous navigation in GPS
denied environment. Kinect in addition to providing depth information for
every pixel of camera frame also provides primary color values per pixel (Red,
Green and Blue). The combination of primary colors and depth map is referred

12 Related Work and Background

(a)

(b) (c)

Figure 2.6: (a) shows the quadrotor with Kinect onboard. (b) and (c) 3D
model of a scene created using the RGBD information form kinect.

to as RGBD. A SLAM which uses this is referred to as RGBD-SLAM. This
involves extracting features common to two pairs of successive RGB images,
obtain 3D transformation using Random Sample Consensus (RANSAC) and
align the depth information. The RGBD-SLAM in this setup is done off-
board meanwhile relaying corrections in position to quadrotor and maintain
global consistence. Figure 2.6b and 2.6c show the results of RGBD-SLAM.
The results of this implementation are yet to be published.

2.1. Related Work 13

Discussion

Most of the cooperative mapping schemes have been aimed at 2D environments
[16, 40, 53]. Cooperative indoor 3D map building has been demonstrated only
on land-based robots using laser scanners [62, 72] and also with a stereo camera
setup [57]. We can conclude that not much work has been done with respect
to cooperative indoor 3D mapping.

As memory usage increases with the increase in resolution of the grids,
memory cost becomes a general concern with occupancy grids. Computational
and memory costs increase beyond the limits of real-time performance often
in case of 3D. Exchanging large occupancy maps among agents can also pose
problems.

For a platform like a quadrotor with payload and power restrictions, laser
scanners are generally not an option. A stereo camera setup has been used
for visual odometry in unstructured environment [4], however, it does address
the issue of creating 3D maps with stereo cameras. The stereo camera rig can
also pose problems for a quadrotor with payload restrictions. Also, authors
of [4] use laser scanner for creating 3D map of the environment, but do not
explore cooperative 3D mapping.

A camera is an ideal sensor for a quadrotor as it is light and requires little
power. In recent times, significant progress has been made by the computer
vision community with respect to dense 3D reconstruction in real-time using a
monocular camera. Authors of [70, 44] have shown that a dense depth map of
a scene can be produced using only a monocular camera. However, it involves
huge computational costs.

A monocular SLAM like PTAM can generate sparse 3D map of features in
the environment in real time with modest computational requirement. Ex-
changing map information is also easy as map data only consists of a point
cloud and is sparse in nature. Along with a monocular SLAM, the combina-
tion of camera and quadrotor is inexpensive in generating indoor 3D maps.
With a cooperative effort we can map an environment in greater detail.

14 Related Work and Background

Figure 2.7: Parrot ARDrone

2.2 Background

ARDrone

The ARDrone quadrotor (called a drone) from Parrot[2] is a consumer grade
product which is low cost and easy to use. It comes with an “indoor hull”,
which covers the propellers and can therefore be safely used indoors. All parts
of this quadrotor are replaceable including the onboard computer. It is well
built and can survive some serious crashes.

The onboard computer is Wi-Fi enabled, which makes it easy to control the
quadrotor with any Wi-Fi enabled devices such as smart phones, tablets and
PCs. The firmware and hardware onboard are closed. However, it comes with
a Software Development Kit (SDK) which gives easy access to sensor data and
control software onboard. The software development kit has been continuously
evolving since its initial release. There is an active community[51] of users and
developers.

2.2. Background 15

ARDrone SDK

ARDrone being a consumer product is aimed at augmented reality games. The
ARDrone SDK provides necessary tools and resources to create an augmented
reality or a control application. Targets include Linux, Windows and iOS.
The SDK is written in C, but designed using object oriented paradigm, which
makes it difficult to modify low level features of the SDK. Figure 2.8 gives an
overview of integrating custom code into the ARDrone SDK 1.5.

ARDrone SDK takes over the task of setting up a connection to the drone
once the user joins the ad-hoc Wi-Fi network of the drone. The function
ardrone tool setup com() sets up a TCP connection to the drone from the de-
vice where the application is running. This connection is used for for sending
critical data to the drone and receive heartbeat signal from it. UDP con-
nections are used for sending attitude commands, receiving video frames and
sensor data. ardrone tool init() initializes the internal objects which pack and
unpack data to and from the drone. At the core of the application, three
threads handle user input, telemetry data and video frames receive events.
For more details refer the developers guide [17].

Hardware specifications

Actuators: Four brushless motors (35,000 rpm,15W)

Embedded Computer: ARM9 468 MHz DDR 128MB 200MHz
Wi-Fi b/g enabled

Operating System onboard: BusyBox v1.14.0 Linux v2.6.27.47

Onboard sensors: 3 axis accelerometer
2 axis gyrometer
1 axis yaw precision gyrometer
Ultrasound Altimeter

Forward looking camera: 93 degree wide-angle diagonal lens

Downward looking camera: 64 degree diagonal lens

Battery: Lithium polymer battery (3 cells, 11,1V, 1000 mAh)

The onboard computer uses the inertial sensors (accelerometer and gyrome-
ters) for stabilization (low level control) along with downward looking camera
which provides velocity estimates of the quadrotor in XY plane of the quadro-
tor body-fixed frame using optical flow. The flight time of the quadrotor is
poor (only 9 min). The drone may drift a lot on some surfaces in which case

16 Related Work and Background

Event
Loop

main()

Application Execution Terminates

ardrone_tool_setup_com()

ardrone_tool_init()

ardrone_tool_shutdown()

ARDrone SDK Custom Code

User Input Event Handler

Video Frame Received
Event Handler

Navdata Receive Event
Handler

Figure 2.8: Custom Code Integration into ARDrone SDK

placing some newspaper with features may help.
ARDrone being an inexpensive product is at the low end of the quadrotor

market spectrum. Mid-range quadrotors such as Mikrokopter [42] offer much
more flexibility in hardware and performance. High end of the market includes
platform such as [71, 25, 41] which are widely used in many quadrotor research
laboratories (e.g., [35, 66]) around the world. ARDrone quadrotors are easy
to work with and does not require much effort during initial setup.

Parallel Tracking and Mapping (PTAM)

There have been many projects around monocular SLAM, some of the inter-
esting ones are MonoSLAM[14] the very first one; Eade et al.[20] and Parallel
Tracking and Mapping[33]. The MonoSLAM is based on Extended Kalman
Filter (EKF) SLAM[69], while Eade el al. based their’s on FastSLAM2.0[43].

The main feature of PTAM algorithm [33] is that the simultaneous local-
ization and mapping has been split into two parallel threads, Tracking and
Mapping. Most modern processors have at least two cores, hence, it is possible
to run each of these threads on a core.

2.2. Background 17

Tracking thread tracks features in the incoming frames and estimates the
pose the camera. A select few frames called keyframes are passed over to
mapping thread, which triangulates point features in these images and builds
a 3D map. Separation of tracking and mapping enables each of the threads to
run at a different rate. The tracking thread runs at the rate of incoming frames
(upto 30 Hz). While the slow mapping thread runs at a much slower rate,
since much of the information between two successive frames is redundant.
The map generated by PTAM consists of a collection of point features located
in a world coordinate frameW. Each point feature represents a locally planar
textured patch (8x8 pixels) in the world. The jth point in the map (pj) has
coordinates (xjW yjW zjW), a collection of such points is commonly referred
to as point cloud.

Computer vision terminologies

Before we look into the working of the PTAM algorithm, we need to under-
stand a few computer vision terminologies. For more detailed description refer
to [28].

Camera calibration is a process of finding the true parameters of the
camera that produced a given image which includes finding focal length of the
lens, true camera image center and others. Camera calibration is a necessary
step to extract 3D information from 2D images.

Essential matrix relates to corresponding points in a stereo pair (images
of a scene from two different views) and is used to determine both the relative
position and orientation between the camera views and the 3D position of
corresponding image points, given that the camera is calibrated.

Image Pyramid is a multi-scale representation of an image in which image
is subjected to repeated sub-sampling in resolution to create different levels
with an application of filter if required. If the full resolution of the frame is
640x480 then this is called level 0. The original frame is further sub-sampled
to 320x240, 160x120 and 80x60 for a four level representation.

RANSAC is an iterative method to estimate the parameters of a certain
model starting from a set of data contaminated by large amounts of outliers.
It was first conceived to solve Location Determination Problem (LDP) [24],
where we determine that point in space from which an image was obtained,
given that we know the locations of a set of landmarks.

Triangulation is a method to determine a point in 3D space given that we
know the projections of the point on two, or more, images.

Initialization of PTAM

The camera was first calibrated using an application which accompanies the
source code of PTAM. For the tracking thread to start a map has to be first
initialized, essentially to establish an origin in the environment. The initial

18 Related Work and Background

map is build using a stereo pair. User must first hold the camera against a
planar textured surface, on pressing a key PTAM picks up the most prominent
2D image patches in the current frame (first keyframe) and tracks them in the
subsequent frames. When user presses a key again after translating the camera
while making sure the 2D image patches are not out of the frame, this frame
is recorded as second keyframe. The two keyframes provides two views of
the same features. By applying five-point algorithm and RANSAC [24] on
these corresponding features an essential matrix is obtain. These features are
then triangulated and a base map is created. A plane is fit through these
points using RANSAC, which is called the dominant plane. This map has the
camera at the center of the origin. It is then rotated and translated to have
the dominant plane at Z = 0. This plane does not play any special role in the
system, but only used in augmented reality application.

Figure 2.9 shows how PTAM is initialized. The grey wireframe seen in
Figure 2.9b represents the dominant plane.

Tracking

PTAM tracks the pose of the camera with respect to the reference frame as
shown in Figure 2.9c and 2.9d. Tracker (tracking thread) can estimate the
pose of the camera by tracking feature points (mappoints) that are present in
the map to those in current frame. Features are detected at two scales: coarse
and fine scale. Based on a motion model (decaying constant velocity [33])
tracker first projects possible locations of small set of mappoints which are
present in the stored map (a coarse estimate) on to the current frame. Using
the coarse estimate camera pose is updated. A larger set of features are then
projected on to the frame and searched. With this information pose is further
refined and updated. Using a motion model to estimate possible location of
features in a frame is easier and faster than doing an exhustive search.

For tracking, the incoming RGB images are converted to 8 bits per pixel
grayscale images. An image is reconstructed into a four levels image pyramid.
PTAM uses Features from Accelerated Segment Test (FAST) [59] corners as
interest points. A patch of 8x8 around these corners is used for feature match-
ing.

Mapping

After map initialization, new keyframes and new feature points are added
to the map as the camera moves over unexplored space. New keyframes are
inserted into the map based on these heuristics [33]:

• Tracking quality should be good i.e. at least 50% of the features are
being tracked.

• It has to be more than twenty frames since last keyframe was inserted.

2.2. Background 19

(a) (b)

(c) (d)

Figure 2.9: Initialization of PTAM: (a) 2D image patches being tracked dur-
ing translation. (b) Mappoints are initialized and base map is created. (c
and d) These figures shows the view of base map. The colored lines in the
picture represents the current position of the camera with respect to the world
coordinate frame. The colored dots represent the feature points.

• The camera must be at a minimum distance away from a nearest key-
point already in the frame.

Tracking thread would have passed over a keyframe (when above condi-
tions are met) with pose estimate. However, not all observed features would
have been used to update the pose in tracking thread, so mapping thread
re-projects the feature points, calculates pose and includes additional mea-
surements. FAST corners calculated by tracking thread are further narrowed
down to a set of salient feature points based on Shi-Tomasi[68] score. Only
new feature points are selected as map points while discarding existing ones.
Depth information of the new map points has to be estimated, which is done
by triangulation with another keyframe already in the map.

PTAM uses bundle adjustment technique to refine the map, a batch op-
timization which is computationally expensive but highly accurate. Bundle
adjustment essentially minimizes the re-projection error of mappoints and

20 Related Work and Background

the corresponding observations in keyframes by minimizing a robust cost
function[33] based on image errors. Bundle adjustment is done at two lev-
els global and local. A global bundle adjustment is done for all the keyframes
and all the map points in the map, which is time consuming. Global bundle
adjustment is handy when camera is not exploring but it becomes rather re-
stricting when new keyframes are added in quick succession, which is often
the case. For this reason, local bundle adjustment is included which applies
the technique to a subset of recent keyframes and associated map points. The
map is also further improved using data association refinement. This is only
done when bundle adjustment has converged and camera is in a well explored
region. Here new measurements are made in old keyframes and outliers are
reassessed.

Another important component of this tracking system is the relocalizer.
When tracking fails, relocalizer attempts to localize the camera in the map.
This relocalizer implementation exploits the relatively dense distribution of
keyframes. A descriptor for each keyframe which is a four level image pyramid
of the keyframe with Gaussian blur applied to each level is created. When
tracking fails relocalizer compares keyframe descriptors against the current
camera image. If a match is found, tracker is reset to that position in the
map. During experimentation pf PTAM with video stream from the drone, it
was noticed that when the keyframe distribution was minimum, relocalization
was not very successful and had reset the tracker to a wrong location in the
map and tracking continued from wrongly initialized position.

The important feature of PTAM is that it works even in an unknown envi-
ronment. PTAM takes advantage of large number of feature point to create
accurate maps using local and global batch optimization. PTAM does not deal
with uncertainties be it features, map, or pose, which becomes an overhead in
most cases. It is also robust against partial camera occlusion (at least 50% of
features should be visible). It is a pure visual SLAM without the need for any
inertial sensing. Both EKF and particle filter [52] scale poorly with number
of feature points in the map. They can only handle a few dozen points in the
map. [33] estimate PTAM’s practical limit is around 6000 feature points and
150 keyframes. This project is open source, which makes it attractive and has
an active community of users involved in it.

Marker-based Tracking

Optical tracking of an object in a scene or tracking a camera in a scene is a
widely researched area. Optical tracking of an object can be 2D (within the
camera frame) or 3D pose (with respect to a reference frame). In augmented
reality, an essential task is to estimate 3D pose of the camera with respect to
its scene, in order to project virtual objects in the scene. Similarly for precise
control of a autonomous robot, location information is vital. If the camera and
robot’s reference frames coincide (or relationship between them are know), we

2.2. Background 21

Figure 2.10: A Matrix Marker Figure 2.11: A CyberCode Marker

can apply solutions from this area to solve localization problem.
Fiducial or fiduciary marker is an object placed in a scene, used as point

of reference or measurement for an imaging system. Fiducial image or more
commonly referred to as Fiducial marker-based tracking systems are popular
among augmented reality enthusiast [54, 32, 55, 75, 23]. Fiducial marker-based
tracking systems are not just limited to the augmented reality circle, it has
made its way into aerial robotics[60, 50] as well. Experimental results from Lee
et al. [37] have shown that marker-based solution for visual pose estimation of
quadrotor is quite reliable. Some of the passive fiducial marker-based tracking
systems are discussed next.

Rekimoto [54] was the first to develop a Binary encoded marker called Ma-
trix Marker. The rationale behind using binary encoded information in the
marker was to have large number of possibilities (216 combinations are possi-
ble) and accurately identify each of them, which included an error check. De-
sign of the marker involves a square black border (called the 2D-code frame)
and a combination of white and black squares in the interior. These square
are encoded with the binary data used to identify the marker. On detection,
the binary data is decode by sampling the code area of the marker. ID of the
marker is obtained after performing error check on decoded data.

A successor to Matrix from Rekimoto was dubbed CyberCode [55]. The
basic design of the marker was changed. 2D-code frame was removed and a
guide bar was used as an aid for detection. Four black squares on the corners
of 2D-code frame were left to recover pose while blocks around these were
left with white squares, rest of it being part of the code. It is possible to
concatenate two markers (in order to encode more information on the same)
by having binary data on two sides of the guide bar.

On similar lines to Matrix, ARToolKit a software library for marker tracking
was created by Kato et al., in a framework for augmented video conferencing[32].
Marker consisted of a black frame and outer corners of the frame were used
for pose estimation of the camera similar to Matrix. Instead of binary data
in the code area, any arbitrary pattern can be used. The marker is identified
using template matching. Once the pose of the marker is estimated, the in-
terior of the marker is compared against a set of templates in memory. This

22 Related Work and Background

Tracking System Robustness Identification Source Code

Matrix - Binary Encoding Not Available

CyberCode - Binary Encoding Not Available

ARToolKit - Template Matching Open

ARTag ++ Binary Encoding Closed

ARToolKitPlus + Binary Encoding Open

Table 2.1: Comparison of Fiducial maker Trackers

immediately becomes a problem, since loading large number of markers needs
more memory and comparisons, while increasing inter-marker confusion. The
software library is open sourced and is very popular.

ARTag[23] markers developed by Fiala used digital encoding theory to make
identification more accurate and reduce inter marker confusion. Among all the
marker system discussed here, only ARTag is capable of handling partial oc-
clusion of the marker edges. Grayscale thresholding technique for detecting
markers used in ARToolKit would fail when a marker is not uniformly illumi-
nated. ARTag uses edge detection; edge pixels are thresholded and linked into
segments. This potentially mitigates the effects of non uniform illumination
of markers. Forward Error Correction (FEC) and Cyclic Redundancy Check
(CRC) is performed on the data decoded from the marker. ARTag provide
2002 makers, this set was chosen to maximize Hamming distance (number of
bits that differ in two binary code) between them.

ARToolKitPlus[39] is an improved version of ARToolKit, developed specif-
ically for mobile devices[75] like Smart phones, PDAs etc. ARToolKitPlus
essential wraps ARToolKit pose tracking library into a Class-based API (in
C++). Owing to its object oriented nature, ARToolKitPlus is capable of
tracking multiple markers, while not affecting tracking performance. AR-
ToolKitPlus uses marker inspired by ARTag[23]. A robust pose estimation
algorithm[64] has been used to improve pose estimation and reduce jitters. It
also features automatic thresholding for marker detection, which mitigates the
effects of non-uniform illumination of marker. In addition to template based
matching similar to ARToolKit, it also has simple id markers (512 combina-
tions) and BCH [9] coded markers with built-in FEC (4096 combinations).

From table 2.1 it is clear that ARTag is more robust in terms of detection,
identification and can handle partial occlusion, however, it is a closed project.
Though ARToolKitPlus does not offer the same level of robustness, it offers
good performance (in terms of memory and computational speed) and being
open sourced[46] makes it our choice.

Chapter 3

Aligning Point Clouds

Aligning sets of 3D data is an essential and basic problem being tackled in
Computer Vision as 3D-3D Registration Problem. Most common method used
to tackle this problem is Iterative Closest Point (ICP) algorithm[6]. Primarily
ICP is used for 2D/3D reconstruction from multiple scans of 2D/3D scanners.
It is often used in robot localization. There are numerous variation[61] of the
algorithm addressing a variety of scenarios, however, there are some inherent
shortcomings which we discuss in the coming section. First some theoretical
concepts are presented.

3.1 Rigid body transformations

A rigid transformation or Euclidean transformation is function from and to
Euclidean space which preserves distances between the points[26]. A point
cloud is an example of rigid body, wherein distances between the points are
preserved. All rigid body motion in Euclidean space can be expressed in the
composition of translation and rotation. Hereafter we deal only with three
dimensional Euclidean space.

Consider a point p in 3D space whose coordinates are (px, py, pz). A homo-
geneous vector representation[28] is given by

p =


px
py
pz
1


Rotation is represented by a 3 x 3 matrix, part of special orthogonal group

which have a determinant +1 [13]. If a rigid body is rotated by an angle θ on

23

24 Aligning Point Clouds

each axis, rotation matrix for each case is given by

Rx =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 ,Ry =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 ,

Rz =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 .
Where Rx,Ry,Rz, represent rotation matrix on x, y, z axis respectively.

Rotation and translation together are represented as transformation matrix
(T), which is a 4 x 4 matrix of the form

T =

[
R t
0T3 1

]
where R is a 3 x 3 Rotation matrix and t is 3 x 1 translation vector.

Inverse of transformation matrix is give by

T−1 =

[
RT −RT t
0T3 1

]
If a point q is a result of applying a rotation (R) and translation (t) on a

point p, it can obtained by

q =

[
R t
0T3 1

]
p

Point p can be transformed back given a rotation (R) and translation (t)
to q

p =

[
RT −RT t
0T3 1

]
q

Consider this example where we register a data set P = {p1...pNP
} from a

scanner on to a model X = {x1...xNx}. We have to find a transformation (T)
which minimizes the error between every transformed point in X

′
= TP to

that in X, which can be expressed as

min
R,t

N∑
i=1

‖xi −Tpi)‖2 (3.1)

This problem is referred to as Procrustes problem and explored widely in
statistics.

3.2. The Iterative Closest Point Algorithm 25

Algorithm 3.1 Iterative Closest Point

Input: X, P, Tinitial

Output: T
1: new error = MAX VAL
2: T = Tinitial

3: repeat
4: error = new error
5: P′ = transform(T, P)
6: closest points = return closest points(P′, X)
7: (T, new error) = estimate alignment(P, closest points)
8: until (new error − error) < threshold

3.2 The Iterative Closest Point Algorithm

ICP is used to align the 3D scans of an object with models. ICP primarily
tries to minimize the difference between two given surfaces in an iterative way.
We can summarize the classic ICP [6] in Algorithm 3.1.

ICP starts with assuming the closest points between the two 3D point sets
as corresponding points and and that every point has a corresponding match.
In the algorithm 3.1, estimate alignment() estimates transformation between
the two sets by least-square fitting. The data points are rotated with the new
estimate and iterated over till a required error metric is reached. A good initial
alignment estimate is a necessary condition for ICP to converge to a global
minima efficiently. ICP is not robost againt outlier in the data set. A robot
with a 3D scanner (for e.g. Kinect sensor) which is capable of producing dense
3D scans at a high rate, significant overlap between successive scans is possible
in which case ICP is useful. For dealing with partially overlapping scenes with
such 3D scanners, a simple distance threshold can be used to discard point
correspondences. In general, ICP is very useful for a local registration problem,
wherein we align successive scans.

If we can establish a precise point correspondences between few points in P
to those in X, we can find a transformation using a closed form solution and
eliminate the iteration.

3.3 Closed Form Solutions

ICP requires a good estimate of an initial alignment, without which it may get
trapped in local minima. Getting a good estimate is not trivial in many real
world cases. In addition, a possibility of ICP not converging also exists. On
the other hand, closed form solutions do not suffer from these, offer efficiency
and robustness. Establishing point correspondences between two point sets is
a primary problem. Keyframes from PTAM present a possible way of estab-

26 Aligning Point Clouds

lishing 2D correspondences in the images which can inturn be translated to
correspondences in point clouds, however, this is expensive in terms of com-
putation and does not scale well. Placing markers (for e.g. ARToolKitPlus)
to establish point correspondences is a viable option, keeping computation
constraints in mind. Given a set of point correspondences, it is possible to
determine the relationship between the two point sets, a problem referred to
as absolute orientation [21] using a closed form solution.

A survey by [21] lists some of the major closed form solutions for and up to
three dimensions which are based on:

• Singular Value Decomposition (SVD) [3]

• Unit Quaternions (UQ) [29]

• Orthonormal Matrices (OM) [30]

• Dual Quaternions (DQ) [76]

Authors present a through analysis of the algorithms and a comparison
based on accuracy, robustness and stability. They concluded pointing that
for all real world applications, these solutions offer the same level of stabil-
ity and accuracy, with execution time being the only distinct factor among
them. Given that LAPACK[47][38] is already used in the PTAM environ-
ment, obtaining SVD is simple. This made SVD based closed form solution
an attractive approach.

The following steps shows how to obtain transformation using SVD algo-
rithm (P to Q) of two sets of 3D point correspondences P and Q of size N
(here,P, Q are 3 x N colum matrices).

1. Obtain centroids of the two sets. p = centroid(P), q = centroid(Q)

2. Center the two point sets at the origin. pi
4
= P − p, qi

4
= Q − q

3. Obtain a 3x3 matrix H, H
4
=

N∑
i=1

piqi
t

4. Compute SVD of H, (U, V) = SVD(H)

5. X = V U t

6. if determinant(X) = +1, R = X, t = q − Rp

7. if determinant(X) = -1, X is not pure rotation but also includes a
reflection. In this case multiply third colum of matrix U by -1 and then
compute X ′. R = X ′, t = q − Rp

3.4. Discussion 27

3.4 Discussion

ICP is useful for local registration problems wherein we align successive scans
or in situation where a good initial estimate is available. In literature, most
ICP variants are tested with 3D data sets generated from laser scanner which
are dense and very precise, however, this is not the case with PTAM where
the 3D data is sparse and noisy. In addition, when robots are deployed from
different regions and start mapping the environment, it may not be possible
to obtain an initial alignment for the maps generated.

For establishing correspondence using keyframes, the views of the keyframes
must first match. If the number of agents involved in mapping is large, finding
a matching view among all the agents and then establishing correspondences
by exhaustive search is a computationally expensive operation.

Aligning sparse point clouds which have very few point correspondences
among them can be impossible without user intervention, unless those point
correspondences are known. With the knowledge of point correspondences,
transformation can be obtained using a closed form solution like the SVD
based solution.

ARToolKitPlus marker system provides 4096 unique marker IDs and detect-
ing the marker in keyframes is computationally inexpensive. By placing these
markers in the environment to be mapped, precise point correspondences can
be established between the two point clouds generated by robots using PTAM
and can be aligned using a closed form solution.

Chapter 4

System Architecture and
Implementation

With a visual SLAM like PTAM a quadrotor can navigate through a clut-
tered indoor environment and also create a sparse 3D world model of the
environment. By deploying a swarm of quadrotors, we can map a large envi-
ronment in parallel, to obtain greater details of the environment. The previous
chapter introduces a possible way of aligning sparse world models generated
from multiple quadrotors. With the knowledge of alignment, quadrotors can
share their world models and localize each other on them. This chapter first
presents a high level description of possible system architectures for mapping
using multiple quadrotors and is followed by an implementation of a scheme.

4.1 System Architecture

In order to create a 3D map of an environment cooperatively, it is important
to first create consistent local maps on each of the agents. PTAM can create
a 3D map of feature points (FAST corners[59]) on each of the agents in the
environment. These local maps can be aligned into a global map using the
technique described in chapter Aligning Point Clouds, either centrally on a
ground station or on agents themselves. An outcome of aligning these point
clouds is that we can localize these agents on a global map.

The system consists of agents (quadrotors), which have a camera, additional
sensors, communication capability and onboard computational resource. If
agents have enough computational resource, they can have PTAM and AR-
ToolKitPlus marker detection (ARTP) running onboard. The system includes
a high-level controller (HLC) which is responsible for the motion coordination

29

30 System Architecture and Implementation

Quadrotor

Low level
control

Video
Acquisition

Communication

Other Sensors

PTAM

High level
control

ARTP

Onboard or off-
board components

Figure 4.1: This figure shows the functional blocks of an agent

of the agents. An agent in the system can be decomposed into functional
blocks as shown in Figure 4.1.

Based on these functional blocks the following configurations of the system
are possible:

1. Centralized coordination with PTAM off-board: In this case, the
agents mainly function as video source and PTAM is run off-board on
a computationally powerful ground station. This architecture requires
continuous high communication bandwidth since all agents are required
to transmit video to ground station. Only enough computation resource
is packed onboard the quadrotor to stabilize and control it. The marker
detection (ARToolKitPlus) is also run on the ground station in tandem
with PTAM to establish point correspondences and align the 3D maps.
Agents can be easily coordinated from the ground station once these 3D
maps are aligned. This architecture is suitable when number of agents
in the system is low (two to three).

In Figure 4.2, each of the quadrotors transmit their video stream over
a wireless link to a ground station. On the ground station, multiple
PTAM processes are instantiated and each handles a video stream to
generate a 3D world model. The PTAM processes broadcast the point
correspondences to each other when markers are detected. When all
the markers in the environment are found one of the maps generated
is choosen as a global map and all mappoints from other agents are
incorporated into it. Here the agents are coordinated centrally by the

4.1. System Architecture 31

high-level controller running on the ground station.

2. Centralized coordination with PTAM onboard: The agents in
this architecture have enough computational resource to run PTAM
and ARToolKitPlus marker detector onboard. They only transmit 3D
points from the map they build either as a steady stream or in bursts
to the ground station. This requires only a fraction of bandwidth when
compared to the previous case. When a marker is detected, point corre-
spondences are established and transmitted to the ground station. Maps
from all the agents are collected and aligned in the ground station. Co-
ordination still takes place centrally on the ground station.

Figure 4.3 shows PTAM algorithm running onboard the platform to gen-
erate 3D world model. The mappoints from world models on agents are
transmitted to the ground station where one of the maps generated is
used as a global map and mappoints from other agents are then incorpo-
rated into it when the transformations are computed. Since marker de-
tection takes place on the quadrotors, alignment of maps on the ground
station is suspended till markers are located by agents. On receiving
point correspondences from all the agents the ground station computes
the transformations of the maps from individual agents to the global
map.

3. Decentralized coordination with PTAM onboard: It is also possi-
ble to eliminate the central component completely by having distributed
algorithm for coordination running on these agents. Agents only need
to broadcast their 3D point cloud and point correspondences established
from the markers. This also requires minimum communication among
the agents, which can be done in bursts, but needs to be coordinated.
Each agent can incorporate the map of another simply by computing
the transformation using the point correspondences and transform the
point cloud to its reference frame. This architecture is highly scalable.

Figure 4.4 shows the schematic representation of the decentralized co-
ordination architecture. In Figure 4.4 each agent has enough computa-
tional power to run PTAM and create a world model. Agents can be
deployed from different regions. Agents who come in communication
range and have established a transformation can exchange world models
and can cooperate with each other. Due to the distributed nature of
coordination, agents can form groups based on either pre-planned direc-
tives or ad hoc when they come in communication range and cooperate
to explore the environment.

The choice of architecture depends on the following factors:

32 System Architecture and Implementation

PTAMxPTAM1

QuadrotorxQuadrotor2Quadrotor1

WxW2W1

World

WxW2W1

ARKP ARKP

World
Model1

World
Modelx

Global Map

PTAM2

ARKP

World
Model2

MMM

T1G

T2G TxG

Ground Station

Video Stream

Wireless Link

Wireless Modem

HLC

Figure 4.2: Schematic representation of centralized coordination with PTAM
off-board

Communication Requirements

For a video stream which has a pixel resolution of 640x480 at 30 Frames
Per Second (FPS) transmitting grayscale (8 bits per pixel) images without
any compression, would require a bandwidth of 73.728 MB/s. A compres-
sion standard like JPEG can achieve an average compression of 5:1 [22] on
a grayscale image (at the threshold of visible loss). With this compression,
bandwidth requirement for the video stream can be brought down to 15-20
MB/s. A 3D point in the map is represented by a 3-tuple of floats (32 bits per
float). A map with 147 frames would contain around 4000 mappoints which
translates to 48 KB of data.

4.1. System Architecture 33

World

WxW2W1

ARKP ARKP

World
Model1

World
Modelx

Global Map

ARKP

World
Model2

MMM

T1G T2G TxG

Ground Station

Wireless
Link

Wireless Modem

3D point data

PTAM1

Quadrotor1 Quadrotor2

PTAM2 PTAMx

Quadrotorx

HLC

Figure 4.3: Schematic representation of centralized coordination with PTAM
onboard

Computational Aspects

On a PC with Intel Core 2 Duo 2.66 GHz processor running Linux [33] with
a video source of resolution 640x480, on an average tracking thread of PTAM
takes 20ms for a frame (about 50 FPS). The computational effort in the track-
ing thread is proportional to the number of the features being tracked. By
increasing the threshold in the FAST corner detection and the Shi-Tomasi
score, we can control the number of features being tracked. The required Shi-
Tomasi score and threshold of FAST corner detected for a given number of
mappoints has to be computed empherically by extensive experimentation.

Increasing the pixel resolution of the video stream does not necessarily im-
prove robustness of tracking. Increased pixel resolution certainly requires more

34 System Architecture and Implementation

T23

W3

W1

W2

W4

M

ARKP

WORLD

World Model1 World Model2 World Model3 World Modelx

ARKP

Quadrotor1

PTAM1

ARKP

Quadrotor2

PTAM2

ARKP

PTAM3

Quadrotorx

PTAMx

M M M

T12 Tx-1 x

Quadrotor3HLC2HLC1
HLC3 HLCx

Figure 4.4: Schematic representation of decentralized coordination with
PTAM onboard

effort in corner detection and requires more memory. Sub-sampling the video
stream pixel resolution to 640x480 pixels and using this in PTAM can be an
option. Enough features can be extracted with this pixel resolution for robust
tracking. Another influence on computational requirement is the number of
image pyramidal levels of a frame used by the tracking and mapping threads,
by reducing the number of levels, we can bring down the computational re-
quirement.

Mapping has two expensive operations, Local and global bundle adjust-
ments. For a map with 100 to 149 keyframes, Local bundle adjustment takes
440ms and Global bundle adjustment takes 6.9s, while keyframe insertion
takes about 40ms. ARToolKitPlus tracker requires 0.43ms on an average to
detect a single marker. Global bundle adjustment operation’s worst case com-
putation complexity is O(N3), where N is number of keyframes in the map.
Local bundle adjustment computational complexity also scales with map size,
but at O(NM), where M is the number of mappoints in the map. Figure 4.5
summarizes the communication versus onboard computational requirement
for the three architectures.

4.2. Implementation 35

Centralized
with off-board

PTAM

Centralized
with onboard

PTAM

Decentralized
with onboard

PTAM

Onboard computational
Requirement

C
o

m
m

u
n

ic
at

io
n

R

eq
u

ir
em

en
t

Figure 4.5: Communication vs Computation requirements for different con-
figurations

Payload capability and onboard power of the platform

Payload capability of the platform is crucial as it influences other factors in the
architecture. If the platform is capable of handling additional payload, only
then we can add hardware onboard to increase available computing power.
The platform should also be able to support the additional weight of the
batteries required to power the additional hardware. The table 4.1 summarizes
the comparison of the architectures.

4.2 Implementation

The centralized coordination with minimum onboard computational resource
scheme has been implemented since the embedded computer onboard ARDrone
is not powerful enough to run PTAM. In addition, the ARDrone has very lim-
ited payload capacity and onboard power.

The Figure 4.6 shows the setup used for experimentation. The ground sta-
tion used is a dual core processor (1.86 GHz) computer which runs PTAM
algorithm and the custom-made ARDrone application on a Linux operating
system. The ARDrone application receives the video stream and sends atti-
tude commands to the quadrotor. In addition, the ARDrone application can
also log user commands and received sensor data into text files. The received
frames from drone can also be saved as JPEG files.

Parallel Tracking and Multiple Mapping (PTAMM) [11] is used which is
based on PTAM, but with additional features such as saving and loading
maps and, it can also initialize multiple maps. Frames received from drone

36 System Architecture and Implementation

Architecture Centralized
with

off-board
PTAM

Centralized
with

onboard
PTAM

Decentralized
coordination with
onboard PTAM

Communica-
tion

bandwidth

+++ ++ +

Computing
power

onboard

+ +++ +++

Payload
capability and

onboard
power

+ +++ +++

Scalability - ++ +++

Table 4.1: A comparison of architectures

Quadrotor

ARDrone
Application

Wi-Fi Link

Ground Station

PTAMM MAP
Video Stream

PS3 Joystick

Figure 4.6: A schematic representation of the setup used for experimentation

are passed over to PTAMM by the ARDrone application via a shared memory
which is synchronized using named pipes. From these frames the PTAMM
creates the 3D world model. Results presented for aligning of world models
from the agents were done offline as a proof of concept using python scripts
to extract point correspondences from the saved maps and a matlab function
which implements SVD solution to determine the transformation.

4.2. Implementation 37

Modifications to PTAM algorithm

The video source used by Klein et al. differs from what is available to us,
hence, modifications were necessary. The original algorithm required 640x480
pixels video source which allowed the algorithm to use four image pyramidal
levels, the video stream from the quadrotor has a resolution of 320x240 pixels.
The last pyramidal level would only contain 40x30 pixels, which will not have
many features compared to other levels and mainly becomes a computational
overhead. Hence, the number of image pyramid levels were reduced to three.
Scaling up the image in pixel resolution will introduce artefacts which will
have adverse effects on the map.

The ARDrone application, after being connected to the quadrotor over Wi-
Fi starts receiving the video stream. A wrapper for PTAMM has been written
to receive video frames from the ARDrone application. ARDrone quadrotor
uses CMOS sensor with “rolling shutter” for image acquisition which intro-
duces skewing, smearing, wobble effects and partial exposure. Rolling shutter
is a method of image acquisition in which frames are recorded not as a snap-
shot of a single point in time, but rather by scanning across the frame either
vertically or horizontally. On the contrary, global shutter captures the frame
at a single instant of time.

It was noted that with this video source, number of features being tracked
were far less than otherwise required, due to partial exposure effects (under
fluorescent light). Hundreds of features are necessary for the tracking to be
robust. The threshold for FAST corner detector at Level 0 was reduced to
increase the number of features being tracked by the algorithm. In the original
algorithm, a keyframe was added to the map only after twenty frames where
the frame rate was 30Hz. The video stream from the quadrotor has a low
frame rate (a little less than 15Hz), hence, this count is reduced to ten frames.

Establishing point correspondences between two maps

At least four markers should be placed in the environment to guarantee an
initial alignment. All quadrotors should be able to locate these markers placed
in the environment. BCH coded markers from ARToolKitPlus tracking library
(4096 ids are available) can be used. First step in order to establish correspon-
dences (called anchor points) between any two maps generated by PTAM is
to establish correspondences between the marker and a map on an agent. A
few strategies are discussed below.

PTAM uses FAST corners as interest points in an image. A possible strategy
for establishing correspondence between two maps is to use vertices of the
markers as anchor points. PTAM algorithm in the current implementation
has been modified to detect features only in three image pyramidal levels
where Level 0 is full resolution (320x240) of the frame. Figure 4.7 shows a
keyframe of a map in which marker was detected and the red circles correspond

38 System Architecture and Implementation

Figure 4.7: This figure shows a keyframe in which a marker is detected. The
red circles represent the mapped features in this keyframe at level 0

to level 0 features which have been added to the map from this frame. The
vertices of the markers are ideal candidates for FAST corner detector [59],
due to the high contrast between black codeframe and the white paper. These
corners also get a high Shi-Tomasi score [68]. If we eliminate the effects caused
by rolling shutter, these corners are guaranteed to be mapped by PTAM when
the marker is observed in the keyframe.

Figure 4.8 shows the relationship among the camera, maker and image
used in ARToolKitPlus tracker library. ARToolKitPlus tracker library uses
OpenGL coordinate system (right-handed system). Consider facing a com-
puter screen, the top-left is the origin and top- left to right is positive X,
top-left to bottom-left is positive Y and positive Z is away from the observer.
Marker and camera use this coordinate system. For an image, same applies
without the third dimension. PTAM uses the same image coordinate system,
hence, results of marker detection from ARToolKitPlus tracking library can
be used in PTAM. It is also assumed that quadrotor body frame coincides
with that of camera frame (or the relationship is known).

When a frame is passed over to the mapping thread as a keyframe from the
tracking thread, it can be checked for markers. In our context, ARToolKitPlus
tracker is only used for marker detection and identification. ARToolKitPlus
tracker internally stores vertices, edges, center of a detected marker (in im-
age coordinates) in a structure named ARMarkerInfo. Figure 4.8 shows the
vertices pi in the image frame of the marker. This corresponds to vertex num-

4.2. Implementation 39

Figure 4.8: This figure shows the relationship among camera, marker and
image coordinate systems [60]

ber 0 in the structure ARMarkerInfo. This structure is protected; it must
be made public to access this information (this has to be done before com-
piling the ARToolKitPlus Library). This information is distortion corrected,
which is essential for accurate pose estimation. Since we do not use the pose
information, number of undistortion iteration is set to zero in the camera con-
figuration file. The information in ARMarkerInfo can be used to locate and
uniquely identify vertices of marker in the keyframe.

PTAM uses KeyFrame object to hold all the information about a keyframe
required for both tracking and mapping thread. This information includes
the image coordinates of all the mapped points in the keyframe. If a marker
is detected in a keyframe, closest mappoints to vertices of the marker can be
looked up with a tolerance (in pixel radius) from the mapped points and can
be used as anchor points. This technique is used to obtain correspondences
between marker and map. If two vertices are known, it is possible to estimate
the position of the other vertices of the marker in the map. Function 4.1
summarizes the procedure. Function 4.1 is called whenever a new keyframe
is inserted into the map. The keyframe is checked for marker, if the marker
is present and confidence factor is more than 75%, we continue. Location of
marker vertices in image coordinates are obtained from ARMarkerInfo. Func-
tion find closest points() parse through the keyframe data to obtain closest
mappoints with image coordinates of the marker vertices. If all markers are
found, the corresponding 3D coordinates of the mappoints are broadcasted to
other PTAM processes.

PTAMM allows the user to save the state of the map to disk. This is used for
aligning the maps offline. PTAMM saves a snapshot of keyframe information

40 System Architecture and Implementation

function 4.1 Marker to map correspondence

1: function marker to map corr(keyframe)
2: begin
3: (marker id,confidence factor)=ARToolKitPlus detect marker(keyframe)
4: if (confidence factor> 0.75) then
5: marker vertices=ARToolKitPlus MarkerInfo()
6: anchor points[marker id][4]=find closest points(keyframe,

marker vertices)
7: if (found all markers()& ∼broadcasted) then
8: broadcast(anchor points)
9: end if

10: end if
11: end

in a XML file and keyframes as PNG files. A script was implemented to parse
the XML and keyframe images to obtain the anchor points using function 4.1,
but writes into a file instead of broadcasting. The XML file also holds the 3D
point cloud data, which was exported as a CSV file and aligned in matlab.

Another way is to collect all the features detected inside marker’s frame
from all the keyframes in which a marker is detected. A normalized map (in
image coordinates) of these features can be made and broadcasted. An agent
‘A’ can pick a set of features from the feature map of agent ‘B’ as anchor
points for transformation from B to A.

Map maker in PTAM only adds most salient features in a keyframe to the
map, which are first triangulated with an existing keyframe. It is possible to
force the map maker to insert center of the marker (ARMarkerInfo holds this
information) as a mappoint after triangulation. The 3D coordinates which
correspond to center of markers can then be broadcasted as anchor points.
This way we do not rely on map maker to pick the marker vertices.

Aligning sparse world maps

To obtain transformation between two 3D data sets using SVD, at least four
corresponding points (anchor points) are needed. These anchor points are
broadcasted when an agent locates markers and establish correspondences
with their maps.

When an agent ‘A’ (PTAM process on the ground station) has at least
four anchor points common with another agent ‘B’, agent ‘A’ can compute
the transformation from B to A using the SVD algorithm from the previous
chapter. Function 4.2 is called when an agent receives anchor points from
another agent. Suppose that agent ‘x’ receives anchor points from an agent
i, agent ‘x’ first updates its internal list of anchor points of other agents and
then attempts to compute the transformation. If the agent ‘x’ has not found

4.2. Implementation 41

function 4.2 Compute transform on agent ‘x’

1: function compute transformation(Tlist, i, anchor points)
2: begin
3: update anchor points(anchor points list, anchor points)
4: if found all markers() then
5: compute Tlist[i] using SVD based algorithm
6: end if
7: return Tlist

8: end

all markers, it attempts to compute the transformation after all markers are
located. Tlist is a datastructure which holds all the transformations from
other agents to agent ‘x’. When a map is selected as a global map, agents
add their mappoints to the global map after selecting the transformation form
Tlist.

Computational cost involved for obtaining transformation is least when
compared to ICP and cost is nearly constant for a given number of point
sets. If the anchor points are too noisy, an accurate transformation cannot be
obtained, in which case RANSAC-like technique can be used to mitigate the
effects of outliers [3].

Communication costs involved depend on the number of anchor points, each
anchor point is 3-tuple of float requiring 12 Bytes and at least four anchor
points are necessary. With the introduction of marker, an additional benefit
is that we can also recover the scale of the map using the vertices of the
marker, given that the distance between them is already known.

Chapter 5

Experiments and Results

In this chapter we evaluate performance of the ARToolKitPlus detection li-
brary and PTAM algorithm with the video stream from the onboard camera
for observations from a single quadrotor. Two sets of point clouds that orig-
inate from different agents are aligned using markers to make a complete 3D
world representation.

5.1 ARToolKitPlus marker identification range

Detection and identification of the marker is a crucial aspect of the system.
We look at some of the factors which influence detection and identification of
a marker by ARToolKitPlus library.

The marker

A marker consists of a frame enclosing a binary coded area. The binary data
in the code region is encoded as black and white squares. During decoding of
BCH code on the marker, the algorithm reduces the confidence factor (which
starts with 100%) by 25% for every error bit that is detected and corrected.

Identification

To identify the marker correctly, the marker in the image must contain enough
pixels which represent the coded area of the marker. Theoretically 6x6 pixels
are sufficient, where each pixel represents a bit from the 36 bit binary code.
The marker detection range can be increased by simply using a larger size
marker and also by increasing the resolution of the camera.

43

44 Experiments and Results

Figure 5.1: This figure shows confidence factor spread in first octant volume
of camera coordinate system. The black circle at the origin represents the
camera.

An empirical method is employed to determine the detection range of the
marker with the onboard camera. Figure 5.2 shows a BCH marker of size 8x8
cm placed on a turntable, with ZM of the marker coinciding with the rotation
axis of the turntable. The camera (quadrotor) is moved up and down along
the Z�axis in the inertial frame and turned around XCAM while the marker
turns around ZM such that the marker is kept inside the camera field of view
(FoV). Refer to Figure 4.8 for clarity.

Results

Figure 5.1 shows the results in the camera coordinate system. The camera
was calibrated to estimate intrinsic and extrinsic parameters using a Matlab
Camera Calibration Toolbox [74]. The origin of the graph represents the
center of the camera. Each dot represents the position where the marker
was detected and the color representing the confidence factor. Since we take
the internal working of ARToolKitPlus for granted, the focus is entirely on
the confidence factor it provides. Only observations which have a confidence
factor of at least 50% have been selected. This evaluation does not consider
the effects of motion blur.

The results in Figure 5.3 provide a baseline for a 8x8 cm marker detection

5.2. Accuracy of mappoints 45

Figure 5.2: This picture shows the test setup used in experiment 5.1. The
marker is rotated at low speed while the quadrotor is moved.

in the video stream from the quadrotor which has a resolution of 320x240
pixels. The circular arc (about 350mm in radius) in Figure 5.3a shows the
boundary up to which we observe maximum number of marker detections with
a confidence factor of 100%.

The identification of marker within this range is also influenced by the
inclination of the marker plane and the camera image plane. As the angle
of inclination between the two increases, the code area becomes too small to
be sampled correctly and marker cannot be identified. Figure 5.4 shows the
results of marker detection as angle of inclination is increased in steps of 10
degrees. The marker is placed at a distance of 35cm from the camera center.

Apart form the above, the rolling shutter of the CMOS sensor introduces
skewing and wobble effects during motion which also adversely affect the
marker detection. This can be eliminated by using a camera with global
shutter [31].

5.2 Accuracy of mappoints

The rolling shutter introduces a bias in every step in the PTAM SLAM algo-
rithm [34] (PTAM assumes a global shutter). This has a direct effect on the
accuracy of the map.

The 2D image measurements of a feature taken on top of the frame tend
to differ from the measurements of the same feature at the bottom of another
frame due to the rolling shutter (when quadrotor is translating). Bundle
adjustment refines the map by minimizing the re-projection errors of feature

46 Experiments and Results

0 100 200 300 400 500 600 700
Xcam [mm]

0

100

200

300

400

500

600

700
Y
ca

m
 [

m
m

]

Confidence = 100%
Confidence = 75%
Confidence = 50%

(a)

0 100 200 300 400 500 600 700
Xcam [mm]

0

100

200

300

400

500

600

700

Z
ca

m
 [

m
m

]

Confidence = 100%
Confidence = 75%
Confidence = 50%

(b)

Figure 5.3: (a)XY view of Figure 5.1. The circular arc (about 350mm in
radius) shows the boundary up to which we observe maximum number of
marker detections with a confidence factor of 100%. (b) XZ view of Figure
5.1. The red, blue and green dots represent markers detected with confidence
factors of 50%, 75% and 100% respectively.

observations. If the 2D image measurements are not corrected for rolling
shutter effect, an accurate map cannot be created. It is not trivial to apply
a correction since the speed of rolling shutter is unknown. We can minimize
the effects of this by moving the quadrotor slowly or eliminate them by using
a camera with a global shutter.

To estimate the accuracy of mappoints created with the setup, map of a
flat surface having an area of 1.3 m2 was created with Z = 0 plane of the
map coinciding with the surface. Figure 5.5a shows a few point features of
a mapped surface. The mean difference in the measured Z of the surface by
PTAM in the complete map is 2.71 cm with a standard deviation of 3.51 cm.
For mapping this scene, the camera was repeatedly moved around to that
ensure all features are observed from multiple views. Most salient features
were picked from the keyframes and actual positions of respective features
were measured on the surface by hand. Figure 5.5 b, 5.5c and 5.5d show that
PTAM map has a reasonable accuracy in X− and Y−axes. We can see from
Figure 5.5c and 5.5d that depth estimation of PTAM is noisy. The map starts
to drift beyond Xmap = 30cm in Z−direction, hence, deviations of upto 8cm
can be seen among the points which are measured.

Another factor which affects map accuracy is global bundle adjustment
not converging. As the quadrotor explores the environment, the map size
grows. When the number of keyframes goes beyond a threshold, global bundle
adjustment cannot keep up with exploration and is often aborted when a new
keyframe is inserted. It would only converge when the quadrotor remains

5.3. Factors affecting tracking in PTAM setup 47

20 30 40 50 60 70 80 90 100
Angle (deg)

0

20

40

60

80

100

120

C
o
n
fi
d
e
n
ce

 F
a
ct

o
r

(%
)

Figure 5.4: This figure shows confidence factor over angle of inclination.
X−axis represents the angle of inclination between marker plane and cam-
era image plane. The marker is placed at a distance of 35cm from the center
of camera. We can see that beyond 60◦, marker is unidentifiable.

stationary or is in an explored region for some time. The threshold depends
on number of mappoints in the map and available computational power. The
autonomous controller must consider these facts and must suspend exploration
till the global bundle adjustment converges. An agent should not share its
mappoints unless the map has converged. If computational limit has been
reached i.e. the map is too large to converge the agent must return back to
the base.

5.3 Factors affecting tracking in PTAM setup

PTAM can be used as a visual localization system onboard the quadrotor
for autonomous flight which was demostrated by [8] with the camera facing
downwards. For autonomous navigation of the quadrotor, position estimates
from PTAM plays a curcial role. First the influence of the errors in the map
on the position tracking accuracy is discussed and later some of the factors
which affect tracking in PTAM are discussed.

Position tracking of the camera (quadrotor) in PTAM relies on the map built
by the mapping thread. Errors in the map affect the position estimates of the
camera in the inertial frame. A feature point in the environment can be more
accurately triangulated by the mapping thread with multiple observations
from different views.

In order to observe the tracking performance of PTAM, a flat surface was

48 Experiments and Results

(a
)

(b
)

(c)
(d
)

F
igu

re
5.5:

(a)
3D

V
iew

of
th

e
m

ap
p

ed
p

oin
ts.

T
h

e
lin

es
in

d
icate

th
e

error
b

etw
een

m
easu

red
an

d
actu

al
p

osition
.

(b
),

(c)
an

d
(d

)
are

X
Y

,
Y
Z

an
d
X
Z

v
iew

s
resp

ectively.
N

otice
th

at
b

eyon
d
X

m
a
p

=
30cm

th
e

m
a
p

starts
d
riftin

g
,

h
en

ce,
w

e
ob

serve
large

d
ev

iation
s.

5.4. Mappoint growth 49

mapped to create the map in Figure 5.6 by translating the quadrotor along
the Xmap. The Z = 0 plane of the map coincides with the surface. The
quadrotor was placed on a cardboard box and translated to keep Y and Z
constant. Since the feature points on the surface were observed only from one
direction, in Figure 5.6 we can see a drift in the Z direction of the map. Since
the map drifted in the Z direction we can also observe drift in Z position
estimate in Figure 5.8c. It becomes necessary to observe an environment from
multiple views in order to create a better map and suitable routines must
be implemented on the quadrotor to loop through newly explored regions to
minimize drift.

The tracking thread of PTAM indicates the quality (good, poor or lost) of
tracking based on number of features that are being tracked in the current
frame. Tracking and mapping go hand-in-hand, if tracking is lost, mapping
is stopped. If the number of features being tracked falls below 50% (due
to paratial occulsion of features/camera or change in lighting conditions),
tracking is lost, in which case the quadrotor must maneuver back to a position
where tracking is stable. If the quadrotor has drifted off too far from an
explored region, tracking will be lost completely. The autonomous controller
onboard the quadrotor should be designed in such a way so as to take inputs
from the tracking thread and make sure quadrotor does not drift too far from
the explored region. However, if the quadrotor has drifted off too far and
cannot recover, the quadrotor can initialize a new map and start exploring
the environment again.

For a setup requiring ground station, another issue which is likely to cause
tracking failure is the Wi-Fi link. If a few frames are dropped because of CRC
errors or the connection is lost for few frames, loss of tracking is inevitable.
This is often the case with ARDrone quadrotor. The video stream freezes
during take-off and during flight frames are often dropped due to CRC errors.
If the quadrotor has drifted too far during this time, tracking will be lost. To
mitigate loss of tracking due link failure, the onboard controller must hold the
position of the quadrotor till the connection to ground station is re-established.

To make position estimates from the SLAM more precise, it is possible to
augment visual estimates with estimates from an IMU using a filter[45]. It
makes sense to take advantage of inertial sensing as they are already onboard
the quadrotor for low level control.

5.4 Mappoint growth

The number of features being tracked directly reflects the computational ef-
fort in the tracking thread. By adjusting the threshold on the FAST corner
detector, it is possible to control the number of features that are being tracked
and added to the map.

Three scenes were mapped to observe the mappoint growth. Three maps

50 Experiments and Results

Figure 5.6: This figure shows a 3D view of the map. Notice that beyond
Xmap = 60cm the map starts to drift

1, 2 and 3 represent areas of 8 m2,1.3 m2 and 1.9 m2 respectively. Figure 5.9
shows the growth of mappoints which have been added to the map. Another
map (Map 4) of the third scene was created, but with threshold [59] of FAST
corners relaxed from 10 to 5 at level 0, hence Map 4 shows an accelerated
growth of mappoints.

A computationally expensive operation in the mapping thread of the PTAM
is the local and global bundle adjustment. By having stricter heuristics in
keyframe insertion and by reducing the features being added to the map, we
can essentially map a larger area before reaching the computational limit.

Using a wide angle camera can also help in reducing the number of keyframes
required to describe a scene. In the implementation of [77], a downward
looking camera with a 150 degree fish-eye lens is used and this setup can map
an area of at least 50 m2 in size.

5.5 Aligning Maps

Due to inherent shortcomings of the onboard camera, large surfaces could not
be mapped. Two sets of small scenes were mapped and then aligned for this

5.5. Aligning Maps 51

(a) (b)

(c)

Figure 5.7: (a), (b) and (c) show distribution of errors in X�, Y� and
Z�direction respectively.

experiment. Note that newspapers are placed on the surfaces to give rich
texture, the setup is unable to map otherwise. Markers of size 8x8cm are used
for alignment of scenes. The quadrotor was moved roughly around 35 cm from
the surface to enable marker detection.

A table of area 1.3 m2 as seen in Figure 5.11a was mapped on quadrotors A
and B. Four markers are placed on the table surface. Both maps are initialized
such that Z = 0 plane of the maps coincide with table surface. Figure 5.12
shows the two maps in their reference frames. In order to create a more
accurate map of feature points, the table was traversed slowly multiple times
from different views. Out of the 90 keyframes in the map of quadrotor A, 15
keyframes had all markers with vertices. In map B, out of 106 keyframes, 17
keyframes had all markers with vertices. With anchor points from markers,
the map of quadrotor B is aligned with that of quadrotor A in Figure 5.13.
Notice in Figure 5.14a map of quadrotor B has drifted in Z�direction.

In a different setup, two scenes of area 1.6 m2 (white board) and 0.81 m2

(desk) shown in Figure 5.15a and 5.15c were mapped on two agents A and B
respectively. The purpose of this experiment was to show that alignment is
possible with minimum overlap between the scenes. The desk sequence map

52 Experiments and Results

0 100 200 300 400 500 600 700 800 900
Frames

20

0

20

40

60

80

100

120

140

D
is

ta
n
ce

 (
cm

)

X Direction

Measured X
Actual X

(a)

0 100 200 300 400 500 600 700 800 900
Frames

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

D
is

ta
n
ce

 (
cm

)

Y Direction

Measured Y
Actual Y

(b)

0 100 200 300 400 500 600 700 800 900
Frames

12

14

16

18

20

22

24

26

28

30

D
is

ta
n
ce

 (
cm

)

Z Direction

Measured Z
Actual Z

(c)

Figure 5.8: (a), (b) and (c) show errors in position estimates in X−, Y− and
Z−direction respectively. Notice the drift in the Z−direction this is due to
accumulation of errors in depth perception.

5.5. Aligning Maps 53

Figure 5.9: Mappoint Growth

(a) (b)

(c) (d)

Figure 5.10: (a), (b), (c) and (d) show the distribution of mappoints in the
keyframes of the four maps respectively. Ideally most keyframes must provide
an average of 30 mappoints. This will allow us to map larger area before
reaching the computational limit. Due to shortcomings of the camera we see
that most keyframes in the maps have only around 10 mappoints. Very few
mappoints in the map can lead to unreliable tracking.

54 Experiments and Results

was initialized such that the desk surface coincides with Z−axis of the map.
While the board sequence was initialized such that wall coincides with Z−axis
of the map. These maps were aligned with two markers as seen in Figure 5.15e.
The desk sequence contains 119 keyframes, in which 7 keyframes with marker
vertices were identified. The white board sequence has 120 keyframes, in which
6 keyframes were identified with marker vertices. Transformation from map
B to A was computed using anchor points from the markers and results of
the alignment are presented in Figure 5.16. In Figure 5.15e shows the overlap
between the scenes where the markers were placed.

5.6 Extension to ‘N’ maps

From Figure 5.11 and 5.16d we see that alignment is possible with the proposed
approach. We were able to align sparse point clouds that overlap completely
and partially. We first discuss the results of the two test cases and next we
see how this technique can be applied in a cooperative scenario.

Markers of adequate size must be placed in the environment for successful
detection. For a successful alignment, the marker must be detected, identified
and vertices of the marker must be captured as mappoints. The table scene in
Figure 5.11a was mapped several times and at least four marker vertices out
of sixteen marker vertices (four markers) were detected 100% of the time. A
primary reason for failure to detect marker vertices is due to the blurring of
keyframes. This can be minimized by using a camera with a global shutter.

Notice in Figure 5.14 and 5.16d that the maps were noisy and alignment was
still possible. Errors in the transformation can occur due to a noisy anchor
point. Figure 5.18 shows alignment results when one of the four anchor points
used for computing transformation was moved by 20% of its original position
in X−, Y− and Z−directions. If the estimated coordinates of anchor points
are not accurate, obtaining a precise transformation between the maps may
not be possible.

The 3D coordinates of the anchor point in a map can be erroneous due
to errors in triangulation (due to noisy observations) of marker vertices by
PTAM. The effects of outliers on transformation can be mitigated by using
RANSAC technique with SVD based closed form solution. Erroneous anchor
points of a single marker can be eliminated by checking if they lie on the same
plane and form a square within a tolerance.

To compute transformation using SVD based solution takes 0.414 ms for
100 anchor points on the ground station. Computational cost for obtaining
the transformation using SVD based solution is constant for a given set of
anchor points and is not influenced by size of the maps.

Any number of maps can be aligned, given that we have enough number
of anchor points common among them. Consider that we have ‘N’ agents
in the system with a decentralized architecture. Now suppose that agents

5.6. Extension to ‘N’ maps 55

(a) (b)

Figure 5.11: (a) shows the scene which has been mapped (b) is the top view of
the aligned maps (Not to scale). Notice the highlighted features. The empty
spaces in the maps are due to the small text which is too fine for the setup to
map, however, visibly larger text has been mapped.

56 Experiments and Results

(a)

(b)

(c)

Figure 5.12: (a) and (b) view of mappoints in their reference frame (Not to
scale). Notice that maps have been initialized at opposite ends of the table.
(c) shows the setup used for mapping the table sequence. The quadrotor was
moved roughly around 35cm above the table.

5.6. Extension to ‘N’ maps 57

(a)

(b)

Figure 5.13: (a) To demonstrate the results when the mappoints of agent B are
combined with that of agent A’s without transformation. (b) Shows the view
of map A after computing the transformation to align the reference frames.
Map A is used as the base (global map) for combined point clouds. (Not to
scale)

58 Experiments and Results

(a) (b)

Figure 5.14: (a) shows XZ view of map B. Note the drift in map in
Z−direction. (b) shows Y Z view of the aligned maps of table sequence. The
region on the left contains the markers, hence, both maps align well in that
region. The map B may have drifted global, but it is still consistent locally
where the markers are, therefore, alignment was still possible. (Not to scale)

have located the markers and are able to compute transformation to each
other. When the transformation matrices between maps are known, agents
can incorporate mappoints from others onto their map.

The camera (quadrotor) position is computed with respect to the reference
frame of the agent by the tracking thread. When the maps are aligned, po-
sition estimates of an agent can be interpreted by other agents. Agents only
need to broadcast their current position estimates from their tracking thread
for the participating agents to localize each other and the high level controllers
on the agents can use this information to improve the map further.

A key advantage of using markers to align in the case of decentralized ar-
chitecture is that agents dont need to exchange complete map information to
align or localize each other on their maps. The only disadvantage is that we
have to spread markers in the environment. This can be accomplished by a
leader quadrotor, who first flies into the environment dropping the markers.

5.6. Extension to ‘N’ maps 59

(a) (b)

(c)

(d) (e)

Figure 5.15: (a) shows the board which has been mapped to produce (b). (c)
shows the desk scene mapped to produce (d). (e) shows the region of overlap
between the two scenes. (Not to scale)

60 Experiments and Results

(a) (b)

(c) (d)

Figure 5.16: (a) and (b) show the map of agent A when mappoints of agent
B are added without transformation. (c) and (d) shows the aligned maps,
here the map of A is used as a base (global map) for combined point clouds.
Notice how the desk lines up next to the board in (d), refer Figure 5.17c for
the scene. (Not to scale)

5.6. Extension to ‘N’ maps 61

(a) (b)

(c)

Figure 5.17: (a) view of the overlapping scene in desk/board sequence, high-
lighted with some features. (b) shows close up of the aligned map. Notice
that highlighted features from both the maps align. (c) shows the desk and
board from a different view.

62 Experiments and Results

(a) (b)

Figure 5.18: (a) XY and (b) XZ view of the mis-aligned maps of table se-
quence when one of the anchor point was moved by 20% in X�,Y� and
Z�directions. (Not to scale)

Chapter 6

Conclusions and Future Work

6.1 Conclusions

Cooperative indoor 3D mapping is still in its nascent stage. Previous work on
cooperative indoor 3D mapping have focused on generating indoor 3D maps
on land-based robots using occupancy grids. In literature much of the work
on 3D mapping using a quadrotor has been done using expensive platforms
and specialized sensors. Research on cooperative indoor 3D mapping using
multiple quadrotors hasn’t been explored yet.

Research in real-time monocular Simultaneous Localization and Mapping
(SLAM) is gaining momentum in the computer vision community and is a
new paradigm in 3D mapping using robots. This makes the camera probably
the cheapest and compact 3D map building sensor available. However, more
research is needed on the use of monocular SLAM for Unmanned Aerial Vehicle
(UAV) autonomous navigation and mapping of an environment.

In this thesis we have explored the possibility of using a monocular SLAM
Parallel Tracking and Mapping (PTAM) for cooperative 3D mapping of an
environment with a fleet of quadrotors. We have demonstrated a proof of
concept with a simple scenario wherein agents were able to combine each
others’ observations successfully in chapter 5.

A novel use of fiducial markers for alignment of sparse point clouds gener-
ated from a monocular SLAM is proposed in this thesis. This method requires
minimum computations and from the results in chapter 5 we observe that it is
successful. Alignment of point clouds is done analytically and does not require
a more expensive numerical approach, as shown in chapter 3. Only by sharing
the anchor points agents can establish the geometric relationship between the
maps. This technique can be used to align sparse 3D point cloud from any

63

64 Conclusions and Future Work

keyframe-based visual SLAM algorithm.
Under this framework three architectures are proposed for cooperative map-

ping using monocular SLAM PTAM. Among the proposed architectures, two
are centralized and one is a decentralized architecture. The proposed architec-
ture centralized coordination with PTAM off-board can cope with a platform
which has minimum onboard computational power and payload capability,
here the maps are built off-board and coordinated centrally from the ground
station. In another centralized architecture, the maps are built on the agents
but are coordinated centrally from the ground station. In the decentralized
architecture, maps are built on the agents and are coordinated with a dis-
tributed algorithm.

We have evaluated the performance of the PTAM and ARToolKitPlus marker
tracking system with the video stream from an inexpensive quadrotor with ex-
periments in chapter 5. The results from chapter 5 show that the onboard
camera is a severe handicap for the platform. In addition, the video stream
is also found to freeze during take-off and frames were often dropped during
flight. A recommendation for further research with this platform would be
to use a camera with global shutter on a separate video stream link. Com-
pressing images onboard the quadrotor and then transmitting can also ease
the bandwidth requirement for better frame rate. However, compression and
decompression will introduce delays which have to be accounted for.

With respect to the research questions, we can conclude that:

• Can 3D mapping be achieved using a low cost quadrotor?
Yes, it is possible with a centralized architecture proposed in chapter 4.
However, the above recommendations on camera must be considered.

• How are sparse noisy 3D world models aligned?
Using fiducial markers sparse 3D worlds models generated by a visual
SLAM can be aligned in computationally efficient manner as discussed
in chapter 3.

• What are the possible system architectures for cooperative mapping?
Three architectures which address aspects such as communication, (com-
putational) power and payload capability of the platform are described
in chapter 4.

A general concern in this system is the use of markers to establish mappoint
correspondences. The role of the marker is that of “visual beacons”, which
enables establishing point correspondences between two point clouds. The
question would be how feasible is it to place markers in an environment to be
mapped. Having a leader robot to deploy markers in places where agents enter
the structure can be an option. In applications such as inspection, embedding
markers into structures can also be an option.

6.2. Future Work 65

6.2 Future Work

Cooperative robotics encompass many research areas and it is not possible to
address all the issues within the time span of this master thesis. Some issues
which are yet to be addressed are cooperative motion coordination and task
planning (high-level controller) for further optimally mapping the environment
after the initial alignment of the maps. Apart from this, the following can be
considered as future work:

• A primary focus in thesis has been establishing a geometric relationship
between sparse point clouds in a computationally efficient manner. This
has been extended to a cooperative scenario where the agents can share
their maps. Another possibility for cooperative mapping using a visual
SLAM would be the use of a priori map. If we can guarantee relocaliza-
tion, a priori map could be used by all agents and cooperate to improve
it with the help of markers in the environment. Accurate and guaranteed
relocalization of a quadrotor with a sparse distribution of keyframes is
challenging and this can be an interesting research question.

• Our approch for aligning point clouds is very effective when there is
no initial estimate available and ICP performs well for fine alignments
when the point clouds are relatively aligned. A hybrid approch can be
expected to give an excellent alignment. More experiments needs to be
performed in this direction.

• The functional blocks in this thesis were glued together with pieces of
code. A better approach can be to use a meta-operating system like
Robot Operating System (ROS) [58]. However, PTAM is yet to be
ported into ROS. Step one would be to port PTAM to ROS.

• In this work we have used a SLAM intended for single robot. A truly
distributed visual SLAM algorithm is yet to be explored. The visual
SLAM assumes the world to be unchanging and cannot deal with a
dynamic world, more research is required for mapping a dynamic world.

Bibliography

[1] M Achtelik, M Achtelik, S Weiss, and R Siegwart. Onboard imu and monocular
vision based control for mavs in unknown in- and outdoor environments. In Proc.
of the IEEE International Conference on Robotics and Automation (ICRA),
2011.

[2] Parrot ARDrone. http://ardrone.parrot.com/parrot-ar-drone/uk/.
[3] K. S. Arun, T. S. Huang, and S. D. Blostein. Least-squares fitting of two 3-d

point sets. (5):698–700, 1987.
[4] A. Bachrach, A. de Winter, Ruijie He, G. Hemann, S. Prentice, and N. Roy.

Range - robust autonomous navigation in gps-denied environments. In Robotics
and Automation (ICRA), 2010 IEEE International Conference on, pages 1096
–1097, may 2010.

[5] A. Bachrach, S. Prentice, R. He, and N. Roy. Range - robust autonomous
navigation in gps-denied environments. Journal of Field Robotics, 2011.

[6] P.J. Besl and H.D. McKay. A method for registration of 3-d shapes. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 14(2):239 –256, feb
1992.

[7] P. Biber, H. Andreasson, T. Duckett, and A. Schilling. 3d modeling of indoor en-
vironments by a mobile robot with a laser scanner and panoramic camera. In In-
telligent Robots and Systems, 2004. (IROS 2004). Proceedings. 2004 IEEE/RSJ
International Conference on, volume 4, pages 3430 – 3435 vol.4, sept.-2 oct.
2004.

[8] M. Blosch, S. Weiss, D. Scaramuzza, and R. Siegwart. Vision based mav navi-
gation in unknown and unstructured environments. In Proc. IEEE Int Robotics
and Automation (ICRA) Conf, pages 21–28, 2010.

[9] R. C. Bose and D. K. Ray Chaudhuri. On a class of error correcting binary
group codes. Information and Control, 3(1):68–79, Mar. 1960.

[10] T. Brotherton, R. Luppold, P. Padykula, and R. Wade. Generic integrated
phm/controller system. In Aerospace Conference, 2005 IEEE, pages 3427 –3437,
march 2005.

[11] R. Castle, G. Klein, and D. W. Murray. Video-rate localization in multiple
maps for wearable augmented reality. In Proc. 12th IEEE Int. Symp. Wearable
Computers ISWC 2008, pages 15–22, 2008.

[12] Huahua Chen and Zezhong Xu. 3d map building based on stereo vision. In
Networking, Sensing and Control, 2006. ICNSC ’06. Proceedings of the 2006
IEEE International Conference on, pages 969 –973, 0-0 2006.

67

http://ardrone.parrot.com/parrot-ar-drone/uk/

68 Bibliography

[13] John H. Conway. Atlas of Finite Groups: Maximal Subgroups and Ordinary
Characters for Simple Groups. Oxford University Press, USA, Jan. 1986.

[14] A.J. Davison, I.D. Reid, N.D. Molton, and O. Stasse. Monoslam: Real-time sin-
gle camera slam. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 29(6):1052 –1067, june 2007.

[15] G.C.H.E. de Croon, K.M.E. de Clercq, R. Ruijsink, Remes B., and C. de Wagter.
Design, aerodynamics, and vision-based control of the delfly. International Jour-
nal of Micro Air Vehicles, 1:71–97, June 2009.

[16] Gksel Dedeoglu and Gaurav Sukhatme. Landmark-based matching algorithm
for cooperative mapping by autonomous robots. In DISTRIBUTED AU-
TONOMOUS ROBOTICS SYSTEMS, pages 251–260. Springer-Verlag, 2000.

[17] The ARDrone SDK developers guide. https://projects.ardrone.org/

embedded/ardrone-api/index.html.

[18] M. W. M. Gamini Dissanayake, Paul Newman, Steven Clark, Hugh F. Durrant-
whyte, and M. Csorba. A solution to the simultaneous localization and map
building (slam) problem. IEEE Transactions on Robotics and Automation,
17:229–241, 2001.

[19] I. Dryanovski, W. Morris, and Jizhong Xiao. Multi-volume occupancy grids:
An efficient probabilistic 3d mapping model for micro aerial vehicles. In Intel-
ligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference
on, pages 1553 –1559, oct. 2010.

[20] E. Eade and T. Drummond. Scalable monocular slam. In Computer Vision and
Pattern Recognition, 2006 IEEE Computer Society Conference on, volume 1,
pages 469 – 476, june 2006.

[21] D. W. Eggert, A. Lorusso, and R. B. Fisher. Estimating 3-d rigid body transfor-
mations: a comparison of four major algorithms. Mach. Vision Appl., 9:272–290,
March 1997.

[22] JPEG FAQ. http://www.faqs.org/faqs/jpeg-faq/part1/.

[23] M. Fiala. Artag, a fiducial marker system using digital techniques. In Computer
Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society
Conference on, volume 2, pages 590 – 596 vol. 2, june 2005.

[24] Martin A. Fischler and Robert C. Bolles. Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated cartography.
Commun. ACM, 24:381–395, June 1981.

[25] Dragon Flyer. http://www.draganfly.com/our-customers/.

[26] Ana Irene Ramrez Galarza and Jos Seade. Introduction to Classical Geometries.
Birkhuser Basel, ISBN: 9783764375171, first edition, 2002.

[27] Slawomir Grzonka, Giorgio Grisetti, and Wolfram Burgard. Towards a naviga-
tion system for autonomous indoor flying. In Proc. IEEE International Confer-
ence on Robotics and Automation (ICRA), Kobe, Japan, 2009.

[28] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, ISBN: 0521540518, second edition, 2004.

[29] Berthold K P Horn. Closed-form solution of absolute orientation using unit
quaternions. Journal of the Optical Society of America A, 4(4):629, 1987.

[30] Berthold K. P. Horn, H.M. Hilden, and Shariar Negahdaripour. Closed-form
solution of absolute orientation using orthonormal matrices. JOURNAL OF
THE OPTICAL SOCIETY AMERICA, 5(7):1127–1135, 1988.

[31] iPS uEye. http://www.ips-vision.com/products_ids.php#1.

https://projects.ardrone.org/embedded/ardrone-api/index.html
https://projects.ardrone.org/embedded/ardrone-api/index.html
http://www.faqs.org/faqs/jpeg-faq/part1/
http://www.draganfly.com/our-customers/
http://www.ips-vision.com/products_ids.php#1

Bibliography 69

[32] Hirokazu Kato and Mark Billinghurst. Marker tracking and hmd calibration
for a video-based augmented reality conferencing system. In Proceedings of the
2nd IEEE and ACM International Workshop on Augmented Reality, pages 85–.
IEEE Computer Society, 1999.

[33] G. Klein and D. Murray. Parallel tracking and mapping for small ar workspaces.
In Proc. 6th IEEE and ACM Int. Symp. Mixed and Augmented Reality ISMAR
2007, pages 225–234, 2007.

[34] Georg Klein and David Murray. Parallel tracking and mapping on a camera
phone. In Proc. Eigth IEEE and ACM International Symposium on Mixed and
Augmented Reality (ISMAR’09), Orlando, October 2009.

[35] GRASP Labs. https://www.grasp.upenn.edu/.
[36] Hokuyo UTM-30LX Laser. http://www.hokuyo-aut.jp.
[37] Gim Hee Lee, Markus Achtelik, Friedrich Fraundorfer, Marc Pollefeys, and

Roland Siegwart. A benchmarking tool for mav visual pose estimation. In
Proc. 11th Int Control Automation Robotics & Vision (ICARCV) Conf, pages
1541–1546, 2010.

[38] libCVD computer vision library. http://mi.eng.cam.ac.uk/~er258/cvd/.
[39] ARToolKitPlus Pose Tracking Library. http://studierstube.icg.tugraz.

at/handheld_ar/artoolkitplus.php.
[40] James J. Little, Cullen Jennings, and Don Murray. Vision-based mapping with

cooperative robots. In in Proceedings of SPIE - Sensor Fusion and Decentralized
Control in Robotic Systems, pages 2–12, 1998.

[41] MicroDrone. http://www.microdrones.com/index-en.php.
[42] Mikrokopter. http://www.mikrokopter.de/ucwiki/en/FlightCtrlManual.
[43] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM 2.0: An

improved particle filtering algorithm for simultaneous localization and mapping
that provably converges. In Proceedings of the Sixteenth International Joint
Conference on Artificial Intelligence (IJCAI), Acapulco, Mexico, 2003. IJCAI.

[44] R. A. Newcombe and A. J. Davison. Live dense reconstruction with a single
moving camera. In Proc. IEEE Conf. Computer Vision and Pattern Recognition
(CVPR), pages 1498–1505, 2010.

[45] Gabriel Nützi, Stephan Weiss, Davide Scaramuzza, and Roland Siegwart. Fusion
of imu and vision for absolute scale estimation in monocular slam. J. Intell.
Robotics Syst., 61:287–299, January 2011.

[46] ARToolKitPlus on Launchpad. https://launchpad.net/artoolkitplus.
[47] Linear Algebra PACKage. http://www.netlib.org/lapack/.
[48] L.E. Parker. Alliance: an architecture for fault tolerant multirobot cooperation.

Robotics and Automation, IEEE Transactions on, 14(2):220 –240, apr 1998.
[49] Lynne E. Parker. Current state of the art in distributed autonomous mobile

robotics. In Distributed Autonomous Robotic Systems, pages 3–12. Springer,
2000.

[50] PixHawk. http://pixhawk.ethz.ch/micro-air-vehicles/.
[51] ARDrone API project. https://projects.ardrone.org/.
[52] Mark Pupilli and Andrew Calway. Real-time camera tracking using a particle

filter. In In Proc. British Machine Vision Conference, pages 519–528, 2005.
[53] Nageswara S. V. Rao. Terrain model acquisition by mobile robot teams and

nconnectivity. In In Proceedings of the Fifth International Symposium on Dis-
tributed Autonomous Robotic Systems (DARS 2000 - this volume, 2000.

[54] J. Rekimoto. Matrix: a realtime object identification and registration method
for augmented reality. In Computer Human Interaction, 1998. Proceedings. 3rd
Asia Pacific, pages 63 –68, jul 1998.

https://www.grasp.upenn.edu/
http://www.hokuyo-aut.jp
http://mi.eng.cam.ac.uk/~er258/cvd/
http://studierstube.icg.tugraz.at/handheld_ar/artoolkitplus.php
http://studierstube.icg.tugraz.at/handheld_ar/artoolkitplus.php
http://www.microdrones.com/index-en.php
http://www.mikrokopter.de/ucwiki/en/FlightCtrlManual
https://launchpad.net/artoolkitplus
http://www.netlib.org/lapack/
http://pixhawk.ethz.ch/micro-air-vehicles/
https://projects.ardrone.org/

70 Bibliography

[55] Jun Rekimoto and Yuji Ayatsuka. Cybercode: designing augmented reality
environments with visual tags. In Proceedings of DARE 2000 on Designing
augmented reality environments, DARE ’00, pages 1–10, New York, NY, USA,
2000. ACM.

[56] MIT Robust Robotics Group. http://groups.csail.mit.edu/rrg/index.

php?n=Main.VisualOdometryForGPS-DeniedFlight.
[57] Rui Rocha, Jorge Dias, and Adriano Carvalho. Cooperative multi-robot sys-

tems:: A study of vision-based 3-d mapping using information theory. Robotics
and Autonomous Systems, 53(3-4):282 – 311, 2005.

[58] Robot Operating System (ROS). http://www.ros.org/wiki/.
[59] Edward Rosten and Tom Drummond. Machine learning for high-speed corner

detection. In European Conference on Computer Vision, volume 1, pages 430–
443, May 2006.

[60] P. Rudol, M. Wzorek, and P. Doherty. Vision-based pose estimation for au-
tonomous indoor navigation of micro-scale unmanned aircraft systems. In Proc.
IEEE Int Robotics and Automation (ICRA) Conf, pages 1913–1920, 2010.

[61] S. Rusinkiewicz and M. Levoy. Efficient variants of the icp algorithm. In 3-D
Digital Imaging and Modeling, 2001. Proceedings. Third International Confer-
ence on, pages 145 –152, 2001.

[62] J. Ryde. Cooperative 3D mapping and Localisation of Multiple Mobile Robots.
PhD thesis, University of Essex, 2008.

[63] J. Ryde and H. Hu. Laser based simultaneous mutual localisation for multiple
mobile robots. In Proceedings of IEEE International Conference on Mechatronics
and Automation (ICMA), pages 404–409, Niagara Falls, Canada, July 2005.

[64] G. Schweighofer and A. Pinz. Robust pose estimation from a planar target.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 28(12):2024
–2030, dec. 2006.

[65] Kinect Sensor. http://www.xbox.com/en-GB/kinect.
[66] sFly: Swarm of Micro Flying Robots. http://www.sfly.org/doku.php/.
[67] Jonathan Richard Shewchuk. Triangle: Engineering a 2D Quality Mesh Gen-

erator and Delaunay Triangulator. In Ming C. Lin and Dinesh Manocha, ed-
itors, Applied Computational Geometry: Towards Geometric Engineering, vol-
ume 1148 of Lecture Notes in Computer Science, pages 203–222. Springer-Verlag,
May 1996. From the First ACM Workshop on Applied Computational Geometry.

[68] Jianbo Shi and C. Tomasi. Good features to track. In Computer Vision and Pat-
tern Recognition, 1994. Proceedings CVPR ’94., 1994 IEEE Computer Society
Conference on, pages 593 –600, jun 1994.

[69] R. Smith and P. Cheeseman. On the Representation and Estimation of Spatial
Uncertainty, 1986.

[70] J. Stuehmer, S. Gumhold, and D. Cremers. Real-time dense geometry from a
handheld camera. In Pattern Recognition (Proc. DAGM), pages 11–20, Darm-
stadt, Germany, September 2010.

[71] Ascending Technologies. http://www.asctec.de/home-en/.
[72] S. Thrun, W. Burgard, and D. Fox. A real-time algorithm for mobile robot

mapping with applications to multi-robot and 3d mapping. In Robotics and
Automation, 2000. Proceedings. ICRA ’00. IEEE International Conference on,
volume 1, pages 321 –328 vol.1, 2000.

[73] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics (In-
telligent Robotics and Autonomous Agents). The MIT Press, 2005.

http://groups.csail.mit.edu/rrg/index.php?n=Main.VisualOdometryForGPS-DeniedFlight
http://groups.csail.mit.edu/rrg/index.php?n=Main.VisualOdometryForGPS-DeniedFlight
http://www.ros.org/wiki/
http://www.xbox.com/en-GB/kinect
http://www.sfly.org/doku.php/
http://www.asctec.de/home-en/

Bibliography 71

[74] GML MatLab Camera Calibration Toolbox. http://graphics.cs.msu.ru/en/
science/research/calibration/matlab.

[75] Daniel Wagner and Dieter Schmalstieg. Artoolkitplus for pose tracking on mobile
devices. In Computer Vision Winter Workshop 2007, 2007.

[76] Michael W. Walker, Lejun Shao, and Richard A. Volz. Estimating 3-d loca-
tion parameters using dual number quaternions. CVGIP: Image Understanding,
54(3):358 – 367, 1991.

[77] Stephan Weiss, Markus Achtelik, Laurent Kneip, Davide Scaramuzza, and
Roland Siegwart. Intuitive 3d maps for mav terrain exploration and obstacle
avoidance. J. Intell. Robotics Syst., 61:473–493, January 2011.

[78] R. Zask and M.N. Dailey. Rapid 3d visualization of indoor scenes using 3d
occupancy grid isosurfaces. In Electrical Engineering/Electronics, Computer,
Telecommunications and Information Technology, 2009. ECTI-CON 2009. 6th
International Conference on, volume 02, pages 672 –675, May 2009.

http://graphics.cs.msu.ru/en/science/research/calibration/matlab
http://graphics.cs.msu.ru/en/science/research/calibration/matlab

	Preface
	Contents
	List of Acronyms
	Introduction
	Cooperative Robotics
	Unmanned Aerial Vehicles
	Problem Statement
	Thesis contribution
	Thesis outline

	Related Work and Background
	Related Work
	Background

	Aligning Point Clouds
	Rigid body transformations
	The Iterative Closest Point Algorithm
	Closed Form Solutions
	Discussion

	System Architecture and Implementation
	System Architecture
	Implementation

	Experiments and Results
	ARToolKitPlus marker identification range
	Accuracy of mappoints
	Factors affecting tracking in PTAM setup
	Mappoint growth
	Extension to `N' maps

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

