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Abstract
This paper proposes an innovative approach for optical flow-based control ofmicro air vehicles (MAVs), addressing challenges
inherent in the nonlinearity of optical flow observables. The proposed incremental nonlinear dynamic inversion (INDI)
control scheme employs an efficient data-driven approach to directly estimate the inverse of the time-varying INDI control
effectiveness in real-time. This method eliminates the constant effectiveness assumption typically made by traditional INDI
methods and reduces the computational burden associated with inverting this variable at each time step. It effectively handles
rapidly changing system dynamics, often encountered in optical flow-based control, particularly height-dependent control
variables. Stability analysis of the proposed control scheme is conducted, and its robustness and efficiency are demonstrated
through both numerical simulations and real-world flight tests. These tests include multiple landings of an MAV on a static,
flat surface with several different tracking setpoints, as well as hovering and landings on moving and undulating surfaces.
Despite the challenges posed by noisy optical flow estimates and lateral or vertical movements of the landing surfaces,
the MAV successfully tracks or lands on the surface with an exponential decay of both height and vertical velocity almost
simultaneously, aligning with the desired performance.

Keywords Optical flow · Incremental nonlinear dynamic inversion · Data-driven approach · Micro air vehicles

1 Introduction

Recent advancements in small flying robot development
have expanded their potential for diverse indoor applications,
leveraging their adeptness at navigating confined spaces and
minimizing the risk of harmwhen operating in close proxim-
ity to users (Soria, 2022; Fridovich-Keil et al., 2020; Curtis et
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al., 2023). However, achieving full autonomy for these robots
remains a challenge, primarily due to their constrained pay-
load capacities and computational resources.

Extensive research efforts have been devoted to design-
ing solutions inspired by biological systems, particularly
tiny flying insects that face similar limitations yet are capa-
ble of executing intricate tasks. Biologists believe that these
insects heavily rely on visual information, such as optical
flow cues, for navigation and control (Dong et al., 2023;
Mehdi Yadipour et al., 2023; Collett, 2002).

In light of the computational efficiency of optical flow,
its use in micro air vehicles (MAVs) has garnered increasing
interest. Optical flow, which captures the apparent motion of
features in a visual scene, offers rich environmental infor-
mation that is crucial for tasks like hovering, landing, and
obstacle avoidance (Yu et al., 2022; Mahlknecht et al., 2022;
Falanga et al., 2020). Its low computational demands and
adaptability to GPS-denied environments make optical flow
methods well-suited for MAV navigation and control.

However, employing optical flowmethods introduces sig-
nificant control challenges. The highly nonlinear nature of
optical flow observables, which are represented as ratios
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of velocities to MAV height, complicates the controller
design. Moreover, the estimation of optical flow observ-
ables is susceptible to noise and error sources, such as
sensor noise, motion blur, and lighting changes, further
intensifying control complexities. Most approaches resort to
proportional-integral-derivative (PID) controllers to regulate
the optical flow to a desired constant (Ruffier & Frances-
chini, 2015;Herissé et al., 2011).However, thesemethods are
typically tailored for systems with linear dynamics. The sta-
bility and performance of employing such linear controllers
in a nonlinear system can raise concerns, as they may only
function effectively within specific operating points, such as
within a certain rangeof heights.Nonlinear control strategies,
such as PID scheduling (Kendoul, 2014; Cesetti et al., 2010),
also offer a means to address optical flow-based control
nonlinearities. Nevertheless, they demand intricate param-
eter tuning to achieve optimal performance. Furthermore,
employing PID scheduling in optical flow-based control for
MAVs can be problematic, as it relies heavily on accurate
knowledge of system dynamics and parameters, which are
often unknown or uncertain in real-world applications. Addi-
tionally, the performance of PID scheduling can be sensitive
to parameter variations and model errors. This sensitivity
may lead to degraded performance and system instability
when using optical flow observables as the control input (Ho
et al., 2018).

Alternatively, adaptive approaches, such as bio-inspired
strategies and machine learning (Guido CHE et al., 2022;
O’Connell et al., 2022; Zhou, 2023), present potential solu-
tions by leveraging real-time feedback to adapt strategies
and enhance control performance, especially in dealing with
nonlinearities and uncertainties. However, the application of
these adaptive methods encounters notable challenges, par-
ticularly when considered for on-board processing within
MAVs. The complexity of MAV systems, coupled with their
limited computational capacity, poses substantial obstacles
to their successful implementation. In addition, these meth-
ods often necessitate pre-training to generate stable control
strategies, which is often conducted in simulation, introduc-
ing additional issues, such as sim-to-real mismatch. On the
other hand, various nonlinear control methods have been
serving as valuable candidates for addressing nonlinear flight
control challenges. Among them, nonlinear dynamic inver-
sion (NDI) is a model-based controller that establishes a
direct relationship between output and input. NDI employs
linear methods to design a virtual input and then solves for
the physical input through nonlinear inversion. This method
does not impose a heavy computational load or require pre-
training of the controller.However, it relies on the assumption
of complete accuracy in the model, a condition seldom met
in real-world applications due to model simplification and
external disturbances.

In light of this, incremental nonlinear dynamic inver-
sion (INDI) was introduced to enhance adaptability and
robustness while overcoming the limitations associated with
traditional methods and the assumed accuracy of the model,
effectively mitigating the impact of model inaccuracies
through real-time sensor measurements in flight control
(Smith, 1998; Bacon et al., 2001; Sieberling et al., 2010). The
INDI method has demonstrated its applicability to nonlinear
systems with unknown models and nonlinear outputs (Zhou
et al., 2021). Functioning as a nonlinear controlmethod, INDI
utilizes the inverse of system dynamics to cancel the nonlin-
earities in the system. This utilization of the inverse enables
INDI to generate a linear control input for stabilizing the sys-
tem. Moreover, INDI exhibits robustness against parameter
uncertainties and model errors, making it an effective tool
for addressing nonlinearities in optical flow-based control
for MAVs. Additionally, INDI stands out as a computation-
ally efficient method that can be implemented in real-time,
without the need for pre-training in either simulation or real-
world scenarios. This characteristic renders it a practical and
versatile choice for various applications.

The current implementation of INDI relies on a constant
or derived control effectiveness matrix with fixed coeffi-
cients, determined by the system dynamics (Steffensen et
al., 2022; Smeur et al., 2018). However, in the context of
optical flow stabilization, landing, or tracking in MAVs,
the system dynamics are intricately tied to the height of
the vehicle above the ground. As the height of the vehicle
changes, the dynamics of the system undergo correspond-
ing changes. Consequently, the constant nature of the G
matrix becomes inappropriate in this context, necessitating a
dynamic approach. To overcome this challenge, it would be
advantageous to develop an INDI method that incorporates
a time-varying G matrix. This adaptation would empower
the control system to respond dynamically to varying sys-
tem dynamics, thereby enhancing overall performance and
stability.

The online identification of the time-varying G matrix,
followed by its inversion at every time step, emerges as a cru-
cial aspect of INDI-based control for calculating the control
increments. However, the computational intensity of this pro-
cess, which involves calculating theG matrix and its inverse,
poses challenges, especially in real-time applications.

To address this, we propose a novel INDI control scheme
that directly identifies its inverse, denoted as G† = G−1.
This innovation aims to reduce the computational burden
associated with control increment calculations, resulting in
a significant reduction in computation time. Furthermore,
this approach eliminates errors introduced by the inversion
calculation, ultimately improving the accuracy of the control
system.

The main contribution of this paper lies in the advance-
ment of optical flow-based control for MAVs through the
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development of an innovative data-driven INDI approach.
Unlike traditional INDI implementations that rely on the
constant control effectiveness assumption, our proposed
approach introduces a time-varying matrix, addressing the
output nonlinearities inherent in optical flow-based con-
trol. This adaptation enhances the system’s responsiveness
to changing conditions, eliminating the need to estimate
or measure distances through additional sensors. Further-
more, we introduce an efficient data-driven approach within
the INDI framework, directly identifying its inverse matrix
G† = G−1, reducing computational demands and enhanc-
ing control system accuracy. Through a stability analysis
and a comprehensive evaluation via numerical simulations
and real-world flight tests, including scenarios with noisy
optical flow estimates and dynamic landing surfaces, we val-
idate the robustness and efficacy of the proposedmethod. The
proposed INDI method, featuring the direct identification of
the G† matrix, presents a computationally efficient approach
with the potential to enhance the performance and efficiency
of INDI-based control in MAVs. This paper is an expanded
and revised version of the conference paper (Ho & Zhou,
2023), incorporating new sections covering comprehensive
method derivation, stability, and robustness analysis, as well
as presenting additional real-world flight tests and perfor-
mance comparisons.

2 Problem formulation

This section describes the dynamics of an MAV during the
landing process onto a moving platform and its observed
optical flow signals.

2.1 Position dynamics of anMAV

The body reference frame of the MAV (ObXbY bZb) and
the inertial reference frame (OI X I Y I Z I ) are defined and
depicted as in Fig. 1. A camera, aligned with the body ref-
erence frame, is attached to the MAV, looking downward.
The position d and velocity v of the MAV are governed by
Newton’s second law:

ḋ = v, (1)

v̇ = g + 1

M
T (T ,ω) + 1

M
δ(v, ε), (2)

where g is gravity, M is the mass, T is the thrust generated
by the rotors, dependent on total thrust in Zb direction T and
attitude in Euler angles ω = [θ, φ,ψ]. The term δ represents
the aerodynamic forces due to velocity v and other factors ε,
such as wind, acting on the MAV.

In the tracking moving platform and landing tasks, the
changes in yaw angle ψ can be assumed small, and the ini-

Fig. 1 MAV body (ObXbY bZb) and inertial (OI X I Y I Z I ) reference
frames. Ob is fixed at the center of gravity of the MAV, Xb points
forward, Yb is port, and Zb points upward. The inertial reference frame
is located on the ground and follows the North-East-Up (X I −Y I − Z I )
system

tial MAV position can be placed so that Xb remains within
the inertial OIY I Z I plane, allowing us to neglect ψ in the
MAV’s position dynamics. The position dynamics simplified
from Eq. (2) becomes

v̇ = g + 1

M
T (θ, φ, T ) + 1

M
δ(v, ε)

=
⎡
⎣

0
0

−g

⎤
⎦ + 1

M

⎡
⎣
cosφ sin θ

− sin φ

cosφ cos θ

⎤
⎦ T + 1

M
δ(v, ε).

(3)

The attitude of theMAV is stabilized through an inner control
loop, which is designed to be accurate and responsive in its
operation. And thus, the input of the position control loop is
u = [θ, φ, T ]T .

2.2 The observed optical flow signal

The downward-facing camera attached to theMAVperceives
the optical flow used for the landing on a moving platform.
To elucidate control principles, this paper focuses on track-
ing and landing on a flat platform with slow translational
degrees of freedom. Its position and velocity vectors are dr

and vr , respectively, where the superscript r signifies the ref-
erence platform. Duringmovements, the camera captures the
optical flow, representing the velocity of features on the plat-
form beneath it. The optical flow signals are proportional to
the ratio of relative velocity to the height above the platform
dz − drz . In this configuration, the camera is able to cap-
ture the three-dimensional flow field of the features beneath
it. And thus, the output vector of this problem is denoted as
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y = [ϑx , ϑy, ϑz]T , providing valuable information for appli-
cations, such as autonomous landing and tracking in MAVs.

The optical flow in the X - and Y -axes, denoting the lateral
flow of features, describes the velocity of the features in the
image plane. These measurements can be formulated as the
ratio of the relative lateral velocity to the height above the
platform:

ϑx = cx
vx − vrx

dz − drz
, (4)

ϑy = cy
vy − vry

dz − drz
, (5)

where cx and cy are unknown proportionality constants.
These constants, intrinsic to the optical flow measurement
system, are determined by various factors, such as the reso-
lution, image acquisition rate, and camera focal length. The
above equations indicate that the position of the MAV along
the X - and Y -axes is not directly observable from lateral
flows. Nevertheless, these flows can be utilized to stabilize
the position by maintaining zero lateral flows or controlling
the velocity with an appropriate constant (Ho et al., 2018;
Zhou et al., 2021).

As the MAV approaches the surface, the captured optical
flow exhibits a divergent pattern corresponding to the flow
divergence ϑz . This divergence represents the velocity of the
features in the image plane along the line of sight and can be
formulated as

ϑz = cz
vz − vrz

dz − drz
, (6)

where cz is an unknown positive constant. When the MAV is
in the process of approaching the platform, vz−vrz is negative,
dz − drz is consistently positive, resulting in a negative value
for ϑz . The constant flow divergence approach (Zhou et al.,
2021) has been employed to control the vertical dynamics
of MAVs by maintaining the flow divergence as a negative
constant for landing, i.e., ϑz = ϑ∗

z . Consequently, the time
response of the distance dz − drz experiences an exponential
decrease, ultimately reaching zero.

3 Data-driven incremental nonlinear
dynamic inversion

As depicted in the previous section, the system dynamics
described by Eq. (3) are input non-affine, involve unknown
model parameters, and lack direct measurability of the full
states. In response to these challenges, this paper proposes a
data-driven incremental nonlinear dynamic inversion (INDI)
method to effectively control theMAV for tracking and land-
ing on a moving platform with optical flows.

3.1 Reformulation of optical flow tracking control
problems

The INDImethod can be derived from the system represented
by Eqs. (1, 3–6) or in a more general form for nonlinear
systems:

ẋ = f (x, u), (7)

y = h(x), (8)

where x ∈ Rn is the system state, u ∈ Rm is the system
input, y ∈ Rp is the system output or the observations,
the functions f : Rn+m → Rn and h : Rn → Rp

are smooth vector fields. If p < m or p > m, the con-
trol problem becomes over-determined or under-determined,
respectively. Control allocation techniques or weighted least
square methods can be employed to address these problems.
For both theoretical derivations and practical applications in
this paper, it is assumed that the numbers of inputs and out-
puts are equal, i.e., p = m.

In the optical flow tracking problems under consider-
ation, the observation encompasses both the system and
platform dynamics, as indicated in Eqs. (4–6). Consequently,
the state space must be augmented to incorporate the states
of both the system and the reference platform, forming
[dT , vT , dr T , vr T ]T . On the other hand, biological systems
often leverage relativemeasurements for navigation and con-
trol. For example, many animals rely on relative motion cues
in their visual system to track moving targets and navigate
their environment. In alignment with these biological sys-
tems, the formulation of this control task focuses on the
relative position andvelocity [(d−dr )T , (v−vr )T ]T , thereby
reducing the dimensionality of the problem. Furthermore,
the relative position in the X - and Y -axes is not observ-
able, as previously mentioned. The state of interest can be
further reduced and defined as x = [d̃z, ṽx , ṽy, ṽz]T =
[dz − drz , vx − vrx , vy − vry, vz − vrz ]T . Consequently, the
dynamics of the relative position can be reformulated as fol-
lows:

˙̃dz = ṽz, (9)

˙̃vx = 1

M
cosφ sin θT + 1

M
δx − v̇rx , (10)

˙̃vy = − 1

M
sin φT + 1

M
δy − v̇ry, (11)

˙̃vz = 1

M
cosφ cos θT − g + 1

M
δz − v̇rz . (12)

The height above the platform is assumed to be d̃z > cd ,
where cd is a positive threshold belowwhich the system shuts
down.
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3.2 Incremental nonlinear dynamic inversion

We will first introduce the concept of nonlinear dynamic
inversion (INDI), uponwhich our data-driven INDI approach
is founded. To enhance clarity and understanding, we
will begin by considering a nonlinear input-affine system,
described as follows:

ẋ = f (x) + g(x)u, (13)

y = h(x), (14)

where f : Rn → Rn and h : Rn → Rp are smooth vector
fields, and g : Rn → Rn×m , whose columns are smooth
vector fields. And the initial step involves input–output lin-
earization, achieved by differentiating the output until the
input-affine form appears (Isidori, 2013; Sieberling et al.,
2010; Wang et al., 2019). The first-order derivative of the lth
output is

ẏl = dhl(x)

dt
= ∂hl(x)

∂x
dx
dt

= ∇hl(x)[f (x) + g(x)u]
= L f hl(x) + Lghl(x)u,

(15)

where ∇ is Jacobian operator, and L f hl(x) = ∇hl(x)f (x)

denotes the first-order Lie derivative along the vector field
f (x) (Slotine et al., 1991). If the term Lghl(x) is non-zero,
the first-order differentiation of the output ẏl , as in Eq. (15),
is input-affine. However, if Lghl(x) is zero, indicating a non-
affine input, further differentiations are performed until the
Lie derivative with respect to g(x) becomes nonzero:

y(rl )
l = Lrl

f hl(x) + LgL
rl−1
f hl(x)u, (16)

where rl is the relative degree for lth output, rl ≥ 1. The
total relative degree r = r1 + r2 + · · · + rp is no more than
the number of the states n. Consequently, the total relative
degree of the system exists within the range of r ∈ [p, n].

In the case where r = n, each output and its first rl − 1
derivatives contribute to a transformation from the original
x coordinate system to the new ξ coordinate system:

ξ = Γ 1(x). (17)

As the new system states ξ are smooth and invertible func-
tions of x, this transformation qualifies as a diffeomorphism
within the defined domain. And the new system of ξ can be
written in the controllability canonical form, also known as
the companion form:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ̇1
ξ̇2
...

ξ̇r1
ξ̇r1+1

...

ξ̇r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ2
ξ3
...

Lr1
f h1(x)

ξr1+2
...

L
rp
f h p(x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
...

LgL
r1−1
f h1(x)

0
...

LgL
rp−1
f h p(x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u. (18)

The system dynamics in the controllability canonical form
can be more concisely represented as

y(r) = L r
f h(x) + LgL

r−1
f h(x)u. (19)

And the output y is linear to the new state ξ as shown in Eq.
(18). Utilizing this controllability canonical form above, the
cancellation of nonlinearities and the imposition of desired
linear dynamics can be easily implemented (Slotine et al.,
1991).

Note that when r < n, it indicates the presence of n − r
internal dynamics, which are not directly observable from
the input–output linearization. In such cases, it is always fea-
sible to identify n − r additional functions Γ 2(x), where
Γ 2 : Rn → Rn−r , so that the construction of the trans-
formation Γ = [Γ 1;Γ 2] ensures a diffeomorphism within
the defined domain (Isidori, 2013). The selection of these
additional functions in the defined domain is guided by the
condition

Lg j Γi (x) = 0 ∀ i ∈ [r + 1, n], j ∈ [1,m]. (20)

Subsequently, the transformation to the new ζ coordinate
system can be defined as

ζ =
[

ξ

η

]
= Γ (x) =

[
Γ 1(x)

Γ 2(x)

]
. (21)

For systems written in the controllability canonical form
as in Eq. (19), a virtual control input can be introduced to can-
cel the nonlinearities, yielding a linear input–output relation
in the outer loop:

y(r) = ν, (22)

which is separated from the nonlinear inner loop

ν = L r
f h(x) + LgL

r−1
f h(x)u. (23)

Solving for the physical control input u involves inverting
Eq. (23), as follows:

u = LgL
r−1
f h(x)−1[ν − L r

f h(x)]. (24)
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The solution for the virtual input ν can be determined using
linear feedback control techniques, such as polynomials, to
place all the roots strictly in the left-half complex plane,
ensuring exponentially stable dynamics.

Remark 1 Note that NDI is not confined to input-affine sys-
tems. In instances involving non-affine systems, besides the
standard state transformation, such as in Eq. (21), it is nec-
essary to determine an input transformation μ = ϒ(x, u) to
transform the nonlinear system dynamics into an equivalent
controllability canonical form. It is important to emphasize
that this process demands a precise dynamic model, and the
formulation of the input transformation is a case-by-case
design. The NDI approach leverages mathematical modeling
and nonlinear cancellation techniques to cope with nonlinear
dynamics. However, its applicability relies on the availabil-
ity of precise and time-invariant models, conditions that are
often impractical in real-world systems.

To address inherent uncertainties and model mismatches,
incremental NDI (INDI) was proposed as a more robust and
adaptive alternative. INDI utilizes an online identified incre-
mental model, calculating control input increments based
on desired virtual input increments, thereby eliminating the
strict reliance on an accurate systemmodel. Furthermore, the
INDI method is derived from the general nonlinear system
in Eq. (7), approximating system dynamics around the con-
dition at time t0 using a first-order Taylor series expansion:

ẋ(t) ≈ ẋ0 + F(x0, u0)�x(t) + G(x0, u0)�u(t), (25)

where �x(t) = x(t) − x0, �u(t) = u(t) − u0, F(x0, u0)
= ∂ f (x,u)

∂x |x0,u0 ∈ Rn×n is the system matrix of the lin-

earizedmodel, andG(x0, u0) = ∂ f (x,u)
∂u |x0,u0 ∈ Rn×m is the

control effectiveness matrix. This equation can be simplified
with a time-scale separation assumption when the control
input changes significantly faster than the system state. And
assuming a high sampling frequency and instantaneous con-
trol effects (Ronald et al., 2018), Eq. (25) becomes:

ẋ(t) ≈ ẋ0 + G(x0, u0)�u(t). (26)

With the above formulation, the linear outer loop is estab-
lished by replacing the differentiated state with the virtual
input ẋ = ν. This system dynamics, featuring a full-state
feedback problem, n = p = m, and a relative degree of 1
for each output, rl = 1, is common in INDI applications. In
the inner loop, the control increment can be determined by
inverting Eq. (26) as

�u(t) = G(x0, u0)−1(ν − ẋ0). (27)

Since the incremental model is linear and usually much
simpler compared to the global nonlinear model, the param-
eters of the matrix G, if unknown, can be identified online
from the measurement or estimation of the differentiated
state ẋ using least square (LS) techniques. Similarly, the
INDI method is applicable to systems, where y 	= x when
their relative degrees r are known. In other words, the model
structure of the input–output linearization, as in Eq. (19), is
known, but the exact mathematical expressions for L r

f h(x)

and LgL
r−1
f h(x) can be unknown.

Moreover, through the incremental model, the application
of this approach extends tomore general system formulations
as in Eqs. (7) and (8). By differentiating each output until the
input explicitly appears, the direct input–output relation of
themodel is derived. In the broader context of Eq. (19),where
the input–output relation can be nonlinear and non-affine in
the input, represented as

y(r) = α(x, u). (28)

Utilizing the first-order Taylor series expansion and the time-
scale separation principle, the input–output relation around
any time instance t0 can be linearly approximated as follows:

y(r)(t) ≈ y(r)
0 + G(x0, u0)�u(t), (29)

where G(x0, u0) = ∂α(x,u)
∂u |x0,u0 ∈ Rp×m . Note that, for

a non-affine input–output relation as shown in Eq. (28), an
explicit and exact input transformation is unnecessary when
using the local linearized model. Similarly, by replacing the
differentiated output with the virtual input y(r) = ν, the
control increment can be determined by inverting Eq. (29):

�u(t) = G(x0, u0)−1[ν − y(r)
0 ]. (30)

It is important to note that if r < n, the internal dynamics
must also be stable or bounded to ensure effective controller
design.

3.3 Incremental nonlinear dynamic inversion for
optical flow tracking control

Given that the observation y exhibits nonlinearity in the state
x, the initial task involves establishing the input–output rela-
tionship by iteratively differentiating the output until the
input emerges explicitly. The resulting expressions for the
derivatives are provided below:
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ϑ̇x = cx

[ ˙̃vx
d̃z

− ṽx ṽz

d̃2z

]

= cx

[
(cosφ sin θT + δx − M v̇rx )

Md̃z
− ϑxϑz

]
, (31)

ϑ̇y = cy

[ ˙̃vy
d̃z

− ṽy ṽz

d̃2z

]

= cy

[
(− sin φT + δy − M v̇ry)

Md̃z
− ϑyϑz

]
, (32)

ϑ̇z = cz

[ ˙̃vz
d̃z

− ṽ2z

d̃2z

]

= cz

[
(cosφ cos θT − Mg + δz − M v̇rz )

Md̃z
− ϑ2

z

]
. (33)

These derived equations can be seen as functions of new
state ζ instead of the original state x, which is not directly
observable. These three equations indicate that we have ξ =
y with a relative degree r = 3, and there is one internal
dynamic. Complying with the condition in Eq. (20), we can
choose η = d̃z to establish a diffeomorphism ζ = Γ (x) as
in Eq. (21). Consequently, the input–output relationship is
concisely represented by

ẏ = α(ζ , u, δ, v̇r ), (34)

which is nonlinear and non-affine in the input. Taking the
first-order Taylor series expansion results in

ẏ ≈ ẏ0 + ∂α(ζ , u, δ, v̇r )

∂ζ
|ζ 0,u0,δ0,v̇

r
0
(ζ − ζ 0)

+ ∂α(ζ , u, δ, v̇r )

∂u
|ζ 0,u0,δ0,v̇

r
0
(u − u0)

+ ∂α(ζ , u, δ, v̇r )

∂δ
|ζ 0,u0,δ0,v̇

r
0
(δ − δ0)

+ ∂α(ζ , u, δ, v̇r )

∂ v̇r
|ζ 0,u0,δ0,v̇

r
0
(v̇r − v̇r0),

(35)

where the second or higher-order terms have been neglected
in this equation.

Further simplification is achieved by employing the time-
scale separation assumption. It is important to note that,
due to the output nonlinearity of optical flow signals, this
assumption is applicable only when 1/d̃z remains bounded,
as proved in our previouswork (Zhou et al., 2021). The practi-
cal application of this assumption involves setting a threshold
for the height d̃z , as mentioned in Sect. 3.1. The convergent
property of this internal dynamics η = d̃z can be guaran-
teed in hovering and landing tasks by maintaining the flow
divergence as zero or a negative constant. For the tasks with

unbounded 1/d̃z or other control objectives directly influenc-
ing height-related dynamics, one can employ an additional
state estimator (Ho et al., 2017) or an extended INDI (EINDI)
method (Zhou et al., 2021).

Additionally, it is assumed that aerodynamic forces δ and
platformdynamics v̇r change at a slower pace than the system
dynamics, allowing for a more efficient focus on identify-
ing the direct input–output relationship and generating the
control input. Under these assumptions, Eq. (35) is further
simplified to

ẏ ≈ ẏ0 + G(ζ 0, u0)(u − u0), (36)

where u = [θ, φ, T ]T and

G(ζ , u) = 1

Md̃z
·

⎡
⎣

cx cosφ cos θT −cx sin φ sin θT cx cosφ sin θ

0 −cy cosφT −cy sin φ

−cz cosφ sin θT −cz sin φ cos θT cz cosφ cos θ

⎤
⎦ .

(37)

To address the nonlinear control problemdescribed above,
we introduce a virtual control input to replace the differ-
entiated output ẏ = ν, and the control increment can be
determined by inverting Eq. (36):

u − u0 = G(ζ 0, u0)
−1(ν − ẏ0). (38)

In traditional MAV control scenarios, the matrix G is often
derived, and its unknown or unobservable parameters are
typically assumed to be constants. Although unknown, the
identification of this G matrix is straightforward under the
constant assumption. However, in optical flow-based control
problems, as indicated in Eq. (37), the matrix G not only
depends on unknown parameters cx , cy , and cz , but it also
exhibits nonlinear variation with the distance above the plat-
form d̃z , which is not directly measurable using optical flow
sensors. Consequently, measuring all relevant variables and
calculating matrix G from Eq. (37) at each time step is diffi-
cult. Alternatively, another approach to determine the control
increment is to identify G online using the recursive least
square (RLS) approach from input and output data with the
time sequence, which can be rewritten as

ẏk − ẏk−1 ≈ Gk−1 · (uk − uk−1). (39)

In this case, the explicit representation of the time-varying
matrix G in Eq. (37) is unnecessary, but it needs to be iden-
tified and inverted at every time step.

To recursively identify the G matrix, the input informa-
tion and output target of the model identification in Eq. (39)
can be written as �uk = uk − uk−1 and � ẏk = ẏk − ẏk−1,
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respectively. The elements of theG matrix are typically iden-
tified row by row using the RLS method. Given that all rows
share the same covariance matrix, they can also be identified
simultaneously. The RLS approach utilized in this paper is
as follows (Haykin, 2002; Zhou et al., 2021):

τ k = � ẏk − �̂ ẏk, (40)

ĜT
k = ĜT

k−1 + Ck−1�uk
γ + �uTk Ck−1�uk

τ k, (41)

Ck = 1

γ

(
Ck−1 − Ck−1�uk�uTk Ck−1

γ + �uTk Ck−1�uk

)
, (42)

where τ k ∈ Rp is the prediction error, also known as the
innovation, Ck ∈ Rm×m is the estimation covariance matrix,
and γ ∈ [0, 1] is the forgetting factor in the RLS approach
for the incremental model identification. For faster-changing
time-variant model parameters, a smaller value of the forget-
ting factor is typically chosen. This allows the algorithm to
give more weight to recent data, thereby quickly adapting to
changes in the system dynamics. Conversely, a larger forget-
ting factor is suitable for more stable systems, as it smooths
out short-term fluctuations and relies more on historical data
for parameter estimation.

Remark 2 While the inputs of the outer loop position con-
trol are Euler angles, and total thrust, u = [θ, φ, T ]T , which
do not strictly form an input-affine system, it is feasible to
employ a nonlinear solver to determine the generated thrust
vector μ = [Tx , Ty, Tz]T with Eq. (3) without involving the
state x = [d̃z, ṽx , ṽy, ṽz]T in the input transformation. Con-
sequently, the system dynamics can be viewed as affine in
the thrust vector μ, providing a more direct framework for
control design and analysis. This implies that, in this specific
problem, the input transformation μ = ϒ(u) can be per-
formed independently without affecting the state dynamics.

The optical flow dynamics described in Eqs. (9–12) can
be reformulated to be an input-affine system with input
transformation, converting the Euler angles and total thrust
u = [θ, φ, T ]T into the external thrust forces in the X -,
Y -, and Z -axes, μ = [Tx , Ty, Tz]T , as shown in Eq. (3).
With a targeted thrust force vector, the nonlinear inversion,
u = ϒ−1(μ), can be inserted into Eq. (38) to enable the
determination of thrust and Euler angle commands (Smeur
et al., 2018). This is a practical approach to finding attitude
and thrust commands for a desired acceleration without lin-
earizing the input function. However, this approach requires
additional calculations and sacrifices some of the generality
inherent to the INDI approach. Therefore, in the implemen-
tation, we will directly utilize the linearized input in terms of
attitude and thrust.

3.4 Inverted Gmatrix identification

To alleviate the computational burden associated with the
data-driven approach, this paper proposes a direct identifica-
tion of the inverted G matrix, denoted as G† = G−1, from
input and output data with a time sequence tk, tk−1, tk−2, · · ·
as follows:

uk − uk−1 ≈ G†
k−1 · ( ẏk − ẏk−1). (43)

The parameters inmatrixG† ∈ Rm×p can be identified using
theRLS approach. The control command can then be directly
calculated with the identified matrix Ĝ†:

u = uk + Ĝ†
k−1 · (νk − ẏk). (44)

The virtual input νk at the current time tk is designed as a
feedback linear control with constant proportional, integral,
and derivative feedback gains:

νk = −Kp( yk − ϑ∗) − Ki

∫ t

0
( yk − ϑ∗)dt − Kd ẏk, (45)

whereϑ∗ is a constant vector of the desired optical flow. In the
tracking platform task, we will have ϑ∗ = 0, and in the land-
ing on a moving platform task, we will have ϑ∗ = [0 0 ϑ∗

z ]T .
The desired flow divergence ϑ∗

z for landing is a negative
constant, and by following the constant flow divergence, the
MAV will have a soft landing on the platform with the time
response of d̃z (Zhou et al., 2021):

d̃z(t) = d̃z0e
ϑ∗
z
cz

t
, (46)

where d̃z0 is the initial height above the landing surface.
In data-based INDI methods, where the matrix G is

unknown and time-varying, the control command can be cal-
culated either by first identifying G and then calculating its
inversion in the traditional way, or by directly identifying the
inverse matrix G† using our proposed algorithm. Both the
RLS identification step and the matrix inversion step require
O(p3) computational effort. The approachwith direct identi-
fication of G† has a lower computation load compared to the
traditional method because the inversion step is no longer
necessary. This approach results in a more efficient INDI
control implementation.

The proposed method of directly identifying the inverse
matrix G† also has advantages in terms of accuracy and sta-
bility, especially for optical flow-based control. The matrix
G increases to very large values and changes very quickly
when the vehicle is approaching the platform, as it is propor-
tional to 1/d̃z . This can result in difficulties for the control
system to accurately estimate the matrix G. On the other
hand, the inverse matrix G† tends to converge as the vehicle
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approaches the platform, making the updating process more
straightforward and precise. Furthermore, by eliminating the
inversion step, the proposed method reduces the chances of
numerical errors and improves the stability of the control
system, especially when dealing with the possibility of ill-
conditioned matrices. In conclusion, the direct identification
of the inverse matrixG† offers both computational efficiency
and improved accuracy and stability of the data-driven INDI
approach.

3.5 Stability and robustness analysis

This subsection undertakes an analysis of the stability and
robustness of the proposed INDI approach with online iden-
tification of the incremental model. Specifically, it focuses on
the scenario where the inverse matrix G† introduces errors
in estimating the inverted G matrix when employing LS
techniques. To broaden the analysis and enhance its appli-
cability, we consider a more general condition involving
model uncertainties, which provides valuable insights into
the robustness of the INDI approach, evaluating its stability
under circumstances characterized by both estimation errors
and uncertainties in the underlying model.

For a clearer illustration, wewill examine amore common
case involving the following affine nonlinear system:

{
ẋ = f (x) + g(x)u + σ

y = h(x)
(47)

where x is the state vector, u is the input vector, y is the output
vector, and σ is the uncertain external disturbance. Applying
a virtual control input ν, the traditional NDI control law can
be designed as:

u = g−1(x)[ν − f (x)]. (48)

In addition, model uncertainties � f (x) and �g(x) will be
considered, and the system dynamics can be written as

ẋ = f (x) + � f (x) + [g(x) + �g(x)]u + σ . (49)

Substituting Eq. (48) into Eq. (49) yields

ẋ = � f (x) + �g(x)g−1(x) f (x)

+ [In×n + �g(x)g−1(x)]ν + σ .
(50)

The desired dynamic equation ẋ = ν can be guaranteed only
when � f (x) = �g(x) = 0 and σ = 0. Therefore, the
traditional NDI relies on an accurate system model, and any
deviations due to external disturbances, parameter perturba-
tions, or model uncertainties can degrade the robustness of
the real system.

3.5.1 Stability analysis

A detailed stability analysis of a closed-loop system employ-
ing INDI control has been conducted, considering the
perturbations arising from omitted terms of �x and the
higher-order terms of �x and �u, employing Lyapunov
methods and the nonlinear system perturbation theory (Wang
et al., 2019). In the context of this paper, we will omit these
terms and focus on a direct analysis of the stability of the
INDI control considering the influence of external distur-
bances, incorporating an outer-loop feedback control law
with fractional power terms. INDI control utilizes the first-
order Taylor series expansion of the state equation around
the condition at (x0, u0) as in Eq. (25), and rewritten by
considering external disturbances as below:

ẋ = ẋ0 + F(x0, u0)�x + g(x0)�u + σ , (51)

ẏ = ∇h(x)[ẋ0 + F(x0, u0)�x + g(x0)�u + σ ], (52)

where F(x0, u0) = ∂[ f (x)+g(x)u)]
∂x |x0,u0 .

According to the time scale separation principle, if a fast
control input is performed, the change rate of x can be con-
sideredmuch slower than u, i.e.,�x 
 �u. Andwe can also
reasonably assume that x ≈ x0 in a small time increment,
resulting in

ẏ = ∇h(x)[ẋ0 + g(x0)�u + σ ]. (53)

Subsequently, the incremental control law is designed as

�u = [∇h(x)B0]−1[ν − ∇h(x)(ẋ0 + σ̂ )], (54)

where σ̂ is the estimation of disturbances, and σ̃ = σ − σ̂

is the estimation error. The external disturbance σ can be
compensated by the feedforward signal σ̂ from a disturbance
observer. Due to the convergence property of the disturbance
observer, ‖σ̃‖ is bounded. Thus, Eq. (52) can be transformed
into the closed-loop dynamics as

ẏ = ν + σ̌ (t), (55)

where σ̌ (t) = ∇h(x)σ̃ is a bounded disturbance that will
converge to zero asymptotically by using a disturbance
observer.

Remark 3 The disturbance observer ensures effective feed-
forward compensation of unknown external disturbances,
resulting in a bounded estimation error term in the closed-
loop system. Notably, the stability of the proposed controller
is maintained even without an observer, provided that the
disturbances affecting the original system are bounded.

Remark 4 In the NDI control scheme, a PID controller is
commonly applied to feedback linear control. However,
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the selection of control parameters requires a certain level
of experience and prior information. To ensure the anti-
disturbance capability and convergence rate of the feedback
control, a feedback control law with fractional power terms
can be used to illustrate the control stability.

To formulate a feedback control law for the outer
loop of the INDI control, we define the tracking error
as e = y − yd and the feedback gain matrix as K =
diag(k1, k2, k3) ∈ R

3×3. In addition, the fractional power
term �e� ∈ R

3 is introduced and defined as �e� =[|e1|� sign(e1) |e2|� sign(e2) |e3|� sign(e3)
]�

. The fractional
exponent � in this control design raises each element of the
vector e to the power of �.

Theorem 1 Assume that there exists a positive constant ι to
satisfy ‖σ̌ (t)‖ ≤ ι. For a nonlinear system in the form of Eq.
(55), design a non-smooth controller as ν = −K�e� + ẏd ,
then the tracking error e will converge to a small region
(� = {e : |ei | ≤ (

ci+ι
ki

)1/�}) in the neighborhood of origin
equilibrium point within a finite time, where ki > 0, 0 < � <

1, ci is an arbitrary positive constant.

Proof Consider a candidate Lyapunov function as V (e) =
1
2 e

�e, we will have its derivative along trajectories of the
system as follows:

V̇ (e) = e�(−K�e� + σ̌ )

= (
e1 e2 e3

)
⎛
⎝

−k1|e1|�sign(e1) + σ̌1
−k2|e2|�sign(e2) + σ̌2
−k3|e3|�sign(e3) + σ̌3

⎞
⎠

=
3∑

i=1

(−ki |ei |�+1 + ei σ̌i )

≤ −
3∑

i=1

(ki |ei |� − ι)|ei |,

(56)

where the disturbance is bounded and satisfies ‖σ̌ (t)‖ ≤ ι.
When |ei | > (

ci+ι
ki

)1/�, we will have

V̇ (e) ≤ −
3∑

i=1

ci (
ci + ι

ki
)1/� < 0. (57)

According to Lyapunov’s direct method, the tracking error
e is convergent and eventually converges to the correspond-
ing compact set � = {e : |ei | ≤ (

ci+ι
ki

)1/�}. The proof of
Theorem 1 is completed. ��
Remark 5 The non-smooth control can be simplified as feed-
back control with constant proportional gains when � = 1,
whereby the stability of classical PID control can also be
verified based on Theorem 1.

3.5.2 Robustness to model uncertainties

While the direct identification of the inverse matrixG† offers
increased efficiency and reduces computational errors in the
inversion step of the traditional INDI approach, it introduces
estimation errors of the inverted G matrix due to the errors-
in-variables property when utilizing LS techniques. This
estimation error becomes a source of model uncertainties in
the incremental model identification process. Therefore, we
explore a more general condition encompassing a broader
range of model uncertainties. This evaluation assesses the
stability and robustness of the approach in situations marked
by both estimation errors and uncertainties in the underlying
model.

The system dynamics with model uncertainty �g can be
written as

ẋ ≈ ẋ0 + [g(x0) + �g(x0)]�u + σ . (58)

Substituting Eq. (54) into Eq. (58) results in a closed-loop
system:

ẋ ≈ −�g(x0)g(x0)−1 ẋ0
+[In×n + �g(x)g(x)−1][∇h(x)−1ν] + σ

= −Bẋ0 + (In×n + B)[∇h(x)−1ν] + σ , (59)

ẏ = −B ẏ0 + (In×n + B)ν + σ , (60)

where B = �g(x0)g(x0)−1.
Considering yd as a constant vector, introducing the vir-

tual feedback control ν = −K ( y − yd) yields

ė = −Bė − (In×n + B)Ke + σ , (61)

or

ė = −Ke + (In×n + B)−1σ . (62)

Taking the Laplace transformation for both sides of Eq. (61)
results in

s In×n y = −sB y − (In×n + B)K ( y − yd), (63)

where the term σ is omitted, as the bounded disturbance
does not alter the input–output relation. Thus, the transfer
function of the closed-loop system in the presence of model
uncertainties can be written as:

y(s)
yd(s)

= K
s In×n + K

, (64)

yi (s)

ydi (s)
= ki

s + ki
, i = 1, 2, . . . , n. (65)
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The model uncertainty term �g or B does not appear in
the transfer function of the closed-loop system. It shows that
the presence of model uncertainty will not change the trans-
fer function of the closed-loop system, indicating that the
transition relationship between input and output of the sys-
tem remains the same. Therefore, the stability characteristics
of the closed-loop system, in the presence of model uncer-
tainty, persist and can be guaranteed under the INDI control
scheme.

Remark 6 Since the control input of the optical flow-based
control dynamics can be transformed to the thrust vectorμ =
ϒ(u), the original dynamic system can be regarded as affine
in the input. Hence, the above robustness analysis based on
the affine nonlinear system is also applicable to the presented
MAV optical flow-based control system.

For the non-affine nonlinear system as in Eq. (29), the non-
linear term g(x0) in Eq. (58) can be modified as G(x0, u0)
presented by Eq. (37). Due to the involved incremental tech-
nique, the update of incremental control has no effect on u0,
which is associated with G(x0, u0). Thus, a similar analy-
sis as the aforementioned affine system can account for the
robustness of INDI in the case of a non-affine nonlinear sys-
tem.

4 Numerical simulations

In this section, the feasibility and performance of the pro-
posed optical flow-based control method will be demon-
strated through numerical simulations, specifically address-
ing three-dimensional tracking scenarios. A comparative
analysis is conducted between the INDI control with (1) the
conventional approach involving the identification of the G
matrix and its inverse computation at every time step and
(2) the proposed method that directly identifies the inverse
matrix G†. The simulations involve an MAV with a mass of
M = 1.2 kg, proportionality constants cx , cy, cz set to 1,
and an initial height of 3 m. To ensure a fair comparison,
the initial parameters and the INDI outer loop implementa-
tions remain the same. The outer loop virtual input employs
a linear feedback control with a constant proportional gain
Kp = 1. All simulations are conducted in the MATLAB
environment using a laptop computer equipped with an i7-
8565U processor, operating at 1.8 GHz, and having 40 GB
of RAM.

Figures 2 and 3 illustrate the performance of the INDI
control with the two approaches and during the maneuver of
an MAV landing on a moving platform, with a constant flow
divergence setpoint ϑ∗

z = −0.1 rad/s. The reference plat-
form undergoes three-dimensional translational movement
in a sinusoidal pattern, as indicated by the dashed line in the
first row of both figures. In the first approach, as shown in

Fig. 2 The MAV executes a landing maneuver on a moving platform
with INDI control, wherein the G matrix is identified and inverted at
each step. Each column in the figure depicts the positions of theMAV d
(the dashed line represents the position of the platform dr ), optical flows
ϑ (the dashed line represents the tracked setpoint ϑ∗ = [0, 0,−0.1]),
control inputs u = [θ, φ, T ]T , the diagonal elements of the identified
matrix Ĝ (the solid line indicates the true value), and the diagonal ele-
ments of the calculated matrix inversion Ĝ−1 (the solid line indicates
the true value) for the (a) X -axis, (b) Y -axis, and (c) Z -axis

Fig. 3 The MAV executes a landing maneuver on a mobile platform
under INDI control, directly identifying the inverse matrix G†. Each
column in the figure depicts the positions of the MAV d (the dashed
line represents the position of the platform dr ), optical flows ϑ (the
dashed line represents the tracked setpoint ϑ∗ = [0, 0,−0.1]), control
inputs u = [θ, φ, T ]T , and diagonal elements of the inverse matrix Ĝ†

(the solid line represents the true value) for the (a) X -axis, (b) Y -axis,
and (c) Z -axis
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Fig. 2, the matrix G is identified using the RLS technique,
and its inverse is calculated at each time step to generate
control inputs according to Eq. (44). Considering the small
values of the non-diagonal elements due to the small pitch
angle θ and roll angle φ, as described in Eq. (37), the figures
only depict the diagonal elements of the identified matrix Ĝ
and its inversion Ĝ−1 with the dotted lines. And the solid
lines represent the true values of the matrix G diagonal ele-
ments corresponding to motion in the X -, Y -, and Z -axes,
calculated from Eq. (37).

As theMAVapproaches the platform, the observed optical
flow becomes highly sensitive to even minor input varia-
tions, leading to a rapid increase in the diagonal elements
of the matrix G. Timely updates to the estimated G matrix
are crucial to adapting the control law for a smooth landing.
Failure to do so will result in degraded control performance,
as depicted in Fig. 2. In this optical flow-based control task,
especially when the height d̃z is small, the conventional
method of identifying and inverting the matrix G is sen-
sitive to the choice of the forgetting factor γ in the RLS
approach. The forgetting factor needs to be chosen or tuned
to a relatively small value to allow the fast change of the G
matrix. To expedite parameter updates, a value of γ = 0.8 is
employed in the simulation. However, this choice may intro-
duce oscillations in the estimation. Conversely, larger values
of γ impede the update rate of matrix G, resulting in wors-
ened performance than presented in Fig. 2. Another practical
approach involves setting a higher threshold for the height d̃z
and shutting down the system when it falls below the thresh-
old. However, this approach necessitates additional sensing
and operations.

On the other hand, the inverse matrix G†, which is pro-
portional to the height d̃z , converges as the MAV approaches
the landing platform, as depicted in Fig. 3. When the height
d̃z is small, the directly identified G† decreases correspond-
ingly to small values, generating small control increments
for a smooth landing of the MAV. In this scenario, increasing
the forgetting factor γ may achieve a more stable parameter
update than illustrated in the figure. Although both thematrix
G and its inverse matrixG† are time-varying, the direct iden-
tification ofG† is less sensitive to the choice of the forgetting
factor in the RLS identification process and the threshold for
the height d̃z .

Furthermore, the proposed INDI control demonstrates
computational efficiency, evidenced by a reduction in CPU
time for a 50-second simulation. Specifically, the tradi-
tional INDI control with an inversion step requires 0.1062s,
whereas the proposed INDI control, which involves the direct
identification of the inverse matrix G†, only needs 0.0681s.
This result is averaged over 20 simulations.

Fig. 4 Flight test setup using an MAV (Parrot Bebop 2) with an open
source autopilot (Paparazzi). All the computer vision and control algo-
rithms runonboard theMAV. In the visionmodule, FASTdetects corners
(μx ,μ y) in each image captured by the downward camera. Then, Lucas-
Kanade tracks these corners in the next image and computes the flow
vectors (υx , υ y). Lastly, optical flow in the Xb-, Yb-, Zb-axes (̂ϑ) as
defined in this paper are estimated. In the outer loop control module,
the INDI controller receives ̂ϑ as the input and commands the attitude
and throttle of the MAV (u)

5 Flight tests

In this section, the experimental validation of the proposed
INDI control scheme implemented on an MAV is presented.
Several flight tests were conducted in an indoor environment
under various challenging conditions: (1) landingswith vary-
ing control parameters on a static andflat landing surface, and
(2) hovering and landings over moving and undulating land-
ing surfaces. The experimental setup and the results of all the
flight tests are presented and discussed in this section.1

5.1 Flight test setup

The experimental setup employs a Parrot Bebop 2MAV inte-
grated with the Paparazzi autopilot software,2 as illustrated
in Fig. 4. Standard sensors, including an inertia measurement
unit, a sonar sensor, and two cameras (front and bottom) are
equipped on the MAV. The bottom camera (facing down-
ward) is of particular interest for hovering and landing
purposes. Throughout the tests, the sonar sensor was acti-
vated to record height data, which facilitates the evaluation
of landing performance.

In the autopilot software, two modules were specifically
created for the flight tests: the computer vision and the outer
loop control, as depicted in Fig. 4. The computer vision
module processes the images captured from the camera
during the flight tests and implements computer vision algo-
rithms, including the Features from Accelerated Segment
Test (FAST) algorithm (Rosten &Drummond, 2006) for fea-
ture detection and the Lucas-Kanade tracker (Bouquet, 2000)
for feature tracking.

1 Video demos can be found at https://youtu.be/QX-9Hkagwr4
2 Paparazzi Autopilot: http://wiki.paparazziuav.org
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By taking the average of the flow vectors in the Xb- and
Yb-axes (υx , υ y) obtained from the feature tracking, optical
flow ϑ̂x and ϑ̂y can be computed. To estimate flow diver-
gence ϑ̂z , the approach in Ho et al. (2018) utilizing Eq. (66)
is employed. This involves computing the image distances
of every two features between consecutive images κ , and
then computing the average ratio of the change in the image
distances to its previous image distance with a known time
interval �t , resulting in the estimation of flow divergence ϑ̂z

as follows:

ϑ̂z = 1

M
· 1

�t

M∑
i=1

[
κ(t−�t),i − κt,i

κ(t−�t),i

]
, (66)

where M is the total number of tracked corners. A low-pass
filter was introduced to minimize the estimation noise.

The outer loop control module, which implements the
INDI control scheme detailed in Sect. 3, receives output from
the computer vision module and controls the attitudes and
throttle of theMAV. The flight tests were started with manual
take-off to a specified position and then switched to automatic
mode, where only the required modules executed the desig-
nated tests. The height measurement from the sonar sensor
was recorded for performance validation and analysis pur-
poses, but not utilized in the control process.

5.2 Static and flat landing surface

Multiple landing tests were conducted for the MAV on a
static and flat landing surface. The proposed INDI con-
troller was employed to track three different setpoints of flow
divergence, i.e., −0.1 rad/s, −0.2 rad/s, and −0.3 rad/s.
Figures5 and 6 present the results of the flight tests, where
the initial conditions were varied to assess the controller’s
robustness. The former set of tests initiated from a nearly
static or hovering state (vz0 ≈ 0), while the latter began
with pre-existing motion (vz0 	= 0). As the setpoint value
increases, the landing velocity also increases, making the
tracking task more demanding for the controller as it must
efficiently accommodate the rapidly changing velocity of the
MAV.

The results depicted in both Figs. 5 and 6 clearly demon-
strate the ability of the controller to accurately track the
designated setpoints. It also exhibits a quick response to even
larger setpoints, indicating its robustness and efficiency. As a
result, for all landings, both height and vertical velocity of the
MAV decay exponentially to zero at almost the same time, as
desired. Since this control implementation is designed specif-
ically for vertical landings, the inverse matrix Ĝ† contains
only a single element. It is noteworthy that the identified Ĝ†

exhibits an exponential decay and convergence, analogous to
the change in height. This observation supports the validity

Fig. 5 INDI control fromhovering (vz0 ≈ 0) to landing: by tracking
different flow divergence setpoints: (a) ϑ∗

z1 = −0.1 rad/s, (b) ϑ∗
z2 =

−0.2 rad/s, (c) ϑ∗
z3 = −0.3 rad/s. Each row presents theMAV height

dz , vertical velocity vz , flow divergence ϑ̂z , and inverse matrix Ĝ† for
the respective flight test. All the tracked setpoints (ϑ∗

z ) are plotted as
dashed lines

Fig. 6 INDI control from moving (vz0 	= 0) to landing: by tracking
different flow divergence setpoints: (a) ϑ∗

z1 = −0.1 rad/s, (b) ϑ∗
z2 =

−0.2 rad/s, (c) ϑ∗
z3 = −0.3 rad/s. Each row presents theMAV height

dz , vertical velocity vz , flow divergence ϑ̂z , and inverse matrix Ĝ† for
the respective flight test. All the tracked setpoints (ϑ∗

z ) are plotted as
dashed lines

of the theoretical derivation of G†, which is a function of
height.

To validate the superiority of the proposed INDI con-
trol scheme over commonly used controller for optical flow
landing, landing tests were carried out by tracking a flow
divergence setpoint of ϑ∗

z1 = −0.1 rad/s with varying fixed
control gains (ranging from small to large: 0.03, 0.1, and
0.5), using the control law outlined in Eq. (67):
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Fig. 7 Fixed-gain landing control: by tracking a flow divergence set-
point of ϑ∗

z1 = −0.1 rad/s for different control gains: (a) K f1 = 0.03,
(b) K f2 = 0.1, (c) K f3 = 0.5. Each row presents the MAV height
dz , vertical velocity vz , and flow divergence ϑ̂z for the respective flight
test.The tracked setpoints (ϑ∗

z1 ) are plotted as dashed lines

u = −K f (ϑ z − ϑ∗
z ), (67)

K f is the fixed gain used in the classical feedback control.
In Fig. 7, the landing test results with the classical fixed

gain control are presented. Each of the three landings exhibits
a consistent exponential delay in both height and vertical
velocity, accompanied by oscillations at a specific height near
the ground. A comparison of control gains, ranging from
the smallest to the largest values, reveals a quicker onset of
instability with larger gains. This observation suggests that
opting for smaller gains might prevent oscillations during
optical flow landing (Croon, 2016; Ho et al., 2018).

Table 1 presents the root mean square errors (RMSE) for
tracking of a flow divergence of ϑ∗

z1 using fixed-gain control
with different control gains and with the proposed INDI con-
trol under various initial conditions. In the case of fixed-gain
control, it is observed that lowering the control gains results in
higher RMSE, which indicates poorer tracking performance.
This implies that adjusting the control gains for fixed-gain
control, either by increasing or decreasing them, does not
offer a compromise between stability and tracking perfor-
mance.

Moreover,whencompared to theproposed INDI approach,
the RMSE for tracking the flow divergence is significantly
smaller, which signifies superior performance. Interestingly,
the RMSE for tracking landings initiated with initial motion
(vz0 	= 0) is smaller than that for landings starting fromahov-
ering state (vz0 ≈ 0). This observation suggests that, with a
specific excitation at the commencement of the landing, the
proposed INDI control scheme demonstrates enhanced per-
formance.

5.3 Moving and undulating landing surface

Figure8 illustrates the results of hovering and landing tests
performed on a dynamically changing landing surface, fea-
turing wave-like fluctuations. These flight tests aimed to
validate the efficiency and robustness of the proposed INDI
control scheme in handling lateral and vertical movements
of the landing surface

The first test, presented in Fig. 8a, involved hovering the
MAV over a surface undergoing lateral movement by uti-
lizing the controller to regulate the flow divergence (ϑ∗

z =
0 rad/s) and optical flow in the Yb-axis (ϑ∗

y = 0 rad/s).
The results in this figure show that both setpoints were well
tracked using the INDI controller even for a laterally mov-
ing surface, as demonstrated by the consistent height and
unchanged position of the MAV relative to the surface fea-
ture, visible in the stacked image.

Besides the regulation task, Fig. 8b depicts the results of
a landing test on a surface undergoing lateral movement,
rather than hovering. The controller tracked a constant flow
divergence setpoint, i.e., ϑ∗

z = −0.2 rad/s (selected as the
median value of the setpoints from previous landing tests in
Sect. 5.2) for landing and maintaining the regulation of the
optical flow in the Yb-axis (ϑ∗

y = 0 rad/s) for following the
moving surface. The results indicate that the controller was
adapting the changes at the beginning, as the estimated ϑ̂z

shows a slower response leading to aminor height fluctuation
at t ≈ 4 s. Eventually, the controller accurately tracked the
setpoint ϑ∗

z and landed the MAV with an exponential decay
of the height dz .

To assess the controller under more challenging condi-
tions, the last flight test stimulated the vertical movement of
the landing surface by translating the MAV over an undu-
lating terrain, as presented in Fig. 8c. The lateral movement
of the MAV was induced by tracking a setpoint of optical

Table 1 Root mean square error
(RSME) comparison between
fixed-gain with various control
gains K f and INDI control at
different initial vertical
velocities vz0 of the MAV

MAV landings by tracking ϑ∗
z1 with

Control Fixed-gain INDI

K f1 = 0.03 K f2 = 0.1 K f3 = 0.5 vz0 ≈ 0 vz0 	= 0

RSME 0.1694 0.1664 1.592 0.0567 0.0429
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Fig. 8 MAV Hovering and Landings on a moving and undulating
ground. The columns (a) and (b) depict the hovering (by tracking ϑ∗

z =
0 rad/s, ϑ∗

y = 0 rad/s) and landing (by tracking ϑ∗
z = −0.2 rad/s,

ϑ∗
y = 0 rad/s) results of the MAV, respectively, above a moving and

flat surface, while the column (c) displays the landing (by tracking

ϑ∗
z = −0.1 rad/s) results of the MAV during translation (by tracking

ϑ∗
y = −0.8 rad/s) over an undulating ground. Each column shows the

stacked images of the flight scene, MAV height dz , flow divergence ϑ̂z ,
and optical flow in the Yb-axis ϑ̂y for the respective flight test. All the
tracked setpoints (ϑ∗

z , ϑ
∗
y ) are plotted as dashed lines

flow in the Yb-axis (ϑ∗
y = −0.8 rad/s). To demonstrate that

the MAV can safely land on the uneven terrain, a flow diver-
gence setpointϑ∗

z = −0.1 rad/swas chosen. Since the sonar
measurement only provides the height relative to the landing
surface, an ultra-wideband (UWB) tag attached to the MAV,
along with four UWB anchors in the test area, measured the
absolute height of the MAV using Double-Sided Two-Way
Ranging (Ching et al., 2022). The absolute height allows us
to analyze at which instance the MAV changing its veloc-
ity or even stopping. The results indicate that the controller
adapted well to the translation over an undulating terrain as
the tracking of the flow divergence ϑ∗

z is accurate leading to
the exponential decay of the relative height, as desired. Addi-
tionally, the absolute height data revealed that the MAV was
descending in a slow pace when it encountered the first peak
(t ≈ 4 s). This is due to the fact that the MAV detected its

movement closer to the landing surface at that instance. After
it moved over the first peak, the MAV continued to descend
and land safely on the next peak of the undulating surface
while translating.

6 Conclusion

This paper introduced a a novel data-driven incremental
nonlinear dynamic inversion (INDI) method designed to
tackle challenges in nonlinear optical flow-based control,
particularly when dealing with rapidly changing and height-
dependent system output dynamics. A noteworthy challenge
is that the control effectiveness matrix G in the INDI for
optical flow-based control is determined to be time-varying,
correlating with the distance above the platform, a parameter
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not directly measurable. As a result, an online identifi-
cation of G from input and output data, followed by an
inversion, at every time step was deemed necessary for
calculating the control increments. To streamline this pro-
cess and reduce the likelihood of numerical errors while
enhancing the accuracy and stability of the data-driven INDI
approach, we proposed the direct identification of the inverse
matrixG†, which eliminates the need for a separate inversion
step. The proposed method was applied and compared with
the conventional approach in numerical simulations aimed
at controlling an MAV during landing on a moving plat-
form. The results revealed enhanced control performance
and improved computational efficiency with the proposed
method. The effectiveness of the proposed method was
further substantiated through real-world flight tests, success-
fully demonstrating its capability to track and land on various
surfaces with the desired height and velocity decay. In future
work, emphasis will be placed on: (1) extending the incre-
mental model to handle challenges, such as measurement
noises, delays, scaleless system outputs, or fast dynamics,
and (2) enhancing this efficient optical flow-based control
method by integrating a directional guidance strategy that
leverages additional visual cues from both frontal and down-
ward perspectives, which enable precise navigation of small
flying robots in complex, obstacle-dense environments.
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