
Interactive Geometry-Based
Acoustics for Virtual Environments

Using the Graphics Card

by

R. Baksteen

4017781

Media & Knowledge Engineering
Specialization: Computer Graphics

This thesis was submitted for
the degree of Master of Science in the

Computer Graphics & Visualization Group,
Department of Intelligent Systems

at the Delft University of Technology, faculty EEMCS,
to be defended publicly on Monday October 30, 2017 at 10:00 AM.

Supervisor: Prof. dr. E. Eisemann, TU Delft
Thesis committee: Prof. dr. E. Eisemann, TU Delft

Dr. ir. R. Heusdens, TU Delft
Dr. ir. R. Bidarra, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

Thesis Topic
This thesis was submitted for the degree of Master of Science in the computer graphics & visualization
group, department of intelligent systems at the Delft university of technology. It aims to make a
contribution in the field of acoustics modeling in virtual environments. The challenge in this field is
to accurately auralize virtual sound sources in a virtual space, which has applications in architectural
acoustics, games and virtual reality.

Abstract
The acoustics of a space contribute much to the perceived size and atmosphere of the environment.
Modeling these acoustics in virtual environments can make a big improvement to the immersion of the
player. There are very accurate models that can reproduce realistic acoustics in virtual spaces, but
these are computationally very expensive. Cheaper algorithms are either very inaccurate or impose
very limiting constraints on the environment. This thesis aims to introduce an acoustics model that
can run in real time, while still providing a reasonable degree of accuracy. The perceptually most
important parts of the reverberation are modeled accurately in real time, allowing for excellent sound
source localization. The remaining part of the reverberation is generated using an artificial reverberator
whose input parameters are derived from the geometry, again in real time. This system is intended
to give players a convincing sound in any environment without heavily taxing the available processing
power.

Thesis Committee
Prof. dr. E. Eisemann, TU Delft
Dr. ir. R. Heusdens, TU Delft
Dr. ir. R. Bidarra, TU Delft

Acknowledgements
First and foremost I want to thank my supervisor Elmar Eisemann for his continued support and en-
thusiasm towards my thesis project. His insights, experience and critical thinking have really enabled
me to push for better solutions and a better final product. I could not have wished for a better su-
pervisor. I also want to thank Richard Heusdens for his contributions in our meetings and his valid
criticisms during the course of this project. I want to thank Timothy Kol for his assistance with OpenGL
programming and helping me understand graphics programming further. I want to thank all the other
employees and students of both the computer graphics group and the audio processing group who
attended my mid-term presentations for providing valuable feedback and asking great questions that
helped me think critically. Thank you to my girlfriend Martine van den Berg for all her love and support.
Finally, I want to thank all my family and friends for their continued support and interest in my project.
A special mention goes to my two grandmothers who both took great interest and always believed in
me, but who both did not make it to see the end result of this project. Above all, I want to thank God
for everything He has given me and everything He continues to give.

R. Baksteen
Delft, October 2017

iii

Contents

1 Introduction 1
1.1 Main Research Themes . 1
1.2 Overview Of The Report . 1

2 Background 3
2.1 Acoustics . 3

2.1.1 Room Acoustics. 3
2.1.2 Localization . 4
2.1.3 The Geometric Model . 5

2.2 Computer Graphics . 7
2.2.1 Geometry And The Graphics Pipeline . 7
2.2.2 Occlusion . 7
2.2.3 Useful Techniques . 8

3 Previous Work 9
3.1 The Field . 9
3.2 Currently Employed Techniques . 9

3.2.1 Baked Reverb . 9
3.2.2 Convolution Reverb . 10
3.2.3 Parametric Reverb . 10
3.2.4 Occlusion . 10
3.2.5 Localization . 10
3.2.6 Setting The Bar . 11

3.3 State Of The Art Techniques . 11
3.3.1 Pre-Computed Impulse Responses . 11
3.3.2 Wave Equation Models . 11
3.3.3 Geometric Models . 12

4 System Overview 15
4.1 Goal of This Thesis . 15
4.2 Building Blocks . 15

4.2.1 Prerequisites for Source Spatialization . 15
4.2.2 Preparation . 16
4.2.3 Summary . 16

5 Geometry Processing 19
5.1 Basic System Setup . 19
5.2 Direct Signal . 19

5.2.1 Line Of Sight . 19
5.2.2 Preparing For Auralization . 20

5.3 Early Reflections: Specular . 20
5.3.1 How it Works . 20
5.3.2 The Occlusion Problem . 21
5.3.3 The Direction Problem . 23
5.3.4 Preparing For Auralization . 24

5.4 Early Reflections: Diffraction . 24
5.4.1 Finding Corners . 25
5.4.2 The Occlusion Problem . 25
5.4.3 Preparing For Auralization . 25
5.4.4 Diffraction Issues. 26

v

vi Contents

5.5 Late Reverberation . 26
5.5.1 Late Reverberation Characteristics . 26
5.5.2 Finding The Absorption Coefficient . 27
5.5.3 Estimating The Volume Of The Environment 28
5.5.4 Using Sabine’s Equation Outdoor . 29
5.5.5 Finding The Reverberation Time . 29
5.5.6 Late Reverberation Signal Level . 29

5.6 Putting It All Together . 30
5.6.1 The Listener Render . 30
5.6.2 The Sound Source Render . 30

5.7 Conclusion . 32

6 Audio Processing 33
6.1 Audio Throughput . 33

6.1.1 Mixing Sound Sources. 33
6.1.2 Denormalization . 34
6.1.3 Processing . 34

6.2 Generating The Late Reverberation . 35
6.2.1 Blending Early And Late Reflections . 36

6.3 Dynamics . 36

7 Results 37
7.1 Quantitative Results . 37

7.1.1 Early Reflections . 37
7.1.2 Late Reverberation . 39

7.2 Computational Cost . 39
7.2.1 Geometry Processing. 39
7.2.2 Audio Processing . 40

8 Discussion 43
8.1 Qualitative Conclusions . 43
8.2 Performance bottlenecks . 43

8.2.1 Geometry Processing Optimizations. 43
8.2.2 Audio Processing Optimizations . 44

8.3 Limitations . 44
8.3.1 Geometry Requirements. 44
8.3.2 Occlusion Limitations . 44
8.3.3 LR Limitations . 45

9 Future Work 47
9.1 Improvements. 47
9.2 New Features . 47

A Specular Reflection Pseudo-Code 49

Bibliography 51

1
Introduction

1.1. Main Research Themes
The main goal of this project is to design an acoustics model for virtual environments that can run in real
time. To enable full freedom for both the player and the level designer, no pre-processing and minimal
input from the environment artist are required to arrive at a convincing sound. This allows for truly
interactive acoustics at any location that can handle unforeseen changes in geometry, while providing
natural sounds for any environment. Additionally, sound source localization is possible because the
most important propagation paths are determined accurately using the geometric model. This system
will model the direct signal path and first order diffraction as rays and first order specular reflections
as a combination of rays and beams. Higher order reflections are generated using an algorithmic
reverberator whose input parameters are derived from the geometry during runtime. The system
handles sound absorption in three frequency bands, allowing the environment artist a lot of freedom
in designing acoustically distinct environments. The main contributions are a novel way of finding
0፭፡ and 1፬፭ order propagation paths efficiently and a fast method of extracting late reverberation
parameters from the geometry in real time. Limitations are the very basic sound source occlusion
and the computationally expensive auralization. There are also some geometry requirements that
are necessary to prevent invalid propagation paths. Since the late reverberation is modeled by an
algorithmic reverberator, the system is not usable if high accuracy is required. Only the perceptually
most important parts of the reverberation are modeled accurately.

1.2. Overview Of The Report
After this introduction, the report starts with a chapter that gives background information on the
research topic, to help the reader understand some of the techniques and terminology used in this
field. Next, some relevant previous publications on this subject are presented, which gives the work
in this report some context and shows in what way its contributions are valuable to the field. Then
the system itself is introduced starting with a complete overview, followed by a chapter on how all the
information that is required for auralizing a sound source is gathered from the geometry. The next
chapter then discusses the actual auralization, with all the signal processing that this entails. After
that, the results are presented, showing both the accuracy and the performance of the system. The
final two chapters discuss these results and show areas for future work.

1

2
Background

The work that is presented in this report combines techniques from two different fields, namely acous-
tics and computer graphics. This chapter aims to introduce some terminology and techniques from
each of these fields that is required to understand the underlying principles of the remainder of this
report.

2.1. Acoustics
The field of acoustics is concerned with explaining the behaviour of sound waves. Sound waves are
pressure waves that travel from a sound source to the eardrum in a human ear, which allows us to hear.
The human ear picks up the sound waves as they travel through the air at speeds of around 330m/s.
Adults can hear frequencies of roughly 20Hz up to 16kHz, which are perceived as very low and very
high pitches respectively. The propagation of a sound wave through the air can be described by the
wave equation, a second order partial differential equation. Given some boundary conditions and an
excitement or initial displacement, it can model sound propagation quite accurately. Solving the wave
equation results in a continuous pressure field, where at any location the pressure is known. That this
pressure field can become very complex very quickly can be seen in Figure 2.1, which shows a sound
source emitting a single frequency wave at a wall. The reflected sound creates a complex interference
pattern in the pressure field. The fact that sound waves reflect off of surfaces this way is what makes
acoustics interesting.

2.1.1. Room Acoustics
When a sound source is in an enclosed space, the walls will redirect the sound energy back into the
room. When listening at a fixed position in that room, this means that the original wave emitted
from the sound source will reach the listener first. All the reflected waves arrive later, because they
have to travel further. With every reflection, some of the sound energy is absorbed. As a result the
energy in the waves slowly decays, until they are no longer audible. Reflections are usually referred to
using reflection orders. A first order reflection is a wave that reflected of a wall once, a second order
reflection has reflected twice etc. In a room with little absorption, the reflection order can go over one
hundred before the signal dies out. The time between the first wavefront arriving and the reflections
becoming inaudible is an important acoustic characteristic of a room, usually referred to as the 𝑇ዀኺ,
the time it takes for the signal level to drop by 60dB. The 𝑇ዀኺ of a room is primarily influenced by two
things: its size and the acoustics properties of the surfaces. A bigger room means that the waves
can travel longer without interacting with the walls, which results in a longer 𝑇ዀኺ. How much sound
energy is absorbed by the wall materials negatively influences the 𝑇ዀኺ. All of this is assuming that the
room is completely closed. In practice, an open door or window will allow the sound energy to bleed
away over time, decreasing the 𝑇ዀኺ further. The absorption of sound energy by walls is often very
frequency dependent. As a result, the materials in the room will start to color the sound noticeably at
higher reflection orders, since some frequencies will last much longer than others. In general, lower
frequencies are more difficult to absorb.

3

4 Background

Figure 2.1: A sound source emitting a pressure
wave which is being reflected off the wall.

Figure 2.2: An example of a room impulse response, showing the tem-
poral distinction between the early and late reflections.

Impulse Response
The acoustic properties of a setup with a fixed sound source and a fixed receiver in a room can be
captured entirely in what is called a room impulse response (RIR or IR). Although measuring an accurate
RIR in a real room is difficult to do well, the concept is straight forward. Imagine playing a very short
click (the impulse) from the sound source. At the receiver, every time this click is heard, the signal level
of that click is plotted against the time. The result is an IR that can look something like Figure 2.2.
It shows the signal that arrived directly from the sound source first, and an increasing amount of
reflections arriving later, with decreasing signal level. What makes an IR useful is the fact that it can be
convolved with any sound signal. The result will sound like that sound source was in the room the IR
was recorded in. Figure 2.2 makes a distinction between early and late reverberation. That is because
the early reflections and late reverberation have some distinct properties. The early reflections are
relatively far apart in time, which means they can individually be perceived by the human ear. As the
reverberation develops, the reflection density becomes so high that the result sounds more like a wash
of reflections instead of individual echos. This wash is often referred to as reverberation or reverb.

2.1.2. Localization
The human ear is capable of localizing the origin of a sound quite well. Both the direction and the
distance of a sound source can be estimated in the right circumstances. To determine the direction of
a sound source, the brain processes the differences between the left and right ear. Both the difference
in time and the difference in pressure level give an indication of whether the sound source is to your
left or to your right. The signal from a sound source to your right will arrive at your right ear a little
bit earlier than to your left ear. Although the timing difference between the two ears is less than a
millisecond, the human brain can distinguish that and use it. With all the reflections coming in at nearly
the same time, that would be too much information to process and make sense of. For that reason, the
human brain is trained to base its decision mostly on the first arriving wavefront. That makes sense,
because in most cases the first wave to arrive is the direct sound, which comes from the direction of
the sound source. This is referred to as the Haas-effect [1]. The contributions of the later reflections
to localization decrease with the increasing echo density. The reliance on the first wavefront becomes
very clear in a situation with very distinct long range echos, which can have one look in the wrong
direction to find the sound source.

Apart from the timing, the pressure level and frequency content of the signal in both ears contains
directional information. The head will obstruct some of the signal in the left ear in the case of a sound
source on one’s right, creating a difference in the pressure level between the ears. Finally, the outer
ear filters high frequencies when a sound source is behind you, so that every direction sounds slightly
different. It is very difficult to hear these things consciously, but the human brain is capable of using
all this information to effectively localize a sound source.

For determining the distance to a sound source, the main indicator is pressure level. Consider a
unidirectional sound source, meaning it emits sound in all directions equally. The sound energy close
to the source will be high. However, the sound wave expands like a sphere around the sound source,

2.1. Acoustics 5

which means the energy has to be distributed across the surface of that sphere. This surface area
increases with the square of the distance, which is why a sound source becomes louder when one
moves towards it. Estimating the distance requires some reference material, because once the brain
recognizes the sound source, it references it to past experiences. We basically learn the correlation
between the distance and pressure level for specific sounds. In the case of speech for instance, one
knows the expected volume when someone stands right next to you, or much further away. Combined
with the difference in sound when someone raises his voice, this gives a good indication of the distance.
However, the human brain can also use some other information to determine the distance. The timing
of the early reflections also gives an indication. Imagine standing in the middle of a large room, with
a sound source close by. The direct signal will arrive very quickly, but the first order reflections have
to travel very far before they get back to you. This timing difference tells you that the sound source is
much closer to you than the walls. If the sound source is far away instead, the first order reflections
will not be far behind by the time the direct signal arrives.

2.1.3. The Geometric Model
The oldest application of acoustics in virtual environments is architectural acoustics, where architects
needed ways to predict the acoustic properties of their design before constructing it, and adjusting their
design accordingly. The acoustics model would estimate the acoustic properties of the design based on
a virtual representation of the room or building. Although the wave equation would be able to model the
acoustics in a given virtual environment very accurately, it appears to be extremely difficult to solve. It
would require a lot of work to set up all the boundary conditions, and then the computation would take
many days even on modern CPUs, which is unacceptable. Instead of dealing with the computational
challenges of the wave equation, solutions rely on a different model of sound propagation: geometric
acoustics. The geometric model uses a simplified representation of wave propagation, by borrowing
concepts from geometrical optics. The main simplification comes from the fact that sound is no longer
represented by a continuous 3D pressure field, but by rays which are emitted from a sound source
and are propagated through the environment. By tracing these rays through the environment, one
gets an idea of how the sound can reach any location. Geometric acoustics does not model the actual
sound wave, but it aims to find propagation paths from a sound source to the listener through the
environment, and then later tries to auralize these propagation paths. The same setup as in Figure 2.1
is depicted in Figure 2.3, this time modeled using rays. The main advantage of this model is that it
is easier to compute. Although there are many interactions between rays and the environment, each
interaction itself is very easy to handle. Since this model is borrowed from the field of geometric optics,
a lot of techniques can be taken from the work done in computer graphics. Particularly the fact that
rays all need to be propagated through the environment independently makes the geometric model
attractive, because tracing rays can be implemented very efficiently on the graphics card.

Although lighting is modeled similarly, there are some things that do not transfer directly from optics
to acoustics. The main differences between acoustics and optics are in absorption and propagation
speed. In real life, a lot of light is absorbed when it hits a surface, and only some of it is reflected.
For that reason, when tracing rays in a lighting model, one can usually stop after a few interactions
because the remaining energy in the ray is minimal. With sound that is not the case at all. Very little
energy is absorbed by walls, which means propagation paths can still be relevant even after a hundred
interactions. Secondly, the speed of light is so high that in almost all applications it is perfectly valid to
just assume a light ray arrives at its destination instantly. The speed of sound in air is roughly 330m/s.
That sounds fast, but if one were to assume all sound rays reach their destination instantly, all sounds
would arrive at the listener at the same time and there would be no perceived reverberation. The

Figure 2.3: The same setup as in Figure 2.1, this time as it is modeled in geometric acoustics.

6 Background

techniques from geometric optics can thus be a good start, but they need to be adapted to account
for the increased number of interactions and the fact that sound takes time to travel somewhere.

Assumptions
Solving the latter is very easy if a constant speed of sound is assumed. As long as the path length
is known, the delay between a sound being emitted from a source and receiving the sound at the
listener position can be computed. Practically all geometric acoustics models make that assumption,
disregarding the fact that the speed of sound in air is actually dependent on frequency, pressure,
temperature and humidity. This travel time does mean that once a propagation path has been found,
its audio cannot be played back yet. It has to be buffered to account for the time taken for the sound
propagation. Secondly, the assumption of sound traveling in straight lines is only really valid for high
frequencies. As soon as the wavelength of the sound is the same order of magnitude as objects in
the environment, geometric acoustics cannot model the correct behaviour. It has to be noted that the
same assumptions apply in optics, but they are more valid there because the wavelength of visible light
is so short. Thirdly, the geometric model can only be used for point sources. The only way to model a
surface emitting sound (or light) would be to create a lot of point sources on the surface. Since each
source emits a lot of rays and each individual ray has to be traced, it is undesirable to use more than
one point source to model a sound source. If required the sources can be made directional by limiting
the directions in which rays can be cast, or by changing the initial energy in each ray depending on its
direction.

Finally, a big disadvantage of using rays is undersampling. A continuous pressure field can not be
completely modeled by infinitely small rays, no matter how many rays are used. There will always be
parts where a propagation path should be found, but it is missed because there was no ray emitted in
exactly the right direction. When working with rays, one has to accept the fact that some propagation
paths will be missed. Since the probability of an infinitesimal ray hitting a point in space is zero, the
listener has to be defined as a volume. To find propagation paths, each ray is checked for intersections
with the listener volume. Figure 2.3 shows two listener volumes. The orange listener volume receives
both the direct signal and a reflection off the wall. The green volume however receives nothing, caused
purely by undersampling of the rays. There are some alternatives to rays that try to solve this issue
which will be discussed briefly at the end of Section 3.3.3

Sound Wave Interactions
When a sound wave hits an object, the object can redirect the wave in several ways. These effects can
all be modeled by the wave equation, but since this report will deal with these interactions using the
geometric model, they will be explained in terms of their geometric description. The four main types
of interactions are explained below, illustrations of these effects can be found in Figure 2.4.

Specular Reflections The most basic result of a sound wave hitting geometry is the fact that the
wave is reflected off the surface, like light hitting a mirror. This is called specular reflection 2.4a. Nearly
every geometric acoustics model uses specular reflections, some even rely on no other interactions at
all while still obtaining usable results.

Diffraction Diffraction allows a sound wave to propagate around a corner. Low frequencies can travel
around a corner more easily than higher frequencies. Since a ray hitting a corner can go anywhere it is
necessary to spawn a number of new rays to cover the newly accessible area, as demonstrated in 2.4b.
Creating many new rays each time is expensive though. Alternatively, diffracted propagation paths can

Figure 2.4: Ray interactions in the geometric model.

2.2. Computer Graphics 7

be calculated explicitly by finding the shortest path from the sound source to the listener along all the
edges. This technique is referred to as the ’Uniform Theory of Diffraction’ (UTD) [2]. If a model relies
just on the ’bounces’ of specular reflections, some areas might be very hard to reach for a wave in
a complex environment, resulting in a discontinuous sound field. Diffracted propagation paths are a
valuable addition in such a case because they allow a wave much easier access to certain areas. If there
is no direct line of sight between the listener position and the sound source, the shortest propagation
path will almost always be a diffracted path, not a reflected path. For that reason, diffraction is also
valuable for sound source localization.

Transmission When a sound wave hits a wall, said wall can start to vibrate and transmit the sound to
the other side of the wall. This allows a listener to hear a sound source behind a wall. In practice, high
frequencies do not transmit very well because of their low energy and because the natural frequencies
of walls are much lower. For that reason, transmitted sounds are often very muffled. Unfortunately, to
geometrically model this properly a new source of rays should be created on the opposite side of the
wall. Since the entire wall surface is vibrating, there should ideally even be a number of new sources
on both sides of the wall because a point source is not enough. This makes transmission expensive to
model using classic ray tracing techniques.

Diffuse Reflections The last type of wave redirection is diffuse reflections. Diffuse reflections allow
a sound wave to reflect in all possible directions after hitting a wall. Each single ray has a very low
energy, but these types of reflections do contribute noticeably to the reverberation. Because there are
so many of them, they create a very high echo density which is generally perceived as pleasing. The
naive way of implementing diffusion in the geometric model is to create a new source of rays for every
single interaction. That is simply not doable in real time for anything more than very low order diffuse
reflections, which is why they are never modeled entirely in real time scenarios. Most systems either do
not model them, greatly reduce the number of new rays, interpolate them from the other propagation
paths or generate them artificially.

Absorption Apart from just redirecting the sound, the environment can also absorb the sound.
Different materials can have different absorption characteristics, often very frequency dependent. For
a sound wave that hits multiple surfaces, these effects accumulate with each interaction.

2.2. Computer Graphics
The field of computer graphics is concerned with displaying 2D or 3D information. This is generally
done on the graphics processing unit (GPU), which is built to output 2D arrays of color values, known as
pixels. Drawing a virtual scene is called rendering. However, a GPU does not have to output its results
to the computer monitor, it can also store results which is why it can also be used for other tasks. The
GPU is designed for performing the same calculation many times, since it has many processing cores
which all run in parallel. As mentioned in Section 2.1.3 already, this is what makes it useful for tasks
like tracing rays through the environment. Each ray has to undergo the exact same process, so all
shader cores are assigned a ray and perform the same calculations simultaneously.

2.2.1. Geometry And The Graphics Pipeline
The term geometry usually refers to the branch of mathematics that is concerned with describing and
working with shapes. In computer graphics, the term geometry is used to describe all the objects in
the virtual environment. This geometry is made up of interconnected points in space. These points are
referred to as vertices. Three vertices are combined to a triangles and triangles are combined to make
up a surface that describe an object. The graphics card uses a vertex shader to move the vertices that
make up the entire virtual world, which allows for camera positioning and perspective. The scene is
then rasterized to fragments, and in a fragment shader each fragment is assigned a color based on the
color of the triangle, the lighting model and any other influences.

2.2.2. Occlusion
The term occlusion is often used in computer graphics. It refers to the fact that some objects may
block the line of sight to other objects. When drawing objects on the screen, they need to be drawn

8 Background

Figure 2.5: An example of a mipmap. Figure 2.6: An example of a cubemap from Emil Persson’s collection [3]

back to front so that the objects in the back cannot overlap objects in the front. This is done by storing
the depth of each fragment, so they can be sorted when drawing the final image. However, the term
occlusion is also relevant in acoustics, as objects can also block the sound propagation from a source
to the listener. Just like with computer graphics, where partly transparent objects are possible, some
objects may also partially let through sound which makes things even more complex. In the context of
this report, the term ’occluded’ simply means ’not visible or audible because something else is in front’.

2.2.3. Useful Techniques
There are two particular techniques in the field of computer graphics which will turn out to be very use-
ful, namely mipmaps and cubemaps. To make their application easier to understand in later chapters,
their concepts are explained here.

Mipmap
A graphics card has its own memory where it can store arrays of pixels, known as textures. These
textures are basically digital images that the graphics card can read and write individual pixel values
from or to. A mipmap of a texture is a collection of smaller versions of said texture. They are all
combined into a single image as illustrated in Figure 2.5. The graphics card can generate these mipmaps
very quickly, by simply recursively taking the average of groups of 4 pixels until the last mipmap level
contains just a single pixel, which contains the average color of the entire texture. The advantage of
this is that one can request a particular mipmap level from the GPU, which means a very small texture
can be returned if a high resolution is not required. The entire mipmap structure only takes up 50%
more storage space than the original texture, since each mipmap level is only a quarter of the size of
its parent.

Cubemap
A Cubemap is a combination of 6 square textures that together form a cube. When these textures
align nicely, they form a continuous image when viewed from inside the cube. These are often used
for skyboxes for instance, because when viewed from the inside they can be made to look like a sky
dome. The image in Figure 2.6 shows an example. Remember that textures are not just for reading,
the GPU can also write to textures. That means that it is also possible to render to a cubemap. By
positioning the camera somewhere in the virtual scene and rendering six square viewpoints with a 90°
field of view, a cubemap can be built that contains everything that is visible from that location in every
direction.

3
Previous Work

3.1. The Field
The field of acoustics is a long-studied subject, with reports on architectural acoustics originating from
the era before Christ. Many famous scientists made contributions to the field including Pythagoras,
Aristotle and Galilei. However, real advances in the physical understanding of acoustics and mathe-
matical models only started in the 19th century. Modern architectural acoustics started with the work
of W.C. Sabine, who through countless measurements derived an equation that could estimate the
reverberation time of a room based on its volume and absorption coefficient. Currently, the behaviour
of sound waves is fairly well understood, and the acoustic wave equation can model it very accurately.
However, it remains notoriously difficult to solve so its applications are limited to research problems
where very high accuracy is required. Since the wave equation is of little practical use in acoustics
modeling situations where speed is a concern, a lot of work has gone into simplified versions of it
which are easier to compute, as well as alternative ways of capturing the behaviour of sound.

In architectural acoustics real time performance is not a necessity. Providing an auralization in a
couple of fixed positions in the environment after some computation time is generally sufficient. How-
ever, this thesis is concerned with acoustic models that can provide acoustics in real time in virtual
environments. The main application for real time acoustics models is in computer games, where the
player is free to move anywhere at any time. The acoustics model should be able to respond to any
changes in the geometry or player position very quickly in order to provide a natural sound. To achieve
real time performance either the accuracy or the interactivity has to suffer. High accuracy is not nec-
essary in games though, since a convincing sound is good enough. Because games are often pushing
the boundaries of what they can deliver in terms of visual quality, there is very little computational
power reserved for audio processing. Even though there are powerful geometric models available that
can deliver accurate acoustics in real time, these models are usually not employed in modern games.
There is a discrepancy between what techniques are available and what is actually being used, mainly
because of the little processing power available for sound and because more accurate sound is not
considered worth the cost. That is why the currently employed techniques are discussed separately
from the state of the art techniques.

3.2. Currently Employed Techniques
There are some games that employ smart techniques for their acoustics, but by far most games use
one of the following three simple techniques. In increasing order of versatility they are baked reverb,
convolution reverb and algorithmic reverb.

3.2.1. Baked Reverb
Baked reverberation is by far the easiest and simplest technique to use. Reverb is generated before-
hand, using some type of reverberator, and the result is baked into the audio files. The advantage is
that a high fidelity reverb generator can be used and that no computation is required while running the

9

10 Previous Work

game. There are some significant disadvantages though. This reverb is completely static, in that it will
not change depending on the environment or listener position. Sound source localization, if present
at all, is usually achieved through panning the entire audio signal in the stereo field to the required
position, but this also pans the reverberation tail which is not what would happen in real life. In short,
baked reverb is very cheap and easy to implement, but offers no versatility or realism at all.

3.2.2. Convolution Reverb
Convolution reverbs use pre-recorded impulse responses (IRs) and convolve those with the audio in
the game. IRs can be seen as a long list of incoming reflections, each of which has a different delay,
phase and signal level. A binaural IR can be used which has a different IR for each ear so that a stereo
effect is achieved. Impulse responses can be measured in real environments, which can capture the
fine details of the reverberation in a specific position in that environment very accurately. That means
the resulting reverb is very detailed and accurate, but only in a virtual recreation of said environment,
and only at the location where the IR was measured, looking in the same direction. In practice games
only use at most a handful of IRs to reproduce some different acoustics in different areas. These are
very general IRs which are not related to the actual geometry of the environment at all, but are just
selected for sounding good and conveying a certain atmosphere. Because of that, the resulting reverb
is completely inaccurate and does not help with source localization. Of the three simple techniques,
convolution is computationally the most expensive. It can be made cheaper by transforming the audio
and the IRs to the frequency domain, where convolution is reduced to a pointwise multiplication instead.
Despite being faster, the forward and inverse fast Fourier transforms (FFT) are still relatively expensive
operations, and the cost increases for longer reverberation times.

3.2.3. Parametric Reverb
Parametric reverberators are algorithms that generate reflections that are not based on actual propaga-
tion paths. They usually employ some sort of audio feedback network where the input audio is delayed
and added back onto itself. With a good network topology and careful tweaking the result will sound
like reverberation, providing an increasing echo density and a natural decay curve. However, since
the reflections are generated, there is no accuracy whatsoever when it comes to directionality. It is
computationally very cheap though, and it has a lot of flexibility because the delays and feedback gain
can be adjusted in real time to achieve different reverberation times from the same network. This is
usually combined with trigger volumes, where the environment artist sets the reverberator parameters
for each area in the environment, and the game applies them depending on the player’s location. This
requires some work by the artist though, especially since changes in the environment might also ask
for changes in the reverberator parameters.

3.2.4. Occlusion
Sound source occlusion remains a difficult problem to solve. Determining how much of a sound source
should be audible when the environment blocks the direct signal is not trivial. A pole blocking the direct
line of sight would not affect the sound all that much, since the sound wave will be able to propagate
around it, especially at lower frequencies. A thin wall might block all the sound on the other side, or
it could let some through, let alone the fact that there might be a path around the wall that makes
a sound source audible on the other side. Most sound engines avoid this problem by simply dividing
the space up in predefined volumes, where they specify for each volume from which other volumes
sounds should be audible. With careful tweaking this will create acceptable results, but it is not exactly
accurate and also not easily capable of handling unforeseen changes in the environment.

3.2.5. Localization
For sound source localization, most games rely on a simple stereo or surround mix. A surround mix
allows for reasonably accurate localization based on the direction and volume, a stereo mix is more
limited. The tiny timing differences between ears as well as all the filtering from different directions
are generally neglected. For a surround speaker setup that is not necessary, but more often than not
games are played on a stereo speaker setup or headphones which would greatly benefit from these
things, but they are generally not found in modern games.

3.3. State Of The Art Techniques 11

3.2.6. Setting The Bar
The most advanced technique applied in a popular modern game that I could find would be Rainbow Six
Siege, where a combination of baked reverb and convolution reverb is used. These are accompanied
by a node grid that allows the game to find the shortest diffracted propagation path from a sound
source to the player in real time. That enables the game to find the direction from which a sound
should be heard when it is occluded, so players can follow their ears to find a sound source. The game
can also propagate sounds through walls, with the expected muffling effect. There are destructible
environments, so the grid is updated in real time to adapt to changes in sound source occlusion [4].
The solution provides very convincing sound source occlusion effects, but the reflections inside a room
are not modeled at all. The convolution reverb they use for the reverberation is not based on IRs
computed from the actual geometry, and it is only applied to some sound sources. All others use
baked reverb because the convolution is too expensive to use on all sources.

3.3. State Of The Art Techniques
In terms of accuracy and localization, the results achieved by the previously discussed models leave a
lot of room for improvement. However, much better acoustics would be possible if more computational
power was reserved for audio. The techniques discussed below can all run in real-time if the required
processing power is made available.

3.3.1. Pre-Computed Impulse Responses
A rather obvious extension to the convolution reverb would be to use a high quality acoustics model to
generate IRs based on the actual geometry. These IRs are computed in many different locations and
stored in a grid. When playing the game, the most appropriate IR is selected based on the listener
position, as proposed by Astheimer [5]. That way the reverb is based on the actual geometry, and
when the player is on a grid node, it is as accurate as the selected model. Positions between grid nodes
could for instance use interpolated IRs. However, this technique requires an IR grid for every sound
source. To achieve some level of accuracy, the IR grid needs to be dense and contain binaural IRs in
many directions at every grid node. A dense 3D grid of nodes, with at every node multiple IRs for each
ear in different directions for each sound source would inevitably require a lot of memory. A major
limitation is that these sound sources cannot move, nor can the geometry change. All the propagation
paths would change, invalidating the pre-computed IRs. Additionally, convolution is computationally
relatively expensive, especially for longer reverberation times. Although the results are very good for
static scenes, the memory and processing power requirements of such a system are problematic.

3.3.2. Wave Equation Models
As mentioned before, the wave equation is a 3D second order partial differential equation that describes
the pressure field. Solving it numerically takes days, so it is far from usable in real time applications.
There are however some solutions that are based on extreme simplifications of the wave equation which
can produce results in real time. A major advantage of wave equation solutions over the previously
discussed IR grid and the geometric models that will be considered in section 3.3.3, is that its result
is a continuous pressure field. All other solutions compute the acoustics just for a single location and
orientation. This allows multiple players to move freely inside the ’solved space’, because a result is
available everywhere simultaneously.

Simplifying The Wave Equation
The first step towards approximating the wave equation is discretizing the space. Instead of trying to
find a continuous pressure field for the entire room, a much simpler equation is solved for small com-
municating volumes, usually referred to as waveguides. In each waveguide, a time domain difference
model is solved. The resolution of the grid allows for a variable trade-off between accuracy and cost.
Figure 3.1 shows a horizontal slice of waveguides in a 3-room setup, processing an excitation by a
single pulse. The fact that waveguides can be solved in parallel on the graphics card allows for real
time implementations, as shown by Röber et al [6]. Their ten year old hardware managed to achieve
real time results with a reasonable grid resolution for low frequencies. The issue with this model is that
the update frequency needs to be high enough to model high frequencies, which requires a rather large
increase in computational power if the entire audible spectrum has to be modeled. Furthermore, unlike

12 Previous Work

Figure 3.1: Illustration of a horizontal layer of waveguides in a 3D waveguide setup.

Figure 3.2: The scattering
delay network setup, using
a single waveguide per wall.

geometric models, larger environments increase the computational cost significantly because the grid
size increases with the volume of the environment. Changes in the environment would be difficult to
handle, as the waveguide grid would have to be extended with a new grid for newly accessible areas.
Although promising and very accurate, this model requires a lot of processing power to compute only
the lower end of the frequency range, which would be inadequate for practical use by itself.

The waveguide setup can be simplified further though, as is shown by De Sena et al [7]. Instead of
filling the entire space with a grid of waveguides, they place only a single waveguide on each wall. These
waveguides communicate, allowing sounds to reflect from each wall to the next. The setup is depicted
in Figure 3.2. Propagating sound through just a few waveguides is manageable in real time. A sound
source and listener can move through the room and simply act as moving waveguides that communicate
with all other waveguides to respectively send and receive sound. Instead of modeling the actual wave
propagation, this system approximates the possible propagation paths of all the reflections, where the
resulting path lengths and directions are roughly correct. This makes this system a hybrid between a
wave equation model and a geometric model. By moving the waveguides along the wall (using the
image source method, see section 3.3.3) so that they represent first order specular reflections correctly
at all times, the early reflections are still quite accurate, and the higher order reflections increasingly
inaccurate. The resulting audio is moderately accurate, but still very much defined by the geometry of
the enclosure. They claim that perceptually the quality is similar to the image method, while being one
to two orders of magnitude faster to compute. Like the image method though, the system is limited
to enclosed areas and cannot account for other objects in the room or changes in the room geometry.

3.3.3. Geometric Models
There are a plethora of geometric solutions for acoustics available. They all differ mainly in which
effects they model and what clever optimizations they introduce. There is however no system that can
model all kinds of interactions in real time for long propagation paths. The most famous geometric
acoustics technique is called the image source method [8]. Although not efficient enough to run in real
time, it is the basis for many other techniques, like the one discussed previously in the wave equation
section. The image method only models specular reflections. Instead of reflecting rays off of walls, it
mirrors the sound source in walls. When drawing a straight line from the mirror images to the listener
position, each propagation path will have the correct length and direction. The mirror images can be
mirrored again to find higher order reflections. This process is illustrated in Figure 3.3 for two first
and second order reflections. Unfortunately, not every mirror image leads to a valid propagation path,
which means each result needs to be checked. This performance of this check scales rather poorly
with the reflection order, which is why the image method is not great for long reverberation times. The
biggest limitation though is that it only works for completely closed rectangular rooms, which is very
restricting.

Ray Tracing Solutions
Classic ray tracing works as follows: First, a big number of rays are emitted in random directions from
the sound source. Each ray is checked against each triangle in the scene to see if they intersect. Of

3.3. State Of The Art Techniques 13

Figure 3.3: Example of two first and second order reflections using the image method, taken from Qeiroz et al [9].

all the intersected triangles, the one closest to the ray origin is selected. Depending on which types of
interactions are being modeled, one or more new rays are spawned at the intersection location. The
ancestors of each new ray are stored with the ray, so the entire path can be rebuilt later. Additionally,
every ray has some energy associated with it, which is influenced by the distance traveled and the
absorption of the surfaces that have been hit. This process repeats itself until some stop condition
is met, like a minimum energy level in all the rays. Every ray is also checked for intersection with
the listener volume, in order to find which paths eventually reach the listener position. This process
works well, but it is computationally very expensive for complex environments and high ray densities,
especially when each interaction can spawn hundreds of new rays. Classic ray tracing is thus not viable
as a real time solution. The techniques presented below are optimizations or simplifications of ray
tracing that allow for faster results.

There are many solutions that try to offload the real time computation with a precomputation. For
instance Funkhauser et al [10] compute all the propagation paths beforehand and store them in a
lookup tree. During runtime, the player location is used to find possibly relevant propagation paths in
the tree. A spatial subdivision is used to facilitate fast lookup times. Although this lookup tree requires
not nearly as much memory as an IR grid, it suffers from the limitation that all precomputations have,
which is that they cannot easily facilitate moving sound sources or changes in the geometry.

A notable ray tracing solution is proposed by Taylor et al [11]. They suggest a system that models
specular, diffuse and diffracted propagation paths for early reflections. They use UTD for diffraction and
a stochastic ray tracer for diffuse reflections, which creates just a few new rays in random directions for
each interaction. In order to achieve the desired real time performance, they process the rays a couple
of interactions at the time. By doing this, they can incrementally update parts of the impulse response,
reusing the previous IR for the other parts. This works well, but it cannot account for fast changes
in the IR because it takes two seconds before the whole IR is updated. Despite these optimizations,
the entire reverberation tail is still to complex to compute entirely, which is why late reverberation is
provided by an algorithmic reverberator. By fitting a curve to the energy levels of the discovered early
reflections, a reverberation time estimate is found which is used to tune the reverberator.

Another way to speed up ray tracing is through guided ray tracing, also proposed by Taylor [12]. The
idea is to use a very large listener volume and trace a small number of rays to find potential propagation
paths. The ray tracing is then repeated for a smaller listener volume, with rays emitted in the general
direction of the rays that found propagation paths in the previous run. The result is relatively fast

14 Previous Work

because in total less rays are emitted. However, some propagation paths are missed because the ray
density in the first step is low. Such a system only works well for geometry with large surfaces.

One can also decide to use fairly few rays, and fill in the missing information by generating artificial
reflections. Schimmel et al [13] propose to use the image method to find some specular reflections,
and enrich the sound by constructing additional diffuse paths. These paths are not based on true prop-
agation paths, but because they are generated based on real propagation paths, the final reverberation
still sounds reasonable accurate. Most people in the target audience for games would not be able to
tell the difference, which makes it an attractive option. This technique is usually referred to as diffuse
rain, and can be applied to enrich the results of any system with interpolated diffuse reflections. The
solution proposed by Schimmel suffers from the same limitations as the image method though.

A creative and quite different approach to the geometric model is introduced by Kapralos et al [14].
They call it sonel mapping, a derivative of photon mapping. Instead of tracing rays, they trace ’sonels’.
These behave like rays, but for every interaction with the geometry, they ’splat’ some energy onto that
geometry. This sonel map is then used in a Monte-Carlo ray tracing step from the listener position,
where the splatted energy is recalled and used to estimate the energy of the diffuse soundfield. The
sonel map is created for several frequency bands, so frequency-specific absorption can be modeled.
The paths of the sonels themselves also contribute propagation paths to the auralization. By randomly
selecting different effects for each interaction, the computational cost is kept low while still enabling
long propagation paths. Unfortunately, the performance of the whole system leaves some room for
improvement, because their implementation struggles to deliver real time results for anything more
complex than a small room.

A very powerful and complete solution is introduced by Schissler et al [15]. They propose a system
that can handle large numbers of sound sources by using backwards ray tracing and clustering nearby
sound sources. By emitting rays from the listener position instead, propagation paths to any number
of sound sources can be found. Additionally, by clustering soundsources that are close together and
far away from the listener, the audio processing is reduced. Such sources would have very similar
propagation paths anyway, so processing them as one saves having to deal with them individually.
Finally, they also manage to model Doppler shifting to some extent, an effect that is normally never
associated with geometric models. Their performance is impressive, with long reverberation times
computed explicitly, even for large scenes with many sound sources. This system is a good example
of what is possible in real time if all the computational power of a decent computer is made available
for acoustics in virtual environments.

Ray Alternatives
There are alternatives to using rays that can overcome the problem of undersampling. Instead of
casting infinitely small rays, one can also cast volumes. For acoustics, beam tracing [10] and frustum
tracing [11] can be used. The idea is similar in both cases. From the sound source, neatly aligned
beams are cast in all directions. This covers all possible space, so there is no undersampling. The
disadvantage is in processing the interactions. When a beam hits a surface, it has to be recast, just
like a ray. However, often a beam will hit only part of a surface, or multiple surfaces. In that case, the
beam has to be split up and several parts will have to be traced further or recast. This is a bit more
complex than with rays. Frustum tracing tries to find the middle ground between rays and beams by
casting triangular beams and simplifying the interactions. Instead of splitting the frustum up, it will
simply continue as one frustum according to what the most influential surface in the interaction would
dictate. That sacrifices some propagation paths for easier computation.

4
System Overview

4.1. Goal of This Thesis
What the previous chapter shows is that there are some really accurate models that are either compu-
tationally too expensive or too limited to use in interactive applications. There are also some techniques
that are very cheap but they are wildly inaccurate. There will always be a trade-off between accuracy
and computational power. However, the goal of this thesis is to design an acoustics model that has
the most perceivable advantages of an accurate model while minimizing the additional computational
cost. These advantages are:

1. Improved sound source localization.

2. Truly interactive acoustics which:

• Adapts in real time to changes in sound source or listener position.
• Handles changes in geometry instantly, even completely destructible environments.

3. Automatically realistic acoustics in any environment, because the acoustic parameters are mod-
eled from the geometry in real time.

Interactive acoustics means a pre-computation is out of the question, so everything has to happen in
real time. All of this has to run on consumer hardware, leaving some computational power to do other
things like rendering graphics and handling game logic.

4.2. Building Blocks
Apart from being easier to compute, the geometric model has another advantage. Since it does not
make any use of the actual audio, the search for propagation paths and their auralization can be com-
pletely disconnected from each other. That means that these two processes can run asynchronously,
giving the designer full freedom to decide on how often the propagation paths need to be updated. It
also means that finding propagation paths and auralizing them are two completely separate problems.
This fact allows the system to be split up into separate components. This section will give an overview
of the main components of the proposed system, detailing their functions and how they are connected.

4.2.1. Prerequisites for Source Spatialization
The final goal of this entire system is to output a convincing sound reproduction in a given virtual
environment with a given sound source and listener position. As discussed in Chapter 2.1, this means
finding out how a sound wave can propagate from the sound source to the listener. To auralize a
propagation path, it is required to know the total distance, the direction from which it arrives at the
listener and how the interactions with the environment absorb the sound. The distance is necessary
for calculating the time it takes for the wave to arrive, and for calculating how much sound energy will
reach the listener. The direction is required for localization. The absorption is necessary for controlling
the energy level of the wave. Since this absorption is frequency dependent, it is also used for coloring
the sound.

15

16 System Overview

What Will Be Modeled
A key observation that forms the underlying foundation of the proposed system is that the acoustic
response of an environment can be split up into a number of separate parts, as was already shown
in Figure 2.2. Each part makes its own contribution to the perception of the acoustics. For that
reason, each part will be modeled separately, so that the main characteristics of each part are captured
properly, without spending unnecessary computational power on any of them. The reverberation of an
environment will be split up in a direct signal, the early reflections and the late reverberation.

Direct Signal
The direct signal has an important role in sound source localization because, if a direct signal path is
possible, it will be the first sound that arrives at the listener position. It is thus crucial to model the
direct signal’s distance and direction accurately.

Early Reflections
The early reflections are those propagation paths that arrive at the listener shortly after the direct
signal. They only interact with the environment a couple of times and do not cover a very long distance.
Their main contribution is a sense of distance, as well as enabling even more detailed sound source
localization. The transition between early reflections and late reverberation is not clearly defined, but
for performance reasons this system only considers first order propagation paths as early reflections.
They perceptually contribute the most and higher orders would require much more computation for
relatively little gain. These early reflections will be based on first order specular reflections and first
order diffraction.

Late Reverberation
The late reverberation finally is made up of all the complex and long propagation paths that sound
waves can take through an environment. These propagation paths go through a large number of
interactions with the environment before reaching the listener. They are characterized by a high and
increasing temporal density and an exponentially decaying signal level. This is the ’reverberation tail’
of a room, and it is most noticeable in large indoor areas like cathedrals. The main contribution of
the late reverberation to the perception of acoustics is the sense of size of a room and its absorptive
qualities. Carpet and curtains for instance have a noticeable effect on the late reverberation, because
they absorb high frequencies. The number of reflections (and thus the computational cost) in the
reverberation tail is very high, while their individual contribution to the sound is hardly perceivable.
For that reason, the accuracy of the individual late reflections is less important. Instead of finding
propagation paths for them, the late reverberation is generated artificially. Although individual paths are
not modeled, the reverberation tail as a whole still needs to sound as expected given the environment.
The most important characteristics of this tail are its length and its frequency response. Chapter 3
already mentioned Sabine’s equation, which stated that these characteristics are controlled mostly by
the absorption of the environment and the size of the enclosure.

4.2.2. Preparation
For all of this to work, the absorption characteristics of the environment need to be added to the
geometry somehow. Most 3D modeling applications allow a designer to assign material properties to
surfaces. Originally, this is intended for indicating how each surface responds to incoming light. This
material definition can however easily be extended to include sound absorption parameters. When
processing the geometry, these surface characteristics are attached to each vertex of a surface as
vertex attributes. For sound absorption, this information is supplied as a RGB color value, which can
store absorption coefficients for three different frequency bands.

4.2.3. Summary
In summary, the system is thus split up into two distinct parts: A geometry processing stage which
is in charge of finding propagation paths and late reverberation parameters, and an auralization stage
which is in charge of processing the source audio according to the results of the geometry processing.
The geometry processing stage gathers all its information as often as is deemed necessary. Whenever
changes in the listener position, a sound source position or the geometry occur the geometry processing
could be redone. Again, one is entirely free to specify when and how often the information from the
geometry stage is updated.

4.2. Building Blocks 17

In order to auralize a sound source in a virtual environment, the information that is required from
the geometry processing is:

• A possible direct signal

– Path length

– Direction of the incoming wave

• All possible first order specular reflections

– Path lengths

– Direction of the incoming waves

– Absorption of the materials at the reflection points

• All possible first order diffraction paths

– Path lengths

– Direction of the incoming waves

• Late reverberation parameters

– Absorption of the materials in the environment

– Volume of the enclosure

These elements will all be discussed in Chapter 5. The auralization stage is running continuously,
providing an uninterrupted audio output signal using the latest available propagation path information.
To spatialize the sound source according to the information from the geometry processing, the audio
processing needs:

• The source audio

• A way to control the signal level of each reflection

• A way to delay each reflection so it arrives at the right time

• A way to filter each reflection based on the absorption

• A way to give a sense of direction to each reflection

• A way to generate fitting late reverberation

• A way to mix all these audio streams together

All the audio processing that is required for the auralization will be discussed in Chapter 6.

5
Geometry Processing

5.1. Basic System Setup
The challenge in this chapter is to extract all the required information that is required for auralizing
a sound source from the environment. For finding propagation paths, the geometric model will be
used. This comes with the assumption that sound travels as rays, which means it cannot propagate
around objects, nor does it propagate differently at different frequencies. Acoustics systems using the
geometric model are often implemented on the graphics card because ray tracing is easily parallelizable.
The system proposed here will also use the graphics card, but not for classic ray tracing. Instead, a ’line
of sight’ approach is used, where the main idea is that if an object is visible from a certain viewpoint,
a sound wave must be able to travel from that object to the viewpoint. the graphics card is used to
render the scene and derive the acoustic properties of the environment from the geometry as seen
from the viewpoints of the sound source and listener position. That makes this system quite different
from existing geometric models. This chapter will discuss the different elements separately, and then
conclude by showing how they all come together.

5.2. Direct Signal
As mentioned in the introduction already, the first arriving wavefront plays an important role in localizing
a sound source. If there is a clear line of sight between the sound source and the listener position,
the first arriving wavefront will be the direct signal that reaches the listener without any geometry
interactions. For that reason, the direct signal is important to get right, but also relatively easy to get
right because there are no interactions involved. The main challenge is thus to find out whether or not
there is a clear line of sight between the listener and a sound source. Once that has been determined,
the problem is reduced to auralizing a sound source at a given distance and direction from the listener.

5.2.1. Line Of Sight
Finding out if a real life object is visible or occluded in a real life scenario is very easy. If one simply
looks around in all directions, one can quickly determine if said object is visible or not. The approach
used in the virtual case is exactly the same. By rendering the environment and all sound sources to
a cubemap (see Section 2.2.3) from the listener position, everything that is visible from the listener
perspective is drawn to the cubemap. If there is a clear line of sight from the listener to a sound source,
said sound source has to be visible in the cubemap.

When using a graphics language like OpenGL this solution is very easy to implement. For every
object that is being drawn, one can request how many fragments of every object ended up as pixels in
the cubemap. One or more pixels means that the source is visible and that there should be an audible
direct signal. This is already the solution to the occlusion question. What makes this technique very
flexible is the fact that any object can be drawn as a sound source. If the sound source is for instance
a vehicle, one could draw the entire vehicle and use that for the occlusion testing. However, it is also
possible to use for instance a cube of any size, which could potentially save a lot of triangles being

19

20 Geometry Processing

Figure 5.1: A sound source being tested for occlusion.

drawn. The object used for the sound source occlusion testing can be picked based on the size of the
source, the desired accuracy and the complexity of the environment. Figure 5.1 shows an example
where a sound source is rendered as a simple blue pyramid. This pyramid consists of just 4 triangles
so it is very cheap to draw. It is partly occluded by the balcony bars, but because the pyramid is big
enough its line of sight will always be detected when it is moving along the balcony. A much smaller
pyramid could also be used, if one wanted the direct signal to be intermittently blocked by the balcony
bars if the sound source were to move along the balcony. In this case, the pyramid’s size was decided
on so that a continuous direct signal would be heard.

5.2.2. Preparing For Auralization
Rendering a single cubemap is enough to determine the line of sight to all sound sources simultaneously,
which is convenient. For every sound source, a simple yes or no flag can be stored for the existence
of a direct signal. The only other information that is required for auralizing the direct signal is the path
length and the direction of the incoming wave. These are readily available since the source and listener
positions are known, and the propagation path is a straight line between the two.

Note that the problem of finding the direct propagation path is actually performed in the ’wrong’
direction. Sound travels from a source to the listener, but in this case the propagation path is found
by looking from the listener to the source. The technique could be reversed, but that would require a
cubemap render from every sound source which is evidently more computation with no added benefit.
Separating the actual audio from the search for propagation paths allows for these kinds of optimiza-
tions.

5.3. Early Reflections: Specular
With the direct signal, there was no interaction between the geometry and the sound. However, all
other possible propagation paths involve some sort of interaction at the surfaces in the geometry. The
first one that will be considered is specular reflection, where the sound bounces off the surface it hits.

5.3.1. How it Works
This time a propagation path consists of two parts, the part from the sound source to the wall and
the part from the wall to the listener. Note that the number of specular propagation paths per sound
source can be much higher than just the single direct signal path. To find the specular reflections, first
all the surfaces that will reflect the sound wave are found and then each reflection is traced to see
whether or not it will reach the listener.

The first step is easily solved. When the environment is rendered to a cubemap from the sound
source position, this cubemap contains all the surfaces that will receive the sound waves from the

5.3. Early Reflections: Specular 21

source. All the surfaces in this cubemap will thus generate a specular reflection. The question is now
whether or not each individual reflection will reaches the listener. This question consists of two parts:

1. Is there an unobstructed path from the reflection point to the listener? (the occlusion problem)

2. Does the reflection go in the direction of the listener? (the direction problem)

These two questions will be answered in the following two sections.

5.3.2. The Occlusion Problem
So far, cubemap renders have been a great help in solving occlusion problems, and they will be used
again here. The question of whether there is an unobstructed path from the reflection point to the
listener is the same as asking if there is a clear line of sight between the two. The easiest solution
would be to take each reflection point in the sound source cubemap and render the scene from there
to see if the listener is visible, just like with the direct signal. However, rendering the entire scene again
and again for each pixel in the sound source cubemap is a lot of work. Just like in the direct signal
case, it is much more efficient to perform this check in the opposite direction instead. The question
is then changed to ’which of the reflection points in the sound source cubemap are visible from the
listener?’ That question can be answered from just a single cubemap render from the listener position.
The visibility information in the two cubemaps now somehow has to be combined, to find out which
parts of the environment can both receive the sound wave and reflect it towards the listener. The left
image in Figure 5.2 shows an example setting. Everything that is visible in the sound source cubemap
is red, and everything that is visible in the listener cubemap is blue. The surfaces that are purple are
the ones that are actually relevant and worth investigating. Notice how a reflection hitting a surface
that is only visible from the sound source can reflect in the direction of the listener, yet never reach it.

Finding Relevant Geometry
Conveniently, the problem of finding geometry that is visible from two different viewing positions is
not new. In computer graphics, this is a very common issue when considering lighting. Finding out
whether or not some part of the geometry is illuminated by a light source or in shadow is exactly
the same challenge. When viewing the geometry as seen from the light source, every visible surface
must be illuminated and every occluded surface must be in shadow. The challenge is now to transfer
this information to the camera viewpoint. The solution that is used is called shadow mapping [16].
Shadow mapping will be used here to find the relevant parts of geometry that could contribute a
specular reflection.

Shadow Mapping
Shadow mapping works by measuring distances and comparing them. For each bit of geometry that is
visible in the sound source cubemap render, its location is stored. The Euclidean distance between this
location and the listener is computed. Next, the scene is viewed from the listener in the direction of
the stored location. The listener will see a surface there, and the distance to that surface is computed.
If the two distances are the same, then the sound source and the listener are looking at the same
surface. If they are not, then the surface that the sound source could see is occluded when viewed
from the listener. The image on the right side of Figure 5.2 shows the principle. The distance between

Figure 5.2: Shadow mapping

22 Geometry Processing

the lower reflection point and the listener is equal to the length of the green arrow. But the distance
between the upper reflection point and the listener is much larger than the length of the orange arrow.
The conclusion is that the listener can see the lower reflection point, but not the upper.

Implementation
To implement shadow mapping, all this distance information has to be available somehow. Recall from
Section 2.2.2 that the graphics card computes depth values for each fragment, which describe the
distances between the camera plane and the viewed fragments. These will be used here. To start, a
cubemap is rendered from the listener position. Instead of drawing the colours to the cubemap, the
depth is stored in each pixel. The scene is then rendered from the sound source perspective, which has
access to this depth cubemap as well as the location of the listener. For each fragment it draws, the
shader computes the distance between the fragment and the listener. Next, it reads the depth value
from the listener cubemap in the direction of this fragment. After transforming this depth value to a
distance, it can compare the two distances to know if the current fragment is visible by the listener.
In principle the first question is now answered. However, in practice shadow mapping is not without
faults, so some additional measures are necessary.

Shadow Mapping Issues
Comparing the distances directly does not work in all cases. The distance taken from the listener
cubemap is not the distance to the exact location of the fragment, but the distance to the pixel in the
cubemap that is closest to that position. That means the resulting value might be slightly higher or
lower than the actual distance. The result is a lot of noise in the shadow map, because some distances
will be slightly different. This phenomena is called shadow acne. To counter this, the two values are
not required to be exactly equal. Instead, the fragment is considered visible if its distance from the
depth map with a small bias added is larger than the actual distance. A bigger bias gives better results,
up to the point where it allows the listener to see through walls. The bias value thus has to be tweaked
according to the dimensions of the environment. Shadow acne cannot be completely prevented. When
the resolution of the depth map is very low at a location close to the sound source, this can still cause
some artifacts. In the worst case scenario, this will mean a specular reflection will be missed.

A second problem arises from the fact that the triangles in the geometry have no thickness, they are
infinitely thin. If the source and listener both see a different side of the same triangle, shadow mapping
will indicate that they both see the same surface. Similarly, if walls have no thickness, reflections can
pass through corners as is shown in Figure 5.3. The little green line extending the blue arrow indicates
the bias. The bias prevents shadow acne but at the same time causes these potential problems. The
best solution for this is to make sure that it is impossible to see a surface from both sides at once.
Infinitely thin walls do not exist in real life, so as long as all walls in the virtual world also have two
separate sides this problem does not occur. That does unfortunately mean that the number of triangles
that make up the environment goes up. Another slightly less elegant option is to check the orientation
of the surface from both viewpoints to make sure that they both see the same side of the triangle. It

Figure 5.3: Single walled geometry allows specular reflections to pass through walls at corners.

5.3. Early Reflections: Specular 23

Figure 5.4: Reflecting a beam off of four pixels.

Figure 5.5: 2D illus-
tration of corner cases
where beams should
be discarded

is less elegant because it results in similar artifacts as shadow acne at the triangle edges, which can
not be prevented with a bias this time.

5.3.3. The Direction Problem
It is now known which reflections can potentially reach the listener. However, it is still unknown if the
reflection is actually going in the right direction. Finding the direction of the outgoing reflection vector
is very easy if the incoming direction vector V and the surface normal N are known. The reflection
vector R is found from equation (5.1):

𝑅 = 𝑉 − 2𝑁(𝑉 ⋅ 𝑁) (5.1)

So how does one determine if this infinitesimal ray hits the infinitesimal point in space that is the listener
position? In classic ray tracing this was solved using a listener volume instead of a point. A different
solution is used here. As was shown at the end of Chapter 3, there are alternatives to casting rays that
do not suffer from undersampling. Instead of casting a reflection ray, a reflection beam is cast. This
beam is a volume, and for each beam it is checked if it contains the listener position.

Beam Casting
It would be possible to cast a beam for every pixel in the sound source render that passed the shadow
mapping check. However, that could result in both overlapping beams as well as volumes of space
that are not covered by a beam, because different pixels can have different surface normals. Instead,
beams are cast from the centers of groups of four pixels. The size of such a beam is still a single pixel,
but now neighbouring beams align perfectly with each other. Figure 5.4 shows what this looks like.
The green pixel is the pixel that is currently considered. The red arrows are the viewing vectors from
the sound source to each pixel. The blue lines are reflected vectors off of each pixel. The beam is
constructed from these four reflection vectors. In order to do this, the world positions and normals of
neighbouring pixels need to be available. The information of neighbouring fragments is not accessible
in a fragment shader, so before this render process a preparation render pass is done that stores the
fragment normals and positions to a texture. The reflection vectors in each of the four pixels are found
from Equation 5.1, using the vector from the sound source position to each fragment as the viewing
vectors. The resulting four reflection vectors are used to construct the reflection beam.

The final step is to find out whether or not the sound source is inside the four faces of the reflection
beam. To do this, the beam is not defined by four faces, but as four planes. The listener’s position is

24 Geometry Processing

checked against each plane. If it is located on the ’inside’ of each plane, which is the side that contains
the beam, then it must be inside the beam. Each plane is defined by the normal vector of two reflection
vectors. First the angle between the two reflection vectors is computed, because a positive or negative
angle would change the direction of the normal. This angle determines the order of the two reflection
vectors in the cross product, which results in the desired normal vector. If the location check against
all four planes is positive, a specular reflection has finally been found.

Beam Casting Issues
In principle, a beam is cast for every pixel that is marked as relevant in the shadow mapping stage.
However, there are some cases where reflecting a beam is undesired. Figure 5.5a shows how looking
at an outer corner would produce a very wide beam. Similarly, if the sound source were looking at the
inside of a corner, the resulting beam would immediately fold onto itself and produce a wide inverted
beam. Neither of these describe a proper first order specular reflection. To remove the wide beams
that occur when the surface normals of neighbouring pixels vary too much, the angles between the
normals are computed as 𝜃 = arccos(𝑁1 ⋅𝑁2). If said angle exceeds ዂ , the beam casting for this pixel
is aborted. Figure 5.5b shows how edges in the scene could also invalidate neighbouring pixels. To find
these edges in the geometry, the depth values of each fragment are compared. If they differ more than
some threshold, the beam is also discarded. This threshold depends on the resolution of the cubemap,
since the depth differences between neighbouring pixels increase with a decrease in resolution. This
can result in false edge detection for walls that are almost parallel to the viewing vector. The pseudo-
code for the entire process from shadow mapping to beam casting for a single fragment is available in
Appendix A.

An example of the output of the shadow mapping stage and edge and angle detection is shown
in Figure 5.6. The right image shows the scene as seen from the listener position. The cubemap is
rendered from the sound source, the listener position would be roughly in the middle of the left most
face of the cubemap. Notice how the balcony casts clear shadows onto the ground and wall behind it.
The conclusion is that the parts that are in shadow are not visible from the listener position. For all the
white pixels in the cubemap a reflection beam will be cast.

5.3.4. Preparing For Auralization
The information that is required to auralize a reflection is the path length, the direction from which it
approaches the listener and the absorption coefficients of the reflection point. The path length and
direction are trivial since the sound source, listener and reflection point position are all known. The
absorption at the reflection point is taken from the geometry.

5.4. Early Reflections: Diffraction
Diffraction allows a sound wave to propagate around a corner. Again, the propagation path consists
of two parts. From the sound source to the corner, and from the corner to the listener. The way this
will be modeled is very similar to the specular reflections case. Corners that are visible from the sound
source will diffract the wave, and corners that are visible from the listener can send a diffracted wave

Figure 5.6: Result of a shadow map with edge detection, showing the diffraction edges in blue.

5.4. Early Reflections: Diffraction 25

to the listener. The key problem is again an issue of visibility: Which corners are visible from both the
listener and the sound source? Because the sound wave can take any direction after hitting the corner,
there is no need to trace the path from the corner to the listener to see if it goes in the right direction.
The answer is always yes provided that the listener can see said corner.

5.4.1. Finding Corners
Finding corners is in fact very easy. Recall how edge detection was used in the beam casting stage.
The same method will be used here. When rendering the environment from the sound source position,
the depth values of each fragment are available. Finding an edge is as simple as defining a threshold
between neighbouring depth values. The depth of the current fragment is compared to the fragment
above it and to its right. If either one exceeds the threshold, a diffraction edge is found. The depth
information of neighbouring fragments is again not available in a fragment shader, so that needs to be
prepared beforehand. That is however all there is to finding corners. The two red arrows in Figure 5.7
show the big depth difference at an edge which allows the system to detect the corner.

5.4.2. The Occlusion Problem
The question that remains is which corners are visible by both the source and the listener. This can be
solved using shadow mapping, by exploiting a limitation of the technique. Consider Figure 5.7 again:
the sound source sees the fragment right at the edge of the wall. The listener obviously cannot see that
surface. However, if the sound source requests this visibility information from the listener depthmap
using shadow mapping, it turns out that the listener can apparently see that fragment. This happens
because the bias that is used to counter shadow acne actually allows the listener to see around the
corner slightly. This shadow mapping error turns out to be very useful, since it allows the system to
solve the occlusion problem even though technically the listener cannot see the surface that is being
considered. First order diffraction is thus fairly trivial to accomplish using just a simple edge detection
algorithm and shadow mapping to see if a detected edge is visible from both the source and the listener.
In fact, the solution is very similar to the initial setup of specular reflections. Consider Appendix A again.
Instead of aborting on line 9, a diffraction path is found. That shows both how simple the diffraction
path detection is and how well it integrates with the specular reflection detection. The blue pixels in
the cubemap in Figure 5.6 show detected corners which will diffract the signal towards the listener.

5.4.3. Preparing For Auralization
When sound is diffracted around a corner, the absorptive qualities of the surface do not really affect it.
However, low frequencies diffract easier than high frequencies. That means that one would hear the
lower frequencies around a corner more than the higher frequencies. Instead of using the absorption
coefficients of the surface, absorption values that achieve this behaviour can be used. Values of 0.0,
0.085 and 0.38 were used for low, medium and high frequencies respectively to model this effect. The
only other required information is the path length and the direction of the incoming wave, which are
easily available since the sound source, listener and corner locations are known.

Figure 5.7: Edge detection and occlusion
check through the wall for diffraction

Figure 5.8: Single walled geometry allows diffracted propagation paths to
pass through walls at corners on the wrong side.

26 Geometry Processing

5.4.4. Diffraction Issues
The process of finding diffraction edges results in a lot of propagation paths, many of which are very
similar in length and direction. Imagine an L-shaped room with the source in one extremity of the room
and the listener in the other. A couple of specular reflections might be found there. However, in the
concave corner of the room, a vertical row of diffracted paths is found, which could easily contain over
100 pixels at a 128x128 cubemap resolution. These 100 propagation paths all have to be individually
auralized which would completely drown the specular paths. Additionally, this auralization would take
up a lot of computation with hardly any gain, since the path length and direction of all these propagation
paths is nearly the same. For that reason, only the shortest diffracted propagation path is considered,
all the others are simply discarded. This still allows for a sound source to be audible around a corner
allowing the player to find the shortest path to the source, without spending a lot of processing power
on the auralization.

Another problem with this solution to diffraction stems from the infinitely thin geometry. Recall that
for specular reflections, this could in some cases lead to a reflection making it through a wall. The
same thing happens for diffraction, but much more frequently. The problem is that the shadow mapping
exploit used for the occlusion problem also works from the wrong side of the wall. Figure 5.8 illustrates
the problem. Anywhere in the blue area the listener would receive a diffraction signal, which is clearly
unintended. The solution to this is again to use double-walled geometry, to make sure that a surface
is never visible from both sides.

5.5. Late Reverberation
So far, the system has computed exact propagation paths for a direct signal, first order specular reflec-
tions, and first order diffraction. To achieve a complete reverberation tail, the higher order reflections
will also need to be modeled in some way. Unfortunately, finding exact propagation paths for higher
order reflections becomes expensive very quickly. Since the amount of propagation paths increases
tremendously, treating them all separately would put too much strain on the auralization stage as well.

To overcome these limitations, the late reverberation will not be modeled by finding the individual
propagation paths. Instead, the reverberation will be generated so that the reverb tail has the desired
properties. The human ear cannot distinguish the individual reflections in a dense reverberation tail
so as long as the main characteristics of the late reverberation are right, the resulting reverberation
is convincing [17]. The goal is thus to determine these characteristics and model late reflections
accordingly.

5.5.1. Late Reverberation Characteristics
The most important characteristics of a reverberation tail are its length and its frequency content.
Both of these depend on the environment. According to Sabine’s equation, the length of the tail is
proportional to the volume of the space and inversely proportional to the absorptive qualities of the
materials in the environment. The equation results in a 𝑇ዀኺ value, which denotes the time between
the arrival of the direct signal and the reverberation becoming inaudible. To calculate the expected
reverb tail length, the volume and the absorption of the enclosure are thus necessary. The frequency
content of the reverberation tail also depends on the absorption of the environment. The contribution
of the absorption accumulates with every reflection, and in enclosed areas the reflection order can
reach values of 100 and higher. For that reason, distinctive frequency-dependent absorption is most
audible in the late reflections. The absorption coefficient of the environment will need different values
for different frequencies.

The late reverberation consists of very long propagation paths that undergo lots of interactions with
the environment. Since these propagation paths themselves will not be modeled, a decision has to be
made on which surfaces will influence the late reverberation and which will not. Without knowing the
propagation paths, there is no definitive answer to this question. However, it is fairly safe to assume
that a sound wave that reaches the listener will also reach all the surfaces close to the listener. These
surfaces will thus be considered for both the absorption and the volume parameters.

5.5. Late Reverberation 27

Figure 5.9: Sampling the absorption coefficient from the listener position. Figure 5.10: Mapping a cubemap
to a sphere. [18]

5.5.2. Finding The Absorption Coefficient
As was proposed in Section 4.2.2, the absorption coefficients of each surface are stored with the
geometry as RGB color values, where each color channel represents a frequency band. This solution
will make finding the absorption coefficient very simple. The absorption values of the environment as
seen from the listener position can be made visible by rendering a cubemap again, but this time drawing
the absorption coefficients of each surface instead of the actual colors. The result is an absorption map
of the environment around the listener. Large surfaces will make a large contribution and small surfaces
a small contribution, exactly as expected. However, the reverberator requires a single absorption value
for each frequency band, so absorption cubemap has to be processed. The easiest way of arriving at
a single value is by simply taking the average of all the pixels in the cubemap. Incidentally, there is
a very convenient way of finding the average color of a texture: a mipmap (See Chapter 2.2.3). By
requesting the highest mipmap level of the cubemap, a single pixel is returned which has the average
color of the entire cubemap. The red, green and blue values of this pixel are the absorption coefficients
of the low, middle and high frequency bands.

Corrections
There are two issues with this technique. The first is caused by the fact that surfaces far away contribute
far less than surfaces nearby. Although that sounds reasonable at first glance, it is not really desirable.
Very high order reflections will probably hit each surface multiple times, which means that a surface
that is further away can contribute to the absorption coefficient just as much as an equally large surface
nearby. Consider the example in Figure 5.9. It shows the listener in a room with four different walls.
The gray lines represent pixels in the cubemap. The red and pink walls are equally large, yet the red
wall contributes 8 pixels to the absorption coefficient and the pink wall just two. If the absorption
coefficients of these two walls is very different, the final absorption coefficient estimate would vary
wildly based on the listener position, whereas the expected result is that the reverberation tail is
mostly the same within a single room, regardless of the listener position. Luckily, it is fairly easy to
compensate for this fact. Each pixel represents a surface area. As is evident from the figure, pixels on
a wall nearby represent a small surface area, and pixels on a wall far away a much larger area. Each
pixel will thus be weighted based on the distance. The surface area of a pixel actually grows with the
square of the distance. By multiplying each absorption value in the cubemap with the square of the
distance, this is solved. However, the final averaging is still based on the sum of all the pixel values
divided by the number of pixels. That no longer results in the average, since the value should also be
divided by the sum of all the weights. To solve this, the weights of each pixel are also drawn in the
cubemap. When requesting the mipmap, the average weighted absorption is returned, as well as the
average weight. Dividing the former by the latter results in the desired absorption coefficient.

The second issue is caused by the fact that a cubemap does not cover each direction equally accu-
rately. Ideally one would map the scene as seen from the listener to a sphere. Instead of rendering a
cubemap, a spherical projection could be used which would solve that issue. However, textures have
to be square and a spherical projection has a circular result. Taking the mipmap of a square texture
containing a circle does not result in the average value of the circle, but of the entire square which is not
the desired result. Spherical projection is thus out of the question. Instead, the cubemap will be used,

28 Geometry Processing

but it will be mapped to a sphere. Figure 5.10 shows what happens when mapping a cubemap to a
sphere. Notice how the pixels in the center of the face of a cube contribute more than the pixels in the
corners of the faces. This effect has to be compensated for to correctly regard each viewing direction
equally. This is done by weighting each pixel with the cosine of the angle between the viewing vector
to this pixel in the cubemap and the vector to the center of the face it is on. Since these weights are
constants as long as the resolution does not change, they can be precomputed and stored in a texture
for quick access.

The two weights introduced in the paragraphs above are combined, so that the final absorption
coefficient is derived as follows:

𝑎 =
∑ (𝑎 ⋅ 𝑑ኼ ⋅ 𝑐𝑜𝑠𝜃)
𝑛 ⋅ ∑ (𝑑ኼ ⋅ 𝑐𝑜𝑠𝜃)

With a being the three frequency band absorption values in each pixel, d the distance, theta the angle
between the current pixel and the center of its cube face and n the total amount of pixels.

5.5.3. Estimating The Volume Of The Environment
Finding the volume of the room as seen from the listener position is actually a very similar issue
as the absorption coefficient. Every pixel in a cubemap represents a beam from the listener to the
environment. A beam has a volume, which means it is possible to accumulate the volumes of all the
beams and arrive at a volume estimate. This is very crude, since a small object nearby can significantly
reduce the volume estimate of the entire room. However, without predefining the volume or making
things significantly more complex, this method provides usable results.

The volume estimation works as follows: Every pixel in a listener cubemap render represents a
surface area. The center of this pixel has a known distance from the environment to the listener. By
drawing lines from the four corners of a pixel to the camera, an obtuse pyramid is created. The volume
of such a pyramid can be calculated as ፀ⋅፡

ኽ , where A is the surface area of the base of the pyramid
and h its height. Finding h is trivial, since this is the distance from the camera plane to the pixel. The
surface area of the base depends on the distance, much like in the absorption case. Figure 5.11 shows
this construction in for the pink pixel. Assuming the pixels are square (which means the vertical and
horizontal resolutions of the cubemap are the same), the volume of this beam is ፰Ꮄ⋅፡

ኽ . To find w, the
angle theta between the pyramid edges is used. This angle is constant for all pixels, as it is the 90°
field of view divided by the horizontal resolution. When assuming the pyramid base is perpendicular
to the camera, this angle can be used to find the length of the base of the pyramid as 2 ⋅ 𝑡𝑎𝑛𝜃 ⋅ ℎ.
This assumption is not entirely correct since the pyramid is now no longer obtuse. However, it does
not change the volume estimate of the beam since the equation for the volume is the same for regular
and obtuse pyramids.

The Final Volume Estimation
This technique suffers from the same problem as the absorption, where a cube is being mapped to
a sphere. For that reason, the same correction is applied using the cosine of the angle between the
viewing vector to each pixel in the cubemap and the vector to the center of the face it is on. To find the
final volume estimate, the highest mipmap level of this cubemap is requested again, which contains
a single pixel with the average volume of all the beams in the cubemap. Multiplying this value by the
resolution of the cubemap returns the final volume estimate.

Figure 5.11: Constructing a beam volume for a pixel

5.5. Late Reverberation 29

5.5.4. Using Sabine’s Equation Outdoor
Sabine’s equation is being used for finding the 𝑇ዀኺ of a room, which is proportional to its volume and
inversely proportional to some absorption coefficient. However, this equation is only valid for enclosed
spaces. An outdoor area would have an enormous volume and very little materials that could absorb
sound energy, which would indicate a very long reverberation time, whereas in reality the 𝑇ዀኺ of outdoor
areas is very short. To make Sabine’s equation viable for use in any environment, the dissipation of
sound energy to an open sky has to be captured in the absorption coefficient somehow. The more of
the sky is visible, the shorter the 𝑇ዀኺ of the reverberation tail will be. Since a sound wave that travels
towards the open sky will never be reflected back, the effect of open sky on the reverberation time is
quite high. It can be modeled as infinite absorption.

Luckily, detecting open sky is not so difficult. Open sky simply means that there is no surface being
drawn somewhere. The graphics card will assign a depth of 1, the maximum depth, for areas where
nothing is drawn. By assigning maximum absorption to these pixels, the absorption estimate increases
for each pixel of open sky.

5.5.5. Finding The Reverberation Time
The final reverberation time is found from a slightly modified version of Sabine’s equation:

𝑇ዀኺ = 0.005 ⋅
√𝑉
𝑎 + 𝑙

Where V is the volume estimate, a the average absorption of the three frequency bands and l the loss
factor for the open sky. In the original equation, the absorption coefficient is supplied in Sabins, which
is not a very convenient unit. That is why the equation is modified to work well with the absorption
coefficients that are extracted from the geometry. By squaring the volume, the resulting 𝑇ዀኺ scales
very well in different environments. High absorption values will always drop the reverberation time
to nearly zero, just like being outside. The reverberation time also scales very nicely with the volume
estimate, providing long reverb tails in large halls and short tails in small rooms.

5.5.6. Late Reverberation Signal Level
The transition between the early reflections and the late reverberation needs to be smooth. The
smoothest solution would be to take the volume of the last early reflection and use that as input for
the reverberator. However, with all the work done thus far, it is actually possible to do something
better, that does not rely on the early reflections that were found. There are possible setups where no
propagation paths are found, yet one would still expect to hear late reverberation. Using first order
specular reflections and diffraction is fairly limited in terms of solving sound source occlusion problems.
Higher order reflections would be very useful in that regard, but they are expensive to model and thus
not available. What has not been considered yet though is first order diffuse reflections. A diffuse
reflection models the behaviour of a wave that hits a wall and then reflects back in all directions. It is
much like a specular reflection, but without the direction constraint. That means that taking the shadow
mapping step that was used for specular reflections contains all the surfaces that the sound wave can
use to propagate diffusely from the source to the listener. Auralizing all these diffuse reflections is
out of the question simply because of their sheer numbers, but this information can still be used. It is
suggested to use the shadow map to control the input gain of the signal of each sound source to the late
reflections reverberator. That way late reflections for a sound source are heard even if no propagation
paths were found at all, as long as there is enough overlapping geometry in the shadow map. Once
again, taking the highest mipmap level of the shadow map cubemap results in value between zero and
one, which is an indication of the amount of diffuse reflections that reach the listener. This value can
be used to control the level of the signal going into the reverberator.

However, the transition still needs to be smooth. In addition to this diffuse model, the input gain
is further determined by the distance between the source and the listener. For a propagation path
the signal level was reduced by ኻ

፝ . Using that value for the late reverberation would result in a lower
than expected output level, since that equation is valid for an ever expanding sphere. In an enclosed
room, the sound energy is not dissipating like a sphere since much of the energy is reflected back

30 Geometry Processing

into the room. For that reason, a value of ኻ
√፝

is used, which sounds more like one would expect.
Finally, the input gain is further reduced by an energy loss factor. When rendering the sound source
cubemap, all pixels that see no geometry reach the far plane and are considered as open sky. A sound
source that can see a lot of open sky will not contribute much sound energy to the late reverberation
because most of it will have dissipated. That means that even though the listener may be in a highly
reverberant room, the sound source just outside will not be very audible in the reverb tail compared
to sources inside. Although only a single reverberator is used to model all the late reverberation, the
input gain is calculated per sound source, so that each transitions nicely from their early reflections
and each of them benefit from the diffuse model. The final input level to the reverberator is calculated
as: ኻ

፝።፬፭ፚ፧፞ ⋅ 𝑑𝑖𝑓𝑓𝑢𝑠𝑒 ⋅ (1 − 𝑜𝑝𝑒𝑛𝑠𝑘𝑦), where each of the variables are values between zero and one.

5.6. Putting It All Together
A lot of steps were taken to model three kinds of propagation paths, as well as derive the parameters
for the late reverberation. There is much overlap between the different steps, which is why they can
be combined in just a few render calls. This section will describe how it all comes together. The output
of each render stage is summarized in Table 5.1

5.6.1. The Listener Render
When rendering from the listener position, the desired information is:

• Direct signal occlusion

• Depth map for shadow mapping

• Absorption estimate

• Volume estimate

• Visible open sky

To solve the direct signal occlusion problem, an occlusion query is used. This draws the entire scene
including the sound sources and returns its result directly to the CPU. However, when using placeholders
for the sound sources, it is important to use a write mask when drawing them. These placeholders
should not appear in the render as they can block propagation paths or they may not have absorption
coefficients assigned to them.

The data for the other four items are only available in the graphics memory. The depth map can
stay there, it is only used in the sound source render later. The absorption and volume data has to be
made available to the CPU somehow. The absorption can be stored in a high precision RGBA cubemap
texture. The RGB channels contain the weighted absorption coefficients in the three frequency bands,
the Alpha channel contains just the weights. Requesting the highest mipmap level of that texture on
the CPU is relatively fast since it only returns a single pixel. By dividing the RGB values of this pixel
by the Alpha value, the absorption coefficients are found. A second texture is used for the volume
estimate and the open sky. This texture has two color channels, which again require higher precision
because the volume values can be higher than a regular texture can store. To find the volume estimate,
again only the highest mipmap level of this texture is necessary. This single value is multiplied by the
cubemap resolution to find the final volume estimate. To find the amount of open sky, the blue channel
in this texture receives a value of one for each pixel that sees geometry. The clear color is zero, so
open sky pixels will have a value of zero there. Taking the highest mipmap level of the blue channel
returns the fraction of pixels that were not open sky. 1 minus that value gives a factor between zero
and one that indicates how much open sky is visible from the listener.

5.6.2. The Sound Source Render
The sound source render consists of two stages. The first one is just to prepare the required information
for the second stage. The first stage outputs two cubemaps, one containing the world positions and
depths of each fragment, to be used for edge detection and beam casting. The second contains the
surface normals of each fragment, also to be used for beam casting, as well as an open sky factor again.

5.6. Putting It All Together 31

These two textures will be used in the second rendering stage, so they stay in the graphics memory. To
save memory, the world positions and normals can be normalized so they fit in a regular color texture.
This does however result in some loss of precision when computing the final propagation paths lengths
later. In practice that will mean that some reflections will arrive at exactly the same time, where they
should have been slightly apart. For the final auralization of the late reverberation, a loss factor was
necessary that compensates for the open sky visible from the sound source position. This information
is stored in the alpha channel of the normals texture. When clearing the texture beforehand an alpha
value of 1 is used. In the shader every fragment that sees a triangle sets the alpha value to zero.
When taking the highest mipmap level of this texture’s alpha channel, it returns the amount of visible
open sky as a value between zero and one. The second stage is used for:

• Finding diffuse reflections (shadow mapping)

• Finding specular reflections

• Finding diffraction

Since shadow mapping is required for both the specular reflections and diffraction, this is the first step
in this shader. Then the edge detection step is done, since that too is required for both. For every
detected edge, the diffraction information is stored. For every non-edge, the surface normals are
compared to determine if a pixel can reflect a valid beam. If so, the beam casting process is started
to determine the specular reflections.

The output of the second stage is stored in three textures. The first one has 3 color channels.
Each pixel that passes the shadow mapping test is assigned a white color. Next the edge detection
is performed after which the diffraction edges can be determined. Each diffraction edge pixel gets a
value of (0.0f, 0.085f, 0.38f) in the first texture, which is the absorption coefficient used for diffraction.
Similarly, for each specular reflection the absorption value of the reflection point is stored in the same
texture. All other pixels in the first texture are black. The second and third textures are mostly empty,
they only contain data in the pixels where specular or diffracted propagation paths were found. One
of them is high precision and has just a single color channel that contains the path lengths of each
propagation path. If however low precision world coordinates were used, the path lengths can also
be stored in the alpha channel of the third texture. The third texture has three color channels which
contain the normalized direction from which the sound wave will reach the listener, again only in the
pixels where a propagation path is found.

The diffuse reflections are used for the input gain in the reverberator. This value is made available
to the CPU by requesting the highest mipmap level of just the red color channel of the first texture.
Since this texture is mostly black and white from the shadow mapping stage, this is a good indication
of the number of diffuse reflections. Getting the specular and diffracted propagation paths to the CPU
is a little more challenging. They are stored in specific pixels in the textures, but the CPU does not
know where exactly. The simple solution is to transfer all three textures to main memory and use the
CPU to scan them completely to find the pixels that contain propagation path information. Both the
transfer and the scanning are relatively expensive though, depending on the cubemap resolutions. A
slightly cheaper solution could be to transfer just one of the three textures and scan that, and for each

Output Textures Texture Type

Listener render
Depthmap 1 channel UB

Weighted absorption + weights 4 channel FP
Corrected volume estimates + open sky 2 channel FP

Source render 1 World positions + depth 4 channel UB or FP
Surface normals + open sky 4 channel UB

Source render 2
Shadow mapping + PP absorption 3 channel UB

Path lengths 1 channel UB or FP
Path directions 3 channel UB

Table 5.1: The three render stages and their output textures. UB = Unsigned Byte, FP = Floating Point, PP = Propagation Path

32 Geometry Processing

pixel that contains a propagation path request the corresponding pixels from the other two textures in
the graphics memory. The best solution though is to write a third shader that can process the output
textures and write a much smaller texture that contains just the propagation path information. This
would be possible using an atomic counter to append the output buffer of this shader.

When extracting the propagation paths from the textures, the diffraction paths are recognized by
their distinctive absorption coefficients, which is the only thing that can be used to identify them at this
stage. This is important, since there are too many diffraction paths to auralize all of them. The path
lengths of all diffracted propagation paths are compared to find the shortest one. All the others can be
discarded.

5.7. Conclusion
In conclusion, the entire system needs just a single render pass from the listener and two from each
sound source to find all the information it needs to auralize a direct signal, first order specular reflections
and first order diffraction, as well as to model late reverberation based on the environment around the
listener.

6
Audio Processing

All the computations thus far have resulted in propagation paths for each sound source and a number of
parameters for the late reverberation. With this information, the sound sources can now be auralized.
This chapter discusses all the steps that deal with the audio signals, from the sound source to the
stereo output of the computer sound card.

The goal of the auralization is to spatialize all the sound sources. What that means is that their output
signal has to be processed in order to make them sound like they are in the virtual space. To achieve
this, their output signal has to be played back for every propagation path. Each of these signals will
be delayed, filtered, attenuated and directionalized before they are send to the sound card.

It is necessary to stress again that the audio processing is completely independent from the geometry
processing. Since the audio stream has to continue at all times, it runs in a completely separate thread
from the geometry processing, game logic and rendering stages. This ensures that the audio stream
will keep going regardless of the complexity of the game logic or the environment. For more complex
environments, the propagation paths will simply be updated less often, but the sound output will be
uninterrupted.

6.1. Audio Throughput
Before looking at the auralization, it is important to have some understanding of how an audio engine
works under the hood. A sound source plays back a predefined audio file. In this case, this audio
file will be mono, because the stereo information will come from the spatialization. The sample values
that make up the audio signal are processed and then sent to the sound card for playback. However,
processing individual samples is not very efficient. Instead, samples are processed in batches. The
reason for this is that other programs also request CPU time. Preparing a big number of samples in
advance allows the CPU to perform other tasks while those processed samples are playing. This batch
of samples is referred to as an audio buffer. Larger buffers are better because they allow the CPU more
time to juggle between its tasks, but the disadvantage is that a larger buffer results in a longer output
latency.

6.1.1. Mixing Sound Sources
Every sound source will produce a number of audio streams, one for each propagation path. All these
audio signals have to be mixed together. For that purpose a mixer has to synchronize all the sound
sources and combine their output to a single stereo signal. For playback, each sound source simply
takes the next buffer from its input audio, and plays it back for each propagation path. Each path
requires different filtering, volume and direction, which they are processed for. Since propagation paths
also have different lengths, these signals should be played back to the listener at different times. To
facilitate this, the mixer maintains a long output buffer. Each sound source provides its audio streams
to the mixer, and for each audio stream it will indicate how much that signal needs to be delayed.
The mixer can then place each audio stream in the output buffer, shifting the signal backwards by the

33

34 Audio Processing

Figure 6.1: Signal Chain

number of samples it needs to be delayed for. Finally, the sound source also sends its input audio to the
reverberator, after delaying and attenuating it to make it blend in with the early reflections smoothly.
That is in short what the signal flow will look like. This process is illustrated in Figure 6.1.

6.1.2. Denormalization
A word of warning for anyone building their own audio engine: Even though input and output audio
formats are usually 16-bit fixed-point samples, all the processing happens on 32-bit floats. Floating
point values provide a lot of headroom because of their huge range, which makes it virtually impossible
to clip the signal during processing. However, special care must be taken when dealing with floating
point values in real-time audio applications. Floating point values have a mechanism where their
representation changes when they become smaller than a specific value, in order to achieve improved
accuracy for very small numbers. This is called de-normal representation. The problem is that de-
normal values can take significantly longer to process on the CPU, up to 100 times more than normal
floating point values. Since the threshold for the de-normal representation is so low that audio would
not be heard at that level anyway, it is advised to make sure de-normal values can not propagate
through the entire system. For that reason, all sample values are denormalized as soon as they are read
from the input files. Additionally, the denormalization is repeated after each equalization or attenuation.
This is done by simply adding the de-normal threshold value to every sample value, forcing it to be in
normal representation.

6.1.3. Processing
For the processing of the audio there are many possible options. What will be presented here are the
basic options that were used for this project, but different effects can be used in most cases. The
processing that is required for each propagation path is:

1. Attenuating the signal

2. Filtering the signal

3. Directionalizing the signal

4. Delaying the signal

Attenuation
The signal attenuation depends on the path length. The sound energy of a wave is inversely propor-
tional to the square of the distance. However, the system is processing sample values which are the
amplitude of the signal. The amplitude of a signal is proportional to the distance, which means the
fall-off is as easy as dividing each sample value by the distance in meters.

6.2. Generating The Late Reverberation 35

Absorption
The frequency content of specular reflections are influenced by the materials of the surface they hit.
The absorption in three different frequency bands has been stored with this propagation path, which
are now used to control a 3-band equalizer. By using the absorption values from the render, the audio
can now be filtered to account for the absorption. For the purpose of this project, the equalizer curves
are implemented as a simple time-domain filter, the design of which was taken from the ’Audio EQ
Cookbook’ [19].

Directional Sound
The propagation paths now have to go from a monophonic audio stream to a stereo signal. Going
to stereo enables the option to properly give a sense of direction to the sound. First, the relative
horizontal angle between the viewing direction of the listener and the direction of each propagation
path is computed. A simple and computationally cheap solution would be to simply use this angle to
play back the incoming audio at different levels in each ear. Although that will result in a reasonable
distinction between left and right, it gives no indication of front or back and up or down. A much better
sense of direction can be achieved by using a head-related transfer function (HRTF). A HRTF is a lookup
table of impulse responses of the human head for each ear, measured for a lot of different directions.
By supplying the audio and a vertical and horizontal angle, the audio signal can be convolved with
the corresponding impulse responses. The result is a much improved directionality of the sound. It
reproduces all the effects mentioned in the Localization section, Section 2.1.2. The HRTF used here
for this project was kindly supplied by Hendrik Kayser [20]. From this collection of HRTFs, the 300cm
anechoic inner ear IRs were selected, because most sounds would probably come from relatively far
away. Room reflections from the HRTF would be undesired as they are already computed in this system,
which is why the anechoic HRTF is used. This HRTF was measured on a dummy head which gives good
results for an ’average’ head, but exactly how well it works varies from person to person. The whole
HRTF lookup table only takes up 5MB worth of memory. The anechoic HRTFs are very short, only 4800
samples per impulse response, which keeps the computational cost relatively low. To further speed up
the process, the HRTFs can be loaded and transformed to the frequency domain before runtime. During
runtime, incoming audio is also transformed to the frequency domain, which changes the convolution
to a pointwise multiplication of the audio and IRs. The resulting signal is transformed back again using
the inverse FFT for playback.

Delay
The delay is found by dividing the path length by the speed of sound: 330m/s. Because a delay in
seconds is not very practical, it is converted to the number of samples by dividing it by the samplerate.
The sound source can use this number to write the output for a specific propagation path to the mixer
with an offset of a number of samples which delays the sound.

Windowing
Time-domain filters like the ones used for the absorption rely on their history to do the filtering. That
has the unfortunate side effect that they do not filter a new signal straight away, they need to process
some samples to ’warm up’. Because the filter is processing buffers, it has to warm up for each buffer
again, which results in audible artifacts. To overcome these, a small windowing function is necessary.
Each buffer is slightly extended to produce some overlap between buffers. Cross fading this overlap
gets rid of most of the artifacts. The cross fading also helps to fill the gaps when delays change. When
the geometry processing has completed and new delay times are available, this results in a discontinuity
between the previous buffer and the next. Having some overlap between buffers reduces this effect.
The size of the window depends on how big the delay changes get, which depends on how often the
geometry processing runs and how fast things change in the environment.

6.2. Generating The Late Reverberation
Most games these days use an artificial reverberator for all their reverberation. Here, it is only used to
generate a reverberation tail. Most game engines come with very usable reverberators already. These
reverberators usually have an adjustable reverberation time and some filtering options, so they can be
integrated into this system without much effort. The volume and absorption parameters found in the
geometry processing stage can be used to calculate the reverberation time by using Sabine’s equation.

36 Audio Processing

Figure 6.2: Feedback delay network topology

How exactly the filtering on the reverberation is applied depends on the available parameters of the
reverberator. For the purpose of this project, a basic feedback delay network (FDN) was designed that
can produce a reverberation tail that responds very nicely to changes in the 𝑇ዀኺ and the absorption.
The schematic of this network is shown in Figure 6.2. Changing the gain in the network changes the
reverberation time. The EQ is used in the feedback loop to iteratively color the sound based on the
absorption, just like would happen in real life.

6.2.1. Blending Early And Late Reflections
The late reverberation has to be played back at the right time and volume so that the transition from
early to late reflections is natural. To ensure a continuous signal without overlapping the early and
late reverb, the input to the reverberator is delayed by the time it takes for the longest propagation
path to arrive at the listener. This is controlled per sound source, so they all transition smoothly. The
reverberator input level for each sound source is controlled by the shadow map, the distance and the
losses from the sound source point of view.

6.3. Dynamics
As a final step in the signal chain, some dynamics processing is applied to keep the output from clipping.
To achieve this, a basic dynamics compressor can be used that reduces sample values that exceed a
threshold value by some ratio. A fairly mild dynamics compressor is advised on the FDN output, with
a threshold of 0.7 and a ratio of 6. On the master output, a much more aggressive brick-wall limiter
setting is advised of threshold 0.95, ratio 200. This soft-clips peaks in the signal which prevents the DA
converter from clipping. This is necessary because stacking propagation paths together can sometimes
lead to unexpected peaks in the signal when their delays are equal.

7
Results

7.1. Quantitative Results
Commenting on the sound quality of any system is subjective in many ways. The subjective experience
is discussed briefly in Chapter 8. However, some metrics can be devised that describe parts of the
subjective experience and allow for a quantitative comparison. This section will analyze the accuracy
and the measurable perceived realism of this system.

7.1.1. Early Reflections
The best way of determining the accuracy of the early reflections is by comparing them to a method
that will always find all of them. The direction from which these reflections arrive at the listener position
and the time they take to get there are the most important characteristics here.

Specular Reflections
For specular reflections in a rectangular room, this is very easily done using the image method [8]. The
MatLab application ’RoomSim’ [21] was used to generate an impulse response for a ’shoebox’ room
of 4 by 5 meters, and 3 meters height. The sound source was placed at a height of 1m, 0.6m from
the back wall and 0.7m from the left wall. The listener was positioned at a height of 2.6m, 0.55m
from the front wall and 1.4m from the right wall. The setup is depicted in Figure 7.1. This figure also
shows the direct signal and all first and second order reflections, except those that reflect off the floor
or ceiling. The right side of Figure 7.1 shows the resulting impulse response, this time including all the
reflections up to 20.5ms. To find these results, the air temperature is set to 0 ∘C, humidity to 50%,
distance attenuation is set to on and the HPF, air absorption and smoothing are set to off. All walls are
assigned the painted concrete material, which has a relatively low absorption. Because RoomSim uses
a different HRTF, a single omnidirectional receiver is used and the HRTF is disabled in both systems.

When comparing the first order reflections from RoomSim to the reflections found in this system,
they align nearly perfectly. The timing differences between the two systems are <0.1ms for the direct
signal and the first order reflections. When measuring the angles of the incoming reflections, their
accuracy is higher than the HRTF could reproduce. The signal level of each reflection also drops off
with distance as expected. Irrespective of the sound source and listener position, the system appears
to find all six reflections and the direct path in this simple setup. To achieve this, a cubemap resolution
of 128x128 pixels is easily sufficient. Going down to 32x32 also works, provided the shadow mapping
bias and edge detection threshold in the source fragment shader are adjusted accordingly. At a low
resolution the timing of the reflections will be slightly off, since the reflection point will be less accurate.
Of all the reflections in the IR plot in Figure 7.1, only the blue and red ones are modeled in this system.
Higher order reflections are only modeled after the last first order reflection has arrived, which means
that the six second order reflections that arrive before the last red reflection are missed.

In a more complex environment it is more difficult to find exact results to compare to. However,
the system seems to find the expected first order reflections off of small and big surfaces alike. For

37

38 Results

Figure 7.1: Impulse response of the early reflections in a rectangular room

Figure 7.2: Result of a shadow map with edge detection, showing the diffraction edges in blue.

instance placing a source and the listener in the focal point of the dome in the Sibenik cathedral [22]
results in a very high number of specular reflections from all sides.

Diffraction
There is no diffraction when inside a shoebox since there are no edges there, and the image method
cannot model diffraction anyway. Another technique is thus necessary to determine the accuracy of the
diffraction model. There is however no easily available technique of finding all the diffracted propagation
paths to compare to. However, only a single diffracted propagation path is being auralized in the end
(See section 7.2.2), so making sure every single one is found is less important. Figure 5.6 is repeated
in Figure 7.2. It shows the cubemap render from the sound source position, with a screenshot from
the listener position looking in the direction of the sound source (the blue pyramid). All the blue pixels
in the cubemap are diffraction paths. As expected, the balcony enables a lot of different diffracted
propagation paths, easily allowing for a continuous signal for a moving listener, even if the direct signal
is blocked regularly by one of the balcony bars. This cubemap render has faces of 128x128, however
even with faces of 32x32 there are still plenty of diffraction paths found.

In short, this technique will find enough of the most important diffracted propagation paths to provide
a continuous signal to the listener, even in occluded areas. When a less costly auralization technique
is available, the accuracy and detail of the diffracted propagation paths will only increase since most
of them are currently discarded.

7.2. Computational Cost 39

7.1.2. Late Reverberation
The volume and absorption estimations used for modeling the late reverberation are very crude. As
mentioned, both are easily influenced by small objects nearby. However, within the constraints of
this limitation both estimates actually work really well. When moving through an empty room, both
estimates are very stable. The absorption estimate changes slightly when moving towards a more
absorbing material, but the difference between the far end of the room and standing right next to this
wall is only about 10% which is perfectly acceptable. Similarly for the volume estimate. When moving
through various rooms of different shapes and sizes, the estimate would vary being between 0 and
15% off, being consistently just under the actual value. This is perfectly acceptable since this variation
is not noticeable in the final reverberation time. Should some objects skew the estimates too much,
one can opt to simply not render them during the geometry processing stage. The takeaway message
is that the estimates used here provide a very solid basis for controlling a reverberation generator. They
will consistently deliver high reverberation times for larger rooms and the absorption estimate will also
vary nicely with changes in the geometry, resulting in a very dynamic experience.

7.2. Computational Cost
In this section, the computational performance of the system is considered. The goal was to design a
system that could easily model the acoustics in real time, leaving computational power for other things
like rendering the game to the screen and running the game logic. The performance of the geometry
processing and the auralization will be discussed separately since they are asynchronous.

7.2.1. Geometry Processing
The Paradigm
Chapter 5 started with noting how this system is quite different from classic ray tracing. Instead of
creating actual rays and tracing them through the environment, the system renders the environment,
treating each pixel in the render as a ray. Classic ray tracing requires every triangle to be checked
against every ray, which is what makes it expensive. By using this rendering solution instead, all the
triangles are drawn only once, providing a solution for all the pixels (rays) simultaneously. This only
works because all the rays have the same starting position: the sound source. First order propagation
paths are possible because all relevant rays have the same destination: the listener. Higher order
reflections would not be nearly as efficient, since then a render call would be necessary for each
individual ray, which brings performance back on par with classic ray tracing. It is the huge performance
boost in the first order reflections that makes this system desirable.

Performance Measurements
The measurements presented in Table 7.1 give an indication of the computational cost of all the main
parts of the system that concern the render thread. They are averaged timings from the java OpenGL
code running on an Intel i5 4670K at 3.4GHz, 8GB ram and a Zotac Amp! GeForce 980Ti. Cube-
map resolutions of 6x128x128 were used. These performance tests were conducted in two different
environments: A simple shoebox consisting of 36 vertices, and the more complex Sibenik Cathedral,
consisting of 225849 vertices.

The components in the table are structured as follows:

• Listener render: includes the cubemap render from the listener point of view and performing the
sound source occlusion query.

• Listener data transfer: the time taken to create mipmaps and read the results to the CPU.

• Source render 1: the first render pass.

• Source render 2: the second render pass.

• Source data transfer: transferring the 3 source output textures to the CPU.

• Source texture scanning: scanning the output textures on the CPU for propagation paths.

40 Results

Shoebox Sibenik Cathedral
Listener render 32𝜇s 1240𝜇s
Listener data transfer 566𝜇s 580𝜇s
Source render 1 18𝜇s 1239𝜇s
Source render 2 51𝜇s 1287 𝜇s
Source data transfer 3138𝜇s 3029𝜇s
Source texture scanning 356𝜇s 430𝜇s

Table 7.1: Computation time per component in two environments of different complexity

Shoebox 1 Shoebox 5 Sibenik 1 Sibenik 5
Listener overall 796𝜇s 860𝜇s 2296𝜇s 1665𝜇s
Source overall 3462𝜇s 3271𝜇s 5379𝜇s 4591𝜇s

Table 7.2: Computational cost scaling with the number of sound sources, showing cost per source

The results are mostly as expected. The more detailed environment heavily hits the render stages, but
not the data transfers since the size of the output data remains the same. Despite source render 2
having a seemingly complex shader, it hardly influences the render time. The obvious bottleneck is the
source data transfer. Loading three large textures to the CPU is evidently quite costly. However, the
total rendering time for a complex environment is 3ms per source, which means there is still processing
time left to render the environment with a lot of graphical effects to the screen.

Table 7.2 shows how the performance scales with the number of sound sources. The times shown
are measured on the CPU from the start of the listener geometry processing to the very end. The
sound source data is measured per source. Measuring CPU timings means the results are fairly noisy,
because the graphics card performs its computations asynchronously. By forcing timing results at the
end of a cycle the process is effectively synchronized which means the CPU will have to wait for results
from the GPU sometimes. The individual measurements are quite noisy because of that. However,
these results were averaged over a large number of runs, so the measurements in the table give a
good indication of the expected performance. Interestingly, adding more sources in the complex scene
improves the performance, while it decreases the performance in the simple environment. Other than
that, the results are again as expected and align nicely with the results from Table 7.1

7.2.2. Audio Processing
The audio processing is not really affected by the complexity of the geometry per se. However, the
number of found propagation paths does affect the computational cost of the audio processing a lot.
For that reason, the times presented in Table 7.3 are per propagation path. Interestingly enough,
complex geometry does not necessarily mean more propagation paths are found. Inside an empty
shoebox, the system will always find 7 (One for each surface and the direct signal). In a more complex
environment like the Sibenik Cathedral, the number of propagation paths will vary between 0 and 12
per sound source in most places. In some cases, when for instance attaching a sound source to the
player and positioning the listener in the focal point of one of the domes, it will find as many as 74
reflections. In general though, for indoor scenes a maximum of 12 propagation paths can be expected.
The components in Table 7.3 are measured for 128 sample buffers and are measured per reflection
except for the reverberator, which is just measured per buffer.

Component: Time:
Initial processing 4𝜇s
HRTF FFT forward 45𝜇s
HRTF processing 8𝜇s
HRTF FFT inverse 90𝜇s
Reverberator 20𝜇s

Table 7.3: Computational cost of the audio processing stages, measured per propagation path

7.2. Computational Cost 41

From the results it is clear that the computational complexity of the initial EQing, crossfading and
de-normalization is negligible compared to the HRTF. Finding the required angles and distances that
are used for selecting the IR and the distance attenuation are not even included in the table as they
consistently measured less than a microsecond. However, despite using the fastest FFT library available
for Java (JTransforms [23]), the Fourier transforms for the HRTF take up the bulk of the computation
time. The forward transform takes about 45𝜇s, the inverse transform takes double that because the
signal is now stereo. The actual IR lookup and multiplication only takes around 8𝜇s for both ears
combined. The entire reverberator feedback loop, including EQing, redistributing signals, dynamics
compression etc takes roughly 20us, regardless of the reverberation time.

That means the total audio processing adds up to 147𝜇s per reflection + 20𝜇s. For a setting of 2
sources with 10 reflections each that adds up to 3.1ms processing time for a 128 sample buffer at
44.1kHz samplerate. On a single core that would be the limit, and that core would just be processing
audio. However, the sound sources run in separate threads so they can be distributed over several
cores, allowing for more sources and reflections. Still, the number of propagation paths is clearly a
bottleneck. This is also the main reason why auralizing all the discovered diffracted propagation paths
is not doable. It shows that convolution is simply a relatively expensive process, even when taken to
the frequency domain and when the HRTF IRs are only 4800 samples long. For reference, doing this
in the time domain would result in a convolution that takes more than a millisecond, so despite being
expensive, the FFTs are still definitely worth doing.

Chapter 6 already referred to the output buffer and the fact that it introduces latency. Unfortunately,
the optimal setting greatly depends on the computer. Real time performance is only partly reliant on
pure processing power. Dropouts can occur way before the CPU runs out of available clock cycles
on a badly configured system. Device drivers or even power saving options in the OS can greatly
affect the real time performance of a system. It is thus very difficult to give any meaningful hardware
requirements for a real time audio system. However, on the test system a stable output is achieved
with an output latency that is roughly the same as a single frame at 60Hz, which is 17ms. That means
there is no visual clue that can make a player notice such latency.

8
Discussion

8.1. Qualitative Conclusions
Overall, the results are very promising. Reverberation can be modeled in a variety of environments
with accurate sound source localization, while all the required information is taken directly from the
geometry. The results from the geometry processing stage are very good. The early reflections are
modeled very accurately and the late reverberation parameter estimation provides very usable results.
The fact that the estimates are not perfect is not really a problem, since small variations only lead to
small changes in the length of the reverberation tail, which is hardly noticeable even for a trained ear.
If the resulting parameters are not as desired, this can quickly be achieved by adjusting the absorption
parameters in the materials of the geometry.

The results from the auralization are also good. When comparing the full system to using just a
fixed-parameter reverberator the difference is night and day. Sound source localization is much better
and the reverberation responds very nicely to changes in the environment. Even if early reflections
are skipped and just the reverberator is used with the parameters taken from the environment, the
resulting reverberation is more engaging and dynamic. The biggest perceived difference is in the early
reflections though, because the HRTF combined with the first order reflections results in excellent
imaging. It has to be noted that the effectiveness of the HRTF varies from person to person, which
means that the localization may work very well for some and not so well for others. When using this
system in a commercial product, it is probably best to supply a number of different HRTFs so users can
pick the one that works best for themselves.

In most cases, the auralization sounds smooth. The changes in path lengths and HRTF IRs produce
some artifacts, but they are usually masked by the sounds themselves and the late reverberation.
However, musical sounds with long constant notes with very few harmonics have very little content
that can mask these artifacts, so in that case they can be audible. Such a setting would require a more
intelligent way of transitioning between buffers and IRs if the artifacts are unacceptable.

8.2. Performance bottlenecks
A good sounding system is important, but there are plenty of good sounding systems available. The
challenge was to design one that does not require as much computation as the others. This section
discusses the computational performance of the system.

8.2.1. Geometry Processing Optimizations
As was mentioned in Chapter 7, the computational load on the graphics card is very reasonable. The
complexity of the shaders is low, which means the performance really only depends on the cubemap
resolution and the complexity of the geometry. The GPU render time of 3ms per source in a complex
environment and at a high cubemap resolution is acceptable, depending on the amount of sources and
the update frequency. Exactly how many updates are necessary for a smooth experience depends on

43

44 Discussion

the setting and requires some experimenting, but in general it seems like 30Hz would easily suit most
applications.

The biggest bottleneck in the geometry processing stage is the texture transfer from the graphics
memory to the CPU and scanning them. Nearly half of the computation time is spent on these two
steps. Since better solutions are available as mentioned in Chapter 5, it would be interesting to see
how much further the system can be optimized. A GPU texture scanning solution would require a little
bit of extra render time, but it saves a lot of memory transfers and frees up some extra CPU time
because the resulting output texture is much faster to process.

8.2.2. Audio Processing Optimizations
The biggest bottleneck of when using this system comes from the HRTF processing. A shorter HRTF or
no HRTF would allow for many more sound sources or propagation paths. Using a bigger buffer size
than 128 would also help, as that reduces the amount of forward and inverse Fourier transforms. As
long as the buffer size stays below 4800 samples (the HRTF IR length) that would not introduce any
additional computation at all, while significantly reducing the amount of times the HRTF has to process
audio. A bigger buffer does increase the output latency though, so one has to find a balance.

An alternative to using a HRTF, would be to use a surround playback system instead. That would
require the system to provide samples to a lot more output channels, but panning sound sources in
surround is much cheaper than putting them through a HRTF. An additional advantage is that sur-
round systems will work for everyone equally well, whereas a general purpose HRTF may perform
underwhelmingly for some people. However, the spatial resolution of a HRTF is higher than that of a
surround system. More importantly, many people do not have a surround setup, whereas a HRTF is
designed for stereo headphone use.

Furthermore, not all types of sound sources benefit from spatialisation. Resources can be saved
by carefully selecting which sources to process. For instance, body sounds like the beating of the
player’s heart or breathing do not need to be spatialized. The same applies to static sounds like menu
interactions or background music. Finally, very low frequencies are very difficult to spatialize using a
HRTF, so machines that emit a low drone for instance could benefit more from a good stereo sample
and if necessary just the late reflections modeling. Making smart choices of which sources to spatialize
can thus expand the number of simultaneous sources.

8.3. Limitations
The system is designed to work equally well in any environment. There are however some restrictions
that apply to make it work properly.

8.3.1. Geometry Requirements
As mentioned twice in Chapter 5, there is a need for double walled geometry to make both the specular
reflections and diffraction work. Another way to put it is that any surface in the environment can only
ever be seen from one side. If that is not the case, specular reflections and diffraction can occur through
a wall in corners. Double walled geometry that leaves enough room between walls to compensate for
this bias will completely solve this problem.

Another small but important limitation on the geometry is that the absorption coefficient [0.0, 0.085,
0.38] cannot be used in any of the materials. The system will incorrectly treat any specular reflection
of such a surface as diffraction, which means it will likely be discarded since only a single diffracted
propagation path is auralized in the end.

8.3.2. Occlusion Limitations
By using only first order specular and diffuse reflections and first order diffraction, there are some
limitations on when sound sources are audible. In this system, an audio source is inaudible if there is no
geometry that is visible from both the listener and source position. This is no problem in a simple room,

8.3. Limitations 45

Figure 8.1: Occlusion limitations for complex or adjacent rooms

but it could be a problem for multiple connected rooms or complex room shapes. Figure 8.1 shows
examples of these two cases. In both cases, a second order diffuse reflection or second order diffraction
would solve this problem. However, second order diffuse reflections would be very undesirable to
implement in the current system since it would require a new render for every visible pixel in the
sound source cubemap. Second order diffraction could be an option if a technique like UTD [2] was
added. A cheaper solution would be to enforce a minimum input gain to the reverberator for each
sound source inside a predefined area. That will ensure occluded sound sources are always audible
in the late reverberation if the listener and source are in the same area. This does however require
some additional input from a level designer in the form of a predefined spatial subdivision. Predefining
anything in a dynamic environment does have its drawbacks though, since this spatial subdivision does
not adapt to changes in the environment.

8.3.3. LR Limitations
The late reverberation currently starts right after the last first order reflection. However, there are often
second order reflections that arrive before that time. Since they are not modeled now, the last part of
the early reflections may be less dense than it should be. This could be compensated for by shifting
the late reverberation a bit forward in time. However, the amount of shifting that is required to achieve
a result that is similar to the actual IR is very difficult to find without modeling these paths explicitly.

Another limitation stems from the fact that only a single reverberator is used to model all the late
reverberation. This provides a good result for sound sources that are in the same room or an acoustically
similar room as the listener. However, if the sound source is in a highly reverberant room and the
listener is not, one would expect to hear a long reverb tail coming from the direction of the sound
source, which will not happen. This is only really noticeable in extreme situations, where the listener
is for instance standing outside a big cathedral and a sound source inside is audible through the open
door. This sound source will sound dry, as the reverberator provides very little reverberation for an
outside environment, while in reality the sound from the door opening would have the long reverb tail
that comes from the cathedral. A possible solution would be to use a reverberator per sound source,
whose input parameters are derived from the sound source position. The output of this reverberator is
then fed into the listener reverberator, whose parameters are derived from the listener position. That
allows a sound source in a reverberant room to always have a reverberation tail, regardless of the
acoustics at the listener position. Since a reverberator is fairly cheap to run, this solution could work
very well provided the number of sound sources remains manageable. An additional advantage is that
the reverberator output of the sound sources can now be given a direction using the HRTF or regular
panning. That would allow the listener to locate the source of that long reverberation tail even if he is
not inside the reverberant room himself.

9
Future Work

9.1. Improvements
The system can be improved upon in a number of ways. More time could be spent looking at replacing
the cubemap implementation with a projection that requires less than six render calls, like a spherical
or parabolic projection. Challenges here are the increased distortion, and the fact that both of these
projections result in two circular images, where the four corners of each image overlap with the other
image. That means that using mipmaps to get average values is not valid.

The current volume estimation technique is quite limited and sensitive to nearby objects as they
block much of the visible volume of the room. An alternative way of estimating the volume could be
considered that has more information to work with than just line of sight from the listener. For instance
a voxelization of the environment on the graphics card combined with an algorithm that determines
which voxels should contribute could produce more reliable results.

Additionally, the current system only uses a single diffracted propagation path even though many
more are found. A smart way to filter these propagation paths could decide which of these are a
valuable addition to the overall sound. The system could be made even more efficient with clever
sound source management. If there is a way to determine whether or not a sound source is audible at
all, processing could be reduced by disabling inaudible sources for as long as they are inaudible. More
research can also be done into the perceived effects of lower propagation path update frequencies.

If graphics performance is a concern, the system could be accelerated by using simplified geometry
for the acoustics model. Siltanen et al [24] have introduced an automatic method for simplifying
geometry while keeping the acoustical properties mostly intact. Finally, finding the propagation paths
happens by scanning the output texture on the CPU. This is an expensive task that scales poorly with
resolution. A GPU solution for getting the propagation paths available to the CPU efficiently would
alleviate this task from the CPU.

9.2. New Features
In terms of features, many directions are possible. Transmission has not been considered at all, but it
would be a welcome addition to the model. The line of sight approach would be challenging though,
since double-walled geometry is required to make the other propagation paths work. Second order
specular reflections or diffraction might also be possible with just a single additional render call if a
binary voxel grid is used to test occlusion in the propagation path between the first and second reflection
point. Even higher order diffraction could be achieved with UTD, as mentioned in Chapter 8. The idea
of using multiple reverberators was also mentioned there, which would allow more flexibility.

Even with a single reverberator though, there is a lot of spatial information in the sound source
renders that could be used to enhance the volume and absorption estimates for the late reverberation,

47

48 Future Work

which is currently not exploited. Characteristics of the environment that are not visible from the listener
position could be taken from the sound source positions by somehow combining these cubemaps,
weighting the contribution of each sound source by a value that indicates if they are in the same room
or not. Said value could for instance be based on the shadow map.

Finally, some parametric reverberators offer additional parameters. For instance, the initial echo
density could be tweaked depending on the volume estimation and source proximity, which allows for
a more accurate transition between early and late reflections.

A
Specular Reflection Pseudo-Code

1 //shadow mapping
2 actualDistance = length(listenerPosition - fragmentPosition);
3 depth = listenerCubemap(direction(fragmentPosition - listenerPosition));
4 measuredDistance = length(depth);
5 if(actualDistance < (measuredDistance + bias)){
6
7 //check for edges
8 if(abs(pixel[1].distance - pixel[2].distance) > 1.2){
9 abort;
10 } ... // repeat for pixels 1 and 3, 2 and 4, 3 and 4.
11
12 //check for big angles
13 if(abs(arccos(dot(fragmentNormal[1], fragmentNormal[2]))) > Pi/8){
14 abort;
15 }
16 if((abs(arccos(dot(fragmentNormal[1], fragmentNormal[3]))) > Pi/8){
17 abort;
18 } ... // repeat for pixels 2 and 4, 3 and 4.
19
20 //create reflection vectors
21 for(pixel i=1:4){
22 viewVector[i] = fragmentPosition[i] - soundsourcePosition;
23 reflectionVector[i] = viewVector[i] -
24 2*fragmentNormal[i]*dot(viewVector[i], fragmentNormal[i]);
25 }
26
27 //construct beam plane 1 (bottom plane)
28 if(dot(reflectionVector[1], reflectionVector[2])>0){
29 planeNormal[1] = cross(reflectionVector[1], reflectionVector[2]);
30 }else{
31 planeNormal[1] = cross(reflectionVector[2], reflectionVector[1]);
32 }
33
34 //check listener position with respect to plane 1
35 if(dot((listenerPosition - fragmentPosition[1]),
36 planeNormal[1]) > 0){

49

50 Specular Reflection Pseudo-code

37 //construct beam plane 2 (left plane)
38 if(dot(reflectionVector[1], reflectionVector[3])<0){
39 planeNormal[2] =
40 cross(reflectionVector[1], reflectionVector[3]);
41 }else{
42 planeNormal[2] =
43 cross(reflectionVector[3], reflectionVector[1]);
44 }
45
46 //check listener position with respect to plane 2
47 if(dot((listenerPosition - fragmentPosition[1]),
48 planeNormal[2]) > 0){
49
50 //construct beam plane 3
51 if(dot(reflectionVector[2], reflectionVector[4])>0){
52 planeNormal[3] =
53 cross(reflectionVector[2], reflectionVector[4]);
54 }else{
55 planeNormal[3] =
56 cross(reflectionVector[4], reflectionVector[2]);
57 }
58
59 //check listener position with respect to plane 3
60 if(dot((listenerPosition - fragmentPosition[2]),
61 planeNormal[3]) > 0){
62
63 //construct beam plane 4
64 if(dot(reflectionVector[3], reflectionVector[4])<0){
65 planeNormal[4] =
66 cross(reflectionVector[3], reflectionVector[4]);
67 }else{
68 planeNormal[4] =
69 cross(reflectionVector[4], reflectionVector[3]);
70 }
71
72 //check listener position with respect to plane 4
73 if(dot((listenerPosition - fragmentPosition[3]),
74 planeNormal[4]) > 0){
75 //Specular reflection found!
76 }
77 }
78 }
79 }
80 }

Figure A.1: Pixel numbering used

Bibliography

[1] H. Haas, The influence of a single echo on the audibility of speech, J. Audio Eng. Soc 20, 146
(1972).

[2] N. Tsingos, T. Funkhouser, A. Ngan, and I. Carlbom, Modeling acoustics in virtual environments
using the uniform theory of diffraction, in Proceedings of the 28th annual conference on Computer
graphics and interactive techniques (ACM, 2001) pp. 545–552.

[3] E. Persson, Fatbursparken cubemap, (2008).

[4] Gamasutra and L. P. Dion, Game design deep dive: Dynamic audio in destructible levels in rainbow
six: Siege, (2017).

[5] P. Astheimer, What you see is what you hear-acoustics applied in virtual worlds, in Proceedings of
1993 IEEE Research Properties in Virtual Reality Symposium (1993) pp. 100–107.

[6] N. Röber, M. Spindler, and M. Masuch, Waveguide-based room acoustics through graphics hard-
ware. in ICMC (2006).

[7] E. De Sena, H. Hac𝜄habiboğlu, Z. Cvetković, and J. O. Smith, Efficient synthesis of room acoustics
via scattering delay networks, IEEE/ACM Transactions on Audio, Speech and Language Processing
(TASLP) 23, 1478 (2015).

[8] J. B. Allen and D. A. Berkley, Image method for efficiently simulating small-room acoustics, The
Journal of the Acoustical Society of America 65, 943 (1979).

[9] M. Queiroz, F. Iazzetta, F. Kon, M. A. H. A. Gomes, F. A. L. Figueiredo, B. Masiero, L. K. Ueda,
L. Dias, M. A. H. C. Torres, and L. F. Thomaz, AcMus: an open, integrated platform for room
acoustics research, Journal of the Brazilian Computer Society 14, 87 (2008).

[10] T. Funkhouser, N. Tsingos, I. Carlbom, G. Elko, M. Sondhi, J. E. West, G. Pingali, P. Min, and
A. Ngan, A beam tracing method for interactive architectural acoustics, The Journal of the acous-
tical society of America 115, 739 (2004).

[11] M. T. Taylor, A. Chandak, L. Antani, and D. Manocha, Resound: Interactive sound rendering
for dynamic virtual environments, in Proceedings of the 17th ACM international conference on
Multimedia (ACM, 2009) pp. 271–280.

[12] M. Taylor, A. Chandak, Q. Mo, C. Lauterbach, C. Schissler, and D. Manocha, Guided multiview ray
tracing for fast auralization, IEEE Transactions on Visualization and Computer Graphics 18, 1797
(2012).

[13] S. M. Schimmel, M. F. Muller, and N. Dillier, A fast and accurate ঈshoeboxউ room acoustics
simulator, in Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International
Conference on (IEEE, 2009) pp. 241–244.

[14] B. Kapralos, M. Jenkin, and E. Milios, Sonel mapping: A probabilistic acoustical modeling method,
Building Acoustics 15, 289 (2008).

[15] C. Schissler and D. Manocha, Interactive sound propagation and rendering for large multi-source
scenes, ACM Trans. Graph. 36, 2:1 (2016).

[16] L. Williams, Casting curved shadows on curved surfaces, SIGGRAPH Comput. Graph. 12, 270
(1978).

[17] J. Ahrens, Analytic Methods of Sound Field Synthesis (Springer Berlin Heidelberg, 2012) pp. 263–
264.

51

http://www.aes.org/e-lib/browse.cfm?elib=2093
http://www.aes.org/e-lib/browse.cfm?elib=2093
http://www.humus.name/index.php?page=Textures&ID=51
http://www.gamasutra.com/view/news/288565/Game_Design_Deep_Dive_Dynamic_audio_in_destructible_levels_in_Rainbow_Six_Siege.php
http://www.gamasutra.com/view/news/288565/Game_Design_Deep_Dive_Dynamic_audio_in_destructible_levels_in_Rainbow_Six_Siege.php
http://dx.doi.org/ 10.1109/VRAIS.1993.378256
http://dx.doi.org/ 10.1109/VRAIS.1993.378256
http://gamma.cs.unc.edu/SOUND/ISRA/isra2010_gpu.pdf
http://www.aes.org/e-lib/browse.cfm?elib=15751
http://www.aes.org/e-lib/browse.cfm?elib=15751
http://dx.doi.org/ 10.1121/1.382599
http://dx.doi.org/ 10.1121/1.382599
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-65002008000300007&nrm=iso
http://dx.doi.org/10.1121/1.1641020
http://dx.doi.org/10.1121/1.1641020
http://dx.doi.org/10.1145/1631272.1631311
http://dx.doi.org/10.1145/1631272.1631311
http://dx.doi.org/10.1109/TVCG.2012.27
http://dx.doi.org/10.1109/TVCG.2012.27
http://dx.doi.org/ 10.1109/ICASSP.2009.4959565
http://dx.doi.org/ 10.1109/ICASSP.2009.4959565
http://dx.doi.org/ 10.1260/135101008786939973
http://dx.doi.org/10.1145/2943779
http://dx.doi.org/10.1145/965139.807402
http://dx.doi.org/10.1145/965139.807402
http://dx.doi.org/10.1007/978-3-642-25743-8

52 Bibliography

[18] J. Flick, Cube sphere, a unity c� tutorial, (2015).

[19] R. Bristow-Johnson, Cookbook formulae for audio eq biquad filter coefficients, (2006).

[20] H. Kayser, S. D. Ewert, J. Anemüller, T. Rohdenburg, V. Hohmann, and B. Kollmeier, Database
of multichannel in-ear and behind-the-ear head-related and binaural room impulse responses,
EURASIP Journal on Advances in Signal Processing 2009, 10 (2009).

[21] D. Campbell, K. Palomaki, and G. Brown, A matlab simulation of উshoeboxউ room acoustics for
use in research and teaching, Computing and Information Systems 9, 48 (2005).

[22] M. Dabrovic, Sibenik cathedral 3d model, (2001).

[23] P. Wendykier, Jtransforms, (2017).

[24] S. Siltanen, T. Lokki, L. Savioja, and C. Lynge Christensen, Geometry reduction in room acoustics
modeling, Acta Acustica united with Acustica 94, 410 (2008).

http://catlikecoding.com/unity/tutorials/cube-sphere/
http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt
http://dx.doi.org/ 10.1155/2009/298605
https://www.researchgate.net/publication/228970236_Roomsim_a_matlab_simulation_of_shoebox_room_acoustics_for_use_in_teaching_and_research
http://hdri.cgtechniques.com/~sibenik2/download/
https://github.com/wendykierp/JTransforms
http://dx.doi.org/10.3813/AAA.918049

	Introduction
	Main Research Themes
	Overview Of The Report

	Background
	Acoustics
	Room Acoustics
	Localization
	The Geometric Model

	Computer Graphics
	Geometry And The Graphics Pipeline
	Occlusion
	Useful Techniques

	Previous Work
	The Field
	Currently Employed Techniques
	Baked Reverb
	Convolution Reverb
	Parametric Reverb
	Occlusion
	Localization
	Setting The Bar

	State Of The Art Techniques
	Pre-Computed Impulse Responses
	Wave Equation Models
	Geometric Models

	System Overview
	Goal of This Thesis
	Building Blocks
	Prerequisites for Source Spatialization
	Preparation
	Summary

	Geometry Processing
	Basic System Setup
	Direct Signal
	Line Of Sight
	Preparing For Auralization

	Early Reflections: Specular
	How it Works
	The Occlusion Problem
	The Direction Problem
	Preparing For Auralization

	Early Reflections: Diffraction
	Finding Corners
	The Occlusion Problem
	Preparing For Auralization
	Diffraction Issues

	Late Reverberation
	Late Reverberation Characteristics
	Finding The Absorption Coefficient
	Estimating The Volume Of The Environment
	Using Sabine's Equation Outdoor
	Finding The Reverberation Time
	Late Reverberation Signal Level

	Putting It All Together
	The Listener Render
	The Sound Source Render

	Conclusion

	Audio Processing
	Audio Throughput
	Mixing Sound Sources
	Denormalization
	Processing

	Generating The Late Reverberation
	Blending Early And Late Reflections

	Dynamics

	Results
	Quantitative Results
	Early Reflections
	Late Reverberation

	Computational Cost
	Geometry Processing
	Audio Processing

	Discussion
	Qualitative Conclusions
	Performance bottlenecks
	Geometry Processing Optimizations
	Audio Processing Optimizations

	Limitations
	Geometry Requirements
	Occlusion Limitations
	LR Limitations

	Future Work
	Improvements
	New Features

	Specular Reflection Pseudo-Code
	Bibliography

