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Abstract
Understanding the locomotion of microorganisms is essential for insights into microbial ecology, infection, and colonization 
processes. Although two-dimensional microscopy has been widely used to study microswimmer motility, it does not capture 
the full extent of their three-dimensional (3D) movement. Recent advances in defocused particle tracking, holographic track-
ing velocimetry, and stereo-microscopy face challenges in achieving high resolution at larger particle densities and tracking 
multiple microswimmers in suspension. In this work, we introduce a novel multi-camera microscopy system that significantly 
improves the accuracy of 3D microswimmer tracking. Our system uses four sCMOS cameras to image microorganisms within 
a 2.5 × 2.5 × 2 mm3 . We assess the performance of our microscopy system by tracking a population of the unicellular motile 
algae Chlamydomonas reinhardtii. An in-house tracking algorithm based on the projective geometry framework enables 
tracking with reprojection errors below 0.3 body lengths. This system supports imaging and tracking particle source densi-
ties of 0.32, higher than other existing single camera 3D microscopy techniques. Analysis of C. reinhardtii trajectories in 
3D reveals a predominance of left-handed chirality and helical swimming patterns. Moreover, our 3D tracking data provide 
translational and rotational diffusion coefficients that differ from those obtained using traditional two-dimensional methods.

1 Introduction

The study of microbial ecology, colonization, and infection 
requires a fundamental understanding of the interactions 
between motile microorganisms and their physical envi-
ronment, including surface interactions, accumulations, 
cell–cell interactions, and collective behavior. Tracking 
the motion and orientation of swimming microorganisms 
is, therefore, crucial to gain insights into their behavior 
and how they navigate through complex environments and 
respond to external stimuli such as light (Hill and Vincent 
1993; Schaller et al 1997), gravity (Yoshimura et al 2003), 
chemical gradients (Alon et al 1999; Eisenbach 1999), and/
or physical barriers  (Harkes et al 1992; Bechinger et al 
2016). Moreover, tracking microswimmers also has practi-
cal applications, including optimizing the design of bioreac-
tors (Huesemann et al 2013; Pottier et al 2005), developing 
effective strategies for the treatment of infections (Shchelik 
et al 2021; Yan et al 2022), and monitoring the formation 
and dispersal of biofilms (Ralston and Swain 2009).

Microswimmers display a wide range of motility pat-
terns, which are often three-dimensional (3D) in nature. 
For instance, bacteria navigate complex 3D environments 
through stochastic patterns of linear movements and sudden 
reorientations (Elgeti et al 2015; Constantino et al 2016). 
Protists, such as Chlamydomonas reinhardtii, display inher-
ently three-dimensional helical swimming behavior (Rüffer 
and Nultsch 1985; Schaller et al 1997; Crenshaw et al 2000). 
Nevertheless, most studies focusing on microorganism 
locomotion have relied on two-dimensional optical micros-
copy as the primary tool for live imaging of microswim-
mers (Rothschild 1963; Feinleid and Curry 1971; Rüffer and 
Nultsch 1985; Leptos et al 2009; Kantsler et al 2013; Nakai 
et al 2015; Barry et al 2015; Jin et al 2020; Liu et al 2020; 
Coppola and Kantsler 2021), but two-dimensional micros-
copy does not capture the full range of the kinematics of 
microswimmers (Taute et al 2015).

To address these limitations, several techniques have 
been developed for 3D tracking of microorganisms. These 
include tracking microscopy (Berg 1971; Liu et al 2014), 
defocused particle tracking (DPT) (Speidel et al 2003; Wu 
et al 2005; Taute et al 2015), holographic tracking veloci-
metry (HTV) (Coëtmellec et al 2001; Cierpka and Kähler 
2012), and stereomicroscopy (Baba et al 1991; Crenshaw 
1996; Drescher et al 2009). These methods have provided 
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valuable insights into the motility of various species. For 
example, tracking microscopy has been used to study bac-
teria such as Escherichia coli (Berg 1971, 2004; Mathijssen 
et al 2019) and Caulobacter crescentus  (Liu et al 2014). 
DPT has been applied to examine the collective dynamics 
of E. coli (Wu et al 2006), to study variations in bacterial 
run-and-tumble behaviors (Taute et al 2015), and to measure 
the flow field around Euglena gracilis (Giuliani et al 2021). 
HTV has been used to study the motility of copepods naup-
lius (Sheng et al 2006), dinoflagellates (Pfiesteria piscicida, 
Karlodinium veneficum, Prorocentrum minimum) (Sheng 
et al 2007; Lee et al 2016), spermatozoa (Su et al 2012), 
and various bacterial species (E. coli, Agrobacterium tume-
faciens, Pseudomonas aeruginosa)  (Cheong et al 2015; 
Bianchi et al 2017). Stereo-microscopy has been used to 
study the three-dimensional trajectories of sea urchin lar-
vae Clypeaster japonicus (Baba et al 1991) and green algae 
Chlamydomonas reinhardtii (Drescher et al 2009; Polin et al 
2009).

These techniques have inherent limitations, however. 
Tracking microscopy is restricted to tracking one object at 
a time and can introduce background flow in larger cham-
bers. DPT struggles with higher particle densities and is 
sensitive to low signal-to-noise ratios (Cierpka and Kähler 
2012). HTV faces challenges with overlapping holograms 
and uncertainties along the optical axis (Gao et al 2013). 
Stereomicroscopy is limited to low particle densities to avoid 
false particle identifications and overlapping images (Els-
inga et al 2006). For all these techniques, tracking multiple 
cells leads to high occlusion rates and results in low tracking 
certainty. Therefore, developing an experimental technique 
that can accurately track multiple microswimmers at higher 
densities is of great interest for studying important ques-
tions in biophysics, such as population behavior in complex 
three-dimensional environments encountered in nature and 
the characterization of cell-cell interactions.

Here, we present a unique four-camera microscopy sys-
tem that builds on established macroscopic tracking meth-
ods, which often use 3-8 cameras for 3D tracking  (Jahn 
et al 2021). In particular, the system introduces advances 
from 3D particle tracking velocimetry (3D-PTV) (Maas et al 
1993; Malik et al 1993; Ouellette et al 2006; Attanasi et al 
2015; Schanz et al 2016) and applies it to a single-objective 
multi-camera setup, previously used to perform tomographic 
particle image velocimetry (Tomo-PIV) in immersion drop-
lets (Kim et al 2011). Our approach extends these techniques 
to the microscopic regime, enabling accurate 3D tracking of 
multiple microswimmers at low to medium densities. Specif-
ically, we use four sCMOS cameras to image the same vol-
ume of 2.5 × 2.5 × 2 mm3 . Our custom-developed tracking 
algorithm is based on the projective geometry framework, 
which supports fast and computationally efficient linear ray 
tracing. By tracking green algae C. reinhardtii at varying 

concentrations, we evaluate the performance and limitations 
of our tracking system and algorithm, and demonstrate a sig-
nificant improvement over previous single-camera micros-
copy systems. We achieve accurate and reliable tracking at 
higher particle source density of 0.32, with a low repro-
jection error of 0.3 body lengths. Our experimental results 
reveal that C. reinhardtii cells exhibit predominantly left-
handed chirality and swim in elongated helices with larger 
pitch and shorter radii, at a helical frequency of 1 to 2 Hz 
that is varying across the population. We also calculate the 
persistence length of microswimmer trajectories and cell dif-
fusion coefficients, showcasing that 3D data are necessary to 
characterize the population behavior correctly.

2  Three‑dimensional tracking setup

We track a suspension of microswimmers using a multi-
camera microscope (Fig. 1), a three-dimensional tracking 
setup which is designed around a single common objective 
and includes a light source, four sCMOS cameras, and a 
flow chamber. The optical configuration is based on Kim 
et al (2011), Kim et al (2013) previously used for Tomo-
PIV and 3D-PTV in immersion droplets and modified for an 
enlarged depth of field to consider suspension tracking in a 
approximately cubic domain.

The microswimmer suspension is illuminated with a laser, 
with a light diffuser (Optotune; LSR300) placed between 
the illumination source and the sample to reduce undesired 
speckles and provide uniform illumination by expanding the 
laser beam. The illumination intensity is modulated by the 
alignment of the diffuser on the optical rail. Our system sup-
ports both lasers and LEDs of different wavelengths. We use 
either green or red illumination, with wavelengths of 500 nm 
and 650 nm, respectively. The flow chamber containing the 
microswimmer suspension is fixed to a three-axis mechani-
cal translation stage inside the illumination volume with 10 
� m precision in the transverse direction.

Four cameras image the sample through a single common 
objective (Zeiss; M = 1.5 , f = 31 mm), each camera collect-
ing the light passing through a pinhole of diameter Dh . The 
cameras are all viewing the sample at an angle of 20◦ from 
the optical axis (Kim et al 2011). Because each camera’s 
optical path is oriented off-axis, no transmitted light reaches 
the cameras directly and the cameras only collect forward 
scattered light by the cells. The imaging system is, therefore, 
similar to dark field microscopy, and cells appear as bright 
spots against a dark background as shown in Fig. 1c for each 
of the four cameras. The camera model used here is Imager 
sCMOS (2560 × 2160 pixels resolution with pixel size 6.5 
�m2 , 16-bit dynamic range, maximum frame rate 50 fps).

The depth of field, Δzo (Kim et al 2011), of the optical 
system can be adjusted between 6 mm and approximately 
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200 � m, by varying Dh . Due to our objective’s low mag-
nification, the cell image diameter, DI , in our recordings is 
diffraction-limited. Following  (Kim et al 2013), the diffrac-
tion-limited cell image diameter, DL , is determined by the 
aperture size and the illumination wavelength. A reduced 
pinhole diameter, Dh , results in an increased cell image 
diameter, DI , for a given swimmer size. For our tracking of 
C. reinhardtii, we use Dh = 2 mm, yielding DI = 9 pixels 
and Δzo = 2 mm, such that the entire flow cell is in focus and 
cells can be tracked throughout the entire chamber’s depth.

3  Calibration procedure

We calibrate our tracking system with a custom-made cali-
bration procedure, which uses a proprietary software cali-
bration module (DaVis 8.4; LaVision GmbH) as a starting 
point and rewrites the mapping function in the projective 
geometry framework that is commonly used in computer 
vision (Hartley and Zisserman 2003).

A calibration target containing a regularly spaced 100 � m 
dotted grid pattern is positioned at the same location as the 
measurement volume of the flow chamber. Cameras are first 
focused and aligned to this grid using a large pinhole diam-
eter of Dh = 7 mm that decreases the depth of field to 200 
� m. Post-alignment, the pinhole diameter is decreased to 
Dh = 2 mm to achieve our experimental Δzo = 2 mm depth 
of field. We acquired 13 images of the calibration target from 
each camera, translating the target through the measurement 

volume in 200 � m increments. This results in a calibrated 
measurement volume of depth 2.4 mm in the optical axis. 
We used the DaVis 8.4 calibration module to acquire both 
the coordinates of the images of the dotted pattern in the 
camera image planes of each camera and the corresponding 
world coordinates in the measurement volume.

The mathematical structure of the calibration mapping 
function used in this study is similar to that described by 
Muller et al (2020); however, unlike their method, which 
determines the mapping function from images of a freely 
moving calibration target with unknown position and ori-
entation, in this work, we impose the target’s positional 
displacements. The camera mapping function has two com-
ponents: a linear part, which models the geometry of the 
optical setup and supports linear ray tracing, and a nonlinear 
part, which corrects for optical distortions. We first correct 
for optical distortions by computing a distortion correc-
tion map m that dewarps the calibration images to produce 
the distortion-corrected image. This step yields a function 
x̂ = m(x) , which maps the coordinates in the camera image 
plane x =

[
x y

]T to distortion-corrected images x̂ =

[
x̂ ŷ

]T . 
We then determine a mapping function x̂ = F(X) to map the 
coordinates X =

[
X Y Z

]T of a point in the three-dimen-
sional object domain to the dewarped projected image x̂ . 
This function F is a linear function formulated within the 
projective geometry framework.

In this framework, augmented vectors facilitate the 
representation of points in both the image plane and the 

Fig. 1  Experimental setup. a The multi-camera microscopy setup: 
(1) laser, (2) light diffuser, (3) flow chamber and mechanical stage, 
(4) objective and optics, and (5) cameras. b Schematic of the multi-
camera setup. Dashed red lines show the optical path. The laser light 
passes through the diffuser and illuminates the microswimmers inside 
the flow chamber. An objective of magnification M = 1.5 and focal 
length f = 31  mm collects the scattered light. The scattered light 

then passes through small pinholes, leading to a large depth of field. 
Prisms are used to guide the optical rays to the four sCMOS cameras. 
c The four camera views record an algae suspension of 5 × 104 cells/
ml concentration. Bright dots represent the scattered light from indi-
vidual illuminated cells. The number on each image corresponds to a 
specific camera
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object domain. Specifically, in the dewarped image plane, 
coordinates are augmented into the ray-tracing vector 
x̃ =

[
kx̂ kŷ k

]T  , where k is a scaling parameter repre-
senting a coordinate along the principal optical axis, see 
Fig. 2. An inverse mapping p(x̃) inverts this transforma-
tion, resulting in x̂ = p(x̃) =

[
x̃∕k ỹ∕k

]
 . Similarly, world 

coordinates X are augmented to obtain a homogeneous 
vector x̃ =

[
X Y Z 1

]T , simplifying geometric transforma-
tions in the calibration procedure. Figure 2 illustrates the 
relationship between these coordinate systems, showing 
the camera, the world coordinate system, and the dewarped 
image plane.

For each camera, the mapping function F models both 
extrinsic camera properties, i.e. the position and orienta-
tion of the camera, and intrinsic properties, i.e. optical 
properties and sensor properties. The extrinsic properties 
are represented by a rotation and translation 

[
R T

]
 , which 

represent the transformation from the world coordinates 
system to the camera coordinates system. Here, R is a 3 
× 3 rotation matrix, and T  is a 3 × 1 translation vector. 
The intrinsic properties are represented by a 3 × 3 camera 
matrix K of the form:

Here f is the focal length of the lens in mm, rx and ry are the 
pixel pitch of the sCMOS sensor (px/mm), s is the pixel 
skew, and px and py are the coordinates of a point at the 
intersection of the principal optical axis and the dewarped 

(1)K =

⎡⎢⎢⎣

frx s px
0 fry py
0 0 1

⎤⎥⎥⎦
.

image plane. With these notations, the mapping F can be 
written in the following form

The calibration procedure determines, for each camera, the 
matrices K , R , and vector T  and the parameters in the user 
prescribed distortion mapping. Representing the 3 × 4 pro-
jection matrix P = K

[
R T

]
 , we use the DLT algo-

rithm  (Hartley and Zisserman 2003) between the augmented 
positions of the dots on the calibration target in the object 
domain X̃j and the augmented coordinates of their images 
on the four cameras x̃c

j
 to initiate its 12 elements. The four 

projection matrices Pc are then refined by solving a nonlin-
ear least squares problem for each camera between the image 
coordinates and the projected positions from the object 
domain by:

Here superscript c is for cameras, and the subscript j denotes 
the calibration grid point number and includes all 13 posi-
tions of the target. Subsequently, a polynomial distortion 
mapping is applied that is solved between the projected 
object position and the image coordinates by a linear regres-
sion, and corrects for optical distortions in the microscope 
objective. Finally, an RQ decomposition is used to determine 
K , R , and T  from the optimized projection matrices.

3.1  Accuracy of the camera calibration

We follow the approach described in Muller et al (2020) to 
assess the spatial accuracy of our calibration. Images of a dot 
from the calibration target on the camera’s image planes are 
associated with four optical rays using projective geometry. 
For a perfect calibration, the optical rays from all cameras 
should intersect at a single point in the object domain. In 
practice, however, camera optical rays are skew lines and 
do not precisely intersect. We characterize the accuracy of 
the camera calibration by computing the skewness between 
these optical rays.

The skewness is evaluated by first triangulating the loca-
tion of each calibration grid point in the object domain 
and then computing the average perpendicular distance of 
this point from the camera optical rays. For each of the 13 
calibration target positions, we average the skewness cor-
responding to each dot on the target and present in Fig. 3 
the average skewness as a function of the depth position Z. 
Our calibration procedure results in low triangulation errors, 
characterized by low skewness values: The minimum value 
was 0.3 � m at the center of the flow chamber, while the max-
imum value was 0.7 � m near the lower and upper surfaces 

(2)x̂ = F(X) = p
(
K
[
R T

]
x̃
)
.

(3)min
P
c

∑
j

‖‖‖x
c
j
− p

(
P
c
X̃j

)‖‖‖
2

.

k

~x

~y

Z

X

Y

XC

Image Plane

Principal optical axis

Calibration grid in 

the 3D physical domain

(x, y)̂̂

Fig. 2  Illustration of the optical path and calibration geometry. An 
optical ray, represented by the solid red line, extends from the camera 
center �� to a grid point location on the calibration grid in the three-
dimensional object domain ( X =

[
X Y Z

]
 ). The camera’s coordinate 

system is denoted as x̃ =

[
x̃ ỹ k

]
 . The intersection of the optical ray 

with the dewarped image plane yields the coordinates x̂ =

[
x̂ ŷ

]
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of the viewing volume. These skewness values are an order 
of magnitude smaller than the diameter of the C. reinhardtii 
cell, indicating a high level of accuracy for our calibration.

4  C. reinhardtii tracking experiments

In this study, we tracked unicellular motile algae Chla-
mydomonas reinhardtii (wild-type CC125), obtained from 
the Chlamydomonas Resource Center. The cells were cul-
tured following the protocols described by Quaranta et al 
(2015). Briefly, cells were grown phototrophically in Tris 
minimal medium with constant aeration via the injection 
of bubbles, at 24-26◦ C, with a 14/10-hour light/dark cycle 
at light intensity of 150 �mol⋅m−2

⋅s−1 . Cells were harvested 
during the exponential growth phase at a density of approxi-
mately 1 × 106 cells⋅ml−1 . Experimental concentrations rang-
ing from 5 × 104 to 5 × 105 cells⋅ml−1 were achieved via dilu-
tion with Tris minimal medium.

Tracking experiments were performed in a custom-built 
flow chamber made from a 2-mm-thick transparent acrylic 
sheet (60 mm × 26 mm) with 8-mm laser-cut central cham-
ber. The chamber was sealed with two glass coverslips using 
Norland optical adhesive (NOA81). To minimize flagellar 
adhesion (Mitchell 2000), the coverslips were cleaned and 
treated with a 1% bovine serum albumin (BSA)/phosphate 
buffer solution. Before each experiment, we transferred 
approximately 100 � l of algae solution using a micro-pipette 
and placed the flow chamber on the multi-camera micro-
scope stage. We waited for 15 min before starting the record-
ing to ensure that the cells acclimated to the environment in 
the flow chambers.

The algae suspension was illuminated with red laser light 
(PICOTRONIC; D1650) at wavelength � = 650 nm, to pre-
vent phototactic response (Harris 2009; Foster et al 1984). 
The camera sensors were cropped to 640 × 640 pixels to 

reduce the image size, resulting in a total viewing volume 
of 2.5 × 2.5 × 2 mm3 . Images were acquired via a com-
mercial PIV software (Davis 10; LaVision GmbH) at 20 fps 
with an exposure time of 42ms. The recording duration of 
each experiment was 5 min, corresponding to 6000 frames. 
Experiments were performed for cell suspension concentra-
tions ranging from 5 × 104 to 5 × 105 cells/ml to character-
ize the performance of the setup. Figure 1c shows typical 
images of an algae suspension of 5 × 104 cells/ml from all 
four cameras.

The optical power output of the laser was 0.4 mW, and 
no active cooling was performed during the experiments. 
The background flow caused by the heating was character-
ized using passive tracer particles. A background flow with 
velocity magnitudes of 10-20 �m/s across the depth of field 
was observed. Using COMSOL  Multiphysics® simulations, 
it was determined that this flow is driven by buoyancy forces 
arising from a temperature difference of approximately 1 ◦ C 
across the flow chamber. This background flow corresponds 
to a shear rate of 0.02 s −1 , which does not affect the popula-
tion behavior of C. reinhardtii (Barry et al 2015).

5  Lagrangian particle tracking

We developed a custom particle-tracking algorithm that 
incorporates advances from bird tracking (Attanasi et al 
2015), integrating progress in predictive tracking of pas-
sive tracers (Schanz et al 2016), and makes full use of the 
projective geometry framework (Hartley and Zisserman 
2003) to achieve accurate three-dimensional trajectories of 
the cells. With projective geometry, we leverage the accu-
racy of our calibration and use linear ray tracing, leading 
to linear mathematical operations throughout the tracking 
process, which optimizes performance and reduces compu-
tational complexity. A detailed description of the algorithm 
can be found in Muller (2023); here, we provide an over-
view of the algorithm’s important steps that are relevant to 
the subsequent part of this work. The Lagrangian particle 
tracking (LPT) algorithm is subdivided into five steps: par-
ticle identification, image tracking, coordinate matching and 
triangulation, time-resolved tracking and optimization, and 
post-processing.

5.1  Particle identification

The first step in our tracking algorithm is particle detec-
tion, which involves identifying the positions of cells in 
the camera image planes at each time step. We first dewarp 
the camera images by applying the distortion correction 
obtained from the calibration procedure (see section 3). We 
then represent the outer contour of the algae cell images in 

Fig. 3  Accuracy of camera calibration characterized by mean skew-
ness for all grid points for four cameras along the Z-axis (optical 
axis). The error bars represent the standard deviation
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each camera view as conics (Hartley and Zisserman 2003) 
in terms of homogeneous coordinates as:

Here, x̃ is a vector of homogeneous coordinates, and C is a 
3 × 3 symmetric matrix that defines the conic in the image 
plane.

The values of the coefficients Ci are determined by a sec-
ond order Savitzky–Golay image smoothing and differen-
tiation kernel (Meer and Weiss 1992) using a characteristic 
kernel size corresponding to the size of the cell image. We 
then calculate the midpoints of the conics to track the posi-
tion of each algae cell as follows:

Here, x̂jo and ŷjo represent the x and y coordinates of the mid-
point of the j-th conic in the dewarped image plane.

Due to the three-dimensional motion and rotation of C. 
reinhardtii, the algae images exhibit strong fluctuations in 
size and intensity, appearing as blinking dots (Fig. 4a). This 
affects the peak detection algorithm. To address this, we use 
a multi-kernel approach using kernel sizes of 5 × 5 , 7 × 7 , 
and 9 × 9 , deriving three outer contours for each image. The 

(4)x̃
T
Cx̃ =

�
x̂ ŷ 1

� ⎡⎢⎢⎣

C1 C2∕2 C4∕2

C2∕2 C3 C5∕2

C4∕2 C5∕2 C6

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x̂

ŷ

1

⎤
⎥⎥⎦
= 0.

(5)
[
x̂o
ŷo

]

j

= −

[
2C1 C2

C2 2C3

]−1
j

[
C4

C5

]

j

.

coefficients Ci are determined through a voting criterion that 
maximizes the average intensity within each kernel size.

Figure 4b shows a typical image, the detected cells, and 
their midpoints. The inset, Fig. 4c, corresponds to the same 
algae as those from Fig. 4a. Figure 4d demonstrates the 
robustness of our algorithm, where images of two overlap-
ping algae are detected separately.

5.2  Image tracking

In the second step of our tracking algorithm, we track the 
movement of algae cells, here referred to as particles, in 
each camera view. Our approach involves identifying par-
ticle images in frame n + 1 within one body length of those 
in frame n. We do this by evaluating the distance between 
midpoints of particle images on the conics as

Here, Lp is the distance between two particle images’ mid-
points, x̂o,n and x̂o,n+1 , in frame n and n + 1 , respectively, 
normalized by the size of the particle image in frame n. If 
Lp < 1 , the particle in frame n + 1 lies within the conic in 
frame n and is considered part of the track for that specific 
conic.

The threshold Lp < 1 is chosen based on our high tem-
poral resolution, which results in minimal temporal dis-
placement of particle images between frames. We measure 
a maximum displacement of approximately 1.5 pixels per 
frame. Normalizing this value by the average minimum dis-
tance between particles, calculated for a concentration of 
5 ×104 cells/ml, yields 0.083. Even at the highest examined 
cell concentration, the maximum normalized displacement 
is 0.15. This parameter, known as the inverse of the parti-
cle spacing displacement ratio, quantifies the difficulty of 
particle tracking, with lower values indicating easier track-
ing (Malik et al 1993; Ouellette et al 2006). Since particle 
displacement remains small relative to inter-particle dis-
tance, Lp < 1 ensures robust tracking. However, this thresh-
old can be adjusted for larger displacements, such as under 
superimposed flow.

The image tracking step results in an indexed list of two-
dimensional tracks, including particle conic and midpoint 
information for each particle for all cameras. Occlusions 
may result in one detected particle becoming part of two 
tracks; in such cases, the track splits at the point of over-
lap, and a single particle is tracked by multiple track seg-
ments. Unique tracks are recovered for each particle during 
an optimization step discussed later. Figure 5 demonstrates 
the effectiveness of the image tracking algorithm in accu-
rately capturing the motion of algae cells in a 50-frame 

(6)Lp =

√√√√
1 −

x̃
T
o,n+1

Cn x̃o,n+1

x̃
T
o,n

Cn x̃o,n

.

Fig. 4  a Images of three algae cells at different time steps showing 
variation in their image size due to the cell movement across the 
depth of field. Moreover, the cell blinking effect is visible for algae 
1 and 2, where the intensity of the bright spot changes from one time 
step to the next due to cell rotation. b Camera image with detected 
algae cells represented by green conics. Red dots show the midpoints 
of the conics. c A close-up of detected algae cells for the same cell 
images from panel (a). d Identification of the cells for overlapping 
cell images
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sequence for one of the cameras. The figure highlights that 
most trajectories correspond to real particles and effectively 
track their motion. A few short tracks are also reconstructed 
that do not correspond to actual particles because of image 
noise. These false particle identifications and trajectories are 
removed in the post-processing step.

5.3  Correspondence matching and triangulation

The next step in our tracking algorithm involves match-
ing particle images across different cameras using epipolar 
geometry (Hartley and Zisserman 2003). Specifically, given 
a particle image in one camera, its corresponding image in a 
second camera must lie along the epipolar line, i.e. the pro-
jection of the optical ray from the particle through the center 
of the first camera onto the second camera’s image plane. To 
establish correspondences, we compute the epipolar line in 
the second camera corresponding to each particle image in 
the first camera. We then calculate the distance between this 
epipolar line and all particle images in the second camera. 
Ideally, the correct particle image would lie exactly on the 
epipolar line, but due to noise and calibration errors, we 
allow a threshold distance of half body length. If the dis-
tance between a particle image and the epipolar line is less 
than this threshold, we consider it a match and establish a 
correspondence.

Establishing reliable correspondence between particle 
images in different camera views requires that each particle 
image lies within one body length of the epipolar line associ-
ated with the corresponding particle image in another cam-
era. When this bi-directional condition is met, we consider 
the particle images to be matched, forming a stereoscopic 
correspondence. In a four-camera setup, multiple epipolar 
line combinations are possible. Trifocal correspondences 
between particle images in three views imply a stereoscopic 

correspondence for each two-view combination. Quadri-
focal correspondences extend this to all four cameras. To 
limit false correspondences, arising from noise, occlusion, 
or calibration errors, we exclude stereoscopic correspond-
ences and only process particles with trifocal or Quadri-focal 
correspondences.

After matching particle images across multiple cameras, 
we triangulate the particle’s 3D position, X , by minimizing 
the sum of squared distances between X and the optical rays 
from each camera, see  (Muller et al 2020) for more details.

5.4  Time resolved tracking and optimization

Next, we combine the two-dimensional tracking and the par-
ticle image correspondences to obtain continuous trajecto-
ries in three dimensions.

In the first recorded frame, we initiate three-dimensional 
trajectories from each triangulated 3D particle location, from 
which trajectories are temporally extended using both the 3D 
object and the 2D image plane tracking information: At each 
frame, existing 3D object and 2D image plane trajectories 
are represented using a polynomial fit, with which we predict 
candidates for the particle image position in the subsequent 
frame. Based on these predictions, we find particle images 
within one body length in the next frame. This prediction 
step is particularly beneficial in instances of image occlu-
sion, allowing us to find the particle image even when occlu-
sion occurs.

As each frame is processed, new particle images are iden-
tified and appended to their corresponding trajectories. For 
each of these images, we triangulate their location in three-
dimensions using image correspondences and subsequently 
calculate the re-projection error. Only the particle loca-
tions with an average re-projection error (evaluated across 
all cameras) that is less than one body length get incorpo-
rated into the three-dimensional trajectories. This iterative 
approach continues for all frames, appending trajectories 
accordingly.

These steps result in a set of feasible trajectories for each 
particle image. Any single particle might still be part of mul-
tiple candidate trajectories due to occlusions and imperfect 
correspondences arising from calibration errors. To solve 
this, we implement a cost-function solution that rewards 
longer trajectories, matched number of image correspond-
ences (tri-focal and quadri-focal), and low re-projection 
error. Employing a divide-and-conquer strategy inspired 
by Attanasi et al (2015), we find a solution that best fits 
simultaneous tracking in the object and image domains. 
Once the optimization is complete, we obtain unique indi-
ces for each trajectory and their respective image plane and 
three-dimensional locations.

Figure 6a illustrates the result of our tracking algorithm 
after step 4, tracking cells over 50 frames at 5 × 104 cells/

Fig. 5  Visualization of two-dimensional image tracking. a An aver-
age image created from 50 individual camera images, temporally 
spaced by Δt =0.05  s, forming a time series, displaying particle 
motion as streaks with 2D tracks of each particle overlaid in distinct 
colors. b A zoomed-in view of the particle motion as streaks and their 
corresponding 2D tracks, including short tracks resulting from false 
particle identifications due to image noise
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ml concentration. For 6000 frames, which corresponds to 
5 min of recording, we obtain approximately 0.8 million tra-
jectories with an average track length of 10 frames. Many of 
these trajectories are ghost tracks or associated with spurious 
identifications (see Fig. 6b). We filter out these trajectories 
in the post-processing step, as discussed below.

5.5  Post‑processing

The robust and thorough nature of our tracking algorithm 
ensures that minimal data are lost during tracking. However, 
this results in a high number of unphysical trajectories, such 
as ghost particle trajectories (see Fig. 6b). To address this, 
we remove spurious trajectories in a post-processing step. 
First, we reduce the tracking dataset by filtering trajectories 
based on length: tracks shorter than 20 frames are discarded. 
This filtering step effectively removes most ghost trajec-
tories, as ghost particles lose correspondences within ten 
frames resulting in shorter tracks. Next, we remove tracks 
corresponding to immobile cells, such as those stuck on 

solid surfaces, which are identified by way of their positional 
standard deviation; tracks with a standard deviation below 
20 � m are removed. Finally, we discard tracks for particles 
moving faster than 250 �m/s, which is much greater than 
the typical algae swimming speed of 100 �m/s (Crenshaw 
et al 2000).

The remaining trajectories are filtered in order to reduce 
the noise resulting from calibration errors, occlusions, and 
inaccuracies in the triangulated position due to cell blinking 
in at least one camera view. Figure 6c displays a representa-
tive cell trajectory illustrating these artifacts. The position 
triangulated in step 3 is influenced by minor differences in 
midpoints across various cameras caused by the blinking 
effect, leading to a shift in the triangulated position from 
one frame to another and generating an apparent high-fre-
quency helical motion. This can be seen when inspecting 
a portion of the track (indicated by a rectangle) projected 
onto the image plane (Fig. 6d). Camera images are also pre-
sented in the inset at different points along the track. The 
reconstructed cell trajectory is marked with green dots in 
Fig. 6d and can be seen to oscillate from one side of the 

Fig. 6  a Triangulated positions in the object domain for 50 frames 
at a cell density of 5 ×104 cells/ml. Longer trajectories appear in the 
center, where the viewing volume is located (2  mm depth), while 
shorter ones are predominantly ghost trajectories. b An average 
intensity image of the same 50 frames, overlaid with 2D projections 
of algae trajectories. The inset shows a close-up of the region within 
the red rectangle. c A representative 3D cell trajectory with discon-
tinuities (circular insets) caused by occlusions and imperfect match-
ing; the rectangle indicates the portion of the trajectory re-projected 
in (d). d Two-dimensional re-projections of the trajectory in (c) and 
(f), before and after applying a third-order Savitzky–Golay filter (ker-

nel length 25) to correct blinking artifacts. The insets display the re-
projected positions of the original and filtered trajectories at selected 
time steps. e The fully filtered 3D trajectory. f Distribution of the 
time-averaged difference Δs between original and filtered trajectory 
locations in object space for all trajectories. g Cleaned and filtered 
trajectories from the same 50-frame time series, with gray planes 
marking the top and bottom of the flow chamber. h The same average 
intensity image as in (b), now overlaid with re-projected 3D trajecto-
ries. Bright spots without overlaid tracks are dust particles or immo-
bile cells; the inset zooms in on the same region highlighted in (b)
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particle image to the other. It is clear that this oscillation 
is not physical. The re-projected position oscillates from 
one side of the algae image to the other because of the cell 
blinking effect in another camera view. Another artifact is 
the discontinuity of the trajectory, highlighted by circles in 
Fig. 6c, which arises from occlusions and imperfect match-
ing at these positions. To correct for this noise, we apply 
a 3rd order Savitzky-Golay filter with kernel length of 25. 
The filtered track is represented in Fig. 6e, and its re-pro-
jected location is displayed in Fig. 6d with a red line and 
red dots on the camera images. Figure 6d shows that the re-
projection of the filtered trajectory aligns with the particle’s 
image center, thereby validating our filtering approach. We 
characterize the difference between the filtered track and 
the original track by computing a time-averaged difference 
as Δs =

1

N

∑N

t=1
��Xt − X

s

t
�� , where Xs

t
 represents the filtered 

track position. Figure 6f displays the distribution of average 
differences for all trajectories. The mean value for the Δs 
distance is 4.5 ± 1.9 � m, which is on the order of the algae 
cell’s radius. This indicates that the filtering does not affect 
the trajectory’s helicity but mainly corrects errors due to the 
blinking effect.

Finally, we apply a linear correction to the position in 
the Z direction to rescale the depth of the flow chamber, 
accounting for the difference in the index of refraction 
between the calibration procedure and the experiment. The 
calibration was performed using a calibration target in ambi-
ent air, whereas the experiments were conducted in a flow 
chamber filled with an aqueous Tris solution. The higher 
index of refraction of the Tris solution causes a spatial com-
pression along the optical axis, necessitating this correction. 
The correction was performed using experimental data as 
follows:

We first identify the locations of the upper ( Zu ) and lower 
( Zl ) surfaces in the compressed frame of reference by identi-
fying cells stuck to the surfaces of the top and bottom cover-
slips. These cells display minimal movement ( V < 20 �m/s) 
compared to motile cells in the bulk. We fit a plane through 
these immotile cells to determine the upper and lower sur-
face locations. Once the surface locations are known in the 
compressed frame of reference, the correction is applied as

where ZU = 1 and ZL = −1 define the true upper and lower 
surface locations.

It is worth noting that this linear correction assumes that 
all optical rays follow the same path. However, variations 
in path lengths through the glass and suspension may occur 
across different areas of the image, which would result in 
non-parallel detected surfaces. However, within the bounds 
of our experiments, we do not observe such deviations: the 

Zcorrected = ZL +

(
ZU − ZL

Zu − Zl

)(
Z − Zl

)

fitted planes corresponding to the upper and lower surfaces 
remain parallel. This suggests that any errors introduced by 
these effects are negligible, and the linear correction accu-
rately accounts for the difference in refractive index.

Figure 6g shows the filtered three-dimensional trajecto-
ries in the corrected frame of reference for cell density of 
5 × 104 cells/ml. For clarity, we only display 266 trajectories 
for 2.5 s (50 frames), from the ∼ 7000 trajectories (mean 
track length 200 frames) acquired during the five minute 
(6000 frames) experiment duration. We have successfully 
removed trajectories belonging to ghost and immobile cells 
(see Fig. 6h).

6  Tracking performance

To assess the accuracy and reliability of our three-dimen-
sional tracking setup and algorithm, we evaluate the sys-
tem’s performance as the number of particles increases. 
Specifically, we compute the reprojection errors and the 
lengths of trajectories measured at various suspension con-
centrations of C. reinhardtii cells. Figure 7 illustrates the 
variation in the number of particles in the images across 
different concentrations. We found that our object detection 
algorithm accurately detected particles up to a concentration 
of 2 × 105 cell/ml (see Fig.  7). At greater concentrations 
however, some particles were not detected due to overlap-
ping particle images, a common challenge in high density 
experiments (Schanz et al 2016).

Table 1  Average number of detected particles and the particle source 
density across all cameras and frames for different cell concentrations

No Concentration (cells/
ml)

Detected particles N
S

I 5 × 104 705 0.109
II 1 × 105 1176 0.182
III 2 × 105 2082 0.323
IV 5 × 105 4340 0.674

Fig. 7  Sample camera images for varying cell concentrations: I. 
5 × 104 cells/ml, II. 1 × 105 cells/ml, III. 2 × 105 cells/ml, IV. 5 × 105 
cells/ml. Close-ups show the detected cells in part of each image
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We characterize the particle concentration with the parti-
cle source density ( NS) (Barnkob and Rossi 2020; Barnkob 
et al 2021), a widely used metric in PIV experiments (Adrian 
et al 2011). The particle source density quantifies the density 
of particles in each image taking into account the area of the 
particle image and is calculated as NS = Nx̂Ap∕AI , where 
Nx̂ is the number of particles detected, Ap is the average 
area of the particle images, and AI is the total area of the 
image. We used the average measured particle diameter of 
9 pixels to determine Ap , a size that is considerably larger 

than the typical tracer particle diameter of 2-3 pixels used in 
typical PIV/PTV measurements (Adrian et al 2011; Schanz 
et al 2016). The correspondence between the particle con-
centrations used in our experiments, the average number of 
detectedparticles, and the source densities are summarized 
in Table 1. Another commonly used metric, particle image 
density (particles per pixel, or ppp), provides an alternative 
way to quantify tracking performance and can be obtained 
as NI = NS∕Ap.

To calculate the reprojection error, �r , we reprojected 
the triangulated three dimensional particle positions onto 

Fig. 8  Tracking performance for varying cell concentrations: I. 
5 × 104 cell/ml ( NS ≈ 0.11 ), II. 1 × 105 cells/ml ( NS ≈ 0.18 ), III. 
2 × 105 cells/ml ( NS ≈ 0.32 ), IV. 5 × 105 cells/ml ( NS ≈ 0.67 ). a 
Composite camera image for 50 frames, overlaid with the re-pro-
jected three-dimensional position. Insets show the close-up views of 

a subsection of each image composite, for clarity. b Distributions of 
time-averaged reprojection error for different cell concentrations. c 
Distributions of track length in terms of number of frames, for each 
cell concentration
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each of the camera images (see Fig. 8a). In principle, the 
reprojected position should match the center of the detected 
particle image but in practice these differ due to the skew-
ness of the camera rays. We normalize the distance from the 
detected particle center to the reprojected location by the 
size of the particle image. Thus, �r indicates the deviation 
of the triangulated position from the imaged center, with a 
higher value corresponding to more uncertainty. During the 
time-resolved tracking and optimization step (Sect. 5), a new 
particle detection is appended to an existing trajectory only 
if �r < 1. If this threshold is not met, that detection is not 
appended, and the trajectory is not extended further. Conse-
quently, �r in our final dataset ranges from 0 to 1.

We report the distribution of time-averaged trajectory 
reprojection errors in Fig. 8b for various image densities. 
The reprojection error exhibits a bimodal distribution for 
all image densities except the highest tested at NS = 0.67 , 
with the first peak around �r ≈ 0.15 representing correctly 
reconstructed particles and the second peak, at �r ≈ 0.5 , 
corresponding to particles with overlapping images or tri-
focal correspondences instead of quadri-focal. As the NS 
increases, the fraction of particles with larger reprojection 
errors also increases, indicating that the increased occur-
rence of particle image overlap at higher particle concentra-
tions leads to less reliable reconstruction. The average repro-
jection error increased from 0.15 to 0.3, with an increase in 
NS from 0.11 to 0.32. A reprojection error of 0.3 (equivalent 
to 0.3 cell diameters, which translates in the context of our 
C. reinhardtii tracking experiments to a positional uncer-
tainty of up to ≈ 3 � m) compares favorably with particle 
location uncertainties of 1 to 2 cell diameters yielded by 
holographic tracking techniques imaging particles ranging 
from 40 to 270 � m in size (Gao et al 2013). At NS = 0.67 , 
particles quickly lose correspondence leading to typically 
shorter trajectories, many of which are removed during 
post-processing.

We analyzed the variation in track length as a function of 
particle source density (see Fig. 8c). At the lowest density 
NS = 0.11 , the average track length was around 200 frames 
or 10 s. The average track length decreased with increased 
particle source density. At NS = 0.67 , for example, the aver-
age track length, N, was only 2 s. This reduction in track 
length is mainly due to higher occlusion rates at higher 
image densities, which create ambiguities in unique corre-
spondences and particle detection. As a result, the number of 
tracked particles was lower than in lower-density data sets, 
as shown in Fig. 8a-IV, and these particles quickly loose 
correspondence. Nonetheless, we obtained trajectories at 
least 5 s long for image densities up to NS = 0.32 , sufficient 
for performing kinematics and population behavior analysis.

Our performance assessment demonstrates that we can 
reliably track active swimmers up to a particle source 
density of 0.32, corresponding to 2 ×105 particles/ml. 
Notably, this is an order of magnitude higher than the 
concentrations (1.3−1.7 ×104 particles/ml) that can be 
accurately tracked using in-line holographic methods for 
40 � m particles (Kim and Lee 2008). Recent advances 
in de-focused particle tracking have enabled the track-
ing of particles at effective source densities of 0.20−0.24 
for 2 � m particle sizes, depending on the signal-to-noise 
ratio   (Barnkob and Rossi 2020; Barnkob et al 2021). 
However, particle image size in defocused setups var-
ies with depth; hence, the particle source density does 
not remain constant throughout the recording sequence. 
In contrast, the size of the particle image is constant in 
our approach and the particle image density ( NI ) offers 
a more direct method of comparison. Although the defo-
cused particle tracking method achieves an effective NI 
of about 0.0011ppp (Barnkob and Rossi 2020; Barnkob 
et al 2021), our system reaches approximately 0.005ppp 
at a particle source density of 0.32, which is substantially 
greater.

Modern macroscopic 3D tracking systems with multiple 
cameras and the shake-the-box (STB) algorithm (Schanz 
et al 2016; Huhn et al 2017; Jahn et al 2021) can reliably 
track much higher particle source densities up to 0.56, albeit 
with smaller particle image diameters, around 2-3 pixels. By 
adapting similar multi-camera principles to a microscopic 
regime, our setup extends the upper limit of trackable densi-
ties in microscale experiments involving bio-active particles, 
offering a versatile platform for studying a wide range of 
motile microorganisms under realistic conditions. Moreover, 
our tracking algorithm results in high throughput of long 
trajectories with low reprojection error, which provides the 
basis of our analysis of cell kinematics in this work.

7  Application of multi‑camera microscope 
to cell tracking

The methodology described in Section 2 is ideally suited to 
investigate the three-dimensional motility of C. reinhardtii. 
In our study, we obtained ∼ 45000 trajectories at a concen-
tration of 5 × 104 cells/ml, providing a substantial dataset for 
analyzing the trajectory kinematics of C. reinhardtii.

7.1  Three‑dimensional tracking of C. reinhardtii

Figure 9 shows examples of three-dimensional trajectories of 
freely swimming microalgae. Cells display helical motion, 
which can vary significantly from one cell to another. The 
majority of the cells move along elongated helices, with 
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large pitch compared to the helix radius, for example see 
trajectories 1 to 4. In addition, we observed a few trajectories 
similar to 5 and 6, characterized by tight helices with short 
radii and pitch. Our trajectory dataset also highlights a dis-
tinct “hopping” behavior near surfaces, represented by tra-
jectory 3, where cells undergo a series of bouncing motions 
against the surface before moving away. This hopping behav-
ior emerges as a prevalent feature for surface interactions 
of the microalgae, which we previously examined in detail 
using the same microscopy setup (Buchner et al 2021).

7.2  Characterization of helical parameters of C. 
reinhardtii trajectories

We first characterized the helical parameters of these tra-
jectories, specifically, velocity V, pitch P, and radius R. To 
calculate these parameters across all trajectories, we first 
used piecewise Legendre polynomials to perform a least-
squares fit on the discrete trajectory data, Xt , yielding a con-
tinuous, time-parameterized curve, X(t) =

[
X(t) Y(t) Z(t)

]
 , 

for each trajectory. Next, we used the Frenet–Serret frame-
work to compute the curvature, �(t) , and torsion, �(t) , of 

Fig. 9  Six example three-dimensional trajectories of C. reinhardtii 
cells. Light and dark gray shaded regions represent the glass surfaces 
enclosing the flow chamber

Fig. 10  Top Row: The distributions of time-averaged helical param-
eters across all trajectories. a Velocity, V  b pitch, |P| , and c radius, 
R . Bottom Row: 2D joint probability density plots for time-averaged 

helix parameters for C.  reinhardtii trajectories. d Velocity vs. Radius 
e Velocity vs. Pitch f Pitch vs. Radius. The color bar represents the 
relative density
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X(t)  (Crenshaw et al 2000; O’neill 2006). These quantities 
were then used to compute the helical parameters as:

Further details on the piecewise Legendre polynomial fit-
ting and the Frenet–Serret framework can be found in online 
resource S1.

We then computed time-averaged values for each of the 
parameters, resulting in one value for each trajectory. Fig-
ure 10a presents the distribution of time-averaged velocities, 
V , for all trajectories. The distribution is characterized as tri-
modal, with peaks centered approximately at 20 �m/s, 90 �
m/s, and 160 �m/s. The first mode corresponds to non-motile 
algae cells drifting in a slow background flow. Excluding 
the non-motile cells, the remaining predominantly bimodal 
distribution characterizes the behavior of the healthy motile 
cells. For our subsequent analysis and discussion, we focus 
on these cells, specifically those with V ≥ 30 �m/s. The 
average swimming velocity of C. reinhardtii in our experi-
ments was 137 ± 42 �m/s, higher than the average velocities 
reported by Barry et al (2015), yet similar to the velocity 
range of 80 − 160�m/s reported by Jin et al (2020). The 
lower average velocities of 58 ± 24 �m/s from Barry et al 
(2015) can be attributed to differences in growth conditions, 
as C. reinhardtii’s motility behavior varies depending on 
these conditions (Harris 2009).

Figure 10b and c presents the distribution of time-aver-
aged absolute pitch, |P| , and radius, R , for all trajectories, 
respectively. The absolute value of the pitch, |P|, is used as 
we are interested in the pitch’s magnitude only. The aver-
age absolute pitch across all trajectories was 137 ± 64� m, 
and the average radius was measured as 8 ± 7� m, confirm-
ing that C. reinhardtii cells predominantly follow straighter 
trajectories, as denoted by the high ratio of average pitch to 
average radius. The large standard deviations of the meas-
ured pitch and radius distributions indicate considerable 
variability in the motility patterns across the cell population.

We also consider 2D joint distributions of the helical 
parameters V , P , and R . Figure 10d-f presents these distribu-
tions. The joint density plot for velocity and radius (Fig. 10d) 
demonstrates bimodality across the measured population of 
individual trajectory-averaged kinematic behavior, with 
peaks at approximately 

(
R,V

)
= (4, 90) and (6, 160). This 

suggests the existence of two co-existing populations of cells 
typified by different swimming characteristics. The faster 
population exhibits considerably more variation in helical 
trajectory radius. Over the entire population, it appears that 
there is a weak nonlinear relationship between R and V  , 
which we quantify via the Spearman’s rank correlation 

V(t) = ‖X�

(t)‖, P(t) = 2��(t)

�(t)2 + �(t)2
,

and R(t) =
�(t)

�(t)2 + �(t)2

coefficient as rs = 0.55 . Conversely, the joint distribution of 
velocity and pitch (Fig. 10e) shows a strong, close to linear, 
relationship between the two parameters with rs = 0.85 . 
Additionally, we observe that approximately 70% of the 
algae swim with left-handed chirality ( P < 0 ), consistent 
with previous studies (Crenshaw et al 2000).

An important feature of C. reinhardtii swimming is the 
rotation of the cell body around its axis, previously meas-
ured at a rate of 1.4 − 2 Hz (Rüffer and Nultsch 1985). This 
rotation is due to the beating asymmetry between the cis 
and trans flagella which, together with the three-dimen-
sional flagellar beating pattern, leads to the characteristic 
helical motion (Rüffer and Nultsch 1985; Cortese and Wan 
2021). Notably, one cell rotation corresponds to one heli-
cal turn (Rüffer and Nultsch 1985). Thus, we calculate heli-
cal angular velocity to consider variations in cell rotation 
speeds. Our trajectory data facilitate the computation of this 
helical angular velocity based on trajectory parameters using 
the equation:

The distribution of time-averaged helical angular velocity, 
Ω , for all trajectories in our study is given in Fig. 11, show-
ing that Ω ranges from 0.5 to 2.5 Hz, with an average of 
1.23 Hz and standard deviation of 0.36 Hz. As rotation speed 
directly influences the helical trajectory, a lower rotation 
speed would result in straighter trajectories, as observed in 
our experimental data. Furthermore, the spread of angular 

Ω(t) =
V(t)√

P(t)2 + R(t)2
.

Fig. 11  The distribution of time-averaged angular velocity, Ω , for all 
of the trajectories
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velocities indicates that not all cells rotate at the same speed 
but experience different rotation velocities. This could be 
due to the differences in force asymmetries that each algal 
cell experiences. Angular velocity in our experiments is 
slightly lower than the previously measured rotation speed 
from Rüffer and Nultsch (1985). The C. reinhardtii strain 
used in their study differed from ours, which could explain 
the difference in the values.

The motility of C. reinhardtii cells has been shown to 
exhibit a certain level of stochasticity, which varies with 
environmental conditions (Polin et al 2009; Kurtuldu et al 
2013). The asynchronous flagellar beating pattern causes 
stochastic sharp turns during the cell’s motion and is respon-
sible for a run-and-tumble random walk (Polin et al 2009), 
which leads to a diffusive behavior on longer time scales. We 
computed the reorientation time �P and persistence length LP 
of the cell’s motion using our extensive trajectory data set to 
characterize this behavior. The reorientation time �P charac-
terizes the time scale at which the cell changes direction, and 
the persistence length LP , which is directly deduced from �P , 
characterizes the length scale over which the cell’s swim-
ming direction remains correlated. In polymer physics, the 
persistence length is commonly used to measure the chain’s 
rigidity or flexibility, quantifying the distance over which 
the orientation of the bonds persists  (Zhang et al 2019). 
Here, we use LP as a measure of how far the cell moves 
before it deviates from a straight path and loses memory 
of its initial swimming direction. We thereby characterize 
how the swimming direction evolves with distance traveled, 
ultimately diverging from the initial direction beyond this 
characteristic length scale. Additionally, we calculated the 
translational and rotational diffusion coefficients to further 
describe the diffusive behavior of the cell motion.

To calculate the reorientation time, �P , we derive an 
expression for the mean squared displacement (MSD) of 
a cell, assuming the correlation function of the swimming 
direction decays exponentially with a characteristic time-
scale, �P . This timescale marks the crossover from ballistic 
to diffusive regimes. In the ballistic regime, applicable at 
short timescales where t ≪ 𝜏P , the MSD scales as Δt2 . Con-
versely, at longer timescales where t ≫ 𝜏P , the motion is 
diffusive, and the MSD scales linearly with Δt.

The MSD is expressed by the equation:

Here, ⟨V2⟩ is the mean squared velocity of the cell. A 
detailed description of our model is provided in online 
resource S1. We compute the MSD for all trajectories in 
our experiments as MSD(Δt) = ⟨�X(Δt + t

◦
) − X(t

◦
)�⟩ , and 

�p is determined by fitting Eq. 7 to our data as illustrated in 

(7)MSD(Δt) = 2⟨V2⟩Δt�p
�
1 −

�p

Δt

�
1 − e

−
Δt

�P

��
.

Fig. 12. Following this, we computed the persistence length 
and translational and rotational diffusion coefficients as:

Table 2 presents the diffusion parameters investigated 
in this study. Our findings regarding these parameters are 
consistent with previous research, indicating the reliability 
of our measurements. The observed average persistence 
length of approximately 729 � m suggests that C. reinhardtii 
cells move along relatively straight paths. Furthermore, our 
study emphasizes the importance of considering dimensions 
when making measurements, as evidenced by the contrast-
ing translational diffusion coefficients obtained from 2D and 
3D studies. Specifically, our measurement yielded a trans-
lational diffusion coefficient of 3.77 × 104 � m 2/s, which is 
higher than the 5.56 × 103 � m 2 /s reported in a 2D measure-
ment by Barry et al. (2015). However, our translational dif-
fusion coefficient closely aligns with the value reported in a 
3D study conducted by Polin et al (2009).

7.3  C. reinhardtii’s phototactic response

Phototaxis, or the movement of an organism in response 
to light, is a well-documented behavior in many micro-
organisms  (Foster and Smyth 1980; Foster et  al 1984). 
C. reinhardtii is known to display phototaxis under light 

LP =

√⟨V2⟩�P, DT =

L2
P

3�P
, and DR =

1

2�P
.

Fig. 12  Mean square displacement (MSD) for C.   reinhardtii three-
dimensional trajectories as a function of Δt . The solid red line shows 
the fit of Eq. 7 used to determine reorientation time ( �P)
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wavelengths ranging from 420-500 nm (Crescitelli et al 
1992). Using our experimental setup, we conducted explora-
tory analyses on the phototactic response of C. reinhardtii to 
two different wavelengths: 650 nm (red) and 500 nm (green) 
laser light for cell concentration of 5 × 104 cells/ml.

In our experimental design, the light source’s position-
ing ensured the incoming light rays aligned along the nega-
tive z-axis (Fig. 1b). We calculated the algae cells’ orien-
tation angle �

�
 using �

�
= cos−1

�
−Vz(t)∕‖V(t)‖

�
 , where 

V(t) = (Vx(t),Vy(t),Vz(t)) is the instantaneous velocity vector 
and −Vz(t) is negative of the Z-component of the velocity 
vector, accounting for the negative Z-axis alignment of the 
light rays.

Figure 13 presents the distribution of �
�
 for all of the 

algae cells for all the time steps for both red (650 nm) and 
green (500 nm) light wavelengths. There is a marked con-
trast in the distribution between red and green cases. Under 
red illumination, the orientation distribution peaks at �

�
 = 

�∕2 , suggesting the cells swim without any specific direction 
preference. This orientation matches the expected distribu-
tion for an isotropic system, as indicated by the solid blue 
lines. Under green light however, the algae swim predomi-
nantly parallel or opposite to the light direction as shown 
by peaks around �

�
 = 0 and �

�
 = � . These findings are in 

agreement with previous research on the phototaxis of C. 
reinhardtii, which demonstrated that C. reinhardtii cells 

show no preferred direction at longer wavelengths, while 
at shorter wavelengths, they exhibit a preferred direction 
either toward or away from the light (Schaller et al 1997; 
Foster et al 1984).

8  Conclusion

This paper presents a three-dimensional tracking setup and 
algorithm that accurately and reliably tracks the motion of 
microswimmers, specifically the unicellular green alga C. 
reinhardtii. Our system represents a significant advance-
ment over previous microswimmers tracking methods, 
achieving reliable tracking even at higher particle source 
density of 0.32 compared to single-camera microscopy 
approaches. Our algorithm generates long trajectories with 
low reprojection error, enabling detailed analysis of trajec-
tory kinematics.

Analysis of our tracking data reveals that C. reinhardtii 
cells exhibit helical swimming patterns with varying radii 
and pitch, as illustrated in Fig. 9. Most cells swim in elon-
gated helices with larger pitch and shorter radii. Addition-
ally, we find that approximately 70% of the algae swim with 
left-handed chirality, consistent with previous studies. We 
also determine the helical angular velocity, with an aver-
age value of 1.23 ± 0.36 Hz. Lower rotation speeds result 
in more linear trajectories, and variations in rotation speeds 
among cells suggest individual differences in flagellar force 
asymmetries.

We characterize the diffusive behavior of C. reinhardtii 
cells by calculating parameters such as reorientation time, 
persistence length, translational diffusion coefficients, and 
rotational diffusion coefficients. Our investigation of diffu-
sion parameters reaffirms the consistency of our measure-
ments with previous research. Importantly, we highlight the 
significance of considering dimensions when quantifying 
diffusion. Specifically, our 3D measurement yields a trans-
lational diffusion coefficient one order of magnitude higher 
than that previously reported in 2D measurements by Barry 
et al (2015). These findings underscore the necessity of 
accounting for the three-dimensional nature of cell motion, 

Table 2  Diffusive characteristics of C. reinhardtii cells swimming in Tris medium at 5 × 10
4 cells/ml concentration

Parameter Present work Previous studies

Re-orientation time ( �
P
 ) [s] 4.7 11.2 (Polin et al 2009), 10.8 (Liu et al 2020)

Persistence length ( L
P
 ) [ �m] 729 -

Translational diffusion coefficient ( D
T
 ) [ �m2/s] 3.77 × 104 4.7 × 104 (Polin et al 2009), 

5.56 × 103 (Barry et al 2015)
Rotational diffusion coefficient ( D

R
 ) [ rad2/s] 0.106 0.15 (Barry et al 2015; Drescher et al 2011)

Fig. 13  Comparison of the distributions of algae cell orientation 
relative to light direction under (a) red and (b) green wavelengths. 
The solid blue line represents the theoretical distribution, given by 
sin(�

�
)∕2 , for a particle moving randomly in three dimensions



 Experiments in Fluids           (2025) 66:81    81  Page 16 of 18

as relying solely on a 2D approach may limit our understand-
ing of cell diffusion behavior.

Finally, we characterized the phototactic response of C. 
reinhardtii cells using two different light sources at wave-
lengths of 500 nm and 650 nm. Our results showed that in 
red light (650 nm), the cells swim with no preferred direc-
tion, while in shorter-wavelength green light (500 nm), they 
displayed both positive and negative phototaxis.

Overall, the results of our study demonstrate the effective-
ness and versatility of our tracking setup as a powerful tool 
for investigating the motile behavior of microorganisms with 
high accuracy. While our system offers significant advan-
tages, it also comes with certain limitations. The require-
ment for multiple cameras and a shared high-quality main 
objective adds complexity and cost, making it less accessible 
compared to other techniques like DPT or HPT. Future work 
could focus on simplifying the system without compromis-
ing tracking accuracy, for example, by exploring alterna-
tive optical configurations or computational approaches that 
reduce the number of required cameras. Despite these chal-
lenges, our system provides a robust platform for studying 
the influence of environmental factors, such as light, gravity, 
and nutrient availability, on the motility of various microor-
ganisms. These investigations hold significant implications 
for microbiology, ecology, and biotechnology.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00348- 025- 04002-3.
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