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Abstract

In this paper we will naturally extend the concept of Fourier analysis to functions on arbitrary
groups. We will generalise the idea of a convolution and try to find a formula for Fourier
coefficients in such way that the coefficients of the convolution can easily be calculated.

In the first section we will start off in familiar territory as we work our way through the
Abelian groups. On the cyclic groups the comparison with the torus and the Fourier series is
easily made and this enables us to easily copy the functions from the Fourier series and use
them on our group. We then expand this idea by comparing the other groups to Fourier series
on multiple variables. Here we can again copy the functions over and after some calculations we
end up with our desired theorems.

Then we will continue working on groups in general but sadly for the non-Abelian groups
the idea of comparing it to the Fourier series does not work. To remedy this problem we will
introduce representations, homomorphisms between the group and invertible matrices. After
introducing the concept of a representation we will show some remarkable theorems from Rep-
resentation theory, such as Maschke’s theorem and Schur’s lemma. With the help of these
theorems we can find the irreducible representations, whose matrix entries from an orthogonal
basis. These representations are what we will use to transform the convolution into matrix
multiplication.

In the last chapter we will go into more specifics on the representations of the symmetric
group. The representations on this group can be found with the help of the Young tableaux.
Among these tableaux we will find the Specht Modules, on which the group action of .S,, action
will give rise to the irreducible representations. To conclude we will show how to turn these
irreducible representations of the symmetric group into matrices.
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1 Introduction

The trick of decomposing a function into a sum of more manageable functions has existed for a
long while. During his analysis of the heat equation, Joseph Fourier claimed that all periodic
functions could be made out of sines and cosines. Although this statement is not true (take for
instance the indictator function of Q), it was eventually shown to be true for Holder continuous
functions. Ever since then mathematicians have been working on generalising and expanding on
this idea under the name of harmonic analysis. The intention of this paper is to give the reader
an overview of how to generalise the idea of the Fourier series to functions on arbitrary finite
groups and to work out these functions for the symmetric group.

2 Abelian groups

We start by looking at the Abelian groups. These are groups are quite closely related to the
torus and the real line. They also are a lot easier to deal with in most cases, making it an
excellent starting point for our exploration into Fourier analysis on groups. But before we start
we should quickly go over what we actually mean by Fourier analysis.

2.1 Fourier series

We'll start by first defining what exactly we are trying to find and prove for the functions of
the group by stating some important theorems about Fourier series. When working on L?(T)
with the inner product (f,g) = fT r) dz the functions ¢,(z) = ¢ form a complete
orthonormal basis which have the followmg addltlonal properties:

e The Fourier coefficients can be calculated using the following formula f fT e dy
e The convolution, which is defined in the following way (f * g)(z) = 5- fT x —t)g(t)dt,

has easy to calculate Fourier coefficients namely (f * g)(n) = f(n) - §(n)

We will try and generalise this idea to the functions on our group. Most of the work sur-
rounding Fourier series is about the convergence of the series to the function. This won’t play
a big roll when looking at our groups, since they will be finite. In general we will denote the
set of functions with complex values on a group G as L(G). We will define the inner product
on this group analogous to the one on L?(T) by replacing our integral with the mean over the
entire group. This gives us for f, g € L(Q)

(£.9) |G|Zf h)g(h).

heG

With the same idea in mind we can also define the convolution on these functions as

‘G|kazl

leG

(f*g)(k

Throughout this chapter we will stick to writing the group operator as addition but in
chapter 3 we will switch to the more general case and start working with multiplicative notation
for groups.



2.2 The cyclic group

The cyclic group, denoted by C,,, is in many ways very similar to the one dimensional torus, T.
The cyclic group is even isomorphic to a subgroup of the Torus, namely the evenly spaced out
points {0, 27”, %, SRR %} With this in mind, we can simply restrict ¢,,(z) to our subgroup

and check if this already satisfies our needs.

Theorem 2.1. The set {¢o(z), $1(2), - , pn—1(z)} restricted to C), forms an orthonormal basis
for L(Cy).

Proof. First we check to see that the functions indeed are of unit length,

) 1 n—1 ZMJZTJ] 1 n—1 Z‘M]‘ _Z'Mj 1 n—1
1651, = (05(2),65(a)) = = 37 e RTHT = 2 37 e =~ Sy =1,
k=0 k=0 k=0

Now we need to check if the functions are independent. Let j # [

1°) ok o 122 2rk 1 1— et G-
j :—E iZ’jizl:—g ilj—ill:fE ZEG-) 27 T T
<¢J (x)7 ¢l(x)> " kzoe ’ n k=0 ‘ ‘ n k:06 1-— ei%(j_l)

In the last step we use that our sum is a partial geometric series and the fact j —1 is not divisible
by n. It should be noted that this step would not work if (j — 1) would be a multiple of n. Since
the size of the basis corresponds to the dimension L(C,,), it follows that the functions are indeed
an orthonormal basis of L(C},) O

Remark. It should be noted that we did not need all the ¢,, for our basis. The reason for this
is that they coincide with other functions already in our basis. For example when restricting
¢n+1 to our subgroup we find that ¢p+1 = @1.

Now that we have shown that {¢o(x),p1(z), -+, dn_1(z)} form an orthonormal basis, it
becomes clear on how we should define the formula for the Fourier coefficients. We take as
the formula for the Fourier coefficients the inner product between the function and ¢,,. So the
formula becomes

r 1 el 1 nol - 27k
f(m) = <f7 ¢m> = E E f(k)qu(k) = E f(k‘)e_ZTm.
k=0 k=0

Theorem 2.2. For f,g € L(C,) the Fourier coefficients of the convolution are given by

o —

(f xg)(n) = f(n) - 4(n)



Proof.

/\ 1 n—1 ok
(Frg)m)=—> e (f g)(k)
k=0
182 o, 12
= S ST Sk~ D)
k=0 1=0
1 n—1n—1 -
=5 > e k= Dg()
k=0 =0
1 notnzl 2 (k—1) ol
LS e e
k=0 =0
1 n—1n—1 (ki) ol
=3 et ik = Dem ()
1=0 k=0
1 nd ol 1 nl o (k—1)
= S e S e (- )
=0 k=0
1 i 2ml
= S () fm)
1=0
= f(m)-g(m)
In the second to last line we used that on a sum over a finite group the translation does not
effect the sum. O

As we can see the restricted exponential functions did exactly what we had hoped for! Now
we continue our work into arbitrary Abelian groups.

2.3 Other Abelian groups

Now that we have seen how to work with the cyclic group, we can generalise our findings to
arbitrary Abelian groups. To do this we will need the fundamental theorem for Abelian groups.
This theorem has several different version but we will state it as follows.

Theorem 2.3 (The fundamental theorem of Abelian groups). Every Abelian group is isomor-
phic to the direct product of cyclic groups.

We will not proof this theorem since that would take too much space but most introductory
books on algebra will contain a proof of this theorem. !

So for now we can assume that we are working with a direct product of cyclic groups. Using
this information we can once again use the fact that cyclic groups look like one dimensional tori
and consequently their direct product, and also the original Abelian group, looks like a higher
dimensional torus. When working with Fourier analysis in n dimension we find the following
basis:

bm() = [[ e
j=1

Lthe reader for Algebra 1 AM1060 is one of these books



where m = (myq,--- ,m,,) stands for a vector of frequency in each variable and x = (z1,- -+, x,)
is the location on the torus. By once again restricting the functions to our direct product of
cyclic groups, we find that this basis is a product of the functions on Cj, and look like

H qu] xJ

To simplify our proofs we will first show that the inner product of L(G) on these functions
is nothing more than just the product of the inner product of the cyclic groups.

Lemma 2.4. For any Abelian group G = C, x C, X - - - x C}, the inner product of the function

¢n and ¢y, simplifies to
l

(60, dm)c = [ [(®nis dmi)e,

=1

Proof. We will prove this lemma by induction. As our base case take [ = 1. Because we use the
same inner product on both groups, this equality holds.

Now assume the equality holds for [ — 1, we will show that it also must hold for {.

<¢na ¢m = Z Cbn

heG

— H Z Z dn(c1, c2)dm(cr, c2)

i=1 ZC1ECk1 0260k2>< ><C’kl

1 — 1 -
= k— Z d)m (Cl)¢m1 (Cl) 1 Z ¢(n27... ’nl)(02)¢(m27... 7ml)(CQ)

1 Cleckl Hi:2 i 0260k2><~“><ckl

1 -
= kil Z d)nl (Cl)¢m1 (Cl)<¢(n2,--~,nl)v¢(m2,~~~,ml)>c’k2><--~><ckl

c1€CK,

1 l
=k Z Pn,y (€1)Pm, (c H Py Pmi)C

1 c1€CK, =2

l
H g By )C

By induction our lemma holds. O
With this lemma the question of orthogonality becomes a lot easier

Theorem 2.5. On the Abelian group G = Cj, x Cy, X -+ x Cy, the set {¢n : 0 < n; < k;}
restricted to G forms an orthonormal basis for L(G).

Proof. First we check to see that the functions indeed are of unit length.

l

l
||¢n||%(G) = <¢n’ ¢n> = H<¢nla¢nl>0kl — H 1=1.

i=1 i=1

Now we need to check if the functions are independent. Let n; # m; for some j, then



l l

<¢na ¢m>G = H<¢nw ¢mz>0kl = <¢7Lj7¢mj>0kj H <¢n17 ¢m1>0k2 =0.

1=1 i=1Ni#£j

In the second step we used theorem 2.1. Since the size of the basis corresponds with the
dimension of L(G), it follows that the function are indeed an orthonormal basis for L(G) O

Because the ¢,,’s form an orthonormal basis, we can again define our definition for the Fourier
coefficients using the inner product.

f@zﬁm#jaiﬁ@%@

geG

—

Theorem 2.6. The Fourier coefficients of the convolution are given by (f % ¢g)(n) = f(n) - §(n)

Proof.
JQ@:@Z%WNMM
keG
1 — 1
- %%(k)m ZGZ(:; flk=Dg(l)
=G 2 2 el = D)
keG leG
_ |G1‘2 SN Gnlk =D f(k = Dénl)g(l)
keG leG
ﬂézz%www4mwm
leG keG
= G SO alt) g S nlE =Dk =)
leG keG
= g 2 o a0) f(w)
leG

= f(n)-§(n)

In the second to last line we used that on a sum over a finite group the translation does not
effect the sum. O

It should be clear to the reader that the Fourier series on Abelian groups are clearly related
to the original idea of Fourier analysis and how the functions still correspond with the ones
in the continuous case. What is not immediately obvious, is how to continue from this point
into non-Abelian groups. They do not have the same resemblance to the torus as the Abelian
groups do. In the next section we shall generalise further using the idea of unitary irreducible
representations of a group, which behave similarly to the ¢, that we found in the Abelian case.



3 Representation theory

In this chapter we will go through the basics of representation theory and show some proofs for
several important theorems, like Maschke’s theorem and Schur’s lemma. After we have estab-
lished a good basis for representation theory, we will continue by showing that the irreducible
representations form the functions we are looking for to transform the convolution into matrix
multiplication.

3.1 Representations

One of the problems with groups is that they are inherently quite abstract in nature. Matrix
representations try to remedy this problem by transforming the elements of a group into invert-
ible matrices, which have been extensively studied in subjects like linear algebra.

Let GL,4 denote the group of invertible d x d matrices with complex matrix elements and
matrix multiplication as group operation.

Definition 3.1 (Matrix representation). Let G be a group. A matrix representation of G of
degree d is a homomorphism X : G — G Ly,

That is. a function X : G — GL,4 such that
X(e)=1
X(gh) = X(9)X(h)
forall g,h € G

There are loads of options for making representations. An easy one to start with would be
the trivial representations: its function corresponds with the trivial homomorphism from the
group to GL; = C* with multiplication.

Example 3.1. The trivial representation of a group G is the homomorphism that maps each
element to 1 € GL;. The identity element is clearly mapped to 1 and it follows that
X(g)X(h) = 1-1=1=X(gh)
and thus this is indeed a representation.

The functions ¢y, that we used in the last chapter for Abelian groups are all representations
too. Since filling the zero vector will just give you

27mi-0

H ¢nj - H "o=1
j=1

and for g, h € G it holds that

" 2mi-(g+h) " 2rig  2mich

én(g+h) = H¢njg+h) H " :Henjenj = ¢n(h) - Pn(9)-
J=1 J=1 J=1
Another obvious representation for groups that work on points, such as .S, or D,,, would be
the matrices that permute the entries of the vectors with n coordinates. This representations
on Sy, is called the defining representation and its function sends 7 € S, to the matrix A with
entries a; j = 0; r(j), where ¢ denotes the Kronecker delta. These matrices permute vectors in
such a way that z; = (Az) ().

10



Example 3.2. For clarity let’s write out the matrices for Ss.

100 010
X@e=[01 0 X((12)=[1 0 o
00 1 00 1

00 1 100
X((13)=[0 1 0 X((23)=(0 0 1
100 010

00 1 010
X((123)=(1 0 0 X((132)= (0 0 1
010 100

Now that we have seen some matrix representations, it is time to continue to representations
in general. Let V be a vector space, then the general linear group, GL(V), is the group of all
linear invertible transformations on V' with composition as group action.

Definition 3.2 (Representation). Let G be a group and V' be a vector space. A representation
of G on V is a homomorphism, p : G — GL(V). For the ease of notation we will usually simply
drop the p simply writing gv instead of p(g)v.

At first this definition can seem a bit much, but with the help of a basis for the vector space
V one can translate GL(V) back into matrices. After this transformation we have essentially
ended up again with a matrix representation.

An alternative method for defining representations is by letting a group act on a vector space
in a linear way.

Definition 3.3. Let V' be a vector space and let G act on V such that

gvevVv
g(ev +dw) = c(gv) + d(gw)
g(hv) = (gh)v
evV=v
forall gh € G;v,we V;e,deC

Essentially this definition requires that the actions are all linear and that the group operation
can be interchanged with composition. You could identify all the action of each element to a
linear operator and end up with a function between the group and the linear operators, which
satisfies the first definition.

This second definition also allows us to work with group actions on sets too. We can simply
expand a finite set S, on which (G already has an action, to a vector space. Simply let the elements
of S be the basis for the vector space. Then you will get a vector space CS of dimension |S|
which has elements that look like

V=cC-81+¢C-S+--+cCh-Sp
The action is already defined for the elements of the basis so this action naturally extends
to the vector space using linearity in the following way

gv=rc1-9g(s1) +ca-g(s2) +- -+ cn-g(sn)

11



Example 3.3. Take for example A = {1,2,3} and take as group Ss3, then we can make it into
a vector space and add them in the following way,

v=3-1+2
w=1+2
v+w=3-1424+14+2=4-14+2-2

Now the actions of S3 on this vector space work as follows

(13)v =3-(13)1+ (13)2=3-3+2=2+3-3

With this definition and using the individual elements as basis, we find the matrices from
example 3.2

One set that groups can act on is themselves using the group operator. When the group is
expanded into a vector space as before it is usually referred to as the group algebra C[G]. This
gives rise to a very important representation.

Definition 3.4 (The regular representation). Let G be a group. Then the regular representation
is defined by letting the group G act on the its own group algebra C[G].

Example 3.4. Take as example the group S35 = {¢, (12)}. To work out what p(g) looks like for
an element we check how it combines with the basis. Let’s work out p((12)).

So we find the matrix

Beside coming up with representations, it is also possible to make representations out of
existing representations. Take for example the direct product.

Definition 3.5 (Direct sum of two representations). Let p and p be representations of G on
vectors space V and W. Then the direct sum of V and W, V@ W, has a representation by
letting two representations work on their corresponding vector space. The matrices of this new

representation look as follows
( plg) | O ) .
0 | ulg)

This new representation is also usually denoted with p & u

In addition to combining representations, we can also rewrite our matrices in a more com-
prehensible form using a transformations.

Example 3.5. Let T be an invertible d X d matrix and X be a matrix representation of degree
d. Then T~ XT is also a representation since

T'X(OT =T"'I,T =1,
T 'X(gh)T =T 'X(¢)X ()T =T ' X (¢)T'TX (h)T

12



In a more abstract sense these functions are called isomorphisms between two representations
with the following definition

Definition 3.6 (Homomorphism). A function § : V' — W is called an homomorphism between
two representations p and p on V and W respectively, if it is a linear operation between V and
W and the following holds for all g € G and v € V

If in addition the function is bijective, it is called an isomorphism.

3.2 Reducibility

Now that we have seen some representations and how we combine them, one could wonder
if we could rewrite a representation as a direct product of smaller representations. Take for
example the regular representation of So from example 3.4, it turns out that all the matrices

share eigenvectors, namely
1 1
1/°\-1/["

Now if we rewrite the matrices using with the eigenvectors as basis we find the matrices:

po=(o ) a2 =(y 4)

As you might know Sy =2 (5, so it should not be a surprise that along the diagonal we find again
our functions ¢y and ¢; which are both representations themselves. A key part in the reduction
here is that there is a non-trivial (not the entire vector space or the subspace {0}) subspace that
is not affected by the operations of p(g). These kind of subspaces are called invariant.

Definition 3.7 (Invariant subspace). Let p be a representation of G on V', then W is called
an invariant subspace if it is a linear subspace of V' and for all ¢ € G and w € W it holds that
gw e W.

Definition 3.8 (Reducibility). A representation is called reducible if it has a non-trivial invariant
subspace and consequently all matrices can be rewritten to have the shape

(42

A representation that is not reducible is referred to as irreducible

Reducibility already gives us a clear indication that the representation contains other rep-
resentations but it does not explicitly give us the two representations that were combined. One
way to find invariant subspaces is through the use of the homomorphism 6 from earlier. This
is because homomorphisms preserve some sense of the structure so we can show that ker 6§ and
im 6 are invariant since {0} and the entire vector space are invariant subspaces.

Theorem 3.1. Let § be an homomorphism from the representation p on V to the representation
won W. Then ker § and im 6 are invariant subspaces.

13



Proof. Let v € ker6 then we have to show that for all g € G, p(g)v € ker@ or equivalently
0(p(g)v) = 0).

0(p(g)v) = u(g)f(v) = u(g)0 =0

Now for the image we take w € im# then we have to show that Vg € G, u(g)w € im6 or
that there exists a v € V such that 6(v) = u(g)w. Since w € im there exists a v' € V such that
6(v") = w. Now let take v = p(g)v’ which is still in V', then

This theoren also has a direct consequence on the homomorphisms between irreducible rep-
resentations.

Corollary 3.2 (Schur’s lemma). A homomorphism 6 between two irreducible representations
p and pon V and W is either an isomorphism or it maps all vectors to the zero vector

Proof. Because 6 is an homomorphism it follows that ker 6 is a invariant subspace on V. But
since p is irreducible it must follow that ker® = V or kerf = {0}. If V = ker# we end up
mapping all vectors to the zero vector

If ker = {0} we find that V' is isomorphic to im 6 because the kernel is just the zero vector.
Since p is irreducible it follows that im@ = W or im6 = {0}. This either means that V' = {0}
which again maps all vectors to the zero vector or V"= W in which case the homomorphism is
an isomorphism. ]

The structure of the matrices of a reducible representations

(042

already shows us some useful information. We can already see that the A(g) part of the
matrices already forms a representation but the C(g) gets muddied down when B(g) # 0. We
could solve this problem if the basis vectors outside of the invariant subspace were to also form
an invariant subspace. With some help of an inner product we can find these vectors.

Definition 3.9 (Invariant inner product). Let V' be an inner product space with a representation
of GG. The inner product is called invariant if for for all ¢ € G and u,v € V it holds that

(u,v) = (gu, gv).

Now with an invariant inner product we find that the orthogonal complement of the invariant
subspace also forms an invariant subspace and that the representation can be split into two.

Theorem 3.3. Let W be an invariant subspace of V' which has an invariant inner product,
then W is also an invariant subspace. Representations on V can be written as the direct sum
of two representations on W and W+.

Proof. Let v.€ W, then we have to show that for all ¢ € G, that gv € W=. Take any w € W
then

(gv,w) = (g7 "gv,g7'w) = (v,g"'w) = 0.

14



So gv € W and consequently W is an invariant subspace. Now take a representation on
V and take as basis the union of a basis for W and W+. We then find that the matrices of this

representation have the shape
( plg) | O )
0 | plg)

Because the subspaces are invariant we end up with two sections of zeroes and two square
quadrants p and p, which are representations on W and W+ ]

With this new insight we can prove Maschke’s theorem

Theorem 3.4 (Maschke’s Theorem). Let G be a group, then every representation of G on a
vector space V' can be written as the direct sum of irreducible representations.

Proof. In this proof we will use induction on the degree of the representation. For representations
of degree one we find that all the representations are irreducible and therefore the theorem holds
for this degree. Now assume that we know that the theorem holds for representations with degree
lesser than d and take a representation of degree d. If this representations is irreducible then
our theorem holds. If our representation is reducible, then we can find an invariant non-trivial
subspace W. Now we can take a basis for W and expand this basis to V and write it as
{b1,---,bq}. Now we impose an inner product on V. Take two vectors u = Z?Zl cib; and
V= 2?21 d;b; then their in product becomes

d
(u,v) = Z cid;.
i=1

This inner product is not necessarily invariant so we want new construct one that is. We
define our new inner product as follows

<u7 w> = Z<gu7 gw)‘

geG

This new product is invariant, since the action of h € G will only permute the elements of
the group withint the sum. Now we can apply theorem 3.3 and so we split our representation
in to the direct sum of two smaller representations, which by our assumption can be written as
a direct sum of irreducible representations. Consequently our representation is equivalent to a
sum of these two sums and thus by induction on the degree we have shown the theorem for all
representations. [

Maschke’s theorem indicates how important the irreducible representations are in represen-
tation theory. The proof also gives us a method for finding an inner product on the vector spaces
which makes our representations unitary. The benefit of having our representation in unitary
form is that finding inverse can be done quickly by taking the Hermitian adjoint, after finding
an orthonormal basis using the Gram-Schmidt process. However there is not a clear indication
on how we find this decomposition, because finding the invariant subspaces is hard. in the next
section we will find a method for determining whether a representation is irreducible and which
irreducible representations make up a reducible representation.

15



3.3 Character theory

The character of a representations is defined in the following way.

Definition 3.10 (Character). The character of the representation p is defined as a function
Xp : G — C and is calculated as follows

Xp(9) = Tr(p(9))

This function is surprisingly simple yet still very powerful. Since using the trace requires us
to write our representation in terms of matrices we should first check that this is well defined.
Suppose V' has two bases and write out the representation in one of them. Then in the other
basis the representation can be written as T !'pT where T is the transformation between the
two bases.

Te(T ' p(g)T) = Te(T~'Tp(g)) = Tr(p(g))

where we used that the matrices within the trace can be commuted. As a direct consequence
we also find that two isomorphic representations have the same character.

Since the characters are also functions on the group, we can reuse the inner product on L(G)
as follows

<Xp7 Xu Z Xp
e
geG

Since two isomorphic representations have the same character, we can use the fact that every
representation is isomorphic to a unitray representation.

Yot = Tr(u(9) = Tr(u(g)' ) = Te(u(g)") = Te(ulg) ™) = Tr(p(g ™)) = xulg™)

Where the dagger denotes the Hermitian adjoint. Now we can rewrite the inner product to

1
<Xanu ‘G’ ZXp Xu .
geG

Now that we have all the definitions out of the way we will show some important results for
the character functions.

Theorem 3.5. Let p and u be representations with degree d, and d,,, then the following holds
1. x,(€) =d,
2. if g, h € G are conjugates, then x,(g) = x,(h)

3. p @ p has the character v = x, + xu

S

. if p and p are irreducible, then (x,, Xu) = dp,u
Proof. 1. x,(€) = Tr(p(e)) = Tr(1y,) = d,

2. There is a k € G such that g = k~'hk. It follows that

Xp(9) = Tr(p(g)) = Tr(p(k™'hk)) = Tr(p(k~")p(h)p(k)) = Tr(p(k) ™" p(k)p(h)) = X, (h)
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3. ¥(g) = Tr(p(g) © u(9)) = p(9)11 + -+ p(9)d,.d, + (911 + -+ 1(9)du.d, = Xp + Xu

4. To aid us in our proof we will construct some homomorphisms between these two repre-

sentations as follows
= G, > pl9)Xulg™)
geG

Here X can be any matrix of shape d, x d,. For this to qualify as a homomorphism it
must hold that p(g)T = Tu(g), for all g € G or alternatively p(g9)Tu(g~!) = T, for all
g€ qG.

p(9)Tp(g™") = p(g)‘a(z p(R)X p(h™ ")) (g™
heG
‘G, % p(hMulg™)
=@ }; plgh) X u((gh) ™)

=T

So we have indeed made a whole collection of homomorphisms. From corollary 3.2 we
know that either our homomorphism is a zero matrix or an invertible matrix.

Let’s assume the two representations are not isomorphic, then 7" must be a zero matrix.
If we zoom in on one entry of T" we find that

dy dy

0y ZZZP DikXiat(g™ )i =0

gEGk 11=1

By just setting only X} ; to one it follows that for all 7, j, k,1

\G]Z 9iwkilg™ ;=0

geG

Now it turns out the inner product can be written as

(Xanu |G’ ZXp Xu 1

geG
= S (o)) Tr(u(g ™)
G| =
) d, dy,
== > pl@kk Y (g
| ’ g€G k=1 =1
dy
=> ) @l > p(@rwnlg™
k=1 1=1 7 geq
—0
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To simplify our proof we will look at the inner product of the character of an irreducible
representation with itself since two representations have the same character anyway if
they are isomorphic. We will first narrow down the possibilities for T'. Since both c¢l; with
c € C and T commute with our representation, their difference must also commute with
the representation.

p(9)(T — clq) = p(g)T — p(g)cly = Tp(g) — clap(g) = (T — cla)p(g)

Now if we take ¢ to be an eigenvalue of T' we find that T — ¢l is not invertible and can’t
be an isomorphism. By corollary 3.2 T' — clI; has to be a zero matrix, and consequently
T = cly. From the trace we find that

1 1 1
= —ed =T d @ ZTr )= STe(X)

Now the entries on the diagonal are

d d d
XK= =) (1;, S (g)is Xeplg i

Since this holds for any choice X it follows that the coefficients in front of the entries of
X on both sides must be equal

1
’G’ Z Zk?p 1 l,j = gak),lél,]

geG

Now we rewrite the inner product and find

1
<Xp7Xp ’G| Z Xp Xp

O

This theorem together with Maschke’s theorem has some strong implications on the decom-
position of representations.
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Corollary 3.6. Let p be a representation of degree d and it can be written as

k
p(g) = P mir'
i=1
where p; are non-isomorphic irreducible representations. then the following holds

k
L xp(9) =22y M X pi

2. <Xanpi> =my

©w

k
(Xps Xp) = izt mz2

e~

(Xps Xp) = 1 implies that p is irreducible
5. Two representations p and p are isomorphic if and only if there characters coincide
Proof. 1. This follows directly from induction on the third part of theorem 3.5.

2. This is a consequence of the linearity of the inner product, the orthoongality of the char-
acters and the previous statement.

3. This is a consequence of the linearity of the inner product and the previous statement.

4. Assume (X,,X,) = 1. From our previous statement we can deduce that Zle m? = 1.
Since m; are natural numbers it follows that there is one j such that, m; = 1. Thus p is
made up of a single irreducible representations and thus is itself irreducible.

5. The left implication has already been shown in the beginning of this section. For the right
implication we start by applying Maschke’s theorem to p and finding the irreducible rep-
resentations. Since the character of y is identical, it follows the inner product of x, with
the irreducible representations of p is equal to that of x,ho with the irreducible represen-
tations. This means that y is isomorphic to the same sum of irreducible representation as
p. Since being isomorphic is transitive it follows that p and p are isomorphic.

O

What we have seen from these theorems is that the character of a representation is a very
useful tool in representation theory.

3.4 The regular representation

The regular representation, that we defined in definition 3.4, is one of the more special repre-
sentations since it is very closely linked to the functions on the group. It also has an important
function within representation theory since it codifies the entire group bijectively into matrices.
Let’s take a closer look at the character of the regular representation.

Since the regular representation of G is essentially a collection of matrices that permute the
basis vectors it follows that then entries on the diagonal of X(g) are one if the basis vector
remains the same, which would mean gh = h, and otherwise are zero. So the character of this
representation is the equal to the number of stable points. But since gh = h would imply g = ¢,
it must follow that the regular representation has the character

x(9) = {’GL o=

0, else
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This unique character has some remarkable consequence when applying corollary 3.6 namely
that for each irreducible representation p

1
Oexe) = i Z X(9)Xpi (9) ) = /Gl = d
geG

This also leads to the immediate consequence that there are is a finite number of irreducible
representations up to isomorphism and that |G| = Zdii. With this new information we can
prove that the matrix entries of the irreducible representations form an orthonormal basis for
the functions on the group G.

Theorem 3.7. The set of functions ¢, ;= /d pz,l, where p’ is a unitary irreducible repre-
sentations of G, from an orthonormal basis on L(G)

Proof. Most of the work we have already done in the proof of theorem 3.5! Namely we already
showed that

1
<pkla zkp m,n zk:p 1 nm = 75i,j5k,m5l,m
=@ =l =@ =l 7

geG geG

which already gives an orthogonal set. The only thing left to do is make sure that they have unit
length. We can multiply our functions by ,/d,; and we then find that our set is orthonormal.
Because the set is orthonormal and has the size Zdii = |G| it is an orthonormal basis for
L(G) O

Using some more tricks we can also show that the characters of the irreducible representations
form an orthonormal basis for class functions, which are functions such that they are constant
on the conjugacy classes.

Corollary 3.8. The set of characters of the irreducible representations form an orthonormal
basis for the class functions.

Proof. We have already shown that the characters of irreducible representations form an or-
thonormal set. To show it is also a basis we need to show that any class function can be
decomposed into a linear combination of these characters. Let f be a class function on the
group G. Since f € L(G), it can be written as f(g) = >_ ciki®,i (). Because f is a class
function it is not affected by conjugation so

f(9) > f(hgh™) chzmpmhgh Y
|G‘h€G herkl
1
= > _Jdyici i ka(hgh™!
; Ckl’G| dpi%,k,z(g )
ZP hgh™!

= Z \/>Czkl
=2 \/701 e ,G, (' (h)p'(9)p" (W)

i,k,l
i,k,l hGG
The last sum should again look familiar as

e Z

geG
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with in this case X = p(g) from the proof of theorem 3.5. There we found the formula

1
=85

for isomorphic representations. Filling in these formulae then we find

Z\/>Czkl(5kl TI‘ Z \/—Czkap

i,k,l

T, Tr(X)

7j

So we can write any class function as a linear combination of the characters of the irreducible
representations and thus the characters form a orthonormal basis for the class functions. O

3.5 The Fourier transform

We have now seen that the matrix elements of the irreducible representations do form a basis
for our functions. Now with this information we can define the Fourier coefficients as follows

f(pi,]’ ) <f7¢)p,jk; ’G|Zf ¢p7]k

geG

There is also another definition in addition to this pretty standard formula. Since our func-
tions ¢ directly come from the irreducible representations we could define the Fourier coefficients
as a matrix for each representation,

=g ST

geG

When explicitly written out we just find that this matrix Fourier coefficient contains all
“normal” coefficients with the coordinates the other way around.

A Fo' k. 5)

1
NGE

The inversion formula for the matrix coefficients uses some tricky notation, but we find again
that is just the sum over all the functions.

Theorem 3.9 (Fourier inversion formula). Let f € L(G) then we find that
= Tr(f(p")d,p'(9))

Proof. We will simply write out the trace to find

dy d d; d
Z Tr(f(p')d,ip'(9) =D D> \/C;f(Pi)k,l @Pi(g)z,k =333 (' LRk = flg). O

i k=11=1 i k=1 Il=1
These Fourier matrix coefficients allow us to rewrite the convolution into matrix multiplica-

tion

Theorem 3.10. The matrix Fourier coefficients of the convolution (f*g)(z) = ﬁ Shea f(@h™g(h)
can be written as

f+g(p') = g(p")E(p")



Proof.

Fra(r) = g U )@ @)

xelG
= LS L ST ran )i (2)!
|GuezchheZGf( hY)g(h)p' ()
- é, 3 |(1;| S F@)g(h)p (a'h)
z'eG heG
_ i Z! i ) t 7 z' T
‘G,;e:ef( )(|G‘};g<h>p(h>>p( )
— &(p) (,; 3 f(z’)pi(fﬂ’)T>
' eG
= g(p)E(p") O

4 The Symmetric Group

We have seen that finding the irreducible representations for a non-Abelian group can be very
hard but in the case of the symmetric group we are in luck. For the symmetric group there exists
a method for finding an irreducible representations for each conjugacy class. In this chapter we
will show how to find the representations and how to write them out in terms of matrices if
needed.

4.1 S, Young tableaux and partial orders

Before we start with the construction of the irreducible representations, we first need to establish
the vector space that we are going to work on and some of its properties. In addition to this,
we also will discuss some other concepts that are needed for proofs along the way.

Let’s find out how many irreducible representations we are looking for by finding the conju-
gacy classes of S,,. Recall that two elements g and h are in the same conjugacy class if there is
an element k£ such that:

kgk™! = h.
In the case of the symmetric group we find that the conjugacy classes are based on the cycles.
To show that this is indeed true, we will first show that conjugation does not affect the cycles
of the g. Take an element g = (1,3, -- ,illl) oo (@' - L4 ). To see how the conjugate
behaves we let it act on k(il).
kgk ™ (k(i1)) = kg(i1) = k(ia).

After doing this for some more points, it should become clear that

kgk_l = (k(l%%k(lé)v e 7k(ll11)) T (k(ZT)’k(Zgn)v T ’k(ll:nn))a

which has the same cycles as g. With this insight it should also be apparent how one finds a k
for two arbitrary permutations with the same cycles.
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Since the sum of the length of the cycles is always n, we can characterise the conjugacy
classes with partitions of n. A partition of n, usually denoted by A F n, is a decreasing vector
of natural numbers, which sum up to n. Take for example the conjugacy class of (134)(26) € Sg
since it has a cycle of length 3, 2 and 1, its conjugacy class has corresponds to the partition
A= (3,2,1).

Another important concept on the symmetric group is the sign of a permutation. The sign
of permutation o with partition (Aq,--- , Ax) is defined as

Sgn(a) = (—1)22:1()‘2'*1)'

It turns out that this function is also a representation of degree one and therefore a unitary
irreducible representation.

Sometimes we only want to have permutations, which only work on a subset of our num-
bers. This subgroups is usually denoted by S4. Take for example A = {1,3,5}, then S4 =

{6,(1,3),(1,5)(3,5)(1,3,5),(1,5,3)}.

The vector spaces we will be working on are based on Young tableau. A Young tableau looks
as follows

Definition 4.1 (Young tableau). Let A F n be a partition, then a Young tableaux with shape
A is a table with rows of length \; boxes, which is filled with the numbers {1,--- ,n}

Here is an example with A = (3,3,2) :

7

A natural way for the permutations to act on these tableaux is by letting it work on the entries
of the tableau. This would give the following.

@25)(13) 218 3] =
1 2

7

There are two special sets of permutations related to a tableau, namely the column stabilizers
and row stabilizers. These are permutations that permute the specific entries of a tableau within
a row/column. For a tableau ¢ they are written as R; and Cj.

Example 4.1. Take the tableau

t =

2

Then we find as stabilizers Ry = Sp;3p X Spa4y = {6, (13),(24), (13)(24)} and C; = Sy 9y ¥
Sisar = {6 (12),(34), (12)(34)}

Based on these sets we can also define a row equivalence relation as follows

Definition 4.2 (Row equivalence on tableaux). Two tableaux ¢ and s with the same shape
are called row equivalent if they have the same row stabilizers. The equivalence class is usually
denoted by {t}
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Let’s take a look at an example of an equivalence class.

t =

1|s][3]1][1]3]]3
{t} =
2lal[2]al[4]2]]4]2

It should be noted that the curly brackets in the last equation carried two meanings. Around
the t represented that it was the equivalence class and on the right hand side of the equation it
represents the set. Luckily this is not a reoccurring problem, since we don’t usually write out
the set.

The definition for column equivalence is very similar. To avoid confusing the two we will
write the column equivalence classes with square brackets [t].

We can transfer the action from the tableaux to the equivalence classes. This would mean
that

m{t} := {nt}
Now that we have a set with an action, we can generalise the set of tableaux of shape A up

to equivalence classes to a vector space in the same we did in example 3.3. This vector space is
called the permutation representation corresponding to the partition A and is denoted by M?.

In some of the examples it is convenient to write down the row equivalence classes as a
tableau In these cases we will write the tableau with only horizontal lines. For example

13 1(3)|13|1]|1|3]|3

2 4 ol al[21al[a]2[4]2

The stablizer sets also have some nice properties.
Theorem 4.1. Let ¢ be a tableau and o a permutation then
1. Coy =07 1Cio = {07 tno : m € Cy}
2. Ryt =0 'Ryo = {07 'm0 : 7 € Ry}
Proof. With some set theory we can show that
7 € Cpy & w{ot} = {0t} & no{t} = o{t} & o 'no{t} = {t} & o lno{t} € C;.
This reasoning also holds for the row stabilizers O

In some later proofs we will also need more of a structure on the partitions. In this case we
will establish a partial ordering on the partition. A set with a partial ordering is usually referred
to as a poset and has the following properties.

Definition 4.3. A poset is a set S with a partial order (>) such that for all a,b,c € S.

a>a
a>bANb>a=a=05b
a>bANb>c=a>c

We also use a > b to denote a > b A a #b.
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In case of the partitions we define the order as A > i when for all i € N

i i
PIEVED Sy
k=1 k=1
We extend our partition with zeroes if there are no more entries.

Example 4.2. (3,2,1) > (2,2,1,1) since for the partial, 3 > 2 .5 >4, 6 > 5 and 6 > 6, the
condition holds.

Important to notice is that this relation does not always give an indication which is the greater
of the two. Take as an example (3,3) and (4, 1,1) both at some point have a larger partial sum.
Another way to show that there is an order relation is with the dominance theorem.

Theorem 4.2 (Dominance in partitions). Let ¢ and s be tableaux of shape A and u respectively.
If for each row of s all elements are in different columns of ¢, then A > p.

Proof. We can sort the elements in the columns of ¢ in the order in which row they appear in
s. This would mean that the set of the elements of the first row of s is a subset of the elements
in the first row of ¢, because they are all in different columns and after the sorting they should
be on top. This can even be generalised to the set of the first ¢ rows of s since it is not possible
with our current sorted t for an element of s to be lower than ¢ in the column of ¢ since that
would imply that a column contains two elements from a row of s. Since the number of elements
in the first ¢ corresponds to the partial sum of ¢, we find that

i
Z Ar = the number of elements in the first 7 rows of ¢
k=1

> the number of elements in the first 7 rows of s
i

S .
k=1

This proof is quite abstract so I will also give an example. Take the tableaux

51316 4

t= and s =

’[\3|CTA L | =

We can see that s and ¢ fit the requirements of our theorem. So now we will sort the elements
in the columns of ¢. Since 1 comes in a lower row than 5 in s we need to switch them. Same
goes for 4 and 6. We find the following new tableau

1
5121|6

This new tableau has the first ¢ rows of s in its first ¢ rows. So now we can transfer this to
partial sums and find A > p

Posets also have natural definition for the concept of a maximum or largest element. But
since not all pairs elements need have a larger element we also define an additional concept.
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Definition 4.4. An element of a poset is called maximum if it is larger than all other elements.
An element is called maximal if there are no elements that are larger than it. It is possible for
a poset to have multiple maximal elements.

In our case it turns out that the partition (n) is the maximum of the partitions of n.

4.2 Specht modules

The Specht modules are the irreducible representations of S,, we are looking for. They are
denoted by S* and they are subspaces of their corresponding M?. In this section we will prove
that they indeed are all irreducible representations of the symmetric group. Afterwards we will
find a basis for the Specht modules allowing us to calculate the matrices.

Specht modules are formed by so called polytabloids. Polytabloids are vectors in M?* and
are made as follows from a tableau t

e = Z sgn(o)o{t}

oeCly

Example 4.3. Take the tableau

t =

2

We already found the set of stabilizers earlier as {e, (12), (34), (12)(34)}. For the polytabloid we
find

1 3 1 3 1 3 1 3
_ _(19) —(24)
e =5y (12,2 1 (34,2 1 —l—(12)(34)2 1
13 23 14 24
T2 4 1 4 2 3 1 3

Because the polytabloids are defined using the stabilizers we can leverage some properties
from it.

Theorem 4.3. Let t be a tableau and ¢ be a permutation then
€t — O€t.

Proof. With some help of theorem 4.1 we find that

€t = Z sgn(m)m{ot} = Z sgn(omo VNoro lo{t} =0 Z sgn(m)n{t} = oe;. O

7€Cot weCly weCly

These polytabloids together form the Specht modules, which as it turns out turn the actions
of S, into an irreducible representation.

Definition 4.5 (Specht module). Let A be a partition, then S* C M? is the subspace spanned
by all the polytabloids e;, where ¢ is a tableau of shape A

Now we will first show that this subspace is invariant and irreducible.

Theorem 4.4. The Specht modules are invariant subspaces and the representation defined with
the action is irreducible.
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Proof. Since the Specht module is generated by the polytabloids, it suffices to show that the set
of polytabloids is invariant. This we have already shown in theorem 4.3, and consequently it
follows for all linear combinations of the polytabloids.

We will show that the Specht modules are irreducible by showing all invariant subspaces are
trivial. Take a tableau ¢ of shape A, then for another tableau s with shape A there is a m € C}
such that {s} = w{t}. It follows then

Z sgn(o)o{s} = Z sgn(o)om{t} = Z sgn(on o {t} = sgn(rV)e; = sgn(m)e;

ceCt oeCh oeCh

We see that with this method we can always construct a multiple of a polytabloid from any
tableau. Now assume that there is an invariant subspace V in the Specht module S*, then take
an element v € V' and express it as v = ) c(s3{s}. Since this subspace is invariant we find that

Z osgn(o)v = Z osgn(o) ZC{S}{S} = ZC{S} Z osgn(o){s} = Z:I:C{S}et,

ceCy oceCt oceCy

Where the + is determined by the sgn(m) we found in the last equation. This new sum must
also be in V, since V is invariant to the actions of S, and is closed under addition and scalar
multiplication. Now if there are v and ¢ such that ) +cggy # 0, then e is part of the subset
and because the subspace is invariant, me; = e, is also in the subspace V. This means that
SA C V and that V = S

In the case that ) +cy = 0 for all the vectors and tableaux, we can show with an inner

product that V C SM. We take the inner product such the set of row equivalence classes
forms an orthonormal basis. The inner product is invariant, since the actions of S,, permute the
equivalence classes. It follows for 7 € S,, that (u,mv) = (7~ 'u,v). Now we can show that V is

indeed orthogonal to our module. Take v € V' and a tableau ¢ with shape A

(u,er) = (u, Y sgn(o)o{t}) = (Y sgn(o)otu, {t}) = () sgn(o™"ou, {t}) = (0.{t}) =0

oeClt oeCl oeClt

Thus V C S* and consequently V' = {0}. Thus we have shown that every invariant
subspace has to be trivial and the Specht modules are irreducible. O

So we found that the Specht modules indeed are irreducible representations. Since we have
the same number of representations as partitions and therefore conjugacy classes, we only need
to show that they are not isomorphic to each other.

Theorem 4.5. The Specht modules are pairwise non-equivalent.

Proof. We will prove this theorem by contradiction. Assume that A and p are two different
partition and let 6 be an isomorphism between the two Specht modules. Then we will extend
this isomorphism to a homomorphism ¢’ from M* to M* by taking ¢'(v) = 0 for v € S " and
defining the rest in accordance with linearity. Then take tableaux ¢ and s with shape A and p.
Since our original 6 was an isomorphism ¢’(e+) # 0. Now we will rewrite the polytabloid using
the isomorphism
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0'(cr) = 6'( ) sgn(o)o{t}) = Y sgn(0)ad'({t})
oeCy o€eCy
From this and 6'(e;) # 0 we can deduce that there is a {s} such that >~ ., sgn(o)o{s} # 0.
Now this is only possible if for each two elements a and b in a row of s, are not in the same
column of ¢, because if this were the case then (a,b) would be in C; and since {e, (a,b)} forms
a subgroup of C}, it is possible to rewrite the transforming sum as

> sgn(o)o =(e—(a,b) >

oceCh w€Sn /{€,(a,b)}

These sums and brackets might look a little strange since we see them as group elements
but remember that we are treating them as operators in this case and this allows us to add and
subtract all we want. Since a and b are in the same row of s it follows that (a,b){s} = {s} and
thus > cc, sgn(0)os = 0. So we can conclude that each pair of two elements a and b in a row
of s, can not be in the same column of ¢t. By theorem 4.2 it follows that A > u. Now we can do
this entire proof again for p > A which would mean that ¢ = A. Thus it must be that all the
Specht modules are pairwise non-equivalent O

We now know that the Specht modules are indeed the sought after irreducible representations
of the symmetric group, but we still have no idea what this vector space looks like and what
kind of matrices these representations give rise to. To get a better idea let’s try to find a basis.

Definition 4.6 (standard tableaux). A tableau is called standard if both its columns and rows
are increasing. Its polytabloid is also called standard.

As it turns out the polytabloids of standard tableaux form the basis of the Specht module.
All the standard tableaux of shape A can be made with the following procedure. First write
down a tableau of shape (1). Then keep adding boxes with the next number, in such a way that
it remains a tableau and you do not exceed the lines of the shape.

Example 4.4. Let’s try finding the standard tableaux for the partition (2,2).
EINESEINESE]

3 3

But in step two we could have also chosen the other corner for the 2 giving us

—>—> 1 3‘—) 13
4

2 2

You could also write this down in a tree but this can quickly get out of hand with larger
groups. Now that we have seen how to find the basis let’s prove it is actually independent. To
aid us in the proof we will need to establish an partial order on the row equivalence classes.
The order will be based on how much a tableau looks like a standard tableau. We do this by
looking at the shape of the partial tableaux ¢;, which is simply the tableau with only the first ¢
elements.

Example 4.5. Lets write out the partial tableaux of this tableau,

2 4
1 3
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With these partials

- — —

13
And this gives the rise to the following sequence of shapes. (0,1) — (1,1) — (1,2) — (2,2)

2 2 2 4
o E

Definition 4.7 (Partial order on row equivalence classes). {s} > {t} if for all shapes of the
partial tableaux it holds that s; > ¢;.

It should be clear that having lower numbers in the lower rows will get you get you higher
on the order. Or more concretely put.

Lemma 4.6. Take a tableau ¢t and let k¥ < [ be natural numbers such that k is in a higher row
than [. then

(kD)t >t

Proof. The shapes A and p of (kl)t and ¢ up until k£ and after [ remain the same so we only
need to look at the cases in between. In these cases the entry for the row of [ is increased by
one and the row of k is decreased by one. Since the row of [ is early it follows that \; &> p; and
consequently (kl)t > t. O

Now with this order we can make some arguments on the linear Independence of the set of
polytabloids.

Theorem 4.7. The set of polytabloids of the standard row equivalence classes is linearly inde-
pendent

Proof. From lemma 4.6 we can tell that a standard tableau is the maximum within its own
polytabloid. Now within the set of standard tableaux we can find an tableau s such that it is
maximal. In this proof we will show Independence by showing that the only linear combination
for the zero vector is setting all coefficients to zero.

Take an arbitrary linear combination, which leads to the zero vector. For it to add up to
the zero vector the coefficient in front of s would need to be zero because no other standard
polytabloid contains {s} because that would mean that {¢} > {s}, which violates are assumption
that s is maximal.

We can repeat this logic until we have determined that all the coefficients would have to be
zero and thus the only linear combination for the zero vector is all zeroes. Thus the set must be
independent. ]

The only thing left to show that the span of this set is also the entire Specht module. We will
use something call the straightening algorithm. This algorithm takes a polytabloid and returns
it as a sum of polytabloids which have a higher order in the column equivalence classes. For
this algorithm to work we will first need Garnir elements.

Definition 4.8 (Garnir elements). Let A B be two finite disjoint sets of natural numbers and
let ™ be representatives of the cosets such that

SAUB = U?T(SA X SB)

™

Then the corresponding Garnir element is

gAB = Z sgn(m)m
™
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One should note that the Garnir element is operator on our vector space and not a group and
element. It also dependents on the the chosen traversal. For the algorithm we will standardise
our choice in traversal. Let’s first calculate a Garnir element.

Example 4.6. Take A = {1,4} and B = {2,3}. Then we can take as traversal
{67 (17 2)7 (1’ 3)7 (47 2)7 (47 3)’ (47 3)7 (17 2)(47 3)}
Now we can sum over these elements and find the Garnir element
gA,B = € — (]-7 2) - (1a 3) - (47 2) - (473) - (4a 3) + (1’ 2)(4’ 3)

In the straightening algorithm we will work on with tableaux ¢ where there is a row ¢ where
two adjacent elements ¢; ; and ¢; ;41 are not increasing. The sets for the Garnir elements will be
A={t,j:a>i} and B = {tq ;41 :a < i}. Together these sets form a skewed tetromino shape.
Now for our Garnir element we take the traversal in such a way that the columns j and j + 1
are still increasing. If we had a tableau of shape (3,3,2) with out of order elements in row 2 in
the first and second column the the blue boxes represent A and the red ones B.

Example 4.7. Let’s practice by finding the element for this tableau

4

S| Ot =

The out of order elements are 5 and 3. So we find the sets A = {5,6}and B = {2,3} and
the traversal must be {e,(3,5),(2,5,3),(2,5,6,3),(3,5,6),(2,5)(3,6)}. Applying one of these
elements to the original tableau removes the out of order elements but in some cases only moves
it to a lower row.

Now we will show that applying this Garnir element to a polytabloid actually gives us a
linear combination of polytabloids.

Theorem 4.8. Let t be a tableau with out of order elements in a row then,
ga,per =0

Proof. we will first show that for 7 € Cy, > g, . sgn(o)o{rt} = 0. Since the size of the set
AU B is bigger than the column, it must follow that 7t has atleast two elements n,m € AU B
such that n and m are next to each other in a row of nt. Now we can rewrite this sum as

Z sgn(o)o{nt} Z sgn(o)o(e — (n,m)){rt}
o€SAuB o€Saun/{e(ab)}
=Y sgn(o)alint} — {xt})
o€Saun/{e(a,b)}
=0
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Since e; is simply a sum of these permutations it follows that > ¢  sgn(c)oe; =0

Since S4 x Sg C (4, it follows that for m € S4 x Sp

sgn(m)me, = sgn(m)m Z sgn(o)o{t} = Z sgn(mo)mo{t} = Z sgn(o)o{t} = e

oceCl oeCy oeClt

Now we can let 7 be the traversal for the Garnir element, then

0= Z sgn(o)oe;
oESAuB

:Z Z sgn(mo)woe;

T g€SpAXSp

:Z Z sgn(m)msgn(o)oe;

T g€SAXSp

:Z Z sgn(m)mey

T 0€SaxXSB
= (A" + |B[")ga,pe:- O

Since the identity is part of the sum in the Garnir element, we can after applying it to a
vector, transfer the original vector to the other side to find that a linear combination for our
polytabloid made out of other polytabloids, which do not have the mixed elements in that row.
With this linear combination we can prove that we have indeed found the basis

Theorem 4.9. The set of polytabloids from the standard tableaux span the entirety of the
Specht module

Proof. Let t be a tableau and take m € C, Then

ent = Z sgn(o)o{nt} = Z sgn(o)on{t} = Z sgn(on Ho{t} = sgn(m)e;
o€Crt 0€Clrt 0€Crt

This means that if we can show it for one tableau in a column equivalence class, that we
are already finished for the entire equivalence class. To simplify our work we will always choose
the tableau with increasing columns to represent each class. We will now work with induction
on the partial order of the column equivalence classes. This order is analogous to the one on
the row equivalence classes. The tableau made by filling in the numbers by working from top to
bottom in each column and then left to right, is the maximum in this order and is standard.

Now assume for all [s] t> [t] that this is in the span of our basis. If this tableau is standard
then it is in the span of our basis. If it is not standard, then we can find an out of order pair in
a row and constuct a Garnir element. In theorem 4.8 we saw that g4 ge; = 0 so we find that

e = — Z sgn(m)me,

™
Now since we assumed all the columns were increasing we can label the elements of A and B that
by < by < ---<b; <a; <---a;. Thus all the elements in the traversal except for the identity
switch around a natural number which is greater with a smaller one from a lower column. By
the analogous lemma 4.6 we find that me; > ;. So by our assumptions e; is in the span of our
basis. Our original theorem follows from this by induction over the order. O

We know now how to find a basis so let’s work out a larger example.
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4.3 The matrix representation of S(>?)

We have just seen a whole lot of theory but now we will actually show how to construct the
irreducible representations. In this section we will work with the group S4 and we will be
working with the partition (2,2). The standard tableaux of shape (2,2) we have already found
in example 4.4, namely

t1: 1]2 andtgz 1 3.

314 2|4

Now these tableaux give rise to the following polytabloids

_ 12 23 14 34
T34 1T 4 2 371 9

and

_ 13 23 14 214
=51 "1 4 23" 13"

Becasue working out the linear combination of polytabloids is strenuous and laborious task, it
is best to use some the properties of the representation. Because p(gh) = p(g)p(h), it suffices to
just find the matrices for a set that generates the entire group. In the case of the symmetric group
this is the set of all adjacent transpositions. For this group that is the set {(1,2),(2,3), (3,4)}.

Since a transposition (k,k + 1) do not drastically alter the tableau ¢t we can split what

happens to the tableau in three cases:
1. If k and k + 1 are in the same column then (k,k + 1)e; = —ey
2. If k and k + 1 share a row then we can use Garnir elements to find the decomposition
3. If k and k 4 1 are in different rows and columns then (k, k + 1)t is also standard

Let’s start of by seeing how (1,2) acts on our polytabloids. For ¢; we are in case 2 and
we have to find the Garnir elements with A = {2,3} and B = {1}. In order to preserve the
ascending order in the columns, we take the set {¢, (1,2),(1,2,3)} and we find that e(; o), =
(1,2)er 2y, — (1,2,3)e(1,2)¢, = €1, — et,. For the polytabloid ey, we are in the case 1 and so we
can just write e(y 2y, = —€t,. So in total this gives

a2y = (2 5)-

Now we will continue with (2,3). Since this leads to case 2 with both polytabloids we find

that
e = (] o)

When applying (34) to e;, we end in case 2 again with A = {4} and B = {2,3} and find
the Garnir elements {¢, (3,4),(4,3,2)}. Thus ey, = (3,4)e@ay, — (4,3,2)eEaye, = €1 — €ty
Now with e;, we end in case 1 and find e(3 4);, = —e¢,. So for (3,4) we find.

e = (2 1)
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Now we have calculated the matrices for the transpositions, it is time to find how we should
combine these transpositions to make an arbitrary element. To find the smallest combination
of transpositions for o, we will find its inverse by sorting the array o([1,2,--- ,n]) in ascending
order. We will sort in the following manner

1. Find the largest ¢ such that ¢ is not in place

2. Switch ¢ with its right neighbour until it is in place and denote all switches made with
adjacent transpositions

3. If the array is sorted stop, else return to 1

By performing all the switches in reverse order we have found a combination for our o. Let’s
do this once by hand

Example 4.8. Take as example o = (1,2,4) from S;. When we apply this to the sorted array
we find o([1,2,3,4,]) = []. Now let’s start sorting

2,4,3,1] — [2,3,4,1] — [2,3,1,4]
So far we have used (2,3)(3,4). Let’s continue sorting.
[2,3,1,4] — [2,1,3,4].
We are almost there. We only need to out the 2 in its place
(2,3,1,4] — [1,2,3,4].

So we find that o= = (2,3)(3,4)(2,3)(1,2) and by simply reversing the order we find o =
(1,2)(2,3)(3,4)(2,3)

The algorith does not only give us a decomposition, it even gives the smallest decomposition.
When there elements ¢ and j, such that ¢ > j and o(j > o(¢)), then the permutation ¢ has an
inversion. In our sorting method we resolve an inversions with each switch, and thus the total
number of adjacent transpositions is equal to the number of inversions. The total number of
inversion also gives us a minimal amount of transpositions needed for our decomposition into
adjacent transpositions. Since every transposition can at most make at most one inversion,
the total number of adjacent transposition needs to be greater or equal to the the number of
inversion. What we have just shown is that our algorithm always gives an optimal decomposition.

Now that we have found the matrices in the representation for all the elements of Sy, the
only part left to do is to make sure that they are unitary. We have seen earlier how to construct
an invariant inner product in Maschke’s theorem. We could start out with an inner product
which has the basis of standard polytabloids as orthonormal basis and is then expanded through
linearity and conjugate symmetry. Then one could use the Gram-Schmidt process to find a basis
for which the representation is unitary. This is would be a lot of work and I would not recommend
doing this by hand but using MATLAB for assistance. In case you do not want to do any of
the work by hand, you could use the GAP library? to quickly find the representations you are
looking for.

Using the following code for GAP we can find the matrices.

Zhttps:/ /www.gap-system.org/index.html
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LoadPackage ("repsn");;

G := SymmetricGroup(4);; #the 4 can be replaced for other n

Chi := Irr(G)[3];; #The 3 indicates which irr. rep. you would want
rep := IrreducibleAffordingRepresentation(chi);;

(1,2)"rep; #you replace (1,2) with other elements

Using the code we get these matrices

And thus we have found our unitary irreducible representation for (2,2) on Sy
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