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1 Introduction

Point cloud usage has seen a rapid growth over the last years (Kohli, 2015). This is mainly the
result of the developments in the point cloud acquisition technologies; namely terrestrial and
airborne laser scanning, mobile mapping, image matching and multi-beam echo-sound tech-
niques etc. In addition to that, recent advances have produced many low-cost and generally
easy-to-use devices and techniques, such as the Microsoft Kinect!, Google’s Project Tango?,
depth cameras and Structure from Motion combined with Unmanned Aerial Systems (UAS)
which are able to acquire billions point clouds in a short period of time (Rusu and Cousins,
2011; Westoby et al., 2012; Khoshelham, 2011). These advances have allowed repeated scans
of the same area on a frequent basis, resulting in even more available spatial information and
the addition of the fourth dimension; the temporal component. This plethora of available
data has increased the usage of point clouds in solving real world problems. More specifically,
point clouds have many applications, like 3D urban modelling (Haala and Kada, 2010), indoor
modelling (Previtali et al., 2014), flood modelling (Abdullah et al., 2009), line of sight analysis
(Peters et al., 2015), forest mapping (White et al., 2013) and many other.

1.1 Problem statement

Although technological developments have made it feasible to acquire a huge amount of in-
formation, the management and storage of those massive point clouds is even today a very
challenging topic (van Oosterom et al., 2015a). In the majority of today’s applications file-
centric approaches are chosen, meaning that point cloud data are stored as a collection of files.
A typical workflow includes using desktop applications or command line executables like
Rapidlasso’s LAStools (Isenburg, 2012), reading one or more files, performing a processing
and writing files back to the user. In the case of LAStools all this functionality is integrated
with a project management and quality control framework making it a stand-alone application
(Hug et al., 2004).

Despite the fact that file-based systems are continuously improving (Otepka et al., 2012),
with the increasing amount of new point clouds present deficiencies especially in file formats
allowed and absence of multi-user functionalities. The situation becomes even more compli-
cated when taking into account the multiple dimensions of point clouds, as these are far from
fixed. This means that depending on the acquisition method point clouds contain apart from
X, Y and Z, also, time information, intensity, return number, number of returns, classification,
colour etc. (Ramsey, 2014). Those attributes can be present in any order and combination
(ASPRS, 2011) making simple selections in those dimensions cumbersome even for the most
robust applications.

Database Management Systems (DBMS) have for many decades already been dealing with
the data storage, indexing techniques, scalability and availability requirements needed by the
majority of spatial and non-spatial applications. DBMSs provide concurrency control, trans-
actions characterised by atomicity and isolation properties, security and version control. The
database community, commercial and open-source, identifying the need for point cloud data
management already provides native point cloud support. Both Oracle (Spatial and Graph)
and PostgreSQL (PostGIS) use a rather similar approach for point cloud storage. Their model
is based on the physical re-organisation of the point data into blocks that groups spatially close
points (Ravada et al., 2010; Ramsey, 2014). In addition to that, other approaches have emerged
for point cloud management.

Although the current point cloud management solutions offered in by the modern database
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systems perform well for specific cases, they have certain limitations. First, it is not well doc-
umented which approach best fits specific applications. Second, they consider point clouds
as rather static objects not taking into account the time dimension. This comes in contrast
with the growing number of point clouds continuously generated from low-cost sensors. In
certain queries, even, the time dimension becomes as equally selective as the planimetric co-
ordinates. This implies that storing time as an attribute no longer provides efficient searching,
meaning that the query plan has to first select based on space and then on time. In addition to
that, the current data organisation techniques do not scale good with continuous insertions.
This hinders further development of applications that keep track of changes in an area using
point clouds. An application where this applies is in the cases of coastal and river monitoring
where the querying of time and space is highly correlated. Therefore, spatio-temporal data
management structures are needed to fully exploit point clouds.

To be able to formulate the research question properly, an overview of the methods avail-
able to handle point clouds either spatially or temporally and spatio-temporally is given in the
next chapter.

1.2 Scientific relevance

In many of the current point cloud applications, time plays a secondary role or no role at all.
This means that time is either stored as an attribute within the file system or database, or
is only present within the file or table name. Therefore, time does not directly influence the
organisation of the data. Although time and space have been studied as separate entities, their
integration is the one that will eventually describe the full reality captured by point clouds and
enable spatio-temporal analysis and operations. This research aims to provide a solution for
the integration of space and time by realising a 3D (2D space and time) point cloud data model
using a database management system. Researchers that will benefit from this integration of
space and time for example are, van Oosterom et al. (2015a), Bruens et al. (2012) and de Boer
and Baart (2015).

The social benefit of providing integrated spatio-temporal functionalities lies in use cases
like coastal monitoring and flood safety. By developing a way of managing space and time
together, very useful information can be extracted which can create new knowledge and un-
derstanding of the physical processes around us.



2 Research framework

2.1 Point clouds in DBMS approach

Point clouds are often huge in size. In the majority of the current applications point clouds
are being handled using files. This has lead to the creation of many proprietary or open file
formats, with the LAS format (ASPRS, 2011) being the most widely used. Files have several
advantages over database systems; specifically, available software and libraries that can be
used for processing, ease of use, compression schemes etc. Since these file-based solutions can
offer efficient accessing and processing of point cloud data, the question of whether a database
can provide better management arises.

One very common advantage of utilising a file system is the trivial process of loading of the
data. Database systems, on the other hand, utilise less trivial processes for the loading of the
data, but as the size of the data increases file systems tend to require similar amount of time
during this step (van Oosterom et al., 2015b). DBMS, also, tend to have difficult installations
and configurations, contrary to files that can be managed by general purpose programming
languages and available software. Both solutions, however, when operating on licensed soft-
ware suffer from the cost of purchasing licenses.

Although some of the practical problems before are handled better with file-based sys-
tems, several disadvantages can, also, be identified. With the increasing low-cost acquisition
possibilities, available point cloud information for a specific area can increase dramatically.
This means that updates (inserts or deletes) take place more often these days, which for a
file-system organisation means continuous documentation of metadata.

Additionally, querying massive data (spatio-temporal or not) is problematic in the file-
based approaches. Firstly, the existence of many files makes the simplest selection a very
time-consuming and expensive process. In fact, the selection algorithm has to perform a scan-
ning of all the header information for each file. In van Oosterom et al. (2015a) the authors had
to use a hybrid solution; a combination of LAStools and PostgreSQL with the file metadata,
to optimise query response times. Secondly, file solutions do not support ad hoc queries. The
use of a declarative language like SQL is thus required. Rather than reinventing the wheel and
developing a new language to support queries, reusing DBMS solutions is more straightfor-
ward.

Finally, databases offer benefits like multi-user access, scalability and easier integration
with other spatial data (vector or raster). These types of functionalities require (re-)development
for file-based solutions (van Oosterom et al., 2015a). Again, instead of reinventing the wheel,
DBMS can offer native support. However, all this additional functionality in the DBMS causes
some overhead creating slower response times and more difficulty in their usage. The over-
head can, however, be decreased with a good organisation of the data.

2.2 Spatial access methods

Spatial data, including point clouds, are often large in volume, dynamic and multidimensional
objects which makes their management very difficult. This complexity, however, should not
come at the cost of inefficient queries. For this reason, for many decades now spatial access
methods have been a very important topic in the research community. The term spatial access
methods refers to both spatial indexing and clustering techniques (van Oosterom, 1999). Since
the main object managed is point clouds, only spatial access methods relevant to points are
described.



2.2.1 Spatial Indexing

The purpose of spatial indexing, or in general indexing, is to support efficient data retrieval.
In other words, indexes are important otherwise all rows within the table must be scanned
during querying. The most well-known one-dimensional index is the B-Tree invented by
Bayer and McCreight (2002). B-Trees are, however, not suitable for spatial objects which have
at least two dimensions. Many indexing techniques have been developed during the years
(Gaede and Giinther, 1998) the most important being the R-Tree where a grouping of spatially
close objects takes place and spatial objects are represented with their minimum bounding
rectangle.

2.2.2 Space filling curves

One of the characteristics of spatial data, and specifically point clouds, is that there is no
straightforward way to preserve the spatial proximity of the points in the storage medium. In
other words, it would be ideal to store data close to each other in reality, also, close to the stor-
age medium (e.g. hard disk). This is very significant as computer memory is 1-dimensional
in contrast to point clouds that are multidimensional. In order to follow such an approach a
primary key value that preserves locality is needed. A mapping from a higher dimensional
space to one dimensional can be handled using space filling curves. The advantages of space
filling curves for the indexing of multi-dimensional data are discussed in Lawder and King
(2000). An advantage of this method is that scalable one-dimensional access methods (like a
B-Tree) can be applied to the multidimensional point data.

Many space filling curves have been developed each one of them preserving a different
degree of proximity in the data. An overview of space filling curves can be found in (van
Oosterom, 1999). In this case, only two of them are discussed: the Z-order and Hilbert curve.

e Z-order: The Z-order or N order or Morton curve (Peano and Kennedy, 1973) maps
the coordinates of points to one dimension by interleaving bits from each coordinate
in a recurrent way. For example, assuming a point with coordinates (9,12) its binary
representation is (1001, 1100). By interleaving these bits we get the following binary
number 11100001 which represents number 225. This number is the morton key of point
(9,12). A graphic representation of this bitwise interleaving is shown in Figure 1.

e Hilbert: The Hilbert curve (Hilbert, 1891) maps multidimensional data into one di-
mension by following a recursive procedure. For the generation in 2D, first, the square
domain is subdivided into four. Then for each one of these sub-squares, the first step is
repeated and the previous version of the curve is rotated or reflected such that the pieces
are connected to each other, see Figure 2. Similar concept is followed in higher dimen-
sions. In 3D, for example, a cube is recursively subdivided and the curves are connected
if they share a face.

From the above description it is obvious that the Z-order curve is generally easier to be
constructed in comparison to the Hilbert curve and more easily extended in higher dimen-
sions. The ease of the construction, however, comes at the cost of preserving less proximity
compared to the Hilbert curve. This characteristic is apparent by the presence of “jumps”
in the Z-order curve. Faloutsos and Roseman (1989) showed that the Hilbert curve provides
better results for range and nearest neighbour queries.

2.3 Spatio-temporal DBMS

It is a fact that the world around us is subjected to discrete or continuous changes. The same
accounts for the measurements related to dynamic phenomena. The management of those
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Figure 1: Z order curve organisation

Figure 2: Hilbert curve organisation

measurements can take place in spatio-temporal databases which aim to combine the spatial
and temporal features of the data. The first steps towards the integration of space and time
started with the separate research on temporal (Clifford et al., 1993) and spatial databases
(Giiting, 1994). The main temporal data types found in DBMS are: instant, interval and period
(Snodgrass, 1999). Respectively, they represent a moment in time, the length of time and time
duration. In the SQL92 standard the temporal aspect can take the form of TIMESTAMP, DATE,
TIME and INTERVAL. For the modelling of space the Open Geospatial Consortium (OGC) and
International Organization for Standardization (ISO) have established the standards for the
management of spatial objects. These efforts resulted in the Simple Features Specifications for
the Structured Query Language (Herring, 2006), where the geometry types, relationships and
other operations are defined.

The integration of spatial and temporal datatypes is, however, not trivial. One of the chal-
lenges faced with spatio-temporal databases (STDBMS) is the different nature and semantics
of the two concepts that need to be taken into account. The data models that have emerged
through the years vary, among others, in two aspects: (a) the temporal resolution, meaning
the way of partitioning the line of time, and (b) the granularity of time, which denotes in
which level of the spatial data the time dimension is added, i.e. to the whole dataset or the at-
tribute level. Another challenge in the spatio-temporal research is the efficient querying both
in time and space. As a result, efficient indexing techniques and access methods (Theodoridis
et al., 1998) are required. An overview of spatio-temporal indexing techniques can be found
in Mokbel et al. (2003) and Nguyen-Dinh et al. (2010). Some implementations treat the time
dimension as an additional dimension on top of the spatial component, others store time in
the nodes of the index as an attribute and other implementations are using overlapping index
structures to show the objects at different time instances (Theodoridis et al., 1998). Finally,
STDBMS tend to have a dynamic nature, meaning many updates (deletions and insertions)
take place constantly. A data structure and indexing scheme that handles this dynamic be-
haviour without degrading over time and as the database grows is therefore needed.

Spatio-temporal models present in the literature focus on various application domains and
are thus different in how they handle time. One of the simplest model is the “snapshot model”
by Langran and Chrisman (1988). The modelling of space takes place in time layers, in other
words, it represents the state of the objects at different times (Figure 3). The different time
layers are independent from one another. The drawbacks of this model are duplication of the



data, difficulty in detecting the changes from one moment to the next one and difficulty in ap-
plying integrity rules (Langran, 1992). Other spatio-temporal models are (Pelekis et al., 2004):
(a) based on timestamping at the creation and termination of the object, (b) based on manag-
ing the events that lead to changes, (c) representing space, time and semantics separately, (d)
based on moving objects, etc.

24

T

+ | Rural
== Urban

Figure 3: Time slices of an urbanisation phenomenon
Source: Langran (1992)

Relevant point cloud data management aspects

Although point cloud availability is increasing rapidly the last years, the full richness of point
clouds is in general underutilised. What makes point clouds a challenging source of data is
their generally unstructured nature and multidimensionality of their properties. Whatever
management medium is used for organising massive point cloud data, van Oosterom et al.
(2015a) present the relevant aspects that should be be taken into account during the design
phase:

The storage of the X, Y, Z coordinates and support for Coordinate Reference Systems.

The attributes attached to the points like, intensity, return number, number of returns,
classification, colour (Red, Green, Blue) in any order and combination.

The spatial organisation of the points including efficient blocking, clustering (space fill-
ing curves) and indexing techniques in the multidimensional space. A parameter rele-
vant to the clustering aspect is the choice of dimensions used for the key calculation, for
example 2D (X, Y) or 3D (X, Y, Z).

The time component and its importance in the organisation of the point cloud. Time can
either have no role in the organisation (stored as an attribute), or play a crucial role in
the organisation by taking place in the key calculation of the space filling curve in the
form (X, Y, time) or (X, Y, Z, time).

Compression techniques in order to reduce storage and enable dissemination via wire-
less networks.

Level of Detail (LoD) strategies in order to significantly reduce the amount of data that
are sent from the server to the client and to support efficient computations and visuali-
sations. The latter involves decreasing the complexity of the scene as the viewer moves
away. In other words, the further the viewer from an area, the lesser the points pre-
sented (Figure 4). Two types of approaches can be identified for LoD structuring: the
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multi-scale and the vario-scale (or continuous) approach. In the former, the levels are
predefined while in the latter the level of detail is another dimension, called importance.
In contrast to the discrete levels, the importance value can be of floating point data type.
This extra dimension can then be used as a parameter for the organisation itself by sort-
ing and clustering using space filling curves e.g. Hilbert or Morton curve. The spatial
clustering could then be in the form (X, Y, time, importance) or (X, Y, Z, time, importance)

e Operations like loading, selecting, and algorithms that operate on point clouds e.g. nor-
mal estimation, nearest neighbour finding etc.

e Parallel processing techniques in order to fully exploit the computing capabilities of the
modern computers. Parallel processing should, in general, offer better performance than
a single process.
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Figure 4: Perspective query returning blocks from multiple LoDs
Source: van Oosterom et al. (2015a)

2.5 Existing point cloud implementations in DBMS

The management of point clouds in DBMSs has been in the centre of research for many years
already. According to Dobos et al. (2014) some basic requirements that a relational point
cloud database should hold are: spatial and non-spatial filtering, primary key searches, near-
est neighbour determination, interactive visualisations and efficient loading, insertions and
deletions that are supported by efficient indexing schemes. Richter and Déllner (2014) also
driven by the increasing availability of point cloud data describe the architecture of a sys-
tem that deals with data coming from varying sensors and devices, handling also database
updates. They propose an incremental database update process in order to avoid storing un-
changed parts between different time stamps. To achieve this, change detection techniques
need to take place before the data are loaded into the database. The data structure used in
their system is an octree.

Zlatanova (2006) argues that in theory point clouds can be either stored with already exist-
ing data types, POINT or MULTIPOINT, or with user defined types. Storing point clouds using
POINT data types was, also, proposed in Hofle et al. (2006). To speedup time queries, the
authors introduced a secondary index on the time attribute. Ott (2012) and Ramsey (2014),
however, explain that the previous implementation has serious drawbacks, the most impor-
tant being the separation of the point geometry and the attributes in the MULTIPOINT approach,
the amount of rows in the POINT approach and the memory intensive operations needed for
both of them.

Currently, the database community provides several approaches for point cloud manage-
ment. In their majority two storage models can be distinguished. The first model is based
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upon the organisation of points in blocks, meaning in groups of spatially close points. The
second organisation is the flat table model, where each point is stored separately in one row.
In this section the existing implementations in several systems are presented shortly. In all of
the following systems, the time dimension can be considered only as an attribute and is not
part of the main organisation.

2.5.1 Oracle

The options for storing point clouds in the Oracle database are three. The first option involves
the blocked model, the second using a flat table (normal relational table) to store the points
and finally, the hybrid model.

For blocked organisation, Oracle Spatial and Graph provides the SDO_PC and SDO_PC_BLK
data types which represent the logical object and physical storage respectively. SDO_PC stores
the metadata information of a point cloud like its name, the spatial extent, the number of
dimensions (spatial and non spatial), the resolution, the name of the SDO_PC_BLK table that
contains blocks, the parameters for partitioning etc. The SDO_PC_BLK is the physical storage
table with the block information, that includes the spatial extent of the block, the resolution,
the number of points, the Binary Large Objects (BLOB) that include the points, etc. (Oracle,
2015a). When creating the blocks two blocking methods can be used (Oracle, 2015a): the R-
Tree which groups spatially close points, the Hilbert R-Tree which groups points that are closer
in the Hilbert curve or using an external blocking scheme like the one offered in Point Data
Abstraction Library (PDAL)3.

The second option for storing point clouds in an Oracle database is by using a flat table
approach with database specific hardware like the Oracle Exadata Database machine (Oracle,
2015b). This hardware is designed to offer maximum performance for running the Oracle
Database. Its performance for point cloud management was tested in van Oosterom et al.
(2015a).

Finally, point clouds can be stored by using a Hybrid solution. This solution involves us-
ing an Index Organised Table (IOT) with a key based on a space filling curve (Godfrind
and Horhammer, 2015). The former concerns a table where the data are stored in a B-Tree
structure. Normally, a query would have to traverse the index table in order to find the
requested value and after that return the actual data by visiting the table where they are
stored. In an IOT, the second step is not needed since the rest of the columns are stored to-
gether with the index. The key is based on the Oracle implementation of the Hilbert curve.
So far the key can be calculated only in 2D using the function sdo_pc_pkg.hilbert_xy2d or
sdo_pc_pkg.generate_hilbert_vals. This organisation model can be considered as a combi-
nation of the advantages of the previous two.

2.5.2 PostgreSQL

PostgreSQL provides point cloud support through the pgpointcloud extension developed by
Ramsey (2014). The idea behind the development was that points should not be stored as
PostGIS POINTs per row, but rather organised into patches (the equivalent of blocks in Oracle).
For this reason, the PC_Point and PC_Patch data types were developed. Since the data are
packed into byte arrays, a description of how this packing is performed is described by an XML
schema document (Ramsey, 2014). This document is used to take into account the multidi-
mensionality of point clouds. The actual loading of the point cloud into the database can take
place either by making use of well-known binary (WKB) objects or with the PDAL driver for
pgpointcloud. The points and the patches are tied together using a common identifier. This

3 http:/ /www.pdal.io/



organisation is extended in Cura et al. (2015), where the authors describe a complete point
cloud management system supporting metadata, compression, filtering, fast loading and pro-
cessing, as well as integration with vectors and rasters .

Space filling curve approaches are not available in the current implementation of the point
cloud support of PostgreSQL. The only available spatial clustering functionality in PostGIS*
is the GeoHash® function that is based on the Z-order curve.

2.5.3 MonetDB

The flat table approach is followed within MonetDB by Martinez-Rubi et al. (2014, 2015); Al-
vanaki et al. (2015). MonetDB is a column store database meaning that the X, Y, Z data and
their attributes are stored in different columns. The characteristic that makes it comparable
with the previous approaches is the “a novel and powerful, yet lightweight, cache conscious
secondary index” (Sidirourgos and Kersten, 2013) that is used as rough filtering step during

querying.

2.5.4 Other point cloud data management implementations

Apart from the previous straightforward ways to store and organise the point cloud infor-
mation in a DBMS, also other ways of management can be found in the literature. In van
Oosterom et al. (2015a) the authors combined LAStools together with PostgreSQL. To imple-
ment their solution, first they sorted and indexed the files using the corresponding command
line executables (lassort and lasindex). Then, the extents of each file were stored into Post-
greSQL. In this way, when a query is performed the database is scanned first to locate the files
that overlap with the query area. The files that satisfy the previous query are then used as
input to LAStools to further refine the selection.

spatial encoding: geo-hash
2° latitude, 46° longitude

u 0 1 m t w 0

L 1 L ]

#H u 201205 01m ident. twd 0722

Row 10 Colurn Family Column Qualifier

'2012 0507 22 17 00
May 7, 2012 at 10:17pm UTC

temporal encoding: string
Figure 5: Encoding of the spatio-temporal index in Fox et al. (2013)

Another way that stays away from Relational DBMS are the NoSQL (Not Only SQL)
databases that emerged with the development of the Internet. Those databases stay away
from the tabular way of organising data and the use of SQL. There are four types of NoSQL
databases: key-value stores, document, column and graph databases. Boehm and Liu (2015)

4http:/ /postgis.net/
Shttps:/ /en.wikipedia.org/wiki/Geohash



used a document based NoSQL database, MongoDB, to store LIDAR point clouds. The docu-
ments were used to store the metadata for each file, while the actual files were organised in
a distributed file system (GridFS). A similar way is proposed in Wang and Hu (2014) for the
same platform.

Spatio-temporal point cloud implementations are present in the literature, although lim-
ited in number. A NoSQL spatio-temporal implementation using the Apache Accumulo soft-
ware is presented in Fox et al. (2013). The spatio-temporal index structure developed inter-
leaves the parts geohash of the (x,y) point with parts of the string representation of the date
(see figure 5) to accommodate the key structure of the Accumulo system. The data type of the
key is a string and it is indexed lexicographically. The results show that the spatial and time
complexity of the queries increases the query response times.

Another spatio-temporal implementation closely related to point clouds can be found in
Tian et al. (2015) where the authors apply a space filling curve (Morton code) to efficiently
organise 3D points (x,y,t) in a 3D R-tree which is stored in a relational database. Their pro-
totype was compared with a spatial database and their organisation gave faster queries and
scalability with concurrent queries.
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3 Research objectives

The research framework presented before tried to describe all the relevant aspects that have
an influence on the management of point cloud data (section 2.4). In addition to that, the cur-
rent implementations were presented shortly in section 2.5 and their limitations in handling
temporal (or dynamic) point clouds became obvious due to the limited research on the area.

Although all the relevant aspects in the previous list can play an important role in the
management of dynamic point cloud data, the focus of this research will only be on the in-
tegration of space and time and their organisation using a space filling curve approach. This
is mandated by the use cases (section 4.1) where the space and time components are highly
correlated. Therefore, aspects like Level of Detail, and parallel processing are of less priority
for this project. Their influence on the management of dynamic point cloud data could be part
of a future work.

3.1 Research question

The main research question of this thesis is:

How can a space filling curve (Morton curve) be used for integrating the space and time components of
point clouds in order to support efficient additions and queries in a Database Management System
(DBMS)?

The aim of this thesis is to research the potential and apply a methodology that offers
efficient data handling and storage of dynamic point clouds. In order to answer the main
question, the following sub-questions are relevant:

e What are dynamic point clouds and what are relevant use cases and requirements for
their querying?

e What types of data structures can be used to support the integration of space and time,
taking into account the continuous insertions of new points and efficient querying?

e Is the complete integration of space and time with a space filling curve approach effi-
cient, or is the less deep integration of space and time performing better?

e What is a suitable scaling of the various dimensions depending on the use cases?

e What is a suitable resolution of the dimensions to be used for the space filling code
calculation?

e How does the suggested method compare to the current way of working?

3.2 Scope

The focus of this research will be on the efficient handling and storage of dynamic point clouds
as defined by the use cases which support coastal monitoring applications. The methodology
suggested will focus on using space filling curves for the structuring of space and time. Only
if necessary different approaches will be investigated. Because of time constraints the focus
will be on on the integration of the X, y, t dimensions. This decision is based upon the fact
that x,y coordinates are, in general, more selective than the z dimension in the use cases. Same
applies for time (more selective than z). Finally, comparing the efficiency of different space
filling curves is not of high priority for this research.
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4 Methodology

This part of the research proposal aims to provide the general strategy that will be followed
in order to answer the research question defined in the previous section. For this reason,
the research will follow three general steps (figure 6). The first step includes the conceptual
modelling of the problem, which deals with the structuring of space and time. The second
step is implementing the conceptual model in order to, as a final step, validate whether it fits
a specific use case. Those three steps can be put into one methodology and create a schema
like the one shown in figure 7. As can be seen, the most relevant aspects towards the solution
are: identifying the use cases, identifying the structure of space and time that best suits the use
case, initialising the database and loading the data, inserting more data (dynamic nature) and
performing queries. Therefore, the main aim for each different use case is to observe how the
database system behaves when applying a different structure of space and time. The output
of the methodology proposed will yield comparisons that are relevant to answer the research
question.

Conceptual modelling

U

Implementation

U

Validation (use cases)

Figure 6: The general workflow of the research

4.1 Use cases

The Netherlands is a country situated at the North Sea and its southwestern part is the delta
of the three large rivers: Rhine, Meuse and the Scheldt. Over the years, protection of the coast
has played a very important role for the development of the country, since almost one quarter
of the land lies below sea level. Typical flood protection structures include dams, dikes and
dunes.

The Dutch coastal policy was introduced in 1990. There it was stated that the country
should “Hold the line” (Sistermans and Nieuwenhuis, 2004), meaning that the coastline should
be prevented from moving towards the mainland. For this reason, the Ministry of Trans-
port, Public Works, and Water Management (Rijkswaterstaat) as part of the coastal monitor-
ing guidelines performs a yearly survey of the Dutch coast in order to determine changes in
coastal elevations. These surveys are a combination of depth surveys from echo sounding
equipments mounted on vessels and height surveys coming from Laser altimetry technology
(Pot, 2011). A more detailed description of the data is provided in section 5. Deltares, an in-
dependent institute for applied research in the field of water and subsurface, is a user of the
data.

Another relevant use case is the “Zandmotor” (Sand Engine) (Mulder and Stive, 2011), 21
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Figure 7: The general methodology schema to be used

million cubic metres of sand deposited between Ter Heijde and Kijkduin at the province of
South Holland. This amount of sand has created a man-made peninsula. The purpose of this
pilot program is to investigate how nature spreads this amount of sand along the coast as the
years go by. In order to see if the experiment is going as thought, daily monitoring of the area
takes place. A more detailed description of the data is provided in section 5.

In general, both use cases identified have three components in common: they belong to the
general use case of monitoring changes, they include specific datasets of growing point clouds
whose spatio-temporal management is very important and specific queries to study the phys-
ical process they represent. More specifically, the queries posed are used for the calculation of
several coastal indicators (Giardino et al., 2014), the detection of new features, changes in the
volume and erosions or depositions etc. Those processes are directly related to time, although
the space and time responses significantly differ from process to process, as shown in figure 8.

The current way of working includes using multidimensional storage, like netcdf and
hdf5, by transforming the original point clouds into grids. Although this transformation en-
ables spatial operations, the original richness of the point cloud is lost. Therefore, the user
requires the preservation of the original dataset supported by spatiotemporal management
options.

The user requirements for the querying of dynamic point cloud DBMS are:

e Space (x,y[,z]) and time ranges.

e Selection of points based on a line (with/without buffer zone) in certain time ranges.
e Minimum, maximum, average heights from range queries in space and time.

e Selection based on attributes, for example on classification (less important).

e Selection based only on time or only in space (less important).

Those queries are then used to create animations or time series analysis for monitoring volume
and growth (Figure 9).
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Source: Baart (2013)
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Figure 9: Animations and time series for coastal applications
Source: Bruens et al. (2012)

4.2 Structuring space and time

Structuring space and time to support dynamic point clouds is not a trivial problem. The
reason for this is that two contradictory requirements need to be taken into account; points in
space and time should be stored very close (clustered) in the memory but in a way that the
already organised data are not affected from the newly coming data. The contradiction takes
place when adding new data. The new points, in order to preserve space-time locality, will
have to be inserted between the already stored points. As a result, the data already organised
in the memory will have to be shifted to new places which is a very costly operation. Therefore,
a possible solution for the problem at hand can be an intermediate going from the very fine
integration of space and time to a coarse integration, where time dominates over space.

These two approaches differ in the way they structure dynamic point clouds. In the fol-
lowing subsections the possibilities are discussed.

14



4.2.1 Deep integration of space and time

The complete integration of space (x,y[,z]) and time (t) implies that the same treatment is
given to all three or four dimensions, both in the structuring and the querying. The complete
integration of space and time can be achieved with the following data structure.

Structuring with space-filling curves. The motivation for using space filling curves is three-
fold. First, they lead to dimensionality reduction. Spatial objects of higher dimension are
transformed to a single one, making it feasible to apply classical B-Tree indexing techniques.
Second, space-filling transformations preserve the spatial locality of the points. There is, how-
ever, no ordering that preserves the total proximity and therefore, the application of different
curves is relevant. Even so, points close in the n-dimensional space will also be stored close in
the physical storage of the database. This will minimize the I/O cost for fetching the data of
a query. Finally, research shows that multidimensional indexing is possible using space filling
curves (Lawder, 2000).

Within this solution two alternatives can be identified. The first includes giving a space
filling key to points of a specific granularity. This organisation can be applied in case it is re-
quired that the size of the key should hold only a certain number of bits and can be considered
as a way of tiling (blocking). The second includes giving each point the full key. In this case,
the storing of the space (x,y[,z]) and time (t) dimensions is redundant because they can be
decoded from the key. This significantly reduces storage in the database (Martinez-Rubi et al.,
2015) but adds extra processing time since the encoding and decoding of the keys have to take
place.

Drawbacks of this solution become visible with the new insertions of point clouds. Since
space filling curves are used, with every insertion of a new point cloud for the specific area
of interest, the new points will have to be inserted between the already stored points in the
B-Tree. This happens exactly because of the locality preserving characteristics of space filling
curves. When the table is growing constantly, this reorganisation will have a negative influ-
ence on the efficiency of the system. The effect of this process is part of the research of this
thesis.

4.2.2 Time domination

The organisation of space and time can also be achieved in a less integrated way. This solu-
tion could be exploited in case the continuous re-organisation of the data from the previous
approach needs to be avoided to a certain extent. Time in this alternative is the one that first
determines how the newly coming data will be stored. Space has then a secondary role. The
less deep integration of space and time can be achieved with the following data structure.

Time with spatial clustering. In contrast to the previously mentioned space-filling method,
time no longer takes place in the determination of the morton key. The morton key is only
determined from the spatial components and time is concatenated with the spatial key in
the following way: time + key (Figure 10). A similar time-partitioning approach of moving
objects is used in Jensen et al. (2004). Assuming that the data are added in an ascending
date order, the already organised data will not be affected. From a spatial perspective though
this results that spatially close points but in consecutive years will be stored far away in the
physical storage making queries for specific location over all times slow.

This organisation although supports the dynamic nature of the use cases poses a limita-
tion in performing certain queries. For example, a query requesting for a certain location the
heights of fifteen consecutive years will be performed relatively inefficiently, since a lot of
rows within each year need to be traversed. Another limitation can be found when the dy-
namic nature of the use case is so fine that data are growing every minute. Then this solution
will create a very large number of time layers which will be very difficult to query. Nonethe-
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less, the data will be clustered both in time and space and B-Tree indexing techniques can be
applied to support efficient queries.

For both of the two possibilities introduced above the Hilbert or Morton curves are the most
prominent space filling options to be used, since they are generally more suitable for multidi-
mensional access methods (Abel and Mark, 1990; Gaede and Giinther, 1998). Another possi-
bility to investigate for both approaches is table partitioning; that is having an archiving table
with the historic data (archive table) and a separate table for the newly coming one (current
table). After the latter has gained a certain amount of new spatio-temporal information, at the
end of the month as an example, only then these information is transfered to the archiving
table. Therefore, a large amount of re-organisation happens only at few moments in time.

4.2.3 Dimensional scaling

Another important aspect that requires investigation is the relative scaling of the dimensions
used. This is of great significance because of the inherently different nature of the spatial and
temporal dimensions. The spatial units usually used are kilometers, meters, centimeters or
millimeters. Time, on the other hand, is measured in years, months, days, hours, minutes
or seconds. The correspondence of those two can be considered as the factor of how much
time is integrated with how much space. This factor should be chosen according to the most
prominent querying of the data in order to maximise the chance of performing minimum disk
access.

4.3 Initial loading

For the loading of the datasets the platform independent process described in van Oosterom
et al. (2015a) will be used. More specifically, the process is split into three parts starting with
the initialisation of the database and table along with the enabling of all the needed functional
extensions. As a second step, the data are prepared and then populated (or loaded) into the
database. The loading can be in bulk or dynamically i.e. as the points are measured. In this
step the calculation of the space-filling keys can occur. Finally, the indexes necessary are build.
Depending on the system other intermediate steps might need to take place. These steps are,
also, shown in a diagrammatic form in figure 11.

4.4 Additional loading

The purpose of this process is to populate the already loaded table with newly-coming data.
This additional loading can resemble the loading step with the difference that the initialisation
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Figure 11: An overview of more refined steps for the processes of Initial loading, Querying
and Additional loading

part in not repeated (see figure 11). In case of the table partitioning approach this step is dif-
ferentiated in that two steps have to take place: first, the data are loaded into the current table
and then, moved to the archive table at an appropriate time. In all cases, the system should
take care of the updating of the index. Which structure of the previously chosen performs
better during this step is part of the research of this thesis.

4.5 Querying

The goal of the querying process is to present the number of points and response times of
queries corresponding to the user requirements. Querying in space and time will be the major
component of this process. The actual queries are derived from the use cases and are men-
tioned briefly in section 4.1.

In order to perform spatial and time selections, the queries need to be modified so that
the space filling organisation is taken into account. The reason behind this requirement is
that the transformation into a linear space results in a loss of spatial relationships between
objects. As defined by the user requirements, the majority of the queries performed are some
kind of range query (Figure 11). A technique for mapping the space-filling values to the range
queries needs to be identified. A general methodology includes, mapping the query to sets of
continuous space filling curve traversals, visiting those sets in the B-Tree and identifying the
relevant points and finally validating that the points actually overlap with the specific area.
For the Morton space filling curve its relationship with the Quad-Tree (van Oosterom and
Vijlbrief, 1996) or the Octree can be taken into advantage.

5 Datasets Used

The datasets that will be used for the validation of the methodology developed originate from
the domain of coastal monitoring. Their nature is, however, different since they represent
use cases with different space and time scales. This is relevant in order to evaluate how the
proposed structures behave with data of different characteristics.
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5.1 Coastline dataset

The first dataset is that of the coastline of the Netherlands (Kustlidar in dutch), provided by
Rijkswaterstaat. The data is open data in point cloud format at least for the years 2014 - 2015.
An approximation of the coverage of is shown in figure 12 and a view of the point cloud itself
in figure 13.

Figure 12: Overview of coastline dataset
Source: Deltares (2015)

Figure 13: Overview of the coastline point cloud

The data has the following characteristics:

1 update per year

The total point cloud is sectioned into tiles

The files contain only the X, Y, Z information

Time is only mentioned in the file names

The point clouds of 2014 and 2015 are given as filtered and unfiltered (buildings, people,
trees etc.). For the previous years only the filtered point clouds will be provided

The format is LAZ
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5.2 Zandmotor

The second set of point clouds comes from the Zandmotor use case (see figure 14 and 15). The
acquisition takes place using jet skis and all-terrain vehicles and point clouds of the same area
are available from 2011 till 2015. The data are property of Deltares but will become open data
in February 2016. The Zandmotor area is measured at irregular periods after storms take place
in the area. Therefore, although it is not measured every single day, the time resolution will be
in days in order to offer the best organisation. This means that “gaps” will be present within
the time dimension. Same as with the coastline dataset, the time information is only present
at the file name.

Figure 15: A zandmotor dataset of 2015

The two datasets presented are different in nature, size, number of files and spatial and time
resolution. Their different nature poses different requirements in their organisation. For ex-
ample, the coastline dataset will be updated only once per year but the amount of data is sig-
nificantly more than the Zandmotor. On the other hand, the Zandmotor datasets are updated
more frequently (every day) and therefore, the methodology developed should not make the
database unavailable for a long period of time with every update. Hence, it is important to see
how the data structures react to the differences. A comparison of the differerent characteristics
of the datasets is provided in table 1.

Table 1: An overview of the different characteristics of the datasets used

Dataset No. of files | No. of points per file | Time resolution | Spatial resolution
Zandmotor 33 100,000 - 200,000 Day mm
Coastline 222 50,000 - 20,000,000 Year cm

6 Experimental design
Based upon the user requirements and use cases, an experimental design is proposed. This

design will be part of the validation step discussed in the methodology section and will assess
how the proposed method is performing according to the use cases. Aspects relevant to this
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assessment are the storage space, the loading and querying response times. The benchmark
will be implemented in three (or four) stages, corresponding to a growing number of point

clouds.
Table 2: The description of the datasets used for the coastline use case
Benchmark | No. of files | No. of points | Disk size (MB) | No. of years
Small 4 25,000,000 31.7 2
Medium 15 120,000,000 130 2
Large 50 200,000,000 233 2
Table 3: The description of the datasets used for the Zandmotor use case
Benchmark | No. of files | No. of points | Disk size (MB) | No. of years | No. of days
Small 5 391299 7.5 1(2011) 5
Medium 16 1332734 254 2 (2011 - 2012) 16
Large 22 1923746 36.6 3 (2011 - 2013) 22
Full 33 3147134 47.1 5 (2011 - 2015) 33

For the coastline use case, the details of the datasets used in every stage of the benchmark
is given in table 2. This benchmark investigates how the structures proposed behave by in-
creasing the spatial coverage, since only two time moments are available. The extents of the
proposed benchmark are depicted in figure 16. Similarly for the point clouds coming from
the Zandmotor use case the benchmark details are present in table 3. This benchmark will in-
vestigate how the structures behave with a wider time layer and the same spatial extenstion.
All the benchmarks should be repeated for both structures of space and time, including their

alternatives.

I
|
I
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Figure 16: Overview of the coastline point cloud benchmark
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7 Tools used

During the implementation of this thesis several tools will be utilised. For viewing of the
results of the queries either the FME software will be used or the Potree 3D viewer®. The
decision on the use of the DBMS to be used is based upon the information in table 4. As can
be seen, the use of Oracle Spatial and Graph is obvious, although the system is commercially
available through licences. The determining functionality that makes Oracle the most obvious
choice instead of open source alternatives is the existence of Index Organised Tables. This
available functionality has the potential of providing a very efficient organisation together
with the use of space filling curves. Only if the system does not give the functionality needed,
other databases like PostgreSQL will be investigated as a second option.

Table 4: Table of the requirements for the choice of the DBMS

] Requirement \ Oracle \ PostgreSQL \ SQL Server ‘
Licence Commercial Open source Commercial
Space Filling Curves Encoding 2D Hilbert | - -

keys but not decoding

Index Organised Tables | Index organised table | static CLUSTER, | clustered
index-only scans | index

Blocking methods R-Tree, Hilbert R-Tree | Using  PDAL'’s | -
chipper (outside
the db)

Parallel querying Yes - -

Python will be used when user-defined functionality is needed. This is the case for the cal-
culation of the Morton keys, since the current systems do not fulfill this requirement. An im-
plementation of the Morton key in 2D is provided in https://github. com/NLeSC/pointcloud-
benchmark/blob/master/python/pointcloud/morton.py. In the full integration of space and
time, however, the 3D keys are needed. The previous solution might have to be extended or
a different solution will be identified. Python will, also, be utilised in order to connect to the
database and perform the querying.

Finally, for the composition of the actual thesis document ETgX and the unofficial template
of Geomatics thesis available at https://github.com/tudelftgeomatics/thesis_template
will be utilised. For making figures Rhino will be used in 3-dimensional sketching and Ipe for
2-dimensional sketching.

8 Activities & Schedule

The planning/ phasing according to the academic calendar is presented in figure 17. The
most important dates and events are shown below. Those dates are taken from the academic
calendar and the exact dates will be determined during the year.

Date Event
2016-01-22 P2 Presentation
2016-03-01 — 2016-03-31 | P3 Presentation
2016-05-09 — 2016-05-20 | P4 Presentation
2016-06-20 — 2016-07-01 | P5 Presentation

®http:/ /potree.org/
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Time Planning

Phase P end Duration
(days)

Choosing thesis topic 01-09-15 |[01-11-15 62
Pl presentation 09-11-15 |09-11-15 1
Literature review on point cloud data 01-11-15 |30-11-15 30
management
Study space filling curves 15-11-15 |30-11-15 16
Analysing the use cases 01-12-15 |23-12-15 23
Literature overview for solutions 01-12-15 |31-12-15 31
Loading and query requirements 15-12-15 |08-01-16 25
Design solution (\alternatives) 15-12-15 |31-12-15 17
Encoding\ Decoding functions Morton 21-12-15 |21-12-15 1
Writing thesis proposal 10-12-15 |15-01-16 37
Preparing for P2 presentation 12-01-16 |21-01-16 10
P2 presentation 22-01-16 |22-01-16 1
Implementing chosen solution 25-01-16 |01-04-16 68

L-ess deep integration of space and 25.01-16 | 26.02-16 33

time

Generate Morton query ranges 29-02-16 |31-03-16 32

Deep integration of space and time 29-02-16 |01-04-16 33

Archiving & staging table 04-04-16 | 10-04-16 7
P3 presentation 28-03-16 |01-04-16 5
Loading test data 04-04-16 | 15-04-16 12
Compare own solution to current 18-04-16 |29-04-16 12
Assessment according to the use cases 18-04-16 |29-04-16 12
P4 presentation and final evaluation 09-05-16 |19-05-16 11
Refinements 20-05-16 |01-06-16 13
Thesis finalising 20-05-16 |17-06-16 29
PS5 presentation 20-06-16 |01-07-16 12

Figure 17: The Gantt chart of the activities
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9 Supervisors

The supervisors for this thesis project are as follows:
e Delft University of Technology

— Main mentor: Drs. T.P.M. Tijssen

— Second mentor: Prof.dr.ir. P.J.M. Oosterom
e Deltares
- External supervisor: Fedor Baart

This thesis project is done in cooperation with Deltares. For this reason, Stella’s work
location will be at the Deltares offices in Delft. In addition to that, as shown above, an external
supervisor is present at Deltares who will provide support for the use cases and technical
matters. At TU Delft, Stella will receive support on the research issues from both supervisors,
while more practical aspects will be discussed with T.P.M. Tijssen. Both TU Delft and Deltares
will provide feedback during the progression of the thesis.

10 Meetings

Meetings every two weeks approximately are scheduled with the TU Delft supervisors. The
meetings can, also, be in the form of emails if the schedule of the two supervisors is tight. In
addition to that, meetings are scheduled with the Deltares supervisor for discussing certain
aspects of the thesis. The meetings at Deltares will be more frequent after the Project Plan
presentation on the 2274 of January 2016. Stella will, also, report frequently to all supervisors
about the progress of the thesis.

11 Contact

For more details please contact:

Stella Psomadaki
Student number: 4412052
Telephone: +31 617397729
S.Psomadaki@student.tudelft.nl
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