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Abstract

This thesis presents the process of design and implementation of a power grid simulator, with focus on
the power grid configuration and load forecasting as part of a larger project. The overarching project
aims to address the increasing complexity of power grids and the occurence of grid congestion. Its
primary objective is to visualize these issues for educational purposes. For this subsystem, the specific
goal is to provide a grid configuration, all necessary data to simulate it, and load predictions for the grid.
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1
Introduction

The transition to a renewable energy system is driving a widespread deployment of wind power and
solar PV generation, alongside the rapid electrification of energy demand. This shift presents significant
challenges for electricity grids, which were not originally designed to accommodate such developments.
Being able to visualize the issues in a clear manner would open up new perspectives on how to tackle
these problems, as well as engage more people in the topic.

The purpose of this project is to create a power grid simulator that enables the user to easily influence
the scenario through a hardware controller with interactive controls, and present realistic power grid
scenario(s) together with predicted values that provide useful information about the grid. If possible, the
simulator should also include scenario(s) which may pose challenges to the user. The target audience
is not power grid experts, but instead interested persons or students without expertise in power grid
dynamics to understand what is happening. The goal is to give the user a feeling of how the grid works,
what possible problems can arise, what information can be used to fix them and how they can be fixed.
Furthermore, it was stated in the project proposal that the intention is to place the simulator in the
EEMCS faculty of TU Delft, with the goal of getting current and prospective students engaged in the
area of power grids.

In order to accomplish the goals of the project, it has been divided into three subsystems: Hardware,
Visualization & Simulation, and Forecasting & Scenario. This thesis will focus on the work of the Fore-
casting & Scenario subgroup.

1.1. Problem Definition

The Forecasting & Scenario subsystem has to provide suitable and sufficient realistic data to design the
power grid and train a forecasting model on it. All the grid’s relevant parameters have to be extracted
and/or calculated, and correctly transmitted to the Visualization & Simulation module. Next to that, a
forecasting model has to be trained to predict the loads and the predictions have to be transmitted
together with the parameters so they can be displayed to the user. Moreover, this module should be
capable of providing scenario(s) that present a problem in the grid which the user should be able to
remediate by interacting with the simulator.

1.2. Thesis Structure

To address the outlined challenges, first a set of requirements will be defined. Building on the require-
ments, the design choices will be presented, and then the two individual components, scenario and
forecasting, will be discussed in depth.
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2
Programme of Requirements

In order to clearly define the scope of the project, a set of requirements have to be created that the
subgroup should aim at fulfilling throughout the project, and can be used to determine its success.

2.1. Global System Requirements

Following the general project description provided in the introduction, the global system requirements
are as follows:

1. The user must be able to interact with the simulated power grid and see how this affects the power
grid dynamic.

2. The user must be able to see useful information about the grid, such as power generations and
loads or line loadings.

3. The user must be able to access forecasted values of buses, which can be useful when taking
actions in the grid.

4. The user must be able to change the portrayed time in the simulation.
5. The modules must be able to send and receive data between one another in an agreed-upon

format and form.
6. The system must use a working solar and wind generator in real life that links to the scenario.

2.2. Forecasting & Scenario Requirements

From the global requirements, the Forecasting & Scenario requirements can be derived. The simulator
needs to be provided with a working power grid set-up together with feasible load and generation
data. The user should be encouraged to interact with the simulator in order to understand the power
grid dynamics, as if it were a game. Predicted values to be used by the user when taking actions
in the simulated environment must also be provided in the simulation. It is important that the data is
feasible and correctly transmitted to the Visualization & Simulation module. Furthermore, if possible,
the configuration should represent the Dutch power grid to increase engagement by the targeted user.

Mandatory Requirements (MR)

The mandatory requirements must be complied with for the design to be acceptable. These are as
follows:

2



2.2. Forecasting & Scenario Requirements 3

1. The Forecasting & Scenario module must provide a working power grid network configuration,
including line and static bus parameters.

2. Feasible load and generator data that works with the network configuration, including power and
voltage data must be obtained.

3. The load and generator data must be obtained for time intervals of maximum 24/8 = 3 hours,
for the user to be able to significantly experience the changes in the power grid throughout a
simulated day.

4. Forecasted values of bus-wise load with a reasonable horizon time1 given the circumstances
must be provided for every time step that the simulation is run for.

5. All the data must be correctly transmitted to the Visualization & Simulation module such that it
can be read, used in the grid calculations, and portrayed correctly.

6. The models must be made open source to encourage advancement in this field, show the users
that it is safe, and possibly allow for future development by other interested parties.

Trade-off Requirements (ToR)

The trade-off requirements should be an indication of the level of satisfaction of the users with the
product. These are as follows:

1. The Forecasting & Scenario module should make use of a network and data that simulate the
Dutch power grid, to provide the targetted user with a more realistic experience of a real power
grid that they can recognize.

2. The used data should preferably be optimal given the structure of the power grid network and the
provided known parameters, in order to resemble the operation of a real grid.

3. The power grid should preferably be represented in AC, not DC, to give a more realistic feel of a
real power grid.

4. The data should be obtained for a time period of at least one year, so the variations throughout a
year can be experienced by the user if desired.

5. At least one scenario simulating a malfunction in the grid should be created to encourage the user
to interact with the simulator and get a better understanding of potential problems in the power
grid.

6. The forecasted values should have a mean absolute error lower than if simply using the previous
time step, previous day or previous week load value as prediction.

7. Both the scenario selection and forecast processes should easily be able to adapt to any given
initial time step and total duration, so different time periods can be displayed.

1The amount of time into the future that is being predicted at each time step.



3
Design Choices

Following the Programme of Requirements, design choices have to be made that comply with all the
requirements in it. This chapter will present those choices and describe the reasoning behind them.

3.1. Grid Set-up and Data

Grid Set-up

To make a realistic power grid simulator, the grid set-up and data should preferably simulate an existing
real power grid. Since full power grid configurations would be hard to visualize, and very complicated
to work with, a simplified version of it should be able to fulfill the project’s purposes. The target user
of this power grid simulator will be current or prospective students of the TU Delft, so it should ideally
model a simplified version of the Dutch power grid.

After some discussions, it was decided that the grid set-up should preferably be that of a high-voltage
(HV) transmission system, so that the windmill and solar panel inputs of the Hardware subsystem could
represent an offshore wind park and a solar park respectively. For simplicity purposes, it was assumed
that the simulated grid is balanced, meaning there is no mismatch between load and demand, and is
hence maintained at 50 Hz [1]. This allows for accurate estimations of a three-phase HV system by
using single-phase calculations. [2]

Data

In order to make an accurate simulation and an in-depth analysis of the power flows, it was decided
that no DC simplification would be used for the grid, and AC calculations would be done instead.

Then, the data needed for the calculations of the AC power grid simulation by the Visualization &
Simulation subsystem is:

• Bus geographical locations and their types (PV, PQ, slack or main slack).
• Corresponding data for each type of bus. Depending on the type, this may include total active
power generation P and voltage magnitude Vm (for PV), total active P and reactive Q load power
(for PQ), or voltage magnitude Vm and angle Va (for slack and main slack), as well as maximum
reactive power generation Qmax for PV and slack.

• Lines connecting the buses and their respective characteristic data. This includes total resistance
R, reactance X, conductance G, susceptance B and maximum power flow Pmax. Similarly, the
same data for transformer lines.

4



3.1. Grid Set-up and Data 5

The data needs to be accurate, measured often enough to provide a significant daily simulation (maxi-
mum 3-hour intervals), and sufficient enough to both be able to have variation and train a forecasting
model on it (preferably at least a year).

During the course of the project, multiple national open-source datasets were explored, even for coun-
tries other than the Netherlands, but they usually did not contain individual bus data, fulfill the required
time step interval, and/or fulfill the required total time period. The Python library OpenSTEF [3] was
considered as it included a few load datasets of Dutch cities with 15-minute intervals throughout some
months. The idea was to use that data to create more for all the necessary buses. However, it was
decided against because there was too little data for it to be realistic enough for the project’s purpose.

Optimal Power Flow

If the load data is obtained for the required specifications (time step interval and total time period), then
given the power grid network configuration and adequate cost functions, the optimal values for the rest
of the needed data can be calculated using an Optimal Power Flow (OPF) algorithm [4]. For simplicity
and application purposes, as well as to make the process resemble a real-life case to a reasonable
extent, the economic dispatch problem variant will be employed. The economic dispatch problem is
the most widely used OPF variant [5], and it aims to find a minimum cost solution of power demand and
supply in the grid. To make that possible, the costs of individual power generations must be defined
through cost functions.

Another question was whether to use DC or AC Optimal Power Flow calculations. The DC OPF is a
linearization of the original non-linear AC OPF equations, and therefore converges easily. The remain-
ing necessary AC parameters can then be approximated using assumptions. On the other hand, the
AC OPF is the most accurate representation of the power flows in a system. Compared to DC, the
benefits of AC OPF are increased accuracy, inclusion of voltage, reactive power, current, and trans-
mission losses in the network [6]. However, since the system of equations is quadratic, it is much
harder to solve. The way to approach this is to ”convexify” the AC OPF by defining a convex function
around the original non-convex one. Nevertheless, this might in some cases still lead to a solution not
converging. Since it is important to retain accuracy in the calculations wherever possible, the decision
was to attempt to use AC OPF as a first choice, and if not enough converging data could be obtained
then switch to DC OPF.

Final Choice

After continuous research, the model Dutch-HV-Power-System by W. Zomerdijk [7], representing the
aggregated high-voltage Dutch power grid in 2018, was found. It includes a power grid set-up with bus
geographic locations, load and generator locations, interconnections, and line data. It also includes a
full year of hourly time series for individual loads’ active power and renewable generators’ maximum
active power, as well as nominal power for non-renewable generators. See Figure 3.1 for a depiction
of the grid configuration.
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Figure 3.1: Depiction of the Dutch aggregated grid represented by the Dutch-HV-Power-System model. Green and red
represent the 220 kV and 380 kV systems respectively. Obtained from [8]

The process of obtaining the data for W. Zomerdijk’s model is described in detail in his Master’s Thesis
[9]. A brief description follows:

• The relative load profiles per end-use sector are given by the Energy Transition Model [10] in
terms of demand profiles defined in NEDU1 (MFFBAS2) [11]. The total load per year per sector
is comes from Klimaatmonitor [12]. The corresponding load data per sector is then found by
multiplying the relative load profiles by the total load. Finally, assumptions are made to map the
load time series to each of the individual loads in the grid set-up.

• The renewable generation capacity data is determined based on wind and solar power statis-
tics by CBS3 [13][14]. Renewable energy sources depend on weather, so their capacity varies
throughout the year. The time series of capacity factors is based on weather profiles, and is ob-
tained through the website Renewables.ninja [15][16]. Finally, the time series of maximum active
power for renewable generators is obtained by multiplying the total generation capacity by the
capacity factors. Similarly, assumptions are made to map the generation time series to each of
the individual generators in the grid set-up.

• The nominal power or total capacity for the non-renewable generators is obtained using a combi-
nation of [17] and [18], and then divided by fuel type.

• The specific line data is obtained from the TenneT data sheet [19]. The line length of a few
interconnection buses to other countries is not provided in this specification. However, since they
connect interconnection buses with the Dutch grid in a very short distance, an average value of
0.1 km is assumed. Similarly, the transformer data is also obtained from TenneT4.

• The connections to other countries are modeled as generators, with the upper and lower limits
being set to the maximum capacity of their interconnection lines. The data on the capacity of
the interconnection lines with Germany and Belgium is obtained from [19], while for the other
countries, it is also obtained from the TenneT website.

1Vereniging Nederlandse Energie Data Uitwisseling
2Marktfaciliteringsforum en Beheerder Afspraken Stelsel
3Centraal Bureau voor de Statistiek
4https://www.tennet.eu/
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• Suitable time-dependent cost functions for generators are obtained by determining the fuel cost
per different production plant types. For connections to other countries (represented as slack
nodes), two assumptions are made as no hourly data could be found: electricity is priced at zero
when exporting, so national generators don’t produce only to export, and just above the most
expensive national generator when importing, so national generators are prioritized and thus
electricity is only imported in times of need.

It should be noted that some of the direct data sources may not be directly accessible anymore since
they were originally used three years ago. If that is the case, the general website of the source providers
is cited instead.

3.2. Programming Language and Simulator

Multiple options for the power grid simulation and load forecasting were explored, initially in C++ and
later in Python. It was determined that it would be most efficient to provide the grid data and predicted
values at the beginning of the simulation, and there was no explicit need for real-time communication.
This also ensures that there would be no compatibility issues with the Visualization & Simulation module
which uses C#, meaning any programming language could be used.

The aggregated Dutch grid model was already formatted in a pandapower5 network, with pandapower
being an effective and convenient Python library for power grid calculations [20], so there would be no
reason not to choose it for the power grid simulations. Moreover, most of the forecasting open-source
libraries and models are written in Python, therefore also indicating a clear inclination to Python as the
programming language of choice.

3.3. Forecasting

State-of-the-art Analysis

Short Term Load Forecasting (STLF) is an active field of study with significant advancements in both sta-
tistical and machine learning (ML) approaches. STLF methods can broadly be categorized into these
two groups. Statistical methods, including auto-regressive integrated moving average (ARIMA), linear
regression, and Kalman filtering, have been traditionally popular. However, these methods have no-
table limitations such as their linear nature, limited adaptability, difficulty in handling complex seasonal
patterns and challenges in capturing long-term dependencies. [21]

ML models offer greater flexibility in modeling nonlinear functions. Unlike statistical methods, ML mod-
els do not require strong assumptions about the mapping function and can learn relationships between
predictors and targets directly from historical data.

Neural networks (NNs) have particularly gained popularity in recent years due to their ability to address
complex forecasting problems, including STLF. The diversity of architectural solutions and mechanisms
to improve performance has encouraged the use of NNs in this field. Several different NNs were in-
vestigated for suitability of STLF for the hourly electrical load in the Polish power system in [22]. In this
study, both General Regression NN (GRNN) and Multilayer Perceptron (MLP) stand out as performing
with the highest accuracy. Another important thing to note is that this study suggests using the follow-
ing features: weather conditions (temperature, wind speed, cloud cover, humidity, precipitation), time,
demography, economy, electricity prices, and other factors such as geographical conditions, consumer
types and their habits. However, in their work they only use univariate forecasting methods, in which
only historical load time series is used as input.

In [23] a number of Deep NNs (DNNs) were compared on different datasets to a Gradient Boosting
Regression Tree (GBRT). Concluding that a simpler model such as GBRT can compete and sometimes

5https://pandapower.readthedocs.io/en/latest/



3.3. Forecasting 8

outperform modern DNNs by efficiently feature-engineering the input and output structures of GBRT.
Moreover, according to the same study, deep learning models tend to be overly complex in comparison
to traditional techniques.

Random Forests (RF) is an ensemble learning algorithm based on decision trees as the base models.
It is suitable for both regression and classification problems. RF overcomes the common drawbacks
of single decision trees, such as unstable splits and lack of smoothness. [21]

As shown in [24], RF can compete with both classical models and NNs in STLF. It is able to deal with
complex time series using appropriate data preprocessing, which produces normalized patterns of daily
profiles. The fact that tree-based methods are strong competitors against NNs can also be deduced
from the 2020 M5 competition. Among the top five winning models, four utilized variations of tree-based
methods [25].

Another type of tree-based ensemble is named eXtreme Gradient Boosting (XGBoost). In [26] multiple
variants of this algorithm were used for forecasting electricity consumption by industrial customers.
Even the XGBoost without any combination of other methods performed better than other models which
did not make use of a XGBoost model. XGBoost has several advantages such as dealing well with
possible gaps in a dataset, dealing well with nonlinear regression [22], it hardly overfits because it
incorporates a regularized model [27], it is relatively easy to use and has proven to be really effective.
However the challenges of this algorithm should not be overlooked. One of them is the amount of hyper-
parameters, because the algorithm relies on relatively many hyper-parameters that could drastically
change the performance of the model. From this follows that finding a great balance in tuning the
hyper-parameters and determine the right data characteristics is an important part.

Selected Model

There are numerous options available for STLF, and choosing the optimal model depends on several
factors. Given the significant daily load fluctuations, the model should effectively handle non-linear
patterns. Additionally, the model should also provide accurate results, even with datasets that cover
shorter time spans. Although Neural Networks can be very promising, they typically require larger
training datasets. Additionally, these models are difficult to interpret and make it difficult to enforce
assumptions such as temporal smoothness [28]. As [29] suggests, NNs tends to outperform traditional
models from a certain amount of observations on. In other words, the bigger the dataset, the better
the performance and dominance of a NN compared to other models. However the dataset used in this
study contains just one year of hourly load data, which is not a relative big dataset as other studies often
use multiple years of training data. This leads to a design choice not to use a NN, a combination of the
need for a relatively big dataset, difficult to interpret and the possible lack of temporal smoothness.

As a strong competitor of NNs, XGBoost excells in performance, proving its oustanding performance
by winning the most solutions on the machine learning competition site Kaggle in 2015. Out of 29
solutions, 17 used XGBoost, these 17 solutions can be divided into two categories. Eight of these 17
solutions solely used XGBoost and while the other solutions combines XGBoost with NNs. [30]

Two characteristics of XGBoost were of great importance for the model selection: its ability to handle
non-linear regression and its resistance to overfitting (as already explained in 3.3). Additionally, the
model’s ease to use was a significant advantage, particularly compared to the challenges of interpreting
NN results. Given the researchers’ potential lack of experience in this field, the ease of use and an
interpretable model become a factor which should also be taken into account for model selection.

XGBoost’s proven high performance, its ability to handle non-linear regression, its resistance to over-
fitting and that fact that the model was quite easy to use resulted in the final choice for this project.
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3.4. Malfunction Scenario

To engage the user with the simulation, a malfunction scenario has to be represented. Initially, many
suggestions were considered. From simulating an unexpectedly increased load causing a need for
higher generation, to shutting off a line causing overload. Since this was the last part to be worked on,
after having a working simulator and forecasting model, it was left open at the beginning. Later, it was
seen that the implementation from the other subsystems that would allow for these suggestions and
actions to solve them, such as time-varying line data or the possibility for the user to turn off or on lines,
were not going to be feasible with the time constraints.

Balancing the amount of data that the Visualization & Simulation module could handle at a time without
it affecting the visuals, while providing enough time steps to have a significant simulation and show a
potential malfunction scenario, led to a 2-day simulation. Combined with the possible implementations
for different malfunctions, this resulted in the decision to simulate the normal operation of the grid on
the first day, and a scenario where the generator in a bus unexpectedly stops providing power for a
few time steps. If this generator is in a bus connected to the solar and wind buses which the user can
control, and the lines connecting it to other buses are close to their loading limit, the user can use the
solar and/or wind generator to avoid overloading in the other lines. At the same time, this choice of
malfunction also provides a realistic representation of a problem that might occur in real grids.

Furthermore, the forecasting module comes with an inherent malfunction scenario. Since it is not going
to be perfect, it may give inaccurate predictions at times, which if acted upon by the user will create a
mismatch in the network.



4
Communication

This chapter provides an overview of the choices made for communication with other subsystems,
including the decided format.

4.1. Global Structure

After the simulator has been turned on, the Forecasting & Scenario module will find the parameters for
the selected scenario and the corresponding load forecasts for the full duration of the scenario. The
parameters and predictions will be sent to the Visualization & Simulation module, where the power
flows will be calculated and the grid will thereafter be displayed. The user will then be able to interact
with the simulator using the various hardware components, and the Hardware module will transmit
the information to the Visualization & Simulation module so that the grid can be re-simulated and re-
displayed. See a depiction of the general structure and communication in Figure 4.1.

Figure 4.1: Overview of subgroups interconnections within the project

10



4.2. Design Choices 11

4.2. Design Choices

The Forecasting & Scenario module only needs to communicate with the Visualization & Simulation
module, in order to provide it with the power grid data and forecasted values. The communication is
unilateral and handled via CSV files due to their known attributes of simplicity, compatibility, and effi-
ciency [31]. CSV files are also in a human-readable format and support excellent libraries for both C++
and Python. The data for all time steps is sent before the start of the simulation, since this is more
efficient and there is no specific need for real-time communication. This also simplifies the compatibil-
ity between modules, since Godot, the game engine used by the Visualization & Simulation module,
cannot handle Python code, which is essential both for obtaining the grid data and for machine learning.

The full Scenario and Forecasting modules are both automated in such a way that the data for a dif-
ferent set of time steps than the pre-selected ones can easily be obtained by inputting a different start
time step and duration time. However, for the user to be able to select the time steps, an implemen-
tation in the Hardware module, and possibly in the Visualization module, as well as communication
from the Hardware module would be required. This has not been possible to implement due to time
constraints, but if it were done in a future development of the simulator, there would be no need to alter
the Forecasting & Scenario module.

4.3. Scenario Data

The corresponding bus data for the pre-selected time steps, together with the line data, is sent to the
Visualization & Simulation module. This is done in two separate CSV files. The first file,
”busInputData.csv”, contains the required initialization values for each bus. The file has the format of
11 (bus parameters) columns, by 47 (buses) × T (total time steps) rows. The bus parameters include
bus type (1 = Main slack, 2 = PV, 3 = PQ), voltage magnitude and angle, generation and load active
and reactive powers, maximum generation reactive power, and slack weight. All power and voltage
magnitude values are given in p.u., relative to their base values. Moreover, the time step-wise data is
directly concatenated. A partial overview (first time step and first 8 buses) of the agreed-upon format
for the bus data can be seen in Figure 4.2.

Figure 4.2: Format of bus data for one time step, first 8 buses

The second CSV file contains information about the high-voltage lines that connect the buses, form-
ing the network’s topology. The file is named ”lineInputData.csv” and consists of 7 (line parameters)
columns, by 54 (lines) rows. The line parameters include connected buses, total line resistance R, re-
actance X, conductance G, susceptance B, and maximum line power. All impedance and admittance
values are given in p.u., relative to their base values. A partial overview (first 4 lines) can be seen in
Figure 4.3.
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Figure 4.3: Format of line data for 4 lines

4.4. Forecasted Data

The 24-hour bus load predictions for each bus during all simulated time steps are stored in a single
CSV file named ”Forecast.csv”. The agreed-upon format is structured as a matrix of 25 columns, by
28 (buses) × T (total time steps) rows. The first column shows the bus number, and the following 24
columns are the 24-hour load forecasts done at the pertaining time step. Moreover, like for the bus
input data, the time step-wise data is directly concatenated. An example of the format can be seen in
Figure 4.4.

Figure 4.4: Format of the forecasted load values for one time step, first 4 buses and 10 predicted hours



5
Scenario

After having decided the grid configuration, dataset, programming language and library to use for pro-
viding the scenario, there are multiple steps remaining: the correct functioning of the whole system
needs to be confirmed and understood, the remaining data needs to be obtained and tested for feasibil-
ity, all data needs to be correctly transformed and formatted for the Visualization & Simulation module,
and the whole process needs to be structured and parameterized so that it can easily be adapted to
different sets of time steps.

The code used for this section can be found on Git Hub1.

5.1. Pandapower

Pandapower combines pandas2 and PYPOWER3 into an efficient and easy-to-use library capable of
maintaining complex network structures and performing optimized calculations. [32]

The different elements for modeling a power grid in pandapower are as follows:

• The base of a pandapower system is a network. This is a class4 that will contain all the information
of the system.

• Buses can be added to the network by specifying their nominal voltage, upper and lower bounds
for voltage magnitude, and geolocation data.

• Loads are added by specifying which bus they are placed at, their type (wye or delta), and whether
their active and reactive power is allowed to be modified when conducting Optimal Power Flow
(OPF) calculations. Since existing data is in place, this should not be allowed for loads.

• Generators can be modelled in two different ways, as voltage-controlled (standard), or as non-
voltage-controlled (static). Standard generators require given values for voltage and active power,
while static ones require active and reactive power. This distinction is to model the real-life
behaviours of different types of generators: Non-renewable generators are able to be voltage-
controlled to adapt when required, and are therefore modeled as standard generators. Renew-
able generators, such as wind and solar plants, are modeled as static generators. Generators
can be added by specifying the bus they are placed at, their minimum and maximum active and
reactive power, and whether the OPF algorithm should be allowed to modify (control) its values.

1https://github.com/bbucksch/BacelorEndProject.git
2A library for analyzing data.
3A library for calculating power flows.
4A python data structure

13
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• Slack buses, assumed to be connections to neighbouring countries, are inserted by specifying
bus, minimum and maximum active and reactive powers and whether they are controllable by
OPF or not.

• Lines are then added to interconnect all same-voltage buses, given their characteristic data, in-
cluding length in km, impedance and admittance values per km, maximum tolerated current, and
nominal voltage.

• Transformers are added to connect the buses of different voltage levels, with their characteristic
data including nominal power, high- and low-voltage bus nominal voltages, and relative complex
and real short circuit voltage.

• Two types of possible cost functions can be added to the network: piece-wise linear and polyno-
mial cost functions. These are assigned to individual generators and/or slack buses, and describe
their electricity production costs. These are used for OPF calculations.

• Every component (excluding buses, lines and transformers) can be given time series data by
making use of controllers. A controller takes a data frame of the desired time series values, and
is assigned to one (or multiple) components. The controller then ensures that the power flow
simulations read the data from the appropriate time step of the time series data.

5.2. AC Optimal Power Flow

AC Optimal Power Flow (AC-OPF) is an optimization algorithm that considers the AC Power flow cal-
culations. Compared to DC-OPF, AC-OPF offers increased accuracy by considering voltage, reactive
power, currents, and transmission losses. However, AC power flow equations are quadratic, leading
to non-linear, non-convex optimization problems which are more challenging to solve. Figure 5.1, as
well as the equations, reasoning and steps that follow in Section 5.2 are taken from [33].

Modelling elements

The π-model is the standard representation for transmission lines in power systems which can be seen
in fig.5.1. This figure shows a transmission line connected between the nodes i and j. The model
consists of a series impedance Rij + jXij and two shunt susceptances jBij

2 at both ends of the line.
The series admittance is yij =

1
Rij+jXij

, and the shunt susceptances are ysh,i = ysh,j =
jBij

2 .

Figure 5.1: π-model of the transmission line

The current entering node i in the π-model splits between the series admittance yij and the shunt
susceptance ysh,i. The total current entering node i is:

Ii→j = Ish,i + Iij = ysh,iVi + yij(Vi − Vj) (5.1)

In matrix form:
Ii→j =

[
ysh,i + yij −yij

] [Vi

Vj

]
(5.2)
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Similarly in the case for a current entering the line at node j:

Ij→i = Ish,j + Iji = ysh,jVj + yij(Vj − Vi) (5.3)

In matrix form:
Ij→i =

[
−yij ysh,j + yij

] [Vi

Vj

]
(5.4)

Comparing 5.1 and 5.3 a discrepancy can be observed as Ii→j ̸= −Ij→i. This means that part of the
current is lost during transport, this difference is due to losses.

Line Admittance Matrix

The line admittance matrix Yline links bus voltages to current flows. This formula is defined by:

Iline = YlineV (5.5)

Separate admittance matrices are required for currents flowing in opposite directions due to differences
caused by losses. In other words, two line admittance matrices will be formulated, one for the direction
i → j and one for the direction j → i.


I1→2

...
Ii→j

...
Im→n

 =


ysh,1 + y12 −y12 0 · · · 0

...
...

...
...

...
0 ysh,i + yij · · · −yij 0
...

...
...

...
...

0 · · · ysh,m + ymn · · · −ymn





V1

V2

...
Vi

...
Vj

...
Vn


(5.6)

and


I2→1

...
Ij→i

...
In→m

 =


−y12 ysh,1 + y12 0 · · · 0
...

...
...

...
...

0 −yij · · · ysh,i + yij 0
...

...
...

...
...

0 · · · −ymn · · · ysh,m + ymn





V1

V2

...
Vi

...
Vj

...
Vn


(5.7)

Creating the line admittance matrix:

1. Yline is an L×N matrix, where L is the number of lines and N is the number of nodes.
2. If row k corresponds to line i → j:

• Start node i: Yline,ki = ysh,i + yij

• End node j: Yline,kj = −yij

• Rest of the row elements are zero
3. yij =

1
Rij+jXij

is the admittance of line ij.
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4. ysh,i is the shunt capacitance jBij

2 of the π-model of the line.
5. Then create two Yline matrices: One for i → j and one for j → i.

Bus Admittance Matrix

To form the AC-OPF constraints, it is necessary to compute the bus power injections, which show the
net power entering or leaving a bus. The net apparent power at a bus i is:

Si = ViI
∗
i (5.8)

According to Kirchhoff’s law, the net current injection at a bus is the sum of currents leaving the bus:

Ii =
∑
k

Iik (5.9)

where k represents all buses connected to bus i.

Assuming bus i connects to buses m and n:

Ii = Iim + Iin

= (ysh,i + yim)Vi − yimVm + (ysh,i + yin)Vi − yinVn

= (ysh,i + yim + ysh,i + yin)Vi − yimVm − yinVn

(5.10)

In matrix form:

Ii =
[
ysh,i + yim + ysh,i + yin −yim −yin

]  Vi

Vm

Vn

 (5.11)

Just like the line admittance matrix, an algebraic relationship between the vectors of bus currents and
bus voltages can be defined as the bus admittance matrix Ybus:

Ibus = YbusV (5.12)

For a generalized power system configuration, where bus i connects busesm and n, and where bus 1
is solely linked to bus 2 while bus n exclusively connects to bus i, the Bus Admittance Matrix has the
following form:


I1
...
Ii
...
In

 =


ysh,1 + y12 −y12 0 · · · 0

...
...

...
...

...
0 ysh,im + yim + ysh,in + yin · · · yim −yin
...

...
...

...
...

0 −yin · · · · · · ysh,n + yin





V1

V2

...
Vi

...
Vj

...
Vn


(5.13)

Creating the bus admittance matrix:

1. Ybus is an N ×N matrix, where N is the number of nodes.
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2. Diagonal elements:
Ybus,ii =

∑
t∈I

ysh,t +
∑
k

yik

where k are all buses connected to bus i.
3. Off-diagonal elements:

• Ybus,ij = −yij if nodes i and j are connected by a line.
• Ybus,ij = 0 if nodes i and j are not connected.

4. yij =
1

Rij+jXij
is the admittance of line ij.

5. ysh,i includes all shunt elements t connected to bus i, including the shunt capacitance of the
π-model of the line.

AC Power Flow Equations

Equation 5.13 shows that Ii, the current injection at bus i, equals Ybus,row−iV, where Ybus,row−i rep-
resents the i-th row of the bus admittance matrixYbus. Therefore, the apparent power at bus i is given
by:

Si = ViI
∗
i = ViY

∗
bus,row−iV

∗

To express the bus apparent power in vector form, we introduce diag(V). This notation signifies a
diagonal N × N matrix, where the N diagonal elements are equal to the N × 1 vector V, and all the
other elements of the matrix are zero.

Thus, the vector of apparent powers for all buses, S = [S1, . . . , SN ]T , can be formulated as:

S = diag(V)Y∗
busV

∗ (5.14)

The net apparent power injection at each bus equals the total generation minus the total load connected
to that bus. In vector form, this is represented as:

S = Sgen − Sload (5.15)

Combining Equations 5.14 and 5.15, we derive the AC power flow equations:

Sgen − Sload = diag(V)Y∗
busV

∗ (5.16)

The objective function regarding the minimization of the costs for producing electricity is defined as
follows:

min
PGi

∑
i

cGiPGi (5.17)

where ci is the marginal cost of every generator and PGi
is the amount of power it generates. PGi

is
bounded as a generator is not able to generate infinite energy and has a minimum defined by:

Pmin
Gi

≤ PGi
≤ Pmax

Gi
(5.18)

Important to note is that the generated power must be equal to the electricity demand PD, defined by:

∑
i

PGi
= PD (5.19)
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Finding the minimum of the objective function is found using the gradient descent algorithm, also known
as steepest descent. According to [34] this method is the simplest iteration scheme. The method
involves moving from one feasible solution in the direction of the steepest descent (negative gradient)
to a new feasible solution with a lower objective function value. Repeating this process will result in
finding a either the global or local a minimum. This algorithm is based on the solution of the power flow
by Newton’s method which has proven to be efficient [35].

5.3. Optimal Power Flow Applied

Pandapower provides two functions for performing an OPF, one for DC and one for AC, both of which
perform an economic dispatch. Since it was decided that AC calculations should be done, the AC OPF
function runopp() is the one to use.

It is worth noting that the runopp() function makes use of the PYPOWER opf() function, and it is warned
in the pandapower documentation that ”the optimization with PYPOWER functionality does not have
the best convergence properties”. This means that even if the network configuration is appropriate for
an optimization problem, runopp() may not converge.

Assumptions

Before being able to use the network for simulation, it has to be confirmed that everything is correct
and works as intended, and potential missing data needs to be addressed. This may especially be true
since the original network [8], was intended for DCOptimal Power Flow. Furthermore, some constraints
were missing.

Load Reactive Power
The initial network included time series data for the active power P of loads, but not for their reactive
powerQ. After some research, it was determined that aggregated loads are generally assumed to have
a power factor pf = cos(ϕ) of 0.95 since this is a good approximation [36][37]. Using P = cos(ϕ) × S

and Q = sin(ϕ)× S, the time series of reactive powers can be found as Q = P × sin(ϕ)
cos(ϕ) = 0.3287× P .

A new controller then needs to be created to ensure that this time series is used for the power flow
calculations.

Constraints
The OPF algorithm requires upper and lower bounds on parameters in order to be able to find a con-
verging solution. In the provided network, these are:

• Non-renewable generators: 0 ≤ P ≤ Pnominal using given nominal powers.
• Renewable generators: 0 ≤ P ≤ Pmax(t) using given capacity time series and 0 ≤ P ≤ Pmax(t)

• Slack buses: Pmin ≤ P ≤ Pmax using given interconnection line capacities.
• Bus voltages: All buses are limited at 0.95p.u. ≤ V ≤ 1.05p.u. as these are necessary for proper
operating conditions in a grid.

• Line and transformer line loadings: Constrained at given maximum current and nominal voltage.

Missing Constraints
No constraints were put in place in the original network for the reactive powers of generators and slack
buses. Since it is desirable to give the OPF algorithm freedom, the upper and lower bounds should
not be very tight. Taking into account the active power limits, a reasonable limit seemed to be ± 1000
MVar for generators and ± 5000 MVar for slack buses, as they should be allowed more freedom than
generators.
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Non-Convergence

When first simulating the OPF, it was observed that as feared it often did not converge. After some
digging, it was observed that the voltage for the main slack bus (automatically chosen by pandapower)
was not kept at 1.0 p.u., but instead increased to almost 1.05 p.u. Since the voltages had been con-
strained between 0.95 and 1.05 p.u., this should mean that there was at least one bus voltage that was
0.1 p.u. lower than the main slack bus, and therefore the slack bus voltage had to be compensated.
However, no voltages were observed below 1.04 p.u.

In order to solve this issue, different methods were attempted. A controller was added to keep the
main slack voltage at 1.0 p.u., the controllability of the bus for OPF was turned off, but none of these
solutions provided an acceptable result. Some troubleshooting sources suggested converting the rest
of the slack buses into generators with permitted negative generation, both with and without a slack
component, also to no avail. Finally, it was decided to constrain the main slack voltage at 1.0 p.u. by
fixing the lower and upper bound, which ended up providing reasonable results and convergence.

Results

The OPF provided feasible results for generation values, with only a few of them acting a full capacity.
As expected, the total power provided by neighboring countries was very close to 0. Bus voltages
ranging from about 1.0 to 1.04 p.u., and line loadings generally ranging between about 0.002% - 40%
and a peak of about 70%.

Testing
The results from the OPF need to be tested using a normal power flow using the function runpp(), to
confirm that the values are correct. Controllers have to be created for standard generator active power
and voltage (PV bus), static generator active and reactive power (PQ bus), and slack bus voltage
magnitude and angle. After running the simulation, it was indeed confirmed that the results were the
same.

5.4. Chosen Scenario

Taking into account the design choices, a specific scenario has to be chosen that complies with all the
requirements. It should be 3 days long, and facilitate the selected malfunction scenario. One way to
do so would be to find certain time steps where the load and generation in the malfunctioning bus are
quite high, to cause a greater impact on the grid. Moreover, it should fall inside the testing data of the
forecasting model, which as discussed later on should start at about 80% of the way through the year.
Preferably, it should also be at the beginning of the testing data which would theoretically provide the
most accurate forecast.

When performing the AC OPF, not all the time steps provide conversion, which leads to no results at
those time steps. This reduces the possibility of scenario time steps to only those with continuous
conversion for a period of at least 2 days (preferably 3 to be safe).

Accounting for all the restrictions, the period to be simulated was decided to be two days starting from
the 16th of October 2018 at 00:00 (time step 6912).

To present the malfunction scenario, it was observed that the generation in the user-connected bus
(the bus directly connected to the user input bus, which the user can control) was quite high on time
steps 38 to 41, about 14:00 to 18:00, and the time series data for that generator was set at 0.
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Bus Data Formatting

Since the grid model used by the Visualization & Simulation module is a simplified version of the one
used for obtaining the parameters here, the data needs to be aggregated and reformatted where neces-
sary. Bus-wise standard generator active and reactive power is separated from load + static generator
active and reactive power, where static generator counts as negative load. Buses containing a stan-
dard generator are always voltage-controlled and therefore of type PV, while those containing a load
and/or static generator will be of type PQ. The total generation and load power for each PV and PQ bus,
as well as reactive power for PQ buses, needs to be aggregated from the results of the simulation. The
voltage magnitude for PV and slack buses, as well as the voltage angle for slack buses, is extracted
from the simulation. The data for components that are not active (do not actually contribute to the grid)
is dropped, the slack weights for slack buses are read, and reactive power limits for generations and
slack buses are obtained. The data for two more buses (user controlled buses) needs to be added, bus
numbers need to be switched and all corresponding parameters need to be converted to p.u. using
Sbase = 100 MVA and Vbase = 220 kV or 380 kV respectively.

Line Data

Many lines (including transformer lines) are modeled as double lines in the used network [8], however
in order to simplify the simulation for the Visualization & Simulation, these are converted to equivalent
single lines. Their resistance R, and reactance X values are obtained by taking the parallel values and
dividing by Zbase =

V 2
base

Sbase
. The conductance G is 0 for all lines, and susceptance B is calculated as

B = (2πf)2 × Cparallel divided by Ybase = 1
Zbase

, with f = 50 Hz. [38] The maximum line capacity is
found as the parallel of Imax × Vnominal.

For transformers, G and B are observed to be 0, while the maximum line capacity is the transformer
rated apparent power Srated. Using [32], the remaining parameters are found as:

Rk =
vkrpercent

100
× Sbase

Srated
, Zk =

vkpercent
100

× Sbase

Srated
, Xk =

√
Z2
k −R2

k, (R,X) = (Rk, Xk)×
V 2
lv × Sbase

Srated
/Zbase

With vkpercent, vkrpercent being short circuit voltage and the real component of it.

The two new user lines (lines that connect the user-controlled buses with the grid) connect the user
buses with bus 12 and 3 respectively. These are given reasonable resistance, reactance and suscep-
tance using their length (provided by Visualization & Simulation team) and similar parameters. More-
over, to allow the user for as much control over the grid as possible while keeping it realistic, they are
given a capacity equal to the maximum of the other lines.

Malfunction Scenario
To be able to simulate the chosen malfunction scenario (see Section 3.4), the lines should tend to be
quite loaded, especially those around the malfunctioning bus except for the user line (the one connect-
ing to the user-controlled bus). However, when simulated, the line loadings were observed to be quite
low. In order to make space for a malfunction scenario, all the line capacities were reduced by reducing
the maximum current, with a significantly greater reduction for the lines connecting to the affected bus.



6
Forecasting

Some of the code for this section has been included in Appendix A, while the rest can be found on Git
Hub1.

6.1. XGBoost Theory

Tree Boosting

Basic knowledge of tree boosting algorithms is crucial to fully understanding XGBoost models.

A gradient boosting regression tree algorithm is constructed of multiple estimators or regression trees
[39]. A regression tree is made up of branches and nodes. At each node, the algorithm attempts to
split the target data (y) as accurately as possible into two subsets, depending on the value of one
of the features (x1, x2,...). The chosen feature and value at which to split the data is the one that
minimizes the sum of squares error

∑n
i=1(yi − ŷi)

2 with ŷi being the attempt to predict yi. This is done
successively in each node, until a certain user-imposed limit is reached (e.g. until <20 data points fall
into that category) in order to avoid over-fitting2.

When multiple trees (estimators) are stacked along each other and aim at compensating for the pre-
diction errors of the preceding tree, it is called boosting. Regression tree boosting algorithms start by
predicting the one value that minimizes the loss function for all output data points (ymean for a loss
function L = Mean Squared Error). The residual is then computed for each prediction as:

ri = −∂L(yi, ŷi)

∂ŷi
= yi − ŷi (6.1)

And a regression tree is fit to predict these residuals using the available features X. These predictions
are added to the initial prediction of ymean, and this is done successively until a user-given limit of
regression trees is reached. This ensures that each tree attempts to correct the prediction errors of
the one that precedes it, and the model provides accurate aggregated results. To avoid over-fitting, a
learning rate 0 ≤ ϵ ≤ 1 can be multiplied by the predictions of each tree.

Extreme Gradient Boosting

Extreme gradient boosting (XGB) is a special type of tree boosting. It makes use of regularization, a
technique that aims at reducing overfitting by increasing generalizability.

1https://github.com/bbucksch/BacelorEndProject.git
2A model performing too well on the data it has been trained on, and not well enough on unseen data.

21
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An XGB model is made up of XGB trees. XGB trees work like gradient boosting trees by aiming to
predict the residuals of the predictions of their preceding tree. However, the splits in the tree are
now decided by maximizing the amount of gain, aimed at clustering similar outputs together. Gain is
defined as the similarity score on one side of the split + the similarity score on the other side - the
original similarity score before splitting. Similarity is generally defined as:

(
∑n

i=1 yi − ŷi)
2

n+ λ
(6.2)

Where λ is the L2 regularization parameter. This means that if values are on opposing sides of the
original prediction, they are not similar and hence the similarity score will be small. If they are close,
the similarity score is big and therefore encourages clustering.

Pruning, another technique to avoid over-fitting, is also employed in XGB. By defining a minimum gain
γ, the model can choose to prune, or remove, the branches that have a gain smaller than γ, ensuring
the trees are not making too many splits.

When everything is put together, the optimization process of XGB is about minimizing the objective
function, comprising two components: the loss function representing the prediction error and the reg-
ularization term penalizing model complexity (see Equation 6.3). Balancing the trade-off ensures that
the resulting model generalizes effectively to unseen data while remaining accurate.

J (t) =

n∑
i=1

L(yi, ŷi) +

t∑
k=1

Ω(fk) (6.3)

where predicted value and regularization component, respectively:

ŷi
(t) =

t∑
k=1

fk(xi) = ŷi
(t−1) + ft(xi), Ω(f) = γT +

1

2
λ

T∑
j=1

ω2
j (6.4)

With t the index of iteration, n the number of samples, ω is the output or score of the leaf nodes, and T
the total number of leaf nodes in the tree. When λ increases, ω tends to shift towards zero. When Ω is
set to zero, the objective function is just a traditional gradient tree boosting function.

The goal is to determine the best split feature and split point next to ωj . The objective function can be
rewritten as below [30], writing out the loss function and moving the sum part of the regularization to
the hessian, as they both are multiplied by ωj . This results in the following equation:

J (t) =

T∑
j=1

[
Gjωj +

1

2
(Hj + λ)ω2

j

]
+ γT (6.5)

Where Gj (sum of gradients) and Hj (sum of hessians) are sums of first and second-order derivative
terms of the loss function respectively:

Gj =

T∑
i∈Ij

∂L(yi, ŷi)

∂ŷi
, Hj =

T∑
i∈Ij

∂2L(yi, ŷi)

∂ŷi
2 (6.6)

Where Ij represents all the data samples in leaf node j. To find the minimum value for J (t), the deriva-
tive can be taken with respect to ω and set to zero.

δJ
(t)
j

δω
= [Gj + (Hj + λ)ωj ] = 0 (6.7)

The optimal output value ω∗ for a leaf can then be found as:
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ω∗
j = − Gj

Hj + λ
= −

T∑
i∈Ij

−(yi − ŷi)

T + λ
=

Sum of residuals
number of residuals+ λ

(6.8)

XGBoost applies a greedy algorithm3 to traverse all the split points and finally selects the split points
with the minimum value of the objective function after splitting. This results in the highest gain after the
split when the optimal split point is selected. The gain is defined by:

Gain =
1

2

[ (∑
i∈IL

gi
)2∑

i∈IL
hi + λ

+

(∑
i∈IR

gi
)2∑

i∈IR
hi + λ

−
(∑

i∈I gi
)2∑

i∈I hi + λ

]
− γ (6.9)

Where IL and IR denote the data sample sets of left and right nodes after splitting, I is the union set of
IL and IR.

6.2. XGBoost Applied

The forecasting model used for this project is an XGBRegressor [40], ideal for regression problems.
This model can be tuned in many different ways, making it quite adaptable for any desired purpose.
Since the load for different buses has to be predicted, each likely to have their unique characteristics
such as magnitude, the decision was to train individual models for each bus.

The intention with this model is to provide a 24-hour prediction at every time step. The machine learning
term for this is number of horizon steps. However, the XGBRegressor can only provide single outputs
or predictions at a time. The initial idea was to write it inside a for-loop and create 24 different models,
one for each horizon time step. After some research, it became clear that this idea had already been
implemented in a likely more efficient manner, under the name of MultiOutputRegressor4.

Feature Engineering

The only information that is provided with the data to forecast is its time step and the time at which it
started (01-01-2018 at 00:00). In order to make an accurate model, features have to be extracted from
wherever possible.

By converting the time steps into date-time format, some periodic data can be obtained to help predict
the load. This includes hour, day of the week, month, day of the month, quarter, and day of the year.
By making some logical observations, some of these features can already be assumed are not going
to be very useful. This especially includes the month, quarter, and day of the year. When predicting
unseen data, the algorithm should try to use values for features that it has seen before. Since the data
provided only includes a year, and the model is going to be trained for most of the year excluding the
last few months, the day of the year, month, and quarter are not going to be repeated.

From the extracted features, there is yet another one that can be obtained: whether it’s a working day
or a holiday/weekend day. Reasonably, this should have a significant impact on the consumption of
energy, since it distinguishes between when people are likely to be home and when not.

Another significant point is that periodic features are initially interpreted as having a numerical value
(i.e. hour 0 is further from 23 than from 1), and can therefore be misinterpreted by the algorithm. One
way around this is to encode them in a cyclical manner: dividing 2π over the possible values of the
feature, assigning each an angle, and turning the feature into the sine and cosine of the angle. This
way, the total magnitude of the feature remains the same independent of which value it has. Due to the

3An algorithm that aims to be as time-efficient as possible.
4As its name suggests, it combinesmultiple regressionmodels that provide a single prediction at a time, in order to givemultiple

predictions. See website: https://scikit-learn.org/stable/modules/generated/sklearn.multioutput.MultiOutputRegressor.html
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non-linearities of the XGBoost, cyclical encoding may not prove as effective as for other models, but it
is still worth a try.

The best way to determine whether a particular feature is relevant or not is by training a model using all
the respective features, and then analyze their importance. As previously described in Section 6.1, the
feature importance, also referred to as gain, relates to the average gain in information that is obtained
thanks to that feature. In other words, it indicates how well the feature does in splitting the data. Since
it would take an unnecessarily long time to investigate the feature importances at all buses, 5 buses
are chosen at random, and a model is trained for each of them using all the date-time features. The
combined distribution of feature importances is displayed in a boxplot as seen in Figure 6.1. This should
give a good enough representation of which features should generally be included.

Figure 6.1: Relative date-time feature importances for buses 5, 9, 10, 14, 20.5

In the boxplot, it can be observed that the most important features are by far hour and working day. Also,
it can be noted that the values generally lie close to the average, no abnormally big spread happens.
Both the original and encoded version of the hour seem to be quite relevant. This might indicate that
some information from the original format is lost when encoding it. Nevertheless, the encoded version
is still more important and should be able to provide a significant representation of its original feature.
The same applies to the other features.

Since a large number of features is undesired, as it takes a lot of processing time and makes the
algorithm much more complicated, the aim is to only use the most important features. The lag features,
explained in the following section, have been shown to have very high importance compared to date-
time features (see Figure 6.2), so only the ones with average relative importance of more than 0.1 are
used (excluding the non-encoded hour feature as previously discussed). This results in the sine-cosine
encoding of hour, and the working day feature.

5Please be aware that these bus numbers are not the same as the ones in the grid. Only the buses that included loads could
be used, providing a total of 28 buses, which are renamed in the forecasting scene for simplicity.
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Lag Features

A quite important component for most models when aiming to forecast a time series variable is the
preceding values of that same variable, as it can give a great picture of the behaviour of the data [41].
The machine learning term for this is lag features.

The downside with the use of lag features, however, is that the dataset cannot begin until the point
where all the lagged features have been obtained (i.e. if a month of lagged features is used, the first
data point will be one month after the start of the year). This is not a problem if a large dataset is
available, but a year is not much, which limits how far back in time the lagged features can go.

In order to understand the relevance of each lagged value, the same principle is applied as for the date-
time features: 5 buses are chosen at random for which different models are trained using the chosen
date-time features (hour and workday), as well as all lag loads up until one week back. The combined
distribution of lag feature importances is investigated. However, there seem to be too many outliers in
the boxplot to make a significant plot out of it, even when reducing the amount of figures. Instead, only
the average importances are plotted as seen in Figure 6.2.

Figure 6.2: Relative lag feature importance (including the chosen date-time features) for buses 2, 4, 17, 18, 25.

Since there are many features, it is reasonable to think that the relative importance will be quite dis-
tributed. This can be observed as the maximum importance is just above 0.025 out of 1. Nevertheless,
a clear distinction can be made after the cosine encoding of the hour. The importance of working day
is just about 0.01, while the features that follow it can be concluded to be completely irrelevant. Fur-
thermore, it can be observed that the previous assumption about the date-time features not being very
relevant when compared to the total importance of all the lag loads is correct.

Not much can be said about the remaining lag loads, since they seem to be more or less equally
important. The only thing that can be done is to use the features with the same or more importance
as the lag 168 (1 week), to be on the safe side and use in a potential hyper-parameter optimization
algorithm.
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Hyper-parameters

Hyper-parameters are used to control the machine learning algorithms for the particular purpose re-
quired, in order to achieve the highest possible accuracy.

The important hyperparameters that this project is going to focus on are:

• Selected features
• Objective loss function: Since it is important to be relatively accurate everywhere, and hence
prioritize big errors first, the squared error function is chosen for loss.

• Learning rate: The effect of each tree on the final prediction. The standard is to set it at 0.1. [42]
• Lambda: L2 regularization term. The standard is 1.
• Gamma: Controls the pruning rate of individual trees. The standard is 0.
• Max depth: How many levels the base trees are allowed to split into. The standard is 3.
• Number of estimators: Total number of base trees connected in chain. The standard is 100.
• Subsample: What fraction of the training data is used at once in each tree. Used to avoid over-
fitting. Standard is 1.

• Early stopping rounds: If the model is given an evaluation set, this number decides how many
rounds the algorithm can keep on training without there being an improvement on the evaluation
score. However, if a hyper-parameter optimization algorithm is used, this should be discarded.

• Tree method: The tree construction algorithm used in XGBoost. If a regression with the objective
loss function of squared error is done, the hist method is recommended.

The default values for hyper-parameters are initially taken, in order to conduct the feature engineering.
By having determined the reasonable lag loads and date-time features to use, this limits the hyper-
parameter of selected features. The idea is to focus on a Tree-Structured Parzen Estimator (TPE)6
algorithm if possible, in order to achieve maximum accuracy and depth.

Results

Since it is not possible to compare all the buses in a detailed way, a random bus is chosen to be
portrayed in more detail. The bus is number 2.

Benchmarks
The benchmarks for which the algorithm had to perform better were predictions using an hour before,
a day before, and a week before. On bus 2, these give the following scores:

Benchmark Train MAE [MW] Test MAE [MW]
1 hour 17.4579 19.0587
1 day 23.9655 26.3669
1 week 8.7388 12.6324

Manual Optimization
The manual optimization version of the model makes use of a total of 7-days lagged load data, and
hour and workday, as discussed in Section 6.2.

The MAE scores for train and test respectively are 6.7997 MW and 11.8798 MW, which satisfies the
requirement of obtaining more accuracy than the benchmarks in all fields. While the error is quite low
(5% for a load of about 200 MW), a difference can still be observed between the training and testing
score. Most likely, this means the model has a slight over-fit at its current version.

The resulting 24-hour prediction at the first test time step can be observed in Figure 6.3a.
6A hyper-parameter optimization technique that recurrently redefines its beliefs and corrects its mistakes about the effect of

the hyper-parameters on the data.
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(a) First 24-hour prediction and actual values for bus 2, time step 6912. (b) Last 24-hour prediction and actual values for bus 2.

Figure 6.3: First and last time step simulation.

The picture shows a fairly accurate prediction and following of the general pattern. This prediction
has a mean absolute error of 8.1726 MW, which as expected is lower than the average since it is at
the beginning of the test data and the model has a better understanding due to the proximity of the
training data. For contrast, the fifteenth-to-last prediction is displayed in Figure 6.3b. This prediction
can directly be seen to not be as accurate as the previous one, which is logical, and with an MAE of
26.3083 MW. To depict the improvement in accuracy that is achieved when new data is obtained, the
course of a full day (24/12) is shown, and every 4 hours a new prediction is made based on the known
data. See figure 6.4.

Figure 6.4: A new prediction every 4 hours.

As can be observed in the picture, the first prediction (0h) starts being less and less accurate getting
replaced by predictions that have access to new data.

A final observation is that many of the predictions seem to be very accurate, almost too good to be true.
This may be due to the way that the load data is compiled in the original network, as it is not actual real
data but obtained based on assumptions.

6.3. Future Developments

The TPE algorithm was successfully implemented using Optuna7 with the test loss as objective function,
significantly increasing the model accuracy and generalization, but was not completed for the report.

7https://github.com/optuna/optuna
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Conclusion & Discussion

The requirements that were set for the Forecasting & Scenario module have been accomplished, both
those regarding the scenario and the forecasting. The mandatory requirements have been fulfilled,
and even if there is room for improvement, the trade-off requirements have also all been fulfilled. The
module includes a functional power grid configuration with accurate load and generation data, and
provides it correctly to the Visualization & Simulation module.

The model has been made open source, encouraging advancements in the field of power engineering.
Some trade-off requirements, such as simulating the Dutch power grid, have been implemented to
enhance user satisfaction. Additionally, the model uses AC representation, to attempt at making the
power grid experience realistic.

Overall, the module can be said to have been a success, even if time constraints have limited the
amount of progress that has been made, and that can still be made in the coming time. It is worth
noting that improvements to the project can still be made before the defense of the thesis.

7.1. Future work

Both the model for the power flow calculations and the forecasting section have room for improvement.
However, these have not been implemented due to time constraints.

One of the main issues that could be improved is the size of the dataset. It only includes one year of
limited hourly load data, which is relatively short compared to other studies of similar nature that have
a training set of multiple years.

Even if the choice for the machine learning model was fully justified, and the main focus of the project
was put on the XGBoost algorithm, other models could have been tried to ensure the XGB was the
best model in practice too.

Moreover, additional features could be used for the model, such as weather conditions (temperature,
wind speed, cloud cover, humidity, precipitation), economy, electricity prices, etc. This would however
be greatly time consuming for what would likely not be a big improvement in accuracy.

More importantly, the hyper-parameters can be fine-tuned. The method of Tree-structured Parzen
Estimator has been explored, and some work has been done with it already. This Bayesian optimization
framework is designed to efficiently search the hyper-parameter space for the optimal set of parameters
that improve the performance. This could significantly increase the accuracy of the model.

The power flow model selected in this project was aggregated, leaving room to extend this in a less
aggregated model. This would result in focusing not only on high-voltage but could extend to mid-range
or perhaps distribution, which would result in an even more complex model.

28



7.2. Tips 29

Additionally, another objective function could be used in the optimal power flow, as this project used
the economic dispatch as the function to minimize. Other objective functions such as minimization of
active and reactive power losses, maintaining a constant voltage profile or transmission investments
could also be interesting to investigate.

7.2. Tips

Important notes and tips for possible students to continue the project are: Finding the right power
flow model including the data was quite time-consuming and hard. When a new power flow model has
been found, it needs to be imported which requires a lot of libraries one might not have already installed.
Additionally, one has to get familiar with and understand the model which takes a lot of effort and time.
Moreover, the model could be written in a programming language which one might not have a lot of
experience with. As these models tend to be quite complex, it will take a lot of time to investigate all
the parameters of all the components in the model and their relationships.

Next to importing a power flow model, one should preferably also have an intricate understanding of
the power grid, there is a full world of knowledge and a lot of formulas to study. This is also true for
the machine learning part, especially because this is not a mandatory part of the Electrical Engineering
curriculum.

In a lot of papers, the full description of algorithms or methods, especially in the case of machine
learning techniques, is not clearly described. This might make it complicated to fully understand such
algorithms.

All in all, it was a very interesting project and a great amount was learned about subjects that had never
been touched before.
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A
XGBoost Main Functions

Some of the main functions especially made and used for the machine learning model are provided
here. To see the full code, both for the machine learning model and the simulation, refer to the github
link: https://github.com/bbucksch/BacelorEndProject.git

1 import pandas as pd
2 import numpy as np
3 from sklearn.model_selection import train_test_split
4 from xgboost import XGBRegressor
5 from sklearn.multioutput import MultiOutputRegressor
6 from sklearn.metrics import mean_absolute_error , mean_squared_error
7 import matplotlib.pyplot as plt
8 import pickle
9 import seaborn as sns
10

11 import holidays
12

13

14

15

16 # GET INDEXES OF DATA SUBSEQUENCES (ONE SUBSEQUENCE INCLUDES LAGGED (X) AND HORIZON (Y) LOADS
)

17

18 def get_subsequence_indexes(in_data_df, window_size, step_size):
19 # in_data_df = full (or train/test) dataset, window_size = number of lagged values +

predicted (horizon) values, step_size = spacing between datapoints
20

21 last_index = len(in_data_df)
22

23 subseq_first_idx = 0 # Subsequence start and end index
24 subseq_last_idx = window_size
25

26 subseq_indexes = []
27

28 while subseq_last_idx <= last_index: # Divide all data into subsequences (and get their
indexes)

29

30 subseq_indexes.append((subseq_first_idx, subseq_last_idx))
31

32 subseq_first_idx += step_size
33 subseq_last_idx += step_size
34

35 return subseq_indexes
36

37

38

39

40 # GET X,Y DATA SPLIT (EVERY DATAPOINT IS MADE UP OF SUB-SEQUENCE)
41

42 def get_xy_lagged(subseq_indexes, load_data, horizon_size, lag_size):

33



34

43

44 for i, idx in enumerate(subseq_indexes):
45

46 # Create subsequences
47 subsequence = load_data[idx[0]:idx[1]] # Flat np array
48

49 xi = subsequence[0: lag_size]
50 yi = subsequence[lag_size: lag_size + horizon_size]
51

52 if i == 0: # No existing array to append to
53 y = np.array([yi]) # Turn y and x into rows, to make an array of arrays
54 x = np.array([xi])
55

56 else:
57 y = np.concatenate((y, np.array([yi])), axis=0) # shape (datapoints, horizon)
58 x = np.concatenate((x, np.array([xi])), axis=0) # shape (datapoints, input

features)
59

60 return x, y
61

62

63

64

65 # GET DATETIME FEATURES
66

67 def create_dt_features(df):
68 df_c = df.copy()
69 df_c['Hour'] = df_c.index.hour
70 df_c['Workday'] = df_c.index.map(lambda x: 0 if (x in holidays.Netherlands() or x.

dayofweek in (5,6)) else 1) # 1 if workday, 0 if holiday or weekend
71 df_c['Dayofweek'] = df_c.index.dayofweek
72 df_c['Quarter'] = df_c.index.quarter
73 df_c['Month'] = df_c.index.month
74 df_c['Dayofyear'] = df_c.index.dayofyear
75 df_c['Dayofmonth'] = df_c.index.day
76 return df_c
77

78

79

80

81 # GET CYCLICAL ENCODING
82

83 def cyclical_encoding(df, features):
84 df_c = df.copy()
85

86 for f in features:
87 total_values = df_c[f].max() # E.g. total months = 12, starting at 1
88

89 if df_c[f].min() == 0: # If first value is 0, total values is 1 more e.g. 24 hours
90 total_values += 1
91

92 df_c[f + '_cos'] = np.cos(2*np.pi* df_c[f]/ total_values) # Encode into cos and sin
values, that way end value is close to start value

93 df_c[f + '_sin'] = np.sin(2*np.pi* df_c[f]/ total_values)
94

95 return df_c
96

97

98

99

100 # GET FORMATTED DATA (IN DATE-TIME) AND TRAIN-TEST SPLIT
101

102 def date_formatting(bus):
103

104 df = pd.read_csv(f"./data/bus_{bus}_load.csv")
105 df.index = pd.to_datetime(df.index, unit='h', origin=pd.Timestamp("2018-01-01"))
106 df.index.name = "Time"
107 df = create_dt_features(df)
108 df = cyclical_encoding(df, features=["Hour", "Dayofweek", "Quarter", "Month", "Dayofyear"

, "Dayofmonth"])
109
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110 # training_data = df[df.index < split_date] # Splitting data now will cause it to lose 24
training datapoints and 24*7 test datapoints

111 # test_data = df[df.index >= split_date]
112

113 return df
114

115 def allbus_date_formatting(buses=list(range(1, 29))):
116

117 allbus_df = {}
118

119 for b in buses:
120 allbus_df[b] = date_formatting(b)
121

122 return allbus_df
123

124

125

126

127 # GET X,Y DATA
128

129 def get_xy(in_data_df, step_size, horizon_size, hyperparameters):
130

131 subseq_indexes = get_subsequence_indexes(in_data_df = in_data_df, window_size =
hyperparameters["lag_size"] + horizon_size, step_size = step_size)

132

133 lagged_x, y = get_xy_lagged(subseq_indexes=subseq_indexes, load_data=in_data_df[
hyperparameters["selected_features"][0]].to_numpy(),

134 horizon_size=horizon_size, lag_size=hyperparameters["lag_size
"])

135

136 no_lag_features = in_data_df[hyperparameters["selected_features"][1:]].to_numpy() # Array
of features that are not lagged, by rows (each row a timestep)

137

138 first_timestep = hyperparameters["lag_size"] # Datapoints start after all lagged values
can be obtained

139 last_timestep = len(in_data_df) - (horizon_size - 1) # Last datapoint until it is
possible to obtain all horizon values (horizon_size - 1)

140

141 x = np.append(lagged_x, no_lag_features[first_timestep: last_timestep], axis=1) # Append
no-lag features to lagged load features

142

143 return x, y
144

145

146 def get_allbus_xy(allbus_in_data, hyperparameters, buses=list(range(1, 29)), step_size=1,
horizon_size=24):

147

148 allbus_x, allbus_y = {}, {}
149

150 for b in buses:
151 allbus_x[b], allbus_y[b] = get_xy(allbus_in_data[b], step_size, horizon_size,

hyperparameters)
152

153 return allbus_x, allbus_y
154

155

156

157

158 # GET X,Y SPLIT IN TRAIN, TEST
159

160 def split_train_test(x, y, lag_size, split_date="2018-10-16", train_val_split=0.8): #
Timestep 6912

161

162 original_timestep = (pd.Timestamp(split_date) - pd.Timestamp("2018-01-01␣00:00:00")).
total_seconds()/3600 # Get original timestep (hour) from split date

163 split_timestep = int(original_timestep - lag_size) # Split timestep in the new dataframe
(starts at timestep lag_size)

164

165 x_tr = x[:split_timestep]
166 y_tr = y[:split_timestep]
167
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168 x_train, x_val = x_tr[:int(train_val_split * len(x_tr))], x_tr[int(train_val_split * len(
x_tr)):] # Split in train and validation

169 y_train, y_val = y_tr[:int(train_val_split * len(y_tr))], y_tr[int(train_val_split * len(
y_tr)):]

170

171 x_test = x[split_timestep:]
172 y_test = y[split_timestep:]
173

174 return x_train, y_train, x_val, y_val, x_test, y_test
175

176

177 def allbus_split_train_test(allbus_x, allbus_y, lag_size, buses=list(range(1, 29)),
split_date="2018-10-16", train_val_split=0.8):

178

179 allbus_x_train, allbus_y_train, allbus_x_val, allbus_y_val, allbus_x_test, allbus_y_test
= {}, {}, {}, {}, {}, {}

180

181 for b in buses:
182 allbus_x_train[b], allbus_y_train[b], allbus_x_val[b], allbus_y_val[b], allbus_x_test

[b], allbus_y_test[b] = \
183 split_train_test(allbus_x[b], allbus_y[b], lag_size, split_date, train_val_split)
184

185 return allbus_x_train, allbus_y_train, allbus_x_val, allbus_y_val, allbus_x_test,
allbus_y_test

186

187

188

189

190 # GET AND STORE ALL MODELS FOR ALL BUSSES AND THEIR TRAIN/TEST SCORES
191

192 def get_model(x_train, y_train, x_val, y_val, x_test, y_test, hyperparameters, score_function
):

193

194 if x_val == "None" or y_val == "None":
195 model = XGBRegressor(n_estimators=hyperparameters["n_estimators"], max_depth=

hyperparameters["max_depth"], subsample=hyperparameters["subsample"],
196 gamma=hyperparameters["gamma"], reg_lambda=hyperparameters["

lambda"], objective="reg:squarederror", tree_method="hist",
197 verbosity=3, learning_rate=hyperparameters["learning_rate"])
198

199 trained_model = MultiOutputRegressor(model).fit(x_train, y_train, verbose=True) #
Evaluate on validation data

200

201 valid_score = None
202

203

204

205 else:
206 model = XGBRegressor(n_estimators=hyperparameters["n_estimators"], max_depth=

hyperparameters["max_depth"], subsample=hyperparameters["subsample"],
207 gamma=hyperparameters["gamma"], reg_lambda=hyperparameters["

lambda"], objective="reg:squarederror", tree_method="hist",
208 verbosity=3, learning_rate=hyperparameters["learning_rate"],

early_stopping_rounds=hyperparameters["early_stopping_rounds"
])

209

210 trained_model = MultiOutputRegressor(model).fit(x_train, y_train, fit_params={"
eval_set": [(x_val, y_val)]}, verbose=True)

211 # Evaluate on validation data
212

213 valid_forecasts = trained_model.predict(x_val)
214 valid_score = score_function(y_val, valid_forecasts)
215

216 train_forecasts = trained_model.predict(x_train)
217 train_score = score_function(y_train, train_forecasts)
218

219 test_forecasts = trained_model.predict(x_test)
220 test_score = score_function(y_test, test_forecasts)
221

222 model_score = {"Train␣score": train_score, "Validation␣score": valid_score, "Test␣score":
test_score}
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223

224 return trained_model, model_score
225

226

227 def get_models(models_datapath, hyperparameters, score_function, buses=list(range(1, 29)),
horizon_size=24, step_size=1,

228 allbus_x_train="None", allbus_y_train="None", allbus_x_val="None",
allbus_y_val="None", allbus_x_test="None", allbus_y_test="None"):

229

230 trained_models = {}
231 model_scores = {}
232

233 for bus in buses:
234

235 if (allbus_x_train != "None") and (allbus_y_train != "None") and (allbus_x_test != "
None") and (allbus_y_test != "None"): # If they're all defined

236 x_train, y_train, x_val, y_val, x_test, y_test = allbus_x_train[bus],
allbus_y_train[bus], allbus_x_val[bus] if allbus_x_val != "None" else "None",
\

237 allbus_y_val[bus] if allbus_y_val != "None" else "None", allbus_x_test[bus],
allbus_y_test[bus]

238

239 else:
240 print("Missing␣input␣data␣to␣get_models()")
241

242 df = date_formatting(bus)
243

244 x, y = get_xy(df, step_size, horizon_size, hyperparameters)
245

246 x_train, y_train, x_val, y_val, x_test, y_test = split_train_test(x, y,
hyperparameters["lag_size"])

247

248

249 trained_model, model_scores[bus] = get_model(x_train, y_train, x_val, y_val, x_test,
y_test, hyperparameters, score_function)

250

251 trained_models[bus] = trained_model
252

253 # Store models
254 with open(f"{models_datapath}/MOR_bus{bus}.pkl", "wb") as f1:
255 pickle.dump(trained_model, f1)
256

257 # Store model scores
258 with open(f"{models_datapath}/MOR_scores.pkl", "wb") as f2:
259 pickle.dump(model_scores, f2)
260

261 return trained_models, model_scores
262

263

264

265

266

267 # --------------------------------------------- FEATURE IMPORTANCES
------------------------------------------------------

268

269

270 def get_boxplot(chosen_buses, trained_models, feature_names):
271 allbus_importances = []
272 allbus_importance_names = []
273

274 for bus in chosen_buses:
275 allbus_importances.append(np.concatenate([trained_models[bus].estimators_[t].

feature_importances_ for t in range(24)]))
276 allbus_importance_names.append(np.concatenate([feature_names for _ in range(24)]))
277

278 importance = np.concatenate(allbus_importances)
279 ft_name = np.concatenate(allbus_importance_names)
280

281 feature_importance_df = pd.DataFrame({"Feature": ft_name, "Importance": importance})
282
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283 sorting = feature_importance_df.groupby("Feature").mean().sort_values(by="Importance",
ascending=False)

284

285 plot = sns.boxplot(data=feature_importance_df , x="Feature", y="Importance", order=sorting
.index).set_xticklabels(sorting.index, rotation=80)

286

287 return feature_importance_df , sorting, plot
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