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ACCURATE EVALUATION OF EUROPEAN AND AMERICAN
OPTIONS UNDER THE CGMY PROCESS∗
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Abstract. A finite-difference method for integro-differential equations arising from Lévy driven
asset processes in finance is discussed. The equations are discretized in space by the collocation
method and in time by an explicit backward differentiation formula. The discretization is shown to
be second-order accurate for a relevant parameter range determining the degree of the singularity in
the Lévy measure. The singularity is dealt with by means of an integration by parts technique. An
application of the fast Fourier transform gives the overall amount of work O(NtN logN), rendering
the method fast.
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1. Introduction. In a seminal paper from 1973, Black and Scholes [8] derived
a PDE for option prices, when asset prices behave according to the geometric Brown-
ian motion. The pricing formulas obtained in that paper represented a major break-
through in understanding financial derivatives, to such an extent that financial institu-
tions and traders immediately adopted the new methodology. Later empirical studies
revealed that the normality of the log-returns, as assumed by Black and Scholes, could
not capture features like heavy tails and asymmetries observed in market-data log-
return densities [12]. The Black–Scholes model assumes in addition constant problem
parameters, interest rate, and volatility for the time until the option’s expiration (also
called maturity). This contradicts the existence of the so-called volatility smile: A
numerical inversion of the Black–Scholes formula based on data from different strike
prices and fixed maturity resembles a skew or a smile, implying nonconstant volatility.
This inconsistency is said to be one of the causes for famous market crashes.

To explain these empirical observations, a number of alternate models have ap-
peared in the financial literature: stochastic volatility [25, 28], deterministic local
volatility [17, 20], jump-diffusion [29, 33], and infinite activity Lévy models [7, 15, 21].
Each of these models has its advantages and disadvantages. Jump-diffusion and in-
finite activity Lévy models are attractive since they can capture the jump patterns
exhibited by some stocks and they are more realistic when pricing options close to ma-
turity [18]. Processes with infinite activity, without a diffusion component, represent
a family that describes the high activity of the prices, while at the same time they
reflect the empirical features desirable in a good model. The pricing equations are,
however, numerically more challenging, and the market turns out to be incomplete in
the sense that a strategy leading to an instantaneous risk-free portfolio does not exist
in general [16, 34].
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Due to the close link between the stochastic martingale approach and the PDE
approach [24, 30] the field of computational finance has gained a tremendous impulse
from well-established numerical techniques for PDEs. For an overview we refer the
reader to the introductory books [26, 37]. The development of analogous reliable
techniques under Lévy markets is a subject of present research [5, 6, 19] for jump-
diffusions and for the infinite activity case [3, 4, 16, 27, 32]. In these papers the
numerical solution of a partial integro-differential equation (PIDE) has been addressed
as a tool to calculate option prices.

When valuing and risk managing exotic derivatives, practitioners demand fast
and accurate prices and sensitivities. Aside from nonstandard exotic derivatives, plain
vanilla options in many stock markets are actually of the American (i.e., early exercise)
type, for which no analytic solutions exist. As any pricing and risk management
system has to be able to calibrate to these plain vanilla options; it is of the utmost
importance to be able to value these American options quickly and accurately. This
paper deals with a fast, accurate evaluation of options when the underlying process
is a Carr–Geman–Madan–Yor (CGMY) Lévy process of infinite activity and finite
variation, considered in finance in [13]. In previous work [3, 4], we computed the
integral term in the PIDE by the trapezoidal rule, a choice that produced a first-
order accurate overall convergence. Our contribution here is to show that second-order
convergence may be obtained for a large range of the problem parameters (0 < α < 1
in (2) below).

The approach in this paper differs from existing methods in the literature. We
use an integration by parts technique to rewrite the integro-differential operator in
terms of Volterra operators with a weakly singular kernel. The vast classical numer-
ical literature on this type of operator [10, 11, 31] proves very useful to set up a
high-order discretization method. Here we focus on one particular method that has
been thoroughly tested in [11], namely, the collocation method for Volterra equations.
The integro-differential operator in this new setting is not in the standard form in the
literature, so the techniques need to be adapted to this particular example. The com-
putation of integrals is expensive, since the number of operations involved is in general
of order O(N2). With the help of the fast Fourier transform (FFT) algorithm it is
possible to speed up computations to gain an almost linear complexity (O(N logN)),
provided the grid employed is uniform. The method proposed allows the application
of the FFT algorithm. In the context of weakly singular Volterra (integro-differential)
equations, this has been implemented in [23].

The paper is organized as follows. Section 2 offers a brief introduction to finan-
cial derivatives under exponential Lévy models together with the integro-differential
equations of interest. Section 3 contains the core of the paper: the transformation of
the equation by integration by parts, the collocation method on the resulting weakly
singular Volterra equation, and a time integration method. A series of numerical
experiments is presented in section 4, confirming the second-order accuracy of the
discretization. One of the advantages of the collocation method is that one can deal
with complicated payoffs, e.g., for butterfly options, straddles, etc., without affecting
the accuracy. The numerical experiments in section 4 will confirm this statement.
Technical details regarding the discretization are placed in appendices. A stability
analysis for a model problem is also given in an appendix.

2. The exponential Lévy model in finance. Let us briefly introduce the
exponential Lévy model. By a Lévy process {Lt}t≥0 we mean any process starting
at the origin, with stationary, independent increments. We restrict ourselves to those
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Lévy processes that can be expressed as

Lt = (r − q + ζ)t + σWt + Zt,(1)

where r ≥ 0 and q ≥ 0 denote the risk-free interest rate and the continuous dividend
paid by some asset St, respectively. The parameter σ denotes the volatility. This
process has a drift term controlled by ζ, a Brownian component {Wt}t≥0, and a pure-
jump component {Zt}t≥0. We focus on the case where the Lévy measure associated
to Zt (see [16]) can be written as dν(x) = k(x)dx, where the weight k(x) is defined as

k(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
C

exp(−G |x|)
|x|1+α if x < 0,

C
exp(−M |x|)

|x|1+α if x > 0

(2)

for constants C > 0, G ≥ 0, M ≥ 0, and α < 2. The process {Zt}t≥0 is known in the
literature as the CGMY process [13]; it generalizes a jump-diffusion model by Kou [29]
(α = −1) and the Variance Gamma (VG) process [15] (α = 0). The CGMY process
is in turn a particular case of the Kobol process studied in [9], where the constant
C is allowed to take on different values on the positive and negative semiaxes. For
convenience of notation, we have chosen parameter α instead of the Y in [13].

2.1. Option pricing under the CGMY process. Let a market consist of
one risky asset {St}t≥0 and a bank account {Bt}t≥0. Assume that the asset process
{St}t≥0 evolves according to the geometric law

St = S0 exp(Lt),(3)

where {Lt}t≥0 is the Lévy process defined in (1), and the bank account follows the
law Bt = exp(rt).

The standard tool to assign prices to options under Lévy processes consists in
changing to a convenient probability measure and taking the expectation of the dis-
counted prices. The new probability measure Q is known in the financial literature
as the equivalent martingale measure (EMM). It has the same null sets as the mar-
ket probability, and the discounted process {e−(r−q)tSt}t≥0 becomes a martingale.
The so-called EMM condition EQ[St] = S0e

t(r−q) together with the formula for the
characteristic exponent of Lt [16],

EQ[exp(Lt)] = exp

{
t

[
(r − q + ζ) + σ2/2 +

∫
R

(ex − 1)k(x)dx)

]}
,(4)

implies the following “risk-neutral” form for ζ (denoted by �):

� + σ2/2 +

∫
R

(ex − 1)k(x)dx = 0.(5)

Techniques used in Appendix A produce the following expression for �:

� = −σ2

2
− CΓ(−α) {(M − 1)α −Mα + (G + 1)α −Gα}(6)



96 ARIEL ALMENDRAL AND CORNELIS W. OOSTERLEE

with Γ(·) the gamma function. Note that ζ controls the drift of the market process,
whereas � is a new parameter controlling the drift in the artificial world described by
the new probability measure Q, under which options can be priced straightforwardly.
The same notation is kept for the risk-neutral parameters G and M . The other
parameters σ, C, and α remain unchanged when passing to the Q measure; see, e.g.,
[16]. M must be larger than one for � to be well defined.

European vanilla options. Consider a European option on the asset {St}t≥0,
with maturity time T , and strike price K. Let û(s, t) denote its price, with t denoting
the time to expiration. It is well known that û satisfies a PIDE; see, for example, [16].
In order to write a convenient expression for the PIDE, let s = exp(x) and consider
the log-prices u(x, t). Then in general u solves the Cauchy problem⎧⎨⎩

ut − Lu = 0, t ∈ (0, T ], x ∈ R,

u(x, 0) = ψ(x), x ∈ R,
(7)

where L is an integro-differential operator of the form

Lϕ :=
σ2

2
ϕxx +

(
r − q − σ2

2

)
ϕx − rϕ

+

∫
R

[ϕ(x + y, t) − ϕ(x, t) − (ey − 1)ϕx(x, t)] k(y)dy,(8)

and the so-called payoff function ψ defines the nature of the contract. For example,
for a put option ψ(x) = (K−ex)+, meaning that the holder of the option is entitled to
receive the payment K − ST if the asset value falls below the threshold K; otherwise
the option expires worthless.

For the particular case under consideration, namely, α < 1, the third term in the
integral operator may be computed explicitly (cf. (5)), resulting in the expression

Lϕ :=
σ2

2
ϕxx + (r − q + �)ϕx − rϕ +

∫
R

[ϕ(x + y, t) − ϕ(x, t)] k(y)dy.(9)

This operator reduces to the Black–Scholes operator if no jumps are present, i.e.,
k ≡ 0.

American vanilla options. Consider as a matter of example an American put
option written on the underlying asset {St}t≥0. It is also well known that its price
may be found by solving the free-boundary problem [16]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut − Lu = 0, t > 0, x > xf (t),

u(x, t) = K − ex, t > 0, x ≤ xf (t),

u(x, t) ≥ (K − ex)+, t > 0, x ∈ R,

ut − Lu ≥ 0, t > 0, x ∈ R,

u(0, x) = (K − ex)+, x ∈ R,

(10)

where the operator L is defined in (8) and the free-boundary is given by

xf (t) = inf
{
x ∈ R | u(x, t) > (K − ex)+

}
, t ∈ (0, T ].(11)
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The set {x ∈ R | x ≤ xf (t)} represents the exercise region for the logarithmic prices.
Hence, for asset prices s ≤ sf (t) := exp(xf (t)), the American put should be exercised.

For numerical purposes, a useful reformulation of (10) is the following linear
complementarity problem (LCP):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut − Lu ≥ 0 in [0, T ] × R,

u ≥ ψ in [0, T ] × R,

(ut − Lu) (u− ψ) = 0 in [0, T ] × R,

u(x, 0) = ψ(x).

(12)

This formulation does not make use of the free-boundary explicitly, and besides, it
does not rely on the form of the continuation region. The free-boundary can be
obtained in a postprocessing step by using the relation (11).

3. Discretization of the integral term.

3.1. Integral equation over the positive semiaxis. The core of the numeri-
cal method that we propose here lies on a proper discretization of integral expressions
of the form

f(x) =

∫ ∞

0

(u(x + y) − u(x))
e−My

y1+α
dy(13)

that appear in the definition of L in (9). For ease of notation we have omitted the
time variable. We suppose that u is known and we would like to approximate f(x).
The reason for not solving with respect to u in the first place is that we will use an
explicit time-stepping scheme for solving (7). In the applications, the function u(x)
can be continuous but need not be differentiable at certain points.

Integration by parts of (13) yields

f(x) = −[u(x + y) − u(x)]k̂(y)
∣∣∣∞
0

+

∫ ∞

0

uy(x + y)k̂(y)dy,(14)

where we have introduced the function

k̂(w) :=

∫ ∞

w

e−Mζ

ζ1+α
dζ, w > 0.(15)

This new kernel may be written in terms of the upper incomplete gamma function
Γ(·, ·); see (50) in Appendix A for a definition and also [1] for some properties. The
following expression holds:

k̂(w) = MαΓ(−α,Mw).(16)

Under rather general conditions on the function u(x), the first term in (14) vanishes.
A possible set of sufficient conditions is

• The function u satisfies the Lipschitz condition; i.e., there is a constant C0

such that

|u(z1) − u(z2)| ≤ C0 |z1 − z2| ∀z1, z2 ∈ R.(17)
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• There exist constants C1 ≥ 0 and 0 ≤ C2 < M such that

|u(z)| ≤ C1e
C2z, z → +∞.(18)

If these two conditions hold, it is not difficult to show that

lim
y→0

[u(x + y) − u(x)]k̂(y) = lim
y→∞

[u(x + y) − u(x)]k̂(y) = 0.(19)

For commonly used functions in option pricing like u(x) = (K − ex)+ and u(x) =
(ex −K)+, both conditions above hold.

Changing variable z = x+y, integral equation (14) reduces to a Volterra equation
of the first kind:

f(x) =

∫ ∞

x

uz(z)k̂(z − x)dz.(20)

This kind of equation has been intensively studied in the last century, both the-
oretically and numerically; see [10, 11, 31] and the references therein. In this paper
we follow very closely the notation in [11].

3.1.1. Collocation method on positive semiaxis. The first observation con-
cerns the order of the singularity of the kernel k̂. It is not difficult to realize that k̂
behaves like y−α, as y → 0. Hence, the integral equation (20) classifies as a weakly
singular Volterra equation.

Motivated by the above observations, let us introduce a notation for a new kernel
k̃ and the derivative v of u, i.e.,

k̃(w) := wαk̂(w), v := uz.(21)

From now on we focus on the discretization of the integral equation

f(x) =

∫ ∞

x

(z − x)−αv(z)k̃(z − x)dz,(22)

following [11] closely. In this form it resembles the well-studied Abel equation [31].
In the examples considered in this paper, the functions u have a rapidly decaying
derivative at infinity. Thus, one may truncate this integral to a finite interval x ∈ [a, b]
while having control of the error. An analysis of the size of the truncation domain is
given in section 3.1.3 and a numerical test is presented in section 3.1.4.

Let us consider the following (not necessarily uniform) spatial mesh

x0 = a; xn+1 = xn + hn, n = 0, . . . , N − 1; xN = b.(23)

Equation (22) is discretized by the collocation method. A discretization with two
collocation points for each mesh point is considered here. For a more general treatment
we refer the reader to [11].

The first step is to choose two numbers c1 and c2 such that

0 ≤ c1 < c2 < 1.(24)

With these constants the collocation mesh is defined as follows (see Figure 1):

xn,j = xn + cjhn, n = 0, . . . , N − 1; j = 1, 2.(25)
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xn xn,1 xn+1xn,2

hn

Fig. 1. Collocation mesh and spatial mesh.

The polynomial spline collocation method now consists, roughly speaking, in finding
a polynomial spline V (z), replacing the function v(z) such that (22) holds exactly
at each of the collocation points xn,j . The technical details of the treatment of the
Volterra equation when the variable of integration runs through the positive semiaxis
are presented in Appendix B. For the negative semiaxis the discretization is very
similar and is explained in Appendix C. Considering the collocation parameters 0 <
c1 < c2 ≤ 1, the collocation mesh for the negative semiaxis is defined as in (23);
however, these two meshes are typically different. This time c1 	= 0. In section 3.2 we
couple both integrals with the use of a common spatial mesh.

Remark 3.1. The convergence of polynomial spline collocation methods for first-
kind Volterra integral equations with integrable algebraic kernel singularities is still an
open problem; see, e.g., [22] and [10, Chapter 6]. The convergence properties of these
collocation methods, like for the nonstandard weakly singular Volterra equation (22)
(integration from x to ∞) have not yet been studied at all. We will present numerical
experiments showing that two-point collocation based on the collocation parameters c1
and c2 yield convergent schemes. The theoretical foundation for this is, however, still
lacking.

3.1.2. Smoothing the kernel. A simple numerical experiment with (22) re-
veals that the order of the discretization is only O(h) (cf. Table 1). At first glance it
seems that the problem is caused by the nonsmooth payoff. However, the cause of this
loss of accuracy is the lack of smoothness of the kernel k̃. This can be easily remedied
by a convenient rewriting of the integral equation. One possible remedy is based on
an expansion of the kernel such that the nonsmooth component can be identified. We
will add a subscript “+” to the kernel to indicate that we work with the positive of
the Lévy measure. A first integration by parts yields

k̂(x) =

∫ ∞

x

e−My

y1+α
dy =

e−Mxx−α

α
− M

α

∫ ∞

x

e−Myy−αdy.

A second integration by parts for the integral on the right-hand side gives rise to the
identity∫ ∞

x

e−My

y1+α
dy =

e−Mxx−α

α
+

Me−Mxx1−α

α(1 − α)
− M2

α(1 − α)

∫ ∞

x

e−Myy1−αdy.

So, if we define the constant

θ+ :=
M2

α(1 − α)

∫ ∞

0

e−Myy1−αdy,

the new kernel

k+(x) := k̃(x) + θ+x
α =

e−Mx

α
+

Me−Mxx

α(1 − α)
− M2xα

α(1 − α)

∫ x

0

e−Myy1−αdy
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becomes a differentiable function, in contrast to the original kernel k̃(x) in (21) which
is only continuous. Moreover, due to the second integration by parts, k+ is even
twice continuously differentiable. Indeed, differentiating twice the relevant term on
the right-hand side and neglecting the smooth terms give

xα−2

∫ x

0

e−Myy1−αdy,

which is continuous, but not differentiable. A final observation is that θ+ may be
written in terms of the gamma function Γ(·); i.e.,

θ+ =
MαΓ(2 − α)

α(1 − α)
.(26)

The observations lead to the integral equation

f(x) =

∫ ∞

x

(z − x)−αv(z)k+(z − x)dz − θ+

∫ ∞

x

v(z)dz.(27)

Notice that (27) is merely a rewriting of (22), but the kernels present in (27) are
smoother. One could continue integrating by parts and extract the smooth compo-
nents of k̃. For numerical efficiency this is however not advisable as each additional
term means a new integral to be computed numerically, increasing therefore the com-
plexity. In order to avoid truncation errors we treat both terms on the right-hand
side in (27) numerically.

3.1.3. Analysis of the truncation error. We sketch an argument that pro-
vides an estimate for the truncation error. The details have been omitted for clarity.

It is known that the solution u of (7) admits the stochastic interpretation

u(x, t) = e−rtEQ[ψ(x + Lt)].(28)

Consider the case of a put option, i.e., ψ(x) = (K − ex)+. Denoting by q̂(y) the
probability density function of the variable Lt, we may write

u(x, t) = e−rt

∫ logK−x

−∞
(K − ex+y)q̂(y)dy.

Differentiating this expression with respect to x yields

ux(x, t) = −e−rt+x

∫ logK−x

−∞
ey q̂(y)dy.

Since ey ≤ Ke−x for y ≤ log(K) − x, the following estimate holds:

|ux(x, t)| ≤ Ke−rt.(29)

This is a global estimate. A more detailed analysis shows that the derivative of a
put decays exponentially, giving a sharper estimate. For our purposes this bound is
sufficient. An estimate for the truncation error may be obtained as follows:

(30)

∣∣∣∣∫ a

−∞
uz(z, t)k̂−(x− z)dz +

∫ +∞

b

uz(z, t)k̂+(z − x)dz

∣∣∣∣
≤ Ke−rt

[∫ a

−∞
k̂−(x− z)dz +

∫ +∞

b

k̂+(z − x)dz

]
.
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Both integrals on the right-hand side have exponential decay as a → −∞ and b →
+∞. Namely, from (15), a rough estimate is the following:

k̂+(w) ≤ Ce−Mw.(31)

Therefore, the second integral on the right-hand side may be bounded by

C+

M
e−M(b−x).

An analogous analysis shows that the first integral is controlled by

C−

G
e−G(x−a).

These estimates show that, away from the end points a and b, the error decreases
exponentially. Close to the end points the exponential decay of the derivative ux (for
a put option) will play a role in reducing the error by truncation.

3.1.4. First numerical experiments. In this section we first show that the
collocation method applied to (27) gives at least a quadratic discretization error. We
choose the payoff function for a put option u(x) = (1− ex)+ and compare it with the
analytic formula for f(x) derived in Appendix A (52). Moreover, we check that indeed
the same method applied to (22) gives only a linear order, so that the smoothing of
the integrand as explained in section 3.1.2 is necessary for second-order accuracy. The
results are displayed in Table 1. The parameters used are α = 0.8 and M = 5 and the
mesh is uniform. The truncation of the domain is in accordance with the analysis in
section 3.1.3. In particular, the computational domain in this example is the interval
[−5, 5]. The truncation does not influence the accuracy negatively.

The same convergence results hold on a nonuniform grid, but we are then not
able to apply the FFT algorithm (discussed in section 3.4 and in detail in [3]) to
make computations fast. On the other hand, the discretization order depends on the
choice of the collocation parameters c1 and c2, as Table 1 shows. We actually observe
superconvergence at the collocation points with the Radau parameters c1 = 0 and
c2 = 2/3. This is in accordance with the results from [11].

Table 1

Discretization errors with the collocation method.

Eq. (27) Eq. (22)
c1 = 0, c2 = 0.5 c1 = 0, c2 = 2/3 c1 = 0, c2 = 0.5

N �∞-error rate �∞-error rate �∞-error rate
20 0.0839 0.02314 0.248
40 0.0240 3.4 0.00366 6.3 0.148 1.6
80 0.0065 3.6 0.00057 6.4 0.079 1.8
160 0.0017 3.8 0.00009 6.3 0.041 1.9

In order to obtain superconvergence on the negative semiaxis, the Radau points
must be chosen as c1 = 1/3 and c2 = 1.

3.2. Assembling the PIDE. Recall that our main goal is to solve a PIDE of
the form (7) with the operator L given by (9). The interesting case is when σ = 0, i.e.,
no smoothing takes place caused by a diffusion component. In case we deal with σ > 0,
the ideas discussed in this paper still apply, but then special care of the diffusion needs



102 ARIEL ALMENDRAL AND CORNELIS W. OOSTERLEE

to be taken by means of an implicit-explicit scheme as in [3, 4, 16], where the diffusion
part is taken implicitly and early exercise is dealt with by projection methods.

The considerations from previous sections lead us to consider the following rewrit-
ing of (7):

ut + ru = CI+(uz) + CI−(uz) + μux,(32)

with the constant (cf. (6))

μ := r − q + �,(33)

and the operators

I+(uz) :=

∫ +∞

x

(x− z)−αuz(z)k+(z − x)dz − θ+

∫ +∞

x

uz(z)dz,(34)

I−(uz) := −
∫ x

−∞
(x− z)−αuz(z)k−(z − x)dz + θ−

∫ x

−∞
uz(z)dz.(35)

Note that these operators involve both the function u and its derivative v = uz. To our
knowledge, PIDEs like (32)–(35) have not been considered in the existing literature
on Volterra equations.

If one applies a time integration procedure, one faces the problem of finding the
numerical derivative of the unknown for a next time step, discussed in section 3.2.1.
This is related to the treatment of the term μux in a consistent way.

In (32) we make a “superposition” of two operators. The positive operator be-
haves essentially as a “convection term” in that the solution is “transported” in the
negative direction. The negative operator behaves exactly opposite, “transporting”
the solution in the positive direction.

Remark 3.2. We observed that optimal convergence properties are attained when
considering Radau points, as in Table 1. For the positive part this amounts to taking
the collocation mesh X+ as xn,0 = xn and xn,1 = xn + 2

3hn; whereas for the negative
operator the Radau collocation mesh X− is xn,0 = xn + 1

3hn and xn,1 = xn+1.
To couple the partial results over these two different meshes we propose here

a straightforward interpolation: the evaluation of the integral on the X+ and X−

meshes is interpolated to the “base mesh” X+ ∪X−. We use a simple linear interpo-
lation, though a higher-order interpolation is in principle also applicable.

3.2.1. Local differentiation formulas due to the collocation method.
There are several choices to discretize the numerical derivative in (34)–(35). The
stable one is to apply once more the collocation method to the equation

u(x) = −
∫ b

x

v(s)ds + u(b)(36)

for the positive integral. For the negative integral one should instead use the formula

u(x) =

∫ x

a

v(s)ds− u(a).(37)

The formulas for the negative operator were derived in [11]. We have derived them for
the positive operator. The formulas are summarized below for the sake of complete-
ness. The formulas associated to (36) are called “forward formulas,” and the ones
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associated to (37) “backward formulas.” As remarked in [11], to be able to obtain
stable local differentiation formulas, one of the collocation points must coincide with
one extreme of the interval, namely, 0 = c1 < c2 < 1. For the backward formulas one
must have 0 < c1 < c2 = 1. One picks two arbitrary numbers ν1, ν2 ∈ [0, 1], that need
not be the same for the forward and backward formulas.

Forward formulas. On collocation point xn,1:

(38) Vn,1 =
1

hnc2(1 − c2)
[c2(2ν1 − c2)u(xn + hn)

+ (1 − 2ν1)u(xn + c2hn) + ((c2)
2 + 2(1 − c2)ν1 − 1)u(xn)]

On collocation point xn,2.

(39) Vn,2 =
1

hnc2(1 − c2)
[c2(2ν2 − c2)u(xn + hn)

+ (1 − 2ν2)u(xn + c2hn) + ((c2)
2 + 2(1 − c2)ν2 − 1)u(xn)]

Backward formulas [11].

(40) Vn,1 =
1

hnc1(1 − c1)
[c1(2ν1 − c1)u(xn + hn)

+ (1 − 2ν1)u(xn + c1hn) + ((c1)
2 + 2(1 − c1)ν1 − 1)u(xn)]

(41) Vn,2 =
1

hnc1(1 − c1)
[c1(2ν2 − c1)u(xn + hn)

+ (1 − 2ν2)u(xn + c1hn) + ((c1)
2 + 2(1 − c1)ν2 − 1)u(xn)].

We now explain the treatment of the term μux. The consistent way of discretizing
this term is by taking into account the transport of information produced by each of
the integral operators. We may summarize the criterion as follows.

Remark 3.3. The term μux is discretized according to the sign of μ: by a forward
collocation derivative (formulas (38)–(39)) if μ > 0, or by a backward collocation
derivative (formulas (40)–(41)) if μ < 0.

3.3. Time integration. Let k be the time step size, tm = mk, for m =
0, . . . , Nt. For a European option, the explicit backward differentiation formula (BDF)
method reads

3

2
um − 2um−1 +

1

2
um−2 + krum = k[I+(v̄m) + I−(v̄m) + μv̄m],(42)

where v̄m = 2vm−1 − vm−2, and I+, I− denote the discretizations by collocation of
the operators I+ and I−, respectively. The addition on the right-hand side needs to
be properly defined, as we add quantities that are not defined over the same mesh.
To give a meaning to this sum, consider the base mesh X+∪X−, i.e., the mesh where
these additions make sense. Let us consider the case of Radau points. Let P+ denote
the prolongation operator from X+ to X+ ∪X−. An example of such a prolongation
is the following:

P+(w)3k = wk,1,(43)

P+(w)3k+1 = (wk,1 + wk,2)/2,(44)

P+(w)3k+2 = wk,2(45)
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for k = 0, . . . , N − 1. A negative prolongation P− may be defined likewise. Then, the
sum of integrals in (42) is in the sense P+(I+(v̄m)) + P−(I−(v̄m)). If the collocation
parameters are chosen to be c1 = 0, c2 = 0.5 for the positive situation and c1 =
0.5, c2 = 1 for the negative situation, one does not need to interpolate as the meshes
coincide, except for boundary points. However, this choice is less accurate as pointed
out in section 3.1.4.

Each derivative vm present in the integrands is evaluated by the local differenti-
ation formulas of section 3.2.1. An iteration of the form

um = J(vm−1, vm−2)(46)

is then found after collecting the prolongation terms. The first input to this iteration
is the collocation derivative of the payoff v0, and the second, v1, is the result of
differentiating one explicit Euler iteration.

For American options the iteration is similar:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

um ≥ J(vm−1, vm−2),

um ≥ ψ,

(um − J(vm−1, vm−2), um − ψ) = 0,

u0 = ψ.

(47)

Here (·, ·) is the standard inner product in R
3N , because these iterations are carried

out in a mesh of size 3N due to the collocation points and the size of the base mesh.
The solution of this discrete LCP is simply um = max(J(vm−1, vm−2), ψ).

3.4. The algorithm. We summarize the techniques discussed in an algorithm.
The notations vf and vb stand for the forward and backward collocation derivative,
respectively, as in section 3.2.1. The operator P+(u) means the prolongation oper-
ator by interpolation from collocation mesh X+ to the base mesh X+ ∪ X−. The
operator P−(u) defines likewise the prolongation from X−. Finally, the term μux is
prolongated similarly and added to one of the integrals according to Remark 3.3.

Algorithm
(1) Initialize u0, and define the starting derivatives v0

f , v
0
b according to (38)-

(41).
(2) Compute the integral I0

+ := I+(v0
f ) from (66) and I0

− := I−(v0
b ) from

(79). Make prolongations P+(I0
+), P−(I0

+) using (44)–(45) and build the
right-hand side vector J(v0) (similar to (46)).

(3) Compute one step Euler u1; thereafter compute v1
f and v1

b .

(4) Compute I1
+ := I+(v1

f ) and I1
− := I−(v1

b ). Make prolongations P+(I1
+),

P−(I1
−) and build the right-hand side vector J(v0, v1) as in (46).

(5) Compute a BDF2 step u2 (cf. (42)), to obtain v2
f and v2

b .

(6) Update u1 → u0 , u2 → u1, v1 → v0 , v2 → v1. Let m → m + 1 and
repeat steps (4)–(6) until m = Nt.

Whenever we compute the integrals I+ and I− we apply the FFT algorithm to ac-
celerate the computation of the convolution. This is standard practice so the details
are left out. In previous work [3, 4] we made use of this technique to reduce compu-
tational time. We only point out that formulas (64) and (82) take on a special form
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when the mesh is uniform, representing the multiplication of a Toeplitz matrix by a
vector. These matrix-vector multiplications can be efficiently implemented following
the explanation in [36].

4. Numerical experiments. The experiments in this section are performed on
an AMD Athlon(TM) XP 2700. The first experiment consists in computing European
put options with different values of α in order to verify that the order of convergence
is quadratic and independent of α; see Table 2. Here, “rate” is defined as the ratio of
errors. So, a factor 4 corresponds to second-order accuracy. The numerical values are
compared with the Carr–Madan formula [14]. We note that with increasing α, the
number of time steps should be increased to obtain a stable solution. The numerical
tests for the option pricing problems confirm that in order for the solution to exhibit a
stable behavior, a stability condition k ≤ C(α)hα should be fulfilled. The experiments
show also that the stability constant C(α) decreases when α approaches 1, which is
in accordance with the stability analysis in Appendix D.

Since the grid convergence rate is also deteriorating with increasing α (Table 2),
one does not expect the superconvergence for α close to one. However, O(h2) accuracy
is clearly observed.

A second experiment consists in computing an American put option (Table 3).
We again observe at least second-order accuracy of the scheme. An accuracy higher
than two seems awkward at first sight with a second-order time integration scheme.
Starting with N = Nt = 20, however, and doubling both N and Nt, one observes
(not shown here) in fact that the explicit BDF2 collocation method is second-order
in time. The higher rate observed in Table 3 is basically the effect of having a higher
order in space than in time, combined with a special choice of h and k.

The CPU times behave as predicted by the application of the FFT for each time
step, with O(NtN logN) complexity. Notice that the computations will be signifi-
cantly more rapid if we need engineering accuracy, i.e., 3 digits accurate. Pictures
of the American put option values at t = 0 and the time-dependent early exercise
boundaries for different values of parameter α are shown in Figure 2. Increasing α
means an increase of the intensity of small jumps. Loosely speaking, the prices behave
similarly to a volatility increase in the classical Black–Scholes framework.

In a third experiment, European and American butterfly options are considered
(Table 4 and Figure 3). A butterfly spread is the result of buying call options with
strikes K1 and K2, respectively, and selling two call options with strike price K3 =
(K1 + K2)/2. That is, the payoff is of the form

ψ(x) = (ex −K1)
+ − 2

(
ex − K1 + K2

2

)+

+ (ex −K2)
+.

A European style butterfly is appropriate when the investor thinks large moves in the
price of the underlying asset are unlikely. Usually the middle strike K3 is close to
today’s spot price S0, so that it pays off when the underlying asset price stays close to
S0. In Figure 3 we show American style butterflies (in the S coordinate) with different
values of α and in Table 4 the second-order convergence of a European style butterfly
is shown experimentally. The reason for including a butterfly option example is to
show that the method discussed in this paper is rather general and provides accurate
numerical results for other kinds of payoffs (nonconvex payoffs, for example), without
any further complications.

A final remark is concerning the so-called smooth-fit or smooth-paste principle.
This principle essentially states that the derivative of the Black–Scholes American



106 ARIEL ALMENDRAL AND CORNELIS W. OOSTERLEE

Table 2

Computation of European options for different values of α. Other parameters: r = 0.1, q =
0,K = 1, C = 1,M = G = 5, T = 1.

α N Nt Error at x = 0 Rate Ref. value

0.1

100 20 9.73E-4

0.06353404
200 40 1.82E-4 5.3
400 80 3.18E-5 5.7
800 160 5.70E-6 5.5

α = 0.5

100 40 1.58E-3

0.10296690
200 80 3.26E-4 4.8
400 160 6.38E-5 5.1
800 320 1.21E-5 5.2

α = 0.8

100 200 8.19E-3

0.14789424
200 400 1.96E-3 4.1
400 800 4.47E-4 4.3
800 1600 9.99E-5 4.4

Table 3

Grid convergence for an American put. Parameters: r = 0.1, q = 0,K = 1, C = 1, M = G =
5, α = 0.5.

N Nt error at x = 0 rate CPU-time (s)
100 40 1.73E-3 0.76
200 80 3.36E-4 5.1 1.3
400 160 4.80E-5 7 5.28
800 320 6.80E-6 7 21.10
ref. value 0.112171

Table 4

Computation of a European butterfly with parameters: r = 0.1, q = 0,K = 1, T = 1, C = 1,
G = 3,M = 5, α = 0.5.

N Nt �∞-errors rate
50 30 1.22E-2
100 60 3.22E-3 3.8
200 120 5.94E-4 5.4
400 240 6.28E-5 9.4

option price is a continuous function, also at the exercise boundary. It is known that
this property does not generally hold true when the underlying follows a Lévy process
(for a partial proof see [4] and for a complete characterization for perpetual options
see [2]). The butterfly payoff has the feature of combining both the put and the call
properties. We observe on the left-hand side of the “hat payoff” in Figure 3 (the call
part) that the solution enters the payoff smoothly, whereas, for the right-hand side the
smooth-fit is not observable. In this example two free-boundaries appear and despite
the continuous dividend yield q = 0. This is in contrast to the well-known Black–
Scholes situation regarding the call option for which early exercise is not favorable
with q = 0.

5. Conclusions. In this paper we have proposed a numerical procedure to solve
integro-differential scalar equations that arise in finance, when pricing options for
which the underlying asset follows a Lévy process. The main idea is to integrate by
parts in order to transform the integral operator into a sum of Volterra operators with
weakly singular kernels. Known numerical techniques like the collocation method for
Volterra equations with weakly singular kernels prove useful to set up a high-order
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Fig. 2. American put option prices at t = 0 (left) and early exercise boundaries (right) for
different values of α. Other parameters: r = 0.1, q = 0, K = 1, T = 2, C = 1, G = 5, M = 5.
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Fig. 3. American butterfly prices at t = 0 (left) and early exercise boundaries for α = 0.1 and
α = 0.7. Other parameters: r = 0.1, q = 0, K1 = 1, K2 = 3, T = 1, C = 1, G = 3, M = 5.

discretization. Throughout a series of experiments it has been shown that an explicit
method is a natural choice for these kinds of problems and for parameter α ≤ 0.7, as
they essentially behave like transport equations. The method proposed can deal with
complicated payoffs in a natural way. Due to the FFT algorithm, the complexity of the
method is close to linear. With a fast, second-order method at hand, the calibration
problem for American options under Lévy processes is now within reach.
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Appendix A. Analytic evaluation of integral equation (13). In the nu-
merical experiments in section 3.1.4 we make use of the analytic expression for

f(x) =

∫ ∞

0

(u(x + y) − u(x))
e−My

y1+α
dy,

where u(x) = (1 − ex)+. In this paragraph we derive an expression for f(x).
Note that f(x) = 0 for x > 0. For x < 0 we have∫ +∞

0

[
(1 − ex+y)+ − (1 − ex)+

] e−My

y1+α
dy

= ex
∫ −x

0

(1 − ey)
e−My

y1+α
dy + (ex − 1)

∫ +∞

−x

e−My

y1+α
dy

= ex
∫ +∞

0

(1 − ey)
e−My

y1+α
dy + ex

∫ +∞

−x

e−(M−1)y

y1+α
dy −

∫ +∞

−x

e−My

y1+α
dy.(48)

To compute the first term, observe that for α < 0 the formula∫ ∞

0

e−My

y1+α
dy = MαΓ(−α)

holds. Therefore, ∫ +∞

0

(1 − ey)
e−My

y1+α
dy = Γ(−α)[Mα − (M − 1)α].(49)

However, this formula also admits an extension to the complex plane excluding α 	=
1, 2, . . . ; see [1]. The second and the third term in (48) can be computed with some
quadrature rule, but here we opt for the following approach. These integrals can be
written in terms of the so-called upper incomplete gamma function:

Γ(β, y) =

∫ +∞

y

tβ−1e−tdt.(50)

That is, for instance, ∫ +∞

−x

e−My

y1+α
dy = MαΓ(−α,−Mx).(51)

An efficient algorithm for computing the incomplete gamma function is discussed in
[38].

To summarize, we found that f(x) = 0 for x > 0 and

(52) f(x) = exΓ(−α)[Mα − (M − 1)α]

+ ex(M − 1)αΓ(−α,−(M − 1)x) −MαΓ(−α,−Mx), x < 0.

Appendix B. Collocation method on positive semiaxis. Here, we discretize
(22) in the interval x ∈ [a, b]. One looks for a piecewise linear function, defined as Vl

on each interval [xl, xl+1], such that

fn,j =

∫ b

xn,j

(z − xn,j)
−αV (z)k̃(z − xn,j)dz.(53)
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cj,1cj cj,2 1

Fig. 4. Interpolation points.

The notation fn,j means the values f(xn,j).
Splitting the integral term gives the sum

fn,j = An,j + Pn,j , n = 0, . . . , N − 1, j = 1, 2,(54)

where the first term is the integral from collocation point xn,j until the next mesh
point xn+1:

An,j :=

∫ xn+1

xn,j

(z − xn,j)
−αVn(z)k̃(z − xn,j)dz; j = 1, 2,(55)

and the “lag term” Pn,j takes into account the intervals [xl, xl+1]:

Pn,j :=

N−1∑
l=n+1

∫ xl+1

xl

(z − xn,j)
−αVl(z)k̃(z − xn,j)dz; j = 1, 2.(56)

With the change of variables z = xl +νhl, both An,j and Pn,j transform, respectively,
into

An,j = h1−α
n

∫ 1

cj

(ν − cj)
−αVn(xn + νhn)k̃(hn(ν − cj))dν,(57)

and

Pn,j =

N−1∑
l=n+1

h1−α
l

∫ 1

0

[
xl − xn,j

hl
+ ν

]−α

Vl(xl + νhl)k̃(xl − xn,j + νhl)dν.(58)

B.1. Product integration formulas on positive semiaxis. Formulas (57)
and (58) are not suitable for straightforward evaluation. One would rather prefer
some numerical approximation that keeps the order of accuracy. One possibility is to
use an interpolatory quadrature rule.

Let us start by fixing two interpolation points belonging to the interval [cj , 1):

cj,p := cj + (1 − cj)cp, j, p = 1, 2.

In other words, the same collocation points cp are used through a linear mapping of
the interval [0, 1] (where they are located) into the interval [cj , 1); see [11]. Figure
4 illustrates the relative positions of these points. Let Lj,p represent the Lagrange
interpolation polynomials associated to the points cj,p. The product integration rule
consists in approximating the integrand (except for the singular part) by a piecewise
linear polynomial, i.e., one employs in (57) the following approximation:

Vn(xn + νhn)k̃(hn(ν − cj)) ≈
2∑

p=1

Lj,p(ν)Vn(xn + cj,phn)k̃(hn(cj,p − cj))(59)
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for ν ∈ [cj , 1]. This formula requires the values Vn(xn + cj,phn). Let Lq and Vn,q

denote the Lagrange interpolation polynomials at xn,q for q = 1, 2 and the nodal
values of Vn at the same collocation points, respectively. It follows that

Vn(xn + cj,phn) =

2∑
q=1

Lq(cj,p)Vn,q, j = 1, 2.(60)

The function V (z) need not be continuous. Upon substitution of (60) into (59) and
thereafter into (57), one arrives at the formulas suitable for numerical evaluation,

(61) Ân,j = h1−α
n

2∑
p=1

2∑
q=1

λj,pLq(cj,p) Vn,q k̃(hn(1 − cj)cp),

n = 0, . . . , N − 1; j = 1, 2,

where we introduced the (α-dependent) weights

λj,p :=

∫ 1

cj

(ν − cj)
−αLj,p(ν)dν, j, p = 1, 2.(62)

An analytic expression for these weights will be given in short. For the integrals in
the lag term Pn,j the analysis goes similarly. There the interpolation nodes are the
same as the collocation points cj , so

Vl(xl + νhl)k̃(xl − xn,j + νhl) ≈
2∑

q=1

Lq(ν) Vl,q k̃(xl − xn,j + cqhl),(63)

which gives the product integration rule for the lag-term

P̂n,j =

N−1∑
l=n+1

h1−α
l

(
2∑

q=1

ωl,j,q Vl,q k̃(xl − xn,j + cqhl)

)
,(64)

and the weights are defined as

(65) ωl,j,q :=

∫ 1

0

[
xl − xn,j

hl
+ ν

]−α

Lq(ν)dν,

j, q = 1, 2; l = n + 1, . . . , N − 1.

To conclude, the entries fn,j are approximated as follows:

fn,j ≈ P̂n,j + Ân,j , n = 0, . . . , N − 1, j = 1, 2.(66)

B.2. Weights on positive semiaxis. Formulas for the weights in (62) and
(65) are derived next. We start with ωl,j,q in (65). To simplify the notation let us
introduce the numbers

dl,j =
xl − xn,j

hl
.(67)

This amounts to saying that the following integral is to be evaluated analytically:∫ 1

0

(dl,j + ν)−αLq(ν)dν.(68)
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Recall that the Lagrange interpolation polynomials Lq(ν) are given by the formulas

L1(ν) =
ν − c2
c1 − c2

, L2(ν) =
ν − c1
c2 − c1

.(69)

We carry out the computation only for L1, as for L2 it goes similarly. Adding and
subtracting dl,j in the expression ν − c2 produces two integrals that may be easily
evaluated, indeed,∫ 1

0

(dl,j + ν)−α(ν − c2)dν =

∫ 1

0

(dl,j + ν)−α+1dν − (dl,j + c2)

∫ 1

0

(dl,j + ν)−αdν.

Integrating above yields the formulas for the weights

⎧⎪⎪⎨⎪⎪⎩
ωl,j,1 =

(dl,j + 1)2−α − (dl,j)
2−α

(2 − α)(c1 − c2)
− (dl,j + c2)

(dl,j + 1)1−α − (dl,j)
1−α

(1 − α)(c1 − c2)
,

ωl,j,2 =
(dl,j + 1)2−α − (dl,j)

2−α

(2 − α)(c2 − c1)
− (dl,j + c1)

(dl,j + 1)1−α − (dl,j)
1−α

(1 − α)(c2 − c1)
.

(70)

To compute λj,p, let us change to the variable ν = cj + (1 − cj)ρ. This simplifies
the Lagrange interpolation polynomials Lj,q(ν) as the following equalities show:

Lj,1(ν) =
ν − cj,1
cj,2 − cj,1

=
v − cj − (1 − cj)ρ

(1 − cj)(c2 − c1)
=

ρ− c1
c2 − c1

= L1(ρ).

Notice that cj 	= 1 to simplify in this expression. Analogously one finds that Lj,2(ν) =
L2(ρ). Consequently, the expression

λj,p = (1 − cj)
1−α

∫ 1

0

ρ−αLp(ρ)dρ

gives an alternative way to evaluate these weights. Thus, we may use the previously
derived formulas for the ω-weights with dl,j ≡ 0 to arrive at the expressions for the
λ-weights: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

λj,1 =
(1 − cj)

1−α

c1 − c2

[
1

2 − α
− c2

1 − α

]
,

λj,2 =
(1 − cj)

1−α

c2 − c1

[
1

2 − α
− c1

1 − α

]
.

(71)

Appendix C. Integral equation over the negative semiaxis. For the neg-
ative semiaxis the discretization is very similar to the one explained in Appendix B.
We keep the same notation from the positive situation and summarize the procedure.
The integral equation for the negative semiaxis reads

g(x) =

∫ 0

−∞
(u(x + y) − u(x))

e−G|y|

|y|1+α dy.(72)

This expression reduces, after integration by parts, to

g(x) = −
∫ 0

−∞
v(x + y)k̂(y)dy.(73)
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Here we have introduced the function

k̂(−w) :=

∫ −w

−∞

e−G|ζ|

|ζ|1+α dζ, w > 0,(74)

and v stands for the derivative of u with respect to the space variable. The subscript
“-” for the negative kernel is again omitted. An expression in terms of the incomplete
gamma function exists, namely, k̂(−w) = GαΓ(−α,Gw). The Lipschitz property (17)
is now invoked to allow the above integration by parts, along with a growth property
for large negative values; i.e.,

• there exist constants C3 > 0 and 0 < C4 < G such that |u(z)| ≤ C3e
C4|z| for

z → −∞.
Similarly to the situation on the positive semiaxis, one takes into account the

singularity of the kernel k̂. It is therefore convenient to introduce the kernel

k̃(w) := wαk̂(−w), w > 0,(75)

and focus on the discretization of the integral equation

g(x) = −
∫ x

−∞
(x− z)−αv(z)k̃(x− z)dz.(76)

Considering the collocation parameters

0 < c1 < c2 ≤ 1,(77)

the collocation mesh is defined as in (23). To discretize (76) write

gn,j = −
∫ xn,j

a

(xn,j − z)−αV (z)k̃(xn,j − z)dz.(78)

As for the positive semiaxis, one applies the product integration rule with a suitable
choice of interpolation points. Summarizing, the quantities gn,j are approximated as
follows:

gn,j ≈ B̂n,j + Q̂n,j , n = 0, . . . , N − 1, j = 1, 2.(79)

The first component is computed with the formula

B̂n,j = −h1−α
n

2∑
p=1

2∑
q=1

λj,pLq(cj,p) Vn,q k̃(hncj(1 − cp)), j = 1, 2,(80)

the weights λj,p being⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
λj,1 =

(cj)
1−α

c2 − c1

[
1

2 − α
− 1 − c2

1 − α

]
,

λj,2 =
(cj)

1−α

c1 − c2

[
1

2 − α
− 1 − c1

1 − α

]
,

(81)

and cj,p = cjcp. The second component in this sum corresponds to an approximation
of the lag-term,

Q̂n,j = −
n−1∑
l=0

h1−α
l

[
2∑

q=1

ωl,j,q Vl,q k̃(xn,j − xl − cqhl)

]
,(82)
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where the weights for the negative semiaxis are

⎧⎪⎪⎨⎪⎪⎩
ωl,j,1 = − (dl,j)

2−α − (dl,j − 1)2−α

(2 − α)(c1 − c2)
+ (dl,j − c2)

(dl,j)
1−α − (dl,j − 1)1−α

(1 − α)(c1 − c2)
,

ωl,j,2 = − (dl,j)
2−α − (dl,j − 1)2−α

(2 − α)(c2 − c1)
+ (dl,j − c1)

(dl,j)
1−α − (dl,j − 1)1−α

(1 − α)(c2 − c1)
.

(83)

As for the positive integral, a compensation constant is necessary to smooth the
kernel. The constant in this situation is

θ− =
GαΓ(2 − α)

α(1 − α)
,(84)

so that

k−(x) := k̃(x) + θ−x
α,

and the splitting of the integral equation with respect to the new kernel reads

g(x) = −
∫ x

−∞
(x− z)−αv(z)k−(z − x)dz + θ−

∫ x

−∞
v(z)dz.(85)

Appendix D. Stability analysis. In order to gain some insight into the stability
of the resulting discretization of the PIDE, we perform here a Von Neumann stability
analysis; however, we do this for a “model” version of the time-dependent problem
under consideration.

Let α ∈ (0, 1) and consider the equation

ut = −
∫ x

0

(x− z)−αuz(z, t)dz, x ∈ [0, 1].(86)

To simplify the analysis, we concentrate on a special case of the collocation method,
namely, the grid is assumed equidistant, i.e., hn = h, and the collocation parameters
are c1 = 0.5 and c2 = 1. These choices give the collocation points xn,1 = (n + 1/2)h
and xn,2 = (n + 1)h.

Let us analyze the Euler scheme for the midpoints xn,1 (for the other collocation
points the analysis goes similarly). By un+ 1

2
we denote the value of the solution at

the midpoints. With the notation in Appendix C, (80), (81), (82), and (83), we may
write the explicit collocation scheme as

(87) um
n+ 1

2
− um−1

n+ 1
2

= −γh

[
2∑

p=1

λ1,p(L1(c1,p)V
m−1
n,1 + L2(c1,p)V

m−1
n,2 )

+

n−1∑
l=0

(ωl,1,1V
m−1
l,1 + ωl,1,2V

m−1
l,2 )

]
.

Here we have introduced the parameter

γ :=
k

hα
.(88)
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Our objective is to show that by controlling the parameter γ one attains stability of
the Euler scheme.

For the collocation parameters under consideration the corresponding collocation
derivatives in (87) are

V m−1
n,1 =

um−1
n+1 − um−1

n

h
, V m−1

n,2 =
3um−1

n+1 − 4um−1
n+ 1

2

+ um−1
n

h
,(89)

and the Lagrange interpolations are

L1(c1,1) = 3/2, L1(c1,2) = 1, L2(c1,1) = −1/2, L2(c1,2) = 0.(90)

Substituting (90) and (89) into (87) and collecting terms we arrive at the scheme

(91) um
n+ 1

2
= um−1

n+ 1
2

− γ

n∑
l=0

[
(Al + 3Bl)u

m−1
l+1 − 4Blu

m−1
l+ 1

2

+ (Bl −Al)u
m−1
l

]
,

where An = 3
2λ1,1 + λ1,2, Bn = − 1

2λ1,1, Al = ωl,1,1, and Bl = ωl,1,2 (l = 0 . . . n− 1).
The λ-weights are straightforwardly computed using (71), yielding

λ1,1 =
2α

2 − α
, λ1,2 =

2α

2 − α
− 2α−1

1 − α
.(92)

The ω-weights are computed using (70) with

dl,1 = n− l + 1/2, dl,2 = n− l + 1.(93)

A method to obtain a necessary condition for stability is to substitute the Fourier
modes um

l = gmeilθ into the scheme and thereafter perform the necessary simplifica-
tions. This procedure is commonly known as discrete Von Neumann stability analysis.
Applied to our case it produces the so-called amplification factor

g(θ) = 1 − γ

n∑
l=0

[
(Al + 3Bl)e

i(l−n+1/2)θ − 4Ble
i(l−n)θ + (Bl −Al)e

i(l−n−1/2)θ
]
.

(94)

If the scheme is stable, it is also stable on a particular solution. Hence, the amplifi-
cation factor must satisfy the requirement

|g(θ)| ≤ 1.(95)

We refer the reader to [35] for details on the amplification factor in connection with the
Von Neumann stability analysis. We are looking for a condition of the form γ ≤ C(α)
such that (95) holds. Instead of deriving this condition for model equation (86),
we present in Table 5 some sharp values of C(α) for distinct choices of α, and two
representative examples are displayed in Figure 5.

A limiting case is distinguished: For α → 0 one notices that C(α) → 1. This
behavior is intuitively correct as for α = 0, equation (86) reduces to the ODE ut =
−u + u(0). For α = 0 the condition says k ≤ 1, which is the necessary condition for
explicit Euler, since the amplification factor for ut = −u + u(0) is

g(θ) = 1 − k + ke−imθ.
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Table 5

Values of C(α) as a function of α.

α 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
C(α) 0.99 0.97 0.92 0.85 0.76 0.67 0.57 0.46 0.2 0.03 0.007
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Fig. 5. Values of g(θ) inside unit circle, k = C(α)hα. Left: α = 0.3, N = 50. Right:
α = 0.7, N = 20, with C(0.3) = 0.85 and C(0.7) = 0.46 as in Table 5.

Then, |g| ≤ 1 implies |Re g| ≤ 1, which in turn implies k ≤ 1.
The insight gained here from model equation (86) with explicit Euler, i.e., the α-

dependent constant C(α) so that (95) holds, is in full agreement with the observations
regarding stability for our target discrete PIDE, discretized with explicit BDF2, in
the numerical experiments of section 4. We include here a numerical experiment with
the test equation (86). Three values of α are chosen to illustrate that the values in
Table 5 are sharp; see Table 6. This table shows that

k ≤ C(α)hα(96)

is in fact a necessary condition for stability. Namely, if (96) is not satisfied, the scheme
is not stable. It should be mentioned that C(α) depends weakly on N , and the values
in Table 5 are conservative in the sense that they are found with N = 20. For larger
N , the pictures in Figure 5, for example, tend to shrink.

It can be observed in Table 6 that the number of time steps needed for stability
grows with increasing α. For α ≤ 0.7 the number of time steps remains reasonable, and
explicit time-stepping can efficiently be used. For α closer to 1, however, one may need
to consider an implicit time discretization. For α = 0.9 we see a difference of 200 time
steps for a consistency between the stability analysis and the numerical experiment.
The reason for this large difference lies in the assumption that a satisfactory stability
criterion is |g| ≤ 1 (95). In fact, a weaker stability criterion that is both necessary and
sufficient is given by |g| ≤ 1 + C̃k, for C̃ independent of h and k. This typically gives
larger circles, so C(α) in the table represents a conservative estimate. The tendency
with respect to stability is, however, clear.
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Table 6

Stability experiments on test equation (86) with T = 1. The symbol “v” means “holds” and
“X” means “does not hold.” The initial condition is taken as u(x, 0) = exp(x).

α N Nt Stability Equation (96)
0.05 100 2 v v

0.3
100 6 v v
100 4 X X

0.5
100 30 v v
100 10 X X

0.7
100 140 v v
100 80 X v
100 40 X X

0.9
20 400 v v
20 300 X v
20 200 X X
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