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Abstract
High-resolution, regularly gridded air-temperature maps are frequently used in climatology, hydrology, and ecology. Within
the Netherlands, 34 official automatic weather stations (AWSs) are operated by the National Met Service according to World
Meteorological Organization (WMO) standards. Although the measurements are of high quality, the spatial density of the
AWSs is not sufficient to reconstruct the temperature on a 1-km-resolution grid. Therefore, a new methodology for daily
temperature reconstruction from 1990 to 2017 is proposed, using linear regression and multiple adaptive regression splines.
The daily 34 AWS measurements are interpolated using eight different predictors: diurnal temperature range, population
density, elevation, albedo, solar irradiance, roughness, precipitation, and vegetation index. Results are cross-validated for the
AWS locations and compared with independent citizen weather observations. The RMSE of the reference method ordinary
kriging amounts to 2.6 ◦C whereas using the new methods the RMSE drops below 1.0 ◦C. Especially for cities, a substantial
improvement of the predictions is found. Independent predictions are on average 0.3 ◦C less biased than ordinary kriging at
40 high-quality citizen measurement sites. With this new method, we have improved the representation of local temperature
variations within the Netherlands. The temperature maps presented here can have applications in urban heat island studies,
local trend analysis, and model evaluation.

1 Introduction

High-resolution, regularly gridded temperature maps are
essential for the construction of climatologies (Newman
et al. 2015; Mohr and Tveito 2008; van den Hurk et al.
2006). Several scientific fields use these maps, exam-
ples are: the calculation of evapotranspiration (Enku and
Melesse 2014; Lofgren et al. 2011; Hiemstra and Sluiter
2011), ecological relationships with bird and plant species
occurrence (Vasseur et al. 2014), and the timing of pollen
release (van Vliet et al. 2002). On the larger scale, homog-
enized gridded time series have been constructed to study
temperature changes (van der Schrier et al. 2011). For exam-
ple, the central Netherlands has warmed approximately
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1 ◦C over the twentieth century (van Oldenborgh and Van
Ulden 2003). These authors have used data from the
automatic weather stations (AWSs) to estimate a regional
representation of the warming trends. Western Europe has
been warming much faster than climate models projected
(van Oldenborgh et al. 2009). The resolution of climate
models is increasing and therefore there is a need for high
resolution temperature products for their evaluation.

For the construction of gridded temperature maps, air
temperature observations from AWSs alone are often not
sufficient to capture local variations, such as tempera-
ture differences between cities and the countryside. In the
Netherlands, the temporal resolution of temperature mea-
surements is high, but the spatial density is limited. The 34
AWSs are approximately 30km apart (Fig. 1), which allows
for a reasonable representation of the spatial variation on
country scale. Temperature variations at the scale of cities
and forests are not captured. Although the Netherlands has a
mild maritime climate, the average daily maximum canopy
urban heat island (UHI) amounts to 2–3 ◦C, and in some
cases above 5 ◦C (Steeneveld et al. 2011; Dirksen et al.
2019). Previous studies have established a physically based
semi-empirical relationship to calculate the UHI. Theeuwes
et al. (2017) have correlated the UHI to the sky view fac-
tor, vegetation fraction, solar irradiance, diurnal temperature
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Fig. 1 Meteorological
observations in the Netherlands
used for the interpolation and
validation of the methods. In red
the 34 KNMI AWSs which were
used for the temperature
interpolation. The stations are
spread almost equally
throughout the country, although
they slightly favor the western
part. Meteorological stations
networks used for the validation:
in blue the Wunderground
stations and in orange the
Wageningen University
Observatory (WUR) station. For
the GGD network, see Fig. 2. A
full overview of the metadata
can be found in Table 1

range (DTR), and wind speed. Also several previous inter-
polation studies on country scale have used predic-
tors in addition to AWS temperature measurements. The
temperature within the Netherlands has been interpolated
using the distance to the sea as variable (Sluiter 2012). The
Norwegian meteorological institute used station elevation
and average and lowest height of the surroundings, station
latitude (which in this case is an approximation of the dis-
tance to the sea), and station longitude as independent pre-
dictors for the temperature interpolation (Mohr and Tveito
2008). Additionally, the Finnish meteorological institute
added the relative land/water cover as a predictor (Aalto
et al. 2013). Within Croatia soil temperature interpolation
algorithms used latitude, longitude, distance from the sea,
elevation, time, solar irradiance, and the MODIS Land Sur-
face Temperature (LST) product (Hengl et al. 2012). Satel-
lite datasets are of additional value as they provide local
spatial information between the measurement locations. In

addition to the variables used for temperature interpola-
tion in these different countries, Carlson and Boland (1978)
stated that surface roughness and moisture availability are
essential to determine the correct temperature.

Different interpolation techniques have been used to grid
the air temperature with several predictors, these include:
regression kriging, residual kriging, space-time kriging, and
generalized additive models (Sluiter 2012; Mohr and Tveito
2008; Aalto et al. 2013; Hengl et al. 2012). One of the prob-
lems with the kriging interpolation techniques is the fitting
of the variogram model, which is in most cases fitted for the
whole domain (Haas 1990). This would assume the spatial
correlation is similar for the whole domain and is in that
sense domain dependent. Kuhn and Johnson (2016) intro-
duced predictive modeling with different techniques such
as linear regression and multiple adaptive regression splines
which can handle more local variations. To prevent over-
fitting of the models, it is optional to add feature selection
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(Kuhn and Johnson 2016). Cross-validation has been com-
monly used to validate the interpolation technique (Sluiter
2012; Aalto et al. 2013; Hengl et al. 2012; Mohr and Tveito
2008). The temperature will be predicted at the left out
locations, which assumes that the training and test points
are spatially independent. This assumption is not always
justified. Ideally the temperature predictions would not only
be validated at the representative AWS locations. Crowd-
sourced weather observations networks like Wunderground
have a high spatial coverage within the Netherlands, but
long-term records are not available. These citizen weather
observations are often used in urban heat island studies,
since the coverage of traditional AWS is often not sufficient
(Theeuwes et al. 2017; Chapman et al. 2017). These net-
works are not calibrated and therefore the stations need to be
selected carefully (Bell et al. 2015; Theeuwes et al. 2017).

Extending these previous ideas of spatial predictors, our
goal is to reconstruct daily temperature patterns in the
Netherlands using eight different predictors: DTR, popu-
lation density, elevation, albedo, surface solar irradiance,
roughness, precipitation, and normalized difference vege-
tation index. As interpolation techniques, linear regression
and multiple adaptive regression splines are compared. As
reference interpolation, we used ordinary kriging, which
only uses the AWS temperature observations. To validate
the models, we will use both cross-validation and crowd-
sourced measurements. The temperature is reconstructed on
a 1-km grid for the period 1990–2017.

The structure of the article is as follows. Section 2
describes the temperature observations, predictors, interpo-
lation techniques, and validation methods. The results are
described in Section 3 which contains spatial climatology
patterns from the different interpolation techniques and a
detailed validation. A discussion is presented in Section 4
together with possible applications of the interpolation tech-
niques for local warming trends. Conclusions are drawn in
Section 5.

2Methodology

2.1 Meteorological observations

Daily air-temperature measurements from the 34 AWS
locations in the Netherlands are used for the interpolation
(Fig. 1). The station spreading slightly favors the west
coast which is densely populated. The air temperature is
measured at a height of 1.5m. The AWSs are maintained
according to WMO standards. The total uncertainty of the
temperature measurements, derived from the external errors,
measurement uncertainty, and calibration error, is estimated
at 0.13 ◦C (Bijma 2012). Homogeneity adjustments were
made for the five longest time records: De Kooy, De

Bilt, Eelde, Vlissingen, and Maastricht. Using parallel
measurements, the time series were corrected on a daily
basis (Brandsma 2016). There have been a few relocations
of other AWS measurement sites for which we have not
corrected.

In the Netherlands, a huge amount of citizen weather
data available is available, although of varying qualities.
From the Wunderground network,1 19 stations have been
selected which serve as an independent validation (Fig. 1).
Comparing official and amateur temperature observations,
the Davis Vantage instruments show the smallest absolute
measurement errors around 0.2 ◦C and standard deviations
around 0.3 ◦C (Bell 2014). The daytime solar irradiance–
induced error was estimated on average between 0.6 and
0.7 ◦C (Cornes et al. 2019). The Davis Vantage (DV)
temperature sensor is a PN junction silicone diode type
with a measurement range from -40 up to 65 ◦C (Davis
Instruments 2014). To ensure spatial coverage throughout
the country, also one other system was selected, the Oregon
Scientific Professional Weather Center (OSPWC) which has
a thermo-hygro THGR800 sensor. This sensor measures
from -30 up to 60 ◦C with an accuracy between 1 and 2
◦C (Oregon Scientific 2009). The Wunderground network
provides no high-quality sensors in Amsterdam (capital of
the Netherlands).

However, another network, operated by the local health
service (GGD), is available since 2014 in this region (van
der Zee and Helmink 2017). Next to each of the 20 air-
quality measurement locations, temperature sensors were
installed (Fig. 2). The temperature was measured with the
BX-592 system (Met One Instruments 2016)2; the BX-
592 system has the temperature sensor inside a white
temperature hut and measures within the range from -30
up to 50 ◦C. This system has not been validated in the
field by Bell (2014) or others. According to the instruction
manual, the measurement error of the BX-592 system is
0.2 ◦C and should be of similar quality as the Davis Vantage
instruments.

Rural measurements from station Haarweg near
Wageningen University from 2001 until 2012 were also
used for validation purposes (Jacobs et al. 2010). Currently,
the new rural station Veenkampen, also from Wageningen
University, is sited nearby (Fig. 1). Observations since
2011-06-01 were used for the validation. Compared with
the Pt500 resistance which is used for the AWS stations,
the Pt100 sensor is a bit more vulnerable due to its thin-
ner platinum wire. The resistance of the Pt500 and Pt100
is respectively 500Ω and 100Ω . A complete metadata
description of the meteorological observations used for our
analysis is included in Table 1.

1http://www.wunderground.com
2http://www.metone.com
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Fig. 2 Meteorological
observations used for the
validation in the Amsterdam
region from the GGD network.
A full overview of the metadata
can be found in Table 1

The citizen weather data was quality controlled to
avoid extreme outliers and implausible measurements.
Temperatures below -40 ◦C and above 45 ◦C are rejected.
If a value is repeated 8 times or more in a row, it was
also rejected. The citizen weather data differs in temporal
resolution for each station and is not always continuous
in time. If the time between sequential measurements was
more than 1 h, no daily average was calculated, additionally
only sequential series longer than 1 week were selected.
Next, the filtered temperature measurements were linearly
interpolated to regular 10-min timestamps from which daily
averages were calculated.

2.2 Spatial predictors

The temperature measurements from the AWSs were
interpolated with auxiliary datasets. The climatological
values for the predictors at the locations of the 34 AWSs
are included in Table 2. The following datasets are taken
into account: DTR, population density, elevation, albedo,
solar irradiance, roughness, precipitation, and normalized
difference vegetation index (NDVI) (Fig. 3). All the
predictors are regridded on a 1-km grid, which is considered
to be the highest possible resolution with this input data.
The spatial resampling of the data was performed in
R using the raster package using bilinear resampling.

Additionally, the predictors were centered and scaled.
To prevent over-fitting, for each day, highly correlated
predictors (with a correlation coefficient of > 0.75) are
excluded.

2.2.1 Diurnal temperature range

The DTR is an essential variable for local temperature
analysis (Theeuwes et al. 2017); here we will use the
DTR as a background field. The DTR was calculated as
the maximum temperature difference for the AWSs during
the corresponding day. The temperature differences were
interpolated using ordinary kriging. For the temperature
interpolation, we used a monthly mean climatology. The
30-year mean range is shown in Fig. 3a. The pattern
has a northwest-southeast gradient with relatively high
values inland. Averaged over a longer time period,
the DTR correlates strongly to the distance from the
sea.

2.2.2 Population density

The population density is highest in the western part of
the country, where the capital Amsterdam and main harbor
of Rotterdam are situated (Fig. 3b). The relation between
temperature and city population were initially established
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Table 1 Overview of the meteorological observations. The Wunderground network was abbreviated as “Wund.gd.”

Nr. Network Station name and ID Lat (N), lon (E) System Start; stop Days

1 AWS Valkenburg (210) (52.171, 4.430) Pt500 1990-01-01; 2016-05-04 9618

2 AWS De Kooy (235) (52.928, 4.781) Pt500 1990-01-01; 2017-12-31 10,227

3 AWS Schiphol (240) (52.318, 4.790) Pt500 1990-01-01; 2017-12-31 10,227

4 AWS Vlieland (242) (53.241, 4.921) Pt500 1996-01-01; 2017-12-31 8016

5 AWS Berkhout (249) (52.644, 4.979) Pt500 1999-03-12; 2017-12-31 6860

6 AWS Hoorn, Terschelling (251) (53.392, 5.346) Pt500 1994-05-26; 2017-12-31 8616

7 AWS De Bilt (260) (52.100, 5.180) Pt500 1990-01-01; 2017-12-31 10,227

8 AWS Soesterberg (265) (52.130, 5.274) Pt500 1990-01-01; 2007-05-22 6894

9 AWS Stavoren (267) (52.898, 5.384) Pt500 1990-06-18; 2019-03-18 9930

10 AWS Lelystad (269) (52.458, 5.520) Pt500 1990-01-17; 2017-12-31 10,189

11 AWS Leeuwarden (270) (53.224, 5.752) Pt500 1990-01-01; 2017-12-31 10,227

12 AWS Marknesse (273) (52.703, 5.888) Pt500 1990-01-01; 2017-12-31 10,216

13 AWS Deelen (275) (52.056, 5.873) Pt500 1990-01-01; 2017-12-31 10,227

14 AWS Lauwersoog (277) (53.413, 6.200) Pt500 1991-03-18; 2017-12-31 9787

15 AWS Heino (278) (52.435, 6.259) Pt500 1990-01-01; 2017-12-31 10,121

16 AWS Hoogeveen (279) (52.750, 6.574) Pt500 1990-01-01; 2017-12-31 10,190

17 AWS Eelde (280) (53.125, 6.585) Pt500 1990-01-01; 2017-12-31 10,227

18 AWS Hupsel (283) (6.658, 52.070) Pt500 1990-01-01; 2017-12-31 10,227

19 AWS Nieuw Beerta (286) (53.196, 7.150) Pt500 1990-01-17; 2017-12-31 10,194

20 AWS Twenthe (290) (52.274, 6.891) Pt500 1990-01-01; 2017-12-31 10,227

21 AWS Vlissingen (310) (51.442, 3.596) Pt500 1990-01-01; 2017-12-31 10,227

22 AWS Westdorpe (319) (51.226, 3.861) Pt500 1991-06-25; 2017-12-31 9688

23 AWS Wilhelminadorp (323) (51.527, 3.884) Pt500 1990-01-01; 2017-12-31 8763

24 AWS Hoek van Holland (330) (51.992, 4.122) Pt500 1990-01-01; 2017-12-31 9832

25 AWS Woensdrecht (340) (4.342, 51.449) Pt500 1993-04-01; 2017-12-31 8283

26 AWS Rotterdam (344) (4.447, 51.960) Pt500 1990-01-01; 2017-12-31 10,227

27 AWS Cabauw (348) (4.926, 51.970) Pt500 1990-01-01; 2017-12-31 10,227

28 AWS Gilze-Rijen (350) (4.936, 51.566) Pt500 1990-01-01; 2017-12-31 10,227

29 AWS Herwijnen (356) (5.146, 51.859) Pt500 1990-01-01; 2017-12-31 10,192

30 AWS Eindhoven (370) (5.377, 51.451) Pt500 1990-01-01; 2017-12-31 10,227

31 AWS Volkel (375) (5.707, 51.659) Pt500 1990-01-01; 2017-12-31 10,227

32 AWS Ell (377) (5.763, 51.198) Pt500 1999-05-01; 2017-12-31 6746

33 AWS Maastricht (380) (5.762, 50.906) Pt500 1990-01-01; 2017-12-31 10,227

34 AWS Arcen (391) (6.197, 51.498) Pt500 1990-06-18; 2017-12-31 10,044

35 GGD Ams.-Spaarnwoude (703) (4.729, 52.399) BX-592 2014-01-01; 2017-12-31 1463

36 GGD Oude Meer (565) (4.771, 52.281) BX-592 2014-01-01; 2017-12-31 1463

37 GGD De Rijp (556) (4.862, 52.565) BX-592 1990-06-18; 2017-12-31 1451

38 GGD Nieuwendammerdijk (3) (4.944, 52.390) BX-592 1990-06-18; 2017-12-31 1457

39 GGD Vondelpark (14) (4.867, 52.361) BX-592 2014-01-01; 2017-12-31 1457

40 GGD Westerpark (16) (4.871, 52.395) BX-592 2014-01-01; 2017-12-31 1460

41 GGD Zaandam (701) (4.817, 52.449) BX-592 2014-01-01; 2017-12-31 1463

42 GGD Einsteinweg (7) (4.846, 52.382) BX-592 2014-01-01; 2017-12-29 1458

43 GGD Van Diemenstraat (12) (4.889, 52.391) BX-592 1990-06-18; 2017-12-31 1462

44 GGD Stadhouderskade (17) (4.900, 52.359) BX-592 1990-06-18; 2017-12-31 1462

45 GGD Jan van Galenstraat (20) (4.861, 52.376) BX-592 2014-12-23; 2017-12-31 1107

46 GGD Hoogtij (704) (4.773, 52.429) BX-592 2014-01-01; 2017-12-31 1459

47 GGD IJmuiden (551) (4.602, 52.464) BX-592 2014-01-01; 2017-12-31 1461

48 GGD Wijk aan Zee (553) (4.603, 52.495) BX-592 2014-01-01; 2017-12-31 1463
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Table 1 (continued)

Nr. Network Station name and ID Lat (N), lon (E) System Start; stop Days

49 GGD Hemkade (546) (4.832, 52.421) BX-592 2014-01-01; 2017-12-31 1463

50 GGD Staalstraat (572) (4.629, 52.475) BX-592 2014-01-01; 2017-12-31 1448

51 GGD Reijndersweg (573) (4.580, 52.480) BX-592 2014-01-01; 2017-12-31 1461

52 GGD Beverwijk-West (570) (4.641, 52.490) BX-592 2014-01-01; 2017-12-31 1459

53 GGD Hoofddorp (564) (4.715, 52.328) BX-592 2014-01-01; 2017-12-31 1457

54 GGD Badhoevedorp (561) (4.774, 52.334) BX-592 2014-01-01; 2017-12-31 1463

55 Wund.gd. IEINDHOV167 (51.418, 5.493) DVP2+ 2016-06-22; 2017-12-31 550

56 Wund.gd. IFLEVOLA43 (52.540, 5.593) DVP2 2015-06-29; 2017-12-31 890

57 Wund.gd. IFRIESLA101 (53.453, 5.811) DVV 2015-01-28; 2017-12-31 1066

58 Wund.gd. IFRIESLA82 (53.224, 6.000) DVP2 2017-07-15; 2017-12-31 119

59 Wund.gd. IGRONING106 (53.238, 6.602) DVP2+ 2015-01-09; 2017-12-31 1075

60 Wund.gd. IGRONING45 (53.232, 6.604) DVP2+ 2012-04-13; 2017-12-31 2082

61 Wund.gd. IGRONING91 (53.208, 6.579) DVP2 2015-11-03; 2017-12-31 737

62 Wund.gd. ILIMBURG84 (51.514, 6.084) DVP2 2015-11-20; 2017-12-31 771

63 Wund.gd. INOORDBR179 (51.428, 4.306) DVP2+ 2008-01-31; 2017-12-31 3598

64 Wund.gd. INOORDHO205 (52.726, 5.011) DVP2+ 2010-12-12; 2017-12-31 2555

65 Wund.gd. IOVERIJS145 (52.347, 6.482) DVP2+ 2017-09-30; 2017-12-31 90

66 Wund.gd. IPWSOIRS2 (51.512, 5.317) DVV 2015-07-31; 2017-12-31 856

67 Wund.gd. ISCHIEDA60 (51.919, 4.410) OSPWC 2017-06-20; 2017-12-31 189

68 Wund.gd. IUTRECHT148 (52.123, 5.285) DVP2 2013-07-15; 2017-12-31 960

69 Wund.gd. IZEELAND47 (51.628, 3.996) DVP2 2015-12-05; 2017-12-31 695

70 Wund.gd. IZEEWOLD31 (52.389, 5.478) DVP2 2015-06-01; 2017-12-31 891

71 Wund.gd. IZUIDHOL226 (51.895, 4.568) DVP2+ 2016-02-29; 2017-12-31 659

72 Wund.gd. IZUIDHOL230 (52.190, 4.705) DVP2 2014-08-18; 2017-12-31 1225

73 Wund.gd. IZUIDHOL36 (51.950, 4.571) DVP2+ fan 2015-05-30; 2017-12-31 929

74 Haarweg Veenkampen∗1 (5.622, 51.981) Pt100 2011-06-01; 2017-12-31 2636

75 Haarweg Haarweg∗1 (5.633, 51.967) Pt100 2001-08-01; 2012-06-30 3987

The start and stop of the measurements within the entire period, with a minimum of 1990-01-01 and a maximum of 2017-12-31. Not all of the
measurements are continuous; therefore, the number of temperature observation days within the 1990–2017 period is included. ∗1The reference
ID of the Haarweg and Veenkampen Network equal NLE00152462

by Oke (1982). On a local scale, the population density
in the Dutch urban areas is positively correlated to the
temperature (Steeneveld et al. 2011). As a measure of
the urbanization and UHI effect, we therefore use the
population density.3 The population data from central
agency for statistics (CBS)4 has been documented in van
Leeuwen et al. (2017). The dataset includes yearly averages
from 2000 until 2014 with an original resolution of 100m by
100m. Before 2000 the population density of 2000 was used,
similarly, between 2015 and 2017 the year 2014 was used.
Hereby we assume that the population patterns are similar
outside of the datasets range.

3http://www.nationaalgeoregister.nl
4https://www.cbs.nl

2.2.3 Elevation

Lapse rates are typically in the order of 0.6–1.0 ◦C per
100m. Most of the Netherlands is relatively flat, though
some hills are present in the east and southeast of the
country, with 322m as the highest elevation. We hypothesise
that although height differences are small they still are of
relevance to the temperature pattern within the Netherlands.

Highly accurate elevation measurements, covering the
entire country excluding water bodies, from aircraft
measurements have a point density of 6–10 points per m2

(Sitek et al. 2006; Isenburg 2013).3 The elevation points are
relative to the average sea level of the North-sea and have
an error of 3cm (van der Zon 2013). Processing this 1.5-
TB dataset and resampling it to the temperature prediction
resolution of 1km would be computationally expensive;
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Table 2 Overview of climatological values of the prediction datasets at the AWS locations. The numbering is according to Fig. 1

Nr. Station name and ID DTR Pop Elev Albedo Irr Rough Precip NDVI

◦C n/100m2 m − W/m2 m mm/day −

1 Valkenburg (210) 7.10 57 1.85 134 123 0.34 2.53 -0.42

2 De Kooy (235) 6.26 30 1.85 121 122 0.11 2.28 -1.24

3 Schiphol (240) 7.30 65 -1.55 135 120 0.34 2.52 -0.66

4 Vlieland (242) 6.08 8 5.88 81 121 0.04 2.28 -2.58

5 Berkhout (249) 6.89 24 -1.37 153 120 0.14 2.45 0.24

6 Hoorn, Terschelling (251) 6.18 6 7.87 69 120 0.07 2.34 -1.83

7 Wijk aan Zee (257) 6.90 48 4.50 130 123 0.30 2.48 -0.37

8 De Bilt (260) 8.10 45 5.67 139 118 0.45 2.42 0.21

9 Stavoren (267) 6.64 12 0.58 132 121 0.11 2.28 0.57

10 Lelystad (269) 7.80 39 -1.27 137 119 0.23 2.35 -0.78

11 Leeuwarden (270) 6.72 22 0.17 171 118 0.13 2.27 0.45

12 Marknesse (273) 7.58 13 -0.33 156 119 0.14 2.36 -0.23

13 Deelen (275) 8.53 30 39.09 128 116 0.56 2.48 0.30

14 Lauwersoog (277) 6.57 13 1.11 128 116 0.09 2.35 -0.87

15 Heino (278) 8.32 16 6.56 169 117 0.23 2.33 0.80

16 Hoogeveen (279) 8.12 14 13.13 162 116 0.20 2.37 0.50

17 Eelde (280) 7.70 26 4.55 159 115 0.23 2.37 0.38

18 Hupsel (283) 8.67 13 28.80 168 118 0.08 2.25 0.87

19 Nieuw Beerta (286) 7.91 14 0.40 151 115 0.13 2.28 -0.33

20 Twenthe (290) 8.64 22 28.55 152 117 0.31 2.28 0.46

21 Vlissingen (310) 6.58 20 1.75 126 126 0.14 2.31 -0.98

22 Westdorpe (319) 7.24 24 1.41 146 123 0.15 2.32 -0.76

23 Wilhelminadorp (323) 6.89 23 0.44 114 125 0.09 2.35 -1.07

24 Hoek van Holland (330) 6.84 51 2.22 113 124 0.24 2.47 -1.37

25 Woensdrecht (340) 7.60 32 6.75 131 121 0.25 2.32 -0.37

26 Rotterdam (344) 7.27 62 -1.17 136 121 0.37 2.55 -0.81

27 Cabauw (348) 7.96 29 0.54 169 121 0.15 2.35 0.79

28 Gilze-Rijen (350) 8.40 35 10.64 149 120 0.38 2.32 0.15

29 Herwijnen (356) 8.36 18 2.05 167 121 0.16 2.28 0.49

30 Eindhoven (370) 8.69 31 19.86 144 120 0.40 2.19 0.21

31 Volkel (375) 8.80 16 14.78 156 120 0.25 2.19 0.25

32 Ell (377) 8.60 18 29.23 147 123 0.27 2.04 -0.04

33 Maastricht (380) 8.30 36 90.01 150 123 0.32 2.23 -0.27

34 Arcen (391) 8.80 17 21.29 148 121 0.34 2.15 -0.10

The population density (Pop.) is in inhabitants per 100m2 averaged over 1km, in the table abbreviated as n/100m2. Elevation, solar irradiance,
roughness, and precipitation, respectively, are abbreviated to Elev, Irr, Rough, and Precip

therefore, we have pre-processed the 2.5-m contours derived
data (Fig. 3c).

2.2.4 Solar Irradiance

The solar irradiance at the surface relates to the amount of
energy which is available for surface heating (Müller et al.
2015) and is therefore essential for the temperature analysis.

The predominant pattern of the solar irradiance is the north-
south gradient though from the climatology some coastal
effects and height influences can be distinguished.

Geostationary satellites provide observations four times
an hour within the Netherlands, from which incoming short-
wave radiation is derived. The products from SARAH
(Müller et al. 2015) and SICCS (Greuell et al. 2013) are both
based on radiative transfer modeling and, combined, they
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Fig. 3 Centered and scaled
auxiliary datasets, in units
standard deviations, which were
used as additional information
for the temperature
interpolation. The datasets were
centered and scaled using R.
First, for each individual layer,
the means are subtracted.
Second, the layers are scaled by
their standard deviation. For the
plotting routine, the time varying
variables are averaged over time.
The eight different datasets are:
a diurnal temperature range, b
population density, c elevation,
d albedo, e solar irradiance at
the surface, f roughness, g
precipitation, and h normalized
difference vegetation index
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provide an almost complete temporal coverage between
1990 and 2017. From 1990 to 2013, SARAH1 was used,
and from 2014 onward SICCS was used as a predictor.
SARAH1 has a spatial resolution of 0.05 degree; validation
with the baseline surface radiation network (BSRN) shows
a bias of 1.3W/m2 (Müller et al. 2015). SICCS has a
similar resolution of approximately 6km and a bias of
6W/m2 (Greuell et al. 2013). Comparing the patterns of the
overlapping time periods of SARAH and SICCS, we found
a median Pearson correlation coefficient of 0.94. In case the
solar irradiance was not available, the monthly climatology
from SARAH 1990–2013 was used as a trend. An example
of the SARAH solar irradiance is included in Fig. 3d.

2.2.5 Albedo

Part of the solar irradiance is reflected back towards
into the atmosphere. The amount of reflection is strongly
related to the surface albedo (Moody et al. 2007). Albedo
satellite measurements rely on cloud-free observations.
During periods with a snow cover, the albedo is higher
than in periods without snow. Occasionally, mainly during
winter months, the Netherlands is covered with snow,
influencing the temperature patterns both day and night.
Therefore, on days with snow cover, the snow albedo from
the International Geosphere-Biosphere Program (IGBP)
was used. This dataset consists of 16 different surface
classes with related snow albedos. The snow albedo differs
among surfaces, e.g., under high vegetation the maximum
albedo is lower (Moody et al. 2007). The snow-free 5-year
climatological albedo from MODIS has a spatial resolution
of 1km and a temporal resolution of 16 days (Moody et al.
2008), see Fig. 3e. On days with a snow cover or partial
snow cover, the daily albedo (αd ) was estimated from the
IGBP snow albedo and snow-free albedo as:

αd = Csn ∗ αsn+veg + (1 − Csn) ∗ αclim (1)

where αsn+veg is the snow albedo depending on the
vegetation, αclim is the 16 days climatological albedo of the
surface without snow valid for the corresponding day, and
Csn is the snow cover fraction which was calculated as:

Csn = min

(
1,

Dsn

0.1

)
(2)

where Dsn is the interpolated snow depth in meters (Dutra
et al. 2010). The snow depth was interpolated, using a
thin plate spline function (from the Rs fields package) and
the 325 precipitation stations from the KNMI volunteer
network.

2.2.6 Surface roughness

The surface roughness is the main contributor to differences
in surface temperature between forested and open land
(Burakowski et al. 2018). Above the canopy layer, the forest
area experiences additional mixing. Due to the vegetation,
mixing of the lower air is limited. The air temperature is
not only cooler due to shadowing effect but part of the
year evapotranspiration lowers the forests’ temperatures.
The forested areas experience less mixing below the canopy
and therefore warmer nighttime temperatures and cooler
daytime temperatures compared with open land. As a first-
order estimate of this complex interaction, we use the
surface roughness length.

The roughness length is based on land-use classification,
which also forms the largest uncertainty. Lindenberg (2011)
found improvements of the wind speed simulations using
the roughness length based on the CORINE database
compared with the USGS land-use data. CORINE uses 44
different land-use classes and has a resolution of 100m,
derived from the European land-use database. For our
analysis, we used the CORINE-based surface roughness.5

Considering seasonal changes in roughness lengths, a
different surface roughness is used during summer and
winter (Fig. 3f).

2.2.7 Precipitation

The gridded daily precipitation files are based on 325
precipitation stations.6 The manual precipitation network
has remained almost the same over the entire period.
Most of the measurement locations are in gardens of
houses or near farm lands at a height of 0.40m above
the ground. The precipitation is measured every 24 h
at 8:00 UTC (Brandsma 2014). The measurements were
interpolated using ordinary kriging (Sluiter 2012). From the
daily data, the monthly mean precipitation was calculated,
thereby providing an estimate of soil moisture availability.
Precipitation and temperature over land are generally
negatively correlated. This relationship however depends
on the latitude; for the higher latitudes, the correlation is
inversed (Trenberth and Shea 2005). This relationship is
neither trivial nor fully understood because other variables
such as the origin of the moist may play a key role. Despite
this unclear relationship, precipitation is a key variable
for the air temperature. The climatological precipitation
patterns generally are wetter near the coast and dryer inland
(Fig. 3g).

5https://www.eea.europa.eu/publications/COR0-landcover
6https://data.knmi.nl/datasets/Rd1/5?q=Rd1
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2.2.8 Normalized difference vegetation index

Vegetation absorbs and reflects solar irradiance and
influences the heat exchange and therefore it influences the
near surface temperature (Deng et al. 2018). Day and nigh-
time temperatures are influenced by evapotranspiration and
the isolating effect of vegetation. The NDVI is a commonly
used vegetation index which we will use as a proxy for these
processes. The NDVI mainly distinguishes between cities
and vegetated areas. In the sections below, the different
datasets are described accordingly.

The NDVI is derived from satellite images using visible
red (0.6 − 0.7μm) and near infrared (0.7 − 1.1μm)
wavelengths. The monthly NDVI product MOD13A3
(Didan and Huete 2006) from 2000 to 2016 has a resolution
of 1km. For this product, the satellite cloud-free images
are selected, which are corrected for the atmospheric
influences and nadir-adjusted (Huete and Justice 1999).
From MOD13A3 a monthly climatology was calculated by
averaging 16 years of data (Fig. 3h).

2.3 Interpolation techniques

The interpolation/regression techniques ordinary kriging
(ok), linear regression (lm), and multiple adaptive regression
splines (MARS) will be compared (Table 3). The data
analysis is performed in R, which is a programming
language with useful statistical and geospatial techniques.
The ok interpolation is implemented in the Rs automap
package (Hiemstra 2015) and gstat package (Pebesma and
Graeler 2017). The Rs caret package offers a large variety of
regression techniques from which lm and MARS are further
explored (Kuhn and Johnson 2016). The independent citizen
weather observations are compared with the different
methods. The RMSE and bias were calculated for all the
citizen weather stations.

2.3.1 Ordinary kriging

Kriging interpolation calculates spatial correlations between
the observed and surrounding values. Simple kriging
assumes that the covariance between the locations only
depends on the distance between the locations and the mean
residual is zero. Additionally, ok also assumes that the trend
is a known mean value (m(x)). The estimated value at an
unmeasured location (Z(x)) is calculated as:

Z(x) = m(x) + e(x) (3)

where m(x) describes the trend and e(x) is the spatially
dependent residual (Hiemstra and Sluiter 2011), also known
as the error term. In order to minimize the error, an
exponential variogram model is fitted through the residuals.
The kriging interpolation uses leave one out cross-validation

(LOOCV ) to determine model performance, according to
Hiemstra (2015).

2.3.2 Linear regression model

The 1.5m temperature (T1.5m) will be correlated to the
auxiliary data using lm. The linear model is fit as follows:

T1.5m = β0 + β1V1 + β2V2 + βiVi + β...V... + ... (4)

where β0 is the fitted constant and βi is the fitted value
to the variable (Vi). A summary of the model settings
which were used for this analysis is shown in Table 3. To
prevent over-fitting, the linear model uses recursive feature
elimination (rf e), which uses a backwards selection. After
excluding predictors, the feature importance is recalculated
for the remaining predictors. Optimization of the linear
model is based on tuning RMSE values (Kuhn and Johnson
2016). RMSE values for all models are calculated as:

RMSE =
√√√√1

n

n∑
i=1

(
−
T i − Ti)2 (5)

where n is equal to the number of observations,
−
T i is the

observed temperature, and Ti is the predicted temperature.
Detailed descriptions and examples are included in Kuhn
and Johnson (2016).

2.3.3 Multiple adaptive regression splines

The function BagEarthGCV described by Kuhn and
Johnson (2016) is a wrapper function around the MARS
from Friedman (1991). This extended linear model enables
nonlinear fitting between the multiple predictors. The
MARS model uses the build in general cross-validation
(GCV) statistics to prune the model with backward feature
selection. Mathematical details and a full derivation of the
model can be found in Friedman (1991).

3 Results

Before running lm and MARS, predictors with a 75%
correlation or higher were excluded from the analysis. In
93.6% of the cases, no predictors were excluded beforehand.
For 3.5% of the cases, the DTR range was excluded,
followed by the irradiance (2.0%), elevation (0.4%),
and precipitation (0.4%). Only for a few cases multiple
predictors were excluded, these include the DTR and
precipitation (0.01%) and the precipitation and irradiance
(0.01%). So, in most of the cases, all the predictors are
considered in the analysis.

Looking into the overall variable importance of the pre-
dictors for the lm and MARS models shows different results.
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Table 3 Models used to predict the temperature field

Model Abbr. Rpackage Function Variables Settings

Ordinary Kriging ok autoKrige automap AWS Blocksize: 20.000

Variagram: Exp

Validation: LOOCV

Linear model lm caret lm AWS rfe feature selection

Auxiliary data Validation: LOOCV

Regression splines MARS caret bagEarthGCV AWS GCV pruning

Auxiliary data Validation: LOOCV

For the lm predictions, the overall variable importance
equals: albedo (75.3%), DTR (6.7%), elevation (4.1%), pop-
ulation density (3.5%), irradiance (3.6%), NDVI (2.9%),
precipitation (2.1%), and roughness (1.8%). The overall
variable importance for MARS equals: albedo (8.2%), DTR
(19.0%), elevation (12.1%), population density (12.3%),
irradiance (17.3%), NDVI (12.2%), precipitation (11.3%),
and roughness (7.5%).

3.1 Spatial patterns

The daily 10%, 50%, and 90% temperature quantiles
represent the lowest temperatures which occur in winter
time, the yearly averaged temperature, and the warmest
temperatures which occur in summer time, respectively.
The daily temperature patterns for all models are similar
on the relatively larger spatial scale (Fig. 4). In the
southwestern part, the average temperatures amount to
10.5–11.0 ◦C. In the northeast, temperatures are colder and
amount to 9.5–10.0 ◦C. The 10% temperature quantile,
or the lowest temperatures, has a strong east-west pattern.
The median temperatures pattern has a southwest-northeast
gradient. The 90% temperature quantile, or the warmest
temperatures, has a northwest-southeast pattern. However,
on a local spatial scale, ok does not show variations in
temperature, and this in contrast with lm and MARS. During
the summer months, lm and MARS have an average UHI of
0.5 ◦C. In the southwestern part, a higher UHI , up to 1.0
◦C, is found for MARS. The peat areas are on average 0.3–
0.4 ◦C cooler. The central forest areas are in MARS 0.1–0.2
◦C cooler. During the winter months, the UHI for lm and
MARS is around 0.8 ◦C and 1.0 ◦C respectively.

3.1.1 Low temperatures

The 10% temperature quantile varies between 1.0 ◦C in
the eastern part of the country and 3.5 ◦C in the western
coastal area. The ok model has a strong gradient in the
southwestern part; this strong gradient is not supported
by lm and MARS. Both lm and MARS have temperatures
between 2.0 and 2.5 ◦C outside city areas near the coast.

Within the denser populated areas, lm and MARS predict
temperatures respectively around 3.0 ◦C and 3.5 ◦C. In the
southeastern part, an elevated area (Fig. 3), MARS predicts
0.5 ◦C lower temperatures than ok and lm.

3.1.2 Median temperatures

The 50% temperature quantile in the northeast is around
10.0 ◦C and in the southwest 10.5–11 ◦C. The densely
populated areas are approximately 0.5 ◦C warmer in lm and
MARS. Similarly to the 10% temperature quantile, MARS
predicts the lowest temperatures in the southeastern part
(10.1 ◦C), and differences are 0.3 ◦C with lm and 0.6 ◦C
with ok. The lm predictions are for the central elevated area
0.3 ◦C higher temperatures compared with ok and MARS.
The peat areas in the central part of the Netherlands have,
for lm and MARS, lower temperatures.

3.1.3 High temperatures

The 90% temperature quantile varies between 17.5 ◦C
in the North and 19.0 ◦C in the southwest. Consistent
with the 10% and 50% temperature quantiles, the city
effect is pronounced for lm and MARS. In both cases,
the temperatures are predicted on average 0.5 ◦C higher.
Compared with MARS, the lm predicts higher temperatures
in the central elevated area (18.6 ◦C compared with 18.3
◦C). The earths temperatures in the peat areas are lower.

3.2 Model performance and comparison

The median RMSE LOOCV of the daily interpolations
for ok, lm, and MARS are (with the standard deviation
between brackets): 2.56 (3.57), 0.71 (0.38), and 0.60 (0.35)
respectively. The mean absolute error equals respectively
0.34 (0.27), 0.57 (0.30), and 0.46 (0.26). For new
predictions at the leave out locations of the AWSs, MARS is
the most stable.

The observations are compared with the model predic-
tions (Fig. 5). The bias at the locations of the AWSs equals
zero; this is as expected. The RMSE at the AWSs is 0.52
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Fig. 4 Climatology expressed as
10%, 50%, and 90% temperature
quantiles: a lower temperatures,
b median temperatures, and c
the highest temperatures for the
three different methods ordinary
kriging (ok), linear regression
(lm), and multiple adaptive
regression splines (earth)

◦C for ok, 0.58 ◦C for lm, and 0.76 ◦C for MARS. This is
also reflected in the broader density spreading around the
1:1 line. The Haarweg station, which is situated in a sim-
ilar setting as the AWSs, shows similar results. Here, the
bias is non-zero and equals for ok, lm, and MARS respec-
tively 0.04 ◦C, 0.09 ◦C, and 0.08 ◦C. The RMSE values
for Haarweg are smaller than the AWS stations; ok, lm, and
MARS have a RMSE of 0.36 ◦C, 0.46 ◦C, and 0.46 ◦C.
Comparing the predictions with the citizen weather obser-
vations shows a different result. The ok interpolation has a
cold bias of 0.86 ◦C for the GGD observations. Both lm and
MARS have a smaller bias of 0.54 ◦C and 0.43 ◦C. RMSE

values are around 1.2 ◦C. The Wunderground observations
have smaller RMSE with values around 1.0 ◦C. Similar to
the GGD observations, ok has the largest bias of 0.47 ◦C.
For lm and MARS, the bias equals 0.29 ◦C and 0.25 ◦C.

The difference in variable importance (see Section 3) also
explains the prediction differences: MARS predicts higher
temperature in cities and lower temperatures in elevated
areas since these are considered to be more important.
Within cities the MARS predictions are closer to the
observed citizen weather temperatures than lm, and this
suggests that the variable importance of MARS is more
realistic.
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Fig. 5 Predicted versus observed temperature values: a at the loca-
tions of the AWSs, validated for the entire time period, and b for the
different citizen weather observations. The GGD observations were

mainly after 2014. The Haarweg observations include measurements
from 2001 onward and the first Wunderground observations start in
2008
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4 Discussion

Regression kriging has been used by Sluiter (2012), Mohr
and Tveito (2008), and Aalto et al. (2013) and has also
been explored in our analysis (not shown). Because of the
large number of variables, the variogram fitting proves to be
unstable. Regression kriging does not have a built-in feature
selection such as lm and MARS. The additional predictors
used for the lm and MARS resulted in a higher spatial
variability which is also reflected in the RMSE values of
the AWS stations. The comparison with independent citizen
weather observation has shown that both lm and MARS have
a smaller bias compared with the ok method which does
not use additional predictors. Errors for higher temperatures
could possibly be caused by the non-optimal or absent
ventilation systems (Bell et al. 2015).

It may be possible that the high-resolution temperature
grids that we present here can be used to analyze local
warming trends. For the station De Bilt, located in
the center of the Netherlands, van Oldenborgh and Van
Ulden (2003) fitted a linear warming trend from which
1 ◦C is contributed to warming, including an increase
in southwesterly circulation, and 0.6 ◦C is the standard
deviation error or noise factor. Between 1975 and 2010, the
warming in the Bilt was 0.049 ◦C per year (van der Schrier
et al. 2011). For our time period (1990–2017), we found
a linear warming trend in de Bilt of 0.025 ◦C per year.
Analyzing the linear warming trend from 1990 to 2017 from
our gridded temperature dataset shows an average warming
of 0.027 ◦C per year with a noise factor of 0.64 ◦C for ok.
A possible lack of significant spatial variability in the ok
temperature grids is due to the inherited spatial smoothing
of ok. The fitted trends for lm and MARS have similar
noise values though their warming trends do show a spatial
pattern. The first and third quantiles for lm and MARS are
respectively 0.026–0.029 ◦C and 0.027–0.031 ◦C. These
variations are supported by the yearly linear warming trends
including:

– The AWS stations near the coast: De Kooy (0.029 ◦C),
Vlissingen (0.024 ◦C), and Rotterdam (0.025 ◦C).

– A bit further inland the warming trend of AWS Schiphol
was estimated at 0.031 ◦C.

– In the central part of the country, the warming trends of
De Bilt, Cabauw, and Deelen were 0.025 ◦C, 0.030 ◦C,
and 0.021 ◦C respectively.

– In the east, the AWS Twenthe had a warming trend of
0.026 ◦C.

– In the northern part of the country, warming trends of
the AWS stations Leeuwarden and Eelde were 0.032 ◦C
and 0.030 ◦C respectively.

It has been suggested that the warming near the
coast is slower than further inland. The North Sea is
likely to delay the warming in the coastal regions. Also,

additional warming due to an increase in southwesterly
winds, as suggested by van Oldenborgh and Van Ulden
(2003), is possibly stronger inland. Besides these large-
scale variations in warming trends, also variations near the
expanding cities can be observed. It is unclear to what extent
this trend is artificial (induced by the input from population
density) or representative because long-term records in
cities are not available to support the trends.

Several recent studies have been dedicated to compare
and validate observational data with numerical weather
prediction (NWP) model or reanalysis data (Mohammadi
et al. 2017; Carrera et al. 2019; Heintzman 2019; Rontu
et al. 2019). Observational data helps to identify model
biases and allows for bias corrections. Also interpolated
or gridded products have been compared with models
(Hutchison et al. 2017; Jain and Flannigan 2017; Ouyang
et al. 2018; Krauskopf and Huth 2019; López Gómez et al.
2020). This comparison is complex because it not only
highlights model biases but also deficits from interpolated
grids. Therefore, Krauskopf and Huth (2019) compared
different sources of (gridded) observations and reanalysis.
In certain regions (e.g., the Pyrenees or Scandinavia)
and on small scales, the largest differences were found.
Our interpolation product, combined with independent
citizen weather observations, can be used to improve
high-resolution weather forecasts and to improve the
quantification of the urban heat island effect.

The interpolation method presented here could also be
applied to different countries or regions provided that the
same predictors are available. It does however require
an observational network which is representative for the
interpolation area. If the network is too sparse, over-fitting
may become an issue. It is therefore of great importance
to validate the interpolation with independent observational
data such as citizen weather observations.

5 Conclusions

With a final resolution of 1km, the daily air temperature
within the Netherlands was reconstructed for the period
1990–2017. The goal of this study was to develop a
new methodology; therefore, we used eight different
spatial predictors and compared linear regression and
multiple adaptive regression splines, to reconstruct daily
temperature patterns. As a reference run, ordinary kriging,
which does not use spatial predictors, was compared
with the more advanced methods. The spatial predictors
included: diurnal temperature range (DTR), population
density, elevation, albedo, solar irradiance, roughness,
precipitation, and normalized difference vegetation index
(NDVI). These were fit to the temperature observations of
the 34 automatic weather stations (AWSs), which are spread
throughout the country. In order to prevent over-fitting,
highly correlated predictors were excluded beforehand and
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the fitting routine used backwards feature selection. The
models were validated using leave one out cross validation
(LOOCV) for each of the 34 AWS locations. The RMSE

for ordinary kriging (ok) was 2.6 ◦C. Using linear model
(lm) and multiple adaptive regression splines (MARS)
resulted in a significantly smaller RMSE: 0.7 ◦C and
0.6 ◦C, respectively. Since the AWS locations are used
during the interpolation, the predictions were validated with
citizen weather observations (including stations from the
Wunderground network), GGD network, and Wageningen
University Observatory. In contrast to the ok model, the lm
and MARS models are 0.2–0.5 ◦C less biased compared with
citizen weather temperature observations.

On country scale, temperature patterns are similar,
though the temperature gradient found by ok is generally
stronger. Temperature patterns of the median climatology
show a southwest-northeast gradient. In the southwest, the
highest mean temperatures occur. The 10% temperature
quantile has a strong east-west temperature gradient, with
the lowest temperatures in the east. The 90% temperature
quantile has the highest temperatures in the southwest and
lowest in the northeast. Both the temperature patterns from
lm and MARS show local temperature variations. The MARS
temperature predictions are lower in peat areas in the central
part of the country and elevated areas. Higher temperatures
are found in densely populated areas which is supported by
the crowd-sourced measurements.

There is a preference towards the MARS model as it
is closer to the citizen weather temperature observations.
Additionally, the scale-ability of the MARS algorithm for
larger areas with different climatological influences makes
it preferable above lm.

Regional and local variations in warming trends are
not captured with ok. However, our new interpolation
methodology, with explanatory predictors, feature selection,
and independent validation, does show local spatial
variability. The warming trend from 1990-2017, from the
temperature grids of lm and MARS, show a warming
between 0.027 ◦C per year and 0.031 ◦C per year. Although
some small-scale variations in warming trends are left
unexplained, we have been able to validate regional-scale
trends; these results are the first step towards local warming
trend analysis. With the improved representation of local
temperature variations, the high-resolution maps presented
here can have applications in urban heat island studies, local
trend analysis, and model evaluation.
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