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a b s t r a c t

In this paper, we solve the problem of learning a generalized Nash equilibrium (GNE) in merely
monotone games. First, we propose a novel continuous semi-decentralized solution algorithm without
projections that uses first-order information to compute a GNE with a central coordinator. As the
second main contribution, we design a gain adaptation scheme for the previous algorithm in order
to alleviate the problem of improper scaling of the cost functions versus the constraints. Third, we
propose a data-driven variant of the former algorithm, where each agent estimates their individual
pseudogradient via zeroth-order information, namely, measurements of their individual cost function
values. Finally, we apply our method to a perturbation amplitude optimization problem in oil
extraction engineering.

© 2023 Published by Elsevier Ltd.
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1. Introduction

Decision problems where self-interested intelligent systems
r agents wish to optimize their individual cost objective func-
ion arise in many engineering applications, such as charging/
ischarging coordination for plug-in electric vehicle (Grammatico,
017; Ma, Callaway, & Hiskens, 2011), demand-side management
n smart grids (Mohsenian-Rad, Wong, Jatskevich, Schober, &
eon-Garcia, 2010; Saad, Han, Poor, & Basar, 2012), robotic for-
ation control (Lin, Qu, & Simaan, 0000), and thermostatically
ontrolled loads (Li, Zhang, Lian, & Kalsi, 2015). The key feature
hat distinguishes these problems from multi-agent distributed
ptimization is the fact the cost functions and constraints are
oupled together. Currently, one active research area is that of
inding (seeking) actions that are self-enforceable, e.g. actions
uch that no agent has an incentive to unilaterally deviate from
the so-called generalized Nash equilibrium (GNE) (Facchinei
Kanzow, 2010, Eq. 1). Due to the aforementioned coupling,

nformation on other agents must be communicated, observed,
r measured in order to compute a GNE algorithmically. The
ature of this information can vary from knowing everything (full
nowledge of the agent actions) (Yi & Pavel, 2019), estimates
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Associate Editor Martin Guay under the direction of Editor Miroslav Krstic.
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based on distributed consensus between the agents (Gadjov &
Pavel, 2019), to payoff-based estimates (Frihauf, Krstic, & Basar,
2011; Marden, Arslan, & Shamma, 2009). The latter is of special
interest as it requires no dedicated inter-agent communication
infrastructure.

Literature review: In payoff-based algorithms, each agent can
nly measure the value of their cost function but does not nec-
ssarily know its analytic form. Many of such algorithms are
esigned for Nash equilibrium problems (NEPs) with finite ac-
ion spaces where each agent has a fixed policy that speci-
ies what a player should do under any condition, e.g. Goto,
atanaka, and Fujita (2012), Marden et al. (2009) and Mar-
en and Shamma (2012). On the other hand, the main compo-
ent of continuous action space algorithms is the payoff-based
pseudo)gradient estimation scheme. A notable class of payoff-
ased algorithms called Extremum Seeking Control (ESC) is based
n the seminal work by Krstić and Wang (2000). The main
dea is to use perturbation signals to ‘‘excite’’ the cost function
nd estimate its gradient which is then used in a gradient-
escent-like algorithm. Since then, various different variants have
een proposed (Dürr, Stanković, Ebenbauer and Johansson, 2013;
haffari, Krstić, & NešIć, 2012; Grushkovskaya, Zuyev, & Eben-
auer, 2018; Labar, Garone, Kinnaert, & Ebenbauer, 2019; Liao,
anzie, Chapman, & Alpcan, 2019; Liu & Krstić, 2011; Shao, Teel,
an, Liu, & Wang, 2019). A full-information algorithm where
he (pseudo)gradient is known, can be ‘‘transformed’’ into an
xtremum seeking one if it satisfies some properties, like the
ontinuity of the dynamics, use of only one (pseudo)gradient
n the dynamics, appropriate stability of the optimizer/NE, etc.

t first, (local) exponential stability of the optimizer/NE was
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ssumed or implied with other assumptions Krstić and Wang
2000, Assum. 2.2), Frihauf et al. (2011, Assum. 3.1). Thanks
o results in averaging and singular perturbation theory (San-
elice & Teel, 2011; Wang, Teel, & Nešić, 2012) in the hybrid
ynamical systems framework (Goebel, Sanfelice, & Teel, 2012),
he assumption was relaxed to just (practical) asymptotic stabil-
ty (Poveda & Teel, 2017a). Subsequently, extremum seeking al-
orithms were developed for many different applications, such as
vent-triggered optimization (Poveda & Teel, 2017b), Nesterov-
ike accelerated optimization with resetting (Poveda & Li, 2021),
ptimization of hybrid plants (Poveda et al., 2018), population
ames (Poveda & Quijano, 2015), N-cluster Nash games (Ye, Hu,
Xu, 2020), fixed-time Nash equilibrium seeking for strongly
onotone games (Poveda & Krstić, 2021), Nash equilibrium seek-

ng for merely monotone games (Krilašević & Grammatico, 2021a)
nd generalized Nash equilibrium seeking in strongly monotone
ames (Krilašević & Grammatico, 2021b).
GNEPs can be solved efficiently by casting them into a varia-

ional inequality (VI) (Facchinei & Pang, 2007, Equ. 1.4.7), and in
urn into the problem of finding a zero of an operator (Facchinei
Pang, 2007, Equ. 1.1.3), for which there exists a vast litera-

ure (Bauschke, Combettes, et al., 2011). For GNEPs, this operator
s the KKT operator, composed of the pseudogradient (whose
onotonicity determines the type of the game), dual variables,
onstraints and their gradients. In the case of merely mono-
one operators, the most widely used solution algorithms are the
orward–backward–forward (Bauschke et al., 2011, Rem. 26.18),
he extragradient (Korpelevich, 1976) and the subgradient extra-
radient (Censor, Gibali, & Reich, 2011). The main drawback of all
f these algorithms, with respect to an extremum seeking adap-
ation, is that they require two pseudogradient computations per
teration. Recently, the golden ratio algorithm has been proven
o converge in the monotone case with only one pseudogradient
omputation (Malitsky, 2019). There also exist continuous-time
ersions of the aforementioned algorithms, like the forward–
ackward–forward algorithm (Bot, Csetnek, & Vuong, 2020) and
he golden ratio algorithm (Gadjov & Pavel, 2020), albeit without
rojections in the latter case, rendering it unusable for GNEPs,
s projections are essential for the dual dynamics. To the best
f our knowledge, in the merely monotone case, there currently
xists no continuous-time GNEP algorithm that can be paired
ith extremum seeking.
Contribution: Motivated by the above literature and open re-

search problem, to the best of our knowledge, we consider and
solve the problem of learning (i.e., seeking via zeroth-order infor-
mation) a GNE in merely monotone games. Specifically, our main
technical contributions are summarized next:

• We propose a novel, projection-less continuous-time algo-
rithm for solving GNEPs. Unlike (Gadjov & Pavel, 2020), we
consider the presence of shared constraints that are satisfied
asymptotically.

• We propose a novel dual variable gain adaptation scheme
using the framework of hybrid dynamical systems in order
to alleviate the problem of improper scaling of the cost and
constraint functions.

• We propose an extremum seeking scheme which exploits
the aforementioned properties of the previous algorithms
and in turn solves for the first time monotone GNEPs with
zeroth-order information feedback.

Comparison with Krilašević and Grammatico (2021a, 2021b): Since
here we assume non-strong monotonicity of the pseudogradient
mapping, the methodology in Krilašević and Grammatico (2021b)
based on the forward–backward splitting is not applicable—see Ga
jov and Pavel (2020, Equ. 4) for an example of non-convergence.

Furthermore, by incorporating projection-less dual dynamics, here

2

we allow for the presence of constraints, in contrast with the
methodology in Krilašević and Grammatico (2021a) which cannot
be extended to the constrained case. Thus, in this paper, we
develop a novel splitting methodology that solves the issues
of non-convergence and coupled feasible set, and consequently
addresses a much wider class of equilibrium problems. The hybrid
gain adaptation is also novel and not considered in Krilašević and
Grammatico (2021a, 2021b).

Notation: The set of real numbers and the set of nonnegative
real numbers are denoted by R and R+, respectively. Given a set
Z , Zn denotes the Cartesian product of n sets Z . For a matrix
A ∈ Rn×m, A⊤ denotes its transpose. For vectors x, y ∈ Rn and
M ∈ Rn×n a positive semi-definite matrix and A ⊂ Rn, ⟨x | y⟩,
∥x∥, ∥x∥M and ∥x∥A denote the Euclidean inner product, norm,
weighted norm and distance to set respectively. Given N vectors
x1, . . . , xN , possibly of different dimensions, col (x1, . . . xN) :=[
x⊤

1 , . . . , x⊤

N

]⊤. Collective vectors are denoted in bold, i.e, x :=

col (x1, . . . , xN) and for each i = 1, . . . ,N , x−i := col(x1, . . . , xi−1,
xi+1, . . . , xN ) as they collect vectors from multiple agents. Given
N matrices A1, A2, . . . , AN , blkdiag (A1, . . . , AN) denotes the block
diagonal matrix with Ai on its diagonal. Given a vector x, diag(x)
represents a diagonal matrix whose diagonal elements are equal
to the elements of the vector x. For a function v : Rn

× Rm
→

R differentiable in the first argument, we denote the partial
gradient vector as ∇xv(x, y) := col

(
∂v(x,y)

∂x1
, . . . ,

∂v(x,y)
∂xN

)
∈ Rn.

We use S1
:=

{
z ∈ R2

: z21 + z22 = 1
}

to denote the unit circle
in R2. The set-valued mapping NS : Rn ⇒ Rn denotes the
normal cone operator for the set S ⊆ Rn, i.e., NS(x) = ∅
if x /∈ S,

{
v ∈ Rn

| supz∈S v⊤(z − x) ≤ 0
}

otherwise. Id is the
identity operator; In is the identity matrix of dimension n and
0n is vector column of n zeros; their index is omitted where
the dimensions can be deduced from context. The unit ball of
appropriate dimensions depending on context is denoted with
B. A continuous function γ : R+ → R+ is of class K if it is
zero at zero and strictly increasing. A continuous function α :

R+ → R+ is of class L if is non-increasing and converges to
zero as its arguments grows unbounded. A continuous function
β : R+ × R+ → R+ is of class KL if it is of class K in the
first argument and of class L in the second argument. A function
ω : BA → R+ is a proper indicator of A on BA if it is continuous,
if ω (xi) approaches infinity when i approaches infinity if either
∥xi∥ approaches infinity or xi approaches the boundary of set A,
and ω(x) = 0 if and only if x ∈ A (Poveda et al., 2018).

The framework of hybrid dynamical systems (HDS) theory
(Goebel et al., 2012) like Sanfelice and Teel (2011), Poveda and
Teel (2017a, Lemma 4) and Wang et al. (2012) is especially
attractive for extremum seeking, as it allows one to quickly and
elegantly prove various stability theorems (Poveda & Krstić, 2021;
Poveda & Li, 2021; Poveda & Teel, 2017a, 2017b). Thus, we also
use the framework of HDSs to model our algorithms. An HDS is
defined as

ẋ ∈ F (x) if x ∈ C (1a)

x+
∈ G(x) if x ∈ D, (1b)

where x ∈ Rn is the state, F : Rn
→ Rn is the flow map, and G :

Rn
→ Rn is the jump map, the sets C and D, are the flow set and

the jump set, respectively, that characterize the points in space
where the system evolves according to (1a), or (1b), respectively.
The data of the HDS is defined as H := {C,D, F ,G}. Solutions
x : dom(x) → Rn to (1) are defined on hybrid time domains,
and they are parameterized by a continuous-time index t ∈ R+

and a discrete-time index j ∈ Z+. Solutions with unbounded time
or index domains are said to be complete (Goebel et al., 2012,
Chp. 2). We now define the sufficient hybrid basic conditions that
enable the use of various results from HDS theory (Goebel et al.,
2012, Assum. 6.5).
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D

D

efinition 1 (Hybrid Basic Conditions). A HDS in (1) is said to sat-
isfy the Hybrid basic conditions if C and D are closed, C ⊂ dom(F ),

⊂ dom(G), F and G are continuous on C and D respectively. □

2. Generalized Nash equilibrium problem

We consider a multi-agent system with N agents indexed by
i ∈ I := {1, 2, . . .N}, each with cost function

Ji(ui, u−i), (2)

where ui ∈ Rmi is the decision variable, Ji : Rmi × Rm−i → R. Let
us also define m :=

∑
j∈I mj and m−i :=

∑
j̸=i mj. Formally, we

do not consider local constraints as in Krilašević and Grammatico
(2021a), Poveda and Krstić (2021) and Ye et al. (2020), but they
could be approximated softly via penalty-barrier functions into
the cost function. All agents are subject to convex coupling con-
straints gj(u) indexed by j ∈ Q := {1, 2, . . . q}. Therefore, let us
denote the overall feasible decision set as

U :=
{
u ∈ Rm

| g(u) ≤ 0
}
, (3)

and the feasible set of agent i as

Ui(u−i) :=
{
ui ∈ Rmi | g(u) ≤ 0

}
, (4)

where g(u) = col
((

gj(u)
)
j∈Q

)
.

The goal of each agent is to minimize its cost function, i.e.,

∀i ∈ I : min
ui∈Ui(u−i)

Ji(ui, u−i), (5)

which depends on the decision variables of other agents as well.
Thus, a game G is defined by the set of cost functions and the
feasible set, i.e. G := {(Ji(u))i∈I, (gj(u))j∈Q}. From a game-theoretic
perspective, this is the problem to compute a generalized Nash
equilibrium (GNE), as formalized next.

Definition 2 (Generalized Nash Equilibrium). A set of control ac-
tions u∗

:= col
(
u∗

i

)
i∈I is a generalized Nash equilibrium if, for all

i ∈ I,

u∗

i ∈ argmin
vi

Ji
(
vi, u∗

−i

)
s.t.

(
vi, u∗

−i

)
∈ U . (6)

with Ji as in (2) and U as in (3). □

In plain words, a set of inputs is a GNE if no agent can improve
its cost function by unilaterally changing its input.

A common approach for solving a GNEP is to translate it
into a quasi-variational inequality (QVI) (Facchinei & Kanzow,
2010, Thm. 3.3) that can be simplified to a variational inequality
(VI) (Facchinei & Kanzow, 2010, Thm. 3.9) for a certain subset
of solutions called variational-GNE (v-GNE), which in turn can
be translated into a problem of finding zeros of a monotone
operator (Facchinei & Pang, 2007, Equ. 1.1.3). To ensure the
equivalence of the GNEP and QVI, we postulate the following
assumption (Facchinei & Kanzow, 2010, Thm. 3.3):

Standing Assumption 1 (Regularity). For each i ∈ I, the function
Ji in (2) is differentiable and its gradient is locally Lipschitz con-
tinuous; the function Ji (·, u−i) is convex for every u−i; For each
j ∈ Q, convex constraint gj(u) is continuously differentiable, U is
non-empty and satisfies Slater’s constraint qualification. □

We focus on a subclass of GNE called variational GNE
(Facchinei & Kanzow, 2010, Def. 3.10). A collective decision u∗ is
a v-GNE in (6) if and only if there exists a dual variable λ∗

∈ Rq

such that the following KKT conditions are satisfied (Facchinei &
Kanzow, 2010, Th. 4.8):

0m+q ∈ Fex(u∗, λ∗) :=

[
F (u∗) + ∇g(u∗)⊤λ∗

−g(u∗) + N q (λ∗)

]
, (7)
R
+

3

where by stacking the partial gradients ∇ui Ji(ui, u−i) into a single
vector, we have the so-called pseudogradient mapping:

F (u) := col
((

∇ui Ji (ui, u−i)
)
i∈I

)
. (8)

Let us also postulate the weakest working assumption in GNEPs
with continuous actions, i.e. the monotonicity of the pseudogra-
dient mapping (Facchinei & Pang, 2007, Def. 2.3.1, Thm. 2.3.4):

Standing Assumption 2 (Monotonicity). The pseudogradient
mapping F in (8) is monotone, i.e., it holds that

inf
u,v∈domF

⟨u − v | F (u) − F (v)⟩ ≥ 0. □

The regularity and monotonicity assumptions are not enough
to ensure the existence of a v-GNE Facchinei and Pang (2007,
Thm. 2.3.3, Corr. 2.2.5), Facchinei and Kanzow (2010, Thm. 6),
hence let us postulate its existence:

Standing Assumption 3 (Existence). There exists ω∗
:= col(u∗,

λ∗) ∈ Rm
× Rq

+ such that Eq. (7) is satisfied. □

In this paper, we consider the problem of finding a v-GNE of
the game in (5) via zeroth-order information, i.e. local measure-
ments of the cost functions in (2).

3. Full-information generalized Nash equilibrium seeking

We present two novel full-information GNE seeking algo-
rithms. In the first algorithm, the dual variables are calculated
without the use of projections by a central coordinator. The
lack of projections onto tangent cones, along with the fact that
the flow map of the algorithm contains only one pseudogradi-
ent computation and that the algorithm itself converges merely
under the monotonicity assumption, enables us to use hybrid
dynamical system theory for the zeroth-order extension of the
algorithm later on. In the second algorithm, we propose a hybrid
gain adaptation scheme, in order to improve the performance of
the algorithm when we do not know a priori how to best tune
the gains.

3.1. Projection-less GNE seeking algorithm

The algorithm in Gadjov and Pavel (2020) proves convergence
to a NE for a monotone pseudogradient by combining additional
filtering dynamics and state z with the standard NE seeking one.
Similarly, we propose a Lagrangian first-order primal dynamics
with filtering for each agent:[
u̇i

żi

]
=

[
−ui + zi − γi

(
∇ui Ji(ui, u−i) + ∇uig(u)

⊤λ
)

−zi + ui

]
.

The authors in Gadjov and Pavel (2020) propose a passivity
framework for the convergence of their golden-ratio inspired
algorithm. Instead, we offer a different intuition for convergence.
Via the invariance theorem, it follows that the stable equilibrium
points must be in the Lyapunov invariant set. Without the ad-
ditional dynamics and under the monotonicity assumption, the
invariant set would cover the whole flow set. With the filtering
dynamics, the invariant set is restricted to the points where the
flow map is equal to zero. In the case of the dual dynamics, in
order to avoid projections, we propose the following dynamics:

∀j ∈ Q : λ̇j = λj
(
gj(u) − λj + wj

)
ẇ = −w + λ. (9)

While the classic dual Lagrangian dynamics preserve the positiv-
ity of the dual variables by projecting onto the positive orthant,
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Fig. 1. The figures represent projections of the sets M and A onto the subspace of u coordinates with F (u) := col (u2, −u1): A is shown in blue, while the other
equilibrium points of (10) M \ A, are shown in red. Areas that satisfy the constraints are shown in gray. The set M is not necessarily connected as shown in
Fig. 1(e). Without constraints, M is equivalent to A and it contains only the zeros of the pseudogradient as shown in Fig. 1(a). By adding constraints, we can either
create new equilibrium solutions (Figs. 1(b), 1(e)) or ‘‘remove’’ previous ones (Fig. 1(d)). Either way, ‘‘all’’ the solutions are still included in the set M, which is the
union of all solutions to games {(Ji(u))i∈I , (gj(u))j∈Q̃}, where Q̃ is a subset of Q. (For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)
he same is accomplished in (9) by multiplying the ‘‘standard’’
ual dynamics of each individual variable with the dual variable.
onsequentially, a positive dual variable cannot become negative
ver time as it cannot cross zero. Unlike (Dürr & Ebenbauer,
011; Dürr, Zeng and Ebenbauer, 2013), where strict convexity
f the cost and constraint functions is assumed to avoid having
he invariant set be equivalent to the entire flow set, thanks to
ur newfound understanding of the filtering dynamics, we can
ncorporate them to relax the strict convexity assumption.

Thus, in collective form, we have

˙ =

⎡⎢⎢⎢⎣
u̇
ż
λ̇

ẇ

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
−u + z − Γ (F (u) + ∇g(u)⊤λ)

−z + u
diag (λ) (g(u) − λ + w)

−w + λ

⎤⎥⎥⎥⎦ . (10)

To properly understand the behavior of this system, we first
need to define the key sets. Let us define the set of equilibrium
points of the dynamics in (10) as

M :=

{
ω ∈ R2m

× R2q
+ | u = z, w = λ, 0m = F (u)

+ ∇g(u)⊤λ, diag (λ) diag (g(u)) = 0
}
, (11)

its subset A which relates to the solutions of the game in (5) as

A :=

{
ω ∈ R2m

× R2q
+ | u = z, w = λ,

0m ∈ Fex (u, λ)

}
⊆ M, (12)

and L as the set where at least one dual variable is equal to zero:

L := {ω ∈ R2m
× R2q

+ | λ1 · λ2 · . . . · λq = 0}.

Let us make a few key observations. Firstly, not all equilibrium
points in M are related to the solutions of the GNEP like the
points in A (see Figs. 1(c), 1(d), 1(e)). Secondly, if the dynamics
are initiated in the set L, then the dual variables initiated with
zero will stay zero for the whole trajectory. Thus, such trajec-
tories do not converge to the solution unless the dual variables
are initialized correctly. To avoid this problem, it is sufficient
to initialize the trajectories outside of L. To further understand
the properties of these sets, we show some examples in Fig. 1.
We later show that M is attractive. Additionally, the following
Lemma characterizes the stability of points in M \ A.

Lemma 1. Let the Standing Assumptions hold. Then, the equilibrium
points in M \ A are unstable for dynamics in (10).

Proof. See Appendix B. ■
4

Therefore, in order to prove the stability of A, we need the sets
A and M \ A to be disjoint, as the latter is the set of undesired
equilibria. In Figs. 1(b) and 1(c) we illustrate this situation hap-
pens when the solution set contains multiple points and some of
them are ‘‘removed’’ by the introduction of the new constraints.
Thus, we have to assume this is not the case:

Standing Assumption 4 (Isolation of Solutions). By removing
constraints that are not active in the solution set A (for which
λ∗

j = 0) from the overall feasible decision set U in (3), additional
solutions that are connected to A are not created. □

We note that this assumption fails only in very specific condi-
tions. For example, let F (u) = col (u2, −u1), g1(u) = a1u1+b1u2+

c1 and g2(u) = a2u1 +b2u2 + c2. Standard Assumption 4 fails only
if c1 = 0 or c2 = 0. Even if Standard Assumption 4 is not satisfied,
by Lemma 1 the equilibrium points in M \A are unstable, hence
there would be no problem in practice.

Since we cannot claim attractivity from all points in the do-
main, we should use the notion of local stability, as formalized
next.

Definition 3 (UL(p)AS and UG(p)AS Poveda et al., 2018).
A compact set A ⊂ Rn is said to be Uniformly Locally pre-

Asymptotically Stable (ULpAS) with basin of attraction BA if for
every proper indicator ω(·) of A on BA there exists β ∈ KL such
that any solution x of H with x(0, 0) ∈ BA satisfies ω(x(t, j)) ≤

β(ω(x(0, 0)), t + j), for all (t, j) ∈ dom(x). If this bound holds with
ω(·) replaced by ∥·∥A, and for all x(0, 0) ∈ C ∪D, the set A is said
to be Uniformly Globally pre-Asymptotically Stable (UGpAS). If
additionally all solutions are complete, we then use the acronyms
ULAS and UGAS respectively.

Finally, we show that the dynamics in (10) converge to the
solutions of the game in (5), if the initial value of the dual
variables is different from zero, as formalized next:

Theorem 1. Let the Standing Assumptions hold and consider the
system dynamics in (10). The set A in (12) is ULAS with basin of
attraction (R2m

× R2q
+ \ L) ∪ A. □

Proof. See Appendix A. ■

Remark 1. It is mathematically also possible to derive a dis-
tributed (center-free) implementation of our semi-decentralized
algorithm, similarly to Krilašević and Grammatico (2021b, Equ.
14), where each agent estimates the dual variables using the in-
formation exchanged with the neighbors. While technically pos-
sible, this approach is less in line with the almost-decentralized
philosophy of extremum seeking, since it would require a dedi-
cated communication network.
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.2. Hybrid adaptive gain

It is known that primal–dual dynamics satisfy the constraints
nly asymptotically, thus they allow for constraint violation in the
ransient (Bianchi & Grammatico, 2021; Yi & Pavel, 2019). Such
ehavior might happen for longer periods of time if the norm of
he pseudogradient F (u) is ‘‘dominant’’ over that of the gradient
f the constraint vector, ∇g(u). Furthermore, as the zeroth-order
ariant from Section 4 introduces perturbations to the primal
ynamics, it can happen that the perturbations ‘‘overpower’’ ei-
her the pseudogradient or the constraint part of the dynamics,
hus hindering the convergence to the solution for a wide set
f perturbation amplitude parameters. Therefore, to reduce the
iolation behavior during the transients and to enable a more
pplicable zeroth-order adaptation, it is fundamental to scale the
unctions properly. When we do not know the cost functions
priori, it is difficult to scale the constraints. To address this
otential numerical issue, we propose a gain adaptation scheme
ased on hybrid dynamical systems. In simple words, we design
n outer-semicontinuous mapping which turns on the increase of
he gain kj when there is some level of constraint violation gj(u) ≥

ϵ, and turns it off when the constraint violation is minimal
j(u) ≤ ϵ, or when the gain reaches the maximum value k. The
ollective flow set and flow map for ξ := col (u, z, λ,w, k, s) read
as:

ξ ∈ C := R2m
× R2q

+ × Kq
× Sq (13a)⎡⎢⎢⎢⎢⎢⎢⎢⎣

u̇
ż
λ̇

ẇ

k̇
ṡ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= F (ξ ) :=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−u + z − Γ (F (u) + ∇g(u)⊤λ)
−z + u

diag (k) diag (λ) (g(u) − λ + w)

−w + λ

1
2 c S

2(1 + s)
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (13b)

and the collective jump set and jump map

∈ D :=

q⋃
j=1

Dj, Dj :=
(
D+

j ∪ D−

j ∪ D0
j

)
(14a)

+
∈ G(ξ ) :=

{( j∈C⋃
Gj(ξ ), ξ ∈

j∈C⋂
Dj

)
C∈P(Q)

, (14b)

where k is a vector of gains for the dual dynamics; K := [k, k] is
the set of possible values for these gains; s is a vector of discrete
states which indicate if the gains in k are increasing or not; S :=

{−1, 0, 1} is the set of possible discrete states; c > 0 is positive
constant which regulates the increase of k; S := diag (s), ϵ > 0 is
a positive number, D+

j := {u | gj(u) ≥ 2ϵ}×Rm
×R2q

+ ×Kq
×S j−1

×

{−1} × Sq−j is the set which triggers the increasing kj dynamics;
D−

j := {u | gj(u) ≤ ϵ} × Rm
× R2q

+ × Kq
× S j−1

× {1} × Sq−j

is the set which triggers the stopping of the kj dynamics; D0
j :=

R2m
× R2q

+ × Kj−1
× {k} × Kq−j

× S j−1
× {−1, 1} × Sq−j is the set

which triggers the permanent stop of kj dynamics; P(X ) is the
set of all subsets of X ; the jump maps Gj(ξ ) are defined as

j(ξ ) :=

⎧⎪⎨⎪⎩
∆−jξ − ∆jξ, ξ ∈ D+

j ∪ D−

j

∆−jξ, ξ ∈ D0
j

{∆−jξ − ∆j, ∆−jξ}, ξ ∈ (D+

j ∪ D−

j ) ∩ D0
j

where ∆j is a diagonal matrix with all zeros on the diagonal,
except for the row corresponding to the sj state which is equal
to one and ∆−j := I − ∆j.

The set-valued definitions are necessary for outer-
semicontinuity, which in turn via hybrid systems theory provides
5

Fig. 2. The trajectory is denoted with a gray line, events with yellow dots, first
constraint with red and second with blue lines. The trajectory starts in the set
where constraints are satisfied (g(u) ≤ 0). The first event is triggered when the
trajectory leaves the set where g1(u) < 2ϵ, causing the state s1 to change to 1
which then starts the increase of k1 gain. The second event happens when the
trajectory returns to the set where g1(u) ≤ ϵ and the state s1 is reset to 0 which
halts the increase in gains. Events 3 and 4 happen when the trajectory leaves
the sets g1(u) < 2ϵ and g2(u) < 2ϵ simultaneously. In that case, in random
order, states s1 and s2 are set to 1. The last jumps happen when the trajectory
imultaneously enters the sets g1(u) ≤ ϵ and g2(u) ≤ ϵ. Again, the states s1 and
s2 are reset to 0 in random order. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

us with some robustness properties. An example trajectory can
be seen in Fig. 2. We note that due to the design of the jump
sets, no jumps can occur in a sufficiently small neighborhood of
a GNE, and no solution can have an infinite number of jumps, as
formalized next:

Lemma 2. Let the Standing Assumptions hold and let ξ (t, j) be a
complete solution to the hybrid system (C,D, F ,G) in (13a), (13b),
(14a) and (14b). Then, ξ (t, j) has a finite number of jumps. □

Proof. See Appendix C. ■

Apart from the gain adaptation scheme, the main difference
between the dynamics in (13) and those in (10) is the fact that the
flow mapping of the dual variables contains the new gain vector.
Thus, one would expect similar behavior compared to that in (10).
Furthermore, thanks to the hybrid basic assumptions, our system
in (13) does not become unstable for arbitrarily small noise, as
formalized in the following definition and robust convergence
result for our hybrid adaptive algorithm.

Definition 4 (Structural Robustness Poveda & Li, 2021). Let a com-
pact set A be UGpAS (resp. SGPpAS as ε → 0+) for the hybrid
system H with β ∈ KL. We say that H is Structurally Robust if for
all measurable functions e : R≥0 → Rn satisfying supt≥0 ∥e(t)∥ ≤

ē, with ē > 0, the perturbed system

x + e ∈ C, ẋ = F (x + e) + e (15a)

x + e ∈ D, x+
= G(x + e) + e (15b)

renders the set A SGPpAS as ē → 0+ (resp. SGPpAS as (ε, ē) →

0+
)
with β ∈ KL. □
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heorem 2. Let the Standing Assumptions hold and consider the
ybrid system (C, D, F, G) in (13a), (13b), (14a) and (14b). Then, for
ny initial condition such that ξ (0, 0) /∈ L × Kq

× Sq there exists a
ompact set K ⊃ A×Kq

×Sq, such that the set A×Kq
×Sq is UGAS

or the restricted hybrid system (C ∩ K ,D ∩ K , F ,G). Additionally,
he restricted system is structurally robust. □

roof. See Appendix D. ■

. Zeroth-order generalized Nash equilibrium seeking

The main assumptions of Algorithms in Sections 3.1 and 3.2
re that each agent knows their partial-gradient mapping and
he actions of other agents. Such knowledge can be difficult
o acquire in practical applications (Ariyur & Krstic, 2003). Our
roposed zeroth-order GNE seeking algorithm requires a much
eaker assumption; we assume that each agent is only able to
easure their cost function. To estimate the pseudogradient via

he measurements, we introduce additional oscillator states µ.
y injecting oscillations into the inputs of the cost functions, it
s possible to estimate the pseudogradient. For example of a real
unction of a single variable, it holds that f (x + a sin(t)) sin(t) ≈

(x) sin(t) + a∇f (x) sin2(t) for small a. If the right-hand expres-
ion is averaged in time, only a

2∇f (x) remains as the desired
stimate. The principle is the same for mappings. In order to
educe oscillations, the estimate is then passed through a first-
rder filter with state ζ and forwarded into the algorithm in
ection 3.2 instead of the real pseudogradient.
Our new algorithm for the collective state φ := col(u, z, λ,w,

, s, ζ, µ) is given by

∈ C0 := C × Rm
× Sm (16a)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u̇
ż
λ̇

ẇ

k̇
ṡ
ζ̇

µ̇

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= F0(φ) :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

νε
(
−u + z − Γ (ζ + ∇g(u)⊤λ)

)
νε (−z + u)

ν0ε0 diag (k) diag (λ) (g(u) − λ + w)

ν0ε0 (−w + λ)

1
2ν0ε0c S2(1 + s)

0

ν
(
−ζ + F̂ (u, µ)

)
2πRκµ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(16b)

where ζi ∈ Rmi , µi ∈ Smi are the oscillator states, εi, νi ≥ 0 for all
i ∈ I0 := I∪{0}, ε := blkdiag

(
(εiImi )i∈I

)
, γ := blkdiag

(
(γiImi )i∈I

)
,

Rκ := blkdiag ((Ri)i∈I), Ri := blkdiag
(([

0 −κj
κj 0

])
j∈Mi

)
, κi > 0

for all i and κi ̸= κj for i ̸= j, Mi := {
∑i−1

j=1 mj + 1, . . . ,
∑i−1

j=1 mj +

mi} is the set of indices corresponding to the state ui, Dn
∈

Rn×2n is a matrix that selects every odd row from the vector of
size 2n, ai > 0 are small perturbation amplitude parameters,
A := blkdiag

(
(aiImi )j∈I

)
, J(u) = blkdiag

(
(Ji(ui, u−i)Imi )i∈I

)
, and

F̂ (u, µ) = 2A−1J(u + ADmµ)Dmµ. The flow set and map are
defined as

D0 := D × Rm
× Sm (17a)

φ+
∈ G0(φ) :=

[G(ξ )
ξ

µ

]
. (17b)

The existence of solutions follows directly from (Goebel, San-
felice, & Teel, 2009, Prop. 6.10) as the continuity of the right-
hand side in (16), (17) and the definitions of flow and jump
sets imply (Goebel et al., 2009, Assum. 6.5). As for most ex-
tremum seeking schemes with constant perturbation, conver-
gence to a neighborhood of the solutions can be guaranteed. Thus,
 c

6

let us introduce the corresponding stability concept, the so called
semi-global practical asymptotic stability.

Definition 5 (SG(p)AS Poveda et al., 2018). For a parameterized
HDS Hε , ε ∈ Rk

+
, a compact set A ⊂ Rn is said to be Semi-Globally

Practically pre-Asymptotically Stable (SGPpAS) as (ε1, . . . , εk) →

0+ with β ∈ KL if for all compact sets K ⊂ Rn and all v > 0, there
exists ε∗

0 > 0 such that for each ε0 ∈
(
0, ε∗

0

)
there exists ε∗

1 (ε0) >

0 such that for each ε1 ∈
(
0, ε∗

1 (ε0)
)
. . . there exists ε∗

j

(
εj−1

)
> 0

such that for each εj ∈
(
0, ε∗

j

(
εj−1

))
. . . , j = {2, . . . , k}, every

solution xε of Hε with xε(0, 0) ∈ K satisfies

∥xε(t, j)∥A ≤ β (∥xε(0, 0)∥A , t + j) + v

for all (t, j) ∈ dom (xε). If additionally all solutions are complete,
we then have Semi-Globally Practically Asymptotically Stable
(SGPAS) . □

Our main technical result of this section is summarized in the
following theorem.

Theorem 3. Let the Standing Assumptions hold and consider the
hybrid system (C0,D0, F0,G0) in (16) and (17). Then, for any initial
condition such that φ(0, 0) /∈ L × Kq

× Sq
× Rm

× Sm there exists
a compact set K ⊃ A × Kq

× Sq
× Rm

× Sq, such that the set
A×Kq

×Sq
×Rm

×Sq is SGPAS as (ā, ε̄, ν̄) = (maxi∈I ai,maxi∈I0 εi,
maxi∈I0 νi) → 0 for the restricted hybrid system ((C ∩ K ) × Rm

×

Sm), ((D∩K )×Rm
×Sm, F0,G0). Additionally, the restricted system

is structurally robust. □

Proof. See Appendix E. ■

Remark 2. For the sake of brevity, we made some assumptions
on the structure of our proposed algorithms. Namely, we assume
that the amplitudes of the perturbation signals ai are constant,
that the frequencies of the perturbation signals are different
for every state, and that every state of the pseudogradient is
estimated. Analogous results hold for slowly-varying amplitudes
ai(t) ∈ [a, a] where the upper and lower bounds are design
parameters, for perturbation signals with the same frequency
but sufficiently different phases so that ‘‘learning’’ can occur,
and for the pseudogradient with some, but not all, estimated
coordinates. □

5. Numerical simulations

5.1. Two-player monotone game

For illustration purposes, let us consider a two-player mono-
tone game with the following cost functions

J1(u) = (u1 − 2)(u2 − 3)

2(u) = −(u1 − 2)(u2 − 3), (18)

nd constraints

1 ≥ u2 + 1 and u1 ≥ 4. (19)

ame in (18) and (19) has a unique GNE (u∗

1, u
∗

2) = (4, 3)
nd is known to be divergent for algorithms that require strong
onotonicity of the pseudogradient. As simulation parameters
e choose c = 10, kj(0, 0) = 1, λj = 0.1 for all i ∈ I, j ∈ Q,
min = 1, kmax = 105, (u1(0, 0), u2(0, 0)) = (10, 0), and all other
nitial parameters were set to zero. We compare the algorithm in
13), (14) with algorithm in (10) for different values of the gain
nd show the numerical simulations in Figs. 3, 4, 5. In Figs. 3
nd 4, it seems that the trajectory with the highest gain does not

onverge to the equilibrium. However, this is not the case since
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Fig. 3. The trajectory with the adaptive gain is almost identical to the trajectory
with gain k = 100. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)

Fig. 4. Trajectories with (red) and without (blue, magenta, yellow) adaptive gain
in a phase plane. The yellow dot represents the GNE, while the other colored
lines are denoted as in Fig. 3. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

the Lagrangian multipliers converge very close to zero during
the initial part of the trajectory when both the constraints are
satisfied. Thus, as the multipliers themselves act as a ‘‘gain’’ in the
dynamics, it takes longer for the dynamics to evolve towards the
desired equilibrium. Eventually, the Lagrangian multipliers will
grow large enough to let the trajectory start moving towards a
solution. Furthermore, we note that the trajectory for the gain
k = 1 is the second slowest with respect to convergence speed.
Thus, in this scenario, choosing the gain either too small or too
large is detrimental to the convergence speed. On the other hand,
our adaptive gain behaves similarly as the case of gain k = 100,
which is the ‘‘optimally tuned’’ gain. In Figs. 4 and 5, we denote
the area where the constraints are satisfied with green and red
rectangles. In Fig. 6, we see how the adaptive gain turns on and
off based on the constraint violation.
7

Fig. 5. Trajectories in the neighborhood of the GNE (yellow dot). The jumps
are activated when entering and leaving the half-spaces corresponding to the
constraints (red and transparent green). The color code is as in Fig. 3: blue for
constant gain k = 105 , yellow for constant gain k = 102 , purple for constant
gain k = 1, and red for adaptive gain. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 6. Time evolution of the gains k1 and k2 .

5.2. Perturbation signal optimization in oil extraction

Oil extraction becomes financially unviable when the reservoir
pressure drops under a certain threshold. To solve this problem,
one can employ gas-lifting (Silva & Pavlov, 2020). Compressed gas
is injected down the well to decrease the density of the fluid and
the hydrostatic pressure, causing an increase in production. The
oil rate is typically a concave hard-to-model function of the gas
injection rate (Silva & Pavlov, 2020) with a maximum that slowly
changes over time due to changing conditions, making it an ex-
cellent candidate for extremum seeking. Extraction sites usually
have multiple wells that are operated by the same processing
facility. The goal is to maximize the oil extraction rate

J1(x) =

N∑
i=1

fi(xi), (20)

while not exceeding a linear coupling constraint which may relate
to total injection rate, power load, etc.
N∑
i

bixi ≤ xmax, (21)

where fi : R → R and xi ∈ R are the oil-rate function and
the injection rate, respectively, of the well i and bi, xmax ∈ R.

e denote the solution to this problem as x∗. Furthermore, the
rocessing facility wants to reduce the oscillations in the total
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ptimal extraction rate that result from the extremum seeking
erturbation signals:

ˆi(t) = xi(t) + di(t) = xi(t) + ai sin (ωt + φi) . (22)

he oscillations of a single well’s optimal extraction rate can be
pproximated as

i(x̂i) − fi(xi) ≈ ∇fi(xi) ai sin (ωt + φi) .

he secondary goal cannot be accomplished by techniques that
iminish the oscillation amplitude over time (Abdelgalil & Taha,
021; Bhattacharjee & Subbarao, 2021) as the cost functions are
lowly-varying and the learning procedure would stop prema-
urely. Furthermore, we cannot use too high frequencies (Suttner,
019) as that would also destroy our equipment. Thus, to accom-
lish our goal, wells are grouped into pairs (i, j), and each pair
elects perturbation signals which are in antiphase:

di(t) = ai sin (ωt + φi)

j(t) = −aj sin (ωt + φi) . (23)

ithout the coupling constraint and with an even number of
ells, the perturbation signals in (23) reduce the oscillations in
he neighborhood of the optimum as ∇f1(x∗

1) ≈ ∇f2(x∗

2) ≈ · · · ≈

∇fN (x∗

N ) ≈ 0. However, if a constraint is present, the perturbation
signals might not cancel out properly, because for some pair (i, j)
it can hold that ∇fi(x∗

i ) ̸≈ ∇fj(x∗

j ). Therefore, it is also necessary
to adapt the amplitudes ai, aj to improve the cancellation effect.
Without loss of generality, we assume that neighboring indices
are paired up as in (23). The secondary cost function is formulated
as follows:

Ĵ2(a) =
l
2

N
2∑

i=1

(
∇f2i(x∗

2i) a2i − ∇f2i−1(x∗

2i−1) a2i−1
)2

−

N∑
i=1

logp
(
(ai − a)(a − ai)

)
here l > 0, a and a are the minimum and maximum perturba-
ion amplitude respectively, and it holds 0 < a < a. We denote
∗

:= argmin Ĵ2(a). Since x∗ is not known in advance, direct
computation of a∗ is not possible. One can modify the previous
cost function to use any value of x

J2(x, a) =
l
2

N
2∑

i=1

(∇f2i(x2i) a2i − ∇f2i−1(x2i−1) a2i−1)
2 ,

−

N∑
i=1

logp
(
(ai − a)(a − ai)

)
, (24)

nd minimize the cost function:

p(x, a) = −αJ1(x) + βJ2(x, a), α, β > 0, (25)

ith constraint (21). However, this approach only approximates
he solution (x∗, a∗) for α ≫ β . With our game-theoretic formu-
ation instead, we look for a solution (x∗, a∗) such that x∗ is an
optimal solution to the oil extraction problem in (20) and the
overall pair (x∗, a∗) is variational GNE, meaning that the ampli-
tudes are fairly and optimally chosen. To show that the game is
monotone and can be solved by our algorithm, it is sufficient to
show that the Jacobian matrix of the pseudogradient is positive
semidefinite (Rockafellar & Wets, 2009, Prop. 12.3):

JF (x, a) :=

[
J11 J12
J21 J22

]
≽ 0. (26)

he submatrix J11 := blkdiag
(
(−∇

2fi(xi))i∈I
)
is positive semidef-

nite as all of the cost functions in (20) are concave. Furthermore,
8

the submatrix J12 is a zero matrix as the concave cost functions
do not depend on the perturbation amplitudes. Then it holds that
J22 := blkdiag

(
J1,2,J3,4, . . . ,JN−1,N

)
, where

Ji,j = l

[
(∇fi(xi))2 −∇fi(xi)∇fj(xj)

−∇fi(xi)∇fj(xj)
(
∇fj(xj)

)2
]

+

[
(ai−a)−2

+(ai−a)−2

log(p) 0

0 (aj−a)−2
+(aj−a)−2

log(p)

]
. (27)

As both matrices in (27) are positive semidefinite, and J22 is block
diagonal, it follows that the matrix J22 is positive semidefinite.
Finally, due to the block triangular structure of JF and positive
semidefinitness of J11 and J22, we conclude that JF is positive
semidefinite and in turn that the pseudogradient is monotone.

In our example, the amplitudes of the perturbation signals
are part of the decision variable and are therefore time-varying;
all perturbation signals have the same frequency but different
phases (23); and coordinates of the pseudogradient related to cost
functions in (24) need not be estimated, but can be computed
directly. Thus, by Remark 2, we suitably adjust the algorithm in
(16), (17) and use it for our numerical simulations. Furthermore,
we use the well oil extraction rates as in (Silva & Pavlov, 2020)

f1 (x1) = − 3.9 × 10−7x41 + 2.1 × 10−4x31
− 0.043x21 + 3.7x1 + 12,

f2 (x2) = − 1.3 × 10 − 7x42 + 10−4x32
− 2.8 × 10−2x22 + 3.1x2 − 17,

f3 (x3) = − 1.2 × 10−7x43 + 10−4x33
− 0.028x23 + 2.5x3 − 16,

f4 (x4) = − 4 × 10−7x44 + 1.8 × 10−4x34
− 0.036x24 + 3.5x4 + 10,

and the following parameters: l = 10, νi = 0.1, εi = 0.01
for all i, a = 10, a = 5, p = 100, ϵ = 10, ωi = 1,
max = 200, b1 = 1, b2 = 2, b3 = 3, b4 = 4, kmin = 0.01,
max = 10 000, c = 1000, Γ = 10. For initial conditions:
(0) = z(0) = col (10, 10, 10, 10, 7.5, 7.5, 7.5, 7.5), w(0) = 0,

λ(0) = 0.1, ζ (0) = 0, k(0) = 0.01, s(0) = 0. Additionally,
e run numerical simulations where only the total oil rate is
ptimized with constant perturbation amplitudes ai = 5, using
gain the algorithm in (16). In Fig. 7, we see that the amplitude
ptimization indeed reduces the amplitude of the oscillations
n the oil rate by 51% in the steady state, even though larger
mplitudes were used in the perturbation signals. In Fig. 8, we
an see how the constraints are violated over time. After half an
our, the constraints are always marginally satisfied. In Fig. 9,
e note that in each pair, one of the amplitudes converges to a
eighborhood of the minimal value.

. Conclusion

Monotone generalized Nash equilibrium problems with dual-
zed constraints can be solved via the continuous-time golden
atio algorithm augmented by projection-less dual dynamics. Fur-
hermore, the algorithm can be adapted via hybrid systems the-
ry for use with zeroth-order information feedback.

ppendix A. Proof of Theorem 1

We choose the following Lyapunov function candidate

(ω, ω∗) =
1
2

u − u∗
2

Γ −1 +
1
2

z − z∗
2

Γ −1

+
1
2

w − w∗
2

+

∑(
λj − λ∗

j − λ∗

j log
(

λj
λj

∗
))

, (A.1)

j∈Q
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Fig. 7. Time evolution of the total oil extraction rate for the case with and
without perturbation amplitude optimization. Amplitude optimization results in
a 51% steady state oscillation reduction.

Fig. 8. Constraint violation over time.

Fig. 9. Time evolution of amplitudes ai .

here ω∗
∈ A is any equilibrium point of (10) whose u∗, λ∗

tates correspond to a GNE and we define 0 log 0 := 0. The first
hree terms represent a weighted Euclidean distance from the
olution (u∗, z∗, w∗). As in Dürr and Ebenbauer (2011) and Dürr,
 Ω

9

eng et al. (2013), the fourth addend is chosen such that its Lya-
unov derivative is the same as in the case of the standard norm
λ − λ∗∥ and standard dynamics λ̇ = −λ + projR+

(g(u) − λ).
y Standard Assumption 4, equilibrium points in M \ A are
isconnected from A. Furthermore, going back to the Lyapunov
unction, points in M \ A are not in its domain, and by proving
egative semi-definiteness of the Lyapunov derivative, their po-
ential region of attraction is reduced to set L ⊃ M. Thus, we
o not consider points in L for initial conditions. The Lyapunov
erivative is given by

˙ =
⟨
u − u∗

| Γ −1 (
−u + z − Γ (F (u) + ∇g(u)⊤λ)

)⟩
+

⟨
z − u∗

| Γ −1 (−z + u)
⟩
+

⟨
w − λ∗

| − w + λ
⟩

+

∑
j∈Q

(
λ̇j −

λj
∗

λj
λ̇j

)
≤ −∥u − z∥2

Γ −1 −
⟨
u − u∗

| F (u) + ∇g(u)⊤λ
⟩⟨

w − λ∗
| − w + λ

⟩
+

∑
j∈Q

(
λj − λj

)∗ (gj(u) − λj + ωj)

≤ −∥u − z∥2
Γ −1 −

⟨
u − u∗

| F (u) + ∇g(u)⊤λ
⟩

+
⟨
w − λ∗

| − w + λ
⟩
+

⟨
λ − λ∗

| g(u) − λ + w
⟩

≤ −∥u − z∥2
Γ −1 − ∥λ − w∥

2
+

⟨
λ − λ∗

| g(u)
⟩

+
⟨
u − u∗

| F (u) + ∇g(u)⊤λ
⟩
. (A.2)

From the properties of v-GNE set, we conclude that

m = F
(
u∗

)
+ ∇g(u∗)⊤λ∗

0=
⟨
u − u∗

| F
(
u∗

)
+ ∇g(u∗)⊤λ∗

⟩
0 ≤

⟨
g(u∗) | λ∗

− ξ
⟩
for all ξ ∈ Rq

+ (A.3)

hus, by using (A.3) within (A.2), we further derive

˙ ≤ −∥u − z∥2
Γ −1 − ∥λ − w∥

2
−

⟨
u − u∗

| F (u) − F (u∗)
⟩

−
⟨
u − u∗

| ∇g(u)⊤λ − ∇g(u∗)⊤λ∗
⟩

+
⟨
λ − λ∗

| g(u) − g(u∗)
⟩

≤ −∥u − z∥2
Γ −1 − ∥λ − w∥

2
−

⟨
u − u∗

| F (u) − F (u∗)
⟩  

≤0

+

∑
j∈Q

λj
≥0

(
gj(u) − gj(u∗) +

⟨
u∗

− u | ∇gj(u)
⟩)  

≤0

−

∑
j∈Q

∗

λj
≥0

(
gj(u) − gj(u∗) −

⟨
u − u∗

| ∇gj(u∗)
⟩)  

≥0

≤ −∥u − z∥2
Γ −1 − ∥λ − w∥

2 , (A.4)

here the last inequality follows from the monotonicity of the
seudogradient and the convexity of the coupled constraints.
ow, we prove via La Salle’s theorem that the trajectories of (10)
onverge to the set A. Let us define the following sets:

Ωc := {ω ∈ R2m
× R2q

+ | V (ω) ≤ c}

0 := {ω ∈ Ωc | u = z and λ = w}

Z := {ω ∈ Ωc | V̇ (ω) = 0}

O := {ω ∈ Ωc | ω(0) ∈ Z ⇒ ω(t) ∈ Z ∀t ∈ R}, (A.5)

here Ωc is a non-empty compact sublevel set of the Lyapunov
unction candidate, Z is the set of zeros of its derivative, Ω0 is the
uperset of Z which follows from (A.4) and O is the maximum
nvariant set as explained in Khalil (2002, Chp. 4.2). Then, for
ome c > 0 large enough, it holds that

⊇ Ω ⊇ Z ⊇ O ⊇ A. (A.6)
c 0
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irstly, for any compact set Ωc , since the right-hand side of (10) is
(locally) Lipschitz continuous and therefore by Khalil (2002, Thm.
3.3) we conclude that solutions to (10) exist and are unique. Next,
we show that the only ω-limit trajectories in O are the equilib-
rium points of the dynamics in (10), i.e. O ≡ A. It is sufficient to
prove that there cannot exist any positively invariant trajectories
in Ω0, apart from stationary points in A. For trajectories in Ω0, it
holds that

0 = u − z (A.7)

0 = u̇ − ż (A.8)

0 = λ − w (A.9)

0 = λ̇ − ẇ, (A.10)

and therefore

0 = F (u) + ∇g(u)⊤λ (A.11)

0 = diag (λ) g(u), (A.12)

where (A.11) follows from (10) and (A.8), and (A.12) follows from
(10), (A.9) and (A.10). Eqs. (A.8), (A.9), (A.11) and (A.12) form
the definition of set M in (11) and the fact that M \ A is not
in the domain, we conclude Ω0 ≡ A. Since the set O is a
subset of the set Ω0, we conclude that O ≡ A. Therefore, by La
Salle’s theorem (Khalil, 2002, Thm. 4), set A is attractive for the
dynamics in (10).

Next, we prove the stability of A. We restrict the domain
of the dynamics by choosing an arbitrary ω∗ and a set Λ that
contains arbitrarily many initial conditions of interest not con-
tained in the set L, and it holds A ⊂ Λ. Then, we compute
c = maxω∈Λ V (ω, ω∗) and define the new restricted domain to
the forward invariant set E , where E := {ω ∈ R2m

× R2q
+ |

V (ω, ω∗) ≤ c}.
Consequently, we define the following set-valued mapping of

ompact sets

(ω∗, c) := {ω ∈ E | V (ω, ω∗) ≤ c}.

ow, we prove global stability with respect to the set A by
howing that any Lyapunov invariant set can be upper and lower
ounded by balls surrounding the solution set. Let us choose an
rbitrary ε > 0. For a particular c and ω∗, since V does not
ncrease, it follows that all trajectories that start in Ω(ω∗, c) are
ontained in the set. Let us choose c(ω∗) such that Ω(ω∗, c(ω∗)) ⊆

A + εB) ∩ E . By continuity of V , for every set Ω(ω∗, c(ω∗)),
t is possible to find δ(ω∗) > 0 such that (ω∗

+ δ(ω∗)B) ∩

E ⊆ Ω(ω∗, c(ω∗)). If we take δ = minω∗∈A δ(ω∗), it holds that
∪ω∗∈A(ω∗

+ δB) ∩ E = (A + δB) ∩ E . Thus, (A + δB) ∩ E ⊆

ω∗∈AΩ(ω∗, c(ω∗)) which implies that all solutions with ω(0) ∈

(A + δB), remain in (A + εB) for all t ≥ 0. Therefore, set A is
globally stable and attractive on E , hence it is UGAS.

Appendix B. Proof of Lemma 1

We study the stability of singular equilibrium points in the set
M\A. The main difference between the set M\A and the set of
solutions A, is that the set M \ A contains points where λ̄j = 0
and gi(ū) > 0 for some index j. Let ω̂ ∈ M \ A. Without loss of
generality, we assume that for j = q it holds that λ̂q = 0 and
gq(û) > 0. In order to check the stability of the point ω̂, we study
the dynamics in (10) linearized around ω̂:

⎡⎢⎢⎣
˙̃z
˙̃u
˙̃w
˙̃
λ

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣

−Im Im 0 0
Im −Im − M 0 −∇g(û)⊤
0 0 −Iq Iq
0 0 0 g1(û)
...

...
...

...

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎣ z̃
ũ
w̃

λ̃

⎤⎥⎦ , (B.1)
0 0 0 gq(û)
10
where z̃ := z − ẑ , ũ := u − û, w̃ := w − ŵ, λ̃ := λ − λ̂

and M(û, λ̂) :=
∂
∂u

(
Γ (F (u) + ∇g(u)⊤λ)

)⏐⏐
u=û,λ=λ̂

. The system
matrix will have at least one positive eigenvalue due to the
upper triangular structure and the element gq(û) > 0 in the
ast row. It follows that the equilibrium point ω̂ is unstable for
ynamics in (10). As ω̂ was chosen arbitrarily, we conclude that
ny equilibrium point in M \ A is unstable.

ppendix C. Proof of Lemma 2

Let us assume otherwise, that we have an infinite amount of
umps. By the structure of the jump set and map, we must jump
etween si = −1 and si = 1 an infinite amount of times for
t least one of the states i. Without the loss of generality, we
ssume that this is true for i = j. As we can spend only a finite
mount of time in the state sj = 1 (τ =

k−k
cj

), time between jumps
from sj = 1 to sj = −1, tk, has to decrease to zero, otherwise∑

∞ tk = ∞ > τ . Minimum time between jumps tmin is equal to
dmin

max ∥u̇∥
, where dmin is the minimal distance between the jump sets

orresponding to sj = −1 and sj = 1, and max ∥u̇∥ is finite based
n the continuity of the flow map and the forward invariance of
ny compact set Ωc .
To show that dmin ̸= 0, let Gj(ϵ) := {y | gj(y) = ϵ} and choose
such that Gj(2ϵ) ̸= ∅. By convexity property of the constraint

unction, for u ∈ Gj(ϵ) and v ∈ Gj(2ϵ), we have:

gj(u) ≥ gj(v) + ∇gj(v)(u − v)
ϵ ≤ ∇gj(v)(v − u) ≤

∇gj(v)
 ∥v − u∥ .

ϵ∇gj(v)
 ≤ ∥v − u∥

s the set Gj(2ϵ) is compact, and ∇gj(v) is continuous in its
coordinates, by the extreme value theorem,

∇gj(v)
 reaches

a maximum δ on that set. Therefore, the minimum distance is
bounded below as dmin ≥

ϵ
δ
. As both dmin and ∥u̇∥ are finite

positive numbers, we conclude that tmin > 0, which leads us to
a contradiction. Therefore, we can only have a finite number of
jumps. ■

Appendix D. Proof of Theorem 2

Proof of convergence is similar to that of Theorem 1. First,
we note that the additional states are invariant to the set Kq

×

Sq regardless of the rest of the dynamics. Next, we choose the
Lyapunov function candidate

V (ω, ω∗, k) =
1
2

u − u∗
2

Γ −1 +
1
2

z − u∗
2

Γ −1

+
1
2

w − λ∗
2

+

∑
j∈Q

1
kj

(
λj − λ∗

j − λ∗

j log
(

λj
λj

∗
))

, (D.1)

which depends on the chosen equilibrium point ω∗. In a similar
manner as in the proof of Theorem 1, it follows that

uc(ξ ) = ⟨∇V (ξ ) | F (ξ )⟩ ≤ −∥u − z∥2
Γ −1 − ∥λ − w∥

2 , (D.2)

d(ξ ) = V (ω+, ω∗, k) − V (ω, ω∗, k) = 0. (D.3)

We restrict the flow and jump sets by choosing an arbitrary
∗ and set Λ that contains arbitrarily many initial conditions of
nterest not contained in the set L, and it holds A ⊂ Λ. Then,
e compute c = maxω∈Λ V (ω, ω∗, kmax) and define the new
estricted flow set as K := E × Kq

× Sq, where E := {ω ∈

R2m
× R2q

+ | V (ω, ω∗, kmin) ≤ c}.
Consequently, we define the following set-valued mapping of

compact sets

Ω(ω∗, k, c) := {ω ∈ E | V (ω, ω∗, k) ≤ c}.
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n comparison to the invariant sets of Theorem 1, the compacts
ets also depend on the adaptive gains. In fact, it holds that

< k′
≤ k′′ implies that Ω(ω∗, k′, c) ⊆ Ω(ω∗, k′′, c). As k

is dynamic, the ‘‘invariant set’’, in which the trajectories of ω

dynamics are contained, expands in the λ dimensions. Due to
the fact that the minimal and maximal values of the gain are
algorithm parameters, the ‘‘expansion’’ of the set is bounded.

Now, we show global stability with respect to the set A ×

Kq
×Sq by showing that any invariant set can be upper and lower

bounded by a ball surrounding the solution set, when accounting
for the ’’inflation’’ of the set due to changes of the gain. Let
us choose an arbitrary ε > 0. For a particular c and ω∗, the
trajectories are constrained to the largest Ω set for k = kmax,
and to the smallest for k = kmin. Therefore, by the fact that V
does not increase during flows or jumps, and that the gains k are
constrained to the set Kq, it follows that all trajectories that start
in Ω(ω∗, kmin, c) are contained in the set Ω(ω∗, kmax, c).

Let us choose c(ω∗) such that Ω(ω∗, kmax, c(ω∗)) ⊆ (A +

εB) ∩ E . By continuity of V , for every set Ω(ω∗, kmin, c(ω∗)), it
is possible to find δ(ω∗) > 0 such that (ω∗

+ δ(ω∗)B) ∩ E ⊆

Ω(ω∗, kmin, c(ω∗)). If we take δ = minω∗∈A δ(ω∗), it holds that
∪ω∗∈A(ω∗

+ δB) ∩ E = (A + δB) ∩ E . Thus, (A + δB) ∩ E ⊆

∪ω∗∈AΩ(ω∗, kmin, c(ω∗)) which implies that all maximal solu-
tions with ξ (0, 0) ∈ (A+δB)×Kq

×Sq, remain in (A+εB)×Kq
×Sq

for all (t, j) ∈ domξ .
Next, we prove global attractivity for the constrained flow and

jump sets. Let ξ be a complete solution in K . For a fixed ω∗, we
define V̂ (ξ ) := V (ω, ω∗, k). Via (Goebel et al., 2012, Cor. 8.7) and
Lemma 2, we conclude that for some r ≥ 0, ξ approaches the
largest weakly invariant subset in V̂−1(r) ∩ K ∩ u−1

c (0), where
he notation f −1(r) stands for the r-level set of f on dom f , the
omain of definition of f , i.e., f −1(r) := {z ∈ dom f | f (z) = r}.
y same reasoning as in Theorem 1, we conclude that u−1

c (0) =

× Kq
× Sq.

Thus, the largest weakly invariant subset for ξ reads as V̂−1(r)
(A × Kq

× Sq). Every trajectory ξ converges to a different sub-
et. The union of invariant subsets for every trajectory is A ×
q
× Sq, as we can choose an initial condition for which it holds

(0, 0) = ω∗
= const . for all (t, j) ∈ domξ , for any ω∗

∈ A.
Therefore, A × Kq

× Sq is globally attractive, as all solutions
re complete, which implies that the set A × Kq

× Sq is UGAS
Goebel et al., 2012, Thm. 7.12) on the restricted flow and jump
ets. Furthermore, by Poveda and Li (2021, Prop. A.1.), the HDS
C ∩ K ,D ∩ K , F ,G) is structurally robust.

ppendix E. Proof of Theorem 3

We rewrite the system in (16b) as

u̇
ż
λ̇

ẇ

k̇
ṡ
ζ̇

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ν̄ε̄ν̃ε̃
(
−u + z − Γ (ζ + ∇g(u)⊤λ)

)
ν̄ε̄ν̃ε̃ (−z + u)

ν̄ε̄ν̃0ε̃0 diag (k) diag (λ) (g(u) − λ + w)

ν̄ε̄ν̃0ε̃0 (−w + λ)

1
2 ν̄ε̄ν̃0ε̃0c(I + S)S2

0

ν̄ν̃
(
−ζ + F̂ (u, µ)

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (E.1)

µ̇ = 2πR µ, (E.2)
κ

11
where ν̄ := maxi∈I0 νi, ε̄ := maxi∈I0 εi, ν̃ := ν/ν̄, ε̃ := ε/ε̄,
0̃ := ν0/ν̄ and ε̃0 := ε0/ε̄. The system in (E.1), (E.2) is in singular

perturbation from where ν̄ is the time scale separation constant.
The goal is to average the dynamics of ξ, ζ along the solutions
of µ. For sufficiently small ā := maxi∈I ai, we can use the Taylor
expansion to write down the cost functions as

Ji(u + ADµ) = Ji(ui, u−i) + ai(Dmiµi)⊤∇ui Ji(ui, u−i)

+ A−i(Dm−iµ−i)
⊤
∇u−i J(ui, u−i) + O(ā2), (E.3)

here A−i := blkdiag
(
(aiImi )j∈I\{i}

)
. By the fact that the right-

hand side of (E.1), (E.2) is continuous, by using (Poveda & Krstić,
2021, Lemma 2) and by substituting (E.3) into (E.1), we derive the
well-defined average of the complete dynamics:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

u̇
ż
λ̇

ẇ

k̇
ṡ
ζ̇

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε̄ν̃ε̃
(
−u + z − Γ (ζ + ∇g(u)⊤λ)

)
ε̄ν̃ε̃ (−z + u)

ε̄ν̃0ε̃0 diag (λ) (g(u) − λ + w)

ε̄ν̃0ε̃0 (−w + λ)

1
2 ε̄ν̃0ε̃0c(I + S)S2

0
ν̃ (−ζ + F (u) + O(ā))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (E.4)

The system in (E.4) is an O(ā) perturbed version of:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ż
u̇
ẇ

λ̇

k̇
ṡ
ζ̇

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε̄ν̃ε̃ (−z + u)

ε̄ν̃ε̃
(
−u + z − Γ (ζ + ∇g(u)⊤λ)

)
ε̄ν̃0ε̃0 (−w + λ)

ε̄ν̃0ε̃0 diag (λ) (g(u) − λ + w)

1
2 ε̄ν̃0ε̃0c(I + S)S2

0
ν̃ (−ζ + F (u))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (E.5)

For sufficiently small ε̄, the system in (E.5) is in singular perturba-
tion form with dynamics ζ acting as fast dynamics. The boundary
layer dynamics are given by

ζ̇bl = ν̃
(
−ζbl + F (ubl)

)
(E.6)

For each fixed ubl, {F (ubl)} is an uniformly globally exponen-
tially stable equilibrium point of the boundary layer dynamics.
By Wang et al. (2012, Exm. 1), it holds that the system in (E.5)
has a well-defined average system given by

⎡⎢⎢⎢⎢⎢⎣
ż
u̇
ẇ

λ̇

k̇
ṡ

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ν̃ε̃ (−z + u)

ν̃ε̃
(
−u + z − Γ (F (u) + ∇g(u)⊤λ)

)
ν̃0ε̃0 (−w + λ)

ν̃0ε̃0 diag (λ) (g(u) − λ + w)

1
2 ν̃0ε̃0c(I + S)S2

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (E.7)

To prove that the system in (E.7) renders the set A × Kq
× Sq

UGAS for restricted dynamics, we consider the following Lya-
punov function candidate:

V (ξ, ω∗) =
1
2

u − u∗
2

(ν̃ε̃Γ )−1 +
1
2

z − u∗
2

(ν̃ε̃Γ )−1

+
1

2ν̃0 ε̃0

w − λ∗
2

+

∑
j∈Q

1
ν̃0 ε̃0kj

(
λj − λ∗

j − λ∗

j log
(

λj
λj

∗
))

. (E.8)

The convergence proof is equivalent to the proof of Theorem 2
and is omitted. We restrict the flow and jump sets as C ∩ K and
D ∩ K respectively.
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Next, by Wang et al. (2012, Thm. 2, Exm. 1), the dynamics in
(E.5) render the set A × Kq

× Sq
× Rm SGPAS as (ε̄ → 0). As

the right-hand side of the equations in (E.5) is continuous, the
system is a well-posed hybrid dynamical system (Goebel et al.,
2009, Thm. 6.30) and therefore the O(ā) perturbed system in (E.4)
renders the set A × Kq

× Sq
× Rm SGPAS as (ε̄, ā) → 0 (Poveda

& Li, 2021, Prop. A.1). By noticing that the set Sm is UGAS under
oscillator dynamics in (E.2) that generate a well-defined average
system in (E.4), and by averaging results in Poveda and Krstić
(2021, Lemma 2), we obtain that the dynamics in (16b) make the
set A×Kq

×Sq
×Rm

×Sm SGPAS as (ε̄, ā, ν̄) → 0 for the restricted
flow and jump sets. Furthermore, by Poveda and Li (2021, Prop.
A.1.), HDS ((C ∩ K ) × Rm

× Sm), ((D ∩ K ) × Rm
× Sm, F0,G0) is

structurally robust.
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