Delft University of Technology, Bachelor Seminar of Computer Science and Engineering

An evaluation of the reentrancy vulnerability on GoQuorum-based smart
contracts

Sara Op den Orth !, Prof.Dr. Kaitai Liang' , Huanhuan Chen (PhD)!
ITU Delft

Abstract

Within the context of the Ethereum blockchain
protocol, reentrancy is a well-known and well-
researched smart contract vulnerability. However,
when considering GoQuorum, an Ethereum soft
fork, barely any research discussing smart contract
vulnerabilities exists. This report aims to partly
fill this research gap by evaluating the reentrancy
smart contract vulnerability in the context of a Go-
Quorum network. First, the reentrancy attack was
demonstrated and its attack features evaluated. Then
any known countermeasures were collected. More-
over, it was proposed that some GoQuorum features
may also be used as mitigation techniques. Finally,
each countermeasure was assessed and categorized.
Of all the methods, the checks-effects-interactions
pattern is the most direct way to deal with the reen-
trancy vulnerability. To maximize contract security,
however, it is advised to use a combination of the
specified prevention and mitigation techniques.

1 Introduction

In 2008, the Bitcoin white paper [1] was published. The paper
described how to use blockchain technology to trade a kind of
digital currency called cryptocurrencies without the need for a
trusted third party or central server. The implemented Bitcoin
protocol, as of the time of writing (June 2021), has a total value
of almost 1 trillion dollars [2]. Three characteristics make
blockchain such an attractive technology to use for exchanging
cryptocurrencies: decentralization, pseudo-anonymity, and
transparency.

The Bitcoin framework initially focused primarily on us-
ing blockchain technology to exchange cryptocurrencies. Al-
though this was indeed an exciting use of the technology,
adopting the technology to execute programs in a decentral-
ized manner would open up even more opportunities. Nick
Szabo was the first to propose this concept in 1997 [3] and
coined these pieces of code: smart contracts.

The Ethereum protocol [4] was constructed as a blockchain
protocol that would integrate smart contracts into its frame-
work from the start. Thus Ethereum opened up a plethora of
new possible applications for blockchain technology.

To keep its networks secure, public frameworks like Bit-
coin and Ethereum leverage blockchain technology’s inherent
decentralization and transparency characteristics. However,
this setup is not suitable for all blockchain applications. One
may find the scalability and flexibility of blockchain attractive,
but privacy and security may also be essential. Ethereum soft
forks are built on top of the original protocol, solving such
security and privacy concerns in a variety of ways. These
types of forks are still backward-compatible with the standard
Ethereum protocol.

The Quorum protocol layer [5] is such an Ethereum fork.
Besides reliability and flexibility, Quorum focuses on privacy
and security. ConsenSys [6], an Ethereum software company,
maintains two Quorum-based Ethereum clients. One of which
is GoQuorum [7], a soft fork from the Go-based Ethereum
client Geth [8].

Some key differences between GoQuorum and a standard
Ethereum protocol client like Geth are discussed next. Go-
Quorum is a permissioned network instead of permissionless,
meaning only network nodes granted permission can access
the network. Moreover, GoQuorum uses different consensus
algorithms and supports private as well as public transactions.
More information about these features can be found in section
2. The above characteristics combined make GoQuorum ideal
for corporations that value privacy and access control as well
as reliability and decentralization. GoQuorum is already used
in various applications, from managing massive agricultural
trade operations [9], to optimizing commodity trade finance
[10].

So as shown above, GoQuorum is in some ways different
from the Ethereum protocol. Smart contracts, however, are still
essentially the same. Smart contracts are a type of Ethereum
account, deployed via a transaction to the network, and every
full node then runs the smart contract code. User accounts can
call public functions of the deployed smart contracts via the
contract’s address. It is important to note that, when triggered
by a user account, smart contracts can initiate transactions and
call functions of other deployed contracts.

Smart contracts can thus be used to automate behavior, both
productive and exploitative. On the one hand, this feature
makes smart contracts useful for a variety of industries such as
health care, logistics, and telecommunications [11]-[13]. On
the other hand, it makes them a convenient tool for malicious
actors to automate vulnerability exploitation for profit.

Since the inception of the Ethereum network, there have
been countless attacks using vulnerabilities in smart contracts
to steal ether. One of the most famous smart contract attacks is
‘the’ DAO attack, where the attacker collected over 3.5 million
ether [14]. This attack was executed in 2016; since then, an
increasing list of applications have been created using smart
contracts. More people use the technology; thus, more money
is involved, making smart contracts an ever more attractive
target for attacks. Moreover, as the DAO attack showed, smart
contract attacks can lead to enormous financial losses.

The DAO attack used a type of vulnerability called reen-
trancy; the same vulnerability evaluated in this report. Reen-
trancy exploits external contract calls combined with incorrect
contract state updates to extract ether from the victim. A more
detailed explanation of the attack can be found in section 4.

Related Research

Besides the aforementioned DAO attack, there have been many
more large- and small-scale attacks, making smart contracts’
security and privacy vulnerabilities an interesting research
area. In this section the existing smart contract vulnerability
studies are discussed.

The collected papers have been divided into three categories.
First, the largely Ethereum-based smart contract vulnerability
surveys are discussed, followed by studies focused on analysis
tools, and finally, the papers relating directly to GoQuorum.

The paper by Atzei, Bartoletti, and Cimoli [15] is one of
the most cited in the smart contract vulnerability research
area, which is understandable as it contains concise and clear
explanations of Ethereum-based smart contract vulnerabilities.
However, this paper was published in 2017. Since Ethereum
is under constant revision, it is essential to study more recent
surveys as well. Software updates will have patched some
vulnerabilities, changed the needed attack strategy of other
vulnerabilities, or even introduced new ones.

The following four papers also analyze smart contract vul-
nerabilities, and these are more recently published. In the first
of these, Chen et al. [16] analyzed and classified 40 known
vulnerabilities, indicating which ones have already been elim-
inated by a patch in the software and what methods can be
employed to either prevent or mitigate any associated risks.
The paper by Khan and Namin [17], is the most recent. More-
over, [17] contains the most actual code, demonstrating how a
vulnerability is implemented in a smart contract and how to
exploit them. As the current study focuses on implementation,
[17] was a helpful resource. He et al. [18] analyzes some vul-
nerabilities, but it does not focus much on the countermeasures.
The paper by Wang et al. [19] contains a complete taxonomy
of the vulnerability research between 2015 and 2019. The
paper lists not only problems but also corresponding solutions.

All of the above papers give good overviews; however, there
is not much detail per type of vulnerability. A paragraph is
spent on each vulnerability, leaving only enough room to list
one or two countermeasures without showing how to imple-
ment them.

Similar to the above presented vulnerability surveys, most
analysis tools also focus on a wider variety of vulnerabilities.
The paper by Mense and Flatscher [20] is an interesting survey
comparing such tools.

Other papers present analysis tools that focus on detecting a
specific vulnerability. These are also the only papers collected
that focus on one specific attack vector, instead of giving
an overview of many. Sereum [21], and RA [22] are two
especially interesting tools as they are focused on detecting
the interest of this paper: reentrancy. Both Sereum and RA
are further discussed in section 4. The downside of these
types of papers is that they often neglect their explanation of
the countermeasures as the new tool will already solve the
problem.

All of the above papers consider the Ethereum framework;
only [18] mentions GoQuorum. Some smart contract surveys
discuss different soft forks, but GoQuorum is never promi-
nently featured in [11], [13], [18], [23]. Only the master thesis
by Lagarde [24] mentions GoQuorum in detail. However, La-
garde focuses on authentication and authorization, not smart
contract security.

Motivation

As presented above, many papers consider the security or
privacy of smart contracts. However, three shortcomings have
been identified. In surveys, there tends to be a lack of depth
per vulnerability. More insight into each vulnerability is given
in papers that present analysis tools, but these lack exhaustive
evaluation of possible countermeasures. Finally, almost no
research concerns the GoQuorum framework specifically.

Besides these gaps in the literature, there are also very
few sources available with respect to the deployment and
smart contract interaction of GoQuorum frameworks. Even
blogs and forums, usually an essential part of implementation
research in computer science, are rarely useful with regards to
GoQuorum.

Due to time constraints, only one vulnerability could be
addressed in depth. It was decided to evaluate the reentrancy
vulnerability for this study. Reentrancy is well-known and
well-researched in the Ethereum context. So this paper was
constructed to do the same for the GoQuorum framework.

Contribution

This paper aims to fill the above-presented gap in research by
providing a thorough analysis of the reentrancy smart contract
vulnerability and its corresponding countermeasures. Besides
listing countermeasures known to work on the Ethereum net-
work, it is also considered whether any GoQuorum-specific
features may be used to protect against reentrancy. For each
countermeasure, it is indicated which part of the vulnerability
the countermeasure addresses and whether the technique is
recommended or not. Furthermore, this is one of the first
papers providing information on GoQuorum, presenting infor-
mation on its privacy features, reentrancy resiliency, contract
deployment and contract interaction details. The following
Research Questions (RQ) have been constructed to guide the
study’s goals.

RQ: How is the reentrancy vulnerability exploited
in GoQuorum-based smart contracts, and what can
be done to prevent or mitigate the associated risks?

1. How do GoQuorum and Ethereum smart con-
tracts compare?

2. How can one execute an attack using the reen-
trancy vulnerability on a GoQuorum network?

3. What are the features of the attack?
4. How can the attack be prevented or mitigated?

5. How do the countermeasures compare, and
which should or should not be used?

Structure

The report is constructed as follows. Section 2 discusses
the background information needed to understand the rest of
the text. Next, section 3 describes the paper’s methodology.
Then the reentrancy vulnerability and its features are explored,
followed by a deep dive into the different available counter-
measures in section 4. The section ends by categorizing and
comparing the different countermeasures. Section 5 deals with
the study’s ethical concerns and its reproducibility. The stud-
ies limitations and suggestions for future work are discussed
in section 6. Finally, section 7 concludes the report, discusses
possible improvements, and suggests topics for future work.

2 Background

This section will explain most theory related to GoQuorum
needed to understand this study. Furthermore, this section
highlights the differences between Ethereum and GoQuorum.
As the network side of blockchain technology is not the focus
of this research, it is not discussed extensively here. Instead,
there are references included whenever a non-essential term
is mentioned. Some of the topics discussed are specific to
GoQuorum, and others are the same in both GoQuorum and
Ethereum. Differences between the two platforms are high-
lighted. An important difference that is not necessarily rele-
vant to the current study are the different consensus algorithms
used in Ethereum and GoQuorum, more information about
this can be found in Appendix A.

Section 2.1 explains what a blockchain is. The following
section, 2.2, discusses what the Ethereum Virtual Machine
(EVM) is and what role gas plays in Ethereum and GoQuorum.
Section 2.3, explains the different types of Ethereum accounts.
And section 2.4 describes the important, Solidity specific,
fallback function. Finally, in section 2.5 the private side of
GoQuorum is discussed.

2.1 Blockchain

Both Ethereum and GoQuorum are blockchain networks. The
blockchain is a kind of distributed ledger; a database shared
between multiple connected nodes. Blockchains implement
such a distributed ledger using chains of ordered blocks, each
containing several transactions. If a block is added to the
ledger, all full nodes [25] update independently. Full nodes
keep track of the complete blockchain, and light nodes [25]
keep track of part of it. Together, the nodes keeps track of the
network’s state.

22 EVM

The following quote from Ethereum documentation best en-
capsulates what the EVM is: “At any given block in the chain,
Ethereum has one and only one ‘canonical’ state, and the EVM

is what defines the rules for computing a new valid state from
block to block.” [26]

Transactions, and smart contracts triggered by transactions,
can change the state of the blockchain according to the rules
set out by the EVM. However, each node should still agree
on the state of the network. So every node running the smart
contract has to produce the same result: contracts should
be deterministic. The EVM was developed to achieve this
objective.

Smart contracts are usually written in a high-level language,
Solidity [27] in the case of GoQuorum, which is a Turing-
complete language. Solidity compiles into EVM bytecode,
and each full node runs this bytecode in their EVM.

Running code costs the node owner resources such as elec-
tricity. In Ethereum, this “computational effort” is measured
in units of gas, each bytecode operation is associated with
a specific amount of gas. Thus, pure transactions cost less
gas than deploying smart contracts, as the latter compiles to
many more bytecode operations. Because read operations
do not change the state, they do not have to be added to the
blockchain and thus run by every node. As a result, these
operations are cheaper, and correspondingly, operations that
change the state of the blockchain are more expensive.

When sending a transaction, the sender sets an amount of
gas the transaction can maximally consume, the gas limit,
and sets a price per unit of gas: “totallransactionFee =
#gasUnits x gasPrice PerUnait” [28]. The sender has to be
able to pay the total transaction fee. If any gas is left at the
end of the transaction, it is sent back to the sender, and if not
enough gas is provided to ’pay’ for the computational effort
needed, the entire transaction is reverted, and all ether spend
on the gas used thus far is send to miner. The node that adds
the transactions to the blockchain, the miner [29], gets to keep
the gas transaction fee for his/her efforts.

In Ethereum, the gas price has two uses: to motivate miners
to run transactions, as they receive the gas fees; and to dis-
courage network spamming. In GoQuorum, however, the gas
price is always set to zero. This gas price is feasible because
GoQuorum uses different consensus algorithms (so miner mo-
tivation is not necessary), and it is permissioned (network
spamming is less likely). Although transactions do not cost
ether in GoQuorum, transactions still need gas to be executed.

2.3 Ethereum Accounts

There are two types of Ethereum accounts: smart contracts
and Externally Owned Accounts (EOAs). EOAs are user
accounts controlled by a private key. As mentioned previously,
Ethereum accounts can send and receive cryptocurrencies.
EOAs can also call functions of deployed contract accounts.

There are several differences between EOAs and smart con-
tracts. The most important one for this study is as follows:
where EOAs are limited to the functionalities mentioned above,
smart contracts run any Turing-complete [30] pieces of code
[31]. This versatility makes smart contracts such an asset.

Smart contracts are deployed, by a node, via a transaction
and are immutable once deployed. Contract immutability has
two caveats: contracts can have a self-destruct option, and it
is possible to make smart contracts virtually upgradeable. The
latter will be discussed in section 2.4.

A special type of smart contract is the token contract. These
token contracts contain a ledger where, per account, there is a
note of how many tokens that account owns. There is no limit
on what these tokens may represent. The Ethereum community
has created several token contract standards, referred to as
either EIPs or ERCs, to systemize token interaction.

2.4 Solidity: Fallback Function

Overall the Solidity language is quite similar to JavaScript
and Python; however, it does have some peculiarities. For
this study, the most important of these traits is the fallback'
function (see line 8 Listing 2). This function has no arguments,
no return value, and visibility has to be set to external,
meaning only functions outside of the contract can trigger the
function. Only one fallback function may be defined per smart
contract.

Since version 0.6.x of Solidity a similar function called
receive was introduced [32], which is called if two condi-
tions apply: it is defined, and only ether, no data, is sent. In
case of reentrancy, either function would suffice. The fall-
back function is used in this study as it is compatible with all
versions of Solidity and thus more prevalent.

A call to a smart contract invokes the fallback function,
assuming that it is defined in one of two situations: (i) the
name of the function called is not defined in the contract; (ii)
the call’s msg.data parameter is empty. In the case of (ii),
the fallback function has to be marked as payable, indicating
it may receive ether. Otherwise, an exception will be thrown,
and the transaction is reverted. The fallback function serves
as a catch-all for any no-data transactions directed at the con-
tract, which enables convenient functionalities such as proxy
contracts [33]. However, the fallback function also facilitates
reentrancy attacks. Especially for programmers new to So-
lidity programming, the fallback function introduces possibly
unexpected behavior, which is why it is critical to be aware of
its existence.

2.5 Private Contracts

Besides sending regular public transactions as in Ethereum,
GoQuorum adds the option of sending private transactions.
These transaction’s payload is encrypted before send-off, keep-
ing all contained data hidden from the other nodes on the
network. The only difference between deploying a private
compared to a public contract is that the privateFor param-
eter has to be set to a list of public keys of participating nodes.
Only the nodes specified will be able to decode the message.

The next section introduces the notion of a private state, a
concept necessary to enable private transactions. The section
then elaborates on the effects this new state has on private
contracts.

Private State

To enable private transactions, GoQuorum introduces a private
state. The public state is contained in Merkle Patricia Trie
[34], equivalently as in Ethereum. This state trie should be

' A monospaced font will be used when referencing a term used
when coding. However, when referencing the ‘fallback function’
concept and no code is directly referenced, the normal fond will be
used.

identical on all nodes, as this is how a blockchain can be de-
centralized. By adding private transactions, it is now possible
for states between nodes to diverge. For example, if node 1
is a participant in a private contract while node 2 is not, their
states will be different as they do not have access to the same
information.

To remedy this state divergence, GoQuorum introduces the
second state trie, the private state trie. Private state tries keep
track of all private node interactions and are purposefully di-
vergent on different nodes, enabling both public and private
transactions on the same blockchain network. This state sepa-
ration has several consequences for the contract interactions
between public and private contracts, which will be discussed
next.

a) Interaction between contract types. The first conse-
quence of the addition of a private state is that there are restric-
tions on private-to-public and public-to-private function calls.
Private contracts cannot change values in public contracts as
this would introduce inconsistencies in the public state tries of
the nodes. This restriction is necessary for the same reason the
private state has to be separated: the public state should not di-
verge on different nodes. Thus, private contracts can read from
public contracts, but they cannot change the contract’s state.
A similar division has been made for privacy-enhanced private
contracts, introduced in the next paragraph. Each type of con-
tract can only interact without restrictions with another of the
same type. Between different types, only read operations are
allowed.

b) Private contracts and ether. Another quirk of the sep-
arated states is that private contracts cannot send or receive
ether. It is easiest to see why this is the case by following an
example scenario. Say node 1 has 5 ether, it sends 3 ether
via a private transaction to node 2.This transaction is recorded
only in the private state tries of node 1 and 2. All other nodes
will assume 1 still has 5 ether, as they were not privy to the
transaction. Node 1 would thus be able to spend ether privately
while publicly it still seems to have the original ether balance.
So to avoid this, private contracts can only transact tokens, not
ether.

Whereas the amount of ether each node owns directly con-
nects to the entire blockchain state, the token contract itself
contains the number of tokens each node owns. As contract in-
teraction between different types of smart contracts is already
resolved by limiting interaction, as described previously, state
divergence is not a problem for token contracts either. The
token contract would have to be private for a private contract
to interact with it.

c¢) Privacy enhancements. Another important factor when
considering GoQuorum private contracts is the following two
vulnerabilities. Each will be referenced by its implemented
GoQuorum solution: counter Party Protection (PP) and Private
State Validation (PSV) [35]. Both enhancements are explained
using an example of two nodes, 1 and 2, that are both partic-
ipants in the same private contract. The examples are both
adaptations from [35].

PP ensures that only nodes participating in the pri-
vate contract can change the state of that contract. If
a third node 3 uncovers the address of the private con-

tract between 1 and 2 it possible to send a transaction
to the contract with “privateFor: [<publicKeyNodel>,
<publicKeyNode2>]". Nodes 1 and 2’s state will change,
while the sender, node 3, is not even a participant of the pri-
vate contract. As a result, although nodes 1 and 2 are both
participants in the same contract, their states will no longer
match. When using PP, all contract participants know the
complete list of participating nodes. Any transaction that is
sent to only a subset of this list is rejected.

The second privacy enhancement, PSV, addresses the possi-
bility of private state divergence. As nodes 1 and 2 are both
private contract participants, they should have the same private
state regarding this contract. Without using PP transactions,
however, it is possible for node 1 to execute a transaction with
privateFor set to [], an empty list. Node 2 will not be noti-
fied of the transaction as its key is not included, but for node
1, the state will change. PSV ensures that every transaction to
a private contract is sent to all of that contract’s participants.

Evidently, both PP and PSV solve privacy concerns. How-
ever, using the privacy enhancements is discouraged by the
GoQuorum documentation [35].

The reason for this discouragement is as follows: to be able
to implement PP and PSV, the contract deployment has to be
fully simulated to determine which contracts are affected by
the transaction. This simulation may be a problem for complex
contracts as the values used for it may have changed so much
by the time the simulation has finished that the transaction has
to be reverted. Due to this complication, GoQuorum advises
only using PP and PSV enabled transactions when the privacy
concerns outweigh the drawbacks.

3 Methodology

To answer the research questions a variety of methods were
used, these will be explaind in this section. This section con-
sists of three headings: Background Research (3.1), Exploring
Reentrancy (3.2) and Instantiation (3.3).

3.1 Background Research

The objective in this first phase of research was to understand
smart contracts, their life cycle, how to deploy one, and espe-
cially how to interact with them.

The research started with the Ethereum documentation,
as GoQuorum is in many ways identical to Ethereum. As
Ethereum is such a widely used protocol, the documentation is
extensive, and well-written [36]. Besides the official documen-
tation, the online Ethereum community also provides many
blogs and forums with additional information. Some specific
topics researched in this part of the process are: Solidity [37],
Geth [38] and Web3.js [39]. In order, these topics concern: the
smart contract programming language; the Ethereum client
implementation GoQuorum builds on top of; and JavaScript
libraries that facilitate interaction with nodes.

With a better picture of the inner workings of the Ethereum
network, the GoQuorum documentation was easier to under-
stand. It became apparent quickly, however, that GoQuorum
was not discussed substantially in blogs or forums, which
made setting up and interacting with the network more com-
plex. Aside from the official documentation, the GoQuorum

Slack channel [40] proved to be the only valuable GoQuorum
specific resource.

3.2 Exploring Reentrancy

Six concepts were identified to be combined into different
search queries: smart contract, (Go)Quorum, Ethereum, se-
curity, reentrancy and vulnerabilities. Synonyms were added
using OR search-operators. The queries were used in five
search engines and databases: Google Scholar, WorldCat,
Scopus, IEEE Xplore, DBLP. However, as explained in the
introduction, there are few papers even mentioning either Quo-
rum or GoQuorum. Instead, the focus was on finding papers
surveying vulnerabilities in Ethereum-based smart contracts.

Non-scholarly literature was found using the same queries,
combined with the Google search engine. Since blogs and
forums will contain the most recent developments in the field,
these sources can help when implementing a vulnerability
from an old paper in the most recent software versions. As
non-scientific sources, blogs and forums can also explain vul-
nerabilities in a more accessible manner.

Reproducing the scenarios described in the papers was still
not straightforward due to the scarcity of resources explaining
how to deploy and interact with smart contracts in the GoQuo-
rum network. The following section explains that part of the
process further.

3.3 Instantiation

Arguably the most significant part of this research process
was to test the identified attacks and countermeausures on an
actual GoQuorum ftestnet. This process can be divided into
five steps:

1. First, a smart contract Victim was constructed demon-
strating the chosen vulnerability.
2. Then another contract Attack was designed exploiting
the vulnerability in contract Victim.
3. Next, the contract functions needed for contract set up
were called.
. The attack was executed.
. Then, any countermeasures were collected, and, where
relevant, an implementation was tested.
6. And finally, the identified countermeasures were com-
pared.

[T

Steps 3 through 5 were executed in three different test envi-
ronments; each subsequent configuration increased the number
of variables that could cause an issue. The first step was to
try and replicate the attack patterns described in the research
papers, as these were all Ethereum based, the Remix Ethereum
IDE [41] and its Ethereum testnet were used. By first using
the above-described setup, the only variable was whether the
attack was implemented and executed correctly, not whether
the attack works on a GoQuorum network. Then, the attack
was tested in Remix while using the GoQuorum plugin. The
plugin enables Remix to connect to locally running GoQuo-
rum nodes. This step ensured the attack worked on the locally
set up GoQuorum network. However, it removed the possibil-
ity of anything related to the contract interactions not working
because Remix took care of these elements. Finally, the attack
was tested on a local GoQuorum testnet. These extra steps

were incorporated to make the most use of the superior logging
of the Remix IDE. However, because this is the first paper
studying GoQuorum extensively, it was important to interact
with the network directly, not via an IDE. Thus Remix was
only used for the preliminary tests.

Three of the, by ConsenSys provided, setup techniques were
tested for this project: the 7Nodes example code [42], the Go-
Quorum Wizard [43], and the developer quickstart [44]. All
projects were set up using Docker [45] containers to improve
the project’s reproducibility. The 7Nodes example is meant to
familiarize the user with the basics of GoQuorum. The code-
base configurations can not be easily modified, so this setup
was not ideal for testing purposes. The GoQuorum wizard
and development quickstart resulted in quite similar setups.
Between these two, the developers on the Slack channel [40]
recommended using the development quickstart, so this was
used. Further detail about the network setup can be found in
the Gitlab repository [46].

The most difficult part of this project was to connect and
interact with the deployed GoQuorum network. Although it
was possible to connect to any running GoQuorum nodes using
the Geth attach command, the Web3.js version used on the
Geth console was old: version 0.20.7, while the newest version
is 1.3.4 (as of June, 2021). So instead, any node interaction
was executed via a JavaScript file that could use the newest
version of Web3.js. The code snippets presented in this report
were highlighted using [47].

Once deployed, the quickstart wizard provided several tools
to help with debugging and network interaction. Cakeshop
[48] is another Consensys project. It can be used to inspect
and interact with the network. However, the tool did not have
extensive documentation, so it was difficult to integrate into
the workflow. The provided Quorum Reporting tool [49] had
similar problems. In the end, neither tool proved to have a
significant advantage over using Web3.js scripts. The exact
code can be found in the project repository [46].

4 Reentrancy: Characteristics and
Resolutions

Next, the reentrancy attack is thoroughly evaluated. Section
4.1 defines the reentrancy vulnerability. Section 4.2 the reen-
trancy attack is demonstrated and its features evaluated. Then
the prevention and mitigation techniques are listed in section
4.3, followed by a comparison of the different methods in
section 4.4. Finally, section 4.5, discusses any side-effects of
the countermeasures.

4.1 Reentrancy evaluation

A smart contract A is vulnerable to a reentrancy attack if an-
other contract B can re-enter the contract unexpectedly. *Unex-
pectedly’ is the critical term in this sentence. In normal smart
contract interaction, reentrancy is a vital part of operations,
as pointed out by Rodler et al. [21]: when contract A calls
contract B to withdraw ether, B sends the appropriate amount
of ether to A, re-entering contract A. So reentrancy is necessary
for a contract to function normally; it becomes a problem,
however, if a contract is not prepared for the re-entrant, as will
be demonstrated below.

(O NS S

4.2 Demonstration

The reentrancy attack will be demonstrated in two contexts,
public and private. This division is needed as public contracts
can use ether, while private contracts cannot. The section
ends by evaluating the attack features of the reentrancy attack,
which are the same for both types of contract.

contract Victim {

mapping (address => uint) public shares;
function withdraw() external {
(bool success,) = msg.sender.call{
value: shares[msg.sender]}("");
if (success)
shares[msg.sender] = 0;
}
function donate(address to) payable
external {
shares[to] += msg.value;
}
}

Listing 1: Single-function reentrancy victim. A smart contract
vulnerable to reentrancy via the withdraw function.

contract Attack {
Victim public dao;

constructor (address addr) {
dao = Victim(addr);
}

fallback () payable external {
dao.withdraw();
}
}

Listing 2: Single-function reentrancy attack. A contract able to
exploit the reentrancy vulnerability in Listing 1.

Public Contract

The reentrancy example shown in Listing 1 and 2 is the most
basic form of the vulnerability using public smart contracts.
The example is an adapted version of the simple DAO con-
tract given in [15]. The contracts shown have been shortened.
The complete code resides at the Gitlab repository [46]. The
code on Gitlab shows added functionality to facilitate debug-
ging, and Attack has additional functions and variables so
the owner can extract the collected funds.

Figure 1 shows the different transactions and function calls
needed for the setup and execution of the reentrancy attack.
First, the attacker, Mallory, identifies a contract with a reen-
trancy vulnerability such as Listing 1. Once other nodes have
deposited ether, the process can begin. Mallory deploys a
contract similar to Listing 2, giving the address of the Victim
in the constructor. Mallory calls Victim.donate with the
Attack address as a parameter. This transaction will also
contain some amount of ether to donate. When Mallory trig-
gers the fallback of the Attack contract, the function calls
Victim.withdraw which starts the exploitation cycle. Next,
withdraw calls Attack to send the money owed. This call
triggers the fallback on line 16, starting the cycle anew.

Mallory

Victim

< donate(initial_donation, addressAttack).

Attack F.deploy(addressVictim)—

«——sendTranasction()——

loop /

balanceVictim >
initial_donation

«€«———withdraw()
—call(initial_donation)—»{

Function call triggering

Legend Node Contract ‘ Function call fallback function
J » »

> >

Figure 1: Sequence diagram of a reentrancy attack. From left
to right the colored shapes represent, Listing 1, Listing 2 and the
attacker node, Mallory. Each arrow signifies a function call, the
chronological ordering starts at the top. The loop shows the Attack
contract repeatedly reentering the Victim.

Every iteration, the amount initially donated to the Attack
address is sent back until the balance of Victim contains less
than the original donation.

The loop ends if one of three conditions apply, the transac-
tion throws an out-of-gas exception, the EVM memory stack
if full or Victim has no more ether [15]. As stated by Atzei
et al: “In all cases an exception is thrown: however, since call
does not propagate the exception, only the effects of the last
call are reverted, leaving all the previous transfers of ether
valid.” [15] Further details about the features of this attack are
discussed at the end of this section.

The attack described is called single-function reentrancy.
This type of reentrancy is the simplest form of reentrancy and
can be detected relatively easily. Rodler et al. [21] identi-
fied three other patterns of reentrancy attacks: cross-function
reentrancy, delegated reentrancy and create-based reentrancy.
Their basic pattern and effects are the same as the presented
single-function reentrancy; how exactly these other patterns
look is outside of the scope of the current research. It is im-
portant to know, however, that these three patterns are more
difficult to detect for analysis tools. Paragraph 4.3.d discusses
further which analysis tools can detect these types of reen-
trancy.

Private Contract

As mentioned, private contracts can not use ether, which means
the above-presented reentrancy demonstration would not work
for a private contract. They can, however, use tokens. For
a private contract to be vulnerable to a reentrancy attack, it
would have to use a token compliant with the ERC-777 stan-
dard. The most-used token standard, ERC-20, would not work
for this purpose as it has no fallback-like components, so it
is not vulnerable to reentrancy. The ERC-777 standard, how-
ever, adds a feature called receive hooks [50]. Accounts and
contracts can receive and react to these hooks, similar to a fall-
back function. It is theorized that a private contract transacting
ERC-777 compliant tokens could contain reentrancy vulner-
abilities. As mentioned previously, neither or both contracts
should be private; otherwise, the two can only read values,
not call the other’s functions. Due to time constraints, this

(O NS I S

construction has not been tested, and it is only assumed to
work.

Attack Features

This paper identifies two attack features. The first identified
feature is the dependency of the contract’s control flow on a
state variable. The second feature is the call function’s gas
limit. The same attack characteristics apply when deploying
Victim and Attack as private contracts.

It was considered to add another reentrancy attack fea-
ture: the fallback function. Without the fallback function,
the Victim would have to call another contract function by
name. This call would imply some level of knowledge about
the called contract, and it would not be logical to call a ma-
licious contract on purpose. Thus the fallback function is an
important feature of the reentrancy attack.

There are two reasons the fallback function was not cate-
gorized as an attack feature in this study. First, the function
could only be changed via an update to the protocol, which is
outside of the programmer’s power. Moreover, no sources cor-
roborated the idea to remove or drastically change the fallback
function, and thus this idea was deemed a viable solution.

Finally there are the vulnerabilities introduced when us-
ing private contracts without privacy enhancements. In short,
these vulnerabilities are as follows: non-participant nodes can
change the state of a private contract, and the private state
between participating nodes may diverge. Further details con-
cerning these weaknesses can be found in the background
section. These may not be attack features of the vulnerability
itself, but they are important to note as attack features of the
private contracts.

4.3 Prevention and Mitigation methods

The techniques that prevent or mitigate the reentrancy vul-
nerability are divided into seven components. The first four
methods are the most cited [13], [16], [51] and seemingly also
most used. Next is a proposition to use naming conventions as
a mitigation technique. All of the previous techniques can be
applied to both public and private GoQuorum smart contracts.
The final two techniques are specific to GoQuorum however.

For the first three methods, a code example is provided
demonstrating how to adjust Victim.withdraw to use the
proposed technique. Each of these techniques have been tested
in the previously presented single-function reentrancy attack,
and did indeed prevent the attack. Further details are included
with the complete code [46]. The other methods are more re-
lated to using certain configurations, so these implementations
are not shown.

function withdraw() external {
uint temp = shares[msg.sender];
shares[msg.sender] = 0;
msg.sender.call{value: temp}("");

3
Listing 3: Correct state variable update solution. By updating the

state before any external contract calls the withdraw function is no
longer vulnerable to reentrancy.

a) Correct state variable update. Listing 3 shows how
to implement Victim.withdraw using the checks-effects-
interactions pattern [52]. By first updating the state variable

N8}

(98]

that determines the function’s control flow, any reentrancy
would result in a call with an ether value set to zero. So when
the same attack method is used, only the donated amount is
withdrawn. The withdraw function now behaves as expected.

b) Gas limit. The original withdraw function uses the call
function, which either forwards all remaining gas or the
amount of gas configured in the function parameters [32].
So when Mallory triggers the fallback function of Attack,
she sets the gas amount as high as possible to ensure the com-
pletion of as many exploitation cycles as possible. If the call
function is left to forward all gas, her plan succeeds.

To mitigate this problem a programmer may use one of two
other functions to send ether: send and transfer; both have
a gas stipend of 2300 [32]. This amount is not enough to
pay for many EVM operations. Updating a state variable, for
example, would be too expensive. Therefore, some sources
recommend using either send or transfer [16], [53], [54], to
avoid another contract being able to reenter repeatedly. Listing
4 shows this approach.

There are two flaws to using such gas-limited functions,
however. First of all, it may sometimes be desirable for the
Victim contract to forward more gas to allow for an expen-
sive fallback function. Limiting the amount of gas is also
not a good solution as the gas costs of EVM operations may
be changed by an update to the protocol [55]. So opera-
tions could unexpectedly become cheaper, enabling reentrancy
where reentrancy was not expected to be possible. Combined
with the immutability of smart contracts, this would be quite
problematic.

function withdraw() external {
payable (msg.sender) . transfer (shares[msg.
sender]) ;
shares[msg. sender]

0;

}

Listing 4: Gas limit solution. The reentrancy vulnerability in 1 is
mitigated by using the transfer function instead of call. The
former introduces limit of 2300 gas.

¢) Mutex/Guard. Another technique is to add a guard or
mutex to the function, as can be seen in Listing 5. The guard
is activated on line 5 and only deactivated once the transfer of
ether concludes. When the guard is active, no one can enter
the function code, which protects it from reentrancy. It is, how-
ever, imperative to ensure that the guard is released at some
point; otherwise, an attacker could ensure the guard is always
activated, and the contract would not be able to function as
intended [54]. This technique has been incorporated into the
Open Zeppelin libraries as the ReentrancyGuard [56].

d) Analysis tools. It is now explored whether the use of
analysis tools is a good technique to avoid reentrancy. There
are dozens of analysis tools that identify weaknesses in smart
contracts (e.g. Oyente [57], Securify [58], Mythril [59]). And
most of these can indeed detect single-function reentrancy
(e.g. Listing 1). However, as mentioned in section 4.2, there
are more complex forms of reentrancy that are more difficult
to detect by analysis tools. As pointed out by [21] some
reentrancy attacks can only be detected by fully simulating
contract execution, as is done during dynamic code analysis.

bool reentrancyMutex false;

function withdraw() external {

require(!reentrancyMutex);

reentrancyMutex true;

(bool success,) = msg.sender.call{value:
shares[msg.sender]}("");

reentrancyMutex false;

if (success) {
shares[msg. sender]

0;

3
}

Listing 5: Mutex/guard solution. The addition of the guard on line
4 ensures the function can only be entered again once the call is
completed.

To be able to catch all reentrancy vulnerabilities, the tool
would have "to execute all combinations of possible re-entry
points” [60, line 22]. In short, the more complex the contract,
the more difficult it is to detect all reentrancy vulnerabilities.

Besides these more generic tools that try to detect many
types of vulnerabilities, there are also specialized reentrancy
detection tools: RA [22] and Sereum [21], both can detect
most reentrancy attacks. The former improves upon the latter
by using dynamic instead of static analysis, which, as men-
tioned previously, is better at detecting reentrancy.

The dynamic analysis tool RA has three major drawbacks,
however. First, it is a more costly type of analysis due to the
symbolic execution taking up considerable resources. More-
over, for dynamic analysis, the programmer needs to have
information on how exactly the attack is executed. And finally,
in their paper, Chinen et al. admit that even RA does not detect
all reentrancy vulnerabilities.

e) Naming convention. The next idea is to add ’untrusted,’
or something similar, to every function, that either calls an-
other contract or calls a function already marked as "untrusted’
[61]. So one would uses untrustedWithdraw instead of
withdraw. Especially in more complex contracts where many
functions are called inside other functions, this method en-
sures that the programmer is aware of which functions may be
vulnerable to reentrancy.

f) (Enhanced) permissioning. This mitigation technique is
the first that is specific to GoQuorum. As mentioned in the
introduction, GoQuorum is a permissioned network. Permis-
sioning makes GoQuorum networks more trustworthy as the
network administrator dictates who can and can not access the
network.

Additionally, GoQuorum has an enhanced permissioning
model [62], enabling the network to be subdivided into several
organizations and sub-organizations. Each organization has
nodes, EOA’s, and a list of job functions. Enhanced permis-
sions regulate the extent to which each sub-organization or
even node has access to the network.

This model can mitigate the risks of a reentrancy vulnerabil-
ity by only giving nodes access to a contract if truly necessary.
The theory is that, if only specified nodes have access, there
is less chance of one of the nodes being a malicious actor and
mounting an attack on the contract. It may still be possible
that a trusted node turns out to be malicious or a node gains
unexpected access to the network. However, permissioning

can still be used as an extra safeguard against reentrancy and
vulnerability exploitation.

g) Private contract. The final technique involves GoQuo-
rum private contracts. Private contracts are only vulnerable to
reentrancy attacks when using an ERC-777 compliant token.
Thus, switching from using public contracts and ether to using
private contracts and tokens can already significantly reduce
the risk of deploying a contract with a reentrancy vulnerabil-
ity. Moreover, private contracts reduce the number of nodes
with access to the Victim contract, similar to the previous
method, further decreasing the risk of reentrancy. However,
private contracts without the privacy enhancements discussed
in section ¢ have vulnerabilities as well.

4.4 Categorization

To compare the different prevention and mitigation techniques,
each method has been assigned one of three categories: feature,
access, and awareness. Each category represents an aspect
of the vulnerability that the solution method addresses. The
first category includes methods that directly address one of the
aforementioned attack features. Three methods relate to the
access restriction of vulnerable function; these are included in
the second category. The final category considers methods that
increase the programmers awareness of possible vulnerabili-
ties. Table 1 shows which solutions belong to which category
and which solutions are mitigation versus prevention tech-
niques. Even a technique marked as preventative will only
work if used correctly and for all reentrancy vulnerabilities in
the contract. The table can also serve as a reference for the
letters corresponding to each solution

Table 1: Categorized prevention and mitigation techniques. Each
presented technique is categorized into addressing one of three vul-
nerability aspects: attack features, function access, and vulnerability
awareness. Moreover, M marks a mitigation technique and P a
prevention technique.

feature access awareness
a|Correct state variable update P
b|Gas limit M
¢|Mutex/Guard P
d|Analysis tools M
e|Naming convention M
f |(Enhanced) permissioning M
g|Private contract M
Attack Feature

Prevention techniques a and b both address an identified attack
feature.

Solution a is a proper prevention technique, as it solves the
root of the problem. When using this technique it is important
to update all state variables before calling external contracts,
not just those used in the call.

As described earlier, solution b is no longer considered a
viable preventative, as the amount of gas per EVM operation
may be subject to change at any time. Although b should not
be relied upon, it is still believed that incorporating some gas
limit can at least mitigate a reentrancy attack by reducing the
number of times an attacker could reenter.

Function Access

The solutions in the second category all relate to the amount
of access a malicious actor has to the re-enterable code. Well-
placed guard modifiers (c) prevent anyone from reentering a
function before it is done executing external calls. The guard
has to be placed around every external contract call, also those
that first go via another contract function. The risk when using
this method is that the programmer may lose track of which
function call will end up calling an external contract.

Solution f and g restrict access as well, but in a different way
then c. These two methods reduce the number of nodes that
have any access to the contract, thus decreasing the chance
that one may be a malicious actor. These methods are not
as effective as ¢, however. Because they do not prevent re-
entrant access, instead, they just cut back on all nodes’ access
in general. Both of these techniques are only mitigative. More-
over, when using g it is vital to understand the private contract
vulnerabilities.

Vulnerability Awareness
The final two methods deal with the awareness the contract
programmer has concerning the danger or reentrancy attacks.

The first method to increase awareness is using analysis
tools to identify contract vulnerabilities (d). It is indeed ad-
vised to use all resources available to increase one’s contract’s
security. In this paper, however, the reader is implored to
treat tools as a backup and not a crutch. As can be read in
[21], [22], most analysis tools can detect simpler forms of
reentrancy, however, the more complicated the situation, the
more difficult a vulnerability is to spot. Analysis tools may
even give a false sense of security.

Another way to increase vulnerability awareness is by using
mitigation technique e. So although the technique does not
directly tackle the vulnerability, it is recognized that a pro-
grammer can only defend against an attack if he/she is aware
of where the exploitable vulnerability exactly is. Technique e
can be effective against reentrancy in more complex situations
by ensuring one knows exactly which functions are vulnerable
to reentrancy.

4.5 Side effects

Solution methods a, c, e have basically no side effects. These
techniques call for some simple code adjustments, but not
anything that would significantly impact smart contract per-
formance. As mentioned before, introducing a gas limit (b)
may introduce unwanted restrictions on the external contract’s
fallback functions. Using analysis tools (d), on the other hand,
will cost extra resources. And finally, methods f and g do not
have any side effects on performance. However, as specified,
it restricts nodes from accessing the contract, which may not
be wanted. Although there would be added overhead, and
some transactions may completely fail if contracts were to be
used with privacy enhancements

5 Responsible Research

This section will consider two components of responsible
research: ethics and reproducibility. The former component
deals with the agreed-upon system of moral principles used in

the current piece of scientific literature. The latter component
covers the reader’s capability to recreate this study.

5.1 Ethics

The moral principles guiding this paper are all based on doing
no undue harm to others. Three such ethical concerns are
addressed: privacy and security when handling data, influence
on other users of the blockchain network, and responsible
disclosures of bugs.

In this report, no data is collected, so no data must be pro-
cessed and stored securely. There are also no user surveys
used, so there are no concerns regarding anonymity and pri-
vacy. Essentially there is no way others are impacted through
the correct or incorrect handling of data.

The project could, however, negatively impact other people
if the tests were done on the Ethereum mainnet, which is the
deployed main network through which all Ethereum nodes
connect. Testing an attack on smart contracts deployed on the
mainnet could have legitimate negative consequences to users.
In the case of Ethereum, all testing was done via a private
testnet set up by the Remix online IDE. As GoQuorum is a
permissioned network, there was no mainnet to connect to, so
a local private testnet had to be configured regardless. Section
3.3 describes details regarding this setup process.

A more interesting part of the research ethics stems from
the fact that this report considers current smart contract vulner-
abilities. Anyone may exploit these vulnerabilities and launch
an attack on a deployed smart contract. This research does
not, however, contain any zero days (undisclosed, unidentified
exploits). If this were the case, the report publishing process
should follow responsible disclosure guidelines.

The attack discussed in this report, reentrancy, is well
known and well studied already. Moreover, the private contract
vulnerabilities are also already discussed in the GoQuorum
documentations. In short, there is no additional risk to existing
smart contracts by publishing this study.

5.2 Reproducibility

The first part of this section discusses the classic example of
reproducibility: citations. The following paragraph considers
the often scarce referencing regarding the implementation
side of the research. The final passage is dedicated to the
reproducibility of the network setup.

Besides scientific papers, references may include documen-
tation, forums, blogs, software, or tools. The latter two are
referenced by either linking its website or project repository.

Citations are often the sole focus when considering the re-
producibility of a report. In computer science, however, there
is usually also a technical side to a research paper. Researchers
frequently neglect this facet of reproducibility, as discussed in
[63].

Moreover, because experts with a considerable amount of
experience write papers, there is often an assumption that the
reader has a similar level of know-how. Moreover, in papers
that do reference some code repository, the actual steps needed
to run the code are regularly not included. Of all the papers
cited, only [15] referenced complete and working code exam-
ples; other papers only displayed shortened versions of smart
contract code. None of the mentioned papers demonstrated

10

more extensively how they set up and interacted with their
network. Assuming that these steps are easily solved does
not consider platforms about which not enough resources are
available. When a paper concerns less popular software, as is
the case here, describing the steps taken to set up and interact
with the network is especially important.

This paper tries to assist this part of the recreation process
by providing complete code examples and full explanations
on setting up the presented scenarios. The description of
how to set up a network is essential for GoQuorum as the
code generated when setting up a testnet is severely lacking in
comments. This absence of documentation persists in at least
the three setup guides presented in 3.3.

Although the GoQuorum developers did not provide their
setup guides with adequate documentation, the guides do fa-
cilitate the repeatability of the project by providing the same
setup and configurations no matter the underlying system by
using Docker images. As mentioned previously (3.3), for any
Ethereum testing, the Remix IDE and provided testnet was
used, which also standardizes the configurations for increased
reproducibility.

6 Discussion and Future work

Although the study provided insights into reentrancy counter-
measures for both public and private contracts, the study has
several shortcomings. All testing was done in a small develop-
ment network, not a complete deployed network. Furthermore,
due to a lack of time and resources, there was no research into
other vulnerabilities.

For future research, the same countermeasures should be
tested in a more complete network. Moreover, the mitigation
techniques should be tested on effectiveness. Then any other
known Ethereum vulnerabilities should be evaluated in a Go-
Quorum context. Furthermore, there should be studies that
look into novel GoQuorum-specific vulnerabilities. And more
generally, other Ethereum soft forks should be considered
similarly.

7 Conclusion

This research aimed to evaluate the well-known smart contract
vulnerability, reentrancy, for the first time in the context of
a GoQuorum network (a soft fork of the standard Ethereum
protocol). As one of the first, this study includes extensive
information on GoQuorum smart contract interactions. Most
importantly, seven methods were identified that would either
mitigate or prevent reentrancy in GoQuorum-based smart con-
tracts. Each of these techniques either addressed a feature of,
access to, or awareness of the vulnerability.

If one wants to write a GoQuorum-based smart contract
not vulnerable to reentrancy, the following advice may be
followed. Above all, the checks-effects-interactions pattern
should be used whenever a call is made to an external contract.
This technique prevents any reentrancy attack. It is advised not
to rely on a gas limit to stop reentrancy attacks as the amount of
gas per bytecode operation may be subject to change. However,
they can still be used as a mitigation technique. Adding a guard
to the vulnerable function will, though, prevent any reentrancy.
Analysis tools can be used to detect reentrancy if one realizes

the weaknesses of each tool and does not rely on them to fix
one’s code. To keep track of which functions are vulnerable,
name all functions "untrusted’ that call either another contract
or a function that does so. When using GoQuorum, and only
part of the network has to be privy to the contract, either
enhanced permissioning or private contracts may be used. For
the latter, one should be aware of the inherent limitations. It is
advised to use a combination of techniques to ensure the safest
possible situation and recognize that the more complicated
the contract, the bigger the chance that a vulnerability will go
undetected.

Acknowledgments The author thanks the GoQuorum Slack
channel members for their GoQuorum expertise and her peer
group for their feedback and opinions.

References

[1] S. Nakamoto. (2008). “Bitcoin: A peer-to-peer elec-
tronic cash system,” [Online]. Available at: https://

bitcoin.org/bitcoin.pdf (Accessed on 05/05/2021).

B. Bambrough, “As bitcoin’s total value nears $1 tril-
lion, these crypto prices are leaving bitcoin in the dust,”
Forbes, Feb. 18, 2021. [Online]. Available at: https:
//www . forbes.com/sites/billybambrough/2021/02/
18/as - bitcoin - total - value - nears - 1 - trillion - these -
crypto-prices-are-leaving-it-in-the-dust/ (Accessed on
05/06/2021).

N. Szabo, “Formalizing and securing relationships on
public networks,” First monday, 1997.

Ethereum Foundation. “Ethereum,” [Online]. Available
at: https://ethereum.org/ (Accessed on 06/19/2021).
ConsenSys. “Quorum whitepaper,” [Online]. Available
at: https://raw. githubusercontent.com/ConsenSys/
quorum/master/docs/Quorum%5C %20Whitepaper %
5C%20v0.2.pdf (Accessed on 05/01/2021).

Consensys, [Online]. Available at: https://consensys.
net/ (Accessed on 06/19/2021).

ConsenSys. “Goquorum,”’ [Online]. Available at: https:
// github . com / ConsenSys / quorum (Accessed on
06/19/2021).

Hyperledger. “Besu ethereum client,” [Online]. Avail-
able at: https://github.com/hyperledger/besu (Accessed
on 06/19/2021).

Covantis, [Online]. Available at: https://www.covantis.
io/ (Accessed on 06/19/2021).

Komgo, [Online]. Available at: https://www.komgo.io/
(Accessed on 06/19/2021).

T. Hewa, M. Ylianttila, and M. Liyanage, “Survey on
blockchain based smart contracts: Applications, oppor-
tunities and challenges,” Journal of Network and Com-
puter Applications, p. 102 857, 2020.

S. Dhaiouir and S. Assar, “A systematic literature re-
view of blockchain-enabled smart contracts: Platforms,
languages, consensus, applications and choice criteria,”
in International Conference on Research Challenges in
Information Science, Springer, 2020, pp. 249-266.

(2]

(3]
(4]
(5]

(6]

(7]

(8]

(9]
[10]

[11]

[12]

11

[13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

S. Rouhani and R. Deters, “Security, performance, and
applications of smart contracts: A systematic survey,’
IEEFE Access, vol. 7, pp. 50759-50779, 2019.
Coindesk. (Jun. 25, 2016). “Understanding the dao
hack,” [Online]. Available at: https://www.coindesk.
com/understanding-dao-hack-journalists (Accessed on
05/06/2021).

N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of
attacks on ethereum smart contracts (sok),” in Interna-
tional conference on principles of security and trust,
Springer, 2017, pp. 164—-186.

H. Chen, M. Pendleton, L. Njilla, and S. Xu, “A sur-
vey on ethereum systems security: Vulnerabilities, at-
tacks, and defenses,” ACM Computing Surveys (CSUR),
vol. 53, no. 3, pp. 1-43, 2020.

Z. A. Khan and A. S. Namin, “A survey on vulnera-
bilities of ethereum smart contracts,” arXiv preprint
arXiv:2012.14481, 2020.

D. He, Z. Deng, Y. Zhang, S. Chan, Y. Cheng, and
N. Guizani, “Smart contract vulnerability analysis and
security audit,” IEEE Network, vol. 34, no. 5, pp. 276—
282, 2020.

Z. Wang, H. Jin, W. Dai, K.-K. R. Choo, and D. Zou,
“Ethereum smart contract security research: Survey and
future research opportunities,” Frontiers of Computer
Science, vol. 15, no. 2, pp. 1-18, 2021.

A. Mense and M. Flatscher, “Security vulnerabilities in
ethereum smart contracts,” pp. 375-380, 2018.

M. Rodler, W. Li, G. O. Karame, and L. Davi, “Sereum:
Protecting existing smart contracts against re-entrancy
attacks,” arXiv preprint arXiv:1812.05934, 2018.

Y. Chinen, N. Yanai, J. P. Cruz, and S. Okamura, “Ra:
Hunting for re-entrancy attacks in ethereum smart con-
tracts via static analysis,” in 2020 IEEE International
Conference on Blockchain (Blockchain), IEEE, 2020,
pp- 327-336.

B. Hu, Z. Zhang, J. Liu, Y. Liu, J. Yin, R. Lu, and X.
Lin, “A comprehensive survey on smart contract con-
struction and execution: Paradigms, tools, and systems,”
Fatterns, vol. 2, no. 2, p. 100 179, 2021.

M.-J. Lagarde, “Security assessment of authentication
and authorization mechanisms in ethereum, quorum,
hyperledger fabric and corda,” M.S. thesis, DEDIS at
EPFL, Lausanne, 2019. [Online]. Available at: https://
www.epfl.ch/labs/dedis/wp-content/uploads/2020/01/
report-2018_2-marie-jeanne-security-assessment.pdf
(Accessed on 05/05/2021).

Ethereum Foundation. (Jun. 11, 2021). “Nodes and
clients,” [Online]. Available at: https://ethereum.org/
en/developers/docs/nodes - and - clients/#full - node
(Accessed on 06/19/2021).

Ethereum Foundation. (May 12, 2021). “Ethereum vir-
tual machine (evm),” [Online]. Available at: https://
ethereum.org/en/developers/docs/evm/ (Accessed on
05/23/2021).

Solidity Team. “Solidity,” [Online]. Available at: https:
/Isoliditylang.org/ (Accessed on 06/19/2021).

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://www.forbes.com/sites/billybambrough/2021/02/18/as-bitcoin-total-value-nears-1-trillion-these-crypto-prices-are-leaving-it-in-the-dust/
https://www.forbes.com/sites/billybambrough/2021/02/18/as-bitcoin-total-value-nears-1-trillion-these-crypto-prices-are-leaving-it-in-the-dust/
https://www.forbes.com/sites/billybambrough/2021/02/18/as-bitcoin-total-value-nears-1-trillion-these-crypto-prices-are-leaving-it-in-the-dust/
https://www.forbes.com/sites/billybambrough/2021/02/18/as-bitcoin-total-value-nears-1-trillion-these-crypto-prices-are-leaving-it-in-the-dust/
https://ethereum.org/
https://raw.githubusercontent.com/ConsenSys/quorum/master/docs/Quorum%5C%20Whitepaper%5C%20v0.2.pdf
https://raw.githubusercontent.com/ConsenSys/quorum/master/docs/Quorum%5C%20Whitepaper%5C%20v0.2.pdf
https://raw.githubusercontent.com/ConsenSys/quorum/master/docs/Quorum%5C%20Whitepaper%5C%20v0.2.pdf
https://consensys.net/
https://consensys.net/
https://github.com/ConsenSys/quorum
https://github.com/ConsenSys/quorum
https://github.com/hyperledger/besu
https://www.covantis.io/
https://www.covantis.io/
https://www.komgo.io/
https://www.coindesk.com/understanding-dao-hack-journalists
https://www.coindesk.com/understanding-dao-hack-journalists
https://www.epfl.ch/labs/dedis/wp-content/uploads/2020/01/report-2018_2-marie-jeanne-security-assessment.pdf
https://www.epfl.ch/labs/dedis/wp-content/uploads/2020/01/report-2018_2-marie-jeanne-security-assessment.pdf
https://www.epfl.ch/labs/dedis/wp-content/uploads/2020/01/report-2018_2-marie-jeanne-security-assessment.pdf
https://ethereum.org/en/developers/docs/nodes-and-clients/#full-node
https://ethereum.org/en/developers/docs/nodes-and-clients/#full-node
https://ethereum.org/en/developers/docs/evm/
https://ethereum.org/en/developers/docs/evm/
https://soliditylang.org/
https://soliditylang.org/

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Ethereum Foundation. (Jun. 7, 2021). “Gas and fees,”
[Online]. Available at: https :// ethereum . org/en/
developers/docs/gas/#top (Accessed on 06/10/2021).

Ethereum Foundation. (Mar. 30, 2021). “Mining,” [On-
line]. Available at: https://ethereum.org/en/developers/

docs/consensus-mechanisms/pow/mining/ (Accessed
on 06/19/2021).

Wikipedia contributors. (May 4, 2021). “Turing com-
pleteness — Wikipedia, the free encyclopedia,” [On-
line]. Available at: https://en.wikipedia.org/w/index.
php?title=Turing_completeness&oldid=1023112232.
Ethereum Foundation. “Ethereum accounts: Key differ-
ences,” [Online]. Available at: https://ethereum.org/en/
developers/docs/accounts/#key-differences (Accessed
on 06/10/2021).

Solidity by Example. “Sending ether (transfer, send,
call),” [Online]. Available at: https :// solidity - by -
example.org/sending-ether/ (Accessed on 07/09/2021).
E. Gesheva. (Mar. 26, 2020). “Solidity 0.6.x features:
Fallback and receive functions,” [Online]. Available at:
https://blog.soliditylang.org/2020/03/26/fallback -
receive-split/ (Accessed on 07/09/2021).

Ethereum Foundation. (Nov. 6, 2020). “Patricia tree,”
[Online]. Available at: https://eth.wiki/fundamentals/
patricia-tree (Accessed on 06/22/2021).

ConsenSys. (May 19, 2021). “Privacy enhancements,”
[Online]. Available at: https : / / docs . goquorum .
consensys . net / en / latest / Concepts / Privacy /
PrivacyEnhancements (Accessed on 05/31/2021).
Ethereum Foundation. (May 6, 2021). “Ethereum devel-
opment documentation,” [Online]. Available at: https:
//ethereum . org/en/developers/docs/ (Accessed on
05/23/2021).

Ethereum Foundation. “Solidity,” [Online]. Available
at: https://docs.soliditylang.org/en/v0.8.4/ (Accessed
on 05/23/2021).

Ethereum Foundation, Geth, version 1.10.3, May 5,
2021. [Online]. Available at: https://geth.ethereum.org/
(Accessed on 06/15/2021).

ChainSafe, Web3.js, version 1.3.4. [Online]. Available
at: https://web3js.readthedocs.io/en/v1.3.4/ (Accessed
on 06/15/2021).

ConsenSys. “Goquorum slack inviter,” [Online]. Avail-
able at: https://inviter.quorum.consensys.net/ (Accessed
on 06/15/2021).

Ethereum Foundation, Remix - ethereum ide, ver-

sion 0.12.0. [Online]. Available at: remix.ethereum.org/
(Accessed on 06/15/2021).

ConsenSys. (Apr. 20, 2021). “Goquorum projects,” [On-
line]. Available at: https://docs.goquorum.consensys.
net/en/stable/Reference/ GoQuorum - Projects/ (Ac-
cessed on 05/31/2021).

ConsenSys. (Apr. 20, 2021). “Goquorum wizard,”
[Online]. Available at: https : / / docs . goquorum .
consensys.net/en/stable/HowTo/GetStarted/Wizard/
GettingStarted/ (Accessed on 05/31/2021).

12

[44]

[45]

[46]

[47]

(48]

[49]

(50]

(51]

[52]

[53]

[54]

[55]

[56]

[57]

ConsenSys. (Nov. 24, 2020). “Quorum developer quick-
start,” [Online]. Available at: https://docs.goquorum.
consensys . net/en/ stable / Tutorials / Quorum - Dev -
Quickstart/ (Accessed on 05/31/2021).

Docker, version 20.10.5. [Online]. Available at: https:
/Iwww.docker.com/ (Accessed on 06/15/2021).

Op den Orth, Sara. “Rp-group-28-sopdenorth,” [On-
line]. Available at: https://gitlab.ewi.tudelft.nl/cse3000/
2020-2021/rp- group-28/rp- group- 28 - sopdenorth
(Accessed on 06/27/2021).

S. Tikhomirov. (Apr. 22, 2020). “Solidity-latex-
highlighting,” [Online]. Available at: https://github.
com/s - tikhomirov/solidity - latex - highlighting (Ac-
cessed on 06/03/2021).

ConsenSys, Cakeshop, version 0.12.0. [Online]. Avail-
able at: https://github.com/ConsenSys/cakeshop (Ac-
cessed on 06/15/2021).

ConsenSys, Quorum reporting. [Online]. Available at:
https :// github. com/ConsenSys/quorum - reporting
(Accessed on 06/15/2021).

Open Zeppelin. “Erc777,” [Online]. Available at: https:
//docs.openzeppelin.com/contracts/3.x/erc777 (Ac-
cessed on 06/22/2021).

ConsenSys. “Known attacks,” [Online]. Available at:
https : //consensys . github.io/smart - contract - best -
practices/known_attacks/ (Accessed on 06/22/2021).
Ethereum Foundation. “Security considerations: Use
the checks-effects-interactions pattern.” version 0.8.4,
[Online]. Available at: https://docs.soliditylang.org/
en/v0.8.4/security - considerations. html ?highlight=
Checks - Effects - Interactions % 5C % 20pattern#use -
the-checks-effects-interactions-pattern (Accessed on
07/07/2021).

S. Verma. (Aug. 4, 2020). “Reentrancy exploit,” [On-
line]. Available at: https://medium.com/coinmonks/
reentrancy - exploit - ac5417086750 (Accessed on
06/09/2021).

W. Shahada. (Apr. 24, 2019). “Protect your solid-
ity smart contracts from reentrancy attacks,” [Online].
Available at: https://medium.com/coinmonks/protect-
your - solidity - smart - contracts - from - reentrancy -
attacks-9972c3af7c21 (Accessed on 06/09/2021).

S. Marx. (Sep. 2, 2019). “Stop using solidity’s transfer()
now,” [Online]. Available at: https://consensys.net/
diligence/blog/2019/09/stop-using-soliditys- transfer-
now (Accessed on 06/09/2021).

Open Zeppelin. “Utilities: Reentrancyguard,” [Online].
Available at: https : / / docs . openzeppelin . com /
contracts/2.x/api/utils#ReentrancyGuard (Accessed on
06/21/2021).

L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor,
“Making smart contracts smarter,” in Proceedings of
the 2016 ACM SIGSAC conference on computer and
communications security, 2016, pp. 254-269.

https://ethereum.org/en/developers/docs/gas/#top
https://ethereum.org/en/developers/docs/gas/#top
https://ethereum.org/en/developers/docs/consensus-mechanisms/pow/mining/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pow/mining/
https://en.wikipedia.org/w/index.php?title=Turing_completeness&oldid=1023112232
https://en.wikipedia.org/w/index.php?title=Turing_completeness&oldid=1023112232
https://ethereum.org/en/developers/docs/accounts/#key-differences
https://ethereum.org/en/developers/docs/accounts/#key-differences
https://solidity-by-example.org/sending-ether/
https://solidity-by-example.org/sending-ether/
https://blog.soliditylang.org/2020/03/26/fallback-receive-split/
https://blog.soliditylang.org/2020/03/26/fallback-receive-split/
https://eth.wiki/fundamentals/patricia-tree
https://eth.wiki/fundamentals/patricia-tree
https://docs.goquorum.consensys.net/en/latest/Concepts/Privacy/PrivacyEnhancements
https://docs.goquorum.consensys.net/en/latest/Concepts/Privacy/PrivacyEnhancements
https://docs.goquorum.consensys.net/en/latest/Concepts/Privacy/PrivacyEnhancements
https://ethereum.org/en/developers/docs/
https://ethereum.org/en/developers/docs/
https://docs.soliditylang.org/en/v0.8.4/
https://geth.ethereum.org/
https://web3js.readthedocs.io/en/v1.3.4/
https://inviter.quorum.consensys.net/
remix.ethereum.org/
https://docs.goquorum.consensys.net/en/stable/Reference/GoQuorum-Projects/
https://docs.goquorum.consensys.net/en/stable/Reference/GoQuorum-Projects/
https://docs.goquorum.consensys.net/en/stable/HowTo/GetStarted/Wizard/GettingStarted/
https://docs.goquorum.consensys.net/en/stable/HowTo/GetStarted/Wizard/GettingStarted/
https://docs.goquorum.consensys.net/en/stable/HowTo/GetStarted/Wizard/GettingStarted/
https://docs.goquorum.consensys.net/en/stable/Tutorials/Quorum-Dev-Quickstart/
https://docs.goquorum.consensys.net/en/stable/Tutorials/Quorum-Dev-Quickstart/
https://docs.goquorum.consensys.net/en/stable/Tutorials/Quorum-Dev-Quickstart/
https://www.docker.com/
https://www.docker.com/
https://gitlab.ewi.tudelft.nl/cse3000/2020-2021/rp-group-28/rp-group-28-sopdenorth
https://gitlab.ewi.tudelft.nl/cse3000/2020-2021/rp-group-28/rp-group-28-sopdenorth
https://github.com/s-tikhomirov/solidity-latex-highlighting
https://github.com/s-tikhomirov/solidity-latex-highlighting
https://github.com/ConsenSys/cakeshop
https://github.com/ConsenSys/quorum-reporting
https://docs.openzeppelin.com/contracts/3.x/erc777
https://docs.openzeppelin.com/contracts/3.x/erc777
https://consensys.github.io/smart-contract-best-practices/known_attacks/
https://consensys.github.io/smart-contract-best-practices/known_attacks/
https://docs.soliditylang.org/en/v0.8.4/security-considerations.html?highlight=Checks-Effects-Interactions%5C%20pattern#use-the-checks-effects-interactions-pattern
https://docs.soliditylang.org/en/v0.8.4/security-considerations.html?highlight=Checks-Effects-Interactions%5C%20pattern#use-the-checks-effects-interactions-pattern
https://docs.soliditylang.org/en/v0.8.4/security-considerations.html?highlight=Checks-Effects-Interactions%5C%20pattern#use-the-checks-effects-interactions-pattern
https://docs.soliditylang.org/en/v0.8.4/security-considerations.html?highlight=Checks-Effects-Interactions%5C%20pattern#use-the-checks-effects-interactions-pattern
https://medium.com/coinmonks/reentrancy-exploit-ac5417086750
https://medium.com/coinmonks/reentrancy-exploit-ac5417086750
https://medium.com/coinmonks/protect-your-solidity-smart-contracts-from-reentrancy-attacks-9972c3af7c21
https://medium.com/coinmonks/protect-your-solidity-smart-contracts-from-reentrancy-attacks-9972c3af7c21
https://medium.com/coinmonks/protect-your-solidity-smart-contracts-from-reentrancy-attacks-9972c3af7c21
https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now
https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now
https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now
https://docs.openzeppelin.com/contracts/2.x/api/utils#ReentrancyGuard
https://docs.openzeppelin.com/contracts/2.x/api/utils#ReentrancyGuard

[58] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais,
F. Buenzli, and M. Vechev, “Securify: Practical security
analysis of smart contracts,” in Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communi-
cations Security, 2018, pp. 67-82.

ConsenSys. “Mythril,” [Online]. Available at: https:
/ / github . com / ConsenSys / mythril (Accessed on

06/22/2021).

S. S.R. G. U. Duisburg-Essen. (Nov. 16, 2018). “Eth-
reentrancy-attack-patterns/cross-function.sol,” [Online].
Available at: https://github.com/uni-due-syssec/eth-
reentrancy-attack-patterns/blob/master/cross-function.
sol.

ConsenSys Diligence. “Secure development recommen-
dations,” [Online]. Available at: https://consensys .
github . io / smart - contract - best - practices /
recommendations / #mark - untrusted - contracts (Ac-
cessed on 06/09/2021).

ConsenSys. (Sep. 20, 2020). “Enhanced permissions
model,” [Online]. Available at: https://docs.goquorum.
consensys . net/en/ stable / Concepts / Permissioning /
Enhanced/EnhancedPermissionsOverview/ (Accessed
on 06/05/2021).

V. C. Stodden, “Reproducible research: Addressing the
need for data and code sharing in computational sci-
ence,” 2010.

Ethereum Foundation. (May 12, 2021). “Proof-of-work
(pow),” [Online]. Available at: https://ethereum.org/
en/developers/docs/consensus-mechanisms/pow/ (Ac-
cessed on 06/21/2021).

Binance Academy. “Proof of authority explained,” [On-
line]. Available at: https://academy.binance.com/en/
articles/proof - of - authority - explained (Accessed on
10/09/2020).

ConsenSys. (Dec. 7, 2020). “Ibft consensus overview,”’
[Online]. Available at: https : / / docs . goquorum .
consensys.net/en/stable/Concepts/Consensus/IBFT/
(Accessed on 05/15/2021).

ConsenSys. (Dec. 7, 2020). “Raft,” [Online]. Available
at: https://docs.goquorum.consensys.net/en/stable/
Concepts/Consensus/Raft/ (Accessed on 05/15/2021).

ConsenSys. (Dec. 7, 2020). “Clique,” [Online]. Avail-
able at: https://docs. goquorum.consensys.net/en/

stable / Concepts / Consensus / Clique/ (Accessed on
06/22/2021).

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

A Consensus Algorithms

Following a consensus algorithm, full nodes validate the trans-
actions and miners add them to the blockchain. Consensus
algorithms are used to ensure that dynamic, changing networks
can agree on something. In the case of blockchain, the nodes
have to agree on the transaction order.

Ethereum currently uses Proof of Work (PoW) algorithms
[64], while GoQuorum uses Proof of Authority (PoA) [65].
Where the former is more suited to public blockchains as
it is very resistant to manipulation, the latter sacrifices fault
resistance for increased transaction throughput. PoA works

13

for GoQuorum because it is a permissioned blockchain. Thus,
it is a more trusted environment. GoQuorum networks can be

configured using one of three different consensus algorithms:
IBFT [66], Raft [67] and Clique [68].

https://github.com/ConsenSys/mythril
https://github.com/ConsenSys/mythril
https://github.com/uni-due-syssec/eth-reentrancy-attack-patterns/blob/master/cross-function.sol
https://github.com/uni-due-syssec/eth-reentrancy-attack-patterns/blob/master/cross-function.sol
https://github.com/uni-due-syssec/eth-reentrancy-attack-patterns/blob/master/cross-function.sol
https://consensys.github.io/smart-contract-best-practices/recommendations/#mark-untrusted-contracts
https://consensys.github.io/smart-contract-best-practices/recommendations/#mark-untrusted-contracts
https://consensys.github.io/smart-contract-best-practices/recommendations/#mark-untrusted-contracts
https://docs.goquorum.consensys.net/en/stable/Concepts/Permissioning/Enhanced/EnhancedPermissionsOverview/
https://docs.goquorum.consensys.net/en/stable/Concepts/Permissioning/Enhanced/EnhancedPermissionsOverview/
https://docs.goquorum.consensys.net/en/stable/Concepts/Permissioning/Enhanced/EnhancedPermissionsOverview/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pow/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pow/
https://academy.binance.com/en/articles/proof-of-authority-explained
https://academy.binance.com/en/articles/proof-of-authority-explained
https://docs.goquorum.consensys.net/en/stable/Concepts/Consensus/IBFT/
https://docs.goquorum.consensys.net/en/stable/Concepts/Consensus/IBFT/
https://docs.goquorum.consensys.net/en/stable/Concepts/Consensus/Raft/
https://docs.goquorum.consensys.net/en/stable/Concepts/Consensus/Raft/
https://docs.goquorum.consensys.net/en/stable/Concepts/Consensus/Clique/
https://docs.goquorum.consensys.net/en/stable/Concepts/Consensus/Clique/

	Introduction
	Related Research
	Motivation
	Contribution
	Structure

	Background
	Blockchain
	EVM
	Ethereum Accounts
	Solidity: Fallback Function
	Private Contracts
	Private State

	Methodology
	Background Research
	Exploring Reentrancy
	Instantiation

	Reentrancy: Characteristics and Resolutions
	Reentrancy evaluation
	Demonstration
	Public Contract
	Private Contract
	Attack Features

	Prevention and Mitigation methods
	Categorization
	Attack Feature
	Function Access
	Vulnerability Awareness

	Side effects

	Responsible Research
	Ethics
	Reproducibility

	Discussion and Future work
	Conclusion
	Consensus Algorithms

