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Particle filter-based fatigue
damage prognosis by fusing
multiple degradation models

Tianzhi Li1 , Jian Chen2 , Shenfang Yuan2 , Dimitrios Zarouchas3,
Claudio Sbarufatti1 and Francesco Cadini1

Abstract
Fatigue damage prognosis always requires a degradation model describing the damage evolution with time; thus, the
prognostic performance highly depends on the selection of such a model. The best model should probably be case spe-
cific, calling for the fusion of multiple degradation models for a robust prognosis. In this context, this paper proposes a
scheme of online fusing multiple models in a particle filter (PF)-based damage prognosis framework. First, each prognos-
tic model has its process equation built through a physics-based or data-driven degradation model and has its measure-
ment equation linking the damage state and the measurement. Second, each model is independently processed through
one PF to provide one group of particles. Then, the particles from all models are adopted for remaining useful life pre-
diction. Finally, the particles from each PF are fused with those from all the other PFs to improve their particle diversity,
and consequently, to provide better estimation and prognostic performance. The feasibility and robustness of the pro-
posed method are validated by an experimental study, where an aluminum lug structure subject to fatigue crack growth
is monitored by a guided wave measurement system.
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Introduction

Degradation is an inevitable process that exists in engi-
neering structures. Once a certain level of damage is
reached, the proper functionality of the structure can
no longer be guaranteed. Necessary inspections should
be regularly carried out to avoid such failure, possibly
resulting in high financial expenses and long system
downtime. To simultaneously guarantee structural
safety/reliable operation and reduce maintenance costs,
the maintenance is desired to be scheduled just before
the damage state reaches a critical level, calling for an
advanced damage prognosis technique to provide the
structure with remaining useful life (RUL).

Current damage prognosis studies usually have the
damage occurring during the degradation process
described as a physics-based damage state, such as
matrix crack,1 delamination,2 or stiffness reduction3,4

in composites, crack length5–8 or shape9 in metal, or a
data-driven health indicator (HI)10–13 extracted from
online measured structural health monitoring (SHM)
signals. As the structure degradation follows a specific
pattern under a certain service condition, the future

damage condition can be predicted by a proper model
describing such a pattern. A large variety of both phy-
sics-based1,5,6,9 and data-driven2,3,7,10–12 degradation
models have been proposed for such a task. The for-
mer resorts to a physics-based law like Paris’ law or its
extensions, where the degradation rate, for example,
strain energy release rate or stress intensity factor, is
either analytically calculated1 or fitted by a data-driven
modeling strategy, such as polynomial fitting,5,6 sup-
port vector regression,9 or neural networks,14 through
numerically simulated data.
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On the other hand, the data-driven models are usu-
ally built through sufficient physical damage data2,3,7

or data-driven HIs10–13 collected during the actual
degradation process. The former2,3,7 typically considers
a physical damage state to be measured for one or
more specimens, and then it applies those data for
model training, such as the crack growth7 and stiffness
reduction3 depicted by neural networks, or the delami-
nation shape growth modeled by polynomial fitting
function.2 As to the latter,10–13 at each time instant or
load cycle step, some data-sensitive statistical features
like mean value, standard deviation, and root mean
square (RMS) value are extracted from some online
measurements like acoustic emission or acceleration.
Those features can either be directly taken as the HI at
that step11 or further processed through a machine
learning algorithm to create a more robust HI,10,12,13

finally producing a database of the HIs during the
whole run-to-failure process for training a HI evolu-
tion model.

There is no universally best degradation model, as
each type of model has its pros and cons.15 Due to the
uncertainties stemming from various sources, including
complex degradation mechanisms and environmental
influences,16,17 different prognostic performances man-
ifest when applying the same model to different speci-
mens of the same structure, or when applying different
models to the same specimen. For the former, one pos-
sibility of improving the prognostic performance is to
set the model parameters as unknown components to
be online updated by a state estimation technique, such
as particle filter (PF), given its demonstrated perfor-
mances in nonlinear and non-Gaussian problems.

The latter has received plenty of research in battery
RUL prediction, where a common strategy to enhance
the prognostic robustness is to properly fuse multiple
degradation models. Intuitively, all the degradation
models and their unknown parameters can be included
into state space for PF estimation, and then RUL cal-
culation.18 This, however, may suffer from the curse of
dimensionality and behave poorly with a larger number
of degradation models. Alternatively, by eliminating
unnecessary components within each model, multiple
degradation models can be simplified into one ensem-
ble model with fewer unknown components.19 On the
other hand, to fully explore the potential of each
model, current practices20–22 often have each model
processed through one PF to produce one RUL distri-
bution. Subsequently, the final RUL distribution can
be derived by computing the average or weighted aver-
age of all the RUL distributions. As each model com-
monly shares the same component like crack length in
the crack propagation model21 or battery capacity in
the battery degradation model,20 the particle diversity
for each PF can be further improved by considering

the interaction between each model, consequently
resulting in a more accurate estimation and prognostic.
This, however, has received little attention.

In this context, this work proposes such a scheme
by fusing those degradation models within a PF-based
prognostic framework. Each degradation model is
adopted to formulate a different state space model and
to provide one group of particles. Provided with the
same state component such as the damage state among
all the models, each group of particles can be fused
with all the others to improve the diversity, and,
consequently, to allow for more robust estimation and
prognostic performance. The proposed method is
demonstrated by an experimental study, where an alu-
minum lug structure subjected to fatigue crack growth
(FCG) is monitored by an online measurement system
of Lamb waves.

The rest of this paper is organized as follows: The
section ‘‘Novel damage prognosis framework’’ intro-
duces the four steps of the prognosis framework. The
application setup is given in the section ‘‘Application
setup,’’ while the results of the proposed method
applied to the experimental case study are provided in
the section ‘‘Application results.’’ Finally, the section
‘‘Conclusions’’ concludes this paper.

Novel damage prognosis framework

Figure 1 presents the four main steps of the proposed
damage prognosis framework. First, each prognostic
model is formulated in state space using either a
physics-based or data-driven degradation model.
Second, each model is independently processed through
one PF to provide one group of particles. Then, all the
samples of damage state and RUL are used for damage
quantification and RUL prediction, respectively.
Finally, given the same state component such as the
damage state among different models, each group of
particles can be fused with all the others to improve the
diversity. Compared to the traditional method,5,6 where
only one prognostic model is processed through PF for
RUL prediction, the main novelty of the proposed
method is that a fusion scheme is online implemented
to fuse the particles from different prognostic models
for improving the particle diversity, and consequently,
the overall estimation and prognostic accuracy.

Prognostic model

The degradation behavior of a structure can be in gen-
eral described as:

xk = fl xk�1, ulð Þ ð1Þ
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where x is the damage state like the crack length in
metal, fl �ð Þ is the l-th degradation function, ul is a
vector of function coefficients, such as the parameters
C and m in Paris’ law, and the subscript k denotes the
k-th time step. The parameter ul usually varies in differ-
ent specimens of the same structure due to the uncer-
tainties arising from the degradation process, so they
are taken as unknown variables to be estimated. To this
aim, following a popular approach, they are added into
an augmented state vector:

ul, k

xk

� �
=

ul, k�1 + vu, l, k

fl xk�1, ul, k ,vkð Þ

� �
ð2Þ

where v and vu, l are the process noises for the damage
state and the parameters, respectively.

Then, a direct or indirect measurement system is usu-
ally used for model updating. The former involves a
direct measure of the damage state, such as the case of
the crack length in a metallic structure observed by a
caliper7,23 or that of matrix cracking density and delami-
nation length in composites measured by X-rays.1,24,25

In case the damage state cannot be directly measured,
one may refer to an indirect measurement system, such
as fiber Bragg grating strain sensors26,27 or Lamb
wave-based monitoring systems,6,28,29 to infer the dam-
age state through a measurement equation describing
the relationship between the damage state and the
measurement (mostly specific damage-sensitive statisti-
cal feature extracted from measured signals). Such an
equation is usually built through a data-driven modeling
technique, including neural networks,26,27 polynomial
functions,6 the leave-one-out method,29 or Gaussian
process regression.28

With a proper measurement y (which, in most cases,
is the statistical feature mentioned above) for inferring
the unknown damage state, the measurement equation
in a PF-based damage prognosis can be formulated as:

yk = g xkð Þ + nk ð3Þ

where g �ð Þ is usually a data-driven function describing
the relationship between the damage state and the mea-
surement, nk is the measurement noise. Given that the
measurement Equation (3) is usually built by the data
from some specimens, the bias between the measure-
ments from a test specimen and those predicted by this
equation is unavoidable. Such an equation fails to be
online updated or to take the bias into account, possi-
bly resulting in inaccurate prognostics in case of large-
level bias.6 In this context, the prognostic model6 with
a bias parameter b included for online estimation is
used in this study, and it is formulated as:

zl, k =
ul, k

xk

bk

2
4

3
5=

ul, k�1 + vu, l, k

fl xk�1, ul, k ,vkð Þ
bk�1 + vb, k

2
4

3
5

yk = g xkð Þ+ bk + nk

8>><
>>: ð4Þ

where b is the bias parameter and vb is its correspond-
ing process noise, and z is the state vector including the
model parameter, damage state, and bias.

Note that each degradation model has its version of
Equation (4). More specifically, each model has a differ-
ent process equation from the others; thus, the number
of models built in this framework is equal to the number
of available degradation models. On the other hand, to
provide an accurate comparison between the perfor-
mance of multiple degradation models and that of one
model, this study has the same measurement equation
shared by each prognostic model. Note that the use of
the same measurement equation among different prog-
nostic models is not mandatory. Even when each model
has a different measurement equation, the damage state
is always the component shared by each model and thus
can be used to improve the particle diversity.

Particle filter-based estimation

In a Bayesian approach, the k-th-step unknown state
vector zl, k can be inferred from the observation as:

Figure 1. Schematics of the proposed framework.
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p zl, k jy1:k�1ð Þ =

ð
p zl, k jzl, k�1ð Þp zl, k�1jy1:k�1ð Þdzl, k�1 ð5Þ

p zl, k jy1:kð Þ } p yk jzl, kð Þp zl, k jy1:k�1ð Þ ð6Þ

where y1:k is the measurement vector collected from
time step 1 to k, the symbol } means ‘‘proportional
to,’’ the transition distribution p zl, k jzl, k�1ð Þ and the
likelihood function p yk jzl, kð Þ are the process and
measurement equations, respectively, p zl, k jy1:k�1ð Þ and
p zl, k jy1:kð Þ represent the prior and posterior probability
distribution function (PDF), respectively.

Given that the analytical solution of Equations (5)
and (6) can hardly be acquired in a nonlinear and non-
Gaussian system like Equation (4), an efficient state
estimation, that is, the sampling importance resam-
pling (SIR) PF,30 is used in this study. Table 1 lists the
pseudo-code of the SIR PF. Note the number of PFs
implemented at each step is equal to the number of
models.

RUL prediction

By resorting to the degradation model Equation (1)
and the posterior PDF of the damage state and its
growth parameters, the prognostic step enables the pre-
diction of future damage state at any step ahead of the
k-th one. Once the predicted state reaches a pre-defined
threshold of the damage state lth, above which the
structure fails, the RUL is taken as the multiplication
of the number of prediction steps and the number of
load cycles DN in one step. The pseudo-code of the
above procedure for the l-th prognostic model is sum-
marized in Table 2. Note that the RUL is indepen-
dently predicted through each degradation model, and
then multiple groups of RUL samples are merged to
produce the RUL distribution.

Fusion for improving particle diversity

In the SIR PF resampling procedure, the particles with
large weights are duplicated and those with small
weights are eliminated. As a result, the diversity of the
particles tends to decrease over time, which can limit

the PF performance. This phenomenon is commonly
referred to as particle impoverishment. It has been well
elaborated that the strategies for improving particle
diversity can lead to more robust state and parameter
estimation.31,32

The proposed method has multiple prognostic mod-
els providing multiple groups of particles, among which
they share some state components, that is, the damage
state and bias parameter of Equation (4). The two
components can be included in a vector as:

sk =
xk

bk

� �
ð7Þ

This enables the possibility of improving the sample
diversity of those shared components for each PF.

The objective of this paper is to verify the applicabil-
ity of the proposed method to diverse algorithms aimed
at enhancing diversity. To achieve this goal, the paper
employs the crossover and mutation operators, two
widely used genetic operators for addressing such prob-
lems,31,32 to the shared components mentioned earlier
in a separate manner. For each time step and each PF,
the crossover operator is implemented as follows:

si
k,l =asi

k,l +
1�a

n�1
si

k,1 + ... +si
k,l�1 +si

k,l+1 + ... +si
k,n

� �
ð8Þ

where the i-th sample si
k, l contains a vector of the

shared components from the l-th PF, while the samples
from all the other PFs are included in the horizontal
curly bracket, n is the number of PFs (or models) used,
and a is a coefficient within a range of 0 1½ �. On the
other hand, when the mutation operator is applied to
the l-th PF, a certain percentage of samples of the
shared components from that PF is replaced by some
samples randomly selected from all the other PFs.

Notice that the proposed method is generic enough
so that the other operators can be included. The fusion
of multiple degradation models intends to provide mul-
tiple groups of well-distributed samples, while the algo-
rithm for adopting all the samples to improve the
diversity for each group can be user-defined. Interested

Table 1. Sampling importance resampling particle filter.

Initialization: draw Np particles zi
l, 0 : i = 1, 2, . . . ,Np

n o
from the distribution p zl, 0ð Þ

For k = 1, 2,.,

Prediction in PF: draw Np particles zi
l, k : i = 1, 2, . . . ,Np

n o
by zi

l, k;p zl, kjzi
l, k�1

� �
Weight update: calculate the particle weight wi

k through wi
k } p ykjzi

l, k

� �
, and assign its normalized form ~wi

k to each particle zi
l, k

Resample for those particles based on the normalized weights
End
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readers may refer to Refs. 33 and 34 for those algo-
rithms, but not mentioned here for simplicity.

Application setup

This section includes the experimental study,28 numeri-
cal study,5 signal processing, state-space modeling, and
the creation of the target crack length and features.
The experimental setup of the fatigue tests and Lamb
wave monitoring is briefly introduced in the section
‘‘Experimental study.’’ The Lamb wave simulations for
modeling the measurement equation are presented in
the section ‘‘Numerical study.’’ The Lamb waves from
the experimental and numerical studies are adopted to
provide the statistical feature for damage quantifica-
tion in the section ‘‘Feature extraction.’’ The section
‘‘Typical degradation models’’ presents three typical
degradation models used in practices, while the section
‘‘State space modeling and PF parameters’’ shows the
state space modeling and the PF parameters. The sec-
tion ‘‘Target crack growth and features’’ illustrates the
creation of the target crack growths and their corre-
sponding features using all the experimental specimens.

Experimental study

Figure 2(a) and (b) shows the fatigue test of an alumi-
num lug structure and a Lamb wave-based monitoring
system,28 respectively. The structure has a thickness of
5 mm and a through hole with a diameter of 5 mm.
The latter has a 2-mm-long notch created on the edge
for initiating the crack growth. The MTS810 electro-
hydraulic servo material test system is used to provide
the sinusoidal tensile fatigue load, with maximum
value, minimum value, and frequency set as 18 kN,
0.1, and 10 Hz, respectively.

Figure 2(c) shows an image collected by a digital
microscope for observing the crack length. The scale
lines are equally spaced by 1 mm. A pre-cracking step

is performed at the beginning of the fatigue test until
the crack length reaches 3 mm. The fatigue loading is
occasionally paused during the test, and then a static
tensile load of 18 kN is applied to the specimen for bet-
ter visualization of the crack. The crack length is con-
sidered to increase by 1 mm once the crack tip reaches
the next line. At each measured crack length, for exam-
ple, 3 mm or 4 mm, one transducer serves as the actua-
tor providing a 3-cycle Hanning-windowed sine burst
with a central frequency of 160 kHz, and another one
is the sensor collecting the Lamb waves with a sam-
pling frequency of 50 MHz.

Figure 3(a) depicts the FCG trajectories of six speci-
mens, namely S1–S6. These specimens exhibit varia-
tions that primarily result from uncertainties in the
manufacturing process and specimen assembly, among
other factors. The initial crack length and the threshold
for RUL calculation are 3 mm and 22 mm, respec-
tively. It is noteworthy that the crack growth data of
specimen S6 will be utilized to determine the coeffi-
cients of degradation models, as discussed in sections
‘‘Typical degradation models’’ and ‘‘State space model-
ing and PF parameters.’’ Conversely, the data from
specimens S1 to S5 will serve for testing purposes.

Figure 3(b) illustrates the experimental Lamb waves,
with a duration of 1:2310�4 s, at three different crack
lengths. The first wave package is crosstalk, which
arises from the electromagnetic induction between the
actuator and sensor circuits. To account for this, the
start of the crosstalk (SoC) is considered the time when
the actuator applies the excitation to the structure.35

The analytical arrivals of the S0 and A0 waves are
approximately equivalent to the summation of the SoC
and the S0 wave time-of-flight (ToF), and to that of
the SoC and the A0 ToF, respectively. Interested read-
ers can refer to Refs. 5 and 6 for further details on the
calculation. Typically, increasing crack lengths result
in amplitude reductions of the S0 waves, which cause
variations in the features extracted from these waves.

Numerical study

Figure 4 shows the Lamb wave numerical simulations
under different crack lengths, which has been well
detailed in Li et al.,5 thus briefly introduced here.
ABAQUS EXPLICIT is used to provide the numerical
S0 Lamb waves of the structure at nine crack lengths
3, 5, 8, 10, 12, 15, 18, 20, 22 mmf g. Two symmetric
out-of-plane pressures, whose amplitudes are the same
as the excitation used in the experiment, are applied
within the circles (same as the actuator shape) on the
two sides of the plate at each crack length. The out-of-
plane displacements at the center of the sensor location
are taken as the numerical Lamb wave.

Table 2. Calculation of future state and RUL at time step k for
the l-th model.

Initialization: set xi,0
k : i=1,2, ...,Np

� �
as xi

k : i=1,2, ...,Np

� �
For i = 1: Np

j = 0

While x
i, j
k \lth

Calculate the future state x
i, j + 1
k

by x
i, j + 1
k = fl x

i, j
k , ui

l, k

� �
j = j + 1

End
RULi

l, k = j3DN

End

RUL: remaining useful life.

Li et al. 5



Figure 5(a) and (b) shows the comparisons of the
numerical and experimental (specimen S1) Lamb waves
at crack lengths of 3 mm and 20 mm, respectively. The
crosstalk of the experimental signal is replaced by zero
values for simplicity. The numerical S0 Lamb waves
satisfactorily agree with the experimental ones before
4310�5 s, and thus can be adopted for modeling the
measurement equation relating the crack length and
some sort of Lamb wave-based statistical feature.

Figure 2. Experimental setup: (a) fatigue test, (b) Lamb wave measurement system, and (c) crack and scale lines.

Figure 3. Fatigue crack growths with Lamb wave monitoring: (a) crack growths of specimens S1–S6 and (b) Lamb wave signals at
three crack lengths from S1.
SoC: start of crosstalk.

Figure 4. Numerical setup.
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Feature extraction

Similar to the work5 from the same authors, the fea-
ture is extracted from the Lamb wave signals within a
properly selected time window, whose start and width
are defined as the S0 arrival and 10�5 s, respectively.
Given the demonstrated performances of RMS-based
features in the prognostic investigation,36 it is chosen
in this study and defined as follows:

RMSl = 1� rms flð Þ
rms frð Þ

ð9Þ

Note that fr and fl are the windowed Lamb waves at
the initial crack length of 3 mm and another crack
length l mm, respectively, and the function ‘‘rms’’ is the
root mean square value of an individual set of signals.

The above processing is implemented for the
numerical Lamb waves and the experimental Lamb
waves from each of the specimens S1–S5, as shown in
Figure 6. The satisfactory match between the numeri-
cal and experimental features enables the feasibility of
adopting the numerical data for modeling the mea-
surement equation. The features from experimental
specimens S1–S5 will be processed in the section
‘‘Target crack growth and features’’ for testing the
proposed method.

Typical degradation models

Table 3 lists three typical degradation models adopted
in current prognostic practices. The rate of damage
evolution in the first two models is characterized as a
function of the current damage state, which can be
determined from either theoretical knowledge or
empirical data. The last model considers the damage
state as a function of time or the number of load cycles,
and it can only be built through some experimental
data. This study adopts all three types of models, as
detailed below.

The first model used in this study adopts Paris’s law
to describe the crack growth. The two parameters C
and m are the empirical values, and the calculation of
the stress intensity factor range DK is taken from the
work of some of the same authors,6

DK xð Þ= 1:43310�3x3 + 5:63310�1x2 � 13:5x + 497:8

ð10Þ

The two data-driven functions f2 �ð Þ and f3 �ð Þ in the last
two models used in this study are built by the third-order
polynomial fitting function, due to its demonstrated per-
formance in damage prognosis investigation,2 although
other approaches, for example, machine learning-based,
can be used in principle. The parameters C and m and

Figure 5. Numerical and experimental (specimen S1) Lamb waves at two crack lengths: (a) 3 mm crack and (b) 20 mm crack.

Table 3. Three typical degradation models used in practice.

Model Literature Which type of model General expression The model used in this study

1 5 and 6 Physics based xk = xk�1 + DNkf1 xk�1ð Þ xk = xk�1 + C DK xk�1ð Þð ÞmDNk

2 3 Data driven xk = xk�1 + DNkf2 xk�1ð Þ xk = xk�1 + DNk p1xk�1
3 + p2xk�1

2 + p3xk�1 + p4

� 	
3 7 Data driven xk = f3 Nkð Þ or xk = f3 tkð Þ xk = q1Nk�1

3 + q2Nk�1
2 + q3Nk�1 + q4

(i) The function f1 �ð Þ is derived from physical knowledge, while f2 �ð Þ and f3 �ð Þ from experimental data, (ii) N and t denote the number of load cycles

and the time, respectively, and DN is the number of load cycles included at one time step and (iii) the parameters C and m and the polynomial

coefficients p1, p2, p3, p4, q1, q2, q3, and q4 will be fitted from the crack growth data of experimental specimen S6 for initializing the particle filter.

Li et al. 7



the polynomial coefficients p1, p2, p3, p4, q1, q2, q3, and
q4 will be acquired through the experimental data of spe-
cimen S6 for initializing each PF.

State space modeling and PF parameters

The three degradation models lead to three prognostic
models as below:

z1, k =

ln Ck

mk

xk

bk

2
64

3
75=

ln Ck�1 + vc, k

mk�1 + vm, k

xk�1 + ev1, k Ck DK xk�1ð Þð Þmk DNk

bk�1 + vb, k

2
664

3
775

yk = g xkð Þ+ bk + nk

8>>>><
>>>>:

ð11Þ

z2,k =

p1,k

p2,k

p3,k

p4,k

xk

bk

2
666664

3
777775=

p1,k�1+vp,1,k

p2,k�1+vp,2,k

p3,k�1+vp,3,k

p4,k�1+vp,4,k

xk�1+ev1,k

p1,kxk�1
3+p2,kxk�1

2+p3,kxk�1+p4,kð ÞDNk

bk�1+vb,k

2
666666664

3
777777775

yk =g xkð Þ+bk +nk

8>>>>>>>>>><
>>>>>>>>>>:

ð12Þ

z3,k =

q1,k

q2,k

q3,k

q4,k

xk

bk

2
666664

3
777775=

q1,k�1 +vq,1,k

q2,k�1 +vq,2,k

q3,k�1 +vq,3,k

q4,k�1 +vq,4,k

p1,kNk
3 +p2,kNk

2 +p3,kNk +p4,k +ev2,k

bk�1 +vb,k

2
6666664

3
7777775

yk =g xkð Þ+bk +nk

8>>>>>>>><
>>>>>>>>:

ð13Þ

where the state vectors z1, z2, and z3 have four, six,

and six components, respectively, v1;N � s2

2
,s2

� �
is

the unbiased Gaussian process noise with the standard

deviation s,23vp, 1, vp, 2, vp, 3, vp, 4, vq, 1, vq, 2, vq, 3,

vq, 4, v2 and vb are zero-mean Gaussian process noises,

the measurement y is the RMS feature, g �ð Þ is a func-
tion describing the relationship between the crack
length and RMS feature. Similar to the work from
some of the same authors,5 the function g �ð Þ is a
fourth-order polynomial regression fitted by the
numerical RMS features at different crack lengths:

g xð Þ= 7:42310�6x4 + 4:20310�4x3 + 7:27310�3x2

+ 4:43310�3x + 7:37310�2

ð14Þ

Each prognostic model mentioned above is non-
linear and non-Gaussian because of the non-linearities
of the degradation model and the function g �ð Þ, and the
non-Gaussian noise ev, respectively. Note that these
models share two state components, that is, the crack
length x, and the bias parameter b. For each PF, the
distribution of the samples of the two components will
be modified with those from all the other PFs through
either the mutation or the crossover operator.

Kernel smoothing37 is adopted to improve the accu-
racy of estimating the time-invariant parameters ln C,
m, p1, p2, p3, p4, q1, q2, q3, and q4. The parameter m is
taken as an example for the illustration as follows:

mk =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2
p

mk�1 + 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2
p� �

m̂k�1 + vm, k ð15Þ

where h is the smoothing parameter selected within a
range of 0 1½ �, and m̂ are the mean of the samples for
the parameter m.

Table 4 shows the values of the PF parameters used
in this study, most of which are determined from the
works of the same authors.2,5,6 As to the model fusion,
the coefficient a for the crossover operator is set to
0.95, while the mutation percentage of the mutation
operator to 10%. The criteria for the selection of initial
distribution or range, process noise, and standard devia-
tion in likelihood are given below, while more details on
sensitivity analyses can be found in Refs. 26, 38, and 39.

The initial distributions for ln C and m used in this
study are considered multivariate Gaussian.23 All the
initial samples of the parameter b are set as zero
because the initial bias is close to zero. The initial crack
length is set as a range including the initial measured
length. Similar to Ref. 2, the initial samples for the
other parameters are created within a uniform range.

At each time step, Np process noise samples will be
sampled from a predefined distribution and assigned
to the Np particles. The noise distributions are deter-
mined through sources such as literature, as seen in this
study, where authors Li et al.2,5,6 have been consulted,
or alternatively, through a trial-and-error approach.

Figure 6. Root mean square (RMS) values at different crack
lengths from numerical and experimental studies.
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By considering a zero-mean Gaussian distribution
for the measurement noise, the likelihood function is
structured as:

p yk jzi
l, k

� �
=

1ffiffiffiffiffiffi
2p
p

sy

exp � 1

2sy
2

yk � yi
k

� 	2

� �
ð16Þ

where yi
k is the observation calculated by the particle

zi
l, k , and sy can be set as the STD of the measurement
noise. In different applications, sy can be either empiri-
cally selected24,40 or calculated from the data.29,41

Target crack growth and features

The crack lengths and the Lamb waves in this experi-
ment are collected every several thousand load cycles.
For simulating a more realistic SHM case, where the
Lamb waves can be collected over shorter load cycle

intervals for crack length quantification, the crack
growth and the features from each of the five experi-
mental specimens (S1–S5) are used to create the target
crack lengths and the corresponding features at a
shorter cycle interval through the procedure below.5

(i) The target crack lengths for each specimen are cre-
ated every 300 load cycles through linear interpola-
tion by the crack data provided in the section
‘‘Experimental study,’’ and then corrupted by
white Gaussian noise with a signal-to-noise ratio
(SNR) of 50 dB to introduce some uncertainties in
the crack growth process, as shown in Figure 7(a).

(ii) For each specimen, linear interpolation is applied
to create the RMS-based feature at each target
length, which is then corrupted by white Gaussian
noise with an SNR of 30 dB to simulate the mea-
surement noise, as given in Figure 7(b).

Table 4. Particle filter parameters.

PF parameters used for all three models

Number of particles Np h in kernel smoothing Standard deviation in the
likelihood function

4000 0.1 0.02
Initial range for x (mm) Initial value for b (2) Distributions of process

noise vb for b
x0;U 2:5, 3:5ð Þ b0 = 0 vb;N 0, 0:0052

� 	
PF parameters used for Model 1 only

Initial distributions for ln C ln
mm

cycle MPa
ffiffiffiffiffiffiffiffi
mm
p

ð Þ�m

� �
, m (–)

Distributions of process noises v1, vc, vmf g for x, ln C, m

ln C0

m0

� �
;N �45:01

6:117

� �
,

0:9966�0:1764
�0:17640:0346

� �� �
v1;N � 0:012

2 , 0:012
� �

vc;N 0, 0:012
� 	

vm;N 0, 0:0012
� 	

PF parameters used for Model 2 only

Initial range for pl, 0 : l = 1, 2, 3, 4f g Distributions of process noises
vp, l : l = 1, 2, 3, 4
� �

for
pl : l = 1, 2, 3, 4f g

Distribution of process
noise v1 for x

pl, 0;U 0:8pf , l, 1:2pf , l

� 	
vp, l;N 0, 0:00015pf , l

� 	2
� �

v1;N � 0:012

2 , 0:012
� �

PF parameters used for Model 3 only

Initial range for ql, 0 : l = 1, 2, 3, 4f g Distributions of process noises
vq, l : l = 1, 2, 3, 4
� �

for
ql : l = 1, 2, 3, 4f g

Distributions of process
noise v2 for x

ql, 0;U 0:8qf , l, 1:2qf , l

� 	
vq, l;N 0, 0:00015qf , l

� 	2
� �

v2;N 0, 0:012
� 	

(i) The means of the distribution of
ln C0

m0

� �
are fitted from the crack growth data of specimen S6, and they are 245.01, and 6.117, respectively and

(ii) pf , l and qf , l are the l-th coefficient of the third polynomial fitting function of Models (2) and (3), respectively, and they are fitted from the crack

growth data of specimen S6.

PF: particle filter.
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Application results

This section provides a comprehensive comparison
between the performances of traditional methods
resorting to each degradation model and between those
of traditional and new methods. The section
‘‘Traditional method for specimen S1’’ presents the
estimation and prognostic results of specimen S1 from
the traditional method resorting to each of the three
degradation models, while section ‘‘New method for
specimen S2’’ illustrates those from the new method by
fusing all three models. The robustness of the proposed
method among all the other specimens is validated in
the section ‘‘Results from all the other specimens.’’

Traditional method for specimen S1

The traditional method applies one PF to one prognos-
tic model to provide one group of estimates of the
crack length and degradation parameters, which are
then adopted for projecting the future state and RUL.
Then, the samples of crack length and RUL from all
three PFs are simply merged at each time step (called
‘‘simple fusion’’) for comparison. Those results are
plotted in Appendix A1. Provided with satisfactory
bias estimation, the samples of crack length from each
model or simple fusion have the average values remain-
ing close to the target values and their confidence
boundaries (CBs) shrinking with the load cycle step,
and the samples of those degradation parameters
reduce their spread over load cycle steps, indicating a
successful convergence.

The future crack lengths predicted based on the PF
estimates at 3:63104 load cycles are given in Figure
A4, where the blue dashed line, the gray dotted line,
and the gray histogram denote the estimated crack

length, the crack length prediction trajectory, and the
RUL posterior PDF, respectively. In general, each
group of future states is distributed around the true
crack lengths. This is also observed in Figure A5, where
the average RUL is close to the target RUL, and the
CBs shrink with the increasing load cycle steps. The
above observations are the same as those in Refs. 5 and
6, where the traditional method resorting to one prog-
nostic model has been applied to the same experimental
study.

On the other hand, the estimation and prognostic
performances using each model are different, which are
then quantified by three metrics, that is, the root mean
square error (RMSE) for the crack length estimation,
the cumulative relative accuracy (CRA) for the RUL
prediction, and the prognostic horizon (PH) for the
RUL prediction, respectively. They are described as
follows:

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

XT

k = 1

�xk � xtrue, kð Þ2
vuut ð17Þ

CRA=
1

T � 1

XT�1

k = 1

1�
RULk �RULtrue, k



 


RULtrue, k

 !
ð18Þ

where �x and RUL denote the mean of posterior esti-
mates of the crack length and that of the RUL, respec-
tively, the subscript ‘‘true’’ means the true crack length
or RUL, and T is the number of discrete load cycle
steps required by the PF until failure is reached.

PH is usually taken as the difference between the
load cycle step of the latest measurement and the fail-
ure threshold, provided the RUL prediction at that
step meets a pre-defined specification.42 Following the
strategy proposed in Corbetta et al.,23 this study con-
siders the PH as the number of load cycles when 60%

Figure 7. Target crack growth, RMS features, and bias: (a) target crack growth and (b) RMS features and bias.
RMS: root mean square.
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of the RUL distribution first falls within a range of
‘‘true RUL610%N .’’ Lower RMSE, higher CRA, and
larger PH represent better estimation and prognosis
performances, respectively.

Table 5 presents the RMSEs, CRAs, and PHs for
specimen S1, where, despite that the parameters of
each degradation model are online estimated for com-
pensating the uncertainties, the three models still yield
different performances for the same specimen. The per-
formance of simple fusion does not show a significant
improvement because it is just a simple mixture of the
three groups of estimates.

New method for specimen S1

The proposed method has each of the three prognostic
models processed through one PF at each step, then
applies all the estimates for crack length quantification
and RUL prediction, and finally modifies the distribu-
tion of samples of the two shared components (i.e.,
crack length and bias) for each PF through either the
crossover or mutation operator. Note that the two
operators are separately inserted into the proposed
method, providing two sets of results of crack length
quantification and RUL prediction, and they are
defined as ‘‘Fusion 1’’ and ‘‘Fusion 2,’’ respectively.

Figures 8 and 9 show the crack length and bias esti-
mation and the parameter estimation, respectively. The

future state and RUL prediction are given in Figure

10. The general conclusions relating to those perfor-

mances are similar to those arising from Appendix A1,

thus not repeated here. On the other hand, the CB

width of crack length or bias from the new method is

narrower than that from the traditional method resort-

ing to any of the three models. This is because the pro-

posed method has the samples from each model

interacting with those from the other two models,

bringing a narrower posterior PDF that can fit with

the three models. One may argue that this method has

improved the particle diversity and should produce

larger CBs. Indeed, larger diversity means that there

are fewer same particles for each PF, which is not

directly associated with the width of CB. The same

phenomenon can be observed in future state and RUL

prediction, where the RUL posterior PDF or CB width

from the new method is narrower than that produced

by the traditional method.
Table 6 presents the comparison between the perfor-

mances of the traditional and the new methods, where
the new method using either the crossover or mutation
operator always performs more accurate crack length
quantification and RUL prediction over the simple

Table 5. Estimation and prognostic performances from traditional method resorting to one degradation model for specimen S1.

Traditional method using one degradation model Simple fusion

Which model 1 2 3 –

RMSE (mm) 1.175 1.640 0.796 0.961
CRA 0.536 0.584 0.807 0.753
PH (load cycles) 5400 30600 33600 5700

The smallest RMSE, largest PH, or highest CRA means the ‘‘best’’ performance, and those from the results of the traditional method are highlighted

in bold.

RMSE: root mean square error; CRA: cumulative relative accuracy; PH: prognostic horizon.

Table 6. Estimation and prognostic performances by adopting one degradation model (traditional method) and by fusing multiple
models (new method) for specimen S1.

Traditional method using one degradation model Simple fusion Proposed method

Fusion 1 (crossover) Fusion 2 (mutation)

Which model 1 2 3 – – –

RMSE (mm) 1.175 1.640 0.796 0.961 0.338 0.402
CRA 0.536 0.584 0.807 0.753 0.870 0.884
PH (load cycles) 5400 30,600 33,600 5700 27,300 27,600

(i) The smallest RMSE, largest PH, or highest CRA means the ‘‘best’’ performance, and those from the results of the traditional method are

highlighted in bold and (ii) the result from the new method is highlighted in bold italic if it is more accurate than that from simple fusion. Same

below.

RMSE: root mean square error; CRA: cumulative relative accuracy; PH: prognostic horizon.
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fusion, which confirms that the fusion scheme for
improving the particle diversity can yield better prog-
nostic performance. Although the proposed method
does not exhibit a significant improvement compared
to the use of the traditional method with the third
degradation model (which is the most effective among
the three models), this does not reduce the significance
of the proposed approach. This is because the prognos-
tic model that delivers the best performance can vary
among different specimens, and it is exceedingly chal-
lenging to predict, as detailed in the section ‘‘Results
from all the other specimens.’’

Results from all the other specimens

The robustness of the proposed framework is now
tested with the specimens S2–S5. The analyses in sec-
tions ‘‘Traditional method for specimen S1’’ and ‘‘New
method for specimen S2’’ are repeated with the same
PF parameters given in the section ‘‘State space model-
ing and PF parameters.’’ The crack length estimation
and RUL prediction results using the new method are
presented in Figures 11 and 12, respectively, which lead
to the same conclusions drawn from Figures 8 and 10,

and then demonstrate the robustness of the proposed
method over different specimens.

Tables 7–10 show the estimation and prognostic per-
formances from specimens S2–S5, respectively. When
resorting to the traditional method, the model provid-
ing the best prognostic performance can be different
among different specimens, or even, by using different
performance metrics. For example, when the tradi-
tional method is applied to specimen S4, the results
from Model (1) have the smallest RMSE and the larg-
est CRA, while the results from Model (3) have the
largest PH.

In general, the proposed method yields better perfor-
mance than the use of simple fusion, demonstrating the
robustness of this method, but it does not always guar-
antee superior performance over the traditional method
resorting to the best model for each specimen. The lat-
ter, however, never degrades the value of this method,
as already discussed above.

Conclusions

Damage prognosis methods typically require a prop-
erly selected degradation model describing the damage

Figure 8. Estimation results of crack length and bias using new method for specimen S1: (a) Fusion 1, length estimation, (b) Fusion
2, length estimation, (c) Fusion 1, bias estimation, and (d) Fusion 2, bias estimation.
CB: confidence boundary.
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growth with time or load cycle steps. To provide a
more robust prognostic performance, this work has
proposed a PF-based damage prognosis framework by
fusing multiple degradation models.

The results of the traditional and new methods can
lead to the following conclusions. When using the tra-
ditional method of relying on one degradation model,
it is important to note that the best degradation model
can differ among the five specimens and also vary
depending on the performance metrics used. Simply
combining the estimates from multiple models does

not enhance the accuracies of crack length quantifica-
tion and RUL prediction. In all of the five specimens
evaluated, the new method, leveraging either the cross-
over or mutation operator, consistently outperforms
the simple mixture mentioned above, attesting to its
robustness.

Based on the results presented in this paper, it can
be concluded that the proposed method offers a pro-
mising alternative to the traditional approach. While
the proposed method may not always result in superior
performance compared to the best model-based

Figure 9. Estimation results of model parameters using a new method for specimen S1: (a) Fusion 1, parameters ln C and m,
(b) Fusion 2, parameters ln C and m, (c) Fusion 1, parameters p1 and p2, (d) Fusion 2, parameters p1 and p2, (e) Fusion 1, parameters
q1 and q2, and (f) Fusion 2, parameters q1 and q2.
Note that ‘‘Initial,’’ ‘‘1:83104,’’ ‘‘3:63104,’’ and ‘‘Final’’ within the legend represent the samples of the three parameters at 0, 1:83104, 3:63104, and

last load cycles, respectively.
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Figure 10. Future state prediction at 3:63104 load cycles and RUL prediction using a new method for specimen S1: (a) Fusion 1,
future state prediction, (b) Fusion 2, future state prediction, (c) Fusion 1, RUL prediction, and (d) Fusion 2, RUL prediction.
RUL: remaining useful life.

Table 7. Estimation and prognostic performances by adopting one degradation model (traditional method) and by fusing multiple
models (new method) for specimen S2.

Traditional method using one degradation model Simple fusion Proposed method

Fusion 1 (crossover) Fusion 2 (mutation)

Which model 1 2 3 – – –

RMSE (mm) 1.250 1.381 2.050 1.109 0.829 1.290
CRA 0.382 0.801 0.588 0.784 0.831 0.814
PH (load cycles) 4800 43,200 6600 6600 20,100 14,400

(i) The smallest RMSE, largest PH, or highest CRA means the ‘‘best’’ performance, and those from the results of the traditional method are

highlighted in bold and (ii) the result from the new method is highlighted in bold italic if it is more accurate than that from simple fusion.

RMSE: root mean square error; CRA: cumulative relative accuracy; PH: prognostic horizon.

Table 8. Estimation and prognostic performances by adopting one degradation model (traditional method) and by fusing multiple
models (new method) for specimen S3.

Traditional method using one degradation model Simple fusion Proposed method

Fusion 1 (crossover) Fusion 2 (mutation)

Which model 1 2 3 – – –

RMSE (mm) 1.206 1.694 0.996 0.884 0.716 0.256
CRA 0.423 0.175 0.561 0.429 0.470 0.730
PH (load cycles) 40,500 3600 39,000 4200 28,200 26,400

(i) The smallest RMSE, largest PH, or highest CRA means the ‘‘best’’ performance, and those from the results of the traditional method are

highlighted in bold and (ii) the result from the new method is highlighted in bold italic if it is more accurate than that from simple fusion.

RMSE: root mean square error; CRA: cumulative relative accuracy; PH: prognostic horizon.
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traditional approach, it addresses the uncertainty
involved in determining the most effective model in
advance. Furthermore, the proposed method provides
a more comprehensive evaluation of the degradation
behavior by considering multiple models, which can
enhance the accuracy of damage quantification and
RUL prediction.

In a more practical application scenario where tens
of or hundreds of available degradation models are
available, some of those models may consistently pro-
vide inaccurate crack length quantification and RUL
prediction results, thereby compromising the perfor-
mance of the proposed method if such models are
included. Consequently, it is necessary to develop an
offline or online scheme to select a list of ‘‘good’’

degradation models or ‘‘good’’ samples. Moreover, the
proposed method requires all the prognostic models to
share specific state components like crack length, which
may not always be possible, especially considering that
some data-driven models only include some sort of
data-driven HI. A necessary extension has to be made
in the case of no shared state component. Finally, it
should be noted that the proposed approach requires
the use of multiple PFs; thus, its computation time will
linearly increase with the number of models (or PFs)
used. However, this issue can be addressed by develop-
ing computationally efficient PFs, which will enable
the use of more models without significantly increasing
computation time and enhance the practical applicabil-
ity of the proposed method.

Table 9. Estimation and prognostic performances by adopting one degradation model (traditional method) and by fusing multiple
models (new method) for specimen S4.

Traditional method using one degradation model Simple fusion Proposed method

Fusion 1 (crossover) Fusion 2 (mutation)

Which model 1 2 3 – – –

RMSE (mm) 0.685 1.584 1.072 1.006 0.665 0.670
CRA 0.592 0.582 0.477 0.580 0.688 0.670
PH (load cycles) 29400 4200 38400 4200 25800 7200

(i) The smallest RMSE, largest PH, or highest CRA means the ‘‘best’’ performance, and those from the results of the traditional method are

highlighted in bold and (ii) the result from the new method is highlighted in bold italic if it is more accurate than that from simple fusion.

RMSE: root mean square error; CRA: cumulative relative accuracy; PH: prognostic horizon.

Table 10. Estimation and prognostic performances by adopting one degradation model (traditional method) and by fusing multiple
models (new method) for specimen S5.

Traditional method using one degradation model Simple fusion Proposed method

Fusion 1 (crossover) Fusion 2 (mutation)

Which model 1 2 3 – – –

RMSE (mm) 1.059 0.951 1.533 0.962 0.446 0.713
CRA 0.548 0.762 0.659 0.830 0.868 0.834
PH (load cycles) 4500 36,900 28,800 24,600 28,500 29,400

(i) The smallest RMSE, largest PH, or highest CRA means the ‘‘best’’ performance, and those from the results of the traditional method are

highlighted in bold and (ii) the result from the new method is highlighted in bold italic if it is more accurate than that from simple fusion.

RMSE: root mean square error; CRA: cumulative relative accuracy; PH: prognostic horizon.
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Figure 11 Crack length estimations from a new method for specimens S2–S5: (a) Fusion 1, S2, (b) Fusion 2, S2, (c) Fusion 1, S3,
(d) Fusion 2, S3, (e) Fusion 1, S4, (f) Fusion 2, S4, (g) Fusion 1, S5, and (h) Fusion 2, S5.
CB: confidence boundary; RUL: remaining useful life.
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Figure 12. RUL predictions from a new method for specimens S2–S5: (a) Fusion 1, S2, (b) Fusion 2, S2, (c) Fusion 1, S3, (d) Fusion
2, S3, (e) Fusion 1, S4, (f) Fusion 2, S4, (g) Fusion 1, S5, and (h) Fusion 2, S5.
CB: confidence boundary; RUL: remaining useful life.

Li et al. 17



Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding

The author(s) disclosed receipt of the following financial sup-
port for the research, authorship, and/or publication of this
article: This project has received funding from the European
Union’s Horizon 2020 research and innovation program
under the Marie Sk1odowska-Curie grant agreement No.
859957.

ORCID iDs

Tianzhi Li https://orcid.org/0000-0001-6196-9948
Jian Chen https://orcid.org/0000-0002-5991-0805
Shenfang Yuan https://orcid.org/0000-0003-0154-1231

References

1. Chiachı́o M, Chiachı́o J, Sankararaman S, et al. A new

algorithm for prognostics using subset simulation. Reliab

Eng Syst Saf 2017; 168: 189–199.
2. Li T, Cadini F, Chiachı́o M, et al. Particle filter-based

delamination shape prediction in composites subjected to

fatigue loading. Struct Health Monit. Epub ahead of

print 8 August 2022. DOI: 10.1177/14759217221116041.

3. Tao C, Zhang C, Ji H, et al. Application of neural net-

work to model stiffness degradation for composite lami-

nates under cyclic loadings. Compos Sci Technol 2021;

203: 108573.
4. Yue N, Broer A, Briand W, et al. Assessing stiffness

degradation of stiffened composite panels in post-

buckling compression-compression fatigue using guided

waves. Compos Struct 2022; 293: 115751.
5. Li T, Lomazzi L, Cadini F, et al. Numerical simulation-

aided particle filter-based damage prognosis using Lamb

waves. Mech Syst Signal Process 2022; 178: 109326.
6. Li T, Sbarufatti C, Cadini F, et al. Particle filter-based

hybrid damage prognosis considering measurement bias.

Struct Control Health Monit 2021; 29: e2914.
7. Cadini F, Sbarufatti C, Corbetta M, et al. Particle

filtering-based adaptive training of neural networks for

real-time structural damage diagnosis and prognosis.

Struct Control Health Monit 2019; 26: e2451.
8. Cadini F, Sbarufatti C, Corbetta M, et al. A particle

filter-based model selection algorithm for fatigue damage

identification on aeronautical structures. Struct Control

Health Monit 2017; 24: e2002.
9. Zhou X, He S, Dong L, et al. Real-time prediction of

probabilistic crack growth with a helicopter component

Digital Twin. AIAA J 2022; 60: 2555–2567.
10. Moradi M, Broer A, Chiachı́o J, et al. Intelligent health

indicator construction for prognostics of composite

structures utilizing a semi-supervised deep neural net-

work and SHM data. Eng Appl Artif Intell 2023; 117:

105502.

11. Eleftheroglou N, Zarouchas D and Benedictus R. An

adaptive probabilistic data-driven methodology for prog-

nosis of the fatigue life of composite structures. Compos

Struct 2020; 245: 112386.
12. Liu X, Lei Y, Li N, et al. RUL prediction of machinery

using convolutional-vector fusion network through

multi-feature dynamic weighting. Mech Syst Signal Pro-

cess 2023; 185: 109788.
13. Galanopoulos G, Eleftheroglou N, Milanoski D, et al. A

novel strain-based health indicator for the remaining use-

ful life estimation of degrading composite structures.

Compos Struct 2023; 306: 116579.
14. Zhao F, Zhou X, Wang C, et al. Setting adaptive inspec-

tion intervals in helicopter components, based on a Digi-

tal Twin. AIAA J. Epub ahead of print 18 February

2023. DOI: 10.2514/1.J062222.
15. Lei Y, Li N, Guo L, et al. Machinery health prognostics:

a systematic review from data acquisition to RUL predic-

tion.Mech Syst Signal Process 2018; 104: 799–834.
16. Baraldi P, Mangili F and Zio E. Investigation of uncer-

tainty treatment capability of model-based and data-

driven prognostic methods using simulated data. Reliab

Eng Syst Saf 2013; 112: 94–108.
17. Lopez I and Sarigul-Klijn N. A review of uncertainty in

flight vehicle structural damage monitoring, diagnosis

and control: challenges and opportunities. Prog Aerosp

Sci 2010; 46: 247–273.

18. Guha A and Patra A. State of health estimation of

lithium-ion batteries using capacity fade and internal

resistance growth models. IEEE Trans Transp Electrif

2018; 4: 135–146.
19. Xing Y, Ma EWM, Tsui K-L, et al. An ensemble model

for predicting the remaining useful performance of

lithium-ion batteries. Microelectron Reliab 2013; 53:

811–820.
20. Su X, Wang S, Pecht M, et al. Interacting multiple model

particle filter for prognostics of lithium-ion batteries.

Microelectron Reliab 2017; 70: 59–69.
21. Guan X, Jha R and Liu Y. Model selection, updating,

and averaging for probabilistic fatigue damage prog-

nosis. Struct Safety 2011; 33: 242–249.
22. Zhang D, Baraldi P, Cadet C, et al. An ensemble of

models for integrating dependent sources of information

for the prognosis of the remaining useful life of proton

exchange membrane fuel cells. Mech Syst Signal Process

2019; 124: 479–501.
23. Corbetta M, Sbarufatti C, Giglio M, et al. Optimization

of nonlinear, non-Gaussian Bayesian filtering for diag-

nosis and prognosis of monotonic degradation processes.

Mech Syst Signal Process 2018; 104: 305–322.
24. Corbetta M, Sbarufatti C, Giglio M, et al. A Bayesian

framework for fatigue life prediction of composite lami-

nates under co-existing matrix cracks and delamination.

Compos Struct 2018; 187: 58–70.
25. Chiachı́o J, Chiachı́o M, Sankararaman S, et al. Condi-

tion-based prediction of time-dependent reliability in

composites. Reliab Eng Syst Safety 2015; 142: 134–147.
26. Cristiani D, Sbarufatti C and Giglio M. Damage diagno-

sis and prognosis in composite double cantilever beam

18 Structural Health Monitoring 00(0)

https://orcid.org/0000-0001-6196-9948
https://orcid.org/0000-0002-5991-0805
https://orcid.org/0000-0003-0154-1231


coupons by particle filtering and surrogate modelling.
Struct Health Monit 2020; 20: 147592172096006.

27. Cristiani D, Sbarufatti C, Cadini F, et al. Fatigue dam-
age diagnosis and prognosis of an aeronautical structure
based on surrogate modelling and particle filter. Struct
Health Monit 2021; 20: 2726–2746.

28. Chen J, Yuan S and Wang H. On-line updating Gaussian
process measurement model for crack prognosis using
the particle filter. Mech Syst Signal Process 2020; 140:
106646.

29. Chen J, Yuan S and Jin X. On-line prognosis of fatigue
cracking via a regularized particle filter and guided wave
monitoring. Mech Syst Signal Process 2019; 131: 1–17.

30. Arulampalam MS, Maskell S, Gordon N, et al. A tutor-
ial on particle filters for online nonlinear/non-Gaussian
Bayesian tracking. IEEE Trans Signal Process 2002; 50:
174–188.

31. Yin S and Zhu X. Intelligent particle filter and its appli-
cation to fault detection of nonlinear system. IEEE Trans

Ind Electron 2015; 62: 3852–3861.
32. Yin S, Zhu X, Qiu J, et al. State estimation in nonlinear

system using sequential evolutionary filter. IEEE Trans

Ind Electron 2016; 63: 3786–3794.
33. Wang X, Li T, Sun S, et al. A survey of recent advances

in particle filters and remaining challenges for multitarget
tracking. Sensors 2017; 17: 2707.

34. Li T, Sun S, Sattar TP, et al. Fight sample degeneracy
and impoverishment in particle filters: a review of intelli-
gent approaches. Expert Syst Appl 2014; 41: 3944–3954.

35. Qiu L, Yuan S, Shi X, et al. Design of piezoelectric trans-
ducer layer with electromagnetic shielding and high con-
nection reliability. Smart Mater Struct 2012; 21: 075032.

36. Buchaiah S and Shakya P. Bearing fault diagnosis and
prognosis using data fusion based feature extraction and
feature selection. Measurement 2022; 188: 110506.

37. Liu J and West M. Combined parameter and state esti-
mation in simulation-based filtering. In: Doucet A, Frei-
tas N and Gordon N (Eds), Sequential Monte Carlo
methods in practice. New York, NY: Springer, 2001, pp.
197–223.

38. Chatzi EN and Smyth AW. The unscented Kalman filter
and particle filter methods for nonlinear structural sys-
tem identification with non-collocated heterogeneous
sensing. Struct Control Health Monit 2010; 16: 99–123.

39. Yoo SJ, Jung DH, Kim JH, et al. A comparative study
of soft sensor design for lipid estimation of microalgal
photobioreactor system with experimental validation.
Bioresour Technol 2015; 179: 275–283.

40. Chen C, Zhang B, Vachtsevanos G, et al. Machine condi-
tion prediction based on adaptive neuro–fuzzy and high-
order particle filtering. IEEE Trans Ind Electron 2011; 58:
4353–4364.

41. Sajeeb R, Manohar CS and Roy D. A conditionally line-
arized Monte Carlo filter in non-linear structural
dynamics. Int J Non-Linear Mech 2009; 44: 776–790.

42. Saxena A, Celaya J, Balaban E, et al. Metrics for evalu-
ating performance of prognostic techniques. In: 2008
International conference on prognostics and health man-
agement, Denver, 2008, pp. 1–17.

Appendix A1

The estimation and prognostic results of the traditional
method using each of the three damage degradation
models for specimen S1 are shown in Figures A1–A5,
which are the crack length estimation, the crack growth
parameter estimation (ln C and m), the bias estimation,
the future state prediction, and the RUL prediction,
respectively.
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Figure A1 Crack length estimation using traditional method resorting to one degradation model for specimen S1: (a) Model 1,
(b) Model 2, (c) Model 3, and (d) simple fusion.
CB: confidence boundary.
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Figure A2. Parameter estimation using traditional method resorting to one degradation model for specimen S1: (a) Model 1,
parameters ln C and m, (b) Model 2, parameters p1 and p2, (c) Model 2, parameters p3 and p4, (d) Model 3, parameters q1 and q2,
and (e) Model 3, parameters q3 and q4.
Note that ‘‘Initial,’’ ‘‘1:83104,’’ ‘‘3:63104,’’ and ‘‘Final’’ within the legend represent the samples of the three parameters at 0, 1:83104, 3:63104, and

last load cycles, respectively.
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Figure A3. Bias estimation using traditional method resorting to one degradation model for specimen S1: (a) Model 1, (b) Model
2, (c) Model 3, and (d) simple fusion.

Figure A4. Future state prediction at 3:63104 load cycles using traditional method resorting to one degradation model for
specimen S1: (a) Model 1, (b) Model 2, (c) Model 3, and (d) simple fusion.
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Figure A5. RUL prediction using traditional method resorting to one degradation model for specimen S1: (a) Model 1, (b) Model
2, (c) Model 3, and (d) simple fusion.
RUL: remaining useful life.
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