Computer Engineering 2011
Mekelweg 4,
2628 CD Delft
The Netherlands
http://ce.et.tudelft.nl/

MSc THESIS

MePoEfAr: Memory and Power Efficient
Architecture for Embedded Microcontrollers

Imran Ashraf

Abstract

Microcontroller based embedded systems have witnessed enormous growth
in recent decades. Microcontrollers are the most versatile products found in
most of the market segments and in several product families spanning from
4-bit to 64-bit processors. The application domain is such that for some ap-
plications only a little functionality is required; for instance, when used as
a controller for a simple user interface. In other applications, the function-

) \\\\\\\ ality demands are high, such as the demand for floating-point calculations
\\\\\\\\\ A and signal processing. Microcontrollers have to meet these demands, while
e

being smaller in size and power efficient. Since memory occupies a large
share of area in a microcontroller and contributes the most towards power
consumption, the architecture has to be memory efficient. Particularly, for
applications using a matrix of processors (as in multi-core architectures),
each with its own program memory, the program memory and power effi-
ciencies are a major design goal. The memory efficiency of the instruction
set, which also implies power efficiency, is an important factor which needs
to be taken into account in the design of microcontroller architectures.

In this thesis, we propose a Memory and Power Efficient Architecture
(MePoEfAr) for embedded microcontrollers. MePoEfAr is intended as
an improvement of the class of architectures represented by the ATMEL
AVR, Texas Instruments MSP430 and the ARM Cortex-M3 microcon-
trollers. These architectures were designed to be used as embedded controllers. They often have on-board SRAM for
data storage and ROM/Flash for program storage. This property demands a memory-efficient architecture, because a
small savings of the on-chip program memory area quickly offsets the gates required for extra processor functionality.
In addition, due to power aspects, especially for hand-held devices, the clock frequencies used are not very high, so
that the instruction decoding time is less critical.

A source level profiler has been developed to get the statistics of various C language constructs for the represen-
tative programs used in embedded applications. These statistics were used in making various trade-offs to tune
this architecture. An assembler and Interpretive simulator was developed to perform assembler level benchmarking
for performance evaluation and comparison with three embedded architectures. Results show the improvement of
MePoEfAr performance by 70% and 17% when compared to TI MSP430 and ARM Coretex-M3 microcontrollers,
respectively. Furthermore, MePoEfAr outperforms Atmel AVR by a factor of 2.32.

Efficiency of MePoEfAr comes from its more orthogonal architecture, its memory efficient and rich instruction set, ef-
ficient support for immediate values and displacements, efficient instruction encoding with variable length instructions
of 1 to 4 bytes. Moreover, availability of large number of registers, and the possibility of large number of operations
on these registers add to the efficiency of the architecture.

CE-MS-2011-17

Delft
e t University of
Technology

Faculty of Electrical Engineering, Mathematics and Computer Science

MePoEfAr: Memory and Power Efficient
Architecture for Embedded Microcontrollers

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in
COMPUTER ENGINEERING

by

Imran Ashraf
born in Mansehra, Pakistan

Computer Engineering

Department of Electrical Engineering

Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

MePoEfAr: Memory and Power Efficient
Architecture for Embedded Microcontrollers

by Imran Ashraf

Abstract

icrocontroller based embedded systems have witnessed enormous growth in recent

decades. Microcontrollers are the most versatile products found in most of the mar-

ket segments and in several product families spanning from 4-bit to 64-bit processors.
The application domain is such that for some applications only a little functionality is required;
for instance, when used as a controller for a simple user interface. In other applications, the
functionality demands are high, such as the demand for floating-point calculations and signal
processing. Microcontrollers have to meet these demands, while being smaller in size and power
efficient. Since memory occupies a large share of area in a microcontroller and contributes the
most towards power consumption, the architecture has to be memory efficient. Particularly, for
applications using a matrix of processors (as in multi-core architectures), each with its own pro-
gram memory, the program memory and power efficiencies are a major design goal. The memory
efficiency of the instruction set, which also implies power efficiency, is an important factor which
needs to be taken into account in the design of microcontroller architectures.

In this thesis, we propose a Memory and Power Efficient Architecture (MePoEfAr) for em-
bedded microcontrollers. MePoEfAr is intended as an improvement of the class of architectures
represented by the ATMEL AVR, Texas Instruments MSP430 and the ARM Cortex-M3 micro-
controllers. These architectures were designed to be used as embedded controllers. They often
have on-board SRAM for data storage and ROM/Flash for program storage. This property de-
mands a memory-efficient architecture, because a small savings of the on-chip program memory
area quickly offsets the gates required for extra processor functionality. In addition, due to power
aspects, especially for hand-held devices, the clock frequencies used are not very high, so that
the instruction decoding time is less critical.

A source level profiler has been developed to get the statistics of various C language constructs
for the representative programs used in embedded applications. These statistics were used in
making various trade-offs to tune this architecture. An assembler and Interpretive simulator was
developed to perform assembler level benchmarking for performance evaluation and comparison
with three embedded architectures. Results show the improvement of MePoEfAr performance by
70% and 17% when compared to TTI MSP430 and ARM Coretex-M3 microcontrollers, respectively.
Furthermore, MePoEfAr outperforms Atmel AVR by a factor of 2.32.

Efficiency of MePoEfAr comes from its more orthogonal architecture, its memory efficient and
rich instruction set, efficient support for immediate values and displacements, efficient instruction
encoding with variable length instructions of 1 to 4 bytes. Moreover, availability of large number
of registers, and the possibility of large number of operations on these registers add to the
efficiency of the architecture.

Laboratory : Computer Engineering
Codenumber : CE-MS-2011-17

Committee Members

Advisor: Dr. Said Hamdioui, CE, TU Delft
Advisor: Ad J. van de Goor, CE, TU Delft
Chairperson: Dr. ir. Koen L. M. Bertels, CE, TU Delft
Member: Dr. Ir. G. Kuzmanov, CE, TU Delft
Member: Dr. Alexandru Iosup, PDS, TU Delft

Member: Ir. A.C. de Graaf, CE, TU Delft

ii

To the hug of my son Usman
&9

To the smile of my niece Stmra Khan

iii

iv

Contents

List of Figures

List of Tables

List of Source Codes

ix

xii

xiv

XV

Acknowledgements

1 Introduction
1.1 Introduction
1.2 Motivation
1.3 Main Thesis Contributions
1.4 Outline of Thesis

2 Overview of Microcontroller Architectures
2.1 Classification of Microcontroller Architectures
2.1.1 Classification Based on Architectural Style
2.1.2 Classification Based on Memory Interfaces
2.1.3 Classification Based on Word Size
2.1.4 Classification Based on Operand Specification
2.2 Example Architectures
2.2.1 Atmel AVR ATO90S851o
2.2.2 TIMSP430G2231 e
2.2.3 ARM LPC1342 Cortex-M3
2.3 Ideal Properties of a Microcontroller Architecture
2.3.1 Program Memory Size
2.3.2 Power Consumption
2.3.3 Speed e
2.3.4 Modularity

2.4 SUMMAry o e e

3 Statistics of C Language

3.1
3.2

3.3

3.4

List of Language Constructs
Profiling
3.2.1 Profiler
3.2.2 Profiler Benchmark Applications
Frequency Distribution of C' Language Constructs
3.3.1 Frequency Distribution of Statements
3.3.2 Operations e
3.3.3 Operands
3.3.4 Miscellaneous Lo
Conclusions

4 MePoEfAr Architecture

5 MePoEfAr Assembler

5.1
5.2

5.3
5.4

Introduction to Assemblers
MePoEfAr Assembler
5.2.1 Scanner
5.2.2 Parser e
5.2.3 Analyzer
524 Code Generator
Instruction Bit-assignment Lo 0oL

SUMMATY v o o e e e e e e e

6 MePoEfAr Interpreter

6.1
6.2
6.3

6.4

Overview of Simulators
MePoEfAr Interpreter
Supervisor Program (main())o
6.3.1 Memory Address to Source Line Number Mapping
MePoEfAr Microcontroller Model
6.4.1 Program Status Word,
6.4.2 Program Counter
6.4.3 Registers
6.4.4 Program Memory
6.4.5 DataMemory e

vi

13
13
15
15
16
17
17
18
23
24
25

27

29
29
29
30
31
32
33
34
36

6.4.6 Stack and Stack Pointer
6.4.7 Decoder e
6.4.8 Arithmetic and Logic Unit

6.5 Summary e

7 Assembler Level Benchmarking
7.1 Evaluation Criteria e
7.2 Candidate Architectures for Comparison
7.2.1 Atmel AVR AT90S851 o
7.2.2 TIMSP430G2231
7.2.3 ARM LPC1342
7.3 Selected Benchmark Programs,
7.3.1 Benchmark Application 1: Recursive Factorial Program
7.3.2 Benchmark Application 2: String Copy Program
7.3.3 Benchmark Application 3: Bubble Sort Program
7.3.4 Benchmark Application 4: Sensor Structure Program
7.3.5 Benchmark Application 5: Matrix Multiplication Program
7.3.6 Benchmark Application 6: FIR Program
7.4 Result Evaluation and Comparison
7.4.1 StaticResults
7.4.2 Dynamic Results oo

75 Summary

8 Conclusion and Future Work
8.1 Summary e

8.2 Conclusions s,

8.3 Future Work L
Bibliography
A Lexical Analyzer Generator Code
B Parser Generator Code

C Assembly Codes for the Selected Benchmarks
C.1 MePoEfAr Assembly Codes,

vii

49
49
49
50
50
50
o1
92
53
o4
95
o7
o8
99
99
62
66

69
69
70
72

76

77

81

87

C.2 Atmel AVR AT90S851 Assembly Codes 92

C.3 TI MSP430 Assembly Codes. 101
C.4 ARM Cortex-M3 Assembly Codes 108
Calculations Details 115
D.1 MePoEfAr Calculations Details 115
D.2 Atmel AVR AT90S851 Calculations Details 118
D.3 TI MSP430G2231 Calculations Details 126
D.4 ARM Cortex-M3 LPC1342 Calculations Details 131

viii

List of Figures

1.1
1.2
1.3

2.1

5.1

5.2

5.3
5.4

5.5

5.6

5.7

6.1

6.2

7.1
7.2
7.3
7.4
7.5
7.6
7.7

Various Microcontroller Applications 1
Microcontrollers in Consumer Applications [17] 2
Annual Cellular Handset Sales [17] 2
A Classification of Microcontroller Architectures 5

Block Diagram of MePoEfAr Assembler Showing Various Steps Performed

in the Assembly Process 30
Block Diagram of Scanner, which Reads the Input Assembly Instructions

and Produces the Tokens 31
Tokens generated by Scanner for the Example Program in Listing 5.1 . . 31

Block Diagram of Parser. Tokens are taken as Input from the Scanner and
Parser Performs Syntactic Analysis and Constructs the Abstract Syntax
Tree as an Output L 31

Visual Representation of the Complete Abstract Syntax Tree for the Ex-
ample Program given in Listing 5.1 32

Block Diagram of Code Generator which Generates the Machine Code at
the Output for the Abstract Syntax Tree of a Single Instruction at the
Input 34

Summary of MePoEfAr Assembler Showing Various Steps Performed in
the Assembly Process 37

Block Diagram of MePoEfAr Interpreter Showing its Position in Relation

to the Host Machine L. 40
Block Diagram of the MePoEfAr Interpreter 41
Classification of Evaluation Criteria, 50
Number of Instructions Required for Benchmark Programs 60
Program Memory Size (Bytes) for Selected Benchmarks 61
Total Number of Instructions Executed 63
Total Number of Instructions Executed inside Loop 63
Total Number of Execution Cycles 64
Instruction Memory Traffic (Cycles) 65

X

List of Tables

21

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16

5.1

5.2

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

Classification of Three Microcontroller Architectures Based on the Cate-

gories Described in This Chapter 9
Application Programs Used for Profiling 16
Frequency Distribution of Statements 17
Frequency Distribution of Assignment Statements Based on LHS 17
Distribution of Assignments Based on Complexity of RHS Expression . . 18
Frequency Distribution of Operations. 19
Frequency Distribution of Integer Operations 20
Frequency Distribution of Floating Point Operations 21
Frequency Distribution of 8-bit Integer Operations 21
Frequency Distribution of 16-bit Integer Operations 22
Frequency Distribution of 32-bit Integer Operations 22
Frequency Distribution of Operands 23
Frequency Distribution of Constants 23
Frequency Distribution of Operand Accesses Based on Size 24
Average (per Function) of Variables Based on Locality 24
Frequency Distribution of Parameters Based on Data Types 24
Frequency Distribution of Locals Based on Data Types. 25

Visual Representation of the Symbol Table for the Example Program in

LiStNE 5.1 o« o o e e e 33
A Possible Bit Assignment for Various MePoEfAr Instruction Formats . . 35
Number of Instructions Required for Benchmark Programs 59
Program Memory Size (Bytes) for Selected Benchmarks 61
Total Number of Instructions Executed 62
Total Number of Instructions Executed inside Loop 62

Number of Cycles for Arithmetic Operations for Supported Data Types . 64

Total Number of Execution Cycles 64
Instruction Memory Traffic (Cycles) 65
Data Memory Traffic (Cycles) 66

X1

7.9 Performance Comparison Summary 67

D.1 MePoEfAr Calculations 115
D.2 Atmel AVR Calculations 118
D.3 TI MSP430 Calculations 126
D.4 ARM Cortex M3 Calculations 131

xii

Listings

5.1

5.2

6.1

6.2

6.3

6.4
7.1
7.2
7.3
7.4
7.5
7.6
Al
B.1
C.1
C.2
C.3
C4
C.5
C.6
C.7
C.8
C.9

MePoEfAr Example Assembly Program used for Illustration of Various

Assembler Stages in this Chapter 30
MePoEfAr Example Code Used for the the Illustration of Branch Instruc-
tion Size and Update of Location Counter 33

MePoEfAr main() Interpreter C' Code. It Prompts the User for Input
Hex File, Calls loadPM() to load it into memory. runProgram() Executes

the Loaded Program 41
Code Used to Store the Mapping of Program Memory Address and Line

Numbers in MePoEfAr Interpreter 42
runProgram() Function in which Instructions are Fetched, Decoded and

Executed 43
Code for Instruction Decoding 45
Benchmark Application 1: Recursive Factorial Program 52
Benchmark Application 2: String Copy Program 53
Benchmark Application 3: Bubble Sort Program 54
Benchmark Application 4: Sensor Structure Program 55
Benchmark Application 5: Matrix Multiplication Program o7
Benchmark Application 6: FIR Program 58
Flex Code for the Lexical Analyzer Generator for MePoEfAr Assembler . 77
Bison Code for the Parser Generator for MePoEfAr Assembler 81
MePoEfAr Assembly Code for Benchmark 1: Recursive Factorial 87
MePoEfAr Assembly Code for Benchmark 2: String Copy 87
MePoEfAr Assembly Code for Benchmark 3: Bubble Sort 88
MePoEfAr Assembly Code for Benchmark 4: Sensor Structure 89
MePoEfAr Assembly Code for Benchmark 5: Matrix Multiplication 89
MePoEfAr Assembly Code for Benchmark 6: FIR 90
Atmel AVR AT90S851 Assembly Code for Benchmark 1: Recursive Factorial 92
Atmel AVR AT90S851 Assembly Code for Benchmark 2: String Copy . . 93
Atmel AVR AT90S851 Assembly Code for Benchmark 3: Bubble Sort . . 93

C.10 Atmel AVR AT90S851 Assembly Code for Benchmark 4: Sensor Structure 95
C.11 Atmel AVR AT90S851 Assembly Code for Benchmark 5: Matrix Multi-

plication 96

C.12 Atmel AVR AT90S851 Assembly Code for Benchmark 6: FIR 98

C.13 TI MSP430 Assembly Code for Benchmark 1:
C.14 TI MSP430 Assembly Code for Benchmark 2:
C.15 TI MSP430 Assembly Code for Benchmark 3:
C.16 TI MSP430 Assembly Code for Benchmark 4:
C.17 TI MSP430 Assembly Code for Benchmark 5:
C.18 TI MSP430 Assembly Code for Benchmark 6:

Recursive Factorial 101
String Copy 102
Bubble Sort 103
Sensor Structure 104
Matrix Multiplication . . . 105
FIR 106

C.19 ARM Cortex-M3 Assembly Code for Benchmark 1: Recursive Factorial . 108

C.20 ARM Cortex-M3 Assembly Code for Benchmark 2: String Copy 109
C.21 ARM Cortex-M3 Assembly Code for Benchmark 3: Bubble Sort 109
C.22 ARM Cortex-M3 Assembly Code for Benchmark 4: Sensor Structure . . . 110
C.23 ARM Cortex-M3 Assembly Code for Benchmark 5: Matrix Multiplication 111
C.24 ARM Cortex-M3 Assembly Code for Benchmark 6: FIR 112

Xiv

Acknowledgements

First of all, I would like to express my gratitude to my supervisors, Ad van de Goor
and Said Hamdioui for giving me a chance to work under their kind supervision. Special
thanks to Ad van de Goor for his valuable guidance and precious time, throughout
this work. He has always come down at my level and helped me to understand the
architecture related concepts. It is really an honor for me to work with a member of
PDP-11 architecture team.

I would also like to thank a number of people in the CE group for their help and
support. Thanks to Georgi Kuzmanov, Nadeem and Fakhar for their useful discussions.
Roel for allowing me to use his QUIPU profiler and providing me a quick start for its
modifications. Anca Molnos for providing me EEMBC benchmarks. Thanks to Max
Ferger (from ACE BYV) for giving me a chance to attend the CoSy training. Laiq, Faisal,
Mottagiallah for proof reading parts of my thesis and their friendly support throughout
my MSc studies.

Among my friends at TU Delft, I would like to thank Di and Wu, for their wonderful
company thought my stay here at Delft. I would also like to thank Husnul Amin,
Mehfooz, Hamayun and Seyab for their help in finding a wonderful accommodation for
me and for their help in setting it up.

Last but not least, I would like to thank my family, especially, my parents for their love
and support throughout my good and bad times, and for making me who I am. Sincere
thanks to my wife, for her care, patience and encouragement throughout my MSc studies
and especially during my thesis work. She helped me a lot by taking good care of home
and kid, and sparing me completely for my studies.

Imran Ashraf
Delft, The Netherlands
September 8, 2011

XV

xvi

CHAPTER 1. INTRODUCTION

Introduction

This chapter provides an introduction to the work presented in this thesis. Section 1.1
highlights some the applications of microcontroller with some statistics from an industry
research for the year 2010. Section 1.2 presents the motivation behind this thesis work.
Section 1.3 lists the main contributions of this thesis. Section 1.4 outlines the remaining
content of this thesis.

1.1 Introduction

One of the important aspects of modern electronic technology is embedded systems based
on microcontrollers. According to the Microchip ISA Vision Summit 2011 [17], 10 billion
microcontroller units are produced per year for embedded applications as compared to
400 million units per year for general purpose microprocessor based applications. This
growth in microcontroller industry is derived by the huge application domains where they
can be used. Figure 1.1 provides a brief list of applications which use microcontrollers.
Among other applications, consumer application alone have utilized about 3.39 billion
microcontrollers in the year 2010, as can be seen from Figure 1.2.

) Office
Consumer Automotive Automation Telecom Industrial
High definition TV cDI Computer mouse Cellular Power Inverter
Stereo receiver Body Control Laptop trackball telephone Motor control
DVD player Infotainment Computer Cordless Compressor
. keyboard telephone Th
Universal remotes Keyless entry ermostat

Cable TV converter

Radar detector

Handheld scanner

Feature phone

Postage meter

. Answering .

i i Laser printer . Utility meter
Video game systems iru#;e c:nm:(l. interface board machine Reboris
Cameras nti-lock braking Wireless LANs Pay phone o oyl
Garage opener‘ S?eedometer Printer cartridges Pager
Carbon Monoxide Climate control . Modem Gas pump

detect X Hi-res scanner

etector Security System Caller ID Smoke detector

Microwave oven Bar code reader)

Active suspension i K Line cards Credit card reader
Smoke detector Disk drive ——

Fuel pump control .. Hands-free Kit Access verification
Water filters Tape back-up unit Hands-iree kits

Fuel injection Long distance and control
Cordless tools US bus hubs g o

Air bag sensor . service router -19hting sensors
Vacuum cleaner Facsimile and control

Power seats machine Power Amp

Electric blanket

Compass CD/DVD writer Ballast control

Figure 1.1: Various Microcontroller Applications

The vast diversity of the microcontroller applications, demands a variety of microcon-
troller architectures satisfying the needs of these application domains. Most of these
devices are aimed at small size and low power consumption, for instance, hand held
devices such as cell phones, digital watches, pagers etc. Figure 1.3 provides the statistics
of the annual cellular handset sales. It can be seen from these statistics that about 1.5
billion cellular phone units have been sold in the year 2010.

(©Ad J. van de Goor, Gouda, The Netherlands, 2011
The architecture described in this thesis is the Intellectual Property(IP) of Prof. Dr. Ad J. van de Goor, Gouda,
The Netherlands. He, and only he, owns the Copyright to this material, which is considered confidential.

CHAPTER 1. INTRODUCTION

2050 _Million Units/Year

1850 -

1650 + 1552
1450 |

1250 -+

1465
380

1060 -

850
650

450

250

00 T T T T T T T
1998 1989 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
Figure 1.2: Microcontrollers in Consumer Figure 1.3: Annual Cellular Handset Sales

Applications [17] [17]

Memory and power efficiency can be achieved in several ways at different design levels.
This thesis discusses the details of an embedded microcontroller in which memory and
power efficiency is achieved at the architecture level.

1.2

Motivation

Key points which motivated the design of this memory and power efficient microcontroller
architecture are:

1.3

Embedded microcontrollers are found inside another system where their smaller
size is important. They often have on-board SRAM for data storage and
ROM/Flash for program storage. Memory occupies a substantial area on the chip.
This property demands a memory-efficient architecture, because small savings of
the on the on-chip program memory area quickly offsets the gates required for
extra processor functionality, reducing the size and cost of the microcontroller.
Power consumption is an important criteria in the design of microcontrollers, par-
ticularly for hand held devices running on batteries. In some cases, replacing the
batteries is very costly, for instance, in case of underground water meters and heart
pace makers. So these devices have to be power efficient.

Because of power aspects, especially for hand-held devices, the clock frequencies
used are not very high, so that the instruction decoding time is less critical. This
means that for these devices, design choices can be made in favor of power efficiency
as compared to clock speed.

In applications using a matrix of processors (as in multi-core architectures), each
with its own program memory, the program memory and power efficiencies are a
major design goal.

The memory efficiency of the instruction set also implies power efficiency, which
was the key motivation behind this architecture.

Main Thesis Contributions

This thesis makes the following main contributions:

1.

Provides the instruction set architecture of a memory and power efficient embedded
microcontroller

1.4. OUTLINE OF THESIS 3

2. Provides the static profiling statistics to fine tune the architecture for memory and
power efficiency
3. Provides the details of the software tool chain including:
(a) An assembler to translate the assembly programs into machine code
(b) An interpreter to model the architecture to simulate the execution of machine
code
4. Provides the details of performance evaluation of this architecture
5. Provides the static and dynamic results of performance comparison with the three
well known embedded microcontrollers

1.4 Outline of Thesis

An outline of this thesis is presented here to give an overview of the whole thesis.

Chapter 2 presents an overview of microcontroller architectures. A classification of mi-
crocontroller architecture based on several criteria is presented. Three well know mi-
crocontroller architectures are discussed in detail, which we have used for performance
comparison.

Chapter 3 discusses the static profiling. The statistics of high level language constructs
such as statements, operations, constants are are provided to show their frequency dis-
tributions in four C language benchmark programs.

Chapter 4 provides the details of MePoEfAr architecture. It starts with overall archi-
tecture properties. Issues, like type of architecture, bit and byte numbering, data types,
instruction classification and register sets are discussed. Global architecture issues such
as layout of the program status word and Memory Map are provided. Various instruction
formats in MePoEfAr architecture with examples are provided. Furthermore, operation
sets supported by these instruction formats are also discussed with the a description
on how these operations affect the condition codes. A brief description of exceptional
conditions like traps and interrupt vectors are provided followed by a discussion of ex-
tension of Program and Data Memory. The summary of encoding cost and feasibility
of MePoEfAr architecture are provided to show the space for future extension in the
architecture.

Chapter 5 gives the implementation details of MePoEfAr assembler. It covers the details
of the intermediate steps involved to translate the assembly program to machine code.
Instruction bit assignments are provided to showing the bit patterns used to represent
assembly instructions.

Chapter 6 discusses the MePoEfAr interpreter which simulates the MePoEfAr micro-
controller. It discusses the two main parts of MePoEfAr interpreter. First part which
loads the machine code to memory and performs some book keeping for debugging in-
formation. Second part is the microcontroller model which fetches the instructions from
memory, decodes and executes them.

Chapter 7 covers the assembler level benchmarking details, which we performed to eval-
uate the performance of MePoEfAr architecture. Furthermore, it provides the results of
static and dynamic comparison of performance with three well known microcontrollers.

4 CHAPTER 1. INTRODUCTION

Chapter 8 provides the conclusions and recommendations for future work. This chapter
is followed by the bibliography and appendices. The scanner and parser generator codes
for MePoEfAr assembler are provided in Appendix A and Appendix B respectively.
Appendix C provides the assembly codes of the benchmark programs we have used for
performance comparison. Details of these calculations are provided in Appendix D.

Overview of Microcontroller
Architectures

In this chapter an overview of microcontroller architectures is presented. Microcontroller
architectures can be classified based on a number of factors such as the architectural style,
memory interfaces, word-size and operand specification. Section 2.1 provides the clas-
sification of microcontroller architectures based on these criteria. A brief description of
three example architectures is given in Section 2.2. Properties of an ideal microcontroller
are discussed in Section 2.3. Finally, Section 2.4 summarizes this chapter.

2.1 Classification of Microcontroller Architectures

Large number of microcontrollers are designed to fulfill the requirements for their diverse
application area [19]. These microcontrollers can be classified based on various criteria.
Figure 2.1 provides an overview of a classification of these microcontrollers based on
architectural aspects. The details of each category in this classification is provided one

by one in sub-sections.
—— » RISC
Architecture
Style
——» CIsSC
E—
Neumann
| Memory | | H d
Interfaces arvar
Modified
Harvard

e
Word Size |+ p| 16-bit
—————p 32-bit
Single
Operand
Operand o Two
Specification ”| Operand
Three
Operand

Figure 2.1: A Classification of Microcontroller Architectures

A

Miccrocontroller
Architecture

A 4

A

6

CHAPTER 2. OVERVIEW OF MICROCONTROLLER ARCHITECTURES

2.1.1

Classification Based on Architectural Style

Based on the architectural style, microcontrollers can be classified into simple and fixed
size instructions or complex variable length instructions as described below:

Reduced Instruction Set Computer (RISC) style architectures have simple in-

structions [31]. Most of the instructions in these architectures execute in a single
cycle, as these instructions involve register to register operations. Data fetch from
the memory is performed only with Load and Store instructions with simple ad-
dressing modes. This is the reason they are also known as Load-Store architectures.
From the performance point of view, in the design of RISC architectures trade-offs
are made in favor of a lower Cycles Per Instruction (CPI), at the expense of in-
creased code size. The reason for the increased code size is that the complexity of
the system is shifted from hardware to software as most of the high level language
support is provided in software [30]. So more number of assembly instructions are
required to do some HLL operation, resulting in the increased code size. Examples
of microcontrollers based on RISC architecture are:

e ARM Cortex-M3 series microcontrollers
Atmel AVR AT90S851
PIC microcontrollers by Microchip e.g. PIC16F84
MSP430 Family by Texas Instruments

Complex Instruction Set Computer (CISC) architecture style is characterized by

2.1.2

having a large number of instructions, with most of the instructions requiring a
number of cycles for execution. Instructions are variable length instruction. CISC
architecture supports register to register, register to memory and memory to mem-
ory operand specification in instructions. Normally there is a variety of addressing
modes available in these architectures. The advantage of the CISC architecture is
that most of the instructions are powerful, allowing the programmer/compiler to
use one instruction in place of many simpler instructions, resulting in a reduced
code size. Examples of microcontrollers based on CISC architecture are:

Intel 8051, 8052 and 8096 family

Motrola 68000 family (designed and marketed by FreeScale Semiconductor)
M16C/60 and H8SX cores by Renesas Electronics

TLSC 870 C1, TLCS 900 L1, TLCS 900 H1 core families by Thoshiba

Classification Based on Memory Interfaces

Microcontroller architectures can either have a single memory for instructions and data
or physically separate memories to hold program and data. Based on these memory
interfaces, architectures are classified as:

Von Neumann architectures store both program and data in the common main

memory [33]. This means that either instruction is read from memory or data is
read/written from/to this memory. The Von-Neumann architectures main advan-
tage is the simplification of the microcontroller design because of a single memory
access. The disadvantage is because of the same bus system, both instruction

2.1. CLASSIFICATION OF MICROCONTROLLER ARCHITECTURES 7

cycle and data cycle cannot occur at the same time. This is known as Von Neu-
mann Bottleneck as pointed out by Backus Naur [18]. Examples of microcontroller
architectures based on Von Neumann style are:

e Texas Instrument MSP430

e Motorola 68HC11

Harvard architectures are characterized by having two physically separate memories

and pathways for program and data. Instructions can be stored in read-only mem-
ory and data in read-write memory. This means that attributes of instruction and
data memory can be different. For instance, they may have different word width,
access timings, implementation technology or memory address structure. Harvard
architectures have distinct instruction space and data space. As instruction fetches
and data access do not contend for a single memory pathway, a Harvard architec-
ture microcontroller can thus be faster for a given circuit complexity. Examples of
Harvard microcontroller architectures are:

e Renesas RX600 Series microcontrollers

e Microchip PIC microcontrollers

Modified Harvard architectures have the characteristic that they have unified in-

struction and data space. They have separate path ways for instructions and data
which is implemented by instruction and data caches. Examples of modified Har-
vard microcontroller architectures are:

e Atmel AVR AT90S851 microcontroller

e ARM Cortex M3 Series

2.1.3 Classification Based on Word Size

Although there are 4-bit (COP400 by National Semiconductor) and 24-bit (PIC24 by
Microchip) microcontroller architectures as well but the most common word sizes are 8-,
16- and 32-bit.

8-bit Architecture performs arithmetic and logical operations on 8-bits. Examples of
8-bit microcontrollers are:
e Intel 8051 family
e Motorola MC68HC11 family
e Atmel AVR AT90S851
16-bit Architecture performs arithmetic and logical operations on 16-bits. Examples
of 16-bit microcontrollers are:
e MSP430 Family by Texas Instruments
e S12 and S12X families by Freescale
e Motorola MC68HC12 and MC68332 families
32-bit Architecture performs arithmetic and logical operations on 32-bits. Examples
of 32-bit microcontrollers are:
e ARM Cortex-M based family
e Atmel AVR32
e Microchip PIC32 based on MIPSM4K architecture

8 CHAPTER 2. OVERVIEW OF MICROCONTROLLER ARCHITECTURES

2.1.4 Classification Based on Operand Specification

Operands in a single instruction vary from a single operand to multiple operands. The
work presented in [24] provides taxonomy of architectures based on operands. The most
common ! architectures based on number of operands are:

1-Operand Architectures specify one operand explicitly in the instruction and the

other operand is the implicit accumulator operand. This accumulator register is
a special register to accumulate the temporary results of computation. In order
to perform an operations, instructions are required to move the operands to accu-
mulator and move the result back to where it is required. Intel 8051 architecture
is an example of l-operand architectures. In these architecture, A = B + C is
implemented as:

load B

add C

store A

2-Operand Architectures: have two operands explicitly specified in the instruction.
One of the operand serves as both source and destination. The statement A = B
+ C in these architectures is implemented as:

load rl, B
load r2, C
add rl1, r2
store rl, A

In these examples ri are general purpose registers. Examples of 2-operand micro-
controller architectures are:
e Atmel AVR AT90S851
e Texas Instrument MSP 430
e Microcontrollers based on ARM Thumb ? architecture
3-Operand Architectures: have an explicit mention of one destination and two source
operands in the instructions. So A = B + C will be implemented as:

load r1, B
load r2, C
add r3, rl, r2
store r3, A

Specification of three operands in an instruction requires relatively large encoding
space. Most of the 3-operand architectures are 32-bit or higher architectures.
Examples of 3-operand architectures are:

e Atmel AVR32 architecture

e Microcontrollers based on ARM Architectures

'0-operand architectures also known as stack-based architectures, have their operands implicitly on
stack. Java Virtual Machine is an example of stack based architecture. These architectures are not
common for microcontrollers.

2Thumb instructions are 16-bit instructions accommodating the specification of only two operands.

2.2. EXAMPLE ARCHITECTURES 9

2.2 Example Architectures

In this section, we provide the details of the three example architectures based on the
classification we have described in this chapter. These example architectures are later
used for performance comparison in assembler level benchmarking (Chapter 7). These
three microcontroller architectures are:

1. Atmel AVR AT90S851
2. TI MSP430G2231
3. ARM Cortex-M3 LPC1342

Table 2.1 provides an overview of this classification. For the sake of brevity in this table,
TI, ARM and AVR refers to TI MSP430G2231, ARM Cortex-M3 LPC1342 and AVR
AT90S851 microcontrollers respectively.

Table 2.1: Classification of Three Microcontroller Architectures Based on the
Categories Described in This Chapter

Classification Criteria
Name Architectural | Word Memory Operand
Style Size Interface Specification
AVR RISC 8 Modif. Harvard 2-operand
TI RISC 16 von Neumann 2-operand
ARM RISC 32 Modif. Harvard 3-operand

2.2.1 Atmel AVR AT90S851

AT90S8515 is a low power, CMOS, 8-bit microcontroller based on the AVR RISC archi-
tecture [15] developed by Atmel [14]. It utilizes modified Harvard architecture concept.
Although it is an 8-bit microcontroller, each instruction takes one or two 16-bit words.
It has 32 single-byte general purpose registers with single clock cycle access time. It
supports five addressing modes.

2.2.2 TI MSP430G2231

Second candidate is MSP430G2231 [3], a 16-bit RISC architecture developed by Texas
Instruments [2]. It has been designed for low cost and low power embedded application.
It uses von-Neumann architecture with a single instructions and data memory space.
Instructions generally take one cycle per word fetched or stored. It has 27 core instruction
and 24 emulated instructions. It supports seven addressing modes for source operands
and four addressing modes for the specification of destination operands in instructions.
It has the following 16-bit registers:

RO: Program counter

R1: Stack pointer

R2: Status register (only in register addressing with word data type)

R2 and R3: are used as constant generators for the most frequent constants (0,1,2,4,8)

10 CHAPTER 2. OVERVIEW OF MICROCONTROLLER ARCHITECTURES

R4-R15: General purpose registers

The user guide found here [4] provide further details of MSP430 microcontroller archi-
tecture.

2.2.3 ARM LPC1342 Cortex-M3

Third candidate is the LPC1342 [13] developed by NXP (founded by Phillips) [12]; a
Cortex-M3 based low power 32-bit RISC mlicrocontroller. ARM is a fab-less company
which designs these architectures as Intellectual Property (IP) modules and sells licenses
to other companies which actually manufacture the chips, in the case of LPC1342, the
manufacturing company is NXP. There are various architectures provided by ARM tar-
geting various application areas, such as:

e ARM Cortex-A series targets the general purpose processor cores

e ARM Cortex-R series is a family of processors for real time systems

e ARM Cortex-M series processors are designed for low-power, memory efficient
embedded applications

Among this M-series processors, Cortex-M3 processors are especially designed for embed-
ded microcontrollers. It is based on modified Harvard architecture concept. It supports
Thumb-2 instruction set to reduce the instruction memory requirements by including
the support for 16-bit instructions. It has following general purpose and special purpose
registers:

RO-R12: General purpose registers

R13: Stack pointer

R14: Link registers used by subroutines for return address
R15: Program counter

xPSR Program Status Register

Registers RO-R7 are accessible by all instructions, whereas, registers R8-R12 are only ac-
cessible by 32-bit instructions and 16-bit instructions cannot access them. The technical
reference manual of ARM Cortex-M3 architecture (as well as other ARM architectures)
can be found here [5] for further details.

2.3 Ideal Properties of a Microcontroller Architecture

Ideal properties of a microcontroller architecture refer to the properties which are not
realizable in a single architecture. These properties are inter-related such that making a
design trade-off to improve certain property may adversely affect the other property (ies).
For instance, making a choice in favor of simple fixed width instructions favors higher
clock speed at which these designs can be run. The down side of this choice is the
increased program footprint. Ideal properties of microcontrollers are briefly discussed
below.

2.4. SUMMARY 11

2.3.1 Program Memory Size

Microcontrollers are normally embedded inside other systems. Size of microcontroller is
important so that it can fit in the system. Program memory occupies a major share in
the chip area. So, ideally, program memory size should be negligible in microcontrollers.
In other words, architecture should be memory efficient such that program size for a
given application should ideally be negligible.

2.3.2 Power Consumption

Power consumption is an important criteria in the design of microcontrollers, particularly
for hand held devices running on batteries. In some cases, replacing the batteries is very
costly, for instance, in the case of underground water meters and heart pace makers.
Ideal microcontrollers should consume negligible amount of power.

2.3.3 Speed

Due to the diverse application areas where microcontroller can be used, the demand on
processing speed is also diverse. There are application which require high processing
speed, such as streaming applications. Ideally, the processing speed should be very high.

2.3.4 Modularity

Ideally, microcontroller architecture should be highly modular, such that any type of
modification in one aspect should not bring change to the rest of the architecture. The
modularity of an architecture helps in development and testing of the individual sub-
systems, which results in reduced time to market. During the life of the architecture,
modularity assists in evolution of the architecture, resulting in variants of the architecture
satisfying certain application requirements. This modularity can further be classified as:

Modularity w.r.t. instruction and data address range: Architecture should be
modular such that at any stage in the life of microcontroller, it is possible to extend
the instruction address space without impacting data memory address space.

Modularity w.r.t. data types and no of registers in different data types: In
this respect, microcontroller architecture should be such that a variety of data
types should be supported without modifying the architecture. Furthermore, It
should be possible to change the number of registers in a particular data type
depending upon the nature of an application.

2.4 Summary

Demand of microcontroller based embedded systems is increasing every year. This is the
result of a large number of applications using microcontroller as embedded processing
units. The diversity of applications has resulted in a large variety of microcontroller
architectures. In this chapter we provided an overview of microcontroller architectures.

12 CHAPTER 2. OVERVIEW OF MICROCONTROLLER ARCHITECTURES

Microcontroller architectures are based on RISC or CISC philosophy depending upon the
choice to be high processing requirement or smaller code size. These architectures are
4-bit to 64-bit architectures, while 8, 16 and 32 to be the most common word size found
now-a-days. Architectures are found to be having single storage and single address space
for program and data favoring the Von-Neumann style. Harvard architectures, having
distinct program and data memory, or modified Harvard architectures, having single
address space but separate buses for instructions and data are commonly used in micro-
controllers. Very few architectures are single operand (accumulator based) architectures.
2-operand microcontroller architectures are commonly used by 16-bit architectures. Be-
cause of the high encoding space requirement, 3-operand architectures are mostly 32-bit
architectures. This classification is further summarized for three microcontroller archi-
tectures which we have used in benchmark for performance comparison.

Ideally, microcontroller architecture should be such that program memory size should
be negligible, processing speed should be very high at the cost of negligible power con-
sumption. Ideal microcontroller architecture should be modular such that variants can
easily be produced and evolution of architecture should be possible without modifying
the rest of the architecture.

Before diving into the details of MePoEfAr microcontroller architecture, statistics of high
level language constructs are presented in the next chapter.

Statistics of C Language

In the previous chapter, an overview of microcontroller architecture was discussed. Be-
fore diving into the details of our architecture in the next chapter, frequency distributions
of various C language constructs are presented in this chapter. An important rule for
the design of a microcontroller architecture is to efficiently implement the most fre-
quent cases. In order to know the frequency of different constructs in the language,
four applications namely Coremark and AutoBench (EEMBC benchmarks), assembler
and interpreter of our architecture have been profiled. The results of different types of
statements, operations and operands are tabulated. These results are then utilized in
the design of the architecture presented in next chapter.

This chapter opens with the section on list of language constructs to give an overview of
what we are going to analyze in this chapter. Section 3.2 briefly discusses the profiling,
developed profiler and application programs used for profiling. Section 3.3 provides the
profiling results with analysis. Section 3.4 concludes the chapter.

3.1 List of Language Constructs

This section provides a list of C' language constructs for which the frequency distributions
are presented. The results are divided in four groups; namely, statements, operations,
operands and miscellaneous measurements. The detailed list of these constructs is given
below:

1. Statements
(a) Assignments
i. Assignment Types based on LHS
A. Variable
B. Array Element
C. Structure/Union Field
ii. Assignment Types based on complexity of RHS expression

A. A = Constant

B. A = A op Constant

C. A=8B

D. A = B op Constant

E. A=AopB
F.A=BopC

G. Others (with complex RHS)

(b) if statements
i. If-only statements
ii. If-else statements

13

14

CHAPTER 3. STATISTICS OF C LANGUAGE

(¢

N~ N T~
= D

)
)
)
)
)
)

—~

g
h
(i)

switch statements
break statements
continue statements
goto statements
Loops

Function calls
return statements

2. Operations

(a) Arithmetic operations
i+
ii. —

TN~
=09 e
Na N

iii.
1v.

*

/

v. %
Address Arithmetic operations
i+
ii. —
Relational operations

i ==

ii. 1=

iii. <

iv. >

v. <=

vi.
Bitwise operations

i. and

ii. or

iii. xor

iv. not
Shift operations

i. Shift left

ii. Shift right

iii. Arithmetic Shift right
Complement operations
Absolute operations
Type conversions

i. 8to 16

il.
iii.
v.

V.
vi.

vii.
viii.
IX.

8 to 32
8 to 64
16 to 8
16 to 32
16 to 64
32 to 8
32 to 16
32 to 64

3.2. PROFILING

15

X.
xi.
xii.
xiil.
Xiv.
XV.
XVi.
XVvil.

64 to 8

64 to 16

64 to 32

integer to address
address to integer
integer to real
real to integer
others

3. Operands
(a) Constants

i.
il.
iii.
v.
V.
vi.
vii.

-1,0, 1,2, ..., 14, 15
16-31

32-63

64-127

128-255

256-65535

others

(b) Variable accesses
i. 8-bit variable access
ii. 16-bit variable access
iii. 32-bit variable access
iv. 64-bit variable access
(¢) Array accesses
(d) Structure/union Field accesses
(e) Function calls
4. Miscellaneous
(
(
(
(

a) Average number of function parameters

b) Average number of function locals

c) Average number of globals used in a function

d) Frequency Distribution of Parameters Based on Data Types
(e) Frequency Distribution of Locals Based on Data Types

3.2 Profiling

Profiling is the program analysis carried out for a number of purposes, for instance, to
measure different metrics. Operation frequencies, operand frequencies, function calls are
a few examples of such metrics. This analysis can be static or dynamic. Static analysis is
performed on the application without actually running it. On the other hand, dynamic
profiler analyzes the program during execution. From program memory point of view,
results of static profiling are important, which we have provided in this chapter.

3.2.1 Profiler

Profilers are the software tools which are used to automate profiling; in other words, to
create the profile of the application program. We have modified the Quipu [20] static

16 CHAPTER 3. STATISTICS OF C LANGUAGE

profiler to obtain all the results as listed in Section 3.1. Quipu is a part of Q? profiling
framework which is developed in the context of Delft WorkBench (DWB) [21]. This tool
is developed as an engine in the CoSy compiler system [6] developed by ACE Associated
Compiler Experts.

3.2.2 Profiler Benchmark Applications

An important step in statistical analysis of various language constructs is the selection
of the applications to be profiled. We have profiled following four applications:

1. Coremark
2. AutoBench
3. Assembler
4. Interpreter

Table 3.1 provides information about the number of lines of code and number of functions
in selected four applications. Blank lines and comments are also counted towards lines
of code in these numbers.

Table 3.1: Application Programs Used for Profiling

S.No. | Application | Lines of Code | No. of Functions
1 Coremark 892 27
2 AutoBench 1986 26
3 Assembler 8194 104
4 Interpreter 5597 214

A brief description of these applications is given below:

Coremark: Coremark [7] is an Embedded Microprocessor Benchmark Consortium
(EEMBC) benchmarks [10]. Unlike synthetic benchmarks, EEMBC benchmarks
are real application programs. Coremark is freely available from EEMBC website
and is used for a quick comparison of embedded processor and microcontroller core
functionality. Coremark suit contains three applications as listed below:

1. core_matriz performs common matrix operations like additions, multiplica-
tions on integer and floating point data.

2. core_state determines if an input stream contains valid numbers.

3. core_list performs list processing as searching and sorting the linked list.

AutoBench: AutoBench [9] is another EEMBC benchmark suite. AutoBench is a suite
of benchmarks that allow users to predict the performance of microprocessors and
microcontrollers in automotive, industrial, and general-purpose applications. It is
not a free benchmark, but Computer Engineering Lab has the license to use it. It
involves matrix operations, bit manipulation, arithmetic operations, table look up
and singal processing like filtering.

Assembler: The assembler application is the assembler developed for our architecture.
It has the lexical analysis code generated by Flex (a general purpose lexical analyzer
generator) [1], parser code generated by Bison (parser generator) [11], code for
tree traversals for analysis, symbol table generation. At the end, machine code is

3.3. FREQUENCY DISTRIBUTION OF C LANGUAGE CONSTRUCTS 17

generated for our architecture which involves bitwise operations. Further details
are provided in Chapter 5.

Interpreter: This application is the interpreter developed for our architecture. It reads
the machine code in, decodes the instructions and executes it to produce the results
based on the semantics of the instruction. Further details of this interpreter can
be seen in Chapter 6.

3.3 Frequency Distribution of C Language Constructs

Frequency distributions of different C' language constructs presented in the list in Section
3.1 obtained by our profiler for selected applications are presented in this section.

3.3.1 Frequency Distribution of Statements

Frequency distribution of various C statements is given in Table 3.2 for the selected
four application programs. It can be seen from this table that assignment statements
constitute the bulk of statements with a frequency of 58.96%. The second most frequent
statement is the if statement with an average of 19.73%. Similarly, statistics for other
statements are also tabulated. Frequency of break statement is about 9% which majorly
comes from the cases in switch statements, especially in assembler and interpreter.

Table 3.2: Frequency Distribution of Statements

Percentage
Statement
Coremark AutoBench Assembler Interpreter Average

Assignments 62.69 67.96 53.99 51.18 58.96
if else 18.98 16.87 27.13 15.94 19.73
switch 0.64 0 1.4 3.66 1.43
goto 0 0 1.21 0 0.3
Loops 8.1 9.29 2.18 2.37 5.49
Function Calls 1.92 1.7 1.04 1.07 1.43
return 3.84 3.56 2.58 4.15 3.53
break 3.84 0.62 10.37 21.62 9.11
continue 0 0 0.1 0 0.03
Total 100 100 100 100 100

As assignment statements have the highest frequency of occurrence among the state-
ments, so let us see the details of assignment statements. Assignment statements can
have a simple variable, an array element or a structure/union field on Left Hand Side
(LHS). Frequency distribution of assignment statements based on LHS expression is
given in Table 3.3. As can be seen from the results that assignments with a variable on
left hand side are the most frequent with an average frequency of about 73%.

Table 3.3: Frequency Distribution of Assignment Statements Based on LHS

Percentage
Assignment Type
Coremark AutoBench Assembler Interpreter Average
variable assignments 83.46 56.35 56.62 96.25 73.17
array assignments 1.5 17.55 1.73 2.71 5.87
struct/union assignments 15.04 26.1 41.65 1.05 20.96
Total 100 100 100 100 100

18 CHAPTER 3. STATISTICS OF C LANGUAGE

Assignments statements can also be classified based on the complexity of expression on
Right Hand Side(RHS). Frequency distribution of C' assignment statements based on
complexity of the expression on RHS is given in Table 3.4. Results show that most of
the assignment statements have simple RHS expression, that is a constant or a simple
variable. These operations correspond to moves. On average, 33% of the assignments
have a constant on RHS. Expressions with a variable on RHS make up about 22%.

Table 3.4: Distribution of Assignments Based on Complexity of RHS Expression

Assignment Type Percentage
Coremark AutoBench Assembler Interpreter Average

A = Const 28.46 28.61 45.62 29.42 33.03
A =B 31.09 20.57 27.01 8 21.67
A = A op Const 13.11 11.35 8.33 14.93 11.93
A = B op Const 0.37 0.24 1.23 1.33 0.79
A=AopB 0.37 0 0.22 2.04 0.66
A=BopC 0.37 0 0.58 3.47 1.11
others (different complexity) 26.22 39.24 17.02 40.8 30.82

Total 100 100 100 100 100

The six simple cases listed in the table constitute 70% on average. The other expressions
with different complexity make up rest of 30%. The RHS expressions in these cases
have more than 2 operands on RHS. These operands can be constants, variables, array
accesses, structure or union field or return value from a function, involved in various
operations.

3.3.2 Operations

In order to know the importance of different operations, frequency distribution of dif-
ferent operations in selected programs is given in Table 3.5. This table summarizes the
frequency distribution of all operations for integer and floating point numbers. Statis-
tics from this table show that arithmetic operations are the most frequent operations,
wherein, addition and multiplication have a frequency of 24% and 14% respectively.

Address arithmetic refers to arithmetic operations carried out to compute the addresses
of data, which corresponds to C pointer arithmetic. These operations have a frequency
of about 10% in total, where most of the operations are additions.

Relational operations on the average, make up about 22% from the whole operation
space. Among relational operations, equality (==) , inequality (! =) and less than (<)
operations are frequent operations. Equality and inequality operations are frequent be-
cause they are used as test conditions in selection statements. Less than (<) comparison
is mostly used in loop statements, where a loop counter is initialized and incremented
till this counter is less than certain count value. In bitwise operations, and (&) operation
has highest frequency of about (3.25%), which is used in bit masking.

Data type conversion takes place when the operations involve operands of different data
types. For instance, in an operation involving integer and floating point data, type
conversion takes place. This type conversion can be explicit (type casting) or implicit
(operations involving different data types) in C language. Conversion operations have
an average frequency of 14.8%. Detailed frequency distribution for different conversion

3.3. FREQUENCY DISTRIBUTION OF C LANGUAGE CONSTRUCTS 19

Table 3.5: Frequency Distribution of Operations

Operation Type Percentage
Coremark AutoBench Assembler Interpreter Average
+ 15.82 16.37 5.75 10.35 12.07
- 1.88 3.74 2.82 3.72 3.04
Arithmetic * 12.62 30.89 18.31 40.09 8.98 18.07 3.54 21.78 10.86 27.71
/ 0.38 1.53 0.42 2.54 1.22
% 0.19 0.14 0.1 1.63 0.52
Address + 13.56 9.85 14.76 0.09 9.57
Arithmetic - 0 1996 0 A ! 1 0 R oy
== 4.14 4.85 30.61 20.62 15.06
! = 8.29 4.99 11.11 13.26 9.41
< 10.55 13.18 5.29 13.17 10.55
Relational 27.31 27.18 53.13 53.05 40.17
> 2.07 3.19 1.32 3.45 2.51
<= 0.94 0.14 1.88 0.73 0.92
>= 1.32 0.83 2.92 1.82 1.72
<< 0.75 0 0.03 2.27 0.76
Shift >> 0 3.01 0 4.72 0 0.1 0 4.36 0 3.05
Arith >> 2.26 4.72 0.07 2.09 2.29
and 5.46 0.14 1.04 6.36 3.25
or 1.69 0 0 2.18 0.97
Bitwise 7.9 0.14 1.04 9.08 4.54
not 0 0 0 0.18 0.05
xor 0.75 0 0 0.36 0.28
Complement 0.19 0.19 0 0 0.24 0.24 0 0 0.11 0.11
Absolute 0 0 0 0 0 0 0 0 0 0
8 to 16 0.38 0.55 0.28 0.54 0.44
8 to 32 0.19 1.39 3.31 1.73 1.66
8 to 64 0 0 0 0 0
16 to 8 0.19 0 0 0.82 0.25
16 to 32 2.82 3.61 0.52 2.18 2.28
16 to 64 0 0 0 0 0
32 to 8 0 0 0.24 5.45 1.42
Type 32 to 16 13.18 10.54 7.24 0.82 7.95
17.14 18.03 12.39 11.63 14.8
Conversion 32 to 64 0 0 0 0 0
64 to 8 0 0 0 0 0
64 to 16 0 0 0 0 0
64 to 32 0 0 0 0 0
int to addr 0.38 1.94 0.8 0.09 0.8
add to int 0 0 0 0 0
int to float 0 0 0 0 0
float to int 0 0 0 0 0
Total 100 100 100 100 100 100 100 100 100 100

operations are also provided. Integer to address conversions takes place when an integer is
operated with a pointer (pointing to some data). It can be seen from the statistics that
integer to address conversion occurs frequently, whereas address to integer conversion
never occurred. This is because of that fact that computed addresses are saved in
pointers and not transferred to integer variables.

Among integer data type conversion operations, 32- to 16-bit and 16- to 32-bit conver-
sions are the most frequent. An operand is promoted to higher size when it is operated
with an operand of higher size, for instance 16-bit variable will be converted to 32-bit
representation when it will be added to 32-bit data. Conversion of data from higher size

20 CHAPTER 3. STATISTICS OF C LANGUAGE

to lower size takes place when it is explicit in the language or when a statement involves
assignment of data of larger size than the destination. As an example, addition of two
32-bit variables will result in 32-bit result, but when this 32-bit result is assigned to a
16-bit variable, 32-bit to 16-bit conversion will take place.

Although 8-bit variables are accessed but these are not frequently used in operations
involving 16 and 32 bit operands. So, type promotion does not take place so frequently.
16- to 32-bit conversion is frequent because, these two data types are frequently used in
operations with each other. 32- to 16-bit conversion takes place, because 16-bit operands
are frequent (as can be seen from Table 3.13). So the assignments having 16-bit variables
cause these conversions.

Operations operate on data and the data can be of integer or floating point type. Table
3.6 provides the statistics of integer type of operations. Overall, 58% operations on
average are integer data type operations. On the other hand, frequency of floating point
operations is about 1%.

Table 3.6: Frequency Distribution of Integer Operations

Percentage
Operation Type
Coremark AutoBench Assembler Interpreter Average
+ 14.69 16.37 5.75 10.26 11.77
1.88 3.74 2.82 3.54 3
Arithmetic * 11.86 29 17.48 39.12 8.95 18.04 3.36 21.15 10.41 26.83
/ 0.38 1.39 0.42 2.36 1.14
% 0.19 0.14 0.1 1.63 0.52
== 3.2 2.64 17.06 12.08 8.75
! = 5.65 2.64 5.71 10.54 6.14
< 5.46 6.8 2.65 7.72 5.66
Relational 16.94 14.43 28.58 34.06 23.5
> 1.13 1.66 0.66 2.36 1.45
<= 0.56 0.14 1.04 0.45 0.55
>= 0.94 0.55 1.46 0.91 0.97
<< 0.75 0 0.03 2.27 0.76
Shift >> 0 3.01 0 4.72 0 0.1 0 4.36 0 3.05
Arith >> 2.26 4.72 0.07 2.09 2.29
and 5.46 0.14 1.04 6.36 3.25
or 1.69 0 0 2.18 0.97
Bitwise 7.9 0.14 1.04 9.08 4.54
not 0 0 0 0.18 0.05
xor 0.75 0 0 0.36 0.28
Complement 0 0 0 0 0.24 0.24 0 0 0.06 0.06
Absolute 0 0 0 0 0 0 0 0 0 0
Total 56.85 56.85 58.41 58.41 48 48 68.7 68.7 58 58

Table 3.7 provides the statistics of floating point operations. It can be seen that most of
the floating point operations are the arithmetic operations. Relational operations never
involved floating point data, whereas, complement operations still had an occurrence.

Statistics from the previous tables show that most of the operations (58%) involve integer
operands. Ineger operations are applied on different sizes of integers. In order to have
support for integers of different sizes or to make some trade-offs in design of architecture
, it is important to see the frequency distribution of integer type operations based on
size.

Frequency distribution of operations applied to 8-bit data type is given in Table 3.8. It

3.3. FREQUENCY DISTRIBUTION OF C LANGUAGE CONSTRUCTS

21

Table 3.7: Frequency Distribution of Floating Point Operations

Operation Type Percentage
Coremark AutoBench Assembler Interpreter Average
+ 1.13 0 0 0.09 0.31
- 0 0 0 0.18 0.05
Arithmetic * 0.75 1.88 0.83 0.97 0.03 0.03 0.18 0.63 0.45 0.88
/ 0 0.14 0 0.18 0.08
% 0 0 0 0 0
== 0 0 0 0 0
! = 0 0 0 0 0
< 0 0 0 0 0
Relational 0 0 0 0 0
> 0 0 0 0 0
<= 0 0 0 0 0
>= 0 0 0 0 0
Complement 0.19 0.19 0 0 0 0 0 0 0.05 0.05
Absolute 0 0 0 0 0 0 0 0 0 0
Total 2.07 2.07 0.97 0.97 0.03 0.03 0.63 0.63 0.94 0.93

can be seen that, about 10% of the operations are the operations on 8-bit data. Most of
the 8-bit operations are relational operations making up 5% on average. This is because,
8-bit data is the char data type in C, which is used for byte level processing. For instance,
in EEMBC core_state program, there are comparisons, if the character is a decimal point

(.), an e or E for floating point exponantial representation etc. Furthermore, this is the

reason that most of the relational operations are equality and inequality comparisons.

Table 3.8: Frequency Distribution of 8-bit Integer Operations

Percentage
Operation Type
Coremark AutoBench Assembler Interpreter Average
+ 0 3.61 0.07 0.54 1.06
- 0 0.55 0.1 0.18 0.21
Arithmetic * 0 0 3.74 7.9 0 0.17 0.73 1.99 1.12 2.52
/ 0 0 0 0.54 0.14
% 0 0 0 0 0
== 1.88 0 3.48 2.18 1.89
! 2.45 0.28 0.17 7.08 2.5
. < 0 0 0 1.09 0.27
Relational 4.71 0.42 3.86 10.98 4.99
> 0 0.14 0 0.54 0.17
<= 0.19 0 0.21 0.09 0.12
> 0.19 0 0 0 0.05
<< 0 0 0 0.09 0.02
Shift >> 0 0 0 4.16 0 0 0 0.36 0 1.13
Arith >> 0 4.16 0 0.27 1.11
and 0.19 0.14 0 0.82 0.29
or 0 0 0 0 0
Bitwise 0.19 0.14 0 1 0.33
not 0 0 0 0.18 0.05
xor 0 0 0 0 0
Complement 0 0 0 0 0 0 0 0 0 0
Absolute 0 0 0 0 0 0 0 0 0 0
Total 4.9 4.9 12.62 12.62 4.03 4.03 14.33 14.33 9 8.97

Table 3.9 provides the statistics of 16-bit integer operations. 16-bit operations have an

overall frequency of 8%, where arithmetic operations have the contribution (3.27%).

Frequency distribution of operations applied to 32-bit integers is given in Table 3.10. It

22 CHAPTER 3. STATISTICS OF C LANGUAGE

Table 3.9: Frequency Distribution of 16-bit Integer Operations

Operation Type Percentage
Coremark AutoBench Assembler Interpreter Average
+ 1.69 1.8 0.24 0.64 1.09
- 0.56 0.97 0.24 0.18 0.49
Arithmetic * 0.56 2.81 4.72 7.49 0 0.48 0.73 2.28 1.5 3.27
/ 0 0 0 0.73 0.18
% 0 0 0 0 0
== 0.38 0.42 0.03 1.36 0.55
= 0.56 0 0.14 0.73 0.36
< | 0.38 | 0.42 0 1.18 0.5
Relational 1.89 1.26 0.17 4.09 1.85
> 0.19 0 0 0.73 0.23
<= 0 0.14 0 0.09 0.06
>= 0.38 0.28 0 0 0.17
<< 0.56 0 0 0.45 0.25
Shift >> 0 2.44 0 0.28 0 0 0 1.09 0 0.95
Arith >> 1.88 0.28 0 0.64 0.7
and 3.77 0 0 1 1.19
or 1.13 0 0 0 0.28
Bitwise 5.28 0 0 1.18 1.62
not 0 0 0 0 0
xor 0.38 0 0 0.18 0.14
Complement 0 0 0 0 0 0 0 0 0 0
Absolute 0 0 0 0 0 0 0 0 0 0
Total 12.42 12.42 9.03 9.03 0.65 0.65 8.64 8.64 7.69 7.69

can be seen that, 41.62% of the operations involve 32-bit data. Arithmetic and relational
operations are the most frequent 32-bit operations with an average frequency of 21.04%
and 16.67%, respectively.

Table 3.10: Frequency Distribution of 32-bit Integer Operations

Operation Type Percentage
Coremark AutoBench Assembler Interpreter Average
+ 12.99 10.96 5.43 9.08 9.62
- 1.32 2.22 2.47 3.18 2.3
Arithmetic * 11.3 26.18 9.02 23.73 8.95 17.37 1.91 16.89 7.8 21.04
/ 0.38 1.39 0.42 1.09 0.82
% 0.19 0.14 0.1 1.63 0.52
== 0.94 2.22 13.54 8.54 6.31
= 2.64 2.36 5.4 2.72 3.28
< 5.08 6.38 2.65 5.45 4.89
Relational 10.36 12.77 24.55 18.98 16.67
> 0.94 1.53 0.66 1.09 1.06
<= 0.38 0 0.84 0.27 0.37
>= 0.38 0.28 1.46 0.91 0.76
<< 0.19 0 0.03 1.73 0.49
Shift >> 0 0.57 0 0.28 0 0.1 0 2.91 0 0.97
Arith >> 0.38 0.28 0.07 1.18 0.48
and 1.51 0 1.04 4.54 1.77
or 0.56 0 0 2.18 0.69
Bitwise 2.45 0 1.04 6.9 2.6
not 0 0 0 0 0
xor 0.38 0 0 0.18 0.14
Complement 0 0 0 1.32 0.24 0 0 0 0.06 0.33
Absolute 0 0 0 0 0 0 0 0 0 0
Total 39.56 39.56 36.78 38.1 43.3 43.06 45.68 45.68 41.36 41.61

3.3. FREQUENCY DISTRIBUTION OF C LANGUAGE CONSTRUCTS 23

3.3.3 Operands

Operations operate on operands and operands in C language can be of various types.
Frequency distribution of various operands in selected programs is given in the Table
3.11. It can be seen from these statistics that constants and simple variables occur most
frequently with an average frequency of about 32% and 44% respectively.

Table 3.11: Frequency Distribution of Operands

Operand Percentage
Coremark AutoBench Assembler Interpreter Average

Constants 25.52 33.57 31.36 37.21 31.92
Simple Variables 55.6 38.87 38.71 44.22 44.35
Array Access 1.01 8.77 2.24 1 3.26
Struct/union Field Access 8.89 10.92 18.3 4.38 10.62
Function Calls 3.25 5.44 7.07 12.72 7.12
Pointers 5.71 2.43 2.31 0.47 2.73
Total 100 100 100 100 100

Because of the high frequency of constants, their further analysis is performed. Frequency
distribution of different constants is given in the Table 3.12. It can be seen that small
constants are the most frequent ones. Among the 4-bit constants, 0, 1, 2, 4, 8 are the
most frequent. Constant 0 is frequent as it is used in initialization and comparison
operations. 1 is also used frequently in increment /decrement operations like i + 4, — — i
in loops. Overall, 4-bit constants have an accumulative frequency of about 87%.

Table 3.12: Frequency Distribution of Constants

Constant Coremark AutoBench Assembler Interpreter Average
) Cum. % Yo Cum. % % Cum. %) Cum. % % Cum. %

-1 0.11 0.11 0 0 0.95 0.95 1.41 1.41 0.62 0.62
0 18.44 18.55 16.63 16.63 18.61 19.56 30.06 31.47 20.94 21.56
1 21.75 40.3 33.69 50.32 18.58 38.14 19.71 51.18 23.43 44.99
2 2.13 42.43 4.8 55.12 8.18 46.32 7.26 58.44 5.59 50.58
3 3.78 46.21 3.94 59.06 7.62 53.94 10.66 69.1 6.5 57.08
4 13.24 59.45 8.96 68.02 13.29 67.23 4.97 74.07 10.12 67.2
5 2.13 61.58 1.39 69.41 1 68.23 3.32 77.39 1.96 69.16
6 1.18 62.76 0.64 70.05 1.3 69.53 4.97 82.36 2.02 71.18
7 2.36 65.12 0.96 71.01 1.43 70.96 4.32 86.68 2.27 73.45
8 21.28 86.4 11.19 82.2 1.59 72.55 2.33 89.01 9.1 82.55
9 0.24 86.64 0.43 82.63 1.4 73.95 0.42 89.43 0.62 83.17
10 0.24 86.88 0.75 83.38 1.7 75.65 0.27 89.7 0.74 83.91
11 0 86.88 0.43 83.81 1.22 76.87 0.38 90.08 0.51 84.42
12 0.95 87.83 0.43 84.24 0.65 77.52 0.23 90.31 0.57 84.99
13 0 87.83 0.43 84.67 0.76 78.28 0.15 90.46 0.34 85.33
14 0 87.83 0.43 85.1 0.76 79.04 0.15 90.61 0.34 85.67
15 0.71 88.54 0.64 85.74 1.32 80.36 0.34 90.95 0.75 86.42
16-31 3.07 91.61 1.92 87.66 8.61 88.97 1.38 92.33 3.75 90.17
32-63 3.55 95.16 5.65 93.31 3.4 92.37 0.92 93.25 3.38 93.55
64-127 1.18 96.34 0.75 94.06 4.62 96.99 2.02 95.27 2.14 95.69
128-256 1.42 97.76 0.75 94.81 0.49 97.48 1.57 96.84 1.06 96.75
256-65535 1.65 93.26 3.3 90.96 1.62 90.59 1.57 93.9 2.04 92.21
others 0.47 93.73 1.92 92.88 0.92 91.51 1.6 95.5 1.23 93.44

In order to see the frequency of size of operands, frequency distribution of 8-, 16-, 32-

24 CHAPTER 3. STATISTICS OF C LANGUAGE

and 64-bit operands appearing in different operations is given in the Table 3.13. 32- and
16-bit are the most frequent operand sizes with an average frequency of about 60% and
34%, respectively.

Table 3.13: Frequency Distribution of Operand Accesses Based on Size

Percentage
Size (Bits)
Coremark AutoBench Assembler Interpreter Average

8 3.11 7.63 3.7 11.81 6.56
16 41.01 40 33.1 20.91 33.76
32 55.87 52.37 63.2 67.28 59.68
64 0 0 0 0 0

Total 100 100 100 100 100

3.3.4 Miscellaneous

Table 3.14 gives the average number of variables based on locality per function. These
variables can be of global scope, passed to this function as an argument or local variables
of the function. It can be seen that on average, a function uses 7 locals. Furthermore, on
average 2 arguments are passed to a function. Operands with global scope used inside a
function are about 2.33 on average.

Table 3.14: Average (per Function) of Variables Based on Locality

Average
Locality
Coremark AutoBench Assembler Interpreter Average
parameters 3.04 1.42 1.13 1.53 1.78
locals 5 10.23 9.5 4.02 7.19
globals 0.16 1.81 5.31 2.02 2.33

The local variables and the arguments to the function can be simple variables, arrays,
struct/union field or a pointer. Table 3.15 provides the frequency distribution of the
arguments of a function based on data types. It can be seen that, most of the parameters
passed to functions are either simple variables or pointers. Among simple variables, 32-
bit integer variables are the most frequent data type passed as an argument to the
function with a percentage distribution of 39% on average.

Array is never passed as argument to function. This is because most of the time the
base address is passed as a pointer pointing to these data structures. Arguments con-
taining struct/union are not frequently used as well, as they are also frequently passed
as reference. In short, about 50% of the function parameters are pointers.

Table 3.15: Frequency Distribution of Parameters Based on Data Types

Percentage
Operand Type
Coremark AutoBench Assembler Interpreter Average

Integer 8-bit 1.14 2.44 0 3.89 1.87
Integer 16-bit 10.23 2.44 0 4.38 4.26
Simple Variable Integer 32-bit 27.27 19.51 42.95 65.69 38.86

Integer 64-bit 0 0 0 0 0
Floating Point 4.55 0 1.34 8.27 3.54

Array 0 0 0 0 0
Struct/union 0 0 1.34 10.46 2.95
Pointer 56.82 75.61 54.36 7.3 48.52
Total 100 100 100 100 100

3.4. CONCLUSIONS 25

Locals to a function can also be of various types as given in Table 3.16 with their
frequency distributions. Statistics show that, on the average about 88% of the locals
are simple variables. Among simple variables, 32-bit and 16-bit integer varaibles are the
frequent data types, with an average frequency of 61% and 13% respectively. About 13%
of the locals are pointers.

Table 3.16: Frequency Distribution of Locals Based on Data Types

Operand Type Percentage
Coremark AutoBench Assembler Interpreter Average

Integer 8-bit 7.2 4.89 0.61 9.05 5.44
Integer 16-bit 18.4 23.68 0 10.04 13.03
Simple Variable Integer 32-bit 42.4 51.13 79.86 70.3 60.92

Integer 64-bit 0 0 0 0 0
Floating Point 5.6 2.26 2.53 7.78 4.54
Array 1.6 4.14 0.4 0.14 1.57
Struct/union 1.6 0 3.44 2.69 1.93
Pointer 23.2 13.91 13.16 0 12.57
Total 100 100 100 100 100

3.4 Conclusions

In order to see the characteristics of C' language programs, this chapter discussed the
static frequency distribution of various constructs in C' language for embedded applica-
tions. Four C applications, namely EEMBC Coremark, EEMBC AutoBench, assembler
and interpreter or our architecture were profiled. From the statistics, it can be concluded
that among the statements, assignment statements are the most frequent statements.
Most of these assignment statements are simple assignments with a variable on left hand
side. Similarly, based on the complexity of expression on right hand side of assignments,
constants and simple variables make up the most frequent cases. These assignments are
translated to move and move immediate operations, which should be efficiently imple-
mented. For the efficiency of memory accesses, there should be a support for efficient
addressing modes. An interesting conclusion is that most of the simple assignments with
an operand on right hand side have the same operation on left hand side destination.
This shows the importance of 2-operand instructions, where one operand, while being a
part of the operation, also serves as the destination to hold result.

Arithmetic operations have a higher frequency among all the operations, where in ad-
dition and multiplication having the major contributions. Bulk of operations involve
integers of 16-bit and 32-bit sizes. Operations involving 8-bit size also have reasonable
frequency, whereas, 64-bit operations almost never occur. This shows that architec-
ture should have a support for 8-, 16- and 32-bit sizes, especially for memory efficient
architecture.

Relational operations are the second highest frequent operations, as these are used to
make decision for branches in selection and repetition instructions. This highlights the
importance of conditions, which should be efficiently implemented for conditional control
transfer instructions.

Type conversions are also frequent operations following arithmetic and relational oper-

26 CHAPTER 3. STATISTICS OF C LANGUAGE

ations. Most of the conversions are between 16- and 32-bit integer data type. It can
be concluded that, support of type conversion with different operations will result in an
efficient architecture.

Most of the operands in these operations are simple variables and constants. Based
on the size of the operands, 16-bit and 32-bit operands are most frequent ones. In a
memory efficient architecture, there should be special support for constants, especially
4-bit constants. Statistics showed that 4-bit constants make up about 87% of the total
constants used in operations, 0 and 1 being the most frequent constants.

Statistics presented in this chapter showed that frequency distribution of C' language
constructs (statements, operations, operands etc) do not have a uniform distribution
over the complete range. These results are utilized in making trade-off in the design of
our microcontroller architecture discussed in next chapter.

MePoEfAr Architecture

This chapter contains the architectural details about the MeFoEfAr, which are confiden-
tial. Hence, it is not included in this public version of thesis.

27

28

CHAPTER 4. MEPOEFAR ARCHITECTURE

MePoEfAr Assembler

In the previous chapter MePoEfAr architecture was discussed. To evaluate the efficiency
of MePoEfAr architecture and have a comparison of performance with existing microcon-
trollers, benchmark programs need to be run on our architecture. In order to automate
this task, MePoEfAr assembler and simulator was developed. Assembler is the focus of
discussion in this chapter while interpreter will be discussed in the next chapter.

This chapter starts with the a brief introduction of assemblers. Section 5.2 discusses
MePoEfAr assembler with the details of the intermediate steps involved to translate the
assembly program to machine code. Section 5.3 discusses instructions bit assignments.
Finally, Section 5.4 summarizes the whole chapter .

5.1 Introduction to Assemblers

Assembler is a utility program which translates the machine instruction written in the
form of English mnemonics (assembly instructions) into binary patterns which machine
can understand (machine instructions). This translation process is a one to one mapping
of mnemonics to stream of bits representing the machine instruction and data. An im-
portant task of assemblers is to resolve symbolic names used in the assembly programs
representing variables and memory locations. In order to resolve these references, as-
sembler has to pass the assembly program once or twice depending upon the complexity
of the assembly language. In this context, assemblers are generally classified as follows:

One-Pass Assemblers reads the source code once and preform the translations. The
assumption is that all the references will be defined before their use. If they are
not so, an error is generated. In short, One-Pass assembler cannot handle forward
referencing.

Two-Pass Assemblers makes two passes over the assembly code. In the first pass it
creates a symbol table. The values of the references are used in the second pass
for the machine code generation. MePoEfAr assembler is a Two-Pass assembler.

In short, assembler has to perform a number of tasks. It has to perform lexical analysis,
syntactic analysis, semantic analysis, maintain symbol table to resolve references and
emit the machine code at the end.

5.2 MePoEfAr Assembler
MePoEfAr assembler is a Two-Pass assembler. It is written in C' language and has 8194

lines of code, out of which 1944 lines of C' code is generated by Flex and Bison from the
description of lexical syntax and grammar as discussed in Section 5.2.1 and Section 5.2.2

29

N O Ut W N

30 CHAPTER 5. MEPOEFAR ASSEMBLER

Assembly Code Machine

Program —» Scanner » Parser » Analyzer > —>» Code

(test.asm) Generator (testhex)
Tokens AST AST

Figure 5.1: Block Diagram of MePoEfAr Assembler Showing Various Steps Performed
in the Assembly Process

respectively. Based on the tasks performed by MePoEfAr assembler, it has been divided
into following stages:

1. Scanner

2. Parser

3. Analyzer

4. Code Generator

Figure 5.1 shows the overview of the assembler. These stages are described one by one
in the following sections. Listing 5.1 provides an example MePoEfAr assembly program
which will be used in the description in the following sections.

;test.asm
; Simple MePoEfAr Assembly Program

MAIN: MOVw #2, W3 W3 = 2

ADDw #5, W3 ;W3 = W3 + 5

SUBw W3, 4(X5) sM[(X5)+4] = M[(X5)+4] — W3
END : RTS ;return to caller

Listing 5.1: MePoEfAr Example Assembly Program used for Illustration of Various
Assembler Stages in this Chapter

5.2.1 Scanner

Scanner is the first stage of the assembler to perform the lexical analysis. In this analysis,
the assembly program in the file is scanned and broken down into tokens, leaving out
the white spaces and comments. Lexical Analyzers can be generated by hand but pretty
much efficient tools are available to generate the lexical analyzers. One such tool is Flex
(Fast Lex) [1] which we have used to generate the lexical analyzer of MePoEfAr and is
freely available. Flex code for the scanner is given in Appendix A. Figure 5.2 shows the
block diagram of Scanner. It reads the assembly programs and generates the Tokens as
shown.

Flex Code (.l extension) is compiled by flez to generate the C code (.yy.c extension) for
the lexical analyzer based on the lexical description in Flex Code. The tokens generated
by this C program are given as input to Parser. For instance, the tokens generated by
our scanner for the example program given in Listing 5.1 are as given in Figure 5.3.
It can bee seen that comments and white spaces are ignored. Newline is used to have
a record of number of line in the source code for generating error messages. It can
be seen from this figure that the first token is the LABEL corresponding to the label
MAIN. Next is the SYMBOL token corresponding to MOVw instruction mnemonic in

5.2. MEPOEFAR ASSEMBLER 31

Assembly

Program ———» Scanner - » Tokens

(test.asm)
LABEL

MAIN: MOVw #2, W3 aX'\SAEOL

DNUMBER
COMMA
WREGISTER

Figure 5.2: Block Diagram of Scanner, which Reads the Input Assembly Instructions
and Produces the Tokens

LABEL SYMBOL HASH DNUMBER COMMA WREGISTER SYMBOL HASH
DNUMBER COMMA WREGISTER SYMBOL WREGISTER COMMA
WREGISTER NEWLINE SYMBOL WREGISTER COMMA DNUMBER LBRACK

XREGISTER RBRACK LABEL SYMBOL
Figure 5.3: Tokens generated by Scanner for the Example Program in Listing 5.1

the first instruction at Line 4. Next token is the HASH symbol corresponding to #
symbol for immediate value. Next a COMMA is seen and following COMMA is the
WREGISTER token corresponding to W3 in the assembly program. On the same lines,
other instructions are also tokenized as shown in Figure 5.3.

5.2.2 Parser

Parser or Syntax Analyzer is the part of Assembler which determines the syntax or
structure of a program based on the specified rules. These rules are called the grammar
of the language. We have used Bison [11], a free parser generator, to generate the parser
for MePoEfAr . Appendix B provides the grammar which we have used to generate the
parser for MePoEfAr assembler. So, the tokens provided by Scanner are considered to
make sentences according to this grammar. If the assembly program does not satisfy
this grammar, a syntax error is generated.

AST
Tokens

NT_LABEL
LABEL (MAIN)
SYMBOL
HASH

DNUMBER Parser > p .
COMMA v v

WREGISTER NT_IMM NT_WREGISTER
) (W3)

NT_INSTRUCTION >
(MOVw)

v

v

Figure 5.4: Block Diagram of Parser. Tokens are taken as Input from the Scanner and
Parser Performs Syntactic Analysis and Constructs the Abstract Syntax Tree as an
Output

32 CHAPTER 5. MEPOEFAR ASSEMBLER

NT_LABEL
{END)

NT_INSTRUCTION
(RTS)

NT_LABEL NT_INSTRUCTION NT_INSTRUCTION NT_INSTRUCTION
(MAIN) (MOVw) (ADDwW) (SUBwW)
/ \ Vi N / N
g h / h \ / / \

v v
NT_WREGISTER
(W3)

v
NT_WREGISTER

A 4
NT_IMM
(W3)

©)

NT_WREGISTER
(W3)

NT_IMM
@)

NT_DX_ADDR

/

v v
NT_IMM NT_XREGISTER
®6) (X5)

Figure 5.5: Visual Representation of the Complete Abstract Syntax Tree for the
Example Program given in Listing 5.1

The output of the Parser is the abstract representation of the assembly program known
as Abstract Syntax Tree (AST). Figure 5.4 shows the block diagram of Parser where it
is shown that it takes the Tokens as input and generates the AST. The visual represen-
tation of the complete AST for the example program provided in Listing 5.1 is shown
in Figure 5.5. In this AST, each right arrow is a pointer to next instruction. So, nodes
in AST are linked together by next pointer as a linked list. Similarly, downward arrows
indicate pointers to child. The first box represents the first node NT_LABEL which cor-
responds to Label MAIN. It does not have any child so there are no downward arrows.
The next pointer points to next node NT_INSTRUCTION representing the instruction
MOVw. This node has two children corresponding to the immediate field (NT_-IMM)
and destination register field (NT_-WREGISTER). Similar explanation hold for the rest
of the nodes in the figure. This AST is used in later phases to do semantic analysis and
code generation.

5.2.3 Analyzer

At this stage, the AST generated by parser is traversed to perform semantic analysis. In
the first phase, instruction groups are identified and symbols are added to symbol table.
In order to know the location of various symbols in the assembly program, a location
variable is updated according to the length of the instructions in the tree.

An crucial task in this analysis is regarding the maintenance of symbol table and to
know the size of instructions. In MePoEfAr , instructions are variable length, so infor-
mation about the length of the instruction is important to update the location counter.
Interesting part is, length of the branch instruction depends up the branch displacement
and to know the branch displacement we need to know the length of the instructions.
For instance, consider the code segment given in Listing 5.2. The instruction BRIt in
Line 6 has a 8-bit field for the branch target address(shown as D8 in Table ?7?). If the
branch target address is greater than or equal to —128 and less than or equal to 4127
then it can be accommodated in the first instruction word and size of the instruction will
be 2 bytes. Otherwise, branch target address will be provided in the next instruction
word, making it a 4-byte instruction. So, the size of this instruction depends upon the
location of Lable NoSWAP which is a forward reference and has not been resolved yet
(in the first pass). Furthermore, location of the Label NoSWAP depends upon the size
of all the instruction proceeding it including the BRIt instruction at Line 6. This issue is
resolved by assuming the worst case offsets for branch instruction and hence maximum

—

— O © 00O Ui Wi

5.2. MEPOEFAR ASSEMBLER 33

size of the instruction (4 bytes) in the first pass. These are finalized in the symbol table
based on the actual value in the second pass.

L1: MOVw WO, W1

L2: MOVd (X4)+,D2
CPAd D2, D3 ; compare D2 with D3
BR1t NoSwap ; if (D3 < D2) then no swamping required
;otherwise swap here

NoSwap: S1BR Wi, L2 ;loop if j>0

Listing 5.2: MePoEfAr Example Code Used for the the Illustration of Branch
Instruction Size and Update of Location Counter

Table 5.1 shows the visual representation the Symbol Table for the example assembly
program given in Listing 5.1. This table has two entries for the two symbols found in
this example program. The names of these symbols are provided in first Column. Values
of symbols are given in second column. Line number of use is also stored for generating
the error and warning messages, as shown in the 3rd column of the table. For instance,
the first symbol is MAIN which has a value 0 as it is the address of the first instruction.
The column Line number shows us that it has been accessed at Line 4 in the source code
(See Listing 5.1). Similarly, the Symbol END has the value 9 and is available at line 7
in the source code.
Table 5.1: Visual Representation of the Symbol Table for the Example Program in

Listing 5.1
Symbol Name | Symbol Value | Line Number
MAIN 0 4
END 9 7

Type analysis is also performed in this stage. Data types are explicit in MePoEfAr
assembly mnemonics, so it is checked if this data type matches the type specified by
operand(s). For instance, the instruction ADDb #13, B3 expects the second operand
to be a byte register. An error is generated, with the information about the line number
of the instruction which caused this error, if types does not match. Similarly, error
message is also generated if an operation is not defined in that instruction sub group.
For instance, the instruction MULb #13, B3 will cause an error as multiplication is not
defined for integer Immediate to Register (IR) instruction format (See Table 77).

5.2.4 Code Generator

In this phase of assembler, AST is traversed and binary patterns corresponding to assem-
bly mnemonics are emitted. All the information required to generate the machine code

34 CHAPTER 5. MEPOEFAR ASSEMBLER

AST
] Code Machine code
NIMEA\AIE)EL) NT_IN('SA\'IE')I-‘\I;LKJ)(;‘,TION > Gorraiat >
11011011101101
/ \
/ \\\
4 v
NT_IMM NT_BREGISTER
(13) (B3)

Figure 5.6: Block Diagram of Code Generator which Generates the Machine Code at
the Output for the Abstract Syntax Tree of a Single Instruction at the Input

is present in the AST nodes, which is collected by earlier stages. Consider the example
of code generation for instruction ADDb #13, B3. The machine code generated for this
instruction will be 11011011101101 in binary format or DBFED in hex format as shown
in Figure 5.6 . This is because this instruction belongs to the Sub Group Immediate to
Register (SG IR) (See Table ?77). So the binary code to represent SG IR for byte data
type is 110110 as shown by Entry 16 in Table 5.2. The OilR field will be 10 for the ADD
operation (See Table ?7). Rd field will get the value 11 representing the Register B3.
Immediate field I will get the value 1101 representing the immediate value 13.

The generated machine code for the given assembly program is written to a file in hex
format, which will be given as input to the MePoEfAr interpreter.

5.3 Instruction Bit-assignment

The last phase in MePoEfAr assembler is the code generator stage. Binary patterns
corresponding to assembly program for data, addresses and instructions is emitted. An
important task in this stage is the assignment of binary patterns to mnemonics. This task
is not trivial in MePoEfAr , as we have variable number of bits for the representation
of mnemonics. We have utilized the concept of variable length coding to represent
instruction sub groups.

The bit-assignment is based on the implementation assumption that after instruction-
fetch, the instruction decode cycle will take place. During this cycle three register pre-
fetches will take place, regardless of the details of the instruction. The three fields to be
pre-fetched are:

Rss: the source register of a possible RR or MR instruction

Rd: the destination register of a possible MR, IR or R instruction

AX: the addressing mode and index register combination which may be used in a mem-
ory referencing instruction

The above logic requires that the fields of Rs, Rd and AX in the instruction layout are
always in the same position of the 16-bit instruction word; regardless of the operation
to be performed. In other words, the fields Rs, Rd and AX are always assigned to the
same bit positions in the instruction.

5.3. INSTRUCTION BIT-ASSIGNMENT

35

Table 5.2: A Possible Bit Assignment for Various MePoEfAr Instruction Formats

#+ sG 15[14‘13‘12 11‘10[9 8‘7‘6‘5 4 3[2‘1‘0
1 | RR(b) 0000 OiRR Rs OiRR Rd

2 | RR(w) 0001 OiRR Rs OiRR Rd
3 | RR(d) 0010 OiRR Rs OiRR Rd
4 | MR(b) 0011 OiMR Rd AX

5 | MR(w) 0100 OiIMR Rd AX

6 | MR(d) 0101 OiIMR Rd AX

7 | RM(b) 0110 OiRM Rs AX

8 | RM(w) 0111 OiRM Rs AX

9 | RM(d) 1000 OiRM Rs AX

10 MF 1001 OfMF Fd AX

11 FM 1010 OfFM Fs AX

12 CB 1011 cc DS

13 MX 11000 OxMX Xd AX

14 FF 11001 OfFF Fs OfFF Fd
15 S1 11010 RG R D7

16 | IR(Db) 110110 OilR Rd OilR 1
17 | IR(w) 110111 OiIR Rd OilR I
18 | IR(d) 111000 OilR Rd OilIR I
19 XX 1110010 OxXX ‘ Xs Xd
20 IX 1110011 OxIX [I Xd
21 SAV 1110100 S/R #RegPairs ‘ DT Rstart
22 | SAVx 1110101 S/R Mask

23 | R(b) 1110110 Rd 0 OiR
24 | R(w) 1110110 Rd 1 OiR
25 | R(d) 1110111 Rd 0 OiR
26 F 1111011 Fd 1 OfF
27 | M(b) 11110000 OiM AX

28 | M(w) 11110001 OiM AX

20 | M(d) 11110010 OiM AX

30 M 11110011 OfM AX

31 M 11110100 OxM AX

32 NO 11110101 NOOP only takes 8 bits

33 | InXS 11110110 Mask

34 InM 111101110 DT AX

35 | InMS 111101111 DT AX

36 X 1111100000 OxX Xd
37 Ju 1111100001 0C2 @ Xd
38 InR 1111100010 DT R
39 | InRS 1111100011 DT Rstart
40 | BitOP 1111100100 OBit Bit#
41 InX 1111100101 X
42 InS 1111100110

43 | 1InSs 1111100111

44 RTS 1111101000

sG 15‘14‘13‘12‘11‘10‘91817‘6‘5‘413‘2‘1‘0

Table 5.2 shows a possible bit-assignment for the MePoEfAr instructions. The columns
numbered from 15 through 0 denote the instruction bits of the first instruction word.
The column SG lists the Sub Group which is implemented by the corresponding Table
entry. The SGs are taken from Table ?7?(See Column SG). For example, Entry No 4 in
Table 5.2 is the bit assignment for the SG MR which has instruction code 0011 (i.e.,

36 CHAPTER 5. MEPOEFAR ASSEMBLER

two zeros and two one’s in binary, and not eleven) specified by bit positions 12-15. This
pattern is for the memory register operations for byte data type. The OiMR stands
for the Operations on integers Memory to Register format as specified in Table 77. Rd
is the destination register and AX represent the addressing mode and index register
combination for the specification of source operand which is in memory.

From the Table 5.2 it is clear that the instructions are systematic, such that simple and
fast encoding is possible. In addition, a fair amount of unused opcode space is available
for future requirements.

One idea which may be mentioned at this point is that it may be better to have two
sets of indeX registers: one set which is used in User Mode and one set which is used
in Supervisor mode; hence the selection is done by the Mode bit of the Status Register.
The context switching can be very fast because interrupt handlers can have their private
register sets and use the supervisor indeX registers.

5.4 Summary

Assembler is a piece of code which translates assembly instructions to machine code. In
this chapter we have discussed the MePoEfAr Two-Pass assembler assembler. Figure
5.7 shows the summary of the steps taken by MePoEfAr Assembler for the translation
assembly program to machine code. It can be seen from this figure that scanner is the
first stage of MePoEfAr Assembler. Whitespace and comments are left out by scanner
and tokens are passed to parser. Parser performs the syntactic analysis and constructs
the Abstract Syntax Tree (AST) based on the defined grammar. An important task
in this translation process is maintaining the symbol table which is done by traversing
the AST. This process was involved for MePoEfAr assembly language because of two
reasons. Firstly, instructions in MePoEfAr are variable length instructions. Secondly,
size of the branch instructions depends upon the offset used for branch displacements.
We resolved this issue by assuming the worst size of branch instructions in first pass and
updating the proper instruction lengths and hence the location counter in the second
pass.

The last stage in this translation process was generating the binary patterns for the
instructions. For this, variable length instruction subgroups were assigned the bit pat-
terns based on the concept of variable length coding. Fast encoding of instructions was
taken into account during this bit assignment process. The machine code generated by
assembler will be fed to MePoEfAr Interpreter which is discussed in the next chapter.

37

5.4. SUMMARY

$S9001J A[qUISSSY o1} Ul pouLIo}ioJ sdojg snorrep mqgosw ID[qUIBSSY IVIHOJRIN Jo Arewrmung :)°G oInSI

_ TOGWAS
||||||||||||||||||||||||| | 1999 MOWdEY ¥IISIOENX xummm.#
_ 25 a4 _ _ z 3 an3 “ HIGWANT YWHOD — HAISIOTEM TOEWAS
| | | v 0 NIVIN | ANTIMEN YIISIOTIM WHHOD muamemE___
| Y0 €€ 06 | | [FeaunN sur [anjea joquAs |awen |0giiks | 708WAS ¥IISIOFEM YWWOD YISHANQ
| |
| E6 YO €S | ! MR s | HSWH TOEWAS HILSIOTHM o]
| #3022 ¥0 1 | ¥3EWONG__ _ _ _ HSWH_ _ __TOSWAS _ _ _ _T1dgv]
— l\ - 4 w
‘..\,\
__‘.. w_n.mh \
Sua
(xauy1say) Jojelauss) 10GWAS e (wsejsa)
apon 4] o 18zAeuy |« 18sIBd |« JBUUBDS |« weiboly
aupe 8pon Alquiassy
18v — 1sv)
/ p
R
.......... &-----------_ ¢
| =]=] T T SR st s awl L
| I I[p+(SX)IW =— [(p+(SX)IW! (SX)F ‘EM »ans 9
[. _ _ S + €M = £M! EM ‘o maaw 5
| — o) ™ o [| - : =
| s !.Lesy!..._ S.Sn! .a_ .!.... —..ESW,. = ﬁ I“m:. _ “ I Z = £M? EM 7 MAOW INIVH §
I X _ _ £
_ | _ uexbox ATau g =) aTdl J z
| 013 ATquwassy IW¥FIodeW sTdUTs! g
| éu.«ﬁ..!pﬂT ._l _u..d :o.ﬁ:.:-!.‘u_‘i :n:w..-rpnﬂlt.t ..O.E:E!EIT ulﬁ._.z “ | wuse 183 T

38

CHAPTER 5. MEPOEFAR ASSEMBLER

MePoEfAr Interpreter

Machine code gets executed either on a real architecture or on its abstract model. Archi-
tecture models are utilized in simulators in the early design phase for a number of reasons.
Firstly, simulators are used to run benchmark programs and obtain performance results
for an architecture in the early design phase. Secondly, microcontroller architecture is a
collection of sub-systems. Simulators are developed to verify the conformance of these
sub-systems to the functionality as described in the architecture document. Thirdly, sim-
ulators can be utilized to debug and test development and application programs targeted
for the new architecture. This implies that the software tool chain (compiler, assembler,
linker) can be developed and tested in parallel with the development of the hardware
platform.

In the previous chapter, we discussed our MePoEfAr assembler which we developed to
generate the machine code from MePoEfAr assembly programs. In order to debug and
test the functionality of MePoEfAr assembly programs, we developed the MePoEfAr
simulator, which is discussed in this chapter.

This chapter starts with a brief overview of simulators in Section 6.1. Section 6.2 provides
a high level description of the MePoEfAr Interpreter. Part of the interpreter working
as supervisor program, is discussed in Section 6.3. This section also discusses the way
source line numbers of the instructions in the assembly programs are mapped to the
memory address of instructions. The MePoEfAr microcontroller model is described in
Section 6.4, which actually executes the programs. Finally, Section 6.5 summarizes the
whole chapter.

6.1 Overview of Simulators

Architecture models are developed in the early design phase of the architecture for a
number of reasons [8]. The models are know as simulators or cross simulators as they
simulate the functionality of the target architecture on a host machine. When these
models are used to test the instruction set of an architecture, they are referred to as
as Instruction Set Simulators (ISS). The ISS of an architecture can be designed in two
ways [26]:

1. Interpretive Simulators [27], [22], [29] in which the machine code of the program is
loaded in to the memory of the architecture. Instructions are fetched, decoded and
executed one by one much like the real architecture. Interpretive Simulators have
the advantage that simulator does not need to be re-generated when the application
program is modified (as is required in the compiled simulators, discussed below).
The disadvantage is the low speed of interpretive simulators. [27] discusses an

39

40 CHAPTER 6. MEPOEFAR INTERPRETER

MePoEfAr Machine Code

. i

MePoEfAr Interpreter

Operating System

Host Machine

Figure 6.1: Block Diagram of MePoEfAr Interpreter Showing its Position in Relation
to the Host Machine

ARM interpretive simulator. We have developed an interpretive style simulator for
our MePoEfAr architecture.

2. Compiled Simulator [28], [32] which generates an executable simulation file per ap-
plication program. It has the advantage of speed, because the instruction decoding
overhead moves to simulator generation time. The disadvantage is that it requires
a recompilation of the whole simulator in order to simulate a different file.

6.2 MePoEfAr Interpreter

MePoEfAr simulator has been developed as interpretive simulator to closely resemble the
instruction fetch, decode and execute stages of the architecture. MePoEfAr interpreter
program is 5597 lines of code written in C' language. The advantage of developing it
in a high level language like C' is that it is easily portable to other platforms with a
recompilation of the interpreter. This interpreter reads the machine code generated by
assembler and executes these instructions on host PC. Figure 6.1 shows the relation of
MePoEfAr interpreter with respect to host machine. It can be seen from this figure that
MePoEfAr Interpreter reads the machine code and communicates with the operating
system layer for its execution. Next, operating system sends instructions to the host
machine to execute this program.

Figure 6.2 shows the block diagram of MePoEfAr Interpreter. It can be seen from this
figure that interpreter consists mainly of two blocks, as listed below:

Supervisor (main()) Program which loads the program to memory and instructs
the microcontroller to RUN the program
MePoEfAr Microcontroller Model which executes the program

These two parts are discussed one by one in detail in the next two sections.

6.3. SUPERVISOR PROGRAM (MAIN()) 41

Main()
(Supervisor)

Program RUN
A 4 A 4

MePoEfAr
Machine Code

MePoEfAr Microcontroller

MePoEfAr
Interpreter

Figure 6.2: Block Diagram of the MePoEfAr Interpreter

6.3 Supervisor Program (main())

Supervisor or main() program is the part of MePoEfAr interpreter which supervises the
interpretation process. It reads in the machine code and subsequently loads it into the
data structure which represents the program memory of MePoEfAr architecture. Next it
instructs the microcontroller to execute the loaded program. These tasks of the main()
program are depicted in 6.1.

1 int main(int argc, char x argv|[])

2 {

3

4 if (arge > 1) //if there is a command line argument for the name of file
5 strcat (inputFileName ,argv[1]); //use this name

6 else

7 strcat (inputFileName ,” test.hex”); //otherwise default test.hex will be used
8

9 printf (’\n MePoEfAr Interpreter \n”);

10

11 initFiles (); //utility function to initalize files

12 //for different purposes

13

14 printf (”\n Hex file (%s) will be loaded to Program Memory \n” ,inputFileName);
15 printf (”\n Loading program in to memory ... \n”);

16 loadPM () ; //call this function to load the machine code into the
17 //program memory. The actual bytes representing the

18 //machine code will be loaded and the information about
19 //the line numbers of source program will be used for
20 //the mapping of program memory and line numbers

21

22 runProgram () ; //start the show

23 //execute the program

24

25 printf (”\n Finished Program Execution ... \n”);

26

27 //interact with the user

28 printf (”\n Select a choice from the follwoing menu to see results ... \n”);
29 interact () ; //prompt the user if he wants to monitor

30 //registers , memory etc

31

32 closeFiles (); //close the files opened for internal use

33 return O0;

34 }

Listing 6.1: MePoEfAr main() Interpreter C' Code. It Prompts the User for Input Hex
File, Calls loadPM() to load it into memory. runProgram() Executes the Loaded
Program

An important task which is performed by program load function (loadPM/() at Line 16
in Listing 6.1) is the mapping of source line number of the instructions to their memory
addresses. This is important because the feedback provided by the interpreter in the form

© oD U s WN -

42 CHAPTER 6. MEPOEFAR INTERPRETER

of errors and warnings becomes very helpful if it points to the source line number. Next
sub section describes in detail how we have achieved this in our MePoEfAr interpreter.

6.3.1 Memory Address to Source Line Number Mapping

MePoEfAr Interpreter is developed such that user is able to see the contents of internals
of MePoEfAr architecture. An important feature of MePoEfAr Interpreter is its ability
to give the information about the running instruction with the source line number of the
original assembly program. This is achieved by putting the line numbers of the source
assembly instructions inside the generated machine code. On the Interpreter side, the
main program, which acts as the supervisor will call the function loadPM() to load the
program. This function is designed such that it serves two purposes. At first, It will load
the actual machine code into the program memory. Secondly, it will store the mapping of
memory addresses and source line numbers inside a list. The list to hold these mapping
entries, is implemented utilizing the hash function concept. Listing 6.2 shows the code
for this mapping. Two important functions in this regard are:

1. insertMapping() which inserts a mapping entry in the list.
2. searchMapping() which searches for entry that contains source line number of the
requested memory address.

/ *

Structure to represent a node in the mapping list.
PMAddress is mapped to lineNo, which is represented
by the entry of this node in the list.

=/

typedef struct node

int lineNo; //line number in source program
int PMAddress; //program memory address
struct node x*next; //pointer to next node

}*mapList ; //pointer to a list of such nodes

/% the hash table x/
static mapList hashTable [SIZE];

Function insertMapping
input is the pmAddr and lno which is to be mapped
returns 0 on success and mapping entry is inserted successfully

return 1 if mapping is already there, or it cannot be inserted
because of memory allocation problem
*/
int insertMapping(int pmAddr , int 1lno)
{
int h = hash(pmAddr); //temporary to hold the key from hash function
mapList 1 = hashTable [h]; //get the key from the hash function
//loop till mapping found or till the end of list
while ((1 != NULL) && (pmAddr != 1—>PMAddress))
1 = 1-—>next;
if (1 != NULL) // found in list
return —1; //unsuccessful return

else // mapping not in list

1 = (mapList) malloc(sizeof(struct node)); //allocate memory
if (1 != NULL)
{
1—>PMAddress = pmAddr; //save memory address for this entry
1—>1ineNo = 1lno; //save the corresponding line no
l—>next = hashTable[h]; //pointer to next, get from hash func
hashTable [h] = 1;
return 0; //successful return
}
else
return —1; //unsuccessful return

//memory allocation problem

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

s W e

6.4. MEPOEFAR MICROCONTROLLER MODEL 43

}
}
/% Function searchMapping
searches the map entry of pmAddr and corresponding lIno.
If found, this lno is written as its address is the argument to the function.
returns 0 if mapping found
returns —1 if mapping not found
«/
int searchMapping(int pmAddr, int = 1lno)
{
mapList 1 = hashTable [hash(pmAddr)]; //hash table entry
//loop till mapping found or till the end of list
while ((1 != NULL) && (pmAddr != 1—>PMAddress))
1l = 1—>next;
if (1 == NULL) //not found till the end
return —1; //signal failure
else //found
{
#¥lno = 1—>1linelNo; //write the Ino
return O0; //signal success
}
}

Listing 6.2: Code Used to Store the Mapping of Program Memory Address and Line
Numbers in MePoEfAr Interpreter

6.4 MePoEfAr Microcontroller Model

The main part of MePoEfAr Interpreter is the microcontroller. After the program is
loaded to program memory, runProgram() function is called to execute the loaded pro-
gram. This program execution is done in a loop as shown in Listing 6.3. The body of
this loop consists of four main functions as discussed below:

fetchInstruction() fetches the first word (2 bytes) of instruction from the location
pointed by the program counter and copies it into a temporary data structure
(instrTemp) for later processing. This instrTemp is passed to it by reference as
can be seen from Line 13 in Listing 6.3.

decodelnstruction() decodes the instruction passed to by reference as can be seen
from Line 16 in Listing 6.3. This is the function which identifies the Sub Group
(SG) of the instruction. Details of the decoding process are provided later in a
separate section.

executelnstruction() executes the instruction passed to it as argument. In this func-
tion, a switch statement selects the function corresponding to its SG to execute it.
The instruction gets executed and changes (if needed) the state of the microcon-
troller based on its operation.

interact() interacts with the user in case the step mode is enabled as can be seen from
Line 32 in Listing 6.3. After each instruction is executed, interpreter prompts the
user whether he wants to see the internals of the architecture. In case the step
mode is disabled, complete program gets executed and the user can interact only
at the end of the program.

Function runProgram (), which executes the program
instruction are fetched, decoded and executed one by one.
If step by step mode is defined, then

5

6

7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

44 CHAPTER 6. MEPOEFAR INTERPRETER

void runProgram ()
int 1no; //temp to hold Ino of current instruction
Instruction instrTemp; //temp to hold current instruction

while (PC<no0fBytes) //loop till complete program
{
fetchInstruction(&instrTemp); //fetch insruction
instrTemp=swapInstrBytes (instrTemp); //this will swap the bytes for proper endianess

decodeInstruction(&instrTemp); //decode instruction
printf (" Current Instruction SG = %s \n”, SG_TYPE_TITLE [instrTemp.SG]);

//first of all read the source line no from the linked list
if (searchMapping (PC,&1lno) == 0) //search for mapping
printf (”\n Executing instruction from line %d \n”, 1lno);
else
printf (”\n Could not find the Mapping for PM Address : %d\n” ,PC);

executeIlnstruction(instrTemp); // execute instruction
// update PSW
// update PC accordingly in case if more bytes fetched

//if step by step mode is active then ask user to continue or
//if he wants to have a look at some registers or memory or...
#ifdef STEP_MODE

interact () ;

#endif

}

Listing 6.3: runProgram() Function in which Instructions are Fetched, Decoded and
Executed

In order to achieve this instruction fetch, decode and execute, internal components of
MePoEfAr architecture were modeled as data structures. These components are listed
below:

1. Program Counter
Program Status Word
Registers

Program Memory

Data Memory

Stack and Stack Pointer
Decoder

Arithmetic and Logic Unit

PN DO W

the following is a brief description of the implementation of each of these components.

6.4.1 Program Status Word

Four condition code bits from the Program Status Word (PSW) namely zero flag, sign
flag, carry flag and over flow flag are modeled as global integers which are updated after
an instruction which affects these flags is executed .

6.4.2 Program Counter

Program Counter (PC) is modeled as a global counter pointing to the address of the
next instruction to be executed. It is updated after each instruction fetch (or fetching of

!These flags are always visible at the terminal showing the updated status of condition codes based
on the status of recently executed instruction.

DU W N

6.4. MEPOEFAR MICROCONTROLLER MODEL 45

instruction bytes with size larger than two bytes), or execution of instructions operating
on PC (Branch and Jump instructions).

6.4.3 Registers

Registers are modeled as arrays of corresponding data type. Functions are provided to
read from and write to these registers.

6.4.4 Program Memory

Program Memory is modeled as an array of int8_t 2 data type. A variable indicates the
number of bytes of program loaded into program memory, which is updated during the
program load. Functions are provided to fetch instruction bytes from program memory.

6.4.5 Data Memory

Data Memory is modeled as an array of int8_t data type. Basic functions are provided
to read and write the data memory. These functions are then utilized to define functions
to read and write data as integer and floating point values.

6.4.6 Stack and Stack Pointer

Stack area is a part of data memory and starts from highest memory address and grows
towards the lower memory address. A pointer pointing to current position on stack,
known as Stack Pointer (SP) is implemented which is used in stack related operations
(subroutine call and return). SP is initialized to highest data memory address, and
whenever something is pushed on stack, SP is decremented and vice versa.

6.4.7 Decoder

Instruction decoder is implemented as nested switch statements as can be seen from
Listing 6.4. The outer switch statement (Line 17) selects the case based on the number
of bits to be considered. The starting value is 4 as it is the minimum number of bits
to identify an SG. The inner switch statement matches the proper SG among the op-
tions available based on the match of these bits value to code of that SG. These switch
statements execute inside a while loop which iterates until instruction SG is identified
or no of bits to be considered for making the decision equals 16 (bits in one instruction
word). On each iteration of the loop, the number of bits to be considered for decoding
are incremented as can be seen from Line 43.

/ *

Function decodelnstruction () decodes the instruction.
Input is a pointer to the instruction and based upon
the decoding logic described in the instruction bit

assignment , Sub Group of instruction will be updated.

2int8_t is always an 8-bit data type which is defined in stdint.h

7
8
9
10
11
12
13
14

46 CHAPTER 6. MEPOEFAR INTERPRETER

void decodeInstruction(Instruction *instrTemp)

{
int bitsToConsider =4; //start with considering 4 bits
unsigned int bitsValue; //value of the considered bits
while (bitsToConsider <=16) //maximum bits in instruction is 16
//slice the bits which we want to consider to compare its value
bitsValue = sliceBits (instrTemp—>shortInstr ,bitsToConsider);
switch (bitsToConsider)
case 4: //instructions with 4 bit SG field
switch (bitsValue)
{
case RRbCode: instrTemp —>SG=SG_RRb ; return ;
case RRwCode: instrTemp —>SG=SG_RRw ; return ;
case RRdCode : instrTemp —>SG=SG_RRd ; return ;
case MRbCode : instrTemp —>SG=SG_MRb ; return ;
case MRwCode : instrTemp —>SG=SG_MRw ; return ;
case MRdCode : instrTemp —>SG=SG_MRd ; return ;
/* and so on other sub groups with 4—bit SG field
are decoded x/
}
break;
case 5: //instructions with 5 bit SG field
switch(bitsValue)
case MXCode: instrTemp —>SG=SG_MX; return ;
case FFCode: instrTemp —>SG=SG_FF; return ;
case S1Code: instrTemp —>SG=SG_S1; return ;
}
break ;
/* and so on other sub groups are also decoded x/
}
bitsToConsider—+-+; //increment bits to consider if not found
}

Listing 6.4: Code for Instruction Decoding

The end result of this decoding is that either the instruction is identified correctly and
SG field is updated with the proper sub group, or instruction SG field is updated with
SG_NA indicating a Not Applicable SG for the execute stage.

6.4.8 Arithmetic and Logic Unit

Arithmetic and Logic operations constitute the bulk of operations operating on various
data types as defined in MePoEfAr architecture. An Arithmetic and Logic Unit (ALU)
is modeled as a number of functions to execute these operations for all the data types.
During the execution phase, based on the data type and operation the corresponding
function is selected by a switch statement, which will perform the operation and update
the condition codes as defined in the architecture.

6.5 Summary

In order to test and debug the programs written for a specific architecture, these pro-
grams are translated into the form understandable by machine. This machine can be the
real machine or a model of the machine implemented in a high level language. Simulators
are developed in the early architecture design phase to model these architectures. Inter-
pretive simulator is the style of MePoEfAr interpreter which we have discussed in this
chapter. From the two main parts of this interpreter, one part of MePoEfAr interpreter
is the main program which loads the machine code in the program memory, maps the

6.5. SUMMARY 47

memory address of instructions to their source line numbers (in the original assembly
program). This mapping is important for testing and debugging the assembly programs,
as the feed back given by interpreter in form of error and warning messages are useful if
they have the information of the source line numbers.

The second part of the interpreter is the model of the MePoEfAr microcontroller. Various
components of MePoEfAr architecture are modeled inside this microcontroller. These
components are utilized in the loop which is executing the instructions one by one. In
this loop, instructions are fetched, decoded and executed. If step mode is active, the
interpreter interacts with the user in case he is interested to examine the state of the
microcontroller. The interpreter described in this chapter is used to debug and test the
functionality of benchmark programs used to evaluate and compare the performance of
MePoEfAr architecture. Benchmarking details are provided in next chapter.

48

CHAPTER 6. MEPOEFAR INTERPRETER

Assembler Level Benchmarking

In this chapter, performance of MePoEfAr architecture is analyzed and compared to
three other well known microcontroller architectures. Performance of an architecture
for the given benchmark is also dependent upon the quality of code generated by the
compiler. In order to have a comparison solely based on architectural capabilities, we
have performed our first round of benchmarking at the assembler level. Assembler and
Interpreter of MePoEfAr have been discussed in previous two chapters.

Six benchmark programs are selected to test different aspects of architecture. These
application programs are hand assembled and optimized for MePoEfAr architecture, as
well as, for the other three candidate architectures for a fair comparison. Appendix C
contains the hand assembled optimized programs for all the four architectures considered
for comparison.

This chapter starts with the description of the evaluation criteria. Candidate architec-
tures are briefly mentioned in Section 7.2. Benchmark application programs are described
in Section 7.3. Performance results with comparison and evaluation are discussed in Sec-
tion 7.4. Section 7.5 summarizes the chapter with a table of combined results to give
the overall impression of performance comparison.

7.1 Evaluation Criteria

Performance has been evaluated based on efficiency of architecture in terms of number
of instructions, program memory size (bytes) and execution time (cycles). To estimate
the power consumption, number of instructions executed, program/data memory traffic
(cycles) has also been calculated. These results can be classified in two main categories.
Figure 7.1 shows the classification of results which are calculated for evaluation and
comparison.

7.2 Candidate Architectures for Comparison

Performance of MePoEfAr architecture is compared with three famous architectures
which are being widely used as embedded microcontrollers. These architectures are:

1. Atmel AVR AT90S851 (8 Bit)
2. TI MSP430G2231 (16 Bit)
3. ARM LPC1342 (32 Bit)

49

50 CHAPTER 7. ASSEMBLER LEVEL BENCHMARKING

Performance
Results

Static Dynamic
Results Results
No. of Program Memory Execution Time Instructions E |nSl|‘;J(;li9n§ d Memory Traffic
Instructions Size (Bytes) (Cyles) Executed xectll_soplnﬁ e (Cycles)
Instruction Memory| Data Memory
Traffic (Cycles) Traffic (Cycles)

Figure 7.1: Classification of Evaluation Criteria

7.2.1 Atmel AVR AT90S851

AT90S8515 is a low power, CMOS, 8-bit microcontroller based on the AVR RISC archi-
tecture [15] developed by Atmel [14]. It utilizes modified Harvard architecture concept.
Although it is an 8-bit microcontroller, each instruction takes one or two 16-bit words.
It has 32 single-byte general purpose registers with single clock cycle access time. It
supports five addressing modes.

7.2.2 TI MSP430G2231

Second candidate is MSP430G2231 [3], a 16-bit RISC architecture developed by Texas
Instruments [2]. It has been designed for low cost and low power embedded application.
It uses von-Neumann architecture with a single instructions and data memory space.
Instructions generally take one cycle per word fetched or stored. It has 27 core instruction
and 24 emulated instructions. It supports seven addressing modes for source operands
and four addressing modes for the specification of destination operands in instructions.
It has the following 16-bit registers:

RO: Program counter

R1: Stack pointer

R2: Status register (only in register addressing with word data type)

R2 and R3: are used as constant generators for the most frequent constants (0,1,2,4,8)
R4-R15: General purpose registers

The user guide found here [4] provide further details of MSP430 microcontroller archi-
tecture.

7.2.3 ARM LPC1342

Third candidate is the LPC1342 [13] developed by NXP (founded by Phillips) [12]; a
Cortex-M3 based low power 32-bit RISC mlicrocontroller. ARM is a fab-less company
which designs these architectures as Intellectual Property (IP) modules and sells licenses

7.3. SELECTED BENCHMARK PROGRAMS ol

to other companies which actually manufacture the chips, in the case of LPC1342, the
manufacturing company is NXP. There are various architectures provided by ARM tar-
geting various application areas, such as:

e ARM Cortex-A series targets the general purpose processor cores

e ARM Cortex-R series is a family of processors for real time systems

e ARM Cortex-M series processors are designed for low-power, memory efficient
embedded applications

Among this M-series processors, Cortex-M3 processors are especially designed for embed-
ded microcontrollers. It is based on modified Harvard architecture concept. It supports
Thumb-2 instruction set to reduce the instruction memory requirements by including
the support for 16-bit instructions. It has following general purpose and special purpose
registers:

RO0-R12: General purpose registers

R13: Stack pointer

R14: Link registers used by subroutines for return address
R15: Program counter

xPSR Program Status Register

Registers RO-R7 are accessible by all instructions, whereas, registers R8-R12 are only ac-
cessible by 32-bit instructions and 16-bit instructions cannot access them. The technical
reference manual of ARM Cortex-M3 architecture (as well as other ARM architectures)
can be found here [5] for further details.

For the sake of brevity, in rest of the chapter, MePoEfAr , TI, ARM and AVR refers
to our architecture, TT MSP430G2231, ARM Cortex-M3 LPC1342 and AVR AT90S851

microcontrollers respectively.

7.3 Selected Benchmark Programs

In this section a brief description of the benchmark programs is presented. The central
idea of each algorithm is summarized and the features of microcontroller architecture
which will be tested by each application are also mentioned.

Three types of Microprocessor /Microcontroller/DSP benchmarks are known in general
[25], [34]:

1. 1. Synthetic benchmarks (e.g. Whetstone Benchmark [23], Dhrystone Benchmark
[16]) developed to measure system specific parameters (CPU, Compiler, and so
on

)

2. Application based benchmarks (real world benchmarks) developed to compare
different system architectures in the same real fields of application, for instance
EEMBC benchmarks [10] such as AutoBench [9], Coremark [7]

3. Algorithm based benchmarks (a compromise between the first and the second type)
developed to compare different system architectures in special (synthetic) fields of
application.

The benchmark code used to test the processor architecture and compilers can be sepa-

0~ O UL W N

=
N = O ©

13

52 CHAPTER 7. ASSEMBLER LEVEL BENCHMARKING

rated into eight different modules:

1. Fixed-point math algorithms
Floating-point math algorithms
Logic calculations

Digital control

Fast Fourier Transform

Field processing

Loops and conditional jumps
Recursion and stack tests

PN DO W

At the assembler level, writing hand assembled codes for full fledged benchmarks for
these different architectures is a time consuming process. So we picked up some part of
these benchmarks (which are doing the real computations inside) and used them for our
assembler level performance evaluation and comparison. Following programs have been
used for our assembler level benchmarking:

1. Recursive Factorial Algorithm
String Copy Function

Bubble Sort Algorithm
Sensor Structure Program
Matrix Multiplication

FIR Algorithm

oot N

The above mentioned applications cover most of the features mentioned in above 8
modules. A brief description of these benchmark programs is given below.

7.3.1 Benchmark Application 1: Recursive Factorial Program

This program is the recursive factorial calculation program. It is based on the concept
that factorial of a number n is the number times the factorial of previous number (n—1).
This implies, factorial of n can be calculated if we know the factorial of n—1. This divide
and conquer approach is continued till number is reduced to 1. Factorial of 0 and 1 is 1,
which is the base case of recursion. A number is passed to factorial() function from the
main(). This function calculates the factorial and returns the result to main function.
Listing 7.1 provides the commented C code of this program.

/%

FactRec Benchmark Program

C Program implementing recursive factorial function.

A number is passed as an argument to this function and
factorial of the number is returned after calculations.
Factorial of a positive integer n, denoted by n!, is the
product of all positive integers less than or equal to n.
For example, 5! =5 X 4 X 3 X 2 X 1.

0! is defined to be 1.

*/

//prototype of the factorial function

7.3. SELECTED BENCHMARK PROGRAMS 93

14 long factorial(int);

15

16 void main(void)

17 {

18 //call the factorial function

19 factorial (5);

20 }

21

22 long factorial(int n)

23 {

24 if (n<=1) //i.e. if the number is less than or equal to 1
25 return 1; //then return 1

26 else //otherwise factorial will
27 return n * factorial(n—1); //be n times factorial of n-1
28 }

[\V]

0~ O O

11
12
13
14
15
16
17
18
19
20
21

23

Listing 7.1: Benchmark Application 1: Recursive Factorial Program

7.3.2 Benchmark Application 2: String Copy Program

This benchmark application performs simple string copy operation. StrCpy() function is
called from main(). Source and destination string addresses are passed as arguments to
this function. StrCpy() does the copy operation and returns back to main. This program
will test the conditional branching and data memory access capability. Listing 7.2 is the
C' code of this benchmark.

/%

StringCopy Benchmark Program

C Program implementing string copy For testing , source string is
initialized to ”Super Scalar”. the address of source and destination
strings are passed to StrCpy which will copy the string from source to
destination

*/

//prototype of the string copy function
void strCopy(char * ,char *);

void main(void)

//initialization of source string
char xstrSrc = ”Super Scalar”;

//destination string

char strDest[25];

//now call the copy function
strCopy (strSrc,strDest);

}

//string copy function

54

CHAPTER 7. ASSEMBLER LEVEL BENCHMARKING

24 void StrCpy(char x src,char xdest)

25
26
27
28
29
30

31
32
33

34
35
36

[\V]

0~ O Ok

9
10
11
12
13
14
15
16
17
18
19

{

}

int i=0; //index variable

while (src[i] != NULL) //loop until null character is not seen
{
dest [i]=src[i]; //copy a character from source to
//destination
it+; //increment the index
}
dest [i] = src[i]; //copy the last character, which is null

//character

return; //return to calling method (done copying)

Listing 7.2: Benchmark Application 2: String Copy Program

7.3.3 Benchmark Application 3: Bubble Sort Program

This application program is the famous bubble sort algorithm. An array of 10 numbers
is initialized in the main() function with the elements in the ascending order. The base
address of this array is passed to BSort() function. This function sorts the array in
descending order. This program will test the performance regarding array handling,
conditions and loops. C' code of this benchmark is given in Listing 7.3.

/%

BubbleSort Benchmark Program
Program to sort the array in ascending order. Bubble sort is used as the

*/

sorting algorithm. Bubble sort, also known as sinking sort, is a simple
sorting algorithm that works by repeatedly stepping through the list
to be sorted, comparing each pair of adjacent items and swapping them
if they are in the wrong order. The pass through the list is repeated
until no swaps are needed, which indicates that the list is sorted. The
algorithm gets its name from the way smaller elements ”bubble” to the
top of the list.

//size of the array

#define Arr_Size 10

void BSort(int a[Arr_Size]);

void main(void)

{

int Array[10];
int 1i;
// fill array with numbers

for (i=0; i<10; i++)

{

Array[i]=i;

20
21
22
23
24
25
26
27
28
29
30
31
32

33
34
35
36

37
38

39
40
41
42
43
44
45
46

1
2

7.3. SELECTED BENCHMARK PROGRAMS 95

}

//call the sorting function
BSort (Array);

}

//bubble sort function
void BSort(int a[Arr_Size])

{

int i,j,temp;

for (i=Arr_Size —2;i>=0;i——) //Array size is 10, 9 passes
//needed to completely sort

//array
{
for (j=0;j<=1i;j++)
{
if (a[j]l<a[j+1]) //if a number is greater than
//its next number
{
temp=a[j]; //then swap to bring them in
//descending order
aljl=alj+1];
a[j+1]=temp;
}//end for j

}//end for i

}//end function.

Listing 7.3: Benchmark Application 3: Bubble Sort Program

7.3.4 Benchmark Application 4: Sensor Structure Program

This application implements a record (known as structure in C language) to store the
data for sensor values, hence will test structure handling. A structure used to store
sensor value contains 3 members:

1. 1 char byte Flag indicating if sensor has been calibrated or not.
2. 1 short int containing the offset to be adjusted
3. 1 long int containing the actual sensor value

An array of five sensor values is declared. InitSensors() function initializes these values
to some arbitrary numbers. CalibrateSensors() function will subtract the offset from the
value of the sensors and set the Flag. main() will call these two functions to initialize
and calibrate sensor data. Listing 7.4 provides the C code of this benchmark.

/*

SensorStruct Benchmark Program

- o Ot

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

56 CHAPTER 7. ASSEMBLER LEVEL BENCHMARKING

C Program implementing a structure for sensor values.Structure contains 3
elements:

1 char byte Flag indicating if sensor has been calibrated or not.

1 short int containing the offset to be adjusted

1 long int containing the actual sensor value

An array of 5 sensors is declared. InitSensors() will initialize these
values to some numbers. CalibrateSensors () will subtract

the offset from the value of the sensors and set the Flag. main() will call

these two functions to initialize and calibrate sensor data.

*/

// sensor initialization function
void InitSensors();

// sensor calibration function
void CalibrateSensors();

// structure to hold sensor data
typedef struct
{
char Flag;
short Offset;
long Value;
}Sensor;

// array of 5 sensor values
Sensor sensors [5];

void main ()

{
InitSensors () ;
CalibrateSensors () ;

}

// sensor initialization function
void InitSensors ()
{

short 1ij;

i=0;

while (i<5)

{

sensors[i].Flag = 0;
sensors[i].0ffset = i;
sensors [i].Value = i+3;
i+

}

// sensor calibration function
void CalibrateSensors ()
{

short i=0;

while (i<5)

{

sensors[i].Flag = 1;

55
56
57
58

0~ O UL W

©

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

7.3. SELECTED BENCHMARK PROGRAMS o7

sensors [i].Value=sensors[i].Value — sensors[i].0ffset;
it++;

Listing 7.4: Benchmark Application 4: Sensor Structure Program

7.3.5 Benchmark Application 5: Matrix Multiplication Program

This benchmark application performs the matrix multiplication algorithm. In the main
function two matrices of order 3by 4 and 4 by 5, respectively; are initialized. Later stan-
dard matrix multiplication is performed to get the product matrix of order 3 by 5. This
application will be able to test the capability of the architecture to handle integer math,
nested loops with conditions and address calculations for matrix elements. Listing 7.5 is
the C code of this benchmark.

/%

MatrixMul Benchmark Program

Matrix Multiplication is the implementation of multiplication of a

3X4 matrix by 4X5 matrix to get a product 3X5 matrix. Both the matrixes
are initialized with some values. Later actual multiplication is
performed to get the product matrix.

*/
int main(void)
{
short m, n, p;
long m1[3][4]; //matrix 1
long m2[4][5]; //matrix 2
long m3[3][5]; //product matrix

// fill the first array with some numbers
// (mtp values for testing)
for(m = 0; m < 3; mt++)

{
for(p = 0; p < 4; p++)
{
ni[m][p]=mtp;
}
}

// fill the second array with some numbers
// (mtp values for testing)
for(m = 0; m < 4; mt++)

{
for(p = 0; p < 5; pt++)
{
m2 [m][p]=m+tp;
}
}

//perform multiplication

58 CHAPTER 7. ASSEMBLER LEVEL BENCHMARKING

37 for(m = 0; m < 3; mt++)

38 {

39 for(p = 0; p < 5; p++)

40

0 ma[m][p] = 0;

42 for(n = 0; n < 4; nt++4)
43

1 n3[n][p] += mi[n][n] * n2[n][p];
45 }

46 }

47 }

48 }

Listing 7.5: Benchmark Application 5: Matrix Multiplication Program

7.3.6 Benchmark Application 6: FIR Program

This application is the algorithm of 17th order FIR filter. This algorithm is used to
test the math calculations capability of the architecture involved in these types of ap-
plications. Similar applications widely implemented on microcontrollers are PID control
algorithms. In both types of applications the output is a weighted sum of the current
and a finite number of previous values of the input. In this example, input values for the
filter is an array of 51 16-bit arbitrary values representing discrete input signal. Calcula-
tions are performed and results are stored in the output array representing the discrete
output signal. Performance calculations for this benchmark are based on the assumption
that all the architectures have floating point hardware as there was huge difference in
results because of floating point calculations involved in the program. Listing 7.6 shows
the C' code of this benchmark.

1 /=

2 FIR Benchmark Program

3 The output of a filter is a weighted sum of the current and a finite number
of previous values of the input. For testing in this example, input
values for the filter is an array of 51 16—bit values. The order of the
filter is 17.

4 %/

5 void main(void)

6 {

7 int i, y; /% Loop counters =/

8 float COEFF[17]; //to hold the coefficients of the filter
9 int INPUT[67]; //to hold the input (A/D converted values)
10 float OUTPUT[36]; //to hold the (filtered) output values
11 float sum; //temporary used for sum

12

13 //fill the coefficient array with some values

14 for (i=0;i<17;i++)

15 {

16 COEFF [i]=1/(i+5.0);

17 }

18 //fill in the input values

19 for (i=0;i<67;i++)

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

7.4. RESULT EVALUATION AND COMPARISON 99

{
}

//apply filtering
for(y = 0; y < 36; y++)

INPUT [i]=1i;

{

sum=0.0;

for(i = 0; 1 < 8; i++)
{
sum=sum + COEFF [i]#(INPUT [y+16—i]+INPUT[y + 1i]);
}

OUTPUT [y] = sum + INPUT[y + 8] % COEFF [8];

}

}

Listing 7.6: Benchmark Application 6: FIR Program

7.4 Result Evaluation and Comparison

In this section, performance results are summarized for the above mentioned benchmark
programs. Static and dynamic results are tabulated and a comparison ratio of MePoEfAr
architecture with selected candidate architectures is also provided. Last rows in all these
tables present the mean value of the column. In case of actual values, for instance
number of instructions, execution cycles etc; arithmetic mean is calculated. Arithmetic
mean of the ratios does not show consistency, as mean of the ratios depends upon the
reference architecture. So for the mean of ratios, this number represents the geometric
mean of that column to show the overall comparison. The detailed internal calculations
performed to get these results are given in Appendix D.

7.4.1 Static Results

Total number of instructions required to implement some functionality by an architecture
is a measure of capability of instruction set of that architecture. Table 7.1 below shows
the total number of instructions required by the four microcontrollers. Figure 7.2 shows
this information graphically.

Table 7.1: Number of Instructions Required for Benchmark Programs

| Benchmark | MePoEfAr | TI | TI/MePoEfAr | ARM | ARM/MePoEfAr | AVR | AVR/MePoEfAr

1 | FactRec 14 26 1.86 14 1.00 53 3.79

2 | StringCopy 8 9 1.13 10 1.25 11 1.38

3 | BubbleSort 20 33 1.65 24 1.20 42 2.10

4 | SensorStruct 23 29 1.26 29 1.26 39 1.70

5 | MatrixMul 33 56 1.70 43 1.30 105 3.18

6 | FIR 45 76 1.69 51 1.13 189 4.20
Mean 24 38 1.52 29 1.19 73 2.51

As can be seen from the these results, for the simple 8-bit string copy benchmark, all
the controllers require same number of instructions. As the complexity of application
and number of bits in data types involved in programs increases, this gap increases.

60 CHAPTER 7. ASSEMBLER LEVEL BENCHMARKING

200

180
160
140
120
100 m MePoEfAr
TI
80 ARM
60 mAVR
40
. I I I I
. — . ‘
FIR

FactRec StringCopy BubbleSort SensorStruct MatrixMul

No of Instructions

Benchmarks

Figure 7.2: Number of Instructions Required for Benchmark Programs

AVR and TI require large number of instructions as most of the calculations involved
are for more than 8 and 16 bits. On the other hand, MePoEfAr has several register sets
(data types) and same instructions operate on these different register sets. Choice of
data types resulted in less number of instructions to implement the same benchmarks in
MePoEfAr .

Large number of operations is possible in MePoEfAr due to efficient instruction encoding
in spite of being 16-bit architecture. Support of large number of operations implies
less number of instructions required in benchmarks to achieve some functionality. As,
otherwise, operations need to be emulated with more instructions. For instance, TI
suffers because multiply instruction is not a part of instruction set. Although, it has 16-
bit hardware multiplier but it is available as memory mapped peripheral, which means
multiple instructions for reading from and writing to those registers for multiplication.
In case of AVR, though it has multiply instruction, it requires more instructions, because
registers are only 8-bit wide. So, more instructions are needed to achieve, for example,
32-bit addition/subtraction.

AVR also requires large number of instructions because of register pressure. This means
more data move instructions and memory spills because of register shortage. This is
because the data is moved to registers for some operational steps. If in case, before
all these steps are complete, more data needs to be fetched which requires even more
registers, previously occupied registers are stored in memory (spilled) and fetched back
later resulting in extra instructions. This is one of the reasons for large number of
instructions required by AVR in FIR benchmark in which 4 byte variables need to be
processed in the internal loop.

ARM also performs operations only on registers (load-store architecture). This means
instructions are required for moving data to registers before operations can be performed
on data. Similarly, store instructions are explicitly needed for storing the results back
to memory. This is the reason that, in spite of being 32-bit architecture, it requires, on
the average, 19% more instructions as compared to MePoEfAr .

Another reason for reduced number of instructions required by MePoEfAr is the variety

7.4. RESULT EVALUATION AND COMPARISON 61

400

350

300

250

100
. B Ol | I I

FactRec StringCopy BubbleSort SensorStruct MatrixMul FIR

= MePoEfAr
Tl
ARM

Memory Size (Bytes)
~
=3
o

WAVR

Benchmarks

Figure 7.3: Program Memory Size (Bytes) for Selected Benchmarks

of addressing modes possible in the architecture. Lesser instructions are required for
address computation as compared to other architectures because of variety of addressing
modes available in MePoEfAr . Although TI and AVR also have auto increment and
decrement addressing modes, but in orthogonal MePoEfAr , these modes work on all
the data types available in the architecture. On the average, for the given benchmarks,
ARM and TI require 19% and 52% more instructions than MePoEfAr respectively, while
instruction ratio of AVR to MePoEfAr is 2.51.

Memory efficiency of an Instruction set architecture is compared by calculating the total
number of bytes of program memory required for each benchmark application. Table 7.2
summarizes the total number of bytes required for all the six benchmark applications by
the four microcontroller architectures. These results are graphically plotted in Figure
7.3.

Table 7.2: Program Memory Size (Bytes) for Selected Benchmarks

| Benchmark | MePoEfAr TI | TI/MePoEfAr | ARM | ARM/MePoEfAr | AVR | AVR/MePoEfAr
1 | FactRec 28 74 2.64 34 1.21 100 3.57
2 | StringCopy 20 26 1.30 28 1.40 22 1.10
3 | BubbleSort 45 102 2.27 60 1.33 84 1.87
4 | SensorStruct 50 90 1.80 80 1.60 78 1.56
5 MatrixMul 81 174 2.15 112 1.38 210 2.59
6 | FIR 113 209 1.85 152 1.35 378 3.35
Mean 56 113 1.95 78 1.37 145 2.15

It can be seen From the results that ARM has better memory efficiency as compared to
TI and AVR; but MePoEfAr has a small memory footprint as compared to ARM with
an overall difference of 37%. ARM Cortex M3 supports Thumb-2 instruction set which
means support for 16-bit instructions; still 32-bit instructions are needed resulting in
large memory size.

For string copy program requiring 8-bit operations, AVR is close in memory efficiency to
MePoEfAr but for other applications which operate on higher data types, this difference
increases. AVR also requires large number of instructions for these applications which
directly means more instruction memory requirement. In short, MePoEfAr outperforms
AVR by a factor of 2.15.

62 CHAPTER 7. ASSEMBLER LEVEL BENCHMARKING

Memory efficiency of MePoEfAr is mainly because of the variable length instructions
resulting in instructions of 1, 2, 3 or 4 bytes depending upon their frequency of occur-
rence. Another reason for the memory efficiency of MePoEfAr is efficient support for
small immediate values and short displacements. In Thumb mode, ARM supports 3-bit
immediate values if two registers are specified and 8-bit immediate if a single register
operand is specified. TT has reserved two registers namely R2 and R3 as constant gener-
ators to generate five most frequent constants -1, 0, 1, 2, 4 and 8. In case of MePoEfAr ,
4-bit immediate and 8-bit offsets are accommodated directly inside first instruction word
with both operands specified and without reserving any registers.

7.4.2 Dynamic Results

Dynamic results describe the dynamic nature of the architecture. These results highlight
the aspects of architecture for the benchmark applications, the way these programs are
actually executed on it. For instance, the total number of instructions executed for a
given program gives an idea about the total power requirements and the instruction-
memory- CPU traffic. Table 7.3 summarizes the total number of instructions executed
by each of the architecture for the selected six benchmark applications.

Table 7.3: Total Number of Instructions Executed

| Benchmark | MePoEfAr TI TI/MePoEfAr ARM | ARM/MePoEfAr AVR | AVR/MePoEfAr
1 FactRec 42 87 2.07 42 1.00 81 1.93
2 StringCopy 44 57 1.30 58 1.32 59 1.34
3 BubbleSort 371 779 2.10 523 1.41 908 2.45
4 | SensorStruct 66 101 1.53 97 1.47 131 1.98
5 MatrixMul 599 1442 2.41 852 1.42 1662 2.77
6 FIR 5229 9331 1.78 6282 1.20 24349 4.66
Mean 1059 1966 1.83 1309 1.29 4532 2.33

Initializing instructions are executed only once in the application. They may require
a large part of program memory. From the execution point of view, the total number
of instructions executed inside the loop is important and has major contribution in
the execution time and total power consumption. Table 7.4 shows the total number of
instructions executed inside the loop.

Table 7.4: Total Number of Instructions Executed inside Loop

| Benchmark | MePoEfAr TI TI/MePoEfAr ARM | ARM/MePoEfAr AVR | AVR/MePoEfAr
1 | FactRec 39 84 2.15 39 1.00 76 1.95
2 | StringCopy 39 52 1.33 52 1.33 52 1.33
3 | BubbleSort 363 771 2.12 517 1.42 897 2.47
4 | SensorStruct 55 90 1.64 85 1.55 115 2.09
5 | MatrixMul 582 1420 2.44 833 1.43 1632 2.80
6 | FIR 5218 9324 1.79 6278 1.20 24342 4.67
Mean 1049 1957 1.87 1301 1.31 4519 2.37

Figure 7.4 and Figure 7.5 show the graph of total number of instructions executed inside
the loop for these benchmark programs by the four microcontrollers.

MePoEfAr requires less number of instructions for an application as compared to other
architectures which means less number of instructions executed for an application. This
is evident from Table 7.4 and graph in Figure 7.5. Because of larger instruction set of

7.4. RESULT EVALUATION AND COMPARISON 63

100000

10000 -
1000
W MePoEfAr
uTl
100 ARM
I I I I I i
14

FactRec StringCopy BubbleSort SensorStruct MatrixMul FIR

o

No of Instructions

=
o

Benchmarks

Figure 7.4: Total Number of Instructions Executed

100000

10000

1000
W MePoEfAr

No of Instructions

100 ARM

10

FactRec StringCopy BubbleSort SensorStruct MatrixMul FIR

Benchmarks

Figure 7.5: Total Number of Instructions Executed inside Loop

MePoEfAr , fewer instructions are required for an application. For example, loop control
instruction is a single instruction in MePoEfAr | but for other architectures two or three
instructions are required.

On the average for the given benchmarks, TI executes 87% more instructions than
MePoEfAr . For operations higher than 16-bits, TI has to perform multiple opera-
tions which for instance, can be done with a single instruction in MePoEfAr and ARM.
In case of ARM, 31% more instructions are executed as compared to MePoEfAr . In case
of AVR, an 8-bit architecture, this requirement is even more and ratio of instructions
executed on AVR to MePoEfAr is about 2.37.

Although speed is not the main design consideration, we have also performed a com-
parison of execution time. In order to compare the architectures based on execution
time, we need the information about the number of cycles required for the execution
of benchmark programs. For our architecture we have assumed that if the instructions
do not require extra operands to be fetched from memory then it is executed in one
clock cycle. Otherwise extra cycle is added for each of the extra operand fetched from
memory. For arithmetic operations, Table 7.5 gives the number of cycles assumed for

64 CHAPTER 7. ASSEMBLER LEVEL BENCHMARKING

100000

10000

1000
m MePoEfAr
T
100 ARM
I I I mAVR
1 | __ __ __ __

FactRec StringCopy BubbleSort SensorStruct MatrixMul FIR

No of Cycles

=
o

Benchmarks

Figure 7.6: Total Number of Execution Cycles

integer and floating point operations for different data types supported by MePoEfAr
. 16-bit hardware is assumed in for the numbers in this table. For 24-bit operations, a
little more than 1.5 is assumed for the overhead. For floating point operations, the extra
cycles have been assumed for the pre- and post-processing involved in these calculations
like scaling, normalization, alignment etc.

Table 7.5: Number of Cycles for Arithmetic Operations for Supported Data Types

Operation
ADD/SUB MUL DIV
Data Type 16 24 32 16 24 32 16 24 32
Byte 1 1.6 2 1 1.6 2 1 1.6 2
Word/Index 1 1.6 2 1 1.6 2 1 1.6 2
Double Word 1 1.6 2 2 2.6 3 2 2.6 3
Floating Point 4 4.6 5 6 6.6 7 8 8.6 9

Table 7.6 summarizes the total number of execution cycles consumed by six bench-
marks. Figure 7.6 graphically shows the number of execution cycles required by four
architectures for selected benchmarks. In order to make the comparison evident for all
applications, the vertical axis in this graph is on log scale because of large number of
cycles required by AVR especially for FIR application.

Table 7.6: Total Number of Execution Cycles

| Benchmark | MePoEfAr TI TI/MePoEfAr | ARM | ARM/MePoEfAr | AVR | AVR/MePoEfAr
1 | FactRec 70 241 3.44 73 1.04 285 4.07
2 | StringCopy 73 145 1.99 103 1.41 93 1.27
3 | BubbleSort 982 2299 2.34 728 0.74 936 0.95
4 | SensorStruct 145 218 1.50 142 0.98 214 1.48
5 | MatrixMul 1679 4061 2.42 1087 0.65 5733 3.41
6 | FIR 8683 15182 1.75 9502 1.09 37138 4.28
Mean 1939 3691 2.16 1939 0.95 7400 2.18

In order to make a fair comparison, it is assumed that all the architectures have floating
point hardware unit. AVR and ARM executes all instructions in single cycle but TI
and MePoEfAr require multiple cycles for different instructions. It can be seen from the
results of Table 7.6 and graphs of Figure 7.6 that number of cycles required by TI and
AVR are more than two times that of MePoEfAr . This primarily is because of more

7.4. RESULT EVALUATION AND COMPARISON 65

100000
10000

1000

= MePoEfAr
|
ARM
I I I I mAVR
1 _| | | | | |

FactRec StringCopy BubbleSort SensorStruct MatrixMul FIR

No of Cycles
-

1

Q
s}

=
o

Benchmarks

Figure 7.7: Instruction Memory Traffic (Cycles)

number of instructions required for these benchmarks which results in more number of
instructions executed. In other words, for MePoEfAr , fewer instructions have to be
fetched and processed. Furthermore, TI has von Neumann architecture so it cannot
perform instruction and memory accesses in parallel.

In case of ARM, most of the instructions are executed in a single cycle as it is specifically
designed for speed. ARM has a modified Harvard architecture, so it has a single address
space but physically two memories which in turn facilitates parallel memory accesses.
But, ARM is a load-store architecture, it needs instructions to load data from memory
to perform operations on this data. Similarly, when the results need to be written to
memory, store instructions are explicitly required. This means more instruction fetches
and decodes. On the average for all the benchmarks, ARM requires 5% less execution
cycles as compared to MePoEfAr .

Memory access consumes considerable amount of power. Table 7.7 below summarizes
the instruction memory traffic in cycles and Figure 7.7 shows the same information
graphically. Vertical axis in this graph is on log scale.

Table 7.7: Instruction Memory Traffic (Cycles)

| Benchmark | MePoEfAr TI TI/MePoEfAr | ARM | ARM/MePoEfAr AVR | AVR/MePoEfAr
1 | FactRec 42 125 2.98 42 1.00 177 4.21
2 | StringCopy 46 73 1.59 58 1.26 59 1.28
3 | BubbleSort 418 1308 3.13 523 1.25 908 2.17
4 | SensorStruct 78 161 2.06 97 1.24 131 1.68
5 | MatrixMul 685 2499 3.65 852 1.24 3762 5.49
6 FIR 7473 12436 1.66 6282 0.84 24349 3.26
Mean 1457 2767 2.39 1309 1.13 4898 2.66

ARM has 16- or 32-bit instruction which implies a single instruction memory cycle to
fetch an instruction. But, ARM requires more number of instructions on the average,
so instruction memory cycles consumed by ARM are 13% more than MePoEfAr on the
average as can be seen from Table 7.7.

AVR also executes instructions in a single cycle but it requires higher number of instruc-
tions than MePoEfAr which directly translates to higher instruction memory traffic by

66 CHAPTER 7. ASSEMBLER LEVEL BENCHMARKING

a factor of 2.66.

In case of T1, as the number of instructions fetched from the memory is large, and on top
of it, most of the instructions require multiple cycles. This results in higher instruction
memory traffic by a factor of 2.39 as compared to MePoEfAr .

In order to compare data memory traffic, data memory cycles are also computed. In
order to have a fair comparison, same width of MePoEfAr is assumed as used by the ar-
chitecture in consideration. This mean 16-bit path from data memory is considered when
comparing with TT and AVR, whereas, 32-bit bus width is assumed for the comparison
with ARM.

Table 7.8 summarizes the data memory traffic in cycles. Although, same input data is
processed still there is a variation in data memory cycles for some benchmarks.

Table 7.8: Data Memory Traffic (Cycles)

MePoEfAr
| Benchmark TI | TI/MePoEfAr | ARM | ARM/MePoEfAr | AVR | AVR/MePoEfAr
16-bit | 32-bit
1 | FactRec 10 10 10 1.00 10 1.00 20 2.00
2 | StringCopy 26 26 26 1.00 26 1.00 26 1.00
3 | BubbleSort 380 190 380 1.00 190 1.00 380 1.00
4 | SensorStruct 50 35 50 1.00 35 1.00 90 1.80
5 MatrixMul 334 167 424 1.27 167 1.00 908 2.72
6 | FIR 1536 1106 1536 1.00 1106 1.00 10600 6.90
Mean 389 256 404 1.04 256 1.00 2004 2.02
Mean 388 255 403 1.04 256 1.03 2004 2.09

An interesting point worth mentioning is that, though MePoEfAr and TI can access
16-bits data in single cycle still in case of MatrizMul TI requires 27% more data memory
cycles as compared to MePoEfAr . This is because one element of matrix is needed twice
as multiplier is 16-bit wide. Furthermore, inner loop needs register to calculate addresses
of matrix elements as well as for the actual multiplication of elements. Programs are
optimized considering instruction memory as first goal. So if we place this data in
registers once, and for later operations, then data memory cycles will become same but
program memory size and number of instructions executed will be adversely affected.
But, in case of MePoEfAr , availability of large number of registers of different sizes
facilitates storage of intermediate results in registers and operations are possible on these
registers. This results in reduced data memory access even for complex applications.

For AVR, in case of StringCopy benchmark, data memory cycles are same as required
by other architectures, but for other benchmarks it requires far more data memory cy-
cles. Furthermore, Registers are 8-bits wide so, multiple registers required for operations
because of which limited data can be kept in registers. Especially in case of FIR appli-
cation, data needs to be stored back to memory because of unavailability of registers,
and fetched back later (spills) which caused considerable data memory traffic.

7.5 Summary

In order to have the overall impression of the architectures under discussion, all the
results discussed above are summarized in the Table 7.9. These numbers are ratios and

7.5. SUMMARY 67

mean of all the ratios is also given at the bottom of table to show the overall comparison.

Table 7.9: Performance Comparison Summary

Benchmark TI/MePoEfAr ARM/MePoEfAr AVR/MePoEfAr
1 No of Instructions 1.52 1.19 2.51
2 Program Size 1.95 1.37 2.15
3 Instructions Executed 1.83 1.29 2.33
4 Instructions Executed in Loop 1.87 1.31 2.37
5 Execution Cycles 2.16 0.95 2.18
6 Instruction Memory Traffic 2.39 1.13 2.66
7 Data Memory Traffic 1.04 1.03 2.09
Mean 1.77 1.17 2.32

In summary it can be concluded from the above table that MePoEfAr architecture has
better performance in all respects as compared to TI architecture. Overall MePoEfAr
architecture performance is 77% better than TT microcontroller.

MePoEfAr is better than ARM in most of the cases, while being same for data memory
cycles. ARM has winning situation based on the execution cycles. This gain is because
of the instructions to calculate array address in single cycle by a single instruction which
utilizes the shifter. This can be seen from the bubble sort and matrix multiplication
benchmark results for execution cycles. ARM is a 32-bit architecture and can represent
these type of instructions. Overall MePoEfAr outperforms ARM by 17%.

There is a considerable difference in performance results of AVR as compared to other
architectures in all respects. On the average for the given benchmarks, MePoEfAr per-
formance is better than AVR by a factor of 2.31.

68

CHAPTER 7. ASSEMBLER LEVEL BENCHMARKING

Conclusion and Future Work

This chapter starts with a brief summary of the whole thesis in Section 8.1. We high-
light the conclusions of this work in Section 8.2. Finally, Section 8.3 provides some
recommendations for future work.

8.1 Summary

This section gives a brief summary of the work presented in this thesis. We provide short
description of each chapter as follows:

Chapter 1 provided an introduction to the work presented in this thesis. It discussed
the key motivation behind the thesis and enlisted the main contributions of this work.

Chapter 2 presented an overview of microcontroller architectures and their classifica-
tion, which are based on several criteria. Three well-known embedded microcontroller
architectures were discussed in detail, which were used for the performance comparison.

Chapter 3 discussed the static profiling. The statistics of high level language constructs
obtained from the developed profiler were provided. These statistics show the frequency
distributions of the C' language constructs in four benchmark programs.

Chapter 4 provided the details of MePoEfAr architecture. It started with overall archi-
tecture properties, type of architecture, bit and byte numbering, data types, instruction
classification and register sets. Global architecture issues such as layout of the program
status word and Memory Map were provided. Various instruction formats in MePoE-
fAr architecture with examples were detailed. Furthermore, operation sets supported by
these instruction formats were also tabulated with a description on how these operations
affect the condition codes. A brief description of exceptional conditions like traps and
interrupt vectors were provided followed by a discussion of extension of program and
data Memory. The summary of encoding cost and feasibility of MePoEfAr architecture
were discussed, in order to show the availability of the encoding space in the architecture,
for future extensions.

Chapter 5 gave the implementation details of MePoEfAr assembler. It covered the
details of the intermediate steps involved to translate the assembly program to machine
code. Instruction bit assignments were provided which we used to represent assembly
instructions as bit patterns.

Chapter 6 discussed MePoEfAr interpreter which has been used for the simulation of the
MePoEfAr microcontroller. It discussed the two main parts of MePoEfAr interpreter.
First part loads the machine code to memory and performs some book keeping for
debugging information. Second part is the microcontroller model which fetches the

69

70 CHAPTER 8. CONCLUSION AND FUTURE WORK

instructions from memory, decodes and executes them.

Chapter 7 covered the assembler level benchmarking details, which we performed to
evaluate the performance of MePoEfAr architecture. Furthermore, it provided the re-
sults of static and dynamic comparison of performance with three well known embedded
microcontrollers.

This chapter, that is Chapter 8, summarizes the thesis. Conclusions drawn from our
work are provided followed by some recommendations for future work.

8.2 Conclusions

Conclusions drawn based on the work presented in this thesis are enumerated below. For
the sake of brevity, in rest of the chapter, TI, ARM and AVR refers to Texas Instruments
MSP430G2231, ARM Cortex-M3 LPC1342 and Atmel AVR AT90S851 microcontrollers

respectively.

e Statistics presented in this thesis show that frequency distribution of C' language
constructs (statements, operations, operands etc.) do not have a uniform distri-
bution over the complete range. Furthermore, a single architecture cannot satisfy
the demands of all the applications, so intelligent trade-offs must be made in favor
of the most frequent constructs. Conclusions drawn from the static analysis of the
benchmarks programs are:

1. Assignments are the most frequent statements. About 60% of the statments
are assignments.

2. 73% of assignments have a simple variable on the left hand side of assignments.

3. Most of the assignments have a simple expression on the right hand side.
About 55% of assignments have either a constant or a simple variable on
right hand side.

4. Arithmetic operations are the most frequent operations. Among arithmetic
operations, addition and multiplication are the most frequent operations.

5. After relational operations, type conversion operations are also frequent. Most
of the conversions are between 16 and 32 bit integer data types.

6. Based on data type, 32-bit operations are the most frequent operations.

7. Small constants are the most frequent ones. 4-bit constants have an accu-
mulative frequency of about 87%. 0, 1, 2, 4 and 8 are the most frequent
constants.

8. Among local variables, 32-bit integers, 16-bit integers, pointers and 8-bit inte-
gers have a frequency distribution of about 61%, 13%, 12%, and 5%, respec-
tively.

e The results of assembler level benchmarking show that MePoEfAr architecture is
77% and 17% better than TI and ARM, respectively. Furthermore, MePoEfAr
outperforms AVR by a factor of 2.31. Following conclusions can be drawn from
the detailed analysis of these results:

1. Number of instructions required to implement some functionality by an archi-
tecture is a measure of capability of instruction set of that architecture. On
average, for the given benchmarks, ARM and TI require 19% and 52% more

8.2. CONCLUSIONS 71

instructions than MePoEfAr respectively. Furthermore, the instruction ratio

of AVR to MePoEfAr is 2.51. The effeciency of MePoEfAr compared to other

architectures is because of the follwoing reasons:

(a) Operations normally involve 16 and 32-bit data types and AVR and
MSP430 need multiple instructions for these operations whereas MePoE-
fAr has 8, 16 and 32-bit data types.

(b) Availability of large number of operations in MePoEfAr architecture as
compared to other architectures, requires no emulation of these operations
by extra instructions.

(¢c) ARM is a load store architecture, which required instructions to load data
in registers, perform operations and later instructions to store the results
back to memory.

(d) AVR and TI have auto-increment and auto-decrement addressing modes,
requiring less number of instructions for address computations. But, in
MePoEfAr, these modes work on all the data types available in the ar-
chitecture.

2. Memory efficiency of an Instruction set architecture is compared by calculat-
ing the total number of bytes of program memory require for each benchmark
application. MePoEfAr is 37%, 95% and 115% more memory effecient than
ARM, TI and AVR, respectively. This memory effeciency is achieved as fol-
lows:

(a) Although ARM supports thumb-2 instruction set, which means the sup-
port for 16-bit instructions in addition to the 32-bit instructions. Despite
of these 16-bit instructions, 32-bit instructions are alse needed in these
benchmarks increasing the program memory size.

(b) Variable length instructions in the MePoEfAr architecture has proven to
be more memory efficient. Frequently occurring instructions are short
2-byte instructions. On the other hand 3 to 4 byte instructions are not
very frequent.

(¢) MePoEfAr provides efficient support for small immediate values and short
displacements. In thumb mode, ARM supports 3-bit immediate values if
two registers are specified and 8-bit immediate if a single register operand
is specified. TI has reserved two registers namely R2 and R3 as constant
generators to generate frequent constants (0, 1, 2, 4 and 8). In case of
MePoEfAr | 4-bit immediate values and 8-bit offsets are accommodated
directly inside the first instruction word, with both operands specified
and without reserving any registers.

3. Instructions ezxecuted for a given program give an idea about the total power
requirements and the instruction- memory- CPU traffic. TI and ARM exe-
cutes 87% and 31% more instructions than MePoEfAr. Furthermore, ratio of
instructions executed on AVR to MePoEfAr is about 2.37. This efficiency of
MePoEfAr is due to the following reasons:

(a) Larger instruction set of MePoEfAr resulted in fewer instructions for an
application. For example, loop control instruction is a single instruction
in MePoEfAr, but for other architectures two or three instructions are

72

CHAPTER 8. CONCLUSION AND FUTURE WORK

required.

(b) For operations higher than 16-bits, TT and AVR perform operations with
multiple instructions which can be performed with a single instruction in
MePoEfAr.

(c) TI, AVR and ARM require a large number of instructions, which result
in large number of instructions executed by these architectures.

4. Ezecution cycles required by TT and AVR are more than two times as com-
pared to MePoEfAr. This is because of more number of instructions required
for these benchmarks which resulted in more number of instructions executed.
In other words, for MePoEfAr , fewer instructions have to be fetched and pro-
cessed. Furthermore, TT has von Neumann architecture so it cannot perform
instruction and memory accesses in parallel.

5. Instruction memory accesses consume power. ARM required 13% more in-
struction cycles as compared to MePoEfAr. TI and AVR required higher
instruction memory cycles by a factor of 2.39 and 2.66, respectively. More
number of instructions required by these architecture result in higher instruc-
tion memory traffic.

6. In case of data memory traffic, T, ARM and MePoEfAr require almost same
number of cycles. In case of AVR, registers are 8-bit wide. So multiple
registers are required for operations which results in limited data to be kept in
registers. Due to register spills, data must be stored back to memory because
of unavailability of registers, and fetched back later, resulting in increased
data memory traffic.

8.3 Future Work

Some recommendations for the future work are enlisted as follows:

1. In this work, we have performed static profiling analysis to obtain the frequency

distributions of various C' language constructs. Static results are important for the
design of a memory efficient architecture. In contrast to static analysis, dynamic
profiling is performed during the program execution. The results of dynamic pro-
filing are also important, as they point out the most frequently executed constructs
in the benchmarks. Hence, there is a need of dynamic profiling, which can be given
the second priority in making design decisions and to fine tune the architecture.

. Cost of 8-bit instructions (in the units of 1024) is 216. This is 21% of the total

encoding space available. From the results of static analysis, 8-bit data type is not
so frequent. Hence, further analysis is required to probably remove the support of
this data type and use this encoding space to make the architecture more efficient.

. The variable length instructions used in MePoEfAr architecture proved to be more

memory efficient. This efficiency has its cost in terms of complex decoding logic
required by instructions. Further work is required to synthesize the decoding logic
to obtain some numbers for the area overhead introduced by this decoding logic.

. The interpretive simulator which we have developed, does not incorporate the

information about the number of cycles consumed by individual instructions and

8.3. FUTURE WORK 73

the overall execution cycles of the complete benchmark. Hence, there is a need
to add the information about the execution cycles to make it a cycle accurate
simulator, or to perform an RTL simulation (VHDL simulation). This will help
in running larger benchmarks and will save the time consumed in performing the
calculations for comparison manually.

5. Another important property of an instruction set architecture is its support for
compilers. Hence high level language compiler is required to further ease the bench-
marking process. Furthermore, results from the compiler writing process can prove
to be another important feedback for the architecture.

74

CHAPTER 8. CONCLUSION AND FUTURE WORK

Bibliography

http: // flex. sourceforge. net/.
http: // focus. ti. com/.
http: // focus. ti. com/docs/prod/ folders/print/msp43092231. html .

http: // focus. ti. com/general/docs/ it/ getliterature. tsp?
literatureNumber=slaul44héfileType=pdf.

http: //infocenter. arm. com/help/ index. jsp? topic=/com. arm. doc.
ddi0337i/ index. html.

http: //www. ace. nl/compiler/ cosy. html.
http: //www. coremark. org/home. php.

http: //www. design-reuse. com/ articles/ 21745/
interpretive-instruction-set-simulator. himl.

http: //www. eembc. org/benchmark/ automotive_ sl. php.
http: //www. eembc. org/ home. php.

http: //www. gnu. org/ software/bison/.

http: //www. nzp. com/ .

http: //www. nzp. com/#/pip/pip=[pip=LPC1311_13_42_43,pfp="T71567]
|pp=[t=pip, i=LPC1311_13_42_43].

www. atmel. com.
www. atmel. com/ dyn/ resources/prod_ documents/DOCO841. pdf .

Dhrystone benchmark: Rationale for version 2 and measurement rules, SIGPLAN
Notices 23 (1988), 49-62.

Microchip industry research, 2011.

John Backus, Can programming be liberated from the von neumann style?: a func-
tional style and its algebra of programs, Commun. ACM 21 (1978), 613-641.

R. Bannatyne and G. Viot, Introduction to microcontrollers. i, Wescon /98, sep 1998,
pp- 350 —360.

K.L.M. Bertels, S. A. Ostadzadeh, and R. J. Meeuws, Advanced profiling of appli-
cations for heterogeneous multi-core platforms, July 2011, p. 13.

75

http://flex.sourceforge.net/
http://focus.ti.com/
http://focus.ti.com/docs/prod/folders/print/msp430g2231.html
http://focus.ti.com/general/docs/lit/getliterature.tsp?literatureNumber=slau144h&fileType=pdf
http://focus.ti.com/general/docs/lit/getliterature.tsp?literatureNumber=slau144h&fileType=pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337i/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337i/index.html
http://www.ace.nl/compiler/cosy.html
http://www.coremark.org/home.php
http://www.design-reuse.com/articles/21745/interpretive-instruction-set-simulator.html
http://www.design-reuse.com/articles/21745/interpretive-instruction-set-simulator.html
http://www.eembc.org/benchmark/automotive_sl.php
http://www.eembc.org/home.php
http://www.gnu.org/software/bison/
http://www.nxp.com/
http://www.nxp.com/#/pip/pip=[pip=LPC1311_13_42_43,pfp=71567]|pp=[t=pip,i=LPC1311_13_42_43]
http://www.nxp.com/#/pip/pip=[pip=LPC1311_13_42_43,pfp=71567]|pp=[t=pip,i=LPC1311_13_42_43]
www.atmel.com
www.atmel.com/dyn/resources/prod_documents/DOC0841.pdf

76

BIBLIOGRAPHY

[21]

[30]

31]

[32]

33]

[34]

Koen Bertels, Stamatis Vassiliadis, Elena Moscu Panainte, Yana Yankova, Carlo
Galuzzi, Ricardo Chaves, and Georgi Kuzmanov, Developing applications for poly-
morphic processors: The delft workbench, 2006.

Robert F. Cmelik and David Keppel, Shade: A fast instruction set simulator for
execution profiling, Tech. report, Mountain View, CA, USA, 1993.

B A Wichmann H. J. Curnow, A synthetic benchmark, Computer Journal 19 (1976),
1.

John L. Hennessy and David A. Patterson, Computer architecture: A quantitative
approach, 3rd edition, Computer Architecture: A Quantitative Approach, 3rd Edi-
tion, Morgan Kaufmann, 3rd Edition, May 2002.

K.-D. Kramer, T. Stolze, and T. Banse, Benchmarks to find the optimal
microcontroller-architecture, Computer Science and Information Engineering, 2009
WRI World Congress on, vol. 2, 31 2009-april 2 2009, pp. 102 —105.

R. Leupers, J. Elste, and B. Landwehr, Generation of interpretive and compiled
instruction set simulators, Design Automation Conference, 1999. Proceedings of
the ASP-DAC ’99. Asia and South Pacific, jan 1999, pp. 339 —342 vol.1.

Mingsong Lv, Qingxu Deng, Nan Guan, Yaming Xie, and Ge Yu, Armiss: An
instruction set simulator for the arm architecture, Embedded Software and Systems,
2008. ICESS ’08. International Conference on, july 2008, pp. 548 —555.

Christopher Mills, Stanley C. Ahalt, and Jim Fowler, Compiled instruction set sim-
ulation, 1991.

Achim Nohl, Gunnar Braun, Oliver Schliebusch, Rainer Leupers, Heinrich Meyr,
and Andreas Hoffmann, A universal technique for fast and flexible instruction-set
architecture simulation, Proceedings of the 39th annual Design Automation Confer-
ence (New York, NY, USA), DAC 02, ACM, 2002, pp. 22-27.

David A. Patterson and David R. Ditzel, The case for the reduced instruction set
computer, SIGARCH Comput. Archit. News 8 (1980), 25-33.

David A. Patterson and Carlo H. Sequin, Risc i: A reduced instruction set vlsi
computer, 25 years of the international symposia on Computer architecture (selected
papers) (New York, NY, USA), ISCA ’98, ACM, 1998, pp. 216-230.

H. Meyr V. Zivojnovic, S. Tjiang, Compiled simulation of programmable dsp archi-
tectures, IEEE Workshop on VLSI Signal Processing (1995).

John von Neumann, First draft of a report on the evdac, charles babbage institute
reprint series for the history of computing, mit press, vol. 12, 1987.

Reinhold P. Weicker, An overview of common benchmarks, Computer 23 (1990),
65-75.

O~ O T W

©

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

Lexical Analyzer Generator

Code

coption nounput

%

7o{
#include
#include
#include
#include

7 globals .h”
7 grammar .
<stdio .h>
<string.h>

void cstyle_comment () ;

tab.h”

/* import token definitions from Yacc

/* Multiline C-Style comment =/

7',3 ‘?3 ',-s |{dlglt}
7707){valid_char }x

return NEWLINE; }
BREGISTER;; }
WREGISTER;; }
DREGISTER;; }
FREGISTER;; }

int lineno = 1;

%}

digit [0-9]

hdigit [a—fA—F0—9]

odigit [0-7]

letter [a—zA-Z]

newline \n

whitespace [\t]+

hash b

atrate 7@

valid_char {letter}|”

symbol ({1letter}|”

label {symbol}”:”
comment 757 %\ n

hnumber 0[xX]{hdigit}+
bnumber 0[bB][01]+

onumber 0[o0]{odigit}+
dnumber {digit}+

fnumber {digit}+\.{digit}+
breg B{digit}+

wreg w{digit}+

dreg D{digit}+

freg F{digit}+

xreg X{digit}+
norm_char ' (\\.[\\\n|["\\]) [']?
character {norm_char}

string VO AR [T\\\? T) 6\
%%

X {cstyle_comment () ;}
{comment } {lineno++;
{breg} {return

{wreg} {return

{dreg} {return

{freg} {return

{xreg} {return

XREGISTER; }

7

*/

78 APPENDIX A. LEXICAL ANALYZER GENERATOR CODE

45 {symbol} {return SYMBOL;}

46 {label} {return LABEL;}

47 {bnumber} {return BNUMBER; }
48 {onumber} {return ONUMBER; }
49 {dnumber} {return DNUMBER;}
50 {hnumber} {return HNUMBER; }
51 {fnumber} {return FNUMBER;}
52 {character} {return CHARACTER;}
53 {string} {return STRING;}

54 {hash} {return HASH;}

55 {atrate} {return ATRATE;}

56 7.7 {return COMMA; }

57 737 {return SEMI.COLON; }
58 77 {return COLON; }

59 747 {return PLUS;}

60 77 {return MINUS;}

61 77 {return MULTIPLY;}
62 7/ {return DIVIDE;}

63 7 (7 {return LBRACK;}

64 7)” {return RBRACK;}

65 {newline} {lineno++; return NEWLINE; }
66 {whitespace} {/* ignore whitespaces x/}
67 %%

68 void cstyle_comment ()

69 {

70 char c;

71 int done = FALSE;

72 char * text = yytext + 2;

73 int i = 0;

74

75 while (! done)

76 {

T while ((c = input()) != 'x")
78 {

79 if (¢ = EOF)

80 return ;

81 text [i++4] = ¢;

82 if (¢c= "\n')

83 lineno++;

84 }

85 text [i++4] = c;

86 while ((c = input()) = 'x')
87 {

88 if (¢ = EOF)

89 return ;

90 text [i++] = c;

91 }

92 text [i++4] = c;

93 if (¢ = "\n')

94 lineno-++;

95 if (e ="/")

96

97 done = TRUE;

98 text[i] = '"\0';

99 }

79

100 }

101 }

102

103 #ifdef _MSC_VER

104 int yywrap()

105 {

106 return 1;

107 /+#hex_char "(\\) (x){hdigit }{hdigit}
108 oct_char "(\\){odigit }{odigit }{odigit}
109 character {hex_char }|{oct_char }|{norm_char}x/
110

111

112 }

113 #endif

Listing A.1: Flex Code for the Lexical Analyzer Generator for MePoEfAr Assembler

80

APPENDIX A. LEXICAL ANALYZER GENERATOR CODE

O~ O T Wi

W W W WWWh NNNDNDNDDNDDNDNDN ===
TR WD H O ©OTDUUhR WNRFE O WO U R WNHFEOO©

36
37
38

39
40
41
42
43

Parser Generator Code

7{

#include <stdio.h>
#include <ctype.h>
#include <stdlib .h>
#include <string.h>
#include ”ast.h”
#include ”globals.h”

#define YYSTYPE TreeNode

TreeNode * AST;
extern int lineno;

TreeNode #tmpNodes |[NUM_OF_CHILDREN| = {NULL }; // Temperory Nodes
int tni = 0; // Temperory Nodes index
char tempStr[20] = "7 ;

extern char * yytext; // Token string from Scanner
extern int yylex();

void yyerror(const char % msg);
#define ADD_TO_LIST(ss, sl, s2) \
{ \
YYSTYPE t = si; \
if (t = NULL) \
ss = s2; \
else
{ \
while (t—>next != NULL)\
t = t—>next; \
t—>next = s2; \
ss = si; \
} \
}
%0}
%token BREGISTER WREGISTER DREGISTER FREGISTER XREGISTER

%token HASH ATRATE SYMBOL LABEL BNUMBER ONUMBER DNUMBER HNUMBER FNUMBER
CHARACTER STRING

%token COMMA SEMI_COLON PLUS MINUS MULTIPLY DIVIDE

%token LBRACK RBRACK NEWLINE COLON

%left PLUS MINUS
%left MULTIPLY DIVIDE

81

82 APPENDIX B. PARSER GENERATOR CODE

44

45 %%

46 program : stmt_seq { AST = $1;}

47 ;

48

49 stmt_seq : stmt_seq stmt { ADD_TO_LIST($$, $1, $2) }

50 | stmt { $$ = $1; }

51 ;

52 stmt : statement NEWLINE { $$ = $1; }

53 | statement SEMI_COLON { $$ = $1; }

54 | NEWLINE

55 | SEMI_COLON

56 ;

57 statement : labels operation

58 {

59 YYSTYPE t = $1;

60

61 while (t—>child[0] != NULL)

62 t = t—>child [0];

63 $1—>next = $2;

64 $$ = $1;

65 }

66 | operation { $$ = $1; }

67 | labels { $$ = $1; }

68 ;

69 labels : labels label

70 {

71 YYSTYPE t = $1;

72 if (t= NULL)

73 $$ = $2;

74 else

75 {

76 while (t—>child[0] != NULL)

7 t = t—>child [0];

78 t—>child [0] = $2;

79 $$ = $1;

80 }

81 }

82 | label { $$ = $1; }

83 ;

84 operation : instruction { $$ = $1; }

85 | label num_const { ($$ = $1)—> nodeType = NT_DIRECTIVE; ($$—

child [0]) = ($2);}

86 ;

87 instruction : symbol operands

88 {

89 int i;

90

91 ($$ = $1)—>nodeType = NT_INSTRUCTION;

92 ($$)—>SG =SG_NA; //SG not applicable or not yet
specified

93 ($$)—>op = OP_INVALID; //not valid or not yet
specified

94 ($$)—>instrSize = —1; //not yet specified so

represented by —1

95
96
97
98
99
100
101

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

124
125
126
127
128
129
130
131
132
133
134
135
136

137
138
139
140
141

142
143
144

83

operands

operand

mem_ref

DX_addr

*/

Ptr_addr

*/

)

SMptr_addr

for(i = 0; i < tni && i < NUM_OF_CHILDREN; i++)

$$—>child[i] = tmpNodes[i];
tni = 0;
}
symbol {
($$ = $1)—>nodeType = NT_INSTRUCTION;
($$)—>SG =SG_NA; //SG not applicable or not yet
specified
($$)—>op = OP_INVALID;
($$)—>instrSize = —1;
}
operands COMMA operand
{
if (tni < NUM_OF_CHILDREN)
tmpNodes [tni++] = $3;
}

operand { tmpNodes|[tni++] = $1; }

reg { $$ = $1; }
imm { $$ = $1; }
men_ref { $$ = $1; }
symbol { $$ = $1; }

DX_addr { $$ = $1; }
Ptr_addr { $$ = $1; }
SMptr_addr { $$ = $1; }
Abs_addr { $$ = $1; }

num_const LBRACK reg RBRACK

{

/% D(X) Addressing

$$ = newTreeNode(NT_DX_ADDR, NULL);

/% D(X) Addressing x/

/* Pointer Addressing

$$—>child [0] = $1;
$$—>child [1] = $3;
}
symbol LBRACK reg RBRACK
{
$$ = newTreeNode(NT_DX_ADDR, NULL);
$$—>child [0] = $1;
$$—>child [1] = $3;
}
ATRATE reg
{
($$ = $2)—>nodeType = NT_PTR_ADDR;
}

LBRACK reg RBRACK PLUS

ptr Addressing x/
{ /*Post increment (X)+ * /
($$ = $2)—>nodeType = NT_SMPTR_POST_INC_ADDR;

}

/% Self Modifying

145

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

161

162

163

164

165
166

167
168
169
170
171
172
173
174
175
176

177
178
179
180
181
182
183
184
185
186

187
188
189
190

84 APPENDIX B. PARSER GENERATOR CODE

| MINUS LBRACK reg RBRACK /*Pre decrement —(X

) */
{
($$ = $3)—>nodeType = NT_SMPTR_PRE_DEC_ADDR;

}

Abs_addr : ATRATE num_const { $$ = $2; ($$—>nodeType) = NT_ABSADDRIMM;}
| ATRATE symbol { $$ = $2; ($$—>nodeType) = NT_ABSADDRID;}

imm : HASH num_const { $$ = $2; ($$—>nodeType) = NT_IMM;}

| HASH symbol { $$ = $2; ($$—>nodeType) = NT_ID;}
symbol : SYMBOL { $$ = newTreeNode(NT_ID, yytext); }

label : LABEL { $$ = newTreeNode(NT_LABEL, yytext); }
reg : BREGISTER { $$ = newTreeNode(NT_BREGISTER, yytext
Changed yytext+1l to yytext x/ }
| WREGISTER { $$ = newTreeNode(NT_WREGISTER, yytext
Changed yytext+1 to yytext */ }
| DREGISTER { $$ = newTreeNode(NT_DREGISTER, yytext
Changed yytext+1l to yytext =/ }
| FREGISTER { $$ = newTreeNode(NT_FREGISTER, yytext
Changed yytext+1 to yytext %/ }
| XREGISTER { $$ = newTreeNode(NT_XREGISTER, yytext
Changed yytext+1 to yytext */ }
num_const : BNUMBER { $$ = newTreeNode(NT_CONSTANT, yytext);
) = other2dec($$—>name,2);}
| MINUS BNUMBER
{
$$ = newTreeNode(NT_CONSTANT, yytext);
($$—>value) = —l*other2dec($$—>name,2);
strcat (tempStr ,$$—>name) ;
tempStr[strlen(tempStr)|="'\0";
strcpy ($$—>name , tempStr);
strcpy(tempStr ,”—7");
}
| ONUMBER { $$ = newTreeNode(NT_CONSTANT, yytext);
) = other2dec($$—>name,8);}
| MINUS ONUMBER
{
$$ = newTreeNode(NT_CONSTANT, yytext);
($$—>value) = —lsother2dec($$—>name,8);
strcat (tempStr ,$$—>name);
tempStr [strlen(tempStr)]="\0";
strcpy ($$—>name , tempStr);
strcpy (tempStr ,”—");

| DNUMBER { $$ = newTreeNode(NT_CONSTANT, yytext);
) = atoi($$—>name);}
| MINUS DNUMBER
{
$$ = newTreeNode(NT_CONSTANT, yytext);
($8—>value) = —lxatoi($$—>name);

($$—>value

($$—>value

($$—>value

85

191 strcat (tempStr ,$$—>name);

192 tempStr [strlen(tempStr)]="\0";

193 strcpy ($$—>name , tempStr);

194 strepy (tempStr ,”—");

195 }

196 | HNUMBER { $$ = newTreeNode(NT_CONSTANT, yytext); ($$—>value
) = other2dec ($$—>name,16);}

197 | MINUS HNUMBER

198 {

199 $$ = newTreeNode(NT_CONSTANT, yytext);

200 ($$—>value) = —l*other2dec($$—>name,16);

201 strcat (tempStr ,$$—>name) ;

202 tempStr [strlen(tempStr)|="\0";

203 strcpy ($$—>name , tempStr);

204 strcpy (tempStr ,”—");

205

206 | FNUMBER { $$ = newTreeNode(NT_CONSTANT, yytext); ($$—>value
) = strtofp($$—>name);}

207 | MINUS FNUMBER

208 {

209 $$ = newTreeNode(NT_CONSTANT, yytext);

210 ($$—>value) = —lxstrtofp($$—>name);

211 strcat (tempStr ,$$—>name) ;

212 tempStr[strlen(tempStr)|="'\0";

213 strcpy ($$—>name , tempStr);

214 strcpy (tempStr ,”—");

215 }

216

217 ;

218 %%

219

220 void yyerror(const char * msg)

221 {

222 printf ("%s on line %d\n”, msg, lineno);

223 exit(1);

224 //| CHARACTER { $$ = newTreeNode(NT.-CONSTANT, yytext); }

225 /x

226 directive : num_const { $$ = newTreeNode(NTDIRECTIVE, yytext); }

227 ;

228

229 «/

230

231 }

Listing B.1: Bison Code for the Parser Generator for MePoEfAr Assembler

86

APPENDIX B. PARSER GENERATOR CODE

© OO U WN

OO0 U R WN =

Assembly Codes for the
Selected Benchmarks

C.1 MePoEfAr Assembly Codes

B88BA3888886888685 SBBBB888888 EEEEY B8 888
1 Benchr bgram

This program recursively calculates the factorial

of a number (n). A number is passed to this subroutine

by main for factorial calculation.

DO —> number for which factorial needs to be calculated
D1 —> to hold the result i.e. calculated factorial
5553535355355 5535353 35353353535335353353535335355353
Main : MOVd #5, DO ;DO = 5 i.e. n = 5, number for factorial calculation
BRS Fact ;call to fact subroutine
End: HALT ;end
EEEEEEEEEER 8888888 ARBREES 8888888 88888888 8388888 B3BB884 88888888 88388888 88

HERR I ;
factorial subroutine
DO contanins number for which the factorial needs to be calculated
D1 —> to hold the result i.e. calculated factorial

D2 —> a temporary for internal calculations

'

n'

Fact: MOvd DO,—(SP);save DO on stack as it will be mod
MOVd DO ,D2 ;D2 = n
SUBd #1, DO ;D0 = n—1
BRgt Lo ;branch to LO if (DO > 0)
MOVd #1,D1 ;otherwise D1 = 1, which is factorial of 1 (result)
MOVd (SP)+,D0;restore the register pushed earlier on stack
RTS ;return to caller

;program will come here if n <=1

LO: BRS Fact ;call subroutine Fact for n-—1
MULd D2,D1 ;perform multiplication i.e. n = fact (n — 1)
MOvd (SP)+,D0;restore the register pushed earlier on stack
RTS ;return to caller

Listing C.1: MePoEfAr Assembly Code for Benchmark 1: Recursive Factorial

HE I A R A A R A A A R A S A S A A S IR T S

py Benchmark Program
In this program, main subroutine passes the addresses of source and
destination strings to the StrCpy subroutine to copy the chracters
from source to the destination string.

HE I

Main Subroutine

X4 —> Source String index
X5 —> Destination String index

; HER IR T A A A I A I O HEE
of source ing in the memory
s of dest string in the memory
BRS StrCpy ;call the StrCpy subroutine
End : HALT ; Halt at the end
"""""" PR R R R R A R A A R R R A R A A A A A R A R R A A A S A S A A S A R S A A S S S A A SR S S A

AR SR ;
StrCpy Subroutine

87

23
24
25
26
27
28
29
30
31
32
33

©OTDU AW~

88

APPENDIX C. ASSEMBLY CODES FOR THE SELECTED BENCHMARKS

B

next byte

next byte

—> temporary byte to hold the value to be copied
from source to destination

MOVb (X4)+, BO ;copy a character from source to BO
;and increment the address counter for

MOVb BO, (X5)+ ;now paste it at the destination address
;and increment the address counter for

BRne StrCpy ;branch back to do this byte copying again
;if this byte is not Null

RTS ;return to caller

Listing C.2: MePoEfAr Assembly Code for Benchmark 2: String Copy

passed to BSort
descending

MePoEfAr
In this program, an array of 10 elements is initialized
in the main subroutine. Base address of this array is

subroutine to sort the numbers in

order.

3 Main Subroutine

g START —> Base Address of Array

3 X4 —> Index for number Array

g i.e. loop counter

3 Data with which array will be initialized

is used to index Array

Main MOVd #10, D1 ; J = # elements
MOVx #START , X4 ; X4 = base address of array
MOVd #0,D2 ; data with wihich array will be
; initialized
Ll g MOVd D2, (X4)+ ; Array[i] = D2
ADDd #1,D2 ; D2+1
DECBRn D1, L1 ; decrement element counter and
; branch to next element if not done
BRS BSort ; call the BSort routine
End HALT ; Halt at the end
‘BSort Subroutine
Actual subroutine used to implement sorting Algorithm
START —> Base Address of Array
X4 —> used to index the Array
WO —> i i.e. loop counter
Wl —> j i.e. loop counter
D2 —> used to store the value of current element in the Array
3 D3 —> used to store the value of next element in the Array
IR IR I B A TR R A IR AR B A TR B B AR IR B AR B AL AR AR A B AR AR R N SR AR A A AR AR AR BN N AL B AR AN N A AR IR I I
BSort : MOVx #START , X4 ; base addr
MOVw #9,W0 g i =@
L1 MOVw WO, W1 poJo =
L2 MOvVd (X4)+,D2 ; D2 = arr[j]
Movd @X4 ,D3 ; D3 = arr [j+1]
CPAd D2, D3 ; compare D2 with D3
BR1t NoSwap ; if (D3 < D2) then no swaping required
;otherwise swap here
Movd D2, @X4 jarr [j4+1] = D2 = arr[j]
MOVd D3,—4(X4) ;arr [j] = D3 = arr[j+1]
NoSwap: S1BR wi, L2 ;loop if j>0
S1BR Wo,L1 ;loop till i>0
RTS ;return to caller (sorting done)

Listing C.3: MePoEfAr Assembly Code for Benchmark

3: Bubble Sort

OO U A WN -

© 00U WN =

C.1. MEPOEFAR ASSEMBLY CODES

89

; R I R A A A R A S A A A AR A SR R I R T A A A R
; MePoEfAr Assembly Program implementing a structure for sensor values.
3 Structure contains 3 elements:
3 1 char byte Flag indicating if sensor has been calibrated or not.
3 1 short int containing the offset to be adjusted
3 1 long int containing the actual sensor value
H
3 An array of 5 sensors is declared. InitSensors () will initialize
3 these values to some numbers. CalibrateSensors () will subtract
3 the offset from the value of the sensors and set the Flag.
3 main () will call these two functions to initialize and calibrate
8 sensor data.
:
IR IR I R AR AR R B AR R B A AR AR B A AR BN A AR A A A AR A B A AR A A A A A A R R A AL A AR AL B AL AR AR B A AR BB AL SRS AL B AR RN SR AE BE N A
HEE A R B A A R B A R B A A N A A AR A N AR B A A A B A B B A A N B A B R B SRR N A RN B AR B B A AR NS B AR N SRR BN A
5 Main subroutine
EEE R I R R A R B R R B R R N B A R A N AR B A R SR N B AR A N SR R R S SRR B B RN SRR N B SRR A B RN N SRR B B
Main : BRS Init ;call to Init subroutine
BRS Calib ;call to Calib subroutine
End RTS ;end
I I I I I B A S T A A A B A SR SR AL SR A SRR B AR SR AR SR IS B AL SR AR IR AR S AR B AR SR A SR AR SR AL B AR SRR SR AR SR AR SR SR SR AR AL AR SR AR SR AR AL A AR AL I AR U
3 Init subroutine
)
8 START —> base address of first struct member
g X4 —> index struct array
8 BO —> loop counter
8 ‘WO —> i
g DO —> Data with which Value will be initialized
HEE AR I R A A A B A AR R B A AR AR N A A AR A N A AR A A A A A B A AR B A A A A A A R AR N AL A AR AL B AN B A AR B B AL AR N B AR B N A IR AE BE N A
Init: MOvVd #3, DO ;sensor value will be initialize with DO

;3 is added to every value of i, so

;initialized DO with 3

MOVx #START , X4 ;X4 = Starting address of struct
MOVw #0, WO iio= 0
MOVb #5, BO ;loop counter
LO: MOVb #0, (X4)+ ;sensors [i].Flag = 0
MOVw Wwo, (X4)+ ;sensors [i] .Offset = i
ADDdws w0, DO ;DO = 143
MOvVd DO, (X4)+ ;sensors [i].Value = i43
ADDD #1, wWo ;i
S1BR BO, LO ;loop back 5 times
RTS ;return to caller

R I IR IR I I I AR IR AL IR TR AL A I AR

START —> Starting address of struct array
X4 —> index struct array
g Do —> sensors[i].Value
8 WO —> sensors[i].Offset
3 BO —> loop counter
I I I I I I S A S T S AR A S A B A U AR SR A SR AL B TR S A SR AR S AL IR AR SR AR S AR SR AR SR A SR AR SR AR S AR SR AR IR AR SR AR SR AR SR AR SR AR S AR SR AR AL A AR AL I RE U
Calib: MOVx F#START , X4 ;X4 = Starting address of struct
MOVDb #5, BO ;loop counter
Li: MOVb #1, (X4)+ ;sensors [i].Flag = 1
MOVw (X4)4, Wo ;WO = sensors [i].Offset

MOVwds WO, DO ;DO = sensors[i].Offset

SUBd DO, (X4)+ ;sensors [i].Value = sensors [i].Value

— sensors[i] .Offset

S1BR BO, LO ;loop back 5 times
RTS ;return to caller

Listing C.4: MePoEfAr Assembly Code for Benchmark 4: Sensor Structure

I I I I I

IR I R A I I A SRR A S SRR A BRI A A RS IS A AR SR A O
8 MePoEfAr Matrix Multiplication Benchmark Program

3 This program multiplies two matrices of order 3X4 and 4X5
g to give a product matrix of order 3X5. Both the matrices

g are initialized with some numbers and then multiplication
g is performed to get product.

H

EEE I I R A R B A A A B A AR B A AR N B A B B AR B A A AE AR AR N A AR N B AR SR AL B AR A SRR N B A

90 APPENDIX C. ASSEMBLY CODES FOR THE SELECTED BENCHMARKS

10 55 IR R] I
11 Main Subroutine

12 Base Address of matrix ml —> Ml

13 Base Address of matrix m2 —> M2

14 Base Address of matrix m3 —> M3

15 X4 is used to index the elements of matrix ml

16 X1 is used to index the elements of matrix m2

17 X5 is used to index the elements of matrix m3

18 B6 —> mno of rows

19 B7 —> no of columns

20 B1,B4,B5 —> loop counters

21 Note: Arrays are stored in memory in Row Major Order
DVM: R RRRRURRARAARRRARRARANAARIRRARANRARARRAARRRARRARAARA

23 ; B6 = no of rows

24 ; B7 = no of cols of ml

25 ;base address of ml

26 ;call initialize subroutine
27 ; for ml

28

29 MOVd #nRows2 , B6 ; B6 = no of rows of m2

30 MOVd #nCols2 , B7 ; BT = no of cols of m2

31 MOVx #M2 , X4 ;base address of m2

32 BRS INIT ;call initialize subroutine
33 ; for m2

34

35 ;now perform multiplication

36

37 ;Initialize base address of ml, m2, m3

38 INx X4, #3, #M1, #M2, #M3

39

40 MOVd #5, B5 ;nCols2

41 L3: MOVd #3, B4 ;nRows1

42 L2: MOvVd #4, B1 ;nColsl (or nRows2 is same)
43 MOVd #0, D3 ;D3 = 0 (accumulator for one element)
44 L1: MOVd (X4)+, D2 ;D2 = ml[m][n]

45 MULd @X1, D2 ;D2 = ml[m][n] * m2[n][p]

46 ADDd D2, D3 ;D3 = D3 4+ ml[m][n] % m2[n][p]
47 ADDx #20, X1 ;X1 4= nCols * size

48 ;it will point to first element of next row
49 S1BR B1, L1 ;repeat 4 times

50

51 MOVd D3, (X5)+ ;m3[m] [p] = D3

52 SUBx #56, X1 ;X1 now points to first element of next column
53 S1BR B4, L2 ;repeat this 5 times

54

55 MOVx #M2 , X1 ;X1 now points to base address of m2
56 S1BR B5, L3 ;repeat this 3 times

57

58 RTS ;multiplication done, stop

59

60 5 5553353333535 3 35335353353 5335353353533
61 INIT Subroutine

62 D2 —> row number

63 ; D3 —> value to be assigned

64 X4 —> array index

65

66

67

68 L1: MOVd D3, (X4)+ ; Matrix [r][c] = D3

69 ADDA #1, D3 s D3++

70 S1BR B7, L1 ;repeat this for nCols

71

72 ADDd #1, D2 ;increment row

73 MOvVd D2, D3 ;D3 = D2 = row number

74

75 S1BR B6, L1 ;repeat this for nRows

76

77 RTS ;return to caller

Listing C.5: MePoEfAr Assembly Code for Benchmark 5: Matrix Multiplication

1555555555555 33335555

2 MePoEfAr FIR Filter Benchmark Program

3 This program is an implmentation of an FIR filter.

4 COEFF and INPUT arrays are initialized with some data and

5 ; then FIR caculations are performed to get the OUTPUT array.
6 These calculations are basically integer and floating point
7 calculations performed on these arrays to get floating

8 results in OUTPUT array.

9

10 ; Total Number of Instruction: 45

11

C.1. MEPOEFAR ASSEMBLY CODES

91

13

14 5 5555555555555 5555333353555 R
15 Main Subroutine

16

17 COEFF —> base address of COEFF array

18 INPUT —> base address of INPUT array

19 OUTPUT —> base address of OUTPUT array

20 X4 —> index of COEFF array

21 X2 —> index of INPUT array

22 X6 —> index of OUTPUT array

23 F1 —> sum

24 Fo, F2, F3, F5 —> floating point temporary results
25 DO, D1, D2, D3 are used for integer temporary calculations
26 Bl, B2 —> loop counters

27

28 3353535335353 5353353533 535353533535335353
29

30 ;initialize COEFF array

31 Main: MOVx #COEFF , X4 ;base address of COEFF

32 MOVb #18, BO ;no of coeff

33 MOVE #5, FO ;FO = i45

34 L1: MOVE #1, F2 JF2 = 1

35 DIVE FO, F2 iF2 = 1/(i+5)

36

37 MOVE F2, (X4)+ ;COEFF[i] = F2

38

39 ADDf #1, FO ;update value of i45 in FO
40

41 S1BR BO, L1 ;loop back for all coeffecients
42

43 ;initialize INPUT array

44 MOVx #INPUT , X4 ; base address of INPUT

45 MOVb #68, BO ; no of INPUT samples

46 MOVd #2, D2 ; value to be stored

47

48 L2: MOVw w2, (X4)+ ; INPUT[i] = 2

49

50 S1BR BO, L2 ; loop back for all INPUT samples
51

52 ; Perform FIR Calculations

53 MOVx #COEFF , X4

54 MOVx #INPUT , X2

55 MOVx #0UTPUT , X6

56

57 MOVb #36, B1 iy = 36

58

59 L4: MOVb #8, B2 il = &

60 MOVE #0, F1 ;sum = 0

61

62 L3: MOVx #16, X3 ;X3 = 16

63 SUBbxs B2, X3 ;X3 = 16—1i

64 ADDbxs B1, X3 ;X3 = y+16—i

65 MULx #2, X3 iX3 = (y+16—i) * 2

66 ADDx X2, X3 ;X8 = start 4+ (y+16—i) * 2
67 MOVw @X3, W3 ;W3 = INPUT [y+16—1i]

68

69 MOVbxs B1, X3 =y

70 ADDbxs B2, X3 = y+i

71 MULx #2, X3 = (y+i) = 2

72 ADDx X2, X3 = start + (y+i) x 2

73 ADDd @X3, W3 = INPUT [y+16—i]+ INPUT [y+i]
74

75 MOVwfs W3, F3 ;convert to float

76

7 MULdfs (X4)+, F3 ;F3 = COEFF[i] * (INPUT[y+16—i]+ INPUT [y+i])
78

79 ADDf F3, F1 sF1 = sum + F3

80

81 S1BR B2, L3 ;loop back 8 times

82

83 MOVE 32(X0) ,F5 ;F5 = COEFF[8]

84

85 MOVx #8, X3 ;X3 = 8

86 ADDbxs B1, X3 ;X3 = y+8

87 MULx #4, X3 ;X3 = (y+8) = size

88 ADDx X2, X3 ;X3 = start + (y+8) * size
89 MOVw @X3, W3 ;W3 = INPUT [y +8]

90

91 MULwfs W3, F5 ;F5 = INPUT[y+8] % COEFF[8]
92 ADDf F1, F5 ;F5 = sum + INPUT[y+8] = COEFF|[8]
93

94 MOVE F5,(X6)+ ;OUTPUT [y] = F5

95

96 S1BR B1, L4 ;loop back 36 times

97

98 ;otherwise we are done

99 End: HALT ; Halt the program

92 APPENDIX C. ASSEMBLY CODES FOR THE SELECTED BENCHMARKS

Listing C.6: MePoEfAr Assembly Code for Benchmark 6: FIR

C.2 Atmel AVR AT90S851 Assembly Codes

L 5535535533535 5 35335353353 53353533535333535
2 Atmel ctorial Benchmark Program

3 This program recursively calculates the factorial

4 of a number (n). A number is passed to this subroutine

5 by main for factorial calculation.

6

7 Total Number of Instruction

8 533533355333 533355335553

9

IS 5555 RE5589095535858R555890855833558R5585890855835568558583995583558585588888585
11 main subroutine

12

13 R18,R19 contain n

4 55 55 55355 5338358353553 5555355335533 5535553353553
15

16 Main LDI R18 ,0x05 s m=g

17 LDI R19 ,0x00

18 RCALL Fact ;call factorial

19

20 RET ;end of main

21

Pyl 55 ARRAI9AAR55550RARRATAAARS555ARARAANAARAT535ARARAANIAARAIA5ARAREATARRS
23 Factorial subroutine

24

25 R18,R19 contain n
26 R22—R25 will hold the calculated factorial

27 R I I I A B A B A R A SR SR SR SR AR SRR B AR SR AR A SRR A AR SR A SRR B AL B AR N AN AR B AR A AR S NN AL A A A A A A N A B A A S S N A N B
28 ;push registers on stack

29 Fact: PUSH R18 ;Push register on stack

30 PUSH R19 ;Push register on stack

31

32 ;if (n<=1) //i.e. if the number is 0 or 1

33 CPI R18 ,0x02 ; Compare with 2

34 CPC R19 ,R1 Compare with carry

35 BRGE Lo ;Branch if (n>=2)

36

37 ;return 1; //then return 1

38 LDI R22 ,0x01 ;Load immediate

39 LDI R23 ,0x00 immediate

40 LDI R24 ,0x00 immediate

41 LDI R25 ,0x00 immediate

42 RJIMP L1 o return 1

43 o down to L1 retore registers and return
44 ;otherwise

45 ;return n = factorial(n—1); //this n times factorial of n—1
46 LO: MOV R20 ,R18 ;Copy register

47 MOV R21 ,R19 ;Copy register

48 ; R20—R21 contain n

49

50 SBIW R18 ,0x01 ;Subtract immediate from word
51 ;R18 now contain n—1

52

53 ;call factorial (n—1)

54 RCALL Fact ; Relative call subroutine
55 ;result is in R22—R25

56

57 ;copy n back to R18-R21 for multiplication

58 MOV R18 ,R20 ;Copy register

59 MOV R19 ,R21 ;Copy register

60 CLR R20 ; Clear Register

61 CLR R21 ; Clear Register

62

63 RCALL Mult32 ;s Mult32

64 ;result of multiplication is R22—R25

65

66 ;restore registers

67 Li: POP R19 ;Pop register from stack

68 POP R18 op register from stack

69 RET ubroutine return

70

Tl 5555553353533 5 5355353353533 3 3535595335353 33353553533535333353533535333
72 Mult32 subroutine

73

74 R18-R21 first operand

C.2. ATMEL AVR AT90S851 ASSEMBLY CODES

75 R22—R25 second operand
76 R22—R25 result of multiplication
T 5535553353535 5355353353533 33535535335 35333535355353353533335353353333
78 Mult32: CLR R31 ; Clear Register
79 CLR R30 ; Clear Register
80 CLR R27 ; Clear Register
81 CLR R26 ; Clear Register
82 MO: SBRS R22,0 ; Skip if bit in register set
83 RJIMP M1 ; Relative jump
84 ADD R26 ,R18 ;Add without carry
85 ADC R27 ,R19 ;Add with carry
86 ADC R30 ,R20 ;Add with carry
87 ADC R31 ,R21 ;Add with carry
88 M1: LSL R18 ;Logical Shift Left
89 ROL R19 ;Rotate Left Through Carry
90 ROL R20 ; Rotate Left Through Carry
91 ROL R21 ; Rotate Left Through Carry
92 LSR R25 ; Logical shift right
93 ROR R24 ; Rotate right through carry
94 ROR R23 ; Rotate right through carry
95 ROR R22 ; Rotate right through carry
96 BRNE MO ;Branch if not equal
97 SBIW R24 ,0x00 ;Subtract immediate from word
98 CPC R23 ,R22 ;Compare with carry
99 BRNE MO ;Branch if not equal
100 MOV R25 ,R31 ;Copy register
101 MOV R24 ,R30 ;Copy register
102 MOV R23 ,R27 ;Copy register
103 MOV R22 ,R26 ;Copy register
104 RET ;Subroutine return
Listing C.7: Atmel AVR AT90S851 Assembly Code for Benchmark 1: Recursive
Factorial
Il S AR E S A g 0 A a0 A0 sg5 8508050000895 805000A880095a880500046885
2 Atmel AVR String Copy Assembly Program
3 In this program, main subroutine passes the addresses of source and
4 destination strings to the StrCpy subroutine to copy the chracters
5 from source to the destination string.
6
7 Total Number of Instructions: 11
8 3903033003333 333 3 3333 9 3333933393333 3 3333333339333 3333933333393
9
10 5 5553555535355 353533553533 53533 5353353 53353533535335353353533535335353535353
11 main subroutine
12
13 R30,R31 contain address of strSrc
14 R28,R29 contain address of strDest
B o B O T N S0 TN TR TR I R S TR S R
16
17 Main: LDI R30, 0x60 ;address of strSrc
18 LDI R31, 0x00
19 LDI R28, 0x70 ;address of strDest
20 LDI R29 , 0x00
21
22 RCALL strCopy ;call string copy subroutine
23
24 RET ;end of main
25
26 3553353353333 533335353353 533535335353535353353535
27 strCopy subroutine
28

29 used as temp to hold current character

30 HER

31 ;R24 = [i]

32 ST Y+, R24 ;strDest [i] = R24

33

34 TST R24 ;test if character is null

35 BRNE strCopy ;if not then loop back for next
36

37 RET ;done copying, return to caller

Listing C.8: Atmel AVR AT90S851 Assembly Code for Benchmark 2: String Copy

IR S R S H A e s g e e 5 a g8 e e aa s 8985858988580 888 9598888558 58855
2 B Atmel AVR Bubble Sort Benchmark Program
3 In this program, an array of 10 elements is initialized

94

APPENDIX C. ASSEMBLY CODES FOR THE SELECTED BENCHMARKS

main subroutine.
BSort
order.

5 in the
3 passed to
8 descending

Total Number of

Base address
subroutine to

Instruction :

of this
sort the

array is
num L\GI'S in

subroutine

main
R30,R31 contain address
R24,R25 for i
I I I I R AR
Main LDI R30 ,0x00
LDI R31,0x00
LDI R24 ,0x00
LDI R25,0x00
;Array [i]=1i;
LO: ST Z+,R24
ST Z+4,R25
ADIW R24 ,0x01
CPI R24 ,0x0A
CPC R25 ,R1
BRNE Lo
RCALL BSort
RET

R

3 BSort
g R30,R31 contain address
R18,R19 for i

R20,R21 for j

of

; Subroutine

array
AR AR AR AR AR HEI
;base address of array

;base address of array

;1=0

;Store indirect and postincrement

; Store indirect and postincrement

;i

Compare with 10
Jompare with carry
oop back if (i<10)

call BSort subroutine

return

array

; base

MOV R31 ,R25 ;base address of al[]
LDI R18 ,0x08
LDI R19 ,0x00

L2: LDI R20 ,0x00
LDI R21,0x00
salil

L1i: LDD R22 ,Z40 ;Load indirect with displacement
LDD R23 ,Z+1 ;Load indirect with displacement
;alj—+1]
LDD R26 ,Z+2 ;Load indirect with displacement
LDD R27 ,Z+43 ;Load indirect with displacement
;if a number is greater than its next number
cp R26 , R22 if (a[jl>alj+1])
(] R27 ,R23 f(aljl>alji+1])
BRGE NoSwap hen no swap required
;otherwise we need to swap
faljl=alj+1]
STD Z+4+1,R27 ;Store indirect with displacement
STD Z+0,R26 ;Store indirect with displacement
jalj+l=alj]
STD Z+3,R23 ;Store indirect with displacement
STD Z+2,R22 ;Store indirect with displacement
;loop condition for j

NoSwap: SUBI R20 ,0 xFF ;Subtract immediate
SBCI R21 ,0 xFF ubtract immediate with carry
ADIW R30,0x02 dd immediate to word
CP R18 ,R20 Compare
CPC R19 ,R21 Jompare with carry
BRGE L1 ;Branch if greater or equal, signed
;loop condition for i
SUBI R18 ,0x01 ;Subtract immediate
SBCI R19 ,0x00 ;Subtract immediate with carry
SER R20 ;Set Register
CPI R18 ,0 xFF ;Compare with immediate
CPC R19 ,R20 ;Compare with carry

91
92
93
94

Qoo U kA WN-

C.2. ATMEL AVR AT90S851 ASSEMBLY CODES

95

BRNE L2 ;loop back if (i>=0)

;done with sorting
RET ;Subroutine return

Listing C.9: Atmel AVR AT90S851 Assembly Code for Benchmark 3: Bubble Sort

I I R T A R SR B A S AT ST T A ST SR T A ST T AR SR A AT O IR I I
8 Atmel AVR Assembly Program implementing a structure for sensor values.
3 Structure contains 3 elements:

3 1 char byte Flag indicating if sensor has been calibrated or not.

1 short int containing the offset to be adjusted

1 long int containing the actual sensor value

An array of 5 sensors is declared. InitSensors () will initialize
these values to some numbers. CalibrateSensors () will subtract
the offset from the value of the sensors and set the Flag.
main () will call these two functions to initialize and calibrate
sensor data.

3 Total Number of Instruction: 39
PR IR I R R R IR I B A AR R A B AR AR B A AR RN N AR AR N AR IR B B AR AR AL B R AR AL AL R AR AL BE AR AR AL BE AR AR AL AL BE AR AR NS BE SRR AL B AE R AR NE AL B AR NE N AR
PR IR I R I I AR R B A AR AR I A AR A R B A AR BN B AR A A A AR AR B B AR AR AR A AR AR AL B R AR N B AR AR AE B AR AR SR A B AR AR AR SR R SRS B AR AR NS SRR AR NE N AR
3 Main subroutine
B
IR I R AR A R B A A B B A AR A R B A AR BN A AR A A A A A B A A B A A AN B A R RN AL A AR AL B AL AN B SR B NS AL SRS AL B AR NS SR AR BE N A
Main: RCALL Init ;call to Init subroutine

RCALL Calib ;call to Calib subroutine
End : RET ;end
EEE R I R R A R B A R B R R N B A R A N AR B A AR SR R B A AR A AR R R S SRR B SRR S SRR B SRR AT AR AR N SRR B B

STHi,STLo —> starting address of struct array
R30, R32 —> pointer to current element
3 R15,R16 —> loop counter, i
3 R20—-R23 —> data with which Values will be initialized
PRI I R R I IR I B R A R I B AR AR B A AR A A B AR AR A A AR I B N AR R AR B AR AR AL AL R AR AL AL AR AR AL B AR AR SRS BE AR A NS BE SRR AL AL AE R AR NE BE R AR NE B AR}
Init: MOV R30 , #STLo ;R30,R31 contain starting address of struct
MOV R31, #STHi
MOV R20 , #3 ;R20 = 3
;sensor value will be initialized with DO
;3 is added to every value of i, so
;initialized DO with 3
CLR R21
CLR R22
CLR R23
MOV R15 , #O0 ;i =0
MOV R16, #0
LO: STD Z+, #0 ;Flag = 0
STD Z+, R15 ; Offset = i
STD Z+, R16
INC R20 ;R20 = 1 4+ 3
ADC R21, R16
ADC R22, #O0
ADC R23, #0
STD z+, R20 s Value = i+3
STD z+, R21
STD z+4+, R22
STD z+, R23
INC R15 Didt
CPI R15 , #5 ;compare with 5
BRNE Lo ;loop back 5 times
RET ;return to caller
;’ 'Ca‘lib’ Subroﬁtirle
3 STHi,STLo —> starting address of struct array
R30, R32 —> pointer to current element

R15 —> loop counter, i

96 APPENDIX C. ASSEMBLY CODES FOR THE SELECTED BENCHMARKS

7 R18,R19 —> to hold offset

'R30, #STLo ;R30,R31 contain arting
R31, #STHi

R15 , #5 ;1 = 5
84 Li1: STD Z+0, #1 ;Flag = 1
85
86 MOV R18 , z+ ;R18,R19 = offset
87 MOV R19 , z+
88
89 SUB z+, R18 ;value = value — offset
90 SBC z+, R19
91 SBCI z+, #0
92 SBCI z+, #0
93
94 DEC R15 ;decrement loop counter
95
96 BRNE L1 ;loop back for 5 sensors
97
98 RET ;return to caller
Listing C.10: Atmel AVR AT90S851 Assembly Code for Benchmark 4: Sensor
Structure
1 IR R R A AR R B A A A B A AR B A AL AR B A A B SR A B A A B A AN B A AR B RIS SRR B AR
2 Atmel AVR Matrix Multiplication Benchmark Program
3 This program multiplies two matrices of order 3X4 and 4X5
4 to give a product matrix of order 3X5. Both the matrices
5 are initialized with some numbers and then multiplication
6 is performed to get product.
7
8 Total Number of Instruction: 105
9 S ii:
10
11 HE R
12 Main Subroutine
13 Base Address of matrix ml —> MIlLo, MI1Hi
14 Base Address of matrix m2 —> M2Lo, M2Hi
15 Base Address of matrix m3 —> M3Lo, M3Hi
16 R26 ,R27 = pointer to ml
17 R28,R29 —> pointer to m2
18 R30,R31 == pointer to m3
19 R18—R21 —> hold current element of ml
20 R22—R25 —> hold current element of m2
21 R15,R16 ,R17 —> temporaries for passing values
22 and loop couters
23 T R T I R T I R I I
24 ;initialize ml
25 Main: MOV R15, #nRows1 ;rows of ml
26 MOV R16 , #nCols1 ;cols of ml
27
28 MOV R30 , #MiLo ;base address ml low
29 MOV R31, #M1Hi ;base address ml high
30
31 RCALL INIT ;call initialization subroutine
32
33 ;initialize m2
34
35 MOV R15, #nRows2 ;rows of m2
36 MOV R16 , #nCols2 ;cols of m2
37
38 MOV R30 , #M2Lo ;base address m2 low
39 MOV R31 , #M2Hi ;base address m2 high
40
41 RCALL INIT ;call initialization subroutine
42
43 ;perform multiplication
44 MOV R26 , #MiLo ;base address ml low
45 MOV R27 , #M1Hi ;base address ml high
46
47 MOV R28 , #M2Lo ;base address m2 low
48 MOV R29 , #M2Hi ;base address m2 high
49
50 MOV R30 , #M3Lo ;base address m3 low
51 MOV R31, #M3Hi ;base address m3 high
52
53 MOV R15, #5 ;nCols2
54 L3: MOV R16 , #3 ;nRows1
55 L2: MOV R17 , #4 ;nColsl

C.2. ATMEL AVR AT90S851 ASSEMBLY CODES

57 LDI Z+0,#0 ;m3[m] [p] = 0

58 LDI Z+1,#0

59 LDI Z4+2,#0

60 LDI 743,40

61

62 L1: MOV R18, X+ ;R18—R21 = ml[m] [n]

63 MOV R19 , X4

64 MOV R20 , X+

65 MOV R21, X+

66

67 MOV R22, Y+ ;R22—R25 = m2[m] [n]

68 MOV R23, Y+

69 MOV R24, Y+

70 MOV R25, Y+

71

72 ;perform ml[m][n] = m2[n][p]

73 RCALL Mult32 ; Relative call subroutine

74

75 ADD Z+0,R22 ;m3[m] [p] += ml * m2

76 ADD Z4+1,R23

77 ADD Z+4+2,R24

78 ADD Z+3,R25

79

80 ADIW R29 :R28 ,#20 ; pointer for m2

81 ;it will point to first element of next row
82

83 DEC R17 ;decrement

84 BRNE L1 ;loop back 4 times

85

86 ADIW R31:R30,#4 ;now point to the next element of m3
87 ;as we are done with current element
88

89 SBIW R29 :R28 ,#56 ; pointer for m2

90 ;now points to first element of next column
91

92 DEC R16 ;decrement

93 BRNE L2 ;loop back 3 times

94

95 MOV R28 , #M2Lo ;base address m2 low

96 MOV R29 , #M2Hi ;base address m2 high

97 ;now points to base address of m2

98

99 DEC R15 ;decrement

100 BRNE L3 ;loop back 5 times

101

102 RET ;Subroutine return

103

104 5 555535555555 33 555335555355 333 5533353335533 55335533355333533355333553
105 Matrix INIT Subroutine

106

107 R23—R26 —> Data to be assigned

108 ; R15 —> has the nRows

109 ; R16 —> has the nCols

110 R30,R31 —> element pointer

111 R17 —> Row number

112

113 Instructions = 22

114 Bytes = 44

IO 5555 AREA07AAR055650RARRATAAARS55FARARRAIIIAASEEEAIARRATIIR85RREANARRE
116 INIT: CLR R23 ;data = 0

117 CLR R24

118 CLR R25

119 CLR R26

120

121 CLR R17 ;row counter

122

123

124 L1: ;mat [m] [p] = data

125 STD Z+0,R23 ;Store indirect with displacement
126 STD Z+1,R24 ;Store indirect with displacement
127 STD Z+2,R25 ;Store indirect with displacement
128 STD Z+3,R26 ;Store indirect with displacement
129

130 ;increment data = data + 1

131 ADD R23,#1 ;Add without carry

132 ADC R24 ,#0 ;Add with carry

133 ADC R25 ,#0 ;Add with carry

134 ADC R26 ,#0 ;Add with carry

135

136 ;R30,R31 = address of ml[m][p]

137 ;now point to next element in the matrix

138 ADI R30 ,#4 ;Copy register

139 ADC R31,#0 ;Copy register

140

141 DEC R16

142 BRGT L1 ;repeat it for all columns

143

98

APPENDIX C. ASSEMBLY CODES FOR THE SELECTED BENCHMARKS

144 ;Tow 4+

145 INC R17 ;Add immediate to word

146

147 MOV R17 ,R23 ;R23 = row number (data for new row)

148

149 DEC R15

150 BRGT L1 ;repeat it for all rows

151

152

153 R I I I IR I I AL I I A I I A AR

154 32—bit Multiplication Subrou

155 R18—R21 —> First Number

156 R22—R25 —> Second Number

157 R22—R25 —> Product

158

159 Instructions = 35

160 5 55535355353 53335353353533

161 Mult32: PUSH R26 8

162 PUSH R27 ;these are used as pointers in main

163 PUSH R30

164 PUSH R31

165

166 EOR R31, R31 ;clear registers

167 EOR R30, R30 ;for results

168 EOR R27 , R27

169 EOR R26 , R26

170

171 M1: SBRS R22, O

172 RJIMP M2

173 ADD R26 , R18

174 ADC R27 , R19

175 ADC R30, R20

176 ADC R31, R21

177

178 M2: ADD R18, R18

179 ADC R19, R19

180 ADC R20, R20

181 ADC R21, R21

182 LSR R25

183 ROR R24

184 ROR R23

185 ROR R22

186 BRNE M1

187 SBIW R24, 0X00

188 cPC R23, R22

189 BRNE M1

190 MOV R25, R31

191 MOV R24 , R30

192 MOV R23, R27

193 MoV R22, R26

194

195 POP R31 ;restore registers

196 POP R30

197 POP R27

198 POP R26

199

200 RET

Listing C.11: Atmel AVR AT90S851 Assembly Code for Benchmark 5: Matrix
Multiplication

1 EEEREEERE
2 er Benchmark Program

3 This program is an implmentation of a 17 order FIR filter.
4 COEFF and INPUT arrays are initialized with some data and
5 then FIR caculations are performed to get the OUTPUT array.
6 These calculations are basically integer and floating point
7 calculations performed on these arrays to get floating
8 result samples in OUTPUT array.

9

10 Total Number of Instruction: 189 + 530 = 719

11

12

13

14

15

16 Y+1 to Y+4 —> sum

17 Y+5 Y-+6 —> vy

18 Y+7 , Y48 —> i

19 COEFF at address 0x0000

20 INPUT at address 0x0100

21 OUTPUT at address 0x0200

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

C.2. ATMEL AVR AT90S851 ASSEMBLY CODES 99

LO:

L1:

EREIE I
ialization

Y+8,R1

STD Y+7,R1
LDD R16 ,Y+7
LDD R17 ,Y+8
LDD R22 ,Y+7
LDD R23 ,Y+8
CLR R24

CLR R25
RCALL INT2FLOAT
LDI R18 ,0 %00
LDI R19 ,0x00
LDI R20 ,0 xAO
LDI R21 ,0 x40
RCALL FADD

LDI R18 ,0x00
LDI R19 ,0x00
LDI R20 ,0 x80
LDI R22 ,0 x3F
RCALL FDIV

;now compute the address

MOV R30 ,R16
MOV R31 ,R17
LSL R30

ROL R31

LSL R30

ROL R31

LDI R20 ,0 %00
LDI R21,0x00
ADD R30 ,R20
ADC R31 ,R21
STD Z+0,R24
STD Z+1,R25
STD Z+2,R26
STD Z+3,R27
LDD R24 ,Y+7
LDD R25 ,Y+8
ADIW R24 ,0x01
STD Y+8,R25
STD Y+7,R24
CPI R24 ,0x11
cPC R25 ,R1
BRLT Lo

; INPUT array

STD Y+8,R1
STD Y+7,R1
LDD R30 ,Y+7
LDD R31,Y+8
SUBI R18 ,0x00
SBCI R19 ,0x01
LSL R30

ROL R31

ADD R30 ,R18
ADC R31 ,R19
LDI R18 ,0x02
LDI R19 ,0 %00
STD Z+1,R19
STD Z+0,R18
LDD R24 ,Y+7
LDD R25 , Y+8
ADIW R24 ,0x01
STD Y+8,R25
STD Y+7,R24
CPI R24 ,0 x43
cPC R25 ,R1
BRLT L1

;perform filtering

STD Y+6,R1

iR22,R25 = i

;convert 1 to floating point
;jso now R22—R25 = float (i)

;R18—R21 = 5.0

;floating point add
;so0 now R22—R25 = (i+5.0)

iR18—R22 = 1.0

; floating point divide
;jso now R22—R25 = 1.0 / (i+5.0)

of COEFF] i]

;R30,R19 = i

:R30,R31 = i * 4

;R20,R21 = base address of COEFF
;i.e 0x00
;R30,R31 = base + i * 4

;COEFF[i] = 1 / (i45.0)

iR24,R25 = i

i+
; Store back i

; Compare with 17

;loop back if (i<17)

initialization

51 = 0

;R30,R31 = i

;base address of INPUT i.e 0x0100
;R30,R31 = i % size

;Add base address

;i.e. R30,R31 = base + i % size

;R18,R19 = 2

;INPUT[i] = 2

;R24,R31 = i

;i

; Store i back
;Compare i with 67
;loop back if (i<67)

y=0

100 APPENDIX C. ASSEMBLY CODES FOR THE SELECTED BENCHMARKS

109 STD Y+5,R1

110

111 L2: LDI R24 ,0x00 ; R24—R27 = 0

112 LDI R25 ,0x00

113 LDI R26 ,0x00

114 LDI R27 ,0x00

115 STD Y+1,R24 ;sum = 0

116 STD Y+2,R25

117 STD Y+3,R26

118 STD Y+4,R27

119

120 STD Y+8,R1 ;i=0

121 STD Y+4+7,R1

122

123 ;inner loop which will iteratively compute

124 ;sum = sum + COEFF[i] = (INPUT[y 4+ 16 — i] + INPUT[y + i])
125 L3: LDD R30 , Y+7 ;R30,R31 = i

126 LDD R31,Y48

127 LSL R30 ;R30,R31 = i * size

128 ROL R31

129 LSL R30

130 ROL R31

131 ADDI R30,0x00 ;R30,R31 = base + i * size

132 ADIC R31,0x00

133 LDD R14 ,Z40 ;R14,R17 = COEFF|[i]

134 LDD R15 ,Z+1

135 LDD R16 ,Z+2

136 LDD R17 ,Z+3

137

138 LDD R24 ,Y+5 ;R24,R25 = y

139 LDD R25 ,Y+46

140 LDD R24 , Y47 ;R24,R25 = i

141 LDD R25 ,Y+8

142 SUB R30 ,R24 Jy—i

143 SBC R31 ,R25

144 ADDI R30 ,0x00 ;R30,R31 =y — 1 + 16

145 ADCI R31,0x10

146 LSL R30 ;R30,R31 = (y — 1 + 16)xsize

147 ROL R31

148 ADDI R30,0x00 base address of INPUT

149 ADCI R31,0x01 R30,R31 = base + (y — 1 + 16)xsize
150 LDD R18 ,Z40 ,R19 = INPUT [y+16—i]

151 LDD R19 ,Z+1

152

153 LDD R20 ,Y+5 ;R20,R21 = y

154 LDD R21 ,Y+6

155 LDD R30 , Y47 iR30,R31 = i

156 LDD R31,Y+48

157 ADD R30 ,R20 sy+i

158 ADC R31,R21

159 LSL R30 iR24,R25 = (y+i) = size

160 ROL R31

161 ADDI R30,0x00 base address of INPUT

162 ADCI R31,0x01 R30,R31 = base + (y+i) x* size
163 LDD R24 ,Z40 ,R25 = INPUT [y+i]

164 LDD R25 ,Z4+1

165 ADD R18 ,R24 ;R18,R19 = INPUT [y+16—i] + INPUT[y+i]
166 ADC R19 ,R25

167

168 MOV R22 ,R18 ;R22—R25 = INPUT [y+16—i] + INPUT[y+i]
169 MOV R23 ,R19

170 CLR R24

171 SBRC R23,7 ;Skip if bit in register cleared
172 LAT R24 ;Load and Toggle

173 MOV R25 ,R24

174

175 RCALL INT2FLOAT ;call to int2float subroutine

176 ;so R22—R25 will be converted to float
177 ;i.e. R22-R25 = float (INPUT[y+16—i] + INPUT [y+i])
178

179 MoV R18 ,R14 ;R18—R21 = COEFF]i]

180 MOV R19 ,R15

181 MOV R20 ,R16

182 MOV R21 ,R17

183

184 RCALL FMUL ;call to floatin point multiplication routine
185 ;R22—R25 = COEFF x (INPUT|[y+16—i] + INPUT[y+i])
186

187 LDD R18 ,Y+1 ;R18—R21 = sum

188 LDD R19 ,Y+2

189 LDD R20 ,Y+3

190 LDD R21 ,Y+4

191

192 RCALL FADD ;call to floating point addition routine
193

194 STD Y+1,R22 ;store back the value of sum

195 STD Y+2,R23

196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267

C.3. TI MSP430 ASSEMBLY CODES

101

STD
STD

LDD
LDD
ADIW
STD
STD
CPI
CPC
BRGE

Y+3,R24

Y+4,R25

R24 ,Y4T7 ;R24 ,R25 = i

R25 ,Y+8

R24 ,0x01 5 1

Y+8,R25 ;store i back
Y+7,R24

R24 ,0x08 ;compare i with 8
R25 ,R1 ; Compare with carry
L3 ;loop back if (i<8)

;outer loop which will make output samples

;OUTPUT

LDD

RCALL

LDD
LDD
LDD
LDD

RCALL

LDD
LDD

ROL
LSL

ADDI
ADCI
STD
STD
STD
STD

LDD
LDD
ADIW
STD
STD
CPI
CPC
BRLT

;done w

RET

[y] = sum + INPUT[y + 8] = COEFF[8];

R30 ,Y45 ;R30,R31 = y

R31,Y+46

R30,0x08 ;R30,R31 = y+8

R30 ;R30,R31 = (y+8) x size

R31

R30,0x00 ;add base address

R31,0x01 ;R30,R31 = base + (y+8) * size

R22 ,Z40 ;R22—R25 = INPUT [y+38]

R23 ,Z+1

R24 ; Clear Register

R23,7 kip if bit in register cleared

R24 ;Load and Toggle

R25 ,R24

INT2FLOAT ;call int2float subroutine
;i.e. R22—R25 = float (INPUT[y+8])

R18 ,Y+41 ;R18—R21 = COEFF [8]

R19 ,Y-+442 ;substrict is constant

R20 ,Y+43 o calculated at assemble time

R21,Y+44

FMUL ;call floating point multiplication
;so R22—R25 = INPUT[y + 8] x COEFF|[8]

R18 , Y41 ;R18—R21 = sum

R19 ,Y42

R20 ,Y+3

R21, Y44

FADD ;call floating point addition routine
;so R22—R25 = sum + INPUT[y + 8] = COEFF[38]

R30 ,Y+5 ;R30,R31 = y

R31,Y+46

R30 ;R30,R31 = y * size

R31

R30

R31

R30,0x00 add base address

R31,0x02 ase address of OUTPUT is 0x0200

Z240,R22 s R22—R25 = sum + INPUT[y + 8] = COEFF|[8]

Z+1,R23 ssign to OUTPUT|[y]

Z+2,R24 e.

Z+3,R25 ;OUTPUT[y] = sum + INPUT[y + 8] * COEFF[8]

R24 ,Y+5 ;R24 ,R25 = y

R25 ,Y+6

R24 ,0x01 s y++

Y+6,R25 ;Store back y

Y+5,R24

R24 ,0x24 ;v Compare with 36

R25 ,R1

L2 ;loop back if (y<36)

ith filtering

;Subro

utine return

Listing C.12: Atmel AVR AT90S851 Assembly Code for Benchmark 6: FIR

C.3 TI MSP430 Assembly Codes

© 00D U R WN =

102

APPENDIX C. ASSEMBLY CODES FOR THE SELECTED BENCHMARKS

H

This program recursively calculates the factorial
of a number (n). A number is passed to this subroutine
by main for factorial calculation.

Total No of Instruction

333339339

5503

ro

main subroutine
rl2 —> n for which factorial is to be calculated
rl4 ,r15 —> calculated factorial
r4d ,rd5 temporaries
55093 5033393339933 3 3
MOV. W #5,r12
CALL #Fact ;call Fact subroutine
RET ;end of main
Fact subroutine which will calculate factorial of 5
rl0 assigned to n
r12 and r1l3 will hold resulting factorial
rl4 and rl5 are temporaries for multiplication
S iiiaiiiiiiiiiiiiiiiiiii:
ri2 gl
r1i2 ,r10 ;rl0 = n
#1,r12 ;rl2 = n—1
;jump to L1 if (n>=2)
;base case is the case for 0 and 1
;factorial of which is 1
MOV. W #1,r14 irld = 1
MOV. W #0,r15 ;rl5 = 0
POP ri2 ;restore rl2
RET ;return to caller

L1:

;if not base

case then we need to find factorial(n—1)

;and multiply with n to get result

CALL #Fact ;call factorial for n—1

MOV.W ri4 ,r4 ;put lower 16 bits of result in rl4
MOV.W ri5,rb ;put upper 16 bits of result in rl5
;As 110 = n

;Now to calculate n x factorial(n—1)

;perform multiplication

CLR ri4 ; prod hi = 0

CLR rib ; prod low = 0

; LSBs x* LSBs

MOV r4,&0130h ; copy to multiplier registers (OP1LO)
MOV r10,&0138h ; OP2LO

MOV &SumLo ,r14 ; Add product to result (SumO)
MOV &SumHi ,r15 ; Suml

MoV r10,&0130h ; copy to multiplier registers (OP2LO)
MOV r5,&0138h ; OP1HI

ADD &SumLo ,r14 ; Add product to result (SumO)
ADDC &SumHi , r15 ; Suml

; so now rl4 and rl5 contain the result

POP ri2 ;restore rl0

RET ;return to caller

Listing C.13: TTI MSP430 Assembly Code for Benchmark 1:

Recursive Factorial

HIEIR

ERE R

g Copy

TI trin

In this program, main subroutine passes the addresses of source
destination strings to the StrCpy subroutine to copy the chracters
from source to the destination string.

Total No of

Instructions

3

outine

53
ubr

Main s
rl2 assigned to strSrc
rls assigned to strDest

and

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

© 0] U WN =

C.3. TI MSP430 ASSEMBLY CODES

103

Main : MOV.W #strSrc ,r12 ;address of source string
MOV.W #strDest ,r15 ;address of destination string
CALL #strCopy ;call the copy subroutine

End : RET ;end of main

5553

;% rl2 has strSrc base address
;% rlb has strDest base address
3 88RABABRRRRBBEBRRRRBBEBARRRBR5B0 RABBEBA0RREBB800RRBB8888RRH
strCopy : MOV.B @ri12+,0(r15) ;copy a byte from
;source to destination
ADD.B #1,r15 ;increment destination address
TST.B 0(r1s) ;test for null character
JNE strCopy ;loop back if not null
RET ;return to caller

Listing C.14: TT MSP430 Assembly Code for Benchmark 2: String Copy

R I I I IR A I A AR
TI MSP430 Bubble
In this program, an array of 10 elements is initialized
in the main subroutine. Base address of this array is

3 passed to BSort subroutine to sort the numbers in

8 descending order.

g Total No of Instruction = 33

Main Subroutine

START —> starting address of array
rls —> pointer to current element in the array
rl3 —> loop counter i
FEE I I I R A R A SR R A A S ST SR A R A SRR A A A SR SR A A A A S A ST A NS SR B AR A A SRR T A B A SR
Main: MOV.W #0,r13 8
MOV. W #0,r14
MOV.W #START , r15 ;address of array element
L1: MOV. W r13,0(r15) jarr[i] = i
MOV. W r14,2(r15)
ADD. W #4,r15 ;point to next element of array
;size of each element is 4
ADD. W #1,r13 5 fdt
CMP. W #10,r13 ;compare with 10
Ik L1 ;loop back if (i<10)
;otherwise we are done with all the elements in the array
CALL #BSort ;call the BSort routine
End : RET ;end of main

3 BSort Subroutine
8 starting address of array

pointer to current element in the array
loop counter i

loop counter j

temporary

#START , r15 starting address of array

L3: MOV.W #0,r9 g] = 0
L4: ;perform the comparison of arr[j] and arr[j+1]
;both are 32 bit values
;110,111 = arr[j] which will be used for comparison and swaping
MOV. W eri5 ,r10 ; 10 = high arr[j]
MOV.W 2(r15) ,r11 ; rll = low arr[j]
CMP . W 6(r15) ,r11 ; compare higher 16 bits
JL L5 ; if(arr[j] < arr[j+1])
; then swaping is required
JNE L6 ; otherwise no swaping required

;if higher 16 bits are same then

;we need to compare lower 16 bits

CMP.W 4(r15) ,r10 ; now compare lower 16 bits
JHS L6 ; if they are same then

64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85

104

APPENDIX C. ASSEMBLY CODES FOR THE SELECTED BENCHMARKS

;swap arr[j] and arr[j+1]
;110,111 contain arr([j]
L5: sarr [j] = arr[j+1]
MOV.W 4(r15) ,0(r15) ; move low 16 bits
MOV.W 6(r15) ,2(r15) ; move high 16 bits
;arr [j+1] = arr[j]
MOV.W r10,4(r15) ; copy high 16 bits
MOV. r11,6(r15) ; copy low 16 bits
L6 : ADD. #4,r15 ;point to next element
;size of each element
ADD. #1,r9 HENE =
CMP . r9,ri13 ; compare with i
JGE L4 ; loop back if(i>= j)
L7: SUB. #1,r13 DA
TST. ri3 ; compare with 0
JGE L3 ; loop back if(i>=0)
L8: RET ;return to caller

;

Qoo U kA WN -

Listing C.15: TT MSP430 Assembly Code for Benchmark 3: Bubble Sort

I IR A A I A IR B AL AR AR B A R AR

nting a structure for

TI MSP4
Structure contains 3 elements:

1 char byte Flag indicating if sensor has been calibrated or not.
1 short int containing the offset to be adjusted

1 long int containing the actual sensor value

An array of 5 sensors is declared. InitSensors() will initialize
these values to some numbers. CalibrateSensors () will subtract

offset
main ()
sensor

Total Number

from

of Instruction:

the value
call these two functions

sensors
to

and set the Flag.
initialize and calibrate

HE I I T A I I A I O
;call subroutine
CALL Calib ;call subroutine
End RET ;end
...... i iniii:
Init subroutine
START base address struct member

; I I A A I 3B 3B 8588B B8R 58888R8888888855 ;
Init MOV #0, r8 ;sensor value will be initialized with r8,r9
MOV #0, 19
MOV . #START , ri15 ; Starting address of struct
MOV. #0, r4 5
LO: MOV. #0, 0(r15) ;sensors[i].Flag = 0
INC.B rib ;increment the index
MOV.W r4, 0(r15) ;sensors[i].Offset = i
MOV.W r4, r8 H
ADC.W #3, r9 8
MOV.W r8,2(r15) ;sensors [i].Value i+3
MOV. W r8,4(r15)
ADD. W #6,r15 8 8 the index to point to
ADD.W #1, ra ;
CMP. W #5, r4 ;loop back 5 times
JL Lo
RTS 8 caller
b subroutine

index struct array

i

Data with which Value

59 START —> Starting address of struct array
60 ; rlb —> index struct array
61 ; r4 —> loop counter, i
L7 R R R R e B R R R S
63 Calib: MOV.W #START , ri15 ;rl5 = Starting address of struct
64 MOV.W #5, r4d ;loop counter
65
66 L1: MOV.B #0, 0(ri15) ;sensors[i].Flag =1
67 INC.B rib ;increment the index
68
69 SUB.W 0(r15) ,2(r15);sensors[i].Value —= sensors[i].Offset
70 SUBC.W #0,4(r15)
71
72 ADD. W #6,r15 ;increment the index to point to next struct element
73
74 DEC.W rd gil=—
75 JG Lo ;loop back 5 times
76
77 RTS ;return to caller
Listing C.16: TI MSP430 Assembly Code for Benchmark 4: Sensor Structure
L 3535335353353 5335353353533 535353535
2 i TI MSP430 Matrix Multiplication Assembly Program
3 B This program multiplies two matrices of order 3X4 and 4X5
4 to give a product matrix of order 3X5. Both the matrices
5 are initialized with some numbers and then multiplication
6 is performed to get product.
7
8 Total No of Instructions = 56
9 FEE I R R A R A N A A B A AR AR R B A AR B AR R B S R A B A A B A SRR N B RN BRI B AR B AR B B AR B NI
10
IO S 5P RER559995555558R885559995588568908555995685685589995559595886855858493
12 Main Subroutine
13 r4 assigned to n
14 r5 assigned to m
15 r6 assigned to p
16
17 Ml —> Base Address of matrix ml
18 M2 —> Base Address of matrix m2
19 M3 —> Base Address of matrix m3
20 rl13 —> index for ml
21 rl4 —> index for m2
22 rls5 —> index for m3
23 r9,r10,r11,r12 —> temporaries
24 i
25
26 ;initialize ml
27 Main: MOV.W #nRowsl , r6 ; 6 = no of rows
28 MOV.W #nColsl , r7 ; 16 = no of cols
29 MOV.W #M1, ri12 ; base address of ml
30 CALL #INIT ; call init routine
31
32 ;initialize m2
33 MOV.W #nRows2 , r6 ; r6 = no of rows
34 MOV.W #nCols2 , r7 ; r6 = no of cols
35 MOV.W #M2, ri2 ; base address of m2
36 CALL #INIT ; call init routine
37
38 ;perform multiplication
39 MOV.W #M1, ri13 ; base address of ml
40 MOV.W #M2 , ria ; base address of m2
41 MOV.W #M3, ri5 ; base address of m3
42
43 MOV.W #5, r4d ;nCols2
44 L3: MOV.W #3, r5 ;nRows1
45 L2: MOV.W #4, ré6 ;nColsl
46
47 MOV.W #0, r9 ;accumulator
48 MOV. W #0, r10
49
50 L1: ;multiplication of ml[m][n] * m2[n][p]
51 CLR rii ;temporary to hold product to
52 CLR ri2 ;hold ml[m][n] * m2[n][p]
53
54 ;LSBs * LSBs
55 MOV O(R13),&0130h ;copy to multiplier registers
56 MOV O(R14),&0138h
57 ADD &SumLo ,R11 ;7 Add product to result
58 ADDC &SumHi ,R12
59
60 ;LSBs * MSBs
61 MOV O(R13),&0130h ;copy to multiplier registers

C.3. TI MSP430 ASSEMBLY CODES

105

106 APPENDIX C. ASSEMBLY CODES FOR THE SELECTED BENCHMARKS

62 MOV 2(R14),&0138h

63

64 MOV O(R14),&0134h ;multiplication with accumlation
65 MOV 2(R13),&0138h ;copy to multiplier registers
66

67 ADD &SumLo ,R12 ;Add accumulated products

68 ;R11 and R12 contain product i.e. ml % m2

69

70 ADD. W ril1, r9 ;accumulate products

71 ADDC. W ri2, ri10

72

73 ADD. W #20, ri4 ;for the next element it should point
74 ;to first element of next row
75 ;nCols % size

76

s DEC.W r6 ;done with 1 row

78 JG L1

79

80 MOV.W r9,0(r15) ; m3[m][p] = r9,r10

81 MOV. W r10,2(r15)

82

83 SUB.W #56, ri4 ; decrement pointer for ml to point
84 ; to first element of next row
85

86 DEC.W r5 ; repeat this for all the columns
87 JG L2

88

89 MOV.W #M2, ri4 ; base address of m2

90

91 DEC.W r4 ; repeat for all rows

92 JG L3

93

94 RET ° ; return to caller

95

[lills 33883833838888888888888888888888888888 588888 588888883888888888888888358
97 INIT subroutine

98

99 r6 —> nRows

100 ; r7 —> nCols

101 r4 ,r5 —> mtp value, the data to be assigned

102 rl2 —> current element address pointer

103 r9 —> row counter

IR S 55555565559 8955599398558868888658553 DRI I I DRI B AR A SR A B B R R A N A
105 INIT: MOV.W #0, r4 resent mtp

106 MOV. W #0, r5

107 MOV.W #0, r9 ;row counter required for mifp
108

109 L9: MOV.W r4, 0(ri2)

110 MOV.W r5, 2(r12) ;mat (m] [p] = mtp

111

112 ADD . W #4, ri12 ;point to next array element
113

114 ADD.W #1, r4 ;increment mitp

115 ADDC.W #0, 15

116

117 DEC.W ré ;decrement row

118 JG L9 ;loop if > 0

119

120 ADD . W #1, r9 ;increment row counter

121 MOV.W r9, r4 ;assign it to r4 (mfp)

122

123 DEC.W r7 ;decrement column

124 JG L9 ;loop back if > 0

125

126 RET

Listing C.17: TTI MSP430 Assembly Code for Benchmark 5: Matrix Multiplication

1 R I I I I I I A A A AL AR A SRR A A A SR SRS A A S SR AN SR SRS SRS SR AR SRS SR BN SRR SRS SRR B AL SR NS SRR B IR
2 TI MSP430 FIR Assembly Program

3 This program is an implmentation of an FIR filter.

4 COEFF and INPUT arrays are initialized with some data and
5 then FIR caculations are performed to get the OUTPUT array.
6 These calculations are basically integer and floating point
7 calculations performed on these arrays to get floating

8 results in OUTPUT array.

9

10 Total No of Instructions

11

12

13 555

14 Main Subroutine

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

C.3. TI MSP430 ASSEMBLY CODES

107

L3:

L5:

L6:

COEFF —>
INPUT ==

base address of COEFF
base address of INPUT array

array

OUTPUT —> base address of OUTPUT array

r’7 assigned
r8,r9 assigned
r10 assigned

floating point

fs_add 30
fs_mpy 19
fs_div 15
fs_itof 86

;initializ
MOV.W

MOV.W
MOV.W
CALL

MOV.W
MOV.W
MOV.W
MOV.W
CALL

; COEFF [i]
MOV.W
MOV.W

ADD. W

ADD. W
CMP. W
JL

;initializ
MOV .
MOV.W
MOV.W
RLA.W

=

MOV.W

ADD. W
CMP. W
JL

to i
to sum
to y

calculations

4 bytes, 110 Instructions

4 bytes, 64
4 bytes, 52
bytes , 30

e COEFF array
#COEFF , r15
#0,r7

r7 ,r12
#__fs_itof

#0,r14
#16544,r15
#__fs_add

ri2 ,r14
r13,ri1b
#0,r12
#16256,r13
#__fs_div

= 1/(i+5.0)
r12,0(ri15)
r13,2(r15)

#4,r15

#1,r7
#17,r7
L1

e INPUT array
#0,r7

#2,r8

r7 ,r1b

rib

r8,68(ri15)

#1,r7
#6T7,r7
L3

;perform filtering

MOV.W
MOV.W

MOV.
MOV.

= =

MOV.
MOV.
SUB.
ADD
RLA.

=====

#0,r10
#0,r7

#0,r8
#0,r9

r7,r1b
r10 ,r13
ri5,r13
#16,r13
ri3

;rl3 now ocntains address

MOV.
MOV.
ADD.
RLA.

====

r10,r15
r7 ,rl4
ri5 ,r14
ri4

;rl4d now ocntains address

MOV.W
ADD. W
CALL

MOV.W
RLA.W
RLA.W

MOV.W
MOV.W

68(r14) ,r12
68(r13),r12
#__fs_itof

r7 ,r1b
rib
rib

0(r15) ,r14
2(r15),r15

3
3
3

3
of INPUT

of INPUT

Instructions
Instructions
Instructions

i=0
Pl 2= i
convert i to float

r14 and rl15 will store 5.0 in float

i+ 5.0

rl4, rl5 contain (i+5.0)

r12 and rl13 get 1.0
perform 1/(i+5.0)
r12 and rl3 contain result

lower 16 bits

upper 16 bits

rl5 now points to next element
i++

compare with 17

loop back if(i<17)

r8 = 2

rls = i

rl5 = ixsize
INPUT[i] = 2
i++

compare with 67
loop back if(i<67)

<
Il
oo

rl5 = i

ri3 =y

r13 = y—i

rl3 = y—i+16

rl3 = (y—i+16) * size
[y+16—1i]

rl5 =y
rl4 = i

rld =y + i
rl4 (
[y+i]

r12 = INPUT[y+i]
r12 = INPUT[y+16—i] + INPUT [y+i]

rl2, rl3 now contain float representation

of INPUT[y+16—i] + INPUT [y+i]

rls = i
rl5 = ix2
rl5 = ixsize

rl4 = lower 16 bits of COEFF[i]
rl5 = upper 16 bits of COEFF[i]

rl4, rl5 now contain float representation

108 APPENDIX C. ASSEMBLY CODES FOR THE SELECTED BENCHMARKS

103 ; of COEFF][i]

104

105 CALL #__fs_mpy ; COEFF[i] = (INPUT[y+16—i] + INPUT[y+i])
106 ; rl2 and rl1l3 contain result
107

108 MOV.W r8,ri14 ; rl4 = lower 16 bits of sum
109 MOV.W r9,ri1b ; rl5 = upper 16 bits of sum
110

111 ; now perform addition sum + COEFF[i] * (INPUT[y+16—i] + INPUT[y+i])
112 CALL #__fs_add ; result will be in rl1l2 and rl13
113

114 ;sum is being accumulated

115 ;80 store back the sum for next calculation

116 MOV.W ri2 ,r8 ; r8 = lower 16 bits of sum

117 MOV.W rl3 ,r9 ; r9 = upper 16 bits of sum

118

119 ADD.W #1,r7 g fduds

120 CMP.W #8,r7 ; compare with 8

121 Jib L6 ; loop back if(i<8)

122

123 MOV.W r10,r15 ; Tl =y

124 ADD . W #8, rib ; rls = y+8

125 RLA.W ris ; rls = (y+8) * size

126

127 MOV . W 68(r15),r12 ; r12 = INPUT[y+8]

128 CALL #__fs_itof ; convert rl2 to float

129

130 ;r3 is O

131 ;COEFF is at address 0

132 ;so COEFF[8] will be at address 32

133 MOV.W 32(R3) ,r14 ; rl4 = lower 16 bits of COEFF [8]
134 MOV.W 34(R3) ,r15 ; rl4d = upper 16 bits of COEFF([8]
135

136 ; now perform INPUT[y + 8] % COEFF|[38]

137 CALL #__fs_mpy ; result will be stored back in rl12,r13
138

139 MOV.W r8,r14 ; rl4 = lower 16 bits of sum
140 MOV.W r9,ri1b ; rl5 = lower 16 bits of sum
141

142 ;sum + INPUT [y + 8] = COEFF[8]

143 CALL #__fs_add ; 12 and rl1l3 contain result
144

145 MOV.W r1i0,r15 ; Tl =y

146 RLA.W rib ; Tlh = y*2

147 RLA.W rib ; rl5 = yxsize

148

149 ;store sum + INPUT[y + 8] = COEFF[8] back to OUTPUT|[y]

150 MOV.W r12,202(r15) ; lower 16 bits

151 MOV.W r13,204(r15) ; upper 16 bits

152

153 ADD. W #1,r10 sy

154 CMP.W #36,r10 ; compare with 36

155 Jib L5 ; loop back if(y<36)

156

157 ;done with filtering

158 RET ;return to caller

Listing C.18: TT MSP430 Assembly Code for Benchmark 6: FIR

C.4 ARM Cortex-M3 Assembly Codes

1 R I I I R I R N A A B AR A N R A A A AR N B A RN N AR B AR AR B R RN B AN N B AR S A RN B SR N SRR AN SRR N B A
2 ARM Cortex—M3 Recursive Factorial Benchmark Program

3 This program recursively calculates the factorial

4 of a number (n). A number is passed to this subroutine
5 by main for factorial calculation.

6

7

8 i ;

9 main subroutine

10 ;

11

12 5553 ;

13

14 Main: MOV RO, #5 5 =k

15 BL fact ;call factorial subroutine

16 End: BX R14 ;return to caller

17

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

© 00D U WN =

© O U A WN -

C.4. ARM CORTEX-M3 ASSEMBLY CODES

109

5 Factorial subroutine

g R4 —> calculated

Fact: PUSH RO
MOV RS
SUB RO
BGT Lo

;otherwise

factorial

HE I I I I I A I I IR SRR T AR SRR AR AR A A A A A A A A A A HER
;store register on stake

, RO ;R4 = n

, RO,#1 ;RO = n—1
;if greater then jump

come here to base case calculations

MOV R4, #1 ;fact = 1
POP RO ;restore register
BX R14 ;return to caller
L g BL Fact ;call factorial recursively
MUL R4 ,R4 ,R5 ;nxfact (n—1)
POP RO ;restore register
BX R14 ;return to caller

Listing C.19: ARM Cortex-M3 Assembly Code for Benchmark 1: Recursive Factorial

R I A A A N R I SN A R AR SRR A B A A A A AR A SR I BRI B A
8 ARM Cortex— Strin Copy Benchmark Program

3 In this program, main subroutine passes the addresses of source and

3 destination strings to the StrCpy subroutine to copy the chracters

3 from source to the destination string.

PRI IR I R R IR TR AR B AR AR IR S AR AN B R AN N AR A B N B I I I I A IR T I B A AR B A B AR A AL N R AR AR AL AR AR AR AR A AR AN AR A NN SE AR B N AR
R IR R R AR AR A A A A AR B A AR A R A A AR AN A AR A A A A AR A B AR AR B A AR N A A R AR A AL A AR AL B SRR A B AR A B AL SRR A B AR NN SR AR BE N A
g Main Subroutine

R1 —> Source String address

R2 —> Destination String address

3 R3 —> temporary

;R1 = Address of source string
;R2 = Address of destin string

;call string copy subroutine

;return to caller

for current byte

g RO —> loop counter

LO: LDRB R3,[R2,R0] ;R3 = SrcStr[i]
STRB R3,[R1,RO] ;DestStr[i] = R3
ADD RO ,RO,#1 s it
CBNZ Lo ;loop till not null
BX R14 ;return to caller

Listing C.20: ARM Cortex-M3 Assembly Code for Benchmark 2: String Copy

I I I)

ARM Cortex—M3 Bubble Sor

Bcncllméfk Program

In this program, an array of 10 elements is initialized
in the main subroutine. Base address of this array is
passed to BSort subroutine to sort the numbers in

descending order.

IR I I I IR I IR IR T AL I AR AR I B AR}

3 Main Subroutine
3 START —> Base Address of Array
3 R4 —> j i.e. loop counter

3 R1 —> to index the array
Main : MOV R4 ,#0 3 =0

MOV R1,# START ;R1 = base address of Array
LO: STR R4 ,[R1,R4 ,LSL #2] ;Array [j] =

110 APPENDIX C. ASSEMBLY CODES FOR THE SELECTED BENCHMARKS

20 ADD R4 R4 ,#1 5

21 CMP R4 ,#10 ;compare with 10

22 BLT LO ;loop back if(j<10)
23

24 BL BSort ;call sorting routine
25

26 End: BX R14 ;return to caller

27

28 5 5553335353553 33553553 53335535335533535533553335533353533535
29 BSort Subroutine

30 Actual subroutine used to implement sorting Algorithm

31 Array is at Address 0X0000

32 RO —> j i.e. loop counter

—> i i.e. loop counter

—> has the base address of array
—> holds Array([j]

R12 —> holds Array|[j+1]

8
0
LDR R12 ,[R1,RO,LSL #2] iR12 = Array[j]
ADD R4 ,RO,#1 ‘R4 = j+1
LDR R5 ,[R1,R4,LSL #2] iR5 = Array [j-+1]
CMP R12 ,R5 ;comparre Array[j] with Array[j+1]
BLE L1 ;if less then or equal

;then no swap required

;otherwise swap here

STR R5 ,[R1,R0O,LSL #2] ;Array [j] = Array[j+1]

STR R12 ,[R1,R4 ,LSL #2] ;Array [j+1] = Array[j]

ADD RO ,RO,#1 5 e

CMP RO ,R2 ;compare with i

BLE L2 ;loop back if (j<=i)

SUB R2 ,R2,#1 Si——

CBZ R2,L1 ;compare to 0 and loop if (i>=0)
BX R14 ;done sorting

;return to caller

Listing C.21: ARM Cortex-M3 Assembly Code for Benchmark 3: Bubble Sort

B 0 N B B O TR SR T R B R
2 ARM Cortex—M3 Sensor Struct Benchmark Program

3 Structure contains 3 elements:

4 1 char byte Flag indicating if sensor has been calibrated or not.

5 1 short int containing the offset to be adjusted

6 1 long int containing the actual sensor value

7

8 An array of 5 sensors is declared. InitSensors () will initialize

9 these values to some numbers. CalibrateSensors () will subtract

10 the offset from the value of the sensors and set the Flag.

11 main () will call these two functions to initialize and calibrate

12 sensor data.

13 5 5553535353353 5335353353 5335353353533535355353
14

15 5 5555555353353 5353353533535 33 535335353353 53353533535335353353533535335353
16 Main subroutine

17

18 5553

19 Main: BL Init 5 to Init subroutine

20 BL Calib ;call to Calib subroutine

21 End: BX R14 ;return to caller

22

PRIl 55555555593 8555550885655938555560885655593855536R08565559365593556856585858583
24 Init subroutine

25

26 START —> base address of first struct member

27 R1 —> index struct array

28 R2 —> Data with which Value will be initialized

29 R3 —> Flag will be initialized by R3

30 ; R4 —> loop counter

Bl 5 3535333353533 535335353353 5335353353533535353 5993359933
32 Init: MOV R1,#START ;R1 =

33 MOV R4 ,#0 pi = 0

34 MOV R2,#0 ;sensor value will be initialized with R2
35 MOV R3,#0 ;R3 = 0 for flag

36

37 LO: ADD R2 ,R4,#3 iR2 = i + 3

38 STRB R3 ,[R1,#0x00] ;sensors [i].Flag = 0

39 STRH R4 ,[R1,#0x02] ;sensors [i].Offset = i

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

©00NO U WN -

C.4. ARM CORTEX-M3 ASSEMBLY CODES

111

5

3

;sensors [i].Value =

;point to

;return to

i+3

next element

e
;compare with 5
;loop back

if (i<5)

caller

L1:

of struct
array

STR R2 ,[R1,#0x04]

ADD R1,R1,#6

ADD R4 ,R4,#1

cMP R4, #10

BLT Lo

BX R14
R EEEEEEEEE R IR
Cali subroutine
START —> Starting address
R1 —> index struct
R2 —> sensors[i].Offset
R3 —> sensors[i].Value
R4 —> loop counter

I IR A A IR

'R1,#START
R4, #0
R3,#1

5933

STRB R3 ,[R1,#0x00]
LDRH R2,[R1,#0x02]
LDR R3 ,[R1,#0x04]
SUB R2, R3, R2
STR R2 ,[R1,#0x04]
ADD R1,R1,#6

ADD R4 ,R4 ,#1

CMP R4 ,#10

BLT L1

BX R14

H

5

3

sIRNA =
3IRE =
3IRD =
;sensors [i].Value = R2

3

5

5

5

;

;R3 =

;return to

array

5 B 3 R}

R
base

1 for flag

sensors [i] .Flag = 1

sensors [i] .Offset
sensors [i].Value
sensors [i].Value —

point to next element

i+

compare with 5
loop back if (i<5)

caller

H)

address of Array

55055

sensors [i].Offset

Listing C.22: ARM Cortex-M3 Assembly Code for Benchmark 4: Sensor Structure

ARM

Thi
to
are
is

s program multiplies two

give a product

initialized with
performed to get

some
product.

matrices
matrix of order
numbers and then

of order 3X4 and 4X5
Both the matrices
multiplication

3X5.

L6:

L4:

;perform multiplication

MOV R10 , #M1
MOV R11, #M2
MOV R12, #M2
MOV R5,#0
MOV R4 ,#0
MOV R1,#0
MOV R3,#0
LDR R7 ,[R10]
LDR R8 ,[R11]
MLA R3 ,R7 ,R8

Main Subroutine
Base Address of matrix ml —> Ml
Base Address of matrix m2 —> M2
Base Address of matrix m3 —> M3
R10 is used to index the elements
R11 is used to index the elements
R12 is used to index the elements
R1,R3,R4,R5 —> loop counters and
R I I S A I BRI A S AR I S R A A T A S
; fill first matrix
MOV R12, #M1 ;
MOV R6, #nRows1l 8
MoV R7, #nColsi ;
BL INIT H
; fill second matrix
MOV R12, #M2 ;
MOV R6, #nRows2 ;
MOV R7, #nCols2 H
BL INIT ;

3
3

5

3
3
3

3

3

of matrix ml
of matrix m2
of matrix m3
temporaries

IR I IR IR IR I IR IR AR AR AR

R12 =base address of ml
R6 = no of rows of ml
R7 = no of cols of ml

call to INIT subroutine
R12 =base address of m2
R6 = no of rows of m2
R7 = no of cols of m2

call to INIT subroutine

R10 =base
R11 =base
R12 =base

address of ml
address of m2
address of m3

nCols2
nRows1
nColsl (or nRows2 is sam
R3 = 0 (accumulator for

R7 = ml[m][n]
R8 = m2[n][]p[)]

R3 += ml[m] * m2[n][p

e)

one element)

]

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

112

APPENDIX C. ASSEMBLY CODES FOR THE SELECTED BENCHMARKS

ADD R11 ,R11 ,#20 ;it will point to first element
ADD R10, R10, #4 ;points to next ml element

SUB R1, R1, #1

BLT L4 ;repeat 4 times

STR R3 ,[R11] ;m3[m] [p] = R3

SUB R11, R11, #56 ;now points to first element of
ADD R12, R12, #4 ;points to next m3 element

SUB R1, R4, #1

BLT L5 ;repeat 5 times

MOV R11, #M2 ;R11 =base address of m2

SUB R5, R5, #1

BLT L6 ;repeat 3 times

BX R14 ;return to caller

599

INIT Subroutine

3

76
s
78
79
80
81
82

Qoo U kA WN -

5593

RO —> wvalue to be assigned
R1 —> row number
R12 —> array index
;RO = 0, mip
;R1 = 0, row number
jmat [m] [p] = mtp
; RO+
;decrement col
;point to next element
;repeat this for nCols
ADD R1, #1 ;increment row
MOV RO, R1 ;RO = row number, for next row
SUB R6, #1 ;decrement rows
BLT L1 ;repeat this for nRows
BX R14 ;return to caller

of

next

next

row

column

Listing C.23: ARM Cortex-M3 Assembly Code for Benchmark 5: Matrix Multiplication

L1:

55053

ARM Cortex—M3 FII

R Filter

i HEEE
Benchmark Program

This program is an

implmentation

of a 17 order

FIR filter.

COEFF and INPUT arrays

are initialized with some

data and

then FIR caculations are performed to get the OUTPUT array.

These calculations are

calculations

performed on

basically
these

integer
arrays

to get

and floating point
floating

result

samples

in OUTPUT array.

B)
Subroutine

Main

COEFF —> starting address of COEFF Array
INPUT —> starting address of INPUT Array
OUTPUT —> starting address of OUTPUT Array
R10 —> to hold sum for accumulation
R8,R9 —> loop counters i and y respectively

;initialize COEFF array

MOV RS ,#0 1i=0

ADD RO ,R8 ,5 ;RO = i+5

BL int2float ;RO = float (i+5)

MOV R4 ,#0x3£800000 iR4 = 1.0

BL fdiv ;RO = 1/(i45.0)

MOV R1,# COEFF ;R1 = base address of COEFF
STR RO ,[R1,R8 ,LSL #2] ;COEFF[i] = 1/(i+5.0)

ADD RS ,R8,#1 s it

CMP R8 ,#17 ;compare with 17

BLT LO ;loop back if (i<17)
;initialize INPUT array

MOV RS ,#0 ii=0

MOV RO ,#2 ;RO = 0

MOV R1,# INPUT ;R1 = base address of INPUT

C.4. ARM CORTEX-M3 ASSEMBLY CODES

113

42
43
44
45
46
47
48
49
50
51 L2:
52
53
54 L3:
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
s
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107 End:

STR

ADD
CMP
BLT

MOV
MOV
MOV

ADD
SUB
MOV
LDR

ADD
LDR

ADD

BL

MOV

RO ,[R1,R8,LSL #2] ;INPUT[i] = 2
R8 ,R8,#1 s it
R8 ,#67 ;compare with 67
L1 ;loop back if (i<67)

; Perform FIR Calculations
R9 ,#0 sy = 0
R10 ,#0 ;sum = 0
R8,#0 i = 0
1,R9,#16 ;R1 = y+16
R1,R1,R8 iR1 = y+16—i
R2,# INPUT ;R2 = base address
R1,[R2,R1,LSL #2] ;R1 = INPUT [y+16—1i]
R2 ,R9 ,R8 JR2 = y+i
R2,[R3,R2,LSL #2] iR2 = INPUT [y+i]
RO ,R1,R2 ;RO = INPUT [y+16—i]
int2float ;RO = float (RO)
R6 ,# COEFF ;R6 = base of COEFF
R1 ,[R6 ,R8,LSL #2] ;R1 = COEFF|[i]

LDR

; RO
BL

MOV

; RO
BL

MOV
ADD
CMP
BLT
MOV
ADD
LDR
BL

LDR
BL

MOV

BL

MOV

;OUTPUT [y]

STR
ADD
CMP
BLT

BX

sum + COEFF|[i]

COEFF[i] = INPUT[y+16—i]

fmul ()

R1,R10

fadd ()

R10 ,RO

R8 ,R8,#1

R8,#8

L3

R1,# INPUT

R2 ,R9,#8

RO ,[R1,R2,LSL #2]
int2float
R1,[# Addr (COEFF [8]]
fmul

R1,R10

fadd

R1,#0UTPUT

= sum + INPUT[y+38]
RO, [R1,R9,LSL #2]
RO ,R9,#1

RO ,#36

L2

R14

+ INPUT [y+i]

;R1

* INPUT [y+416—i]

sum

+ INPUT[y+i]

;R10 = sum
accumulation

;sum

of INPUT

+ INPUT [y+i]

of INPUT

sum + INPUT[y+8] = COEFF[8]

of OUTPUT

e

;compare with 8

;loop back if (i<8)

;R1 = base address

;R2 = y+8

;RO = INPUT [y +38]

;RO = float (INPUT [y+38]
;R1 = COEFF 8]

;RO = INPUT [y+8] = COEFF [8]
;R1 = sum

;RO =

;R1 = base address
COEFF [8]

R am

;compare with 36
;loop back

;return to

if (y<36)

caller

Listing C.24: ARM Cortex-M3 Assembly Code for Benchmark 6: FIR

114 APPENDIX C. ASSEMBLY CODES FOR THE SELECTED BENCHMARKS

Calculations Details

D.1 MePoEfAr Calculations Details

Table D.1: MePoEfAr Calculations

Static Results Dynamic Results
Instruction Instr | Instr | DBytes | # of | Exec. | Memory Traffic (Cycles)
Bytes | Cycles | Moved | Exec. | Cycles | IM { DM16 { DMem32
MePoEfAr Calculations for Benchmark 1: Recursive Factorial

1 | Main: MOVd #5, DO 2 1 1 1 1 0 0
2 BRS Fact 2 2 1 2 1 0 0
3 | End: RTS 2 2 1 2 1 0 0
4 | Fact: MOVd DO,-(SP) 2 2 2 5 10 5 5 5
5 MOVd DO0,D2 2 1.6 5 8 5 0 0
6 SUBd #1, DO 2 1 5 5 5 0 0
7 BRgt Lo 2 1 5 5 5 0 0
8 MOVd #1,D1 2 1 1 1 1 0 0
9 MOVd (SP)+,D0 2 2 2 1 2 1 1 1
10 RTS 2 2 1 2 1 0 0
11 | LO: BRS Fact 2 2 4 8 4 0 0
12 MULd D2,D1 2 2 4 8 4 0 0
13 MOVd (SP)+,D0 2 2 2 4 8 4 4 4
14 RTS 2 2 4 8 4 0 0

Total 28 23.6 6 42 70 42 10 10

MePoEfAr Calculations for Benchmark 2: String Copy

1 | Main: MOVx #Src,X4 4 2 1 2 2 0 0
2 MOVx #Dst,X5 4 2 1 2 2 0 0
3 BRS StrCpy 2 2 1 2 1 0 0
4 | End: HALT 2 1 1 1 1 0 0
5 | StrCpy: | MOVb (X4)+, BO 2 2 2 13 26 13 13 13
6 MOVb BO, (X5)+ 2 2 2 13 26 13 13 13
7 BRne StrCpy 2 1 13 13 13 0 0
8 RTS 2 1 1 1 1 0 0

Total 20 13 4 44 73 46 26 26

MePoEfAr Calculations for Benchmark 3: Bubble Sort

1 | Main: MOVd #10, D1 2 1 1 1 1 0 0
2 MOVx #START,X4 4 2 1 2 2 0 0
3 MOVd #0,D2 2 1 1 1 1 0 0
4 | L1: MOVd D2, (X4)+ 2 4 4 10 40 10 20 10
5 ADDd #1,D2 2 2 10 20 10 0 0
6 DECBRn |D1, L1 2 3 10 30 10 0 0
7 BRS BSort 2 2 1 2 1 0 0
8 | End: HALT 2 1 1 1 1 0 0
9 | BSort: MOVx #START,X4 4 1 1 1 2 0 0
10 MOVw #9,WO0 2 1 1 1 1 0 0

Continued on Next Page. ..

115

116 APPENDIX D. CALCULATIONS DETAILS

Static Results Dynamic Results
Instruction Instr | Instr | DBytes | # of | Exec. | Memory Traffic (Cycles)
Bytes | Cycles | Moved | Exec. | Cycles | IM | DM16 | DMem32

11 | L1: MOVw #WO0,W1 2 1 9 9 9 0 0
12 | L2: MOVd (X4)+,D2 2 4 4 45 180 45 90 45
13 MOVd @X4,D3 2 3 4 45 135 45 90 45
14 CPAd D2, D3 2 1 45 45 45 0 0
15 BRIt NoSwap 2 1 45 45 45 0 0
16 MOVd D2,@X4 2 3 4 45 135 45 90 45
17 MOVd D3,-4(X4) 3 5 4 45 225 90 90 45
18 | NoSwap: | DECBRn | W1, L2 2 2 45 90 45 0 0
19 DECBRn | WO,L1 2 2 9 18 9 0 0
20 RTS 2 1 1 1 1 0 0

Total 45 41 20 371 982 418 380 190

MePoEfAr Calculations for Benchmark 4: Sensor Structure

1 | Main: BRS Init 2 2 1 2 1 0 0
2 BRS Calib 2 2 1 2 1 0 0
3 | End: RTS 2 1 1 1 1 0 0
4 | Init: MOVd #3, DO 2 1 1 1 1 0 0
5 MOVx #START, X4 4 2 1 2 2 0 0
6 MOVw #0, WO 2 1 1 1 1 0 0
7 MOVb #5, BO 2 1 1 1 1 0 0
8 | LO: MOVb #0, (X4)+ 2 2 2 5 10 5 5 5
9 MOVw WO, (X4)+ 2 2 2 5 10 5 5 5
10 ADDwds ‘Wo0, DO 3 4 5 20 10 0 0
11 MOVd DO,(X4)+ 2 4 4 5 20 5 10 5
12 ADDb #1, WO 2 1 5 5 5 0 0
13 DECBRn | B0, LO 2 2 5 10 5 0 0
14 RTS 2 1 1 1 1 0 0
15 | Calib: MOVx #START, X4 4 2 1 2 2 0 0
16 MOVb #5, BO 2 1 1 1 1 0 0
17 | L1: MOVb #1, (X4)+ 2 2 2 5 10 5 5 5
18 MOVw (X4)+, WO 2 2 2 5 10 5 5 5
19 MOVwds | W0, DO 3 2 5 10 10 0 0
20 SUBd Do, (X4)+ 2 3 4 5 15 5 10 5
21 DECBRn | B0, LO 2 2 5 10 5 0 0
22 RTS 2 1 1 1 1 0 0

Total 50 41 16 66 145 78 40 30

MePoEfAr Calculations for Benchmark 5: Matrix Multiplication

1 | Main: MOVb #nRowsl, B6 2 1 1 1 1 0 0
2 MOVb #nColsl, B7 2 1 1 1 1 0 0
3 MOVx #M1, X4 4 2 1 2 2 0 0
4 BRS INIT 2 2 1 2 1 0 0
5 MOVb #nRows2, B6 2 1 1 1 1 0 0
6 MOVb #nCols2, B7 2 1 1 1 1 0 0
7 MOVx #M2, X4 4 2 1 2 2 0 0
8 BRS INIT 2 2 1 2 1 0 0
9 Inx X4,#3 | #M1,#M2,#M3 9 5 1 5 5 0 0
10 MOVb #5, B5 2 1 1 1 1 0 0
11 | L3: MOVb #3, B4 2 1 5 5 5 0 0
12 | L2: MOVb #4, B1 2 1 15 15 15 0 0
13 MOVd #0, D3 2 2 15 30 15 0 0
14 | L1: MOVd (X4)+, D2 2 4 4 60 240 60 120 60

Continued on Next Page. ..

D.1. MEPOEFAR CALCULATIONS DETAILS

117

Static Results Dynamic Results
Instruction Instr | Instr | DBytes | # of | Exec. | Memory Traffic (Cycles)
Bytes | Cycles | Moved | Exec. | Cycles | IM | DM16 | DMem32

15 MULd Q@X3, D2 2 8 4 60 480 60 120 60
16 ADDd D2, D3 2 2 60 120 60 0 0
17 ADDx #20, X3 3 2 60 120 120 0 0
18 DECBRn |B1, L1 2 2 60 120 60 0 0
19 MOVd D3, (X5)+ 2 4 4 15 60 15 30 15
20 SUBx #56, X3 3 2 15 30 30 0 0
21 DECBRn | B4, L2 2 2 15 30 15 0 0
22 MOVx #M2, X3 4 2 5 10 10 0 0
23 DECBRn | B5, L3 2 2 5 10 5 0 0
24 RTS 2 1 1 1 1 0 0
25 | INIT: MOVd #0, D2 2 1 2 2 2 0 0
26 MOVd #0, D3 2 1 2 2 2 0 0
27 | L1: MOVd D3, (X4)+ 2 4 4 32 128 32 64 32
28 ADDd #1, D3 2 1 32 32 32 0 0
29 DECBRn |B7, L1 2 2 32 64 32 0 0
30 ADDd #1, D2 2 2 32 64 32 0 0
31 MOVd D2, D3 2 1 32 32 32 0 0
32 DECBRn | B6, L1 2 2 32 64 32 0 0
33 RTS 2 1 2 2 2 0 0

Total 81 68 16 599 1679 685 334 167

MePoEfAr Calculations for Benchmark 6: FIR

1 | Main: MOVx #COEFF,X4 4 2 1 2 2 0 0
2 MOVb #18,B0 3 2 1 2 2 0 0
3 MOVF #5,F0 2 1 1 1 1 0 0
4 | L1: MOVT #1,F2 2 1 18 18 18 0 0
5 DIVf FO0,F2 2 1 18 18 18 0 0
6 MOVT F2,(X4)+ 2 2 4 18 36 18 36 18
7 ADDf #1,F0 2 1 18 18 18 0 0
8 DECBRn | BO,L1 2 1 18 18 18 0 0
9 MOVx #INPUT,X4 4 2 1 2 2 0 0
10 MOVb #68,B0 3 2 1 2 2 0 0
11 MOVd #2,D2 2 1 1 1 1 0 0
12 | L2: MOVw W2,(X4)+ 2 3 2 68 204 68 68 68
13 DECBRn | BO0,L2 2 1 68 68 68 0 0
14 MOVx #COEFF,X4 4 2 1 2 2 0 0
15 MOVx #INPUT,X2 4 2 1 2 2 0 0
16 MOVx #OUTPUT,X6 4 2 1 2 2 0 0
17 MOVb #36,B1 3 2 1 2 2 0 0
18 | L4: MOVb #8,B2 2 1 36 36 36 0 0
19 MOVf #0,F1 2 1 36 36 36 0 0
20 | L3: MOVx #16,X3 3 2 304 608 608 0 0
21 SUBbx B2,X3 3 2 304 608 608 0 0
22 ADDbx B1,X3 3 2 304 608 608 0 0
23 MULx #2,X3 2 1 304 304 304 0 0
24 ADDx X2,X3 2 1 304 304 304 0 0
25 MOVw Q@X3,W3 2 2 2 304 608 304 304 304
26 MOVbxs B1,X3 3 2 304 608 608 0 0
27 ADDbxs B2,X3 3 2 304 608 608 0 0
28 MULx #2,X3 2 1 304 304 304 0 0
29 ADDx X2,X3 2 1 304 304 304 0 0

Continued on Next Page. ..

118 APPENDIX D. CALCULATIONS DETAILS

Static Results Dynamic Results
Instruction Instr | Instr | DBytes | # of | Exec. | Memory Traffic (Cycles)
Bytes | Cycles | Moved | Exec. | Cycles | IM | DM16 | DMem32
30 ADDd Q@X3,W3 2 2 2 304 608 304 304 304
31 MOVwfs W3,F3 3 2 304 608 608 0 0
32 MULdfs (X4)+,F3 3 2 4 304 608 608 608 304
33 ADDf F3,F1 2 1 304 304 304 0 0
34 DECBRn |B2,L3 2 2 304 608 304 0 0
35 MOVf 32(X0),F5 3 4 4 36 144 72 72 36
36 MOVx #8,X3 2 1 36 36 36 0 0
37 ADDbxs B1,X3 3 2 36 72 72 0 0
38 MULx #4,X3 2 1 36 36 36 0 0
39 ADDx X2,X3 2 1 36 36 36 0 0
40 MOVw Q@X3,W3 2 2 4 36 72 36 72 36
41 MULwfs W3,F5 3 1 36 36 72 0 0
42 ADDf F1,F5 2 1 36 36 36 0 0
43 MOVT F5,(X6)+ 2 2 4 36 72 36 72 36
44 DECBRn |B1,L4 2 2 36 72 36 0 0
45 | End: RTS 2 1 1 1 1 0 0
Total 113 73 26 5229 8683 | 7473 | 1536 1106

D.2 Atmel AVR AT90S851 Calculations Details

here will be the code for benchmark 2

Table D.2: Atmel AVR Calculations

Static Results Dynamic Results
Instruction Instr. | Instr. | DBytes | No. of Exec. | Memory Traffic (Cycles)
Bytes | Cycles | Moved Exec. | Cycles | Instr. Mem | Data Mem
Atmel AVR Calculations for Benchmark 1: Recursive Factorial
1 | Main: LDI R18,0x05 2 1 1 1 1 0
2 LDI R19,0x00 2 1 1 1 1 0
3 RCALL | Fact 2 3 1 3 1 0
4 RET 2 4 1 4 1 0
5 | Fact: PUSH R18 2 2 1 5 10 5 5
6 PUSH R19 2 2 1 5 10 5 5
7 CPI R18,0x02 2 1 5 5 5 0
8 CPC R19,R1 2 1 5 5 5 0
9 BRGE | LO 2 5 5 5 0
10 LDI R22,0x01 2 1 1 1 1 0
11 LDI R23,0x00 2 1 1 1 1 0
12 LDI R24,0x00 2 1 1 1 0
13 LDI R25,0x00 2 1 1 1 1 0
14 RIMP L1 2 1 1 1 1 0
15 | LO: MOV R20,R18 2 1 4 4 4 0
16 MOV R21,R19 2 1 4 4 4 0
17 SBIW R18,0x01 2 1 4 4 4 0
18 RCALL | Fact 2 3 4 12 4 0
19 MOV R18,R20 2 1 4 4 4 0

Continued on Next Page. ..

D.2. ATMEL AVR AT90S851 CALCULATIONS DETAILS

119

Static Results Dynamic Results
Instruction Instr. | Instr. | DBytes | No. of Exec. | Memory Traffic (Cycles)
Bytes | Cycles | Moved Exec. Cycles | Instr. Mem | Data Mem

20 MOV R19,R21 2 1 4 4 4 0
21 CLR R20 2 1 4 4 4 0
22 CLR R21 2 1 4 4 4 0
23 | (27,50) RCALL | Mult32 50 43 4 172 100 0
24 | L1: POP R19 2 2 1 5 10 5 5
25 POP R18 2 2 1 5 10 5 5
53 RET 2 4 1 4 1 0

Total 100 82 4 81 285 177 20

Atmel AVR Calculations for Benchmark 2: String Copy

1 Main: LDI R30,0x60 2 1 1 1 1 0
2 LDI R31,0x00 2 1 1 1 1 0
3 LDI R28,0x70 2 1 1 1 1 0
4 LDI R29,0x00 2 1 1 1 1 0
5 RCALL | strCopy 2 3 1 3 1 0
6 RET 2 4 1 4 1 0
7 | strCopy: | LD R24,7Z+ 2 2 1 13 26 13 13
8 ST Y+,R24 2 2 1 13 26 13 13
9 TST R24 2 1 13 13 13 0
10 BRNE strCopy 2 1 13 13 13 0
11 RET 2 4 1 4 1 0

Total 22 21 2 59 93 59 26

Atmel AVR Calculations for Benchmark 3:Bubble Sort

1 Main: LDI R30,0x00 2 1 1 1 1 0
2 LDI R31,0x00 2 1 1 1 1 0
3 LDI R24,0x00 2 1 1 1 1 0
4 LDI R25,0x00 2 1 1 1 0
5 LO: ST Z+,R24 2 2 1 10 20 10 10
6 ST Z+,R25 2 2 1 10 20 10 10
7 ADIW R24,0x01 2 1 10 10 10 0
8 CPI R24,0x0A 2 1 10 10 10 0
9 CPC R25,R1 2 1 10 10 10 0
10 BRNE Lo 2 1 10 10 10 0
11 RCALL | BSort 2 3 1 3 1 0
12 RET 2 4 1 4 1 0
13 | BSort: MOV R30,R24 2 1 1 1 1 0
14 MOV R31,R25 2 1 1 1 1 0
15 LDI R18,0x08 2 1 1 1 1 0
16 LDI R19,0x00 2 1 1 1 0
17 | L2: LDI R20,0x00 2 1 9 9 9 0
18 LDI R21,0x00 2 1 9 9 9 0
19 | L1: LDD R22,Z+0 2 1 1 45 45 45 45
20 LDD R23,Z+1 2 1 1 45 45 45 45
21 LDD R26,Z+2 2 1 1 45 45 45 45
22 LDD R27,Z+3 2 1 1 45 45 45 45
23 Cp R26,R22 2 1 45 45 45 0
24 CPC R27,R23 2 1 45 45 45 0
25 BRGE NoSwap 2 1 45 45 45 0
26 STD Z+1,R27 2 1 1 45 45 45 45
27 STD Z+0,R26 2 1 1 45 45 45 45
28 STD Z+3,R23 2 1 1 45 45 45 45

Continued on Next Page. ..

120 APPENDIX D. CALCULATIONS DETAILS

Static Results Dynamic Results
Instruction Instr. | Instr. | DBytes | No. of Exec. | Memory Traffic (Cycles)
Bytes | Cycles | Moved Exec. Cycles | Instr. Mem | Data Mem

29 STD Z+2,R22 2 1 1 45 45 45 45
30 | NoSwap: | SUBI R20,0xFF 2 1 45 45 45 0
31 SBCI R21,0xFF 2 1 45 45 45 0
32 ADIW R30,0x02 2 1 45 45 45 0
33 CcP R18,R20 2 1 45 45 45 0
34 CPC R19,R21 2 1 45 45 45 0
35 BRGE L1 2 45 45 45 0
36 SUBI R18,0x01 2 1 9 9 9 0
37 SBCI R19,0x00 2 1 9 9 9 0
38 SER R20 2 1 9 9 9 0
39 CPI R18,0xFF 2 1 9 9 9 0
40 CPC R19,R20 2 1 9 9 9 0
41 BRNE L2 2 1 9 9 9 0
42 RET 2 4 1 4 1 0

Total 84 52 10 908 936 908 380

Atmel AVR Calculations for Benchmark 4: Sensor Structure

1 Main: RCALL | Init 2 3 1 3 1 0
2 RCALL | Calib 2 3 1 3 1 0
3 | End: RET 2 4 1 4 1 0
4 | Init: MOV R30,#STLo 2 1 1 1 1 0
5 MOV R31,#STHi 2 1 1 1 1 0
6 MOV | R20,#3 2 1 1 1 1 0
7 CLR R21 2 1 1 1 1 0
8 CLR R22 2 1 1 1 1 0
9 CLR R23 2 1 1 1 0
10 MOV R15,#0 2 1 1 1 1 0
11 MOV R16,#0 2 1 1 1 1 0
12 | LO: STD Z+,#0 2 2 1 5 10 5 5
13 STD Z+,R15 2 2 1 5 10 5 5
14 STD Z+,R16 2 2 1 5 10 5 5
15 INC R20 2 1 5 5 5 0
16 ADC R21,R16 2 1 5 5 5 0
17 ADC R22,#0 2 1 5 5 5 0
18 ADC R23,#0 2 1 5 5 5 0
19 STD z+,R20 2 2 1 5 10 5 5
20 STD z+,R21 2 2 1 5 10 5 5
21 STD z+,R22 2 2 1 5 10 5 5
22 STD z+,R23 2 2 1 5 10 5 5
23 INC R15 2 1 5 5 5 0
24 CPI R15,#5 2 1 5 5 5 0
25 BRNE Lo 2 5 5 5 0
26 RET 2 4 1 4 1 0
27 | Calib: MOV R30,#STLo 2 1 1 1 1 0
28 MOV R31,#STHi 2 1 1 1 1 0
29 MOV R15,#5 2 1 1 1 1 0
30 | Li: STD Z+,#1 2 2 1 5 10 5 5
31 MOV R18,z+ 2 2 1 5 10 5 5
32 MOV R19,z+ 2 2 1 5 10 5 5
33 SUB z+,R18 2 2 2 5 10 5 10
34 SBC z+,R19 2 2 2 5 10 5 10

Continued on Next Page. ..

D.2. ATMEL AVR AT90S851 CALCULATIONS DETAILS

121

Static Results Dynamic Results
Instruction Instr. | Instr. | DBytes | No. of Exec. | Memory Traffic (Cycles)
Bytes | Cycles | Moved Exec. Cycles | Instr. Mem | Data Mem

35 SBCI z+,#0 2 2 2 5 10 5 10
36 SBCI z+,#0 2 2 2 5 10 5 10
37 DEC R15 2 1 5 5 5 0
38 BRNE |L1 2 1 5 5 5 0
39 RET 2 4 1 4 1 0

Total 78 66 18 131 214 131 90

Atmel AVR Calculations for Benchmark 5: Matrix Multiplication

1 | Main: MOV R15,#nRowsl 2 1 1 1 1 0
2 MOV R16,#nCols1 2 1 1 1 1 0
3 MOV R30,#M1Lo 2 1 1 1 1 0
4 MOV R31,#M1Hi 2 1 1 1 1 0
5 RCALL | INIT 2 3 1 3 1 0
6 MOV R15,#nRows2 2 1 1 1 1 0
7 MOV R16,#nCols2 2 1 1 1 1 0
8 MOV R30,#M2Lo 2 1 1 1 1 0
9 MOV R31,#M2Hi 2 1 1 1 1 0
10 RCALL | INIT 2 3 1 3 1 0
11 MOV R26,#M1Lo 2 1 1 1 1 0
12 MOV R27,#M1Hi 2 1 1 1 1 0
13 MOV R28,#M2Lo 2 1 1 1 1 0
14 MOV R29,#M2Hi 2 1 1 1 1 0
15 MOV R30,#M3Lo 2 1 1 1 1 0
16 MOV R31,#M3Hi 2 1 1 1 1 0
17 MOV R15,#5 2 1 1 1 1 0
18 | L3: MOV R16,#3 2 1 5 5 5 0
19 | L2: MOV R17,#4 2 1 15 15 15 0
20 LDI Z+0,#0 2 1 1 15 15 15 15
21 LDI Z+41,#0 2 1 1 15 15 15 15
22 LDI Z+42,#0 2 1 1 15 15 15 15
23 LDI Z+3,#0 2 1 1 15 15 15 15
24 | L1: MOV R18,X+ 2 2 1 60 120 60 60
25 MOV R19,X+ 2 2 1 60 120 60 60
26 MOV R20,X+ 2 2 1 60 120 60 60
27 MOV R21,X+ 2 2 1 60 120 60 60
28 MOV R22,Y+ 2 2 1 60 120 60 60
29 MOV R23,Y+ 2 2 1 60 120 60 60
30 MOV R24,Y+ 2 2 1 60 120 60 60
31 MOV R25,Y+ 2 2 1 60 120 60 60
32 | (35,50) RCALL | Mult32 72 53 60 3180 2160 0
33 ADD Z+0,R22 2 2 1 60 120 60 60
34 ADD Z+1,R23 2 2 1 60 120 60 60
35 ADD Z+2,R24 2 2 1 60 120 60 60
36 ADD Z+3,R25 2 2 1 60 120 60 60
37 ADIW | R29:R28,#20 2 2 60 120 60 0
38 DEC R17 2 1 60 60 60 0
39 BRNE |L1 2 1 60 60 60 0
40 ADIW | R31:R30,#4 2 2 15 30 15 0
41 SBIW R29:R28,#56 2 2 15 30 15 0
42 DEC R16 2 1 15 15 15 0
43 BRNE | L2 2 1 15 15 15 0

Continued on Next Page. ..

122 APPENDIX D. CALCULATIONS DETAILS

Static Results Dynamic Results
Instruction Instr. | Instr. | DBytes | No. of Exec. | Memory Traffic (Cycles)
Bytes | Cycles | Moved Exec. Cycles | Instr. Mem | Data Mem

44 MOV R28,#M2Lo 2 1 5 5 5 0
45 MOV R29,#M2Hi 2 1 5 5 5 0
46 DEC R15 2 1 5 5 5 0
47 BRNE L3 2 1 5 5 5 0
48 RET 2 4 1 4 1 0
49 | INIT: CLR R23 2 1 2 2 2 0
50 CLR R24 2 1 2 2 2 0
51 CLR R25 2 1 2 2 2 0
52 CLR R26 2 1 2 2 2 0
53 CLR R17 2 1 2 2 2 0
54 | L1: STD Z+0,R23 2 2 1 32 64 32 32
55 STD Z+1,R24 2 2 1 32 64 32 32
56 STD Z+2,R25 2 2 1 32 64 32 32
57 STD Z+3,R26 2 2 1 32 64 32 32
58 ADD R23,#1 2 1 32 32 32 0
59 ADC R24,#0 2 1 32 32 32 0
60 ADC R25,#0 2 1 32 32 32 0
61 ADC R26,#0 2 1 32 32 32 0
62 ADI R30,#4 2 1 32 32 32 0
63 ADC R31,#0 2 1 32 32 32 0
64 DEC R16 2 1 32 32 32 0
65 BRGT L1 2 1 32 32 32 0
66 INC R17 2 1 32 32 32 0
67 MOV R17,R23 2 1 32 32 32 0
68 DEC R15 2 1 32 32 32 0
69 BRGT L1 2 1 32 32 32 0
105 RET 2 4 2 8 2 0

Total 210 151 20 1662 5733 3762 908

Atmel AVR Calculations for Benchmark 6: FIR

1 Main: STD Y+8,R1 2 2 1 1 2 1 1
2 STD Y+7,R1 2 2 1 1 2 1 1
3 | LO: LDD R16,Y+47 2 2 1 18 36 18 18
4 LDD R17,Y+8 2 2 1 18 36 18 18
5 LDD R22, Y47 2 2 1 18 36 18 18
6 LDD R23,Y+8 2 2 1 18 36 18 18
7 CLR R24 2 1 18 18 18 0
8 CLR R25 2 1 18 18 18 0
9 RCALL | INT2FLOAT 2 3 18 54 18 0
10 LDI R18,0x00 2 1 18 18 18 0
11 LDI R19,0x00 2 1 18 18 18 0
12 LDI R20,0xA0 2 1 18 18 18 0
13 LDI R21,0x40 2 1 18 18 18 0
14 RCALL | FADD 2 3 18 54 18 0
15 LDI R18,0x00 2 1 18 18 18 0
16 LDI R19,0x00 2 1 18 18 18 0
17 LDI R20,0x80 2 1 18 18 18 0
18 LDI R22,0x3F 2 1 18 18 18 0
19 RCALL | FDIV 2 3 18 54 18 0
20 MOV R30,R16 2 1 18 18 18 0
21 MOV R31,R17 2 1 18 18 18 0

Continued on Next Page. ..

D.2. ATMEL AVR AT90S851 CALCULATIONS DETAILS

123

Static Results Dynamic Results
Instruction Instr. | Instr. | DBytes | No. of Exec. | Memory Traffic (Cycles)
Bytes | Cycles | Moved Exec. Cycles | Instr. Mem | Data Mem
22 LSL R30 2 1 18 18 18 0
23 ROL R31 2 1 18 18 18 0
24 LSL R30 2 1 18 18 18 0
25 ROL R31 2 1 18 18 18 0
26 LDI R20,0x00 2 1 18 18 18 0
27 LDI R21,0x00 2 1 18 18 18 0
28 ADD R30,R20 2 1 18 18 18 0
29 ADC R31,R21 2 1 18 18 18 0
30 STD Z+0,R24 2 2 1 18 36 18 18
31 STD Z+1,R25 2 2 1 18 36 18 18
32 STD Z+2,R26 2 2 1 18 36 18 18
33 STD Z+3,R27 2 2 1 18 36 18 18
34 LDD R24,Y+7 2 2 18 36 18 0
35 LDD R25,Y+8 2 2 18 36 18 0
36 ADIW | R24,0x01 2 1 18 18 18 0
37 STD Y+8,R25 2 2 1 18 36 18 18
38 STD Y+7,R24 2 2 1 18 36 18 18
39 CPI R24,0x11 2 1 18 18 18 0
40 CpPC R25,R1 2 1 18 18 18 0
41 BRLT Lo 2 1 18 18 18 0
42 STD Y+8,R1 2 2 1 1 2 1 1
43 STD Y+7,R1 2 2 1 1 2 1 1
44 | L1: LDD R30,Y+7 2 2 1 36 72 36 36
45 LDD R31,Y+8 2 2 1 36 72 36 36
46 SUBI R18,0x00 2 1 36 36 36 0
47 SBCI R19,0x01 2 1 36 36 36 0
48 LSL R30 2 1 36 36 36 0
49 ROL R31 2 1 36 36 36 0
50 ADD R30,R18 2 1 36 36 36 0
51 ADC R31,R19 2 1 36 36 36 0
52 LDI R18,0x02 2 1 36 36 36 0
53 LDI R19,0x00 2 1 36 36 36 0
54 STD Z+1,R19 2 2 1 36 72 36 36
55 STD 7Z+40,R18 2 2 1 36 72 36 36
56 LDD R24,Y+7 2 2 1 36 72 36 36
57 LDD R25,Y+8 2 2 1 36 72 36 36
58 ADIW | R24,0x01 2 1 36 36 36 0
59 STD Y+8,R25 2 2 1 36 72 36 36
60 STD Y+7,R24 2 2 1 36 72 36 36
61 CPI R24,0x43 2 1 36 36 36 0
62 CpPC R25,R1 2 1 36 36 36 0
63 BRLT L1 2 1 36 36 36 0
64 STD Y+6,R1 2 2 1 2 1 0
65 STD Y+5,R1 2 2 1 2 1 0
66 | L2: LDI R24,0x00 2 1 36 36 36 0
67 LDI R25,0x00 2 1 36 36 36 0
68 LDI R26,0x00 2 1 36 36 36 0
69 LDI R27,0x00 2 1 36 36 36 0
70 STD Y+1,R24 2 2 1 36 72 36 36
71 STD Y+2,R25 2 2 1 36 72 36 36

Continued on Next Page. ..

124 APPENDIX D. CALCULATIONS DETAILS

Static Results Dynamic Results
Instruction Instr. | Instr. | DBytes | No. of Exec. | Memory Traffic (Cycles)
Bytes | Cycles | Moved Exec. Cycles | Instr. Mem | Data Mem
72 STD Y+3,R26 2 2 1 36 72 36 36
73 STD Y+4,R27 2 2 1 36 72 36 36
74 STD Y+8,R1 2 2 1 36 72 36 36
75 STD Y+7,R1 2 2 1 36 72 36 36
76 | L3: LDD R30,Y+7 2 2 1 304 608 304 304
7 LDD R31,Y+8 2 2 1 304 608 304 304
78 LSL R30 2 1 304 304 304 0
79 ROL R31 2 1 304 304 304 0
80 LSL R30 2 1 304 304 304 0
81 ROL R31 2 1 304 304 304 0
82 ADDI R30,0x00 2 1 304 304 304 0
83 ADIC R31,0x00 2 1 304 304 304 0
84 LDD R14,Z40 2 2 1 304 608 304 304
85 LDD R15,Z+1 2 2 1 304 608 304 304
86 LDD R16,Z2+2 2 2 1 304 608 304 304
87 LDD R17,243 2 2 1 304 608 304 304
88 LDD R24,Y+5 2 2 1 304 608 304 304
89 LDD R25,Y+6 2 2 1 304 608 304 304
90 LDD R24,Y+7 2 2 1 304 608 304 304
91 LDD R25,Y+8 2 2 1 304 608 304 304
92 SUB R30,R24 2 1 304 304 304 0
93 SBC R31,R25 2 1 304 304 304 0
94 ADDI R30,0x00 2 1 304 304 304 0
95 ADCI R31,0x10 2 1 304 304 304 0
96 LSL R30 2 1 304 304 304 0
97 ROL R31 2 1 304 304 304 0
98 ADDI R30,0x00 2 1 304 304 304 0
99 ADCI R31,0x01 2 1 304 304 304 0
100 LDD R18,Z+40 2 2 1 304 608 304 304
101 LDD R19,Z+1 2 2 1 304 608 304 304
102 LDD R20,Y+5 2 2 1 304 608 304 304
103 LDD R21,Y+6 2 2 1 304 608 304 304
104 LDD R30,Y+7 2 2 1 304 608 304 304
105 LDD R31,Y+8 2 2 1 304 608 304 304
106 ADD R30,R20 2 1 304 304 304 0
107 ADC R31,R21 2 1 304 304 304 0
108 LSL R30 2 1 304 304 304 0
109 ROL R31 2 304 304 304 0
110 ADDI R30,0x00 2 1 304 304 304 0
111 ADCI R31,0x01 2 1 304 304 304 0
112 LDD R24,7Z240 2 2 1 304 608 304 304
113 LDD R25,Z+1 2 2 1 304 608 304 304
114 ADD R18,R24 2 1 304 304 304 0
115 ADC R19,R25 2 1 304 304 304 0
116 MOV R22,R18 2 1 304 304 304 0
117 MOV R23,R19 2 1 304 304 304 0
118 CLR R24 2 1 304 304 304 0
119 SBRC R23,7 2 1 304 304 304 0
120 LAT R24 2 1 304 304 304 0
121 MOV R25,R24 2 1 304 304 304 0

Continued on Next Page. ..

D.2. ATMEL AVR AT90S851 CALCULATIONS DETAILS

125

Static Results Dynamic Results
Instruction Instr. | Instr. | DBytes | No. of Exec. | Memory Traffic (Cycles)
Bytes | Cycles | Moved Exec. Cycles | Instr. Mem | Data Mem
122 RCALL | INT2FLOAT 2 3 304 912 304 0
123 MOV R18,R14 2 1 304 304 304 0
124 MOV R19,R15 2 1 304 304 304 0
125 MOV R20,R16 2 1 304 304 304 0
126 MOV R21,R17 2 1 304 304 304 0
127 RCALL | FMUL 2 3 304 912 304 0
128 LDD R18,Y+1 2 2 304 608 304 304
129 LDD R19,Y+2 2 2 304 608 304 304
130 LDD R20,Y+3 2 2 304 608 304 304
131 LDD R21,Y+4 2 2 304 608 304 304
132 RCALL | FADD 2 3 304 912 304 0
133 STD Y+1,R22 2 2 304 608 304 304
134 STD Y+2,R23 2 2 304 608 304 304
135 STD Y+3,R24 2 2 304 608 304 304
136 STD Y+4,R25 2 2 304 608 304 304
137 LDD R24,Y+7 2 2 304 608 304 304
138 LDD R25,Y+8 2 2 304 608 304 304
139 ADIW | R24,0x01 2 1 304 304 304 0
140 STD Y+8,R25 2 2 304 608 304 304
141 STD Y+7,R24 2 2 304 608 304 304
142 CPI R24,0x08 2 1 304 304 304 0
143 CpC R25,R1 2 1 304 304 304 0
144 BRGE |L3 2 1 304 304 304 0
145 LDD R30,Y+5 2 2 36 72 36 36
146 LDD R31,Y+6 2 2 36 72 36 36
147 ADIW | R30,0x08 2 1 36 36 36 0
148 LSL R30 2 1 36 36 36 0
149 ROL R31 2 1 36 36 36 0
150 ADDI R30,0x00 2 1 36 36 36 0
151 ADCI R31,0x01 2 1 36 36 36 0
152 LDD R22,Z40 2 2 36 72 36 36
153 LDD R23,Z+1 2 2 36 72 36 36
154 CLR R24 2 1 36 36 36 0
155 SBRC R23,7 2 1 36 36 36 0
156 LAT R24 2 1 36 36 36 0
157 MOV R25,R24 2 1 36 36 36 0
158 RCALL | INT2FLOAT 2 3 36 108 36 0
159 LDD R18,Y+41 2 2 36 72 36 36
160 LDD R19,Y+42 2 2 36 72 36 36
161 LDD R20,Y+43 2 2 36 72 36 36
162 LDD R21,Y+44 2 2 36 72 36 36
163 RCALL | FMUL 2 3 36 108 36 0
164 LDD R18,Y+1 2 2 36 72 36 36
165 LDD R19,Y+2 2 2 36 72 36 36
166 LDD R20,Y+3 2 2 36 72 36 36
167 LDD R21,Y+4 2 2 36 72 36 36
168 RCALL | FADD 2 3 36 108 36 0
169 LDD R30,Y+5 2 2 36 72 36 36
170 LDD R31,Y+6 2 2 36 72 36 36
171 LSL R30 2 1 36 36 36 0

Continued on Next Page. ..

126 APPENDIX D. CALCULATIONS DETAILS

Static Results Dynamic Results

Instruction Instr. | Instr. | DBytes | No. of Exec. | Memory Traffic (Cycles)

Bytes | Cycles | Moved Exec. Cycles | Instr. Mem | Data Mem
172 ROL R31 2 1 36 36 36 0
173 LSL R30 2 1 36 36 36 0
174 ROL R31 2 1 36 36 36 0
175 ADDI R30,0x00 2 1 36 36 36 0
176 ADCI R31,0x02 2 1 36 36 36 0
177 STD Z+0,R22 2 2 1 36 72 36 36
178 STD Z+1,R23 2 2 1 36 72 36 36
179 STD Z+2,R24 2 2 1 36 72 36 36
180 STD Z+3,R25 2 2 1 36 72 36 36
181 LDD R24,Y+5 2 2 1 36 72 36 36
182 LDD R25,Y+6 2 2 1 36 72 36 36
183 ADIW R24,0x01 2 1 36 36 36 0
184 STD Y+6,R25 2 2 1 36 72 36 36
185 STD Y+5,R24 2 2 1 36 72 36 36
186 CPI R24,0x24 2 1 36 36 36 0
187 CPC R25,R1 2 1 36 36 36 0
188 BRLT L2 2 36 36 36 0
189 RET 2 4 1 4 1 0

Total 378 294 80 24349 37138 24349 10600
D.3 TI MSP430G2231 Calculations Details
Table D.3: TT MSP430 Calculations
Static Results Dynamic Results
Instruction Instr. | Instr. | DBytes | No. of Exec. | Memory Traffic (Cycles)
Bytes | Cycles | Moved Exec. | Cycles | Instr. Mem | Data Mem
TI MSP430 Calculations for Benchmark 1: Recursive Factorial

1 | Main: MOV.W #5,r12 4 2 1 2 2 0
2 CALL #Fact 4 5 1 5 2 0
3 | End: RET 2 3 1 3 1 0
4 | Fact: PUSH.W |ri12 2 3 2 5 15 5 5
5 MOV.W rl2,r10 2 1 5 5 5 0
6 SUB.W | #1,r12 2 1 5 5 5 0
7 JGE L1 2 2 5 10 5 0
8 MOV.W | #1,r14 2 1 1 1 1 0
9 MOV.W | #0,r15 2 1 1 1 1 0
10 POP rl2 2 3 2 1 3 1 1
11 RET 2 3 1 3 1 0
12| L1: CALL #Fact 4 5 4 20 8 0
13 MOV.W rl4,r4 2 1 4 4 4 0
14 MOV.W rl5,r5 2 1 4 4 4 0
15 CLR rl4 2 1 4 4 4 0
16 CLR rl5 2 1 4 4 4 0
17 MOV r4,&0130h 4 4 4 16 8 0
18 MOV r10,&0138h 4 4 4 16 8 0
19 MOV &SumLo,r14 4 4 4 16 8 0

Continued on Next Page. ..

D.3. TI MSP430G2231 CALCULATIONS DETAILS

127

Static Results Dynamic Results
Instruction Instr. | Instr. | DBytes | No. of Exec. | Memory Traffic (Cycles)
Bytes | Cycles | Moved Exec. | Cycles | Instr. Mem | Data Mem

20 MOV &SumHi,rl5 4 4 4 16 8 0
21 MOV r10,&0130h 4 4 4 16 8 0
22 MOV r5,&0138h 4 4 4 16 8 0
23 ADD &SumLo,rl4 4 4 4 16 8 0
24 ADDC &SumHi,rl5 4 4 4 16 8 0
25 POP rl2 2 3 2 4 12 4 4
26 RET 2 3 4 12 4 0

Total 74 72 6 87 241 125 10

TI MSP430 Calculations for Benchmark 2: String Copy

1 | Main: MOV.W | #strSrc,r12 4 2 1 2 2 0
2 MOV.W | #strDest,rl5 4 2 1 2 2 0
3 CALL #strCopy 4 5 1 5 2 0
4 | End: RET 2 3 1 3 1 0
5 | strCopy: | MOV.B @r12+,0(rl5) 4 5 2 13 65 26 13
6 ADD.B #1,r15 2 1 13 13 13 0
7 TST.B 0(r15) 2 2 2 13 26 13 13
8 JNE strCopy 2 2 13 26 13
9 RET 2 3 1 3 1 0

Total 26 25 4 57 145 73 26

TI MSP430 Calculations for Benchmark 3: Bubble Sort

1 | Main: MOV.W #0,r13 2 1 1 1 1
2 MOV.W | #0,r14 2 1 1 1 1
3 MOV.W | #START,r15 4 2 1 2 2 0
4 | L1: MOV.W r13,0(rl5) 4 2 2 10 20 20 10
5 MOV.W |r14,2(r15) 4 4 2 10 40 20 10
6 ADD.W #4,r15 2 1 10 10 10 0
7 ADD.W #1,r13 2 1 10 10 10 0
8 CMP.W #10,r13 4 2 10 20 20 0
9 JL L1 2 2 10 20 10 0
10 CALL #BSort 4 5 1 5 2 0
11 | End: RET 2 3 1 3 1 0
12 | BSort: MOV.W | #8,r13 4 2 1 2 2 0
13 MOV.W | #START,r15 4 2 1 2 2 0
14 | L3: MOV.W | #0,r9 2 1 9 9 9 0
15 | L4: MOV.W | @r15,r10 6 6 2 45 270 135 45
16 MOV.W | 2(rl5),r11 2 2 2 45 90 45 45
17 CMP.W 6(rl5),r11 2 2 2 45 90 45 45
18 JL L5 6 6 45 270 135
19 JNE L6 2 2 45 90 45
20 CMP.W 4(r15),r10 2 2 2 45 90 45 45
21 JHS L6 4 3 45 135 90 0
22 | L5: MOV.W | 4(r15),0(r15) 6 6 2 45 270 135 45
23 MOV.W | 6(r15),2(r15) 6 6 2 45 270 135 45
24 MOV.W | r10,4(r15) 4 4 2 45 180 90 45
25 MOV.W |rl11,6(rl5) 4 3 2 45 135 90 45
26 | L6: ADD.W | #4,r15 2 1 45 45 45 0
27 ADD.W #1,r9 2 1 45 45 45 0
28 CMP.W r9,rl3 2 1 45 45 45 0
29 JGE L4 2 2 45 90 45 0
30 | L7: SUB.W #1,r13 2 1 9 9 9 0

Continued on Next Page. ..

128 APPENDIX D. CALCULATIONS DETAILS

Static Results Dynamic Results
Instruction Instr. | Instr. | DBytes | No. of Exec. | Memory Traffic (Cycles)
Bytes | Cycles | Moved Exec. | Cycles | Instr. Mem | Data Mem

31 TST.W rl3 2 1 9 9 9 0
32 JGE L3 2 2 9 18 9
33 | L8: RET 2 3 1 3 1

Total 102 83 20 779 2299 1308 380

TI MSP430 Calculations for Benchmark 4: Sensor Struct

1 | Main: CALL Init 4 5 1 5 2 0
2 CALL Calib 4 5 1 5 2 0
3 | End: RET 2 3 1 3 1 0
4 | Init: MOV.W | #0, r8 2 1 1 1 1 0
5 MOV.W | #0, r9 2 1 1 1 1 0
6 MOV.W | #START, r15 4 2 1 2 2 0
7 MOV.W | #0, r4 2 1 1 1 1 0
8 | LO: MOV.B #0, 0(r15) 4 2 2 5 10 10 5
9 INC.B rl5 2 1 5 5 5 0
10 MOV.W | r4, 0(rl5) 4 2 2 5 10 10 5
11 MOV.W | r4, r8 2 1 5 5 5 0
12 ADC.W #3, r9 4 2 5 10 10 0
13 MOV.W | r8,2(rl5) 4 4 2 5 20 10 5
14 MOV.W | r8,4(r15) 4 4 2 5 20 10 5
15 ADD.W #6,r15 4 2 5 10 10 0
16 ADD.W #1, rd 2 1 5 5 5 0
17 CMP.W #5, r4 4 2 5 10 10 0
18 JL LO 2 2 5 10 5 0
19 RET 2 3 1 3 1 0
20 | Calib: MOV.W | #START, r15 4 2 1 2 2 0
21 MOV.W | #5, r4 4 2 1 2 2 0
22 | L1: MOV.B #0, 0(rl5) 2 2 2 5 10 5 5
23 INC.B rl5 2 1 5 5 5 0
24 SUB.W 0(r15),2(r15) 6 6 4 5 30 15 10
25 SUBC.W | #0,4(r15) 4 2 2 5 10 10 5
26 ADD.W #6,r15 4 1 5 5 10 0
27 DEC.W r4 2 1 5 5 5 0
28 JG LO 2 2 5 10 5 0
29 RET 2 3 1 3 1 0

Total 90 66 16 101 218 161 40

TI MSP430 Calculations for Benchmark 5: Matrix Multiplication

1 | Main: MOV.W #nRowsl, r6 2 1 1 1 1 0
2 MOV.W | #nColsl, r7 2 1 1 1 1 0
3 MOV.W | #M1, r12 4 2 1 2 2 0
4 CALL #INIT 4 5 1 5 2 0
5 MOV.W | #nRows2, r6 2 1 1 1 1 0
6 MOV.W | #nCols2, r7 2 1 1 1 1 0
7 MOV.W | #M2, r12 4 2 1 2 2 0
8 CALL #INIT 4 5 1 5 2 0
9 MOV.W | #M1, r13 4 2 1 2 2 0
10 MOV.W | #M2, r14 4 2 1 2 2 0
11 MOV.W | #M3, rl15 4 2 1 2 2 0
12 MOV.W | #5, r4 4 2 1 2 2 0
13 | L3: MOV.W | #3, r5 4 2 5 10 10 0
14 | L2: MOV.W | #4, r6 2 1 15 15 15 0

Continued on Next Page. ..

D.3. TI MSP430G2231 CALCULATIONS DETAILS

129

Static Results Dynamic Results
Instruction Instr. | Instr. | DBytes | No. of Exec. | Memory Traffic (Cycles)
Bytes | Cycles | Moved Exec. | Cycles | Instr. Mem | Data Mem

15 MOV.W #0, r9 2 1 15 15 15 0
16 MOV.W #0, r10 2 1 15 15 15 0
17| L1: CLR rll 2 1 60 60 60 0
18 CLR rl2 2 1 60 60 60 0
19 MOV 0(R13),&0130h 6 6 2 60 360 180 60
20 MOV 0(R14),&0138h 6 6 2 60 360 180 60
21 ADD &SumLo,R11 4 4 60 240 120
22 ADDC &SumHi,R12 4 4 60 240 120
23 MOV 0(R13),&0130h 6 6 2 60 360 180 60
24 MOV 2(R14),&0138h 6 6 2 60 360 180 60
25 MOV 0(R14),&0134h 6 6 2 60 360 180 60
26 MOV 2(R13),&0138h 6 6 2 60 360 180 60
27 ADD &SumLo,R12 4 3 60 180 120 0
28 ADD.W rll, r9 2 1 60 60 60 0
29 ADDC.W | r12, r10 2 1 60 60 60 0
30 ADD.W #20, r14 4 2 60 120 120 0
31 DEC.W r6 2 1 60 60 60 0
32 JG L1 2 2 60 120 60 0
33 MOV.W r9,0(r15) 4 2 2 15 30 30 15
34 MOV.W r10,2(rl5) 4 4 2 15 60 30 15
35 SUB.W #56, r14 4 2 15 30 30 0
36 DEC.W 5 2 1 15 15 15 0
37 JG L2 2 2 15 30 15 0
38 MOV.W | #M2, r14 4 2 5 10 10 0
39 DEC.W r4 2 1 5 5 5 0
40 JG L3 2 2 5 10 5 0
41 RET* 2 1 1 1 1 0
42 | INIT: MOV.W | #0, r4 2 1 2 2 2 0
43 MOV.W #0, r5 2 1 2 2 2 0
44 MOV.W #0, r9 2 1 2 2 2 0
45 | L9: MOV.W r4, 0(r12) 4 2 2 2 4 4 2
46 MOV.W r5, 2(r12) 4 2 2 32 64 64 32
47 ADD.W #4, r12 2 1 32 32 32 0
48 ADD.W | #1, r4 2 1 32 32 32 0
49 ADDC.W | #0, r5 2 1 32 32 32 0
50 DEC.W r6 2 1 32 32 32 0
51 JG L9 2 2 32 64 32 0
52 ADD.W #1, r9 2 1 32 32 32 0
53 MOV.W r9, r4 2 1 32 32 32 0
54 DEC.W r7 2 1 32 32 32 0
55 JG L9 2 2 32 64 32 0
56 RET 2 3 1 3 1 0

Total 174 125 20 1442 4061 2499 424

TI MSP430 Calculations for Benchmark 6: FIR

1 | main: MOV.W #COEFF,r15 4 2 1 2 2 0
2 MOV.W | #0,r7 2 1 1 1 1 0
3 | L1: MOV.W r7,r12 2 1 18 18 18 0
4 CALL #itof 4 5 18 90 36 0
5 MOV.W | #0,r14 2 1 18 18 18 0
6 MOV.W #16544,r15 4 2 18 36 36 0

Continued on

Next Page. ..

130 APPENDIX D. CALCULATIONS DETAILS

Static Results Dynamic Results
Instruction Instr. | Instr. | DBytes | No. of Exec. | Memory Traffic (Cycles)
Bytes | Cycles | Moved Exec. | Cycles | Instr. Mem | Data Mem

7 CALL F#fadd 4 5 18 90 36 0
8 MOV.W | r12,r14 2 1 18 18 18 0
9 MOV.W | rl13,r15 2 1 18 18 18 0
10 MOV.W | #0,r12 2 1 18 18 18 0
11 MOV.W | #16256,r13 4 2 18 36 36 0
12 CALL #fdiv 4 5 18 90 36 0
13 MOV.W |r12,0(r15) 4 2 2 18 36 36 18
14 MOV.W | r13,2(r15) 4 2 2 18 36 36 18
15 ADD.W #4,r15 2 1 18 18 18 0
16 ADD.W #1,r7 2 1 18 18 18 0
17 CMP.W F#17,r7 4 2 18 36 36 0
18 JL L1 2 2 18 36 18 0
19 MOV.W | #0,r7 2 1 1 1 1 0
20 MOV.W | #2,r8 2 1 1 1 1 0
21 MOV.W r7,rl5 2 1 1 1 1 0
22 | L3: RLA.W rl5 2 1 68 68 68 0
23 MOV.W | r8,68(rl5) 4 2 2 68 136 136 68
24 ADD.W #1,r7 3 1 68 68 136 0
25 CMP.W #67,r7 4 2 68 136 136 0
26 JL L3 2 1 68 68 68 0
27 MOV.W | #0,r10 2 1 1 1 1 0
28 | L5: MOV.W | #0,r7 2 1 36 36 36 0
29 MOV.W | #0,r8 2 1 36 36 36 0
30 MOV.W | #0,r9 2 1 36 36 36 0
31| L6: MOV.W | r7,r15 2 1 304 304 304 0
32 MOV.W | rl10,r13 2 1 304 304 304 0
33 SUB.W rl5,r13 2 1 304 304 304 0
34 ADD.W #16,r13 4 2 304 608 608 0
35 RLA.W rl3 2 1 304 304 304 0
36 MOV.W |r10,rl5 2 1 304 304 304 0
37 MOV.W | r7,r14 2 1 304 304 304 0
38 ADD.W rl5,r14 2 1 304 304 304 0
39 RLA.W rl4 2 1 304 304 304 0
40 MOV.W | 68(r14),r12 4 2 2 304 608 608 304
41 ADD.W 68(r13),r12 4 2 2 304 608 608 304
42 CALL F#itof 4 2 304 608 608

43 MOV.W | r7,r15 2 1 304 304 304 0
44 RLA.W rl5 2 1 304 304 304

45 RLA.W rl5 2 1 304 304 304

46 MOV.W | 0(r15),r14 4 2 2 304 608 608 304
47 MOV.W | 2(r15),r15 4 2 2 304 608 608 304
48 CALL #fmpy 4 5 304 1520 608 0
49 MOV.W | r8,r14 2 1 304 304 304 0
50 MOV.W | r9,r15 2 1 304 304 304 0
51 CALL #fadd 4 5 304 1520 608 0
52 MOV.W | r12,r8 2 1 304 304 304 0
53 MOV.W | rl13,r9 2 1 304 304 304 0
54 ADD.W #1,r7 2 1 304 304 304 0
55 CMP.W #8,r7 2 1 304 304 304 0
56 JL L6 2 2 304 608 304 0

Continued on Next Page. ..

D.4. ARM CORTEX-M3 LPC1342 CALCULATIONS DETAILS

131

Static Results Dynamic Results
Instruction Instr. | Instr. | DBytes | No. of Exec. | Memory Traffic (Cycles)
Bytes | Cycles | Moved Exec. | Cycles | Instr. Mem | Data Mem

57 MOV.W | rl10,rl5 2 1 36 36 36 0
58 ADD.W #8, rl5 2 1 36 36 36
59 RLA.W rl5s 2 1 36 36 36
60 MOV.W | 68(rl5),r12 4 2 4 36 72 72 72
61 CALL #fitof 4 5 36 180 72 0
62 MOV.W | 32(R3),r14 4 2 2 36 72 72 36
63 MOV.W | 34(R3),r15 4 2 2 36 72 72 36
64 CALL #fmpy 4 5 36 180 72 0
65 MOV.W | r8,r14 2 1 36 36 36 0
66 MOV.W | r9,r15 2 1 36 36 36 0
67 CALL #fadd 4 5 36 180 72 0
68 MOV.W |r10,r1l5 2 1 36 36 36 0
69 RLA.W rl5 2 1 36 36 36 0
70 RLA.W rl5 2 1 36 36 36 0
71 MOV.W r12,202(r15) 4 4 2 36 144 72 36
72 MOV.W | r13,204(r15) 4 4 2 36 144 72 36
73 ADD.W #1,r10 2 1 36 36 36 0
74 CMP.W #36,r10 4 2 36 72 72 0
75 JL L5 2 2 36 72 36 0
76 RET 2 3 1 3 1 0

Total 209 137 26 9331 15182 12436 1536

D.4 ARM Cortex-M3 LPC1342 Calculations Details

Table D.4: ARM Cortex M3 Calculations

Static Results Dynamic Results
Instruction Instr. | Instr. | DBytes | No. of Exec. | Memory Traffic (Cycles)
Bytes | Cycles | Moved Exec. Cycles | Instr. Mem | Data Mem
ARM Cortex M3 Calculations for Benchmark 1: Recursive Factorial

1 | Main: MOV | RO,#5 2 1 1 1 1 0
2 BL fact 4 3 1 3 1 0
3 | End: BX R14 2 2 1 2 1 0
4 | Fact: PUSH | RO 2 2 4 5 10 5 5
5 MOV | R5,R0 2 1 5 5 5 0
6 SUB RO,RO,#1 2 1 5 5 5 0
7 BGT |LO 2 1 5 5 5 0
8 MOV | R4,#1 2 1 1 1 1 0
9 POP RO 2 2 4 1 2 1 1
10 BX R14 2 3 1 3 1 0
11 | LO: BL Fact 4 3 4 12 4 0
12 MUL | R4,R4,R5 4 1 4 4 4 0
13 POP RO 2 2 4 4 8 4 4
14 BX R14 2 3 4 12 4 0

Total 34 26 12 42 73 42 10

ARM Cortex M3 Calculations for Benchmark 2: String Copy

1 ‘Main: MOV lRl,#Src [4 [1 [[1 [1 [1 0

Continued on Next Page. ..

132 APPENDIX D. CALCULATIONS DETAILS

Static Results Dynamic Results
Instruction Instr. | Instr. | DBytes | No. of Exec. | Memory Traffic (Cycles)
Bytes | Cycles | Moved Exec. Cycles | Instr. Mem | Data Mem

2 MOV | R2,#Dest 4 1 1 1 1 0
3 BL strCpy 4 3 1 3 1 0
4 | End: BX R14 2 3 1 3 1 0
5 | StrCpy: | MOV | RO,#0 2 1 1 1 1 0
6 | LO: LDRB | R3,[R2,R0] 2 2 4 13 26 13 13
7 STRB | R3,[R1,R0] 4 2 4 13 26 13 13
8 ADD | RO,RO,#1 2 1 13 13 13 0
9 CBNZ | R3,L0 2 2 13 26 13 0
10 BX R14 2 3 1 3 1 0

Total 28 19 8 58 103 58 26

ARM Cortex M3 Calculations for Benchmark 3: Bubble Sort

1 | Main: MOV | R4,#0 2 1 1 1 1 0
2 MOV | R1,#START 4 1 1 1 1 0
3 | Lo: STR R4,[R1,R4,LSL #2] 4 2 4 10 20 10 10
4 ADD | R4,R4,#1 2 1 10 10 10 0
5 CMP | R4,#10 2 1 10 10 10 0
6 BLT Lo 2 1 10 10 10 0
7 BL BSort 4 3 1 3 1 0
8 | End: BX R14 2 3 1 3 1 0
9 | BSort: | MOV | R2,#38 2 1 1 1 1 0
10 [L1: MOV | RO,#0 2 1 9 9 9 0
11 | L2: LDR R12,[R1,R0,LSL #2] 4 2 4 45 90 45 45
12 ADD | R4,R0,#1 2 1 45 45 45 0
13 LDR R5,[R1,R4,LSL #2] 4 2 4 45 90 45 45
14 CMP | R12,R5 2 1 45 45 45 0
15 BLE L3 2 1 45 45 45 0
16 STR R5,[R1,R0,LSL #2] 4 2 4 45 90 45 45
17 STR R12,[R1,R4,LSL #2] 4 2 4 45 90 45 45
18 | L3: ADD | RO,RO,#1 2 1 45 45 45 0
19 CMP | RO,R2 2 1 45 45 45 0
20 BLE L2 2 1 45 45 45 0
21 SUB R2,R2,#1 2 1 9 9 9 0
22 CBZ R2,L1 2 2 9 18 9 0
23 BX R14 2 3 1 3 1 0

Total 60 35 20 523 728 523 190

ARM Cortex M3 Calculations for Benchmark 4: Sensor Structure

1 | Main: BL Init 4 3 1 3 1 0
2 BL Calib 4 3 1 3 1 0
3 | End: BX R14 2 3 1 3 1 0
4 | Init: MOV | R1,#START 4 1 1 1 1 0
5 MOV | R4,#0 2 1 1 1 1 0
6 MOV | R2,#0 2 1 1 1 1 0
7 MOV | R3,#0 2 1 1 1 1 0
8 | Lo: ADD | R2,R4,#3 2 1 5 5 5 0
9 STRB | R3,[R1,#0x00] 4 2 4 5 10 5 5
10 STRH | R4,[R1,#0x02] 4 2 5 10 5 5
11 STR R2,[R1,#0x04] 4 2 5 10 5 5
12 ADD | R1,R1,#6 2 1 5 5 5 0
13 ADD | R4,R4,#1 2 1 5 5 5 0
14 CMP | R4,#10 2 1 5 5 5 0

Continued on Next Page. ..

D.4. ARM CORTEX-M3 LPC1342 CALCULATIONS DETAILS

133

Static Results Dynamic Results
Instruction Instr. | Instr. | DBytes | No. of Exec. | Memory Traffic (Cycles)
Bytes | Cycles | Moved Exec. Cycles | Instr. Mem | Data Mem

15 BLT Lo 2 5 5 5 0
16 BX R14 2 3 1 3 1 0
17 | Calib: MOV | R1,#START 4 1 1 1 1 0
18 MOV | R4,#0 2 1 1 1 1 0
19 MOV | R3,#1 2 1 1 1 1 0
20 | L1: STRB | R3,[R1,#0x00] 4 2 4 5 10 5 5
21 LDRH | R2,[R1,#0x02] 4 2 5 10 5 5
22 LDR R3,[R1,#0x04] 2 2 5 10 5 5
23 SUB R2,R3,R2 4 1 5 5 5 0
24 STR R2,[R1,#0x04] 4 2 4 5 10 5 5
25 ADD | R1,R1,#6 2 1 5 5 5 0
26 ADD | R4,R4,#1 2 1 5 5 5 0
27 CMP | R4,#10 2 1 5 5 5 0
28 BLT L1 2 1 5 5 5 0
29 BX R14 2 3 1 3 1 0

Total 80 46 28 97 142 97 35

ARM Cortex M3 Calculations for Benchmark 5: Matrix Multiplication
1 | Main: MOV | R12,#M1 4 1 1 1 1 0
2 MOV | R6,#nRowsl 2 1 1 1 1 0
3 MOV | R7,#nColsl 2 1 1 1 1 0
4 BL INIT 4 3 1 3 1 0
5 MOV | R12,#M2 4 1 1 1 1 0
6 MOV | R6,#nRows2 2 1 1 1 1 0
7 MOV | R7,#nCols2 2 1 1 1 1 0
8 BL INIT 4 3 1 3 1 0
9 MOV | R10,#M1 4 1 1 1 1 0
10 MOV | R11,#M2 4 1 1 1 1 0
11 MOV | R12,#M2 4 1 1 1 1 0
12 MOV | R5,#0 2 1 1 0
13 | L6: MOV | R4,#0 2 1 5 5 5 0
14 | L5: MOV | R1,#0 2 1 15 15 15 0
15 MOV | R3,#0 2 1 15 15 15 0
16 | L4: LDR R7,[R10] 2 2 4 60 120 60 60
17 LDR R8,[R11] 2 2 60 120 60 60
18 MLA | R3,R7,R8 4 2 60 120 60 0
19 ADD | R11,R11,#20 4 1 60 60 60 0
20 ADD | R10,R10,#4 2 1 60 60 60 0
21 SUB R1,R1,#1 2 1 60 60 60 0
22 BLT L4 2 1 60 60 60 0
23 STR R3,[R11] 4 2 4 15 30 15 15
24 SUB R11,R11,#56 4 1 15 15 15 0
25 ADD | R12,R12,#4 2 1 15 15 15 0
26 SUB R1,R4,#1 2 1 15 15 15 0
27 BLT L5 2 1 15 15 15 0
28 MOV | R11,#M2 4 1 5 5 5 0
29 SUB R5,R5,#1 2 1 5 5 5 0
30 BLT L6 2 1 5 5 5 0
31 BX R14 2 1 1 1 1 0
32 [INIT: | MOV | RO,#0 2 1 2 2 2 0
33 MOV | R1,#0 2 1 2 2 2 0

Continued on Next Page. ..

134 APPENDIX D. CALCULATIONS DETAILS

Static Results Dynamic Results
Instruction Instr. | Instr. | DBytes | No. of Exec. | Memory Traffic (Cycles)
Bytes | Cycles | Moved Exec. Cycles | Instr. Mem | Data Mem

34 | L1: STR RO,[R12] 4 2 4 32 64 32 32
35 ADD RO,#1 2 1 32 32 32 0
36 SUB | R7,#1 2 1 32 32 32 0
37 ADD R12,#4 2 1 32 32 32 0
38 BLT L1 2 1 32 32 32 0
39 ADD | RI1,#1 2 1 32 32 32 0
40 MOV | RO,R1 2 1 32 32 32 0
41 SUB R6,#1 2 1 32 32 32 0
42 BLT L1 2 1 32 32 32 0
43 BX R14 2 3 2 6 2 0

Total 112 54 16 852 1087 852 167

ARM Cortex M3 Calculations for Benchmark 6: FIR

1 | Main: MOV | R8,#0 2 1 1 1 1 0
2 | Lo: ADD RO,R8,5 2 1 18 18 18 0
3 BL int2float 4 3 18 54 18 0
4 MOV | R4,#0x3f800000 4 1 18 18 18 0
5 BL fdiv 4 3 18 54 18 0
6 MOV | R1,#COEFF 4 1 18 18 18 0
7 STR | RO,[R1,R8,LSL #2] 4 2 4 18 36 18 18
8 ADD R8,R8,#1 2 1 18 18 18 0
9 CMP | R8,#17 2 1 18 18 18 0
10 BLT LO 2 1 18 18 18 0
11 MOV | R8,#0 2 1 1 1 1 0
12 | L1: MOV | RO,#2 2 1 68 68 68 0
13 MOV | R1,#INPUT 4 1 68 68 68 0
14 STR RO,[R1,R8,LSL #2] 4 2 4 68 136 68 68
15 ADD | R8,R8,#1 2 1 68 68 68 0
16 CMP RSB, #67 2 1 68 68 68 0
17 BLT L1 2 1 68 68 68 0
18 MOV | R9,#0 2 1 1 1 1 0
19 | L2: MOV | R10,#0 2 1 36 36 36 0
20 MOV | R8,#0 2 1 36 36 36 0
21 | L3: ADD | R1,R9,#16 2 1 304 304 304 0
22 SUB R1,R1,R8 4 1 304 304 304 0
23 MOV | R2,#INPUT 4 1 304 304 304 0
24 LDR |R1,[R2,R1,LSL #2] 4 2 4 304 608 304 304
25 ADD R2,R9,R8 4 1 304 304 304 0
26 LDR R2,[R3,R2,LSL #2] 4 2 4 304 608 304 304
27 ADD | RO,R1,R2 2 1 304 304 304 0
28 BL int2float 4 3 304 912 304 0
29 MOV | R6,#COEFF 2 1 304 304 304 0
30 LDR R1,[R6,R8,LSL #2] 4 2 4 304 608 304 304
31 BL fmul 4 3 304 912 304 0
32 MOV | R1,R10 2 1 304 304 304 0
33 BL fadd 4 3 304 912 304 0
34 MOV | R10,RO 2 1 304 304 304 0
35 ADD R8,R8,#1 2 1 304 304 304 0
36 CMP RS8,#8 2 1 304 304 304 0
37 BLT L3 2 1 304 304 304 0
38 MOV | R1,#INPUT 4 1 36 36 36 0

Continued on Next Page. ..

D.4. ARM CORTEX-M3 LPC1342 CALCULATIONS DETAILS

135

Static Results Dynamic Results
Instruction Instr. | Instr. | DBytes | No. of Exec. | Memory Traffic (Cycles)
Bytes | Cycles | Moved Exec. Cycles | Instr. Mem | Data Mem
39 ADD | R2,R9,#8 4 1 4 36 36 36 36
40 LDR RO,[R1,R2,LSL #2] 4 2 36 72 36 0
41 BL int2float 4 3 4 36 108 36 36
42 LDR R1,[#Addr(COEFF[8])] 4 2 36 72 36 0
43 BL fmul 4 3 36 108 36 0
44 MOV | R1,R10 2 1 36 36 36 0
45 BL fadd 4 3 36 108 36 0
46 MOV | R1,#OUTPUT 4 1 36 36 36 0
47 STR RO,[R1,R9,LSL#2] 4 2 4 36 72 36 36
48 ADD | R9,R9,#1 2 1 36 36 36 0
49 CMP | R9,#36 2 1 36 36 36 0
50 BLT L2 2 1 36 36 36 0
51 | End: BX R14 2 3 1 3 1 0
Total 152 e 32 6282 9502 6282 1106

136 APPENDIX D. CALCULATIONS DETAILS

Curriculum Vitae

Imran Ashraf

	List of Figures
	List of Tables
	List of Source Codes
	Acknowledgements
	Introduction
	Introduction
	Motivation
	Main Thesis Contributions
	Outline of Thesis

	Overview of Microcontroller Architectures
	Classification of Microcontroller Architectures
	Classification Based on Architectural Style
	Classification Based on Memory Interfaces
	Classification Based on Word Size
	Classification Based on Operand Specification

	Example Architectures
	Atmel AVR AT90S851
	TI MSP430G2231
	ARM LPC1342 Cortex-M3

	Ideal Properties of a Microcontroller Architecture
	Program Memory Size
	Power Consumption
	Speed
	Modularity

	Summary

	Statistics of C Language
	List of Language Constructs
	Profiling
	Profiler
	Profiler Benchmark Applications

	Frequency Distribution of C Language Constructs
	Frequency Distribution of Statements
	Operations
	Operands
	Miscellaneous

	Conclusions

	MePoEfAr Architecture
	MePoEfAr Assembler
	Introduction to Assemblers
	MePoEfAr Assembler
	Scanner
	Parser
	Analyzer
	Code Generator

	Instruction Bit-assignment
	Summary

	MePoEfAr Interpreter
	Overview of Simulators
	MePoEfAr Interpreter
	Supervisor Program (main())
	Memory Address to Source Line Number Mapping

	MePoEfAr Microcontroller Model
	Program Status Word
	Program Counter
	Registers
	Program Memory
	Data Memory
	Stack and Stack Pointer
	Decoder
	Arithmetic and Logic Unit

	Summary

	Assembler Level Benchmarking
	Evaluation Criteria
	Candidate Architectures for Comparison
	Atmel AVR AT90S851
	TI MSP430G2231
	ARM LPC1342

	Selected Benchmark Programs
	Benchmark Application 1: Recursive Factorial Program
	Benchmark Application 2: String Copy Program
	Benchmark Application 3: Bubble Sort Program
	Benchmark Application 4: Sensor Structure Program
	Benchmark Application 5: Matrix Multiplication Program
	Benchmark Application 6: FIR Program

	Result Evaluation and Comparison
	Static Results
	Dynamic Results

	Summary

	Conclusion and Future Work
	Summary
	Conclusions
	Future Work

	Bibliography
	Lexical Analyzer Generator Code
	Parser Generator Code
	Assembly Codes for the Selected Benchmarks
	MePoEfAr Assembly Codes
	Atmel AVR AT90S851 Assembly Codes
	TI MSP430 Assembly Codes
	ARM Cortex-M3 Assembly Codes

	Calculations Details
	MePoEfAr Calculations Details
	Atmel AVR AT90S851 Calculations Details
	TI MSP430G2231 Calculations Details
	ARM Cortex-M3 LPC1342 Calculations Details

