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Abstract

In this paper we establish a new connection be-
tween Tensor Network (tn)-constrained ker-
nel machines and Gaussian Processes (gps).
We prove that the outputs of Canonical
Polyadic Decomposition (cpd) and Tensor
Train (tt)-constrained kernel machines con-
verge in the limit of large ranks to the same
product kernel gp which we fully character-
ize, when specifying appropriate i.i.d. priors
across their components. We show that tt-
constrained models convergence faster to the
gp compared to their cpd counterparts for the
same number of model parameters. The con-
vergence to the gp occurs as the ranks tend to
infinity, as opposed to the standard approach
which introduces tns as an additional con-
straint on the posterior. This implies that the
newly established priors allow the models to
learn features more freely as they necessitate
infinitely more parameters to converge to a
gp, which is characterized by a fixed learning
representation and thus no feature learning.
As a consequence, the newly derived priors
yield more flexible models which can better
fit the data, albeit at increased risk of over-
fitting. We demonstrate these considerations
by means of two numerical experiments.

1 INTRODUCTION

Tensor Networks [tns, Cichocki, 2014; Cichocki et al.,
2016, 2017], a tool from multilinear algebra, extend the
concept of rank from matrices to tensors allowing to
represent an exponentially large object with a linear
number of parameters. As such, tns have been used
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to reduce the storage and computational complexities
by compressing the model parameters of a range of
models such as Deep Neural Networks (dnns) [Novikov
et al., 2015], Convolutional Neural Networks (cnns)
[Jaderberg et al., 2014; Lebedev et al., 2015], Recurrent
Neural Networks (rnns) [Ye et al., 2018], Graph Neural
Networks (gnns) [Hua et al., 2022] and transformers
[Ma et al., 2019].

Similarly, tns have also found application in the context
of kernel machines for supervised learning [Stoudenmire
and Schwab, 2016; Novikov et al., 2018; Wesel and Bat-
selier, 2021] as an additional constraint on the model
posterior. Such models learn a low-rank nonlinear data-
dependent representation from an exponentially large
number of fixed features by means of a restricted num-
ber of parameters, and are as such characterized by
an implicit source of regularization. Furthermore, stor-
age and the evaluation of the model and its gradient
require a linear complexity in the number of param-
eters, rendering these methods promising candidates
for applications requiring both good generalization and
scalability. Because of their intrinsic nonlinearity which
prohibits closed-form Bayesian inference, the training of
these models is typically accomplished in the maximum
likelihood (ml) and maximum a posteriori (map) frame-
work where the low-rank tn assumption is introduced
as an additional nonlinear constraint in the optimiza-
tion problem. In this setting the ensuing estimator
recovers the solution that would be obtained without
the tn constraint when the low-rank assumption is
satisfied exactly, i.e. for finite rank.

In contrast, Gaussian Processes [gps, Rasmussen and
Williams, 2006] are an established framework for mod-
eling functions which naturally allows the practitioner
to incorporate prior knowledge. When considering i.i.d.
observations and Gaussian likelihoods, gps allow for
the determination of the posterior in closed-form, which
considerably facilitates tasks such as inference, sam-
pling and the construction of sparse approximations
among many others.

In this paper we establish a direct connection between
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tn-constrained kernel machines and gps, thus solving
an open question considered by Wesel and Batselier
[2021, 2023]. We prove that the outputs of Canoni-
cal Polyadic Decomposition (cpd) and Tensor Train
(tt)-constrained kernel machines converge in the limit
of large ranks to the same product kernel gp which
we fully characterize, when specifying appropriate i.i.d.
priors across their components. This result allows us to
derive that when placing such priors on their parame-
ters, tt-constrained models achieve faster convergence
to the gp compared to their cpd counterparts for the
same number of model parameters. The convergence to
the gp occurs as the ranks tend to infinity, as opposed
to the standard approach which introduces tns as an
additional constraint on the model posterior. This im-
plies that the newly established priors allow the models
to more autonomously learn features as they necessi-
tate infinitely more parameters to converge to a gp,
which is characterized by a fixed learning representa-
tion and thus no feature learning. Consequently, the
newly derived priors yield more flexible models which
can better fit the data and have a higher chance of
overfitting. We showcase the convergence properties
of both newly derived priors and their effect on map
estimation by means of numerical experiments.

The rest of this paper is organized as follows. In sec-
tion 2 we provide a brief introduction to gps and their
approximations, tns and tn-constrained kernel ma-
chines. In section 3 we present our main result, i.e.
the equivalence in the limit between tn-constrained
kernel machines and product kernel gps. In section 4
we showcase the different convergence rates to the gp
of cpd and tt and their effect on map estimation. We
then provide a review of related work (section 5) and
a conclusion (section 6). We discuss the notation used
throughout the paper in appendix A.1.

2 BACKGROUND

gps are a collection of random variables such that any
finite subset has a joint Gaussian distribution [Ras-
mussen and Williams, 2006]. They provide a flexible
formalism for modeling functions which inherently al-
lows for the incorporation of prior knowledge and the
production of uncertainty estimates in the form of a
predictive distribution. More specifically, a gp is fully
specified by a mean function µ(·) : RD → R, typically
chosen as zero, and a covariance or kernel function
k(·, ·) : RD × RD → R:

f(x) ∼ GP(µ(x), k(x, ·)).

Given a labeled dataset {(xn, yn)}Nn=1 consisting of N
inputs xn ∈ RD and i.i.d. noisy observations yn ∈ R,
gps can be used for modeling the underlying function

f in classification or regression tasks by specifying a
likelihood function. For example the likelihood

p(yn | f(xn)) = N (f(xn), σ
2), (1)

yields a gp posterior which can be obtained in closed-
form by conditioning the prior gp on the noisy ob-
servations. Calculating the mean and covariance of
such a posterior crucially requires instantiating and
formally inverting the kernel matrix K such that
kn,m := k(xn,xm). These operations respectively incur
a computational cost of O(N2) and O(N3) and there-
fore prohibit the processing of large-sampled datasets.

2.1 Basis Function Approximation

Aside from variational inference [Titsias, 2009; Hens-
man et al., 2013] and iterative methods Wilson and
Nickisch [2015], a common approach in literature to
circumvent the O(N3) computational bottleneck is to
project the gp onto a finite number of Basis Functions
(bfs) [e.g., Rasmussen and Williams, 2006; Quiñonero-
Candela and Rasmussen, 2005]. This is achieved by
approximating the kernel as

k(x,x′) ≈ φ(x)
T
Λ φ(x′), (2)

where here φ(x) : RD → RM are (nonlinear) basis
functions and Λ ∈ RM×M are the bf weights. This
finite-dimensional kernel approximation ensures a de-
generate kernel [Rasmussen and Williams, 2006], as it
characterized by a finite number of non-zero eigenval-
ues. Its associated gp can be characterized equivalently
as

f(x) = ⟨φ(x),w⟩ , w ∼ N (0,Λ), (3)

wherein w ∈ RM are the model weights and Λ is the
associated prior covariance. Once more considering a
Gaussian likelihood (equation (1)) yields a closed-form
posterior gp whose mean and covariance require only
the posterior covariance matrix (

∑N
n=1 φ(xn)φ(xn)

T
+

Λ−1)−1. This yields a computational complexity of
O(NM2 +M3), which allows to tackle large-sampled
data when N ≫ M .

2.2 Product Kernels

In the remainder of this paper we consider gps with
product kernels.

Definition 2.1 (Product kernel [Rasmussen and
Williams, 2006]). A kernel k(x,x′) is a product kernel
if

k(x,x′) =

Q∏
q=1

k(q)(x,x′), (4)

where each k(q)(·, ·) : RD × RD → R is a valid kernel.
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While many commonly used kernels are product ker-
nels e.g. the Gaussian kernel and the polynomial ker-
nel, product kernels provide a straightforward strat-
egy to extend one-dimensional kernels to the higher-
dimensional case [Rasmussen and Williams, 2006; Hens-
man et al., 2017]. The basis functions and prior covari-
ance of product kernels can then be determined based
on the basis function expansion of their constituents
as follows.

Lemma 2.2 (Basis functions and prior covariances
of product kernels). Consider the product kernel of
definition 2.1. Denote the basis functions and prior
covariance of each factor k(q)(x,x′) as φ(q)(x) ∈ RMq

and Λ(q) ∈ RMq×Mq respectively, then the basis func-
tions and prior covariance of k(x,x′) are

φ(x) = ⊗Q
q=1φ

(q)(x), (5)

and
Λ = ⊗Q

q=1Λ
(q), (6)

The inherent challenge in this approach stems from the
exponential increase of the number of basis functions
M and thus of model parameters as a function of the
dimensionality of the input data, thereby restricting
their utility to low-dimensional datasets.

Such structure arises for instance when dealing with
Mercer expansions of product kernels, in the struc-
tured kernel interpolation framework [Wilson and Nick-
isch, 2015; Yadav et al., 2021] variational Fourier fea-
tures framework [Hensman et al., 2017] and Hilbert-
GP framework [Solin and Särkkä, 2020]. Alternative
important approximation strategies which avoid this
exponential scaling are random features [Rahimi and
Recht, 2007; Lázaro-Gredilla et al., 2010], inducing
features [Csató and Opper, 2002; Seeger et al., 2003;
Quiñonero-Candela and Rasmussen, 2005; Snelson and
Ghahramani, 2006; Hensman et al., 2013, 2015] and
additive gps [Duvenaud et al., 2011; Lu et al., 2022]
which circumvent the outlined computational issue. All
those approaches can be interpreted as projecting the
gp on a set of bfs.

The performance of these methods however tends to
deteriorate in higher dimensions, as they need to cover
an exponentially large domain with a linear number
of random samples or inducing points. These issues
are some of the computational aspects of the curse of
dimensionality, which renders it difficult to operate in
high-dimensional feature spaces [Hastie et al., 2001].

2.3 Tensor Networks

A recent alternative approach to remedy said curse of
dimensionality affecting the exponentially increasing
weights of the linear model in equation (3) consists

in constraining the tensorized models weights ten (w)
to be a low-rank tensor network. tns express a Q-
dimensional tensor W as a multi-linear function of a
number of core tensors. Two commonly used tns are
the cpd and tt, defined as follows.
Definition 2.3 (cpd [Hitchcock, 1927]). A Q-
dimensional tensor W ∈ RM1×M2×···×MQ has a rank-R
cpd if

wm1,m2,...,mQ
=

R∑
r=1

Q∏
q=1

w(q)
mq,r. (7)

The cores of a cpd are the matrices W (q) ∈ RMq×R.
Since a cpd tensor can be expressed solely in terms
of its cores, its storage requires PCPD = R

∑Q
q=1 Mq

parameters as opposed to
∏Q

q=1 Mq.
Definition 2.4 (tt [Oseledets, 2011]). A Q-
dimensional tensor W ∈ RM1×M2×···×MQ admits a
rank-(R0 := 1, R1, . . . , RQ := 1) tensor train if

wm1,m2,...,mQ
=

R0∑
r0=1

R1∑
r1=1

· · ·
RQ∑

rQ=1

Q∏
q=1

w(q)
rq−1,mq,rq .

(8)
The cores of a tensor train are Q 3-dimensional
tensors W(q) ∈ RRq−1×Mq×Rq which yield
PTT =

∑Q
q=1 RQ−1MQRQ parameters.

In the following we denote by TN(W) a tensor which
admits a general tn format, by CPD(W) a tensor which
is a rank-R cpd form and by TT(W) a tensor in
rank-(R0 := 1, R1, . . . , RQ := 1) tt form. Lastly, we
denote by R1(W) a tensor which is rank-1 cpd form
or rank-(1, 1, . . . , 1) tt, as both are equivalent. Im-
portantly, we refer to a tensor in general tn format
TN(W) ∈ RM1×M2×···×MQ as underparametrized if its
rank hyperparameters, e.g. R in case of cpd, are chosen
such that its storage cost is less than

∏Q
q=1 Mq. This

is crucial in order to obtain storage and computational
benefits.

2.4 Tensor Network-Constrained Kernel
Machines

tns have been used to reduce the number of model
parameters in kernel machines (equation (3)) by ten-
sorizing the bfs φ(·) and model weights w and by
constraining both to be underparameterized tns. This
approach lays its foundations on the fact that the Frobe-
nius inner product of a tensorized vector is isometric
with respect to the Euclidean inner product, i.e.

f(x) = ⟨φ(x),w⟩ = ⟨ten (φ(x)) , ten (w)⟩F. (9)

This isometry allows then to constrain the bfs and
the model weights to be an underparameterized tn.
Since product kernels yield an expansion in terms of
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Kronecker-product bfs (equation (5)), they are a rank-
1 tn by definition after tensorization. Embedding these
relations yields an approximate model

f(x) ≈ fTN(x) := ⟨R1(ten (φ(x))), TN(ten (w))⟩F,
(10)

characterized by lower storage and computational com-
plexities. This approach has been proposed mostly
for weights modeled as cpd [Kargas and Sidiropoulos,
2021; Wesel and Batselier, 2021, 2023] or tt [Wahls
et al., 2014; Stoudenmire and Schwab, 2016; Batselier
et al., 2017; Novikov et al., 2018; Chen et al., 2018] as
they arguably introduce fewer rank hyperparameters
(only one in case of cpd) and thus are in practice easier
to work with compared to other tns such as the Multi-
Scale Entanglement Renormalization Ansatz (mera)
[Reyes and Stoudenmire, 2021].

We define such models as we will need them in de-
tail in the next section, where we present our main
contribution.

Definition 2.5 (cpd-constrained kernel machine). The
cpd-constrained kernel machine is defined as

fCPD(x) := ⟨R1(ten (φ(x))), CPD(ten (w))⟩F (11)

=

R∑
r=1

hr(x), (12)

where the intermediate variables hr ∈ R are defined as

hr(x) :=

Q∏
q=1

φ(q)(x)
T
w(q)

:,r. (13)

Similarly, we provide a definition for the tt-constrained
kernel machine.

Definition 2.6 (tt-constrained kernel machine). The
tt-constrained kernel machine is defined as

fTT(x) := ⟨R1(ten (φ(x))), TT(ten (w))⟩F (14)

=

RQ∑
rQ=1

RQ−1∑
rQ−1=1

· · ·
R0∑

r0=1

Q∏
q=1

z(q)rq−1,rq (x), (15)

where the intermediate variables Z(q) ∈ RRq−1×Rq are
defined element-wise as

z(q)rq−1,rq (x) :=

Mq∑
mq=1

φ(q)
mq

(x)w(q)
rq−1,mq,rq . (16)

Evaluating cpd and tt-constrained kernel machines
(equation (11), equation (14)) and their gradients can
be accomplished with O(PCPD) and O(PTT) computa-
tions, respectively. This allows the practitioner to tune
the rank hyperparameter in order to achieve a model

that fits in the computational budget at hand and that
learns from the specified bfs.

From an optimization point-of-view, models in the form
of equation (10) are considered in the ml [Stoudenmire
and Schwab, 2016; Batselier et al., 2017] and in the
map setting [Wahls et al., 2014; Novikov et al., 2018;
Chen et al., 2018; Kargas and Sidiropoulos, 2021; Wesel
and Batselier, 2021, 2023] and in the context of gp
variational inference [Izmailov et al., 2018] where tts
are used to parameterize the variational distribution.
In all these scenarios, tns appear as an additional
constraint to the optimization problem, and do hence not
define a probabilistic model but merely approximate
the chosen estimator (ml, map, etc.).

In the following section we present the main contribu-
tion of our work: we show how when placing i.i.d. priors
on the cores of these cpd and tt-constrained model,
they converge to a gp which we fully characterize. As
we will see, beside connecting the tn-constrained kernel
machines with gps, this probabilistic characterization
defines a different and less stringent type of regulariza-
tion for such models.

3 TN-CONSTRAINED KERNEL
MACHINES AS GPs

We commence to outline the correspondence between
tn-constrained kernel machine and gps, which makes
use of the Central Limit Theorem (clt). We begin by
elucidating the simplest case, i.e. the cpd.
Theorem 3.1 (cpd-constrained kernel machine as gp).
Consider the cpd-constrained kernel machine

fCPD(x) := ⟨R1(ten (φ(x))), CPD(ten (w))⟩F.

If each of the R columns w(q)
:,r ∈ RMq of each cpd

core is an i.i.d. random variable such that

E
[
w(q)

:,r

]
= 0,

E
[
w(q)

:,r w
(q)
:,r

T
]
= R− 1

QΛ(q),

then fCPD(x) converges in distribution as R → ∞ to the
gp

fCPD(x) ∼ GP

(
0,

Q∏
q=1

φ(q)(x)
T
Λ(q)φ(q)(·)

)
.

Proof. See appendix B.1.

A similar result can be constructed for the tt case.
Theorem 3.2 (tt-constrained kernel machine as gp).
Consider the tt-constrained kernel machine

fTT(x) := ⟨R1(ten (φ(x))), TT(ten (w))⟩F
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(a) PCPD = 1600 (b) PCPD = 1600 000 (c) PTT = 1320 (d) PTT = 1605 000

Figure 1: Histograms of the empirical pdf of cpd (blue) and tt (orange) models specified in theorem 3.1 and 3.2
evaluated at a random point as a function of model parameters P for Q = 16. The black line is the pdf of the
gp. Notice how tt converges faster to the gp for the same number of model parameters P .

If each of the Rq−1Rq fibers W (q)
rq−1,:,rq ∈ RMq of

each tt core is an i.i.d. random variable such that

E
[
W (q)

rq−1,:,rq

]
= 0,

E
[
W (q)

rq−1,:,rqW
(q)
rq−1,:,rq

T
]
=

1√
Rq−1Rq

Λ(q),

then fTT(x) converges in distribution as sequentially
R1 → ∞, R2 → ∞, . . . , RQ−1 → ∞ to the Gaussian
process

fTT(x) ∼ GP

(
0,

Q∏
q=1

φ(q)(x)
T
Λ(q)φ(q)(·)

)
.

Proof. See appendix B.2.

Theorem 3.2 guarantees the convergence in distribution
of fTT(x) to the gp of equation (3) by taking successive
limits of each tt rank. Importantly, the same con-
vergence results also holds true if the tt ranks grow
simultaneously, see appendix B.3.

Both theorem 3.1 and 3.2 are remarkable, as they im-
ply that a gp which can be defined in terms of a finite
number of

∏Q
q=1 Mq weights w can be also obtained

with an infinite number of model parameters P us-
ing the cpd-constrained model of definition 2.5 or the
tt-constrained model of definition 2.6. Furthermore,
theorem 3.1 and 3.2 suggest that when the priors of
theorem 3.1 and 3.2 are placed on the model weights,
cpd and tt-based models exhibit gp behavior in the
overparameterized regime as their ranks tend towards
infinity. gp behavior is characterized by a fixed learn-
ing representation φ(·), which in case of the kernel in
theorem 3.1 and 3.2 is fully defined by the bfs and is
hence data-independent. On the contrary, as we will
see, in the finite rank regime both cpd and tt models
are able to craft nonlinear features from the provided

bfs, learning nonlinear latent patterns in the mapped
data.

3.1 Convergence Rate to the Gp

While both theorem 3.1 and theorem 3.2 guarantee
convergence in distribution to the gp of equation (3),
they do so at rates that differ in terms of the number of
model parameters. Let us assume, for simplicity, that
the number of basis functions is the same along each
dimension, i.e., M , and that the Q− 1 tt ranks equal
R. It follows then that the number of cpd model pa-
rameters PCPD = MQRCPD and the number of tt model
parameters PTT = M(Q−2)R2

TT+2MRTT = O(MQR2
TT).

Given the convergence rate of the clt for the expres-
sion in equation (11) to the gp in equation (3), denoted
as O(1/

√
R

CPD
) with respect to the variable PCPD, we can

establish the following corollary by substituting RCPD
as a function of PCPD.

Corollary 3.3 (Convergence rate for cpd). Under
the conditions of theorem 3.1, the function fCPD(x) con-
verges in distribution to the gp defined by equation (3).
The convergence rate is given by:

fCPD(x) → O

((
MQ

PCPD

) 1
2

)
.

Due to their hierarchical structure, tt models are a
composition of RQ−1

TT variables, but can be represented
in a quadratic number of model parameters in RTT,
since PTT = O(MQR2

TT). Expressing then the clt
convergence rate of O(1/

√
R

TT

Q−1) as a function of PTT

yields the following corollary.

Corollary 3.4 (Convergence rate for tt). Under the
conditions of theorem 3.2, the function fTT(x) converges
in distribution to the gp defined by equation (3). The
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convergence rate is given by:

fTT(x) → O

((
MQ

PTT

)Q−1
4

)
.

Therefore, when dealing with identical models in terms
of the number of basis functions (M), product ker-
nel terms (Q), and the number of model parameters
(PCPD = PTT), fTT(x) will converge at a polynomially
faster rate than fCPD(x), thus exhibiting gp behavior
with a reduced number of model parameters. In partic-
ular, based on corollaries 3.3 and 3.4 we expect the gp
convergence rate of tt models to be faster for Q ≥ 3.

These insights are relevant for practitioners engaged
with tn-constrained kernel machines, as they shed
light on the balance between the gp and (deep) neural
network behavior inherent in these models. Notably,
when using the priors of theorem 3.1 and 3.2 cpd
and tt-constrained models, akin to shallow and dnns
respectively, have the capacity to craft additional non-
linearities beyond the provided basis functions. This
characteristic can result in more expressive model when
dealing with a limited number of parameters. However,
as the parameter count increases, we expect these mod-
els to transition towards gp behavior, characterized by
a fixed feature representation and static in comparison.

3.2 Consequences for Map Estimation

As discussed in section 2.4, tn-constrained kernel ma-
chines are typically trained in the ml or map framework
by constraining the weights w in the log-likelihood or
log-posterior to be a tn. In said map context, and e.g.
when specifying a normal prior on the model weights
w ∼ N (0,Λ), the resulting regularization term Ω (log-
prior) is approximated by ΩTN as

Ω :=
∣∣∣∣∣∣Λ− 1

2w
∣∣∣∣∣∣2
F
≈ ΩTN :=

∣∣∣∣∣∣TN(ten(Λ− 1
2w
)
)
∣∣∣∣∣∣2
F
,

where Λ = ⊗Q
q=1Λ

(q). For example, in case of cpd-
constrained models we have

ΩCPD =
∣∣∣∣∣∣⊙Q

q=1

(
W (q)TΛ(q)−1

W (q)
)∣∣∣∣∣∣2

F
. (17)

This form of regularization is considered for tt by
Wahls et al. [2014]; Novikov et al. [2018]; Chen et al.
[2018] and for cpd by Wesel and Batselier [2021, 2023].
It provides a Frobenius norm approximation of the
regularization term which recovers the original map
estimate as the hyperparameters of TN(ten (Λw)) are
chosen such that TN(ten (Λw)) = ten (Λw). If we now
consider the log-posterior of theorem 3.1 we end up
with

ΩCPD :=R
1
Q

Q∑
q=1

∣∣∣∣∣∣∣∣Λ(q)−
1
2W (q)

∣∣∣∣∣∣∣∣2
F

. (18)

This regularization has been employed without the
scaling factor R

1
Q and with Λ(q) = IMq in the work

of Kargas and Sidiropoulos [2021], who may not have
been aware of the underlying connection with gps at
that time. Contrary to the regularization ΩTN in equa-
tion (17), it provides an approximation which recovers
the log-prior Ω and thus the map, which in combination
with a Gaussian likelihood and squared-loss is equiv-
alent to the gp posterior mean in the limit of large
ranks. These considerations point to the fact that if the
practitioner is interested only in a map estimate which
recovers the gp posterior mean as faithfully as possi-
ble given the computational budget at hand, he might
be more interested in the established regularization of
equation (17). On the contrary, the choice of equa-
tion (18) in combination with squared-loss recovers the
gp map in the limit, yielding models that can fit the
data more closely albeit with an increased possibility
of overfitting with respect to the associated gp base-
line. Furthermore, sampling the priors in theorem 3.1
and 3.2 provide a sensible initial guess for gradient-
based optimization which adjusts to the dimensionality
of the inputs and the choice of rank hyperparameters
[Barratt et al., 2021].

4 NUMERICAL EXPERIMENTS

We setup two numerical experiments in order to respec-
tively empirically observe the claims in theorem 3.1
and 3.2 by evaluating the convergence to the prior
gp in equation (3), and to evaluate the gp behavior
of such models at prediction in the finite rank case.
In all experiments we made use of the Hilbert–space
Gaussian Process (hgp) Solin and Särkkä [2020] bfs
which approximate stationary tensor product kernels
of the form

∏D
q=1 k(xq, x

′
q), and opt for Mq = 10 basis

functions per dimension. We ran all experiments on a
Dell Inc. Latitude 7410 laptop computer with 16 GB
of RAM. The Python implementation is available at
github.com/fwesel/tensorGP.

4.1 Gp Convergence

In order to empirically verify the convergence to
the gp of equation (3) we sample 10 000 instances
of the cpd and tt models specified in theorem 3.1
and 3.2 for increasing cpd and tt ranks yielding up
to P = 10 000 model parameters. Since the target dis-
tribution is Gaussian with known moments, we record
the Cramér–von Mises statistic W 2 [D’Agostino and
Stephens, 1986] which gives a metric of closeness be-
tween the target and our sampled empirical cdf. We
repeat this for 10 randomly sampled data points and
for Q = 2, 4, 8, 16 and report the mean and standard
deviation of the results in figure 2. Therein it can be ob-

github.com/fwesel/tensorGP


Frederiek Wesel, Kim Batselier

0 5000 10000

P

10−1

100

101

W
2

Q=2

CPD
TT

0 5000 10000

P

100

101

102

Q=4

0 2500 5000 7500 10000

P

102

Q=8

0 5000 10000

P

2×102

3×102
4×102

6×102

Q=16

Figure 2: Mean and standard deviation of the Cramér–von Mises statistic W 2 evaluated between the empirical
cdf of cpd and tt models specified in theorem 3.1 and 3.2 evaluated at N = 10 random points as a function of
model parameters P for Q = 2, 4, 8, 16. The two models are equivalent for Q = 2. Notice how tt converges faster
to the gp as Q increases.
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Figure 3: Mean and standard deviation of the test rmse of cpd and tt models for regularization equations (17)
and (18) (green and red curves respectively) as a function of model parameters P as well as their target krr
(dotted line). In the plots, the probabilistic regularization of equation (18) and its tt counterpart are denoted by
a blue and orange line respectively. The dotted line corresponds to the krr (gp posterior mean) baseline. The
proposed regularization which stems from theorem 3.1 and 3.2 achieves lower test rmse with fewer parameters,
with the notable exception of the concrete datasets where it leads to overfitting.
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served that for the same number of model parameters,
tt converges more rapidly than cpd as the dimension-
ality of the inputs grows. Both approaches however
need exponentially more parameters to converge at
the same rate for increasing dimensionality of the in-
puts. Note that for Q = P = 4 cpd, contrary to what
stated in section 3.1 still converges faster due to the
approximation made when considering PTT = QMR2.
Histograms of the empirical cdf for one datapoint are
shown in figure 1. This behavior stems from the fact
that for a fixed combination of Q, M and P , tt cap-
tures an exponential RQ−1 range of model interactions
in contrast to the R linear interactions exhibited by
cpd.

4.2 Gp Behavior at Prediction

To investigate whether cpd and tt-constrained ker-
nel machines trained with the priors of theorem 3.1
and 3.2 indeed exhibit less gp behavior compared to
the standard cpd and tt-constrained prior we tackle
four small University of California, Irvine (uci) re-
gression problems [Dua and Graff, 2017]. We consider
70% of the data for training and the remaining for test
and train a krr model (equivalent to the gp posterior
mean) on the training data and chose its kernel and reg-
ularization hyperparameters by 3-fold cross-validation.
With the found krr hyperparameters we then train
two cpd-constrained kernel machines with Alternat-
ing Least-Squares (als) for an increasing number of
ranks and thus of parameters, one such model with
the standard regularization (equation (17)) and one
with the regularization that follows from theorem 3.1
(equation (18)). We repeat the same procedure for
tt-constrained kernel machines. We report the rmse
on test data in figure 3 and on train in figure 4 in
the appendix. In figure 3 one can observe that on all
datasets the predictions on unseen data of both cpd
and tt models trained with the standard regularization
(green and red curves respectively) converge to the krr
baseline (dotted line) for P ≪ N . On the contrary,
the cpd and tt models trained with the regularization
term of equation (18) (blue and orange respectively)
with the exception of the concrete dataset fare better
in terms of test error, as they have been trained with
a regularization that recover the krr baseline in the
limit. Plots of the training errors can be found in fig-
ure 4 in appendix C.1, where it can be seen that the
regularization enforced by theorem 3.1 and 3.2 yields
overall models that fit the data better and, with the
exception of the concrete dataset, generalize better.

5 RELATED WORK

Our contribution is closely tied to the links between
Bayesian neural networks and gps, first established
for single-layer single-output neural networks [Neal,
1996a,b] having sigmoidal [Williams, 1996], Gaussian
[Williams, 1997] and rectified linear unit [Cho and Saul,
2009] as activation function. This idea was extended to
dnns by Lee et al. [2018] and Matthews et al. [2018] for
the most common activation functions. Further exten-
sions have been proposed to cnns where the number of
channels tends to infinity [Novak et al., 2018; Garriga-
Alonso et al., 2018], to rnns [Sun et al., 2022] and to
dnns having low-rank constraints on the weight matri-
ces [Nait-Saada et al., 2023]. In particular theorem 3.1
resembles the results of Neal [1996a,b]; Williams [1997]
which relate infinite-width single layer neural networks
to gps. The cpd rank corresponds exactly to the width
of the neural network. The crucial difference lies how-
ever in the Kronecker product structure, which is not
present in neural networks and introduces a nonlinear-
ity of different kind than the activation function. tts
on the other hand resemble dnns as they map the out-
put of each core to the next one. However, in contrast
to dnns, the inputs are processed over the depth of the
network. For a more in depth discussion we refer the
reader to [Cohen et al., 2016]. Likewise theorem 3.2 is
the tn counterpart to the works of Lee et al. [2018];
Matthews et al. [2018] which relate finite depth neu-
ral networks to gps. The priors we propose are also
used in practice as a sensible initial guess for gradient-
based optimization of tn-constrained models [Barratt
et al., 2021]. The results related to tt-constrained
kernel machines in theorem 3.2 were also derived by
Guo and Draper [2021a,b] from a quantum mechani-
cal perspective, though a theoretical and experimental
comparison with cpd-constrained kernel machines was
not provided.

6 CONCLUSION

In this paper we proved that cpd and tt-constrained
kernel machines are product kernel gps in the limit of
large tn ranks when placing suitable priors on their
parameters. We characterized the target gp and showed
that compared to cpd, tt-based models converge faster
to the gp when dealing with higher-dimensional inputs.
The proposed priors can be used in case of finite rank
to train more flexible models that better fit the data
compared to the standard approach which seeks instead
to approximate the posterior with the addition of a
tn constraint. One important limitation is that the
ensuing models are more susceptible to overfitting and
have thus to be tuned with more care. We empirically
demonstrated these observations by means of numerical
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experiments.
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A Introduction

A.1 Notation

Throughout this paper we denote scalars in both capital and non-capital italics w,W , vectors in non-capital bold
w, matrices in capital bold W and tensors in capital italic bold font W . The m-th entry of a vector w ∈ RM is
indicated as wm and the m1m2 . . .mQ-th entry of a Q-dimensional tensor W ∈ RM1×M2×···×MQ as wm1,m2,...,mQ

.
We employ the column notation to indicate a set of elements of tensor given a set of indices, e.g. Wm1,:,m2 and
Wm1,1:3,m2

represent respectively all elements and the first three elements along the second dimension of tensor
W with fixed indices m1 and m2. The Kronecker product is denoted by ⊗ and the Hadamard (elementwise)
by ⊙. We employ one-based indexing for all tensors. The Frobenius inner product between two Q-dimensional
tensors V ,W ∈ RM1×M2×···×MQ is

⟨V ,W⟩F :=

M1∑
m1=1

M2∑
m2=1

· · ·
MQ∑

mQ=1

vm1,m2,...,mQ
wm1,m2,...,mQ

,

and the Frobenius norm of W ∈ RM1×M2×···×MQ is denoted and defined as

||W ||2F := ⟨W ,W⟩F.

We define the vectorization operator as vec (·) : RM1×M2×···×MQ → RM1M2···MQ such that

vec (W)m = wm1,m2,...,mQ
,

with m = m1 +
∑Q

q=2(mq − 1)
∏q−1

k=1 Mk. Likewise, its inverse, the tensorization operator ten (·) : RM1M2···MQ →
CM1×M2×...MQ is defined such that

ten (w)m1,m2,··· ,mQ
= wm.

B Tn-Constrained Kernel Machines as gps

B.1 Gp of Cpd-Constrained Kernel Machine

Theorem 3.1 (cpd-constrained kernel machine as gp). Consider the cpd-constrained kernel machine

fCPD(x) := ⟨R1(ten (φ(x))), CPD(ten (w))⟩F.

If each of the R columns w(q)
:,r ∈ RMq of each cpd core is an i.i.d. random variable such that

E
[
w(q)

:,r

]
= 0,

E
[
w(q)

:,r w
(q)
:,r

T
]
= R− 1

QΛ(q),

then fCPD(x) converges in distribution as R → ∞ to the gp

fCPD(x) ∼ GP

(
0,

Q∏
q=1

φ(q)(x)
T
Λ(q)φ(q)(·)

)
.

Proof. Consider the R intermediate functions hr of equation (13) which constitute the cpd-constrained model of
equation (11). Due to the i.i.d. assumption on w(q)

:,r each addend is the same function of i.i.d. random variables
and thus is itself i.i.d.. The mean of each addend is

E [hr(x)] = E

[
Q∏

q=1

φ(q)(x)
T
w(q)

:,r

]
= 0, (19)
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due to the i.i.d assumption and the linearity of expectation. Its covariance is

E [hr(x)hr(x
′)] (20a)

=E

[
Q∏

q=1

φ(q)(x)
T
w(q)

:,r

Q∏
q=1

φ(q)(x′)
T
w(q)

:,r

]
(20b)

=E

[
Q∏

q=1

φ(q)(x)
T
w(q)

:,rw
(q)

:,r
T
φ(q)(x′)

]
(20c)

=

Q∏
q=1

φ(q)(x)
T
E
[
w(q)

:,rw
(q)

:,r
T
]
φ(q)(x′) (20d)

=
1

R

Q∏
q=1

φ(q)(x)
T
Λ(q)φ(q)(x′).

Here the step from equation (20b) to equation (20c) exploits the fact that the transpose of a scalar is equal to itself,
the step from equation (20c) to equation (20d) is due to the linearity of expectation. As the variances of each
intermediate function hr are appropriately scaled, by the clt the partial sum fCPD(x) converges in distribution to
a multivariate normal distribution, which is fully specified by its first two moments

E
[
fCPD(x)

]
= 0,

E
[
fCPD(x)fCPD(x

′)
]
=

Q∏
q=1

φ(q)(x)
T
Λ(q)φ(q)(x′).

Since any finite collection of {fCPD(x), . . . , fCPD(x′)} will have a joint multivariate normal distribution with the
aforementioned first two moments, we conclude that fCPD(x) is the Gaussian process

fCPD(x) ∼ GP

(
0,

Q∏
q=1

φ(q)(x)
T
Λ(q)φ(q)(·)

)
.

B.2 Gp of Tt-Constrained Kernel Machine in the Sequential Limit of the Tt Ranks

Theorem 3.2 (tt-constrained kernel machine as gp). Consider the tt-constrained kernel machine

fTT(x) := ⟨R1(ten (φ(x))), TT(ten (w))⟩F

If each of the Rq−1Rq fibers W (q)
rq−1,:,rq ∈ RMq of each tt core is an i.i.d. random variable such that

E
[
W (q)

rq−1,:,rq

]
= 0,

E
[
W (q)

rq−1,:,rqW
(q)
rq−1,:,rq

T
]
=

1√
Rq−1Rq

Λ(q),

then fTT(x) converges in distribution as sequentially R1 → ∞, R2 → ∞, . . . , RQ−1 → ∞ to the Gaussian process

fTT(x) ∼ GP

(
0,

Q∏
q=1

φ(q)(x)
T
Λ(q)φ(q)(·)

)
.

Proof. Define the vector of intermediate function h(q+1) ∈ RRq+1 recursively as

h(q+1)
rq+1

:=

Rq∑
rq=1

z(q+1)
rq,rq+1

(xq+1)h
(q)
rq ,
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with h(0) := 1. Note that the first two moments of intermediate variable z
(q+1)
rq,rq+1(xq+1) are

E
[
z(q+1)
rq,rq+1

(x)
]
= 0,

E
[
z(q+1)
rq,rq+1

(x)z(q+1)
rq,rq+1

(x′)
]

=
1√

RqRq+1

φ(q)(x)
T
Λ(q)φ(q)(x′).

We proceed by induction. For the induction step suppose that h(q)
rq is a gp, identical and independent for every rq

such that

h(q)
rq ∼ GP

(
0,

1√
Rq

q∏
p=1

φ(p)(x)
T
Λ(p)φ(p)(·)

)
.

The scalar h
(q+1)
rq+1 is the sum of Rq i.i.d. terms having mean

E
[
h(q+1)
rq+1

]
= E

[
z(q+1)
rq,rq+1

(x)h(q)
rq

]
= 0,

and covariance

E
[
h(q+1)
rq+1

h(q+1)
rq+1

]
=E

[
z(q+1)
rq,rq+1

(x)h(q)
rq z(q+1)

rq,rq+1
(x′)h(q)

rq

]
=E

[
z(q+1)
rq,rq+1

(x)z(q+1)
rq,rq+1

(x′)
]
E
[
h(q)
rq h(q)

rq

]
=

1√
Rq+1

q+1∏
p=1

φ(p)(x)
T
Λ(p)φ(p)(x′).

Since the assumptions of the clt are satisfied the partial sum h
(q+1)
rq+1 converges in distribution to the nor-

mal distribution, fully specified by the above mentioned first two moments. Since any finite collection of
{h(q+1)

rq+1 (x1:q+1), . . . , h
(q+1)
rq+1 (x′

1:q+1)} will have a joint multivariate normal distribution with the aforementioned
first two moments, we conclude that h

(q+1)
rq+1 (x1:q+1) is the gp

h(q+1)
rq+1

∼ GP

(
0,

1√
Rq+1

q+1∏
p=1

φ(p)(x)
T
Λ(p)φ(p)(·)

)
.

For the base case, consider the R1 outputs of the first hidden function h
(1)
r1 . They are i.i.d. with mean

E
[
h(1)
r1 (x)

]
= 0.

and covariance
E
[
h(1)
r1 (x)h(1)

r1 (x′)
]
=

1√
R1

φ(1)(x)
T
Λ(1)φ(1)(x′).

We now consider the R2 outputs of the second hidden function h
(2)
r2

h(2)
r2 =

R1∑
r1=1

z(2)r1,r2(x)h
(1)
r1 ,

which are i.i.d. as they are the same function of the R1 i.i.d. outputs of h(1)
r1 (x). More specifically, their mean

and covariance are

E
[
h(2)
r2

]
= 0,

E
[
h(2)
r2 (x)h(2)

r2 (x′)
]

=
1√
R2

2∏
q=1

φ(q)(x)
T
Λ(q)φ(d)(x′).
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Once more by the clt, the partial sum h
(2)
r2 converges in distribution to the normal distribution with the above

first two moments. Since any finite collection of {h(2)
r2 (x), . . . , h

(2)
r2 (x′} will have a joint multivariate normal

distribution with the aforementioned first two moments, we conclude that h
(2)
2 (x) is the gp

h(2)
r2 ∼ GP

(
0,

1√
R2

2∏
q=1

φ(q)(x)TΛ(q)φ(q)(·)

)
,

which is our base case. Hence by induction fTT(x) = h(Q) converges in distribution as R1 → ∞, R2 → ∞, . . . ,
RQ−1 → ∞ to the gp

fTT(x) ∼ GP

(
0,

Q∏
q=1

φ(q)(x)
T
Λ(q)φ(q)(·)

)
.

B.3 Gp of Tt-Constrained Kernel Machine in the Simultaneous Limit of the Tt Ranks

In theorem 3.2 we prove by induction that the tt-constrained kernel machine converges to a gp by taking
successive limits of the tt ranks. This result is analogous to the work of Lee et al. [2018], who prove that for the
dnns, taking sequentially the limit of each layer. A more practically useful result consists in the convergence in
the simultaneous limit of tt ranks.

In deep learning Matthews et al. [2018, theorem 4] prove convergence in the context of dnns over the widths of all
layers simultaneously. Said theorem has been employed to prove gp convergence in the context of convolutional
neural networks [Garriga-Alonso et al., 2018] and in the context of dnns where each weight matrix is of low rank
[Nait-Saada et al., 2023].

Seeing the similarity between tt-constrained kernel machines (equation (14)) and dnns and the technicality of
the proof, similarly to [Garriga-Alonso et al., 2018; Nait-Saada et al., 2023] we draw a one-to-one map between
the tt-constrained kernel machines and the dnns considered in Matthews et al. [2018, theorem 4]. Convergence
in the simultaneous limit is then guaranteed by Matthews et al. [2018, theorem 4].

We begin by restating the definitions of linear envelope property, dnns, linear envelope property and normal
recursion as found in Matthews et al. [2018]. To make the comparison easier for the reader, we change the
indexing notation to match the one in this paper.

Definition B.1 (Linear envelope property for nonlinearities [Matthews et al., 2018]). A nonlinearity t : R → R
is said to obey the linear envelope property if there exist c, l ≥ 0 such that the following inequality holds

|t(u)| < c+ l|u| ∀u ∈ R. (25)

Definition B.2 (Fully connected dnn [Matthews et al., 2018]). A fully connected deep neural with one-dimensional
output and inputs x ∈ RR0 is defined recursively such that the initial step is

h(1)
r1 (x) =

R0∑
r0=1

z(1)r1,r0xr0 + b(1)r1 , (26)

the activation step by nonlinear activation function t is given by

g(q)rq = t(f (q)
rq ), (27)

and the subsequent layers are defined by the recursion

h(q+1)
rq+1

=

Rq∑
rq=1

z(q+1)
rq+1,rd

g(q)rq + bq+1
rq+1

, (28)

so that h(Q) is the output of the network. In the above, Z(q) ∈ RRq−1×Rq and b(q) ∈ RRq are respectively the
weights and biases of the q-th layer.
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Definition B.3 (Width function Matthews et al. [2018]). For a given fixed input n ∈ N, a width function
v(q) : N → N at depth q specifies the number of hidden units Rq at depth q.

Lemma B.4 (Normal recursion [Matthews et al., 2018]). Consider z
(q)
rq−1,rq ∼ N (0, C

(q)
w ) and b

(q)
rq ∼ N (0, C

(q)
b ).

If the activations of the q-th layer are normally distributed with moments

E
[
h(q)
rq

]
= 0 (29)

E
[
h(q)
rq h(q)

rq

]
= K(x, x′), (30)

then under recursion equations (27) and (28), as Rq−1 → ∞, the activations of the next layer converge in
distribution to a normal distribution with moments

E
[
h(q+1)
rq+1

]
= 0 (31)

E
[
h(q+1)
rq+1

h(q+1)
rq+1

]
= C(q+1)

w E(ϵ1,ϵ2)∼N (0,K) [t(ϵ1)t(ϵ2)] + C
(q+1)
b . (32)

We can now state the major result in Matthews et al. [2018].

Theorem B.5 (gp in the simultaneous limit of fully connected dnns [Matthews et al., 2018]). Consider a random
dnn of the form of definition B.2 obeying the linear envelope condition of definition B.1. Then for all sets of
strictly increasing width functions v(q) and for any countable input set {x, . . . ,x′}, the distribution of the output
of the network converges in distribution to a gp as n → ∞. The gp has mean and covariance functions given by
the recursion in lemma B.4.

Corollary B.6 (gp in the simultaneous limit of tt-constrained kernel machines). Consider a random tt-
constrained kernel machine of the form of definition 2.6 obeying the linear envelope condition of definition B.1.
Then for all sets of strictly increasing width functions v(q) and for any countable input set {x, . . . ,x′}, the
distribution of the output of the network converges in distribution to a gp as P → ∞. The gp has mean and
covariance functions given by the recursion in lemma B.4 and stated in theorem 3.2.

Proof. When examining definition B.2 and comparing it with definition 2.6 it becomes clear that both models are
similar. In the special case of involving linear activation function and zero biases, the models are structurally
identical if one considers unit inputs x = 1 in equation (26). The normal recursion in lemma B.4 is satisfied by
tt-constrained kernel machines, as we have that

t(u) :=u ∀u ∈ R,

C
(q+1)
b := 0,

C(q+1) :=
1√

RqRq+1

φ(q)(x)
T
Λ(q)φ(q)(x′),

K :=
1√
Rq

q∏
p=1

φ(p)(x)
T
Λ(p)φ(p)(x′)

E(ϵ1,ϵ2)∼N (0,K) [t(ϵ1)t(ϵ2)] :=K.

Hence by theorem B.5, for all sets of strictly increasing width functions v(q) and for any countable input set
{x, . . . ,x′}, the distribution of the output of the network converges in distribution to a gp, fully specified by the
output of the normal recursion in lemma B.4, which equals the gp in theorem 3.2.

C Numerical Experiments

C.1 Gp Behavior at Prediction

We provide the training rmse related to section 4.2 in figure 4, where it can be seen that the new priors yield
model that provide a better fit on all datasets.
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Figure 4: Mean and standard deviation of the training rmse of cpd and tt models for regularization equations (17)
and (18) (green and red curves respectively) as a function of model parameters P as well as their target krr
(dotted line). In the plots, the probabilistic regularization of equation (18) and its tt counterpart are denoted by
a blue and orange line respectively. The dotted line corresponds to the krr (gp posterior mean) baseline. The
proposed regularization which stems from theorem 3.1 and 3.2 achieves lower test rmse with fewer parameters,
with the notable exception of the concrete datasets where it leads to overfitting.
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