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ABSTRACT

The rapid developments in the field of point cloud acquisition technologies have
allowed point clouds to become an important source of information for many appli-
cations. One of the newest applications of point clouds concerns the monitoring of
the coast. Many countries, among which the Netherlands, use this source of data in
order to determine the changes in coastal elevations. This means that point clouds
are collected every hour, day, month, year; ultimately talking about dynamic point
clouds. To be able to efficiently use this plethora of data, the management of those
point clouds, dynamic or not, is proven to be crucial.

Point clouds, like the majority of geodata, have been traditionally managed using
file-based solutions. Nevertheless, the last years database solutions have emerged.
Typical examples are the point cloud extensions for PostgreSQL and the Oracle
Database. Both options use a similar block-based organisation. In addition to the
block based organisations, point clouds can also be managed using a flat table where
each point is stored in a separate row. While the first approach is very scalable and
efficient, the second is easier to implement and to update. To make the flat model scal-
able, a Space Filling Curve (SFC) can be used to cluster the data. Nonetheless, both
approaches in their current forms, are not suited for the management of dynamic
points. The reason for this is the fact that they do not consider the time dimension
as part of the organisation and further insertions for the block-based approaches are
not straightforward.

Within this thesis a SFC approach for managing dynamic point clouds is in-
vestigated. For this, the flat model approach using an Index Organised Table (IOT)
within a Relational Database Management System (RDBMS) is used. Two variants
coming from two extremes of the space - time continuum are then taken into account.
In the first approach, space and time are both used within the SFC (integrated ap-
proach), while in the second one, time dominates over space (non-integrated ap-
proach). Along these two approaches, two treatments of the z dimension are, also,
studied: as attribute or as part of the SFC. In addition to that, building on the
coastal monitoring applications, the most important queries are identified: space -
time, only time, only space.

The efficiency of the implemented methodology is tested through the execution of
a benchmark. Using two use cases coming from coastal applications, the benchmark
is executed once for daily and once for yearly data. The results show that the SFC ap-
proach is an appropriate method for managing dynamic point clouds. Furthermore,
the integrated approach is the most suitable way to proceed. Achieving scalability,
time efficiency and dynamic insertions can be achieved for various use cases.
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1 INTRODUCT ION

Over the last years, point cloud usage has seen a rapid growth and it is
expected that this growth will become even bigger in the years to come.
This is mainly due to the developments in point cloud acquisition technolo-
gies; namely terrestrial and airborne laser scanning, mobile mapping, im-
age matching and multi-beam echo-sound techniques etc. Pulse frequencies
have increased significantly and so has the acquired point density. These
technologies have allowed large-scale acquisition projects, a typical example
of which are the Actueel Hoogtebestand Nederland (AHN) datasets [AHN,
2016] for the country of the Netherlands.

But apart from these large-scale projects, recent advances have produced
many low-cost and generally easy-to-use devices and techniques, such as
the Microsoft Kinect1, Google’s Project Tango2, depth cameras and structure
from motion techniques combined with Unmanned Aerial Systems (UAS).
These devices enable the acquisition of billions points in a short period of
time [Schops et al., 2015; Rusu and Cousins, 2011; Westoby et al., 2012;
Khoshelham, 2011] and have allowed repeated scans of the same area on
a frequent basis, resulting in even more available spatial information and
the addition of the fourth dimension; the temporal component. This in-
creasing availability, spatio - temporal density and acquisition frequency of
point cloud datasets has consequently made them suitable in a number of
applications such as: 3D urban modelling [Haala and Kada, 2010], indoor
modelling [Previtali et al., 2014], flood modelling [Abdullah et al., 2009],
line of sight analysis [Peters et al., 2015], forest mapping [White et al., 2013]
and many other. In the previously mentioned applications point clouds are
used either directly or they form the basis in generating other representa-
tions (grid, vector) of the world.

1.1 motivation and problem statement
Although technological developments have made it feasible to acquire a
large amount of information, the management and storage of those mas-
sive point clouds is a challenge [van Oosterom et al., 2015; Cura et al., 2015;
Richter and Döllner, 2014]. In the majority of today’s applications file-centric
approaches are chosen, meaning that point cloud data are stored and pro-
cessed as a collection of files. A typical workflow includes using desktop ap-
plications or command line executables like Rapidlasso’s LAStools (mixed -
source) [Isenburg, 2012a] or the Point Cloud Abstraction Library (PDAL) (an
open - source project), reading one or more files, processing the data and
writing files back to the user. In the case of LAStools, all this functionality is
integrated with a project management and quality control framework mak-
ing it a stand-alone application [Hug et al., 2004]. Therefore, if those appli-

1 http://www.xbox.com/en-US/xbox-360/accessories/kinect

2 https://www.google.com/atap/project-tango/
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cations perform well why look into a different direction, that of a Database
Management System (DBMS)?

Despite the fact that file-based systems are continuously improving and
gaining more functionality [Otepka et al., 2012], they generally present de-
ficiencies with the increasing acquisition of point clouds and have certain
limitations in the allowed file formats [Sabo et al., 2014]. The absence of
multi-user functionalities is another important deficiency. The situation be-
comes even more complicated when taking into account the multiple di-
mensions of point clouds, as these are far from fixed and can be present in
any order and combination [ASPRS, 2011]. Finally, integration with other
(spatial) data is not a trivial functionality.

DBMS have for many decades already been dealing with the data storage,
indexing techniques, scalability and availability requirements needed by the
majority of spatial and non-spatial applications. DBMSs provide concurrency
control, transactions characterised by atomicity and isolation, security and
version control [Elmasri and Navathe, 2010]. The database community, com-
mercial and open-source, identifying the need for point cloud data man-
agement already provides native point cloud support. Both Oracle (Spatial
and Graph) and PostgreSQL (PostGIS) use a rather similar approach for
point cloud data storage. Their storage model is based on the physical re-
organisation of the points into blocks [Ravada et al., 2010; Ramsey, 2014].

Although the existing point cloud data management solutions available
in the DBMSs perform well for specific cases, they present certain limitations.
First, they consider point clouds as rather static objects, not taking into ac-
count the time dimension in the organisation of the points. This means that
time is either stored as an attribute within the file system or database, or
is only present within the file- or table name. Therefore, time does not di-
rectly influence the organisation of the data. This is in contrast with the
growing number of point clouds continuously generated from low-cost sen-
sors, which have shifted the nature of this spatial representation from static
to dynamic. In specific applications, even, the time dimension becomes as
equally selective as the planimetric coordinates. We are then talking about
dynamic point clouds. This implies that storing time as an attribute no longer
provides efficient searching, as the query plan will first select based on the
spatial components and then on time. The disadvantages become even more
obvious as time-dependent information is accumulated. Finally, the current
solutions do not always provide support for further insertion of new data
without having to rebuild the blocks from scratch. This hinders further de-
velopment of applications that keep track of changes in an area using point
clouds.

The ultimate goal when managing dynamic point clouds is to design a
method to organise the data in a compact way that will support the efficient
retrieval of the points. And since, even today, one-dimensional access meth-
ods (like the B-Tree) continue to be superior than multidimensional one’s,
the ideal solution thus would be to map the multi-dimensional space into a
one-dimensional value and then use this value to efficiently store the points.
Therefore we are in need of a structure that clusters points in space and time.
However, there exists no mapping technique that completely preserves spa-
tial proximity. A very popular approach is using a Space Filling Curve (SFC).
A SFC has the ability to apply a linear ordering to a multi-dimensional do-
main. Several SFCs have been developed through the years with the Morton
and the Hilbert curve being the most prominently used [Abel and Mark,
1990].
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1.2 use case
Coastal areas are highly dynamic environments where diverse populations
(humans or animals) live. Changes around the coastal area can take place
in very short periods of time (e.g. after a storm) or in the long-term (e.g. by
constant erosion by waves and wind). As a result frequent monitoring of
the coastal morphology is of great importance in order to understand how
the changes occur and in order to efficiently plan flood defence mechanisms
that will protect the hinterland.

The Netherlands is a country situated at the North Sea and its southwest-
ern part is the delta of the three large rivers: Rhine, Meuse and the Scheldt.
Over the years, protection of the coast has played a very important role
for the development of the country, since almost one quarter of the land
lies below sea level. Typical flood protection structures include dams, dikes
and dunes. The Dutch coastal policy was introduced in 1990. There it was
stated that the country should ”hold the line” [Sistermans and Nieuwen-
huis, 2004], meaning that the coastline should be prevented from moving
towards the mainland. For this reason, the Ministry of Transport, Public
Works, and Water Management (Rijkswaterstaat) as part of the coastal mon-
itoring guidelines performs a yearly survey of the Dutch coast in order to
determine changes in coastal elevations. These surveys are a combination
of depth surveys from echo sounding equipments mounted on vessels and
height surveys coming from Laser altimetry technology [Pot, 2011].

Point clouds have evolved to be a very important source of information
for coastal applications [Carter et al., 2012]. The usefulness of point cloud
data lies in the fact that point cloud acquisition techniques have become
highly accurate and quick, allowing daily or even hourly collection of data.
This comes in contrast to the until recently major sources of information,
namely satellite imagery or topographic maps acquired with classical sur-
veying methods, which either have low spatial or temporal resolution. Some
common coastal applications where point clouds are widely used are [Carter
et al., 2012]: (a) coastal change detection, (b) shoreline delineation, (c) coastal
inundation prediction etc. However, as mentioned before the management
of these spatio-temporal point cloud datasets still lacks support by the cur-
rent management systems, thus leading to the underutilisation of point
clouds in their raw format. In fact, the lack of dynamic point cloud data
management and handling is a real world problem in the domain of coastal
monitoring. The Deltares institute for applied research in the field of water
and subsurface was the initiator of this research.

1.3 objectives & research question
The aim of this thesis is to explore a methodolgy that offers efficient storage
and data handling of dynamic point clouds. The methodology should effi-
ciently handle a range of spatio-temporal queries, should be scalable, and
provide quick responses. Storage requirements are, also, a relevant require-
ment but not a priority.

The main research question of this thesis is:

Is a Space Filling Curve (SFC) approach an appropriate method for integrating the
space and time components of point clouds in order to support efficient

management and querying (use) in a DBMS?
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In order to answer the main question, the following sub-questions are
relevant:

1. What are dynamic point clouds and what are relevant use cases and
requirements for their querying?

2. What are the relevant parameters that need to be taken into account for
the management of dynamic point clouds when using a SFC approach?

3. What kind of SFC approaches can be used to support the integration of
space and time, taking into account the continuous insertions of new
points and efficient querying?

4. How do the different SFC approaches compare to each other according
to the use cases?

1.3.1 Scope

In order to define a clear research scope, the following remarks are made:

1. The prototype implemented in this research is not aimed at being
ready for commercial and non-commercial use. It only serves as a
proof of concept.

2. The implemented prototype does not aim to compare different DBMSs.

3. The use cases will focus on coastal monitoring applications due to the
applications available at Deltares. However, the same methodology
should be possible to be applied to datasets coming from a different
application domain.

4. This thesis handles the management part of dynamic point clouds.
This means that acquisition, post-processing and georeferencing, anal-
ysis, dissemination and visualisation of the dynamic point clouds is
out of scope for this research.

5. Parallel computing although very relevant the last years, will not be
investigated. Exceptions apply only when using the parallelisation
available in the chosen DBMS.

1.3.2 Significant findings

The SFC approach for managing dynamic point clouds is a method that is
essentially different from the approaches used in the state-of-the-art DBMSs.
Rather than organising points in blocks, the method uses the flat table model
that stores one point per row. In addition to that, instead of keeping the orig-
inal dimensions in separate attributes, the method replaces them using a full
resolution SFC, from where the original dimensions can later be recovered.
Two major integrations of space and time are implemented, which funda-
mentally correspond to two extremes of a space - time continuum. The first
one, deals with the complete integration of space and time and is called the
integrated approach. In the second one, time is more important and is called
the non-integrated approach. In order to query both approaches, the query
algorithm needs to be modified: first, the query region is approximated us-
ing a higher dimensional quadtree or 2n−tree. Then, the returned ranges
are fetched, the points are decoded back to their original dimensions and
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pipelined into a refinement step. The storage model that structures space
and time together in the curve is proven here to provide the best results for
two major use cases (nationwide coastal monitoring and Sand Engine).

1.4 thesis outline
The rest of this thesis document is organised as follows:

• Chapter 2 provides a small introduction to the theoretical back-
ground that is needed for the reader to understand the subject. A
lot of elaboration takes place about point clouds and their manage-
ment. Relevant point access methods existing in the literature are,
also, briefly summarised.

• Chapter 3, with the related work, starts by describing the current
approaches used for the management of point clouds in general, and
proceeds to approaches used for managing spatio - temporal data.

• Chapter 4 introduces the space filling curve approach for manag-
ing dynamic point clouds. The storage model, as well as all the steps
needed to load and query the data are described with diagrams and
algorithms.

• Chapter 5 covers the description of the implementation and exper-
iments used for testing the proposed storage models.

• Chapter 6 describes and analyses the benchmarks used as a proof of
concept.

• Chapter 7, finally, gives the answer to the Research Questions, dis-
cusses the Contribution to the field and criticises the drawbacks of the
prototype. Finally, relevant Future Work is given.

In addition to the previously described chapters, this thesis document
includes the following Appendices:

• Appendix A describes the use cases used for testing the methodology.

• Appendix B describes and depicts the queries used during the experi-
ment and benchmark execution.

• Appendix C contains tables with the results obtained from the experi-
ments and benchmarks.

• Appendix D gives an overview of the Structured Query Language
(SQL) code generated from the implemented Python scripts.
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2 THEORET ICAL BACKGROUND

The theoretical background chapter aims to provide the relevant theo-
retical knowledge for the subjects that will follow in the rest of the thesis
document. More specifically, Section 2.1 introduces the need for modelling
the world around us. Section 2.2 is all about point clouds and their man-
agement using files or DBMS. Finally, Section 2.3 introduces the topics of
indexing and clustering points using a DBMS approach.

2.1 modelling the world
Understanding the world and its processes is a rather difficult subject. For
this reason, scientists in the majority of their applications tend to capture
and represent a part of the real world, rather than trying to represent the
world in all its detail. This is exactly how the International Organization for
Standardization - Technical Committee 211 (ISO/TC211) defines a model;
an abstraction of some aspects of reality [ISO, 2014]. Two types of models
can be identified: static and dynamic. The former study the state of the
abstracted world in a specific moment in time, while the latter are used to
identify the changes that occur over time (and maintain history).

Models are also very important for representing spatial information in a
computer environment. In general, two types of models can be identified:
the raster or vector representation. The first uses equally sized and con-
tiguous cells (pixels) in order to represent a real world phenomenon. For
example, in case elevation is represented, the value of each cell represents
the height in that particular area covered. The second approach uses points,
lines and polygons to capture reality. For the same application, elevation, its
vector representation can be achieved by using either Triangulated Irregular
Networks (TIN) or contour lines.

2.2 point clouds
Another way of modelling the world around us that has seen a rapid growth
in use the last years is point cloud data. From a mathematical point of
view, a point cloud is a collection of points Pi, i = 1, 2, ..., n embedded in
the three dimensional Cartesian space and which, as a whole, describe the
surface of an object or many objects. Because of the nature of the way
that they are acquired, point clouds are considered unstructured data (not
found on a regular grid), an attribute which is reflected in the ”cloud” part
of the term. This ”behaviour” makes point clouds a rather different spatial
representation. On the one hand, point clouds can be considered as vector-
based structures (since they are a collection of points), but on the other hand
they present many similarities with raster data (sampling nature), given that
the majority of the raster transformations and processes can be applied to
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point clouds as well. However, point clouds are not a regular grid and
therefore, it is proposed that point clouds should be considered as a third
type of spatial representation [van Oosterom et al., 2015].

Each point Pi that that is part of a point cloud has three coordinates,
namely Xi, Yi, Zi, and attached several attributes. These attributes are highly
correlated to the way the point cloud was acquired in the first place and in
case of laser scanning they can be:

intensity value The value of reflected light that was received from a spe-
cific point.

return number Since one laser pulse can meet more than one reflective
surface it can be split into many return values.

number of returns The total number of returns for a specific point.

time stamp The acquisition time of the point (usually in GPS time).

rgb (Red, Green, Blue) values of the specific point usually extracted from
aerial images.

classification information which corresponds to the type of real world
object the point belongs to e.g. ground, building etc.

2.2.1 Relevant aspects for the management of point clouds

Point clouds have evolved to establish a major source of information for
many topographic applications. Nonetheless, their large volume, nature
and complexity of their attributes has made the management of massive
point clouds a rather challenging topic. In many applications even point
clouds from different sources, with different resolutions and time coverages
can be found and have to be managed. For many years now point clouds
have been managed using file-based solutions. However, today new ways
to manage point clouds can be achieved using DBMS.

Whatever management medium is used for organising massive point cloud
data, van Oosterom et al. [2015] present the relevant aspects that should be
be taken into account during the design phase:

• The storage of the X, Y, Z coordinates and the support for Coordinate
Reference Systems.

• The attributes attached to the points like, intensity, return number,
number of returns, classification, colour (Red, Green, Blue) in any or-
der and combination.

• The spatial organisation of the points including efficient blocking, clus-
tering (space filling curves) and indexing techniques in the multidi-
mensional space. A parameter relevant to the clustering aspect is the
choice of dimensions used for the clustering key calculation, for exam-
ple 2D (X,Y) or 3D (X,Y,Z).

• The time component and its importance in the organisation of the
point cloud. Time can either have no role in the organisation (stored
as an attribute), or play a crucial role in the organisation by taking
place in the key calculation of the clustering technique, e.g. in the
form (X,Y,t) or (X,Y,Z,t).
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• Compression techniques in order to reduce storage and enable dissem-
ination via wireless networks.

• Level of Detail (LoD) strategies in order to significantly reduce the
amount of data that are sent from the server to the client and to sup-
port efficient computations and visualisations. The latter involves de-
creasing the detail of the scene as the viewer moves away (zooms out).
In other words, the further the viewer moves from an area, the lesser
the points that should be presented from that area. Two types of ap-
proaches can be identified for LoD structuring: the multi-scale and the
vario-scale (or continuous) approach. In the former, the levels are pre-
defined while in the latter the level of detail is another dimension,
called importance. In contrast to the discrete levels, the importance
value can be of floating point data type. This extra dimension can
then be used as a parameter for the organisation itself by sorting and
clustering using space filling curves e.g. Hilbert or Morton curve. The
spatial clustering could then be in the form (X,Y, imp) or (X,Y,t, imp)
or (X,Y,Z, imp) or (X,Y,Z,t, imp)

• Operations like loading, selecting, and algorithms that operate on
point clouds e.g. normal vector estimation, nearest neighbour finding
etc.

• Parallel processing techniques in order to fully exploit the computing
capabilities of the modern computers. Parallel processing should, in
general, offer better performance than a single process.

2.2.2 Management of point clouds using files

Same as with the management of other geographic data, point clouds have
for many years now been managed in the traditional way of using files and
with many different data structures. These files can then be stored in a
hierarchy of folders in the operating system and accessed by the software
when needed.

There is no one best way to store a point cloud. Point clouds can either be
stored in their original form (as points) or they can be simplified and stored
using rasters. The latter is often the form in which point cloud information
is given to the end users for analysis. Storing the raw point cloud informa-
tion, on the other hand, is mostly achieved using ASCII or the LASer (LAS)
file format [ASPRS, 2011]. ASCII formats have been utilised mostly because
they are human readable but can become very large in size, while the LAS

format being a binary format, stores points and their related metadata in-
formation using predefined data types. This significantly saves space and
makes the data easier to be handled in a computer environment. Accord-
ing to the nature of the device capturing the point data, and as a result the
number of attributes available, the LAS format provides different point data
record formats. A lossless compression technique suitable for the LAS for-
mat is introduced in Isenburg [2012b] and is called the LASzip compressor.
The output files from this compressor are called LAZ files. LAZ files require
only 7 to 25 percent of the storage of the original file size.

Files have several advantages over database systems; specifically, avail-
able software, libraries and general purpose programming languages that
can be used for processing, ease of use, compression schemes etc. However,
since the amount of points easily reaches millions, on-the-fly indexing is
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required in order to achieve efficiency while processing. This, together with
the increasing availability of point cloud information, makes files an ineffi-
cient method of organisation, as being aware of which datasets are where
and when is not simple. In fact, it requires extensive meta-data maintenance
that can be complex due to the lack of standard formats. As a result, most
of the time users resort to simplified raster transformations of the rich point
cloud. This consequently leads to loss of information at the cost of easier
management and analysis.

2.2.3 Management of point clouds using databases

Using a database for the management of point cloud information has been
in the centre of the research for many years now. Especially the last years a
lot of effort can be seen both in open-source and proprietary DBMS, relational
or not. Databases present many advantages compared to file-based organi-
sations. First, with the increasing availability of low-cost sensors, available
point cloud information for a specific area can increase dramatically. This
means that updates (inserts or deletes) take place more often these days,
which for a file-system organisation means continuous documentation of
metadata. For a database, this is a generally supported function. Second,
databases offer benefits like multi-user access, scalability and easier integra-
tion with other spatial data (vector or raster). These types of functionali-
ties require (re-)development for file-based solutions [van Oosterom et al.,
2015]. Instead of reinventing the wheel, DBMS can offer native support. Fi-
nally, file solutions do not support ad hoc queries. The development of
a declarative language like the SQL available in the DBMS is thus required.
Again, rather than reinventing the wheel and developing a new language to
support queries, reusing DBMS solutions is more straightforward. The cur-
rent methods for managing point cloud data inside a DBMS are described in
Chapter 3.

According to Dobos et al. [2014] some basic requirements that a relational
point cloud database should hold are: spatial and non-spatial filtering, pri-
mary key searches, nearest neighbour determination, interactive visualisa-
tions and efficient loading, insertions and deletions that are supported by
efficient indexing schemes.

2.3 point access methods

A lot has been said about the difficulty of managing point clouds. This
difficulty, however, should not come at the cost of inefficient queries. For
this reason, for many decades now, Spatial Access Methods (SAM) have been
a very important topic in the research community. The term SAM refers to
both spatial indexing and clustering techniques. Since in this thesis the main
object managed is point clouds, only SAM relevant to points are described,
namely Point Access Methods (PAM).

2.3.1 Indexing techniques

The purpose of spatial indexing, or indexing in general, is to support ef-
ficient data retrieval. In other words, indexes are important otherwise all
rows within the table must be scanned during the execution of a query (full
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table scan). This should be avoided as much as possible for the reason that
read/ write operations on the disk are very expensive, especially for large
tables. Depending on the type of disk used, the time needed to transfer
a disk block from the disk to memory (access time) is hindered by certain
types of delays. As a result, the number of blocks that need to be accessed
during a database query should the least possible.

The most well-known one-dimensional indexing technique is the B-Tree
invented by Bayer and McCreight [1972]. The B-Tree is a tree data structure
and a generalisation of the binary search tree. What differentiates a B-Tree
from a binary search tree is that it can store more than 2 keys per node and
that it always stays balanced after random insertions or deletions. Assuming
a B-Tree of order d, each internal (non-leaf) node contains maximum 2d keys
and 2d+ 1 pointers. The number of keys within each node varies from node
to node, but it is required that each node includes at least d keys and d + 1
pointers. This means, that a B-Tree node is always at least half full. An
exemplary B-Tree is shown in Figure 2.1. Leaf nodes contain the pointers to
the actual data, usually stored elsewhere for a normal index.

Because of the balancing operations that take place during insertion and
deletion, the B-Tree and its variants are the most widely used techniques
for data organisation. The variant of the B-Tree found in the majority of
databases today (like Oracle and PostgreSQL) is the B∗-Tree. In the B∗-
Tree all the keys are stored in the leaf nodes while the rest of the levels
are used as a guidance for fast search (Figure 2.2). In addition to that the
leaf nodes are doubly linked which makes the B∗-Tree very efficient for
sequential accessing. A detailed overview of the B-Tree, its variances and
description on insertion deletion operations is given in Comer [1979].

Figure 2.1: A schematic representation of the B-Tree data structure

Figure 2.2: A schematic representation of the B∗-Tree data structure (Adapted from
Comer [1979])

Efficient access to spatial data is also very crucial. This is mainly due to
their large volume, unstructured nature, and dynamic character. A naive,
but yet popular, approach is the application of consecutive one-dimensional
index structures, like the B-Tree. The efficiency of this approach is, however,
not acceptable since each index has to be traversed independently from the
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others, thus a high selectivity in one dimension does not reduce the rows
having to be traversed at the other dimensions. This has resulted in the
development of many spatial indexing techniques during the years [Gaede
and Günther, 1998], the most important being the R-Tree where a grouping
of spatially close objects takes place and spatial objects are represented with
their minimum bounding rectangle. The R-Tree was developed by Guttman
[1984] and similar to the B-Tree it is a balanced and dynamic tree. The tree
is composed of internal nodes with entries in the from (I, child − pointer),
where child − pointer is the pointer to the lower node (child) and I is the
Minimum Bounding Rectangle (MBR) of all the rectangles of the children.
The leaf nodes have the format (I, oid), where oid is the address of the spatial
object stored in the database and I is its MBR. Similar to the B-Tree, the R-
Tree can contain M maximum number of entries (the branching factor) and
at least M/2 entries (half-full). An R-Tree with branching factor of 4 is
depicted in Figure 2.3. R-Trees can not only be used in 2 dimensions but
also in 3, 4, etc.

Figure 2.3: The R-Tree data structure of several objects with branching factor of 4

2.3.2 Subdivision of space: Quadtrees and Octrees

Quadtrees and Octrees are both hierarchical data structures that recursively
decompose the space (2D or 3D respectively). Both structures are main
memory data structures and thus directly not suited for disk storage (at
least in their original format). A quadtree (2D) partitions a (2n, 2n) array
into four quadrants, while the octree (3D) partitions a (2n, 2n, 2n) array into
eight octants. The types of quadtrees and octrees can be distinguished by
[Samet, 1990]:

• the type of data they represent

• the decomposition process

• the resolution of the structure which can be variable or not.

The most commonly found variations of quadtrees in the literature are:
the region quadtree and the point quadtree. The first is mostly used for
approximating raster representations of polygons. For this, the raster is first
approximated by a square. The square is then recursively subdivided into
four smaller squares until each quadrant is inside or outside the polygon
or it reaches the maximum resolution defined (Figure 2.4a). As the square
gets decomposed, the quadrants receive a number usually in the order NW,
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NE, SW, SE. The second quadtree variation is used to model point data
by subdividing the space into four rectangles as in Figure 2.4b. The same
variations can also be found in octrees. The decomposition of space using
octrees is shown in Figure 2.5.

(a) A region quadtree (b) A point quadtree

Figure 2.4: The two most commonly found quadtrees in literature: the region
quadtree and the point quadtree.

Figure 2.5: The octree data structure of level 0, level 1 and level 2

2.3.3 Space filling curves

One of the characteristics of spatial data in general, and point clouds in par-
ticular, is that there is no straightforward way to preserve the spatial proxim-
ity of the points in the storage medium. In other words, it would be ideal to
store data which are close in space, also, close in the storage medium (clus-
ter the data). This is very significant because it is very common that while
requesting some data from the disk, several consecutive physical blocks are
transferred as well (bulk transfer). If related information is stored on these
contiguous physical blocks, then locating data on disk is no longer a bottle-
neck since the number of blocks that needs to be transferred is minimised.
In a non-clustered situation blocks need to be accessed in a random order
thus making access time significantly longer.

In order to take this bulk transfer of data into advantage, a primary key
value that preserves locality is needed. A mapping from the higher dimen-
sional space to a one-dimensional key can be performed using SFCs. Sim-
ply put, a SFC applies a linear ordering to a multi-dimensional domain. It
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Figure 2.6: The row order curve for 2, 4 and 8 bit representation

must be noted that SFCs are originally defined for discrete (raster-like) space.
However, they can be applied to points by virtually overlaying a grid on top
of the points such that each cell contains at most one point [Abel and Mark,
1990]. Therefore, SFCs are applied to integers.

The simplest SFC that can be identified is to traverse the points row by
row (Figure 2.6). This type of space filling curve is called row order. This
simplicity results in less clustering capabilities of the curve. As it is easy
to imagine, as the number of bits increases, points in different columns but
very close in reality, are found far away in the curve. Over the decades
many space filling curves, each one of them preserving a different degree of
proximity in the data, have been developed.

In [Abel and Mark, 1990] three properties of of spatial orderings have
been identified. These are:

• An ordering is continuous if, and only if, the cells in every pair with
consecutive keys are four-connected neighbours.

• An ordering is quadrant-recursive if the cells in any valid sub-quadrant
of the matrix are assigned a set of consecutive integers as keys.

• An ordering is monotonic if, and only if, for every fixed x, the keys
vary monotonically with y in some particular way, and the other way
around.

Two very commonly used orderings are the Morton [Peano, 1890] and
the hilbert [Hilbert, 1891] curve. The morton curve (also called z-order or
N-order curve) is based on interleaving the bits from the coordinates. For
example, assuming a point with coordinates (9,12) its binary representation
is (1001, 1100). By interleaving these bits we get the following binary num-
ber 11100001 which represents number 225. This number is the morton key
of point (9,12). In mathematical terms, assuming a point P with binary coor-
dinates (X, Y) = (xixi−1...x0, yiyi−1...y0) interleaving the bits is represented
as xiyixi−1yi−1...x0y0. Same concept can be followed for higher dimensional
points. The performance of the algorithm depends on the number of bits
present in the used dimensions. The Morton curve for a 2-bit, 4-bit and 8-bit
representation is shown in Figure 2.7a. The hilbert curve maps multidimen-
sional data into one dimension by following a recursive procedure. For the
generation in 2D, first, the square domain is subdivided into four. Then
for each one of these sub-squares, the first step is repeated and the previous
version of the curve is rotated or reflected such that the pieces are connected
to each other, see Figure 2.7b. Similar concept is followed in higher dimen-
sions. In 3D, for example, a cube is recursively subdivided and the curves
are connected if they share a face.
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(a) The Morton curve for 2, 4 and 8 bit representation

(b) The Hilbert curve for 2, 4 and 8 bit representation

Figure 2.7: The most commonly used Space Filling Curves

From the above description it is obvious that the Morton curve is generally
easier to be constructed in comparison to the Hilbert curve and extended in
higher dimensions. The ease of the construction, however, comes at the cost
of preserving less proximity compared to the Hilbert curve. This charac-
teristic is apparent by the presence of “jumps” in the Morton curve, which
in other words means that two consecutive keys are not always neighbour-
ing in space. On the other hand, the Hilbert curve has always a uniform
length from point to point, thus containing no jumps. Faloutsos and Rose-
man [1989] showed that the Hilbert curve provides better results for range
and nearest neighbour queries, thus significantly decreasing the cost of data
retrieval from the database. Examples, of the different clustering capabili-
ties of the above mentioned SFC are presented in Figure 2.8. As it is visible
from the figure, the row-order and Morton curve require on average a big-
ger amount of continuous ranges to be retrieved. The Hilbert curve, on the
other hand, requires on average the lowest amount of ranges. The figure
also corroborates that no ordering exists that preserves the total proximity.

The advantages of SFCs for the indexing of multi - dimensional data are
discussed in Lawder and King [2000]. The most important advantage is
that scalable one-dimensional access methods (like a B-Tree) can be applied
to the multidimensional point data. These structures make it possible to
dynamically balance n-dimensional data in a DBMS. This together with the
clustering capabilities of the curves will eventually result in points clustered
according to their spatial proximity in the n-dimensional space. In addition
to that, since space filling curves are reversible -meaning, it is possible from
the full key to find the original coordinates-, storing the actual coordinates
is not necessary, which significantly reduces the storage requirements.
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Figure 2.8: A comparison of the clustering capabilities of three Space Filling Curves
(from left to right): Row order, Hilbert, Morton

Quadtrees and space filling curves

The decomposition of space using quadtrees or octrees (or in general 2n−
trees) can also have another use; they can be combined with a SFC to map
the n-dimensional space into a one-dimensional one. In this kind of format,
a 2n−tree can be used together with a B-Tree to index a collection of points
stored in the disk.

Morton keys in particular have a very strong connection with the quadtrees.
Their connection was established by Gargantini [1982] resulting in the linear
Quadtree and Abel and Smith [1983]. Gargantini [1982] presents the map-
ping from x, y coordinates to quadrants, whose code is represented using
base 4 numbers. The property is extensible to higher dimensions because of
the quadrant recursive properties of space filling curves. The same charac-
teristic is also valid for the Hilbert curve.
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3 RELATED WORK

The related work chapter aims to provide the available methods currently
used in contemporary databases or in the academia to manage point clouds,
dynamic or not. Therefore, the chapter is organised as follows: Section 3.1
provides a short overview of existing point cloud data management im-
plementations found in several DBMSs. Then Section 3.2 focuses on spa-
tio - temporal data management used in Geographic Information Systems,
multidimensional databases and of course the available point cloud imple-
mentations mostly found in the academia. The chapter ends with a short
conclusion (Section 3.3) based on the aspects examined in the chapter.

3.1 management of point clouds in dbms
The management of point clouds in DBMS has been in the centre of the re-
search for many years already. The first research efforts started by investi-
gating the re-use of the existing simple feature geometry. For example, Zla-
tanova [2006] argued that point clouds could be either stored with already
existing data types, POINT or MULTIPOINT, or with user defined types.
Storing point clouds using POINT data types was, also, proposed in Höfle
et al. [2006], while Wijga-Hoefsloot [2012] proposed using the POINTCLUS-
TER data type, which essentially is a multipoint collection. When using the
POINT data type each point is stored in one row. On the other hand, in the
MULTIPOINT approach a number of points (most of the times the whole
file) are stored as a group of points. The former can introduce a significant
storage overhead. The latter has technical boundaries, i.e. 1,000,000 points
in Oracle [Kothuri et al., 2007, p. 744], and makes searching and accessing a
subset of the group impossible, as the whole MULTIPOINT object has to be
loaded into memory [Ott, 2012]. In addition to that, geometry and attributes
need to be separated in the MULTIPOINT approach thus making updates,
insertions and deletes complicated.

Currently, the database community provides several approaches for point
cloud data management. In their majority three storage models can be dis-
tinguished (Figure 3.1). The first model is based upon the organisation of
points in blocks, meaning in groups of spatially close points. The second
organisation is the flat table model, where each point is stored separately in
one row. The third organisation is a hierarchical model, where points are
organised in a tree structure.

In this section the existing implementations of several well-known sys-
tems like Oracle1, PostgreSQL2, MonetDB3, etc. are presented shortly. In all
of the following systems, the time dimension can be considered only as an
attribute and is not part of the main organisation.

1 https://www.oracle.com/database/

2 https://www.postgresql.org

3 https://www.monetdb.org/
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Figure 3.1: The major storage models for managing point clouds in DBMS environ-
ment and their implementations in well-known systems.

3.1.1 Oracle SDO PC

For blocked organisation, Oracle Spatial and Graph4 provides the SDO PC
and SDO PC BLK data types which respectively represent the logical object
and physical storage. SDO PC stores the metadata information of a point
cloud like the name, the spatial extent, the number of dimensions (spatial
and non spatial), the resolution, the name of the SDO PC BLK table that
contains blocks, the parameters for partitioning etc. The SDO PC BLK is the
physical storage table with the block information and includes the spatial
extent of the block, the resolution, the number of points, the Binary Large
Objects (BLOB) that include the points, etc.

The process for creating storing a point cloud with the SDO PC data type
first requires the use of a staging table. This can be a normal table or an
external table. After all the required points are loaded, the blocks are be-
ing generated using the SDO PC PKG.CREATE PC procedure. The default
blocking method is performed using a R-Tree. It is, however, also possible
to use a Hilbert spatial partitioning, meaning to group points that are closer
in the Hilbert curve [Godfrind and Horhammer, 2015]. The former blocking
method is in general slow for large datasets. In case groups of LAS files are
available, the previous steps can be replaced with the blocking scheme from
PDAL5 and the available Oracle drivers.

So far, the Oracle SDO PC does not offer any update mechanism. This
means that updating a point or inserting new points is not available in the
current versions. Consequently, the user has to generate the blocks from
scratch. This is not optimal in a dynamic point cloud data management
environment where the user will ultimately want to stream time varying
point clouds and organise them in an optimal way very often.

3.1.2 Oracle Flat

The second option for storing point clouds in an Oracle database is by using
a flat (normal) table approach. Each point in the point cloud is stored in a
single row using common data types, like NUMBER. As this method simply
uses a normal (heap) table, updates are easily performed.

Database specific hardware like the Oracle Exadata Database machine
[Oracle, 2015] are more optimal for this type of storage. This hardware is

4 http://www.oracle.com/technetwork/database-options/spatialandgraph/

5 http://www.pdal.io/
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designed to offer maximum performance for running the Oracle Database.
Its performance for point cloud management was tested in van Oosterom
et al. [2015].

3.1.3 Oracle Hybrid

A third option for storing point clouds can be achieved by using the new
Hybrid solution of Oracle. This solution involves using an IOT and blocks
that are spatially partitioned using a space filling curve approach [Godfrind
and Horhammer, 2015].

Within this solution, the points are stored in an IOT same as with the
Oracle flat solution, however, each point also contains the Hilbert key, pyra-
mid information and a reference to a block. The key is based on the Ora-
cle implementation of the Hilbert curve. So far (November 2016) the key
can be calculated only in 2D using the function sdo pc pkg.hilbert xy2d or
sdo pc pkg.generate hilbert vals. The blocks are stored in a SDO GEOMETRY
table, which as a whole represent the Hilbert R-Tree of the points.

This method is undocumented and therefore it is not known if it provides
update mechanisms. Updating and inserting, however, seem possible if the
new and old points are stored also in a staging table and the generation of
the Hilbert keys and blocks is repeated from scratch in regular moments
in time. Nevertheless, the performance of this method in terms of time is
not known. One important limitation is that only 2D Hilbert keys can be
generated so far. Using higher dimensional space filling curve would allow
the inclusion of the time dimension in the key.

3.1.4 PostgreSQL PC Patch

PostgreSQL provides point cloud support through the pgpointcloud exten-
sion developed by Ramsey [2014]. The idea behind the development was
that points should not be stored as PostGIS POINTs, but rather organ-
ised into patches (the equivalent of blocks in Oracle). For this reason, the
PC Point and PC Patch data types were developed. The data types were
designed to support integration with PostGIS6 using the pointcloud postgis
extension.

Since there is no fixed way of how data should be stored inside the
database or how many dimensions each point cloud object has, a descrip-
tion of the contents it represents described in an XML schema document
[Ramsey, 2014] called pointcloud formats. The actual loading of the point
cloud into the database can take place either by making use of well-known
binary (WKB) objects or with the PDAL driver for pgpointcloud.

This organisation was used and to some parts extended by Cura et al.
[2015]. In their paper the authors describe a complete point cloud manage-
ment system supporting metadata, compression, filtering, fast loading and
processing, as well as integration with vectors and raster objects.

Space filling curve approaches are not available in the current implemen-
tation of the point cloud support of PostgreSQL. The only available spatial
clustering functionality in PostGIS is the GeoHash7 function that is based on
the Z-order curve. Furthermore, it is not documented how new insertions
of data can be handled without creating overlapping blocks.

6 http://postgis.net/

7 https://en.wikipedia.org/wiki/Geohash

19

http://postgis.net/
https://en.wikipedia.org/wiki/Geohash


3.1.5 PostgreSQL flat

The implementation of the PostgreSQL flat storage model follows the same
approach as in the case of Oracle. The data are loaded in a table and indexed
using a B-tree index in the X and Y coordinates respectively. Although
loading can be remarkably faster than the block-based approach, the major
drawbacks become evident during querying. This happens because a B-tree
index on X and Y is not an appropriate indexing method [van Oosterom
et al., 2015].

An improvement in the flat table organisation is included in van Oost-
erom et al. [2015] where the authors used a space filling curve approach
to spatially cluster points. Since space filling transformation functions are
not offered in PostgreSQL, the transformation to the 64bit Morton key takes
place outside the database. Inside the database, the X, Y and Z coordinates
and the Morton key are stored in a flat table. During the querying step,
two different phases take place; first, using the relationship between the
Quadtree and the Morton curve (Figure 2.3.3) an approximation of the Mor-
ton ranges belonging to the query region is given. As a second step, this
approximation is refined using the standard PostgreSQL functionality (i.e.
point in polygon operation). Compared to the pure flat table approach, the
query response times become more constant meaning that they are inde-
pendent from the size of the database. They only depend on the size and
complexity of the query region, as well as the size of the output.

3.1.6 GeoHashTree in PostgreSQL

The GeoHashTree [Sabo et al., 2014] is generic data structure that was de-
veloped and prototyped with PostgreSQL in order to support point clouds
in various types (unstructured points and rasters) and data of various reso-
lutions. The GeoHashTree depends on the geocoding system geohash that
encodes coordinates into a character string.

The GeoHashTree structure as the name implies is a tree structure where
all nodes that have the same parent share the same geohash prefix. In this
way, points close in reality share the same parent. Each parent, apart from
the geohash value, also includes some statistical information related to the
attributes. Each new point that is added to the tree is first checked for
its resolution and stored in the appropriate level. In a second step, two
optimisations can take place according to the attributes stored in the tree:
migration of attributes and change of type. In the first method, points that
share the same attribute value, will have the attribute migrated to the parent
level. The second method is a compression mechanism applied to numer-
ical attributes. Depending on the variability of the attribute, its data type
might change in order to reduce storage. The GeoHashTree is now part of
the pointcloud extension of PostgreSQL and is used as a compression mech-
anism.

3.1.7 MonetDB

MonetDB deviates from the Relational Database Management System (RDBMS)
approaches presented previously in that it is part of the Not only SQL
(NoSQL) databases that emerged with the development of the Internet. These
databases have the characteristic that they do not organise data using rela-
tional tables. There are four types of NoSQL databases: key-value stores, doc-
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Figure 3.2: The effect of using bigger or smaller block sizes on the selected area
obtained. Bigger blocks can even double the amount of the selected area,
contrary to smaller blocks that can approximate the area more closely.

ument, column and graph databases. MonetDB is a column-store database
meaning that it stores data in using columns (rather than rows in RDBMS).
In the case of the spatial data i.e. X, Y, Z coordinates, MonetDB stores each
coordinate using a separate column. Same goes for the attributes attached
to each point. This approach is an equivalent of the flat model, since each
point is stored as a separate object.

MonetDB has been tested together with some of the previously men-
tioned approaches in Martinez-Rubi et al. [2014] and van Oosterom et al.
[2015], where it presented some scalability issues compared to the block ap-
proaches. However, in Martinez-Rubi et al. [2015] this organisation was sig-
nificantly improved by using a space filling curve. Two different approaches
were followed: 1. the same approach followed in the Morton-added ap-
proach of PostgreSQL flat (Section 3.1.5) where the data are clustered using
the 2D Morton key but the original X, Y, Z coordinates are also stored and
used for the querying, and 2. the Morton-replaced approach where only
the Morton key and the Z are stored and the X, Y are decoded from the
code. The Morton-replaced approach showed a decrease in storage, while
the Morton-added showed an increase due to the extra column used to store
the Morton key. This organisation significantly improved the scalability of
the queries, although the responses are not completely constant as the size
of the database increases i.e. the number of points increases.

3.1.8 Comparing block and flat based organisation

As a conclusion, a comparison between the flat- and block- based storage
organisations is provided. In general, the block - based approach presents
better scalability of query response times, less overhead and potentially bet-
ter compression than the flat table approach [van Oosterom et al., 2015].
The reason for this is the reduced amount of rows stored in the table that
consequently reduce the size of the table and the index. Nonetheless, the
scalability depends on the block capacity. If the block size is relatively big,
although the size of the table is reduced, at the query stage more points will
have to be decompressed and checked for actually belonging to the query
area. This happens because the amount of Input/ Output (I/O) for a query
in the blocked organisation is directly proportional to the amount of blocks
that the query region intersects with, which depends on the area of query
region. An example is presented in Figure 3.2. For the same query area,
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the left case will return more points, compared to the case on the right. In
either way, blocks offer notably faster access times than searching through
every single point. However, as shown before flat tables can be remarkably
improved using a SFC approach.

Another parameter that worsen the quality of the block-based approach
are overlapping blocks. Overlapping blocks affect the amount blocks that
will have to be unpacked and examined during the query process. Finally,
adding new data in the block- based approach is not as straight-forward as
insertions in normal flat tables.

3.2 spatio - temporal data management
The three geometrical dimensions (X, Y, Z) have been well studied and re-
searched when it comes to the management of point clouds. Nonetheless,
it is very often the case that repeated scans of the same area take place
in regular periods of time. This amount of acquired data has made these
datasets rather spatio-temporal datasets that need to be optimally managed
in a DBMS environment. Spatio-Temporal Databases (STDBMS) are database
systems that manage both the spatial and temporal component of datasets
using an integrated approach. This integration of space and time is currently
not available in the previously mentioned approaches. On the contrary, the
majority of the structures are focused more on creating an inventory of point
cloud datasets and do not support updates or further insertions for a specific
point cloud object.

In the domain of managing spatio-temporal or dynamic point clouds not
a lot of research exists so far. In current implementations time is considered
as an attribute and not as another dimension. In this way, time does not have
an effect in the organisation of the data. Since the topic of managing spatio-
temporal point clouds is in general new, approaches from other domains
are also being considered. These are the domain of Geographic Information
Systems (GIS) (Section 3.2.1) and multi-dimensional databases (Section 3.2.2).

3.2.1 Time in Geographic Information Systems

Time has received a lot of attention within the fields of GIS and STDBMS

for many decades. The first steps towards the integration of space and
time started with the separate research on temporal and spatial databases.
However, as the amount of literature shows, the integration of spatial and
temporal data types is far from trivial. A more comprehensive overview
of spatio-temporal models can be found in Pelekis et al. [2004]. For many
applications today, time is modelled according to the ISO 19108 standard
[ISO, 2008].

One of the challenges faced with spatio-temporal GIS and databases is the
different nature and semantics of the two concepts that need to be taken
into account. The data models that have emerged through the years vary,
among others, in two aspects:

1. the temporal resolution, meaning the way of partitioning the line of
time, and

2. the granularity of data related to time, which denotes in which level
of the spatial data (here points) the time dimension is added, i.e. to
the whole or subset of a dataset or the attribute level (of the points).
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These two aspects should, also, be considered for the problem of man-
aging spatio-temporal point clouds. Depending on the density of the mea-
surements the temporal resolution can be in decades, years, hours, seconds.
Also, the time component could be part of the whole dataset -if the fre-
quency of the measurements is quite discrete i.e. every year- or part of each
point when the measurements take place in seconds, hours etc.

Spatio-temporal data models

The simplest and most fundamental model for representing time in a GIS

is the snapshot model by Langran and Chrisman [1988]. The modelling
of space takes place in time layers, in other words, it represents the state
of the objects at different times. The different time layers are independent
from one another. The drawbacks of this model are duplication of the data,
difficulty in detecting the changes from one moment to the next one and
difficulty in applying integrity rules [Langran, 1992].

Other commonly used data models are based on time stamping every
object of the database with two time stamps, one for the creation (tmin) and
one for the termination of the object (tmax). This approach is also known
as state based modelling. To differentiate the objects that are still valid, a
special value is given to their tmax attribute e.g. MAX TIME, CURRENT
etc. This type of model is easy to be implemented and to obtain the state of
an object at a specific moment in time. However, at the same time, it is not
possible to query what changes occurred and why [Pelekis et al., 2004].

The deficiencies of the time stamping models is dealt within the event-
based models Peuquet and Duan [1995]. These spatio-temporal models are
based on the explicit management of the events that lead to changes. Within
these models, an inventory of the transactions is kept. To be able to find out
the historical states of a dataset, a traversal of the events needs to take place.

When applying the previously mentioned data models to the concept of
point clouds, certain remarks can be made. The snapshot model is easily
applied to point cloud datasets that have a discrete time resolution (e.g.
year). One of the problems that arise from this model, as with the GIS data,
is the redundancy and the difficulty to find out the changes between the two
states. Moving to the state based models, it is easy to realise that they are
difficult to be applied to point clouds. This model requires change detection
techniques to identify which parts of the point cloud are unchanged or not.
Such a method is described in Section 3.2.3. Finally, event based models
may not fit for point cloud storage as some times it is not known a priory
what type of events occurs due to their continuous representation of space.

Spatio-temporal indexing and query

Another challenge in the spatio-temporal research is the efficient querying
both in time and space (spatio-temporal query). The spatial component is
usually specified by a polygonal region (in 2D) or a polyhedron (in 3D). The
time component is similarly specified by a time range. Optimised searching
in the three dimensions (2D space and time) or four dimensions (3D space
and time) is possible only if the 3D or 4D data types are combined with
indexing and clustering techniques. An overview of spatio-temporal access
methods can be found in Mokbel et al. [2003] and Nguyen-Dinh et al. [2010].

A simple solution to the spatio-temporal indexing is applying a R-Tree
extended to multidimensional indexing. This is called a 3D RTree [Vazir-
giannis et al., 1998] and it considers time as another dimension together
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with the X, Y coordinates. A drawback of this technique is that time queries
are dependent on the number of historical objects stored in the database
[Mokbel et al., 2003]. Another possibility is the RT-Tree [Xu et al., 1990],
where each node of the R-Tree is associated with time ranges. Because time
has a secondary role, time queries can be inefficient within this structure.
Xu et al. [1990] also introduce the Multiple R-Tree (MR-Tree). This structure
combines the R-Trees of each time stamp in order to avoid redundancy for
the unchanged regions. A similar idea is implemented with the Historical
R-Tree (HR-Tree) [Nascimento and Silva, 1998]. Both structures perform ef-
ficiently for time slice queries (data for a specific time), while time range
queries are inefficient because of this multi- R-Tree structure.

3.2.2 Storage and retrieval of multi-dimensional data

Multidimensional databases exist in many different forms and shapes, con-
sisting of logical entities that contain a set of attributes. These attributes are
required to be stored in an efficient way that will enable fast retrieval of the
data based on values (or ranges of values) of one or more of the attributes
available.

Multidimensional data can be easily compared to multidimensional points
in the nD space, where each attribute corresponds to one dimension. The
bottleneck with multidimensional data, as with multidimensional points, is
their large size and inefficient access methods that require the maintenance
of primary and secondary indexes in order to support retrieval according
to values other than the primary key. The ultimate goal within multidimen-
sional databases is to reach the superior performance of one-dimensional
access methods like the B-tree and its variants. In such systems it is also
required that primary key values determine the placement of the records in
the disk storage of the computer, thus lead to clustering of the records that
share similar characteristics.

The majority of the organisation methods found in the literature perform
a kind of partitioning to the data (like the blocks used for point clouds).
Those partitions are, usually, in hyper-rectangular form with the index op-
erating on those partitions created. The partitions are significantly less than
the original data, thus enabling fast retrieval. The downside of such a struc-
ture lies in the update or insertion process that might lead to rectangles
containing too much data which need to be further split. Another issue are
overlapping hyper-rectangles leading to the retrieval of significantly more
data that need to be further refined in a second step. Multidimensional
indexing structures widely used are the:

kd-tree implemented by Bentley [1975]. A special case of the Binary
Search Tree that recursively subdivides the n-dimensional space into
sub-spaces (or half-spaces) by using (d− 1)-dimensional hyperplanes.
The kD-tree is a main memory indexing structure. The data are then
stored as leaf nodes in the tree. Searching and inserting new points
is a straightforward action. However, the index is dependent on the
order of insertion of the point data.

kd-b-tree implemented by Robinson [1981]. The kD-B-tree combines cer-
tain aspects of the kD-tree and the B-Tree (Section 2.3.1), making this
indexing structure suitable for disk storage. In particular, space is sub-
divided as in the kD-tree, however, keeps the index balanced (like the
B-tree) with each sub-space associated with tree nodes. The points are
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stored in the leaf nodes. A disadvantage of the kD-B-tree concerns the
significant reorganisation when inserting new data.

grid file implemented by Nievergelt et al. [1984]. This access method di-
vides the space using a non-regular grid. The major advantage of the
Grid File is data points can be found with no more than two disk ac-
cesses. A disadvantage is the exponential directory growth rate during
the insertion operation.

r-tree The R-Tree is described in Section 2.3.1. A disadvantage of the R-
Tree concerns the overlapping rectangles that are to a certain extend
tackled in some of its variations.

Multidimensional organisation is also possible following a different ap-
proach. This approach is used in Lawder [2000] who uses the Hilbert curve
to map multidimensional points into one dimension. His implementation
covers data up to 16 dimensions, which can very well relate to the number
of dimensions in a point cloud. In contrast to the previous approach, the
curve is divided into sections and each one of them is assigned a section in
the disk. Another space-filling related approach is followed by Terry et al.
[2011], who use a structure of variable granularity depending on the density
of the points in the multidimensional space. Space with less density is rep-
resented with larger regions (partitions) while highly dense areas can reach
up to the finest resolution defined.

3.2.3 Point cloud implementations

Spatio-temporal point cloud implementations are present in the literature,
although limited in number. A NoSQL spatio-temporal implementation using
the Apache Accumulo software is presented in Fox et al. [2013]. The spatio-
temporal index structure developed interleaves the parts geohash of the (x,y)
point with parts of the string representation of the date. A geohash is an
implementation of the Morton space filling curve, ultimately generating a
recursive quadtree of the world. As an example of their used structure
we assume the geohash u01mtw0 and the date May 7, 2012 at 10:17pm, the
final interleaved structure will be u201205− 01m − tw00722. The key is a
string and it is indexed lexicographically. This type of structure is however,
platform specific, as it accommodates the key structure of the Accumulo
system which is a key value store. The results show that the spatial and time
complexity of the queries increase the query response times. Nevertheless
their system provides efficient insert and update operations.

Another spatio-temporal implementation closely related to point clouds
can be found in Tian et al. [2015] where the authors apply a SFC (Morton)
to efficiently organise 3D points (lat,lon,t) in a 3D (Morton) R-tree which is
stored in a relational database. The methodology followed by the authors is
the following: First, the coordinates (latitude, longitude, time) are linearly
transformed to obtain integers and the Morton key is calculated. Second,
the spatial objects are sorted based on their Morton key and, based on the
fanout and degree, the Morton R-Tree is constructed. Third, the MBRs of
the 3D points are stored in the RDBMS. To query this database, the MBR

of the query is calculated. The minimum and maximum of the MBR are
then translated into two Morton ranges which are used to traverse the tree.
While traversing the tree the relevant points are returned to the user. Their
prototype was compared with a spatial database and their organisation gave
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faster queries and scalability with concurrent queries. One drawback is that
this approach lacks the ability to insert new data.

Finally, a different approach is described in Richter and Döllner [2014].
The authors also driven by the increasing availability of point cloud data
describe the architecture of a system that deals with data coming from vary-
ing sensors and devices, handling also database updates. In their proposed
system the time dimension is handled by an ”incremental database update
process”. This means that the unchanged parts between consequent times-
tamps are not repeated in the database. To achieve this, change detection
techniques need to take place before the data are loaded into the database.
Two change detection approaches are proposed to be used, a point-to-point
for large scale changes or point-to-splat for small scale change detection. Af-
ter change detection has been completed all points changed are integrated
into the database. Points already present have their time stamps and fre-
quency information updated. This implementation achieves reduced stor-
age requirements and allows efficient change detection from one moment
to another. However, this makes it hard to restore what happened at a spe-
cific moment as a number of change entries have to be applied to the initial
state.

3.3 conclusions
The most straightforward conclusion that can be made from this chapter is
that contemporary DBMSs do not provide methods for managing dynamic
point clouds. They are, as a result, suitable for static applications. Spa-
tio - temporal implementations can, nonetheless, be found in the academia.
The NoSQL implementation although very relevant, might not be as suitable
for a relational database that does not follow the key structure of the used
platform. The 3D Morton R-tree method, does not allow further insertions
of data and the incremental database update process is mostly efficient for
change detection queries, but not queries that request points from a specific
time moment. However, we can see a trend: SFCs are a very good starting
point for managing dynamic point clouds.

26



4 A SPACE F I L L ING CURVE
APPROACH

The space filling curve approach chapter provides the details of the
proposed methodology used within this thesis document. Section 4.1 gives
the motivation for using a SFC for the management of dynamic point clouds.
Section 4.2 provides the description of the SFC approach and its variances.
Section 4.3 gives an overview of the possible alternatives that can be fol-
lowed when loading the data. Finally, Section 4.4 provides the methodology
used for querying the data using this improved organisation.

4.1 motivation
The main incentive behind using a SFC approach for the management of dy-
namic point clouds stems from the limitations present in the current point
cloud data management solutions. These data structures, although provide
efficient storage and query response times, they are either not designed for
applications that have a dynamic character, are not very flexible in answer-
ing certain questions or do not allow further insertion of new data.

More specifically, the methods presented in Section 3.1 consider point
clouds as static objects, with the time component taking no part in the or-
ganisation of the points. Geographic information, however, is highly corre-
lated to the moment in time in which the data was captured and, in many
applications time is as selective as space or needed in integrated space - time
selections (change detection). This suggests that efficient space-time selec-
tions require a different approach than the available ones. The flat model
in its raw format presents deficiencies that have to do with the scalability of
the model. Nevertheless, it is a very flexible solution. It can be either used
as a final storage model or as an intermediate stage in order to efficiently
create blocks (staging table) for example by sorting the points based on their
position on the SFC [van Oosterom et al., 2015].

The methods in Section 3.2, coming from the spatio - temporal domain,
provide more insight into what a suitable solution should look like. There
it becomes clear that a SFC approach is a logical way to proceed for the
problem at hand. An improved organisation using SFCs was presented in
the work of Martinez-Rubi et al. [2015] and van Oosterom et al. [2015].
This organisation achieved constant queries between the different sizes of
the datasets used. Therefore, building on the work of the previous, an im-
proved spatio-temporal data management approach is investigated within
this thesis.

The implemented spatio-temporal data management approach should ful-
fil certain requirements and characteristics [Gaede and Günther, 1998]:

• It should be dynamic. This means that the chosen data structure should
support insertions, updates and deletions that do not degrade in time.

• It should efficiently support operations other than retrieval of the data,
for example insertions, computation of normal vectors etc.
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• It should present scalability. With the increasing availability of grow-
ing point clouds, the data structure should be able to adapt well to
database growth.

• It should be efficient in terms of time and space. The former means that
spatio-temporal searches should be fast. Because fast is a subjective
term, the approach should minimise as much as possible the number
of disk accesses.

Why space filling curves?

SFCs have a special role in this thesis. The motivation for using cluster-
ing techniques, in general, and SFCs, in particular, is threefold. First of all,
they lead to dimensionality reduction. This an important characteristic since a
multi-dimensional point can be described with a single value, making it fea-
sible to apply classical B-Tree indexing techniques. SFCs are of great value
for multidimensional indexing [Lawder, 2000]. Second of all, a full resolu-
tion space filling curve can eliminate the need to store the actual dimensions (X,
Y, Z, t coordinates) inside the database. Consequently this means that the
sizes of the tables are reduced, which is very important for large datasets.
The only requirement is that a function that decodes the keys into the orig-
inal dimensions is needed. Third of all, SFCs preserve to a certain extent
the proximity of the points. This characteristic can be used as a clustering
mechanism on the physical level, minimising thus the I/O cost for fetching
the data.

Within this thesis the Morton curve is used. The reasons for doing so are
the ease of generating Morton codes (just bitwise interleaving) and the ease
of extending it to higher dimensions. This, however, will come at the cost of
less spatial proximity, e.g. compared to the Hilbert curve.

4.2 storage model

Databases reside in computerised environments and are physically stored
on a computer storage medium. Computer storage is classified into memory
and disk storage. The tasks of the DBMS software is to fetch, update and anal-
yse the data whenever this is requested. The database data, which resides
in the disk storage, needs to be located on the disk, read into the memory in
order to be processed and if needed written back to the disk. This mandates
a storage model that can efficiently find the data when it is needed.

However, the movement from the disk to the memory suffers from certain
delays. In case a Hard Disk Drive is used the delays include: 1. the seek time,
which corresponds to the time it takes for the disk controller to position the
read/write head on the correct track. 2. the rotational delay, which is the
time it takes for the requested block to rotate in the right position under the
read/ write head. 3. the block transfer time, which is the time required to
transfer the requested block. From those delays, the two first are the most
expensive. For this reason, many manufacturers offer bulk transfers, in
which consecutive blocks -apart from the needed one- are transferred to the
memory. Therefore, intentionally placing data that are typically requested
together on contiguous blocks can take advantage of bulk transfers and thus
provide better query response times.
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Structuring space and time in an integrated approach is, nonetheless, not
a trivial problem as two contradictory requirements need to be considered
during the conceptual design. From the paragraph above it becomes clear
that points close in space and time should be stored (to some extent) in con-
tiguous blocks in disk storage for fast spatio - temporal retrieval. However,
because our chosen organisation should be dynamic and support further in-
sertions, we also require that the already organised points are not reorgan-
ised (at least not massively or too often) when inserting new data to achieve
fast loading. This is where the clash of requirements occurs. To preserve
space - time proximity between the new and old data, the new points will
have to be inserted between the already organised points. This, however, is
a very costly operation and it should be avoided as much as possible, espe-
cially in a highly dynamic environment in which data are streamed every
minute or hour.

Therefore, our method suggests to explore to organisations of space and
time. The two options represent two extremes of the space - time continuum
that can be achieved by appropriately scaling the time dimension relative to
space. But before introducing the two approaches used in this thesis, it is
important to specify the most important queries that need to be answered
when managing these dynamic point clouds.

4.2.1 Query requirements

To be able to design an organisation that is suitable for dynamic point
clouds, it is important to define the most prominent search conditions that
are expected to be asked by the user. Having these clearly identified can aid
the database designer to choose the most suitable organisation that speeds
up their query execution. This facilitation, however, may come at the cost of
less efficiency when query predicates different than these prominent queries
are asked.

Our use case, as presented in Chapter 1 and in Section 5.1.3, comes from
the coastal monitoring domain. To identify the most prominent queries used
a literature research was conducted and the user (Deltares) was interviewed.
This process gave three important queries:

only space queries These types of queries request all spatio-temporal
objects located in a specific area (over a complete time range).

space - time queries These types of queries request all spatio-temporal
objects located in a specific area during a specific time range.

only time queries These types of queries request all spatio-temporal ob-
jects located in a specific moment in time or during a specific time
range (for the whole spatial domain).

The former queries are schematically presented in Figure 4.1. Each grey
plane represents point cloud data at a specific moment in time.

4.2.2 Integrated approach

The first approach, the integrated approach, covers the complete integration
of space and time. This is achieved by giving space and time an equal
part within the SFC. In terms of Morton keys, space (x,y[,z]) and time are
interleaved, resulting in a 3D or 4D key. Depending on the treatment of z
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Figure 4.1: A schematic representation of the most important queries when manag-
ing dynamic point clouds. From left to right: only space queries, space
and time queries and, only time queries.

the integrated approach can be divided into two storage models: one where
z is treated as an attribute and one where is part of the SFC key. Inside the
database only the full resolution key is stored. Spatio-temporal locality is
preserved to the extent that the used SFC preserves locality.

In theory, this solution will not completely fulfil the second requirement
presented at the beginning of the section. When inserting new data, the
space - time points will have to be inserted between the already organised
points in order to remain physically ordered. An alternative that to some
extent reduces the effects of reorganisation during new data insertion, is
appropriately scaling the time dimension. This parameter is of great signifi-
cance because of the inherently different nature of the spatial and temporal
dimensions. Scaling, actually, is the factor of how much time is integrated
with how much space within the SFC, leading to a different degree of prox-
imity in the data. The scaling is defined such that the most important query
still remains or becomes more efficient after its application. In our case,
the scaling should offer a compromise between the three types of queries
considered.

Concerning the queries mentioned in the previous Section 4.2.1, space
and space - time queries are expected to present efficient response times.
On the other hand, time queries will be slightly more inefficient given that
points coming from the same time will be stored in many different blocks
which will need to be fetched and unpacked. How efficient or inefficient
each query is is directly related to the scaling of space and time.

For a schematic representation of the integrated approach Figure 4.2 is
provided showing a 3D SFC where z is an attribute. Observe that areas with
similar colours will be stored closer in the disk than areas with different
colours (i.e. blue, red).

4.2.3 Non-integrated approach

The second approach, the non-integrated approach, resembles the snapshot
model of Langran and Chrisman [1988]. Within this approach space and
time are loosely integrated, with time dominating over space. Inside the
database this is achieved by storing time in a separate column and includ-
ing only space (x,y[,z]) in the Morton calculation1. As with the previous

1 An alternative is to concatenate time and SFC key in one value. However, with this type of
organisation we should be more careful when decoding the key.

30



approach, the treatment of z the can be divided into two storage models:
one where z is treated as an attribute and one where is part of the SFC key.
Same, the original dimensions are not explicitly stored in the database. In
theory this structuring of space and time should not affect the already or-
ganised points. However, space - time locality is limited since points close
in space but with consecutive time moments will be stored very far apart
in the disk. Ultimately we are imposing a row order curve between points
of different time and a Morton curve between points coming from the same
time moment.

x

y

time

Figure 4.2: A schematic representation of the integrated approach using 8 bits in the
three dimensions

time

y

x

Figure 4.3: A schematic representation of the non-integrated approach using 8 bits
in the three dimensions
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Concerning the most important queries, time and space - time, should be
the most efficient. However, since there is limited preservation of locality,
space queries are expected to be less efficient. The reason for this is that the
needed data is further apart.

The non-integrated approach can be represented schematically in Fig-
ure 4.3. Observe the loose integration between point clouds of different
time moments.

4.2.4 The encoding of space and time

The encoding of space and time is a crucial preprocessing step due to the
fact that a SFC is implemented using integers. For this reason we need to
express the normally used data types with integers.

Space encoding

Space in the majority of the applications is measured and expressed in kilo-
metres, meters, centimetres, millimetres or in degrees. In all of the above
units space (x, y, z) can be transformed into an integer by appropriately
translating and scaling the specified coordinate. This linear transformation
is expressed as follows:

x′ = (x− xo f f )× sx

y′ = (y− yo f f )× sy

z′ = (z− zo f f )× sz

(4.1)

where
xo f f , yo f f , zo f f are the offsets in the x, y and z dimensions, and
sx, sy, sz are the scale factors in the x, y and z dimensions respectively.

Time encoding

The encoding of time is somehow more complicated than that of space be-
cause of its different nature and semantics. Time is measured in centuries,
years, months, days, hours, minutes, seconds etc. Representing time can
be performed in many different ways some of which are only applicable to
specific time resolutions:

1. The most naive way to represent time is by putting its building parts
(year=yyyy, month=MM, day=dd, hour=hh, minute=mm, second=ss)
next to each other creating an integer of the format yyyyMMddhhmmss
for second resolution, yyyyMMddhh for hour resolution, yyyyMMdd
for day resolution, yyyy for year resolution etc. This expression of
time, however, introduces time gaps as the resolution gets finer. As
an example, date 2016/12/31 with a day resolution is expressed as
20161231. The next valid date integer is of course 20170101. Therefore,
we end up not using 8870 time units of the SFC.

2. Julian Date is a system for measuring time as a number of days since
some fixed day. In this case, the zero point represents the beginning of
the Julian period which is 12:00 UTC on 1 January 4713 BC. As an ex-
ample considering the date and time Thursday, 16 June 2016 12:00:00,
the Julian date time receives the value 2457556. The disadvantage of
this representation is that its starting point is not representative for
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geomatics applications and thus can be receive large values. For this
reason, scientists have developed the Truncated Julian date that has a
starting point on midnight May 24, 1968. The previous date now cor-
responds to 17555. The truncated Julian date is suitable for datasets
with day resolution, although the starting point may still not be repre-
sentative for the majority of geomatics applications.

3. Unix time is another system for representing time with an integer value.
It counts time in seconds since 00:00:00 UTC on 1 January 1970. As an
example considering the date and time Thursday, 16 Jun 2016 14:28:13,
the Unix time receives the value 1466087293. This option is very useful
for datasets that are streamed every second, but leads to very detailed
representations when the time resolution is in days or years. A way to
compensate for the large values is to set a time offset.

A decisive factor when choosing a specific time encoding is taking into
account that data will be added in the future and that the system should
remain equally efficient. SFCs naturally are based on hyper-cubes and all
dimensions present in it should, more or less, be of similar significance
[van Oosterom et al., 2015]. Simply put, the several dimensions should fill
equally the hyper-cube for the most efficient querying. However, since most
of the time dynamic point clouds will cover a specific area of the earth,
the time dimension should be chosen to be structured and scaled such that
space on the hyper-cube is reserved for the new data to be added in the
future without overflowing the cube.

4.3 loading procedure

The purpose of the loading procedure is to physically order the point cloud
data based on the values of an ordering key. Depending on the integration
of space and time, the ordering key is either the combination of time and the
space filling value (non-integrated approach) or the space filling value (inte-
grated approach). For physical clustering an IOT is used; a data contained
within B-Tree.

4.3.1 Options for new data loading

In a situation where the nature of the new insertions is less dynamic, i.e.
small-scale insertions every year, then the easiest way for additional data
loading is by inserting the new data directly into the already organised
points. Because of the dynamic nature of B-Trees, these changes should be
automatically reflected in the shape of the tree. However, in the case that
the new data have to be continuously inserted, this methodology has serious
drawbacks and will result in an enormous performance overhead.

To account for dynamic insertions, a design choice of the loading proce-
dure is to use two tables: an unordered table which is called the heap table
and a sorted table which is called the main table. The transaction table can
either contain only the new data that need to be inserted or it can be an
unsorted copy of the main table. According to what function the transac-
tion table plays, the loading procedure when new data are added can be as
follows:
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a The main table is already filled with some data and new data need to be
inserted. The heap table is empty and the new data are added unsorted
there. When all the required insertions are finished the new and old data
are combined together. The heap table is emptied again. This solution
requires less duplication of the data. For only a short moment in time
there are two copies of the new data present in both tables.

The re-organisation can be adapted to take place at specific moments
in time e.g. every week for data with daily resolution. This will avoid
continuous re-organisations of the main table which can become very
expensive. However, it also means that the search algorithm gets more
complicated. If the needed data are not found in the main table, the heap
table needs to be scanned linearly. Use cases that do not require up-to-
date information at all times can avoid this type of searching. Another
way of querying is by defining a view to logically ’merge’ both tables in
one ’virtual’ table.

b The point cloud data are present in both the heap and the main table
while a view is used for querying the data from the latter. The new point
cloud data are inserted at the end of the heap table. Periodically, a new
main table is created from its contents. The view used for the querying
is now pointed to the new main table and the old main table is dropped.
This alternative is requires a lot of disk storage since at some moment in
time there are three copies of the point cloud data.

Same as with the previous alternative, the data do not have to be reor-
ganised every time new data are added. It is possible to periodically
reorganise the points e.g. every week or every month. However, this
means that the newest data cannot be queried. If we are talking about
data added every year or month this is the best alternative, as the re-
organisation will take place only once without affecting the availability
of the older data. The data will be unavailable only for as long as it takes
for the query view to be pointed at the new table.

c For highly dynamic data the previous methods present some deficiencies.
In the majority of the applications the old data are rarely used and there-
fore their maintenance is not a priority. On the other hand, the most
up-to-date data should be available at all times. Therefore, a different
scheme that of an archive and a current table is needed. The archive table
contains the historical data and is maintained at few moments in time,
while the current table contains the most recent insertions and is main-
tained very often. Of course the same problem as before arises again,
the current table cannot be reorganised every minute of the day. This
mandates again an ordered current table that is not fully up-to-date but
contains the data sorted and, an unsorted current table where the new
data are added. Only at specific moments in time e.g. every hour the
new data are combined with the sorted current table. When the data in
the current table are considered as historic, they are moved to the archive
and both current tables are emptied and receive the newest data.

4.3.2 Loading phases

The loading procedure is divided into two obligatory phases (the prepara-
tion, the loading) and one optional (the post-processing). Schematically, the
obligatory phases are depicted in Figure 4.4.
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Figure 4.4: A schematic representation of the loading procedure for the SFC ap-
proach.

1. Preparation: The preparation phase is itself composed by two sub-phases.
The first phase includes reading the point cloud data, encoding space
and time into the chosen format and calculating the Morton key. This
conversion varies depending on the integration of space and time, which
treatment of z is used (z as an attribute or as part of the Morton key) and
the scaling of time. The second phase includes the bulk loading of the
converted data into a normal heap table (unsorted).

2. Loading: This phase corresponds to the storage of the points in an IOT.
This is achieved by reading the data from the heap table and physically
sorting them based on the specified key. When new data need to be
added in the table one of the above-mentioned alternatives can be used.

3. Post-processing (optional): This last and optional loading phase gathers
the required optimiser statistics, which are important so that the query
optimiser can choose the best execution plan for each SQL statement
posed to the table.

4.4 query procedure
A point cloud database, and especially a dynamic one, should be able to
not only efficiently store data but also support efficient retrieval of required
spatial objects. Because the number of point cloud data can very easily
escalate to billions of points it is not ideal to compare a query geometry
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with each one of the points present in the database. Same requirement
applies for general-purpose spatial databases. A widely used approach is
that of an ”approximation - based query processing” [Brinkhoff et al., 1993].
This approach (as described in Orenstein [1989] and Brinkhoff et al. [1993])
contains two steps namely:

filter step Within this step the spatial index built on the objects elim-
inates objects that definitely do not satisfy the query. However, be-
cause geometries are most of the time approximated by their bound-
ing boxes, this elimination leads to sets of candidates. In other words,
the result of this step is a superset of the actual answer containing also
objects that actually do not belong to the response set, called false hits.

refinement step In the refinement step the objects are tested one by one
and finally the false hits are detected and removed from the answer
(response set). Usually this step requires CPU-intensive operations, like
point-in-polygon operations.

Figure 4.5: Two step query processing approach.
Source: Brinkhoff et al. [1993]

Approximations are important because it is often sufficient to retrieve
even the approximated response of the filter step in order to reduce process-
ing time. However, it becomes obvious that the performance is related to the
algorithm that approximates either the objects in the database or the query
geometry. The result of the filter step becomes more accurate when the ap-
proximation deviates from the actual object as less as possible [Brinkhoff
et al., 1993]. If the approximation algorithm is very fine-tuned then the false
hits in the filtering step are so low in number that the refinement step can
be ignored. The ultimate goal is thus having an approximation algorithm
that reduces the number of points in the candidate set as much as possible.

4.4.1 Querying space filling curves

In order to be able to perform multidimensional selections using SFCs, the
query algorithm needs to be modified so that the SFC organisation is taken
into account. The reason behind this requirement is that the transformation
into a linear space results in a loss of spatial relationships between objects.
In other words, a mapping from the multidimensional space to a one dimen-
sional, can never be done in such a way that all neighbouring objects in the
multidimensional space are also close in the one dimensional one. Therefore
it is up to the query algorithm to efficiently handle this loss. When querying
SFC, the n-dimensional query region needs to be translated into a number of
continuous runs on the (Morton) curve, that is to say a search problem in 1

dimension.
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In the literature several ways to perform a range query using the Morton
curve can be identified. The most naive way to perform range queries is to
obtain the Morton codes of the coordinates of the lower - left and upper -
right corner and then use this code range in order to obtain the candidate
data during the filter step. An example is given in Figure 4.6, from which
it is easy to realise that this method is not very efficient and effective. A lot
of records that are within the code range (12 to 50) are not part of the range
query. Actually, in this specific example only 30% of the candidate points
actually belong to the range query. As a result querying space filling curves
require a different approach than this one.

Figure 4.6: A naive way to perform range queries when using space filling curves.

A more efficient way is the one presented in Tropf and Herzog [1981]. The
authors have implemented a methodology that takes the previous naive way
of querying SFC and speeds up the search by calculating the BIGMIN and
LITMAX values. In their paper, the authors describe the algorithm for the
calculation of those values. Within this thesis, I do not make use of the
previous implementation but rather follow a different approach, that of the
interrelationship between Quadtree structures and the Morton curve (see
also Figure 2.3.3).

Each quad-code is directly related into specific ranges of Morton codes.
As an example observe Figure 4.7. This example is first presented in van
Oosterom and Vijlbrief [1996] and is appropriately adapted. In order to
proceed to the filter step we need to identify for the specific polygon (Fig-
ure 4.7a) the number of continuous runs on the Morton curve. The grid on
the back represents the QuadTree of the whole area for which we have point
cloud information up to a specific level (here level 3). In the second step
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(Figure 4.7b), the decomposition algorithm identifies the quadcodes strings
that approximate the spatial object. This is achieved by checking whether
the quadcode intersects with the geometry (see Section 4.4.2). Following a
Z-order, the SW quadrant takes the quadcode string of 0, the SE string of
1, the NW string of 2 and NE string of 3 (base 4). Each successive digit on
the string represents the quadrant of a deeper level. This means, that the
shorter the length of the quadcode, the more the SFC values contained in
the returned range. In this specific example, the polygon is approximated
by quadcode strings ’0’, ’20’, ’21’, ’300’. The mapping from each quadcode
string to morton ranges is performed in step 3 (Figure 4.7c). As it can be
visually seen, quadcode ’0’ corresponds to morton range 0-15, quadcode ’20’
to 32-35, quadcode ’21’ to morton range 36-39 and quadcode ’300’ to morton
code 48. Further, since quadcodes ’20’ and ’21’ have neighbouring morton
ranges those can be merged to one, going from 32 to 39.

The advantage of utilising the relationship between morton curve and the
quadtree is that it generally provides better approximation of the query ge-
ometry than using a single MBR. An example is shown in Figure 4.8. Cases
4.8a to 4.8d show the approximation of the polygon using finer quadtree
cells. It is obvious that the deeper the quadtree level used, the better the
cells approximate the actual geometry. This means, that during the filter
step less false hits will be yielded and less redundant data will have to be
processed in the refinement step. In addition to that, compared to the use
of the MBR, as depicted in Figure 4.8, levels 7 and 8 of the Quadtree describe
this complex spatial object with more accuracy. Finally, this whole process
of identifying the quadtree cells that approximate the query geometry is
completely independent of the data stored inside the database and can be
extended to n-dimensional data very easily. From this point, no more ref-
erences to quadtree cells will be made but rather to 2n−tree ones since the
methodology used in this thesis extends up to 4 dimensions.

4.4.2 Decomposition and evaluation of the query geometry

As mentioned in the previous section, in order to query SFCs, the query
object in the n-dimensional space needs to be decomposed to a number of
1-dimensional intervals. For this the relationship between the morton curve
and the 2n−tree is used. The decomposing elements of the query object are
acquired by reporting the 2n−Tree Cell (TC) that lie completely within or
partially intersect with the object.

The search algorithm used in this thesis is the one presented in Orenstein
and Merrett [1984], but adapted to account for 2n−trees. The algorithm
identifies the 2n− TCs that best approximate the Query Region (QR). Start-
ing from 2n−TCs that approximate the whole point cloud region, the n-
dimensional space is subdivided recursively until either the full resolution
of the grid or the maximum recursion level is reached. For each TC one of
the following cases can happen:

• The TC is disjoint from the QR. The TC does not contain any points that
satisfy the query. Nothing further happens in this case.

• The TC is completely within the QR. All of the points inside the TC are
contained within the QR. No further split takes place.

• The TC overlaps with the QR. In this case, the TC is split into 2n smaller
TCs (where n the dimensions used) which are handled recursively until
the maximum depth is reached.
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(c) The relationship between quadcodes and the morton curve

Figure 4.7: Decomposition strategy based on the relation between the morton curve
and the Quadtree. Adapted from: van Oosterom and Vijlbrief [1996]
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(a) Level 5 (b) Level 6

(c) Level 7 (d) Level 8

(e) The MBR

Figure 4.8: Quadtree decomposition of a complex polygon at different levels and in
comparison to the Minimum Bounding Rectangle approximation.
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Figure 4.9: The search algorithm applied to three candidate tree cells. The grey
Tree Cell is disjoint from the Query Region (hatched), while the red Tree
Cell is completely within the Query Region. Finally the blue Tree Cell
partially overlaps the Query Region and therefore, is split into 4 smaller
tree cells and the algorithm is repeated.

An example of the use of the search algorithm is depicted in Figure 4.9.
All three cases can be identified in the given example. The adapted algo-
rithm used in 2D is available in Algorithm 4.1. Note that in higher dimen-
sions (higher than 2) instead of the SW, SE, NW, NE quadrants, space is
subdivided in 23 = 8 octans for 3D, or 24 = 16 hexadectans in 4D. To ac-
count for the fact that recursive calls of the function can lead to a large
amount of TCs, a maximum depth of recursion is used. In case that this
maximum level is reached, the TC being processed is added to the list of
morton ranges and not further split. The output of the algorithm is a list
of the morton ranges that are either used to retrieve the data or are further
processed if certain conditions apply.

4.4.3 Merging of the ranges

One of the issues that may arise from using the previous RangeSearch al-
gorithm, is that a vast amount of morton ranges may be generated. This
is most of the times not ideal because it will require a large join operation
or there are limitations to length of the SQL string that can be used. Also,
near the boundary of the query region a lot of small morton ranges may be
generated and as a result the amount of work may be large.

In the literature the same problem is dealt by adjusting the decomposing
algorithm itself. More specifically, in Orenstein [1989] two adapted decom-
position strategies are defined:

size-bound This decomposition strategy puts a limit to the number of TC

that can be generated. To achieve fair sizes, a breadth-first search is
used. The splitting ends when the maximum number of ranges is
reached. However, the algorithm still continues to refine in one di-
mension as in this way the accuracy of the approximation is increased
without increasing the number of ranges.
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Algorithm 4.1: Range Search Algorithm used to retrieve the morton
ranges in a 2D case.

Data: Query Region (QR), Tree Cell (TC), level, maxlevel
Result: Morton ranges

1 RangeSearch(QR, TC, level, maxlevel)
2 ranges← emptyList
3 if TC disjoint QR then
4 do nothing
5 else

/* partial or complete overlap of TC with QR */

6 quadCode = FindQuadCode(TC)
7 if TC within QR or level = maxlevel then
8 mortonRange = (quadCode, level)
9 ranges.insert(mortonRange)

10 else
/* partial overlap of TC with QR */

11 foreach quad in (SW, SE, NW, NE) do
12 RangeSearch(quad, SR, level + 1, maxlevel)
13

14 end
15 end
16 return ranges

error-bound This decomposition strategy puts an accuracy requirement
on the approximation of the geometry instead of looking at the num-
ber of ranges. The algorithm continues to decompose the geometry
until the distance between the boundary of the QR and the boundary
of the TC is above the error threshold.

In this thesis to deal with the previously mentioned limitations two ac-
tions can be taken: first, a merging of consecutive morton ranges takes place
(introducing no additional space/ overhead) and second, ranges are merged
to a maximum number specified. These two actions differ from the two de-
composition strategies in that they correspond to post-processing actions,
rather than directly affecting the ranges generated.

Merging consecutive ranges

Merging consecutive ranges is one fundamental way to reduce the number
of morton ranges. This step will result in less ranges during the fetching
process, although sequential accesses will be increased (space expanded).
An example of the application of the consecutive range merging is shown
in Figure 4.10. From the previous stage, three morton ranges have been
calculated as approximating the QR. However, these three morton ranges
are consecutive (8-11, 12-15, 16-31) and can be merged into one big one (8-
31). This significantly aids the query procedure as the query optimiser will
have to parse only one range, instead of the original three.

The algorithm to perform this action is described in Algorithm 4.2. The
process requires a sorted list (ascending) of the morton ranges. The merging
is performed by iterating over the sorted ranges and checking whether the
upper boundary of a current range and the lower boundary of its next range
are consecutive integers. If this is the case, then the process is continued
until there are no more consecutive ranges to merge.
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(a) Original: 3 small morton ranges (b) Merged: 1 big morton range

Figure 4.10: An example of merging consecutive ranges. Left: the original situation
with three morton ranges. Right: the merging results in one big morton
range.

Algorithm 4.2: Algorithm for merging consecutive morton ranges.
Data: Sorted list of morton ranges (ranges)
Result: Merged list of morton ranges

1 mergedList← emptyList
2 min, max← ranges[0]
3 foreach number in 1..size(ranges) do
4 if max - ranges[number][lower] = 1 then
5 max← ranges[number][upper]
6 else
7 mergedList.insert(min, max)
8 min, max← ranges[number]
9 end

10

11 mergedList.insert(min, max)
12 return mergedList

Merging to maximum number

Having closed the gaps between consecutive ranges, it might be the case
that the ranges are still too many to be parsed by the query optimiser. For
this reason, similar to the SIZE-BOUND decomposition strategy but in a
post-processing manner, a merging of ranges in order to reach a maximum
number takes place. The basic idea behind this method is that the QRs are
expanded into larger but fewer TCs. The critical part during this process
is identifying the right number of ranges that are not too many or too low,
and the data fetching is not becoming too expensive. Therefore, a balance
between fetching time and number of ranges is important to be found. Also,
the cost to be paid by this method is that more false hits might be retrieved
during the filter step.

The merging process used in this thesis proceeds in the following way.
The distances of the neighbouring ranges (differences) are calculated. The
resulting list of differences is sorted in ascending order. The number of gaps
(n) to be closed is the difference between the current number of ranges and
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the specified maximum. A threshold that corresponds to the nth distance is
set. Then the procedure starts closing the smallest gaps using the threshold
defined2.

Two examples of the application of the merging algorithm are shown in
Figure 4.11 and Figure 4.12. In both of the examples, case (a) represents
the original un-merged case. In cases (b) the maximum number of ranges
used is 3 and in cases (c), it is 2. It is obvious that the smaller the maximum
number, the bigger the expansion of the TCs and more false hits will be
fetched during the filter step. The jumps of the morton curve are, also,
noticeable and affect to a great extent the final result.

(a) Original: 6 ranges (b) Merged: 3 ranges (c) Merged: 2 ranges

Figure 4.11: First example of merging ranges to obtain a maximum number. (a) The
original situation with 6 morton ranges. (b) The maximum number is
set to 3 and the regions are expanded accordingly until the three ranges
are obtained. (c) The maximum number is set to 2 and the regions are
expanded accordingly until the two ranges are obtained. The grey area
represents the additional space added due to the merging of TCs.

(a) Original: 11 ranges (b) Merged: 3 ranges (c) Merged: 2 ranges

Figure 4.12: Second example of merging ranges to obtain a maximum number. (a)
The original situation with 11 morton ranges. (b) The maximum num-
ber is set to 3 and the regions are expanded accordingly until the three
ranges are obtained. (c) The maximum number is set to 2 and the re-
gions are expanded accordingly until the two ranges are obtained. The
grey area represents the additional space added due to the merging of
TCs.

The whole filter step is depicted for a circular geometry in Figure 4.13.

2 For more information see the code on-line: https://github.com/stpsomad/DynamicPCDMS/
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(a) Original 176 tree cells (b) Merging of direct neighbours lead-
ing to 42 cells

(c) Merged to maximum number of 30 (d) Merged to maximum number of
20

(e) The expansion of the original ge-
ometry (case (b)) in red after merg-
ing to 30 ranges

(f ) The expansion of the original ge-
ometry (case (b)) in red after merg-
ing to 20 ranges

Figure 4.13: The different steps in the preparation of the filter step: Tree cell identi-
fication, direct neighbour merging and, merging to maximum number.
Cases (c) and (d) depict different degrees of merging applied to the tree
cells of case (b). The expansion of the area according to the two degrees
of merging (30 and 20) is shown in cases (e) and (f) respectively. Source:
Psomadaki et al. [2016]
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4.4.4 Refinement

Having identified all the candidate points (false and true hits), a way to
further refine the selection is needed. Since this thesis deals with point
clouds, the best option to perform the refinement step is by using a Point
in Polygon (PIP) operator. As the name implies, the operator determines
for a set of points which one of them lies inside an (arbitraty) polygon and
which not. A well known way to solve a PIP problem is by drawing a line
from each candidate point to a point outside the polygon and counting the
number of intersections that take place. If the number is odd, then this
point is inside the polygon. This rule is known as the even–odd or parity
rule. PIP operators are found in the major spatial databases e.g. ST Contains
in PostGIS3, SDO Contains in Oracle Spatial4 or the SDO PointInPolygon in
Oracle5.

4.4.5 Summarising the query procedure

Having described all the relevant aspects of the querying procedure, the
section concludes by putting them together into one complete workflow.
As mentioned in the beginning of the section, the two-step procedure of the
filter and refinement step is used. The original methodology is now adapted
according to the problem of retrieving dynamic point clouds.

step 1 The workflow starts by the transforming the n-dimensional query
(here n ≤ 4) to a number of continuous runs on the morton curve.
For this a 2n−tree structure is used and the cells that overlap with the
given geometry are selected. The decomposition stops when the maxi-
mum recursion depth is reached. The selected cells are then associated
with the corresponding morton ranges. Before the ranges are returned
to the next step, the neighbouring ranges are merged. Then, either the
ranges are returned or, if specified, they pass through another process-
ing step. Within this step the k morton ranges are scaled down to m
morton ranges, where m < k.

step 2 Moving to the filter step, the specified morton ranges are utilised
for the retrieval of the points. For this the IOT is used. A point is
fetched if and only if it falls in one of the corresponding morton ranges.
The result of this step is a superset of the needed points.

step 3 The retrieved points in the form of morton values are decoded back
to the original X, Y, Z, t dimensions depending on which integration
is used, which treatment of z is currently taking place (z in the key or
not) and scaling of time. The result of this step is a set of candidate
points.

step 4 The candidate points are inserted into the refinement stage. The
points are tested one by one using a PIP operator and, if needed, are
further refined using time and Z predicates. The output is returned to
the user.

Schematically, the query process is depicted in Figure 4.14.

3 see: http://postgis.net/docs/manual-1.4/ST Contains.html

4 see: http://docs.oracle.com/database/121/SPATL/GUID-CD3E09BC-4533-4D3F-BB5D-8D

6DCDF5C5FF.htm#SPATL1024

5 see: http://docs.oracle.com/database/121/SPATL/GUID-959C15D2-509C-4511-ADEB-1A

DA6FBA8D0A.htm#SPATL1507

46

http://postgis.net/docs/manual-1.4/ST_Contains.html
http://docs.oracle.com/database/121/SPATL/GUID-CD3E09BC-4533-4D3F-BB5D-8D6DCDF5C5FF.htm#SPATL1024
http://docs.oracle.com/database/121/SPATL/GUID-CD3E09BC-4533-4D3F-BB5D-8D6DCDF5C5FF.htm#SPATL1024
http://docs.oracle.com/database/121/SPATL/GUID-959C15D2-509C-4511-ADEB-1ADA6FBA8D0A.htm#SPATL1507
http://docs.oracle.com/database/121/SPATL/GUID-959C15D2-509C-4511-ADEB-1ADA6FBA8D0A.htm#SPATL1507


Figure 4.14: A schematic representation of the query procedure
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5 IMPLEMENTAT ION AND
EXPER IMENTS

This chapter contains a description of the prototype implemented to show
whether the SFC approach provides an effective solution to the management
of dynamic point clouds. The theory has already been introduced in Chap-
ter 4. A number of experiments and certain benchmarks have been executed
for this reason.

The chapter is organised as follows: In Section 5.1 the tools and datasets
used to perform the experiments and benchmarks are presented. After that,
in Section 5.2 the metrics which are examined in the experiments section are
introduced and explained. In Section 5.3 certain important details about the
implemented prototype are given. Finally, in Section 5.4 follow the experi-
ments performed in order to study the previously presented metrics.

5.1 tools and datasets used

For the implementation of the methodology presented, a set of Python
scripts have been developed. The source code can be found at: https:

//github.com/stpsomad/DynamicPCDMS. The scripts have the ability to take
as input: the type of integration of space and time, the scaling of time and
the treatment of z (z as part of the Morton key or not) and implement the
methodology of Chapter 4.

5.1.1 Software

The software used for the prototyping of the proposed methodology is:

python The Python programming language was used for its ability for
easy and fast prototyping. However, at the same time this means that
the time efficiency of the code is limited. The version of Python used
is the 2.7.

oracle The Oracle Database is a proprietary RDBMS. The version that was
used for the tests is the Oracle Database 12c Enterprise Edition Release
12.1.0.1.2 - 64 bit Production. The choice of Oracle instead of an open-
source alternative is justified because of two advantages that it offers
to this thesis:

• The existence of the Index Organised Table (IOT). In an IOT the
data are stored in the leaf-nodes of the index. Therefore, it avoids
storing a large (separate) index in addition to the data table (heap),
thus not requiring to perform a join during query execution (be-
tween index and data).
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• The existence of the NUMBER data type. Full Morton keys can
very easily become larger than 64 bit integers1. The NUMBER
data type can handle the 128 bit keys.

pointcloud python package This python package was developed as part
of the project ”Massive Point Clouds for eSciences”2. The source code
of the package is available at https://github.com/NLeSC/pointcl

oud-benchmark. This package was taken as a starting point for the
development of the code.

5.1.2 Hardware

For the tests and benchmarks described in this document we have used a
server with the following details: HP DL380p Gen8 server with 2 x 8-core
Intel Xeon processors, at 2.9 GHz, 128 GB of main memory, and a RHEL
7 operating system. The disk storage which is directly attached consists of
a 400 GB SSD, 5 TB SAS 15K rpm in RAID 5 configuration, and 2 x 41 TB
SATA 7200 rpm in RAID 5 configuration.

To make sure that we minimise mixed read/ write operations on the same
disk, especially during the loading procedure, we have distributed our files
and database over different disks. Within the DBMS this is achieved using
different tablespaces. The available tablespaces for the Oracle database on
the server are distributed as follows (Table 5.1):

Purpose Tablespace File system Disk type

Data - \pak2 SATA
Heap table USERS \pak1 SATA
IOT INDX \pak2 SATA
DBMS Temporary storage TEMP \work SAS
Query table PCWORK \work SAS

Table 5.1: The distribution of the available tablespaces according to the purpose.

5.1.3 Datasets used

Due to the fact that the Deltares research institute was the initiator of this
thesis, both use cases come from the coastal monitoring domain. Two
datasets of different sizes and characteristics were used. The differences
are relevant in order to evaluate how the proposed structures behave ac-
cording to them. For more detail, the user is referred to the Appendix A.
Within this section a short description is given for the two use cases.

1 This was actually one very important issue when designing the system. With a 64 bit code we
can only allow 21 bits per dimension in 3D. In the spatial dimensions this means that with a
millimetre accuracy only 2 kilometres of data can be stored. Therefore the need arises to use
N*32 bit codes, where N is the number of dimensions. The challenge now is how to store these
larger codes. Some options that can be considered are:

– Encode in character stings e.g. base 64, base32, HEX.

– Breaking up the larger code into multiple 64 bit integers.

– Use the Oracle NUMBER data type.

– Use a different system that supports arbitrary length bit strings.

2 The website of the project can be found at: http://www.gdmc.nl:8080/mpc
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sand engine Dataset with small spatial extent but day resolution in the
time dimension. The point cloud is acquired using jet skis and all-
terrain vehicles.

coastline of the netherlands Dataset with big spatial extent. The time
resolution is, however, limited to every year, with only 4 years being
available at this moment in time. The dataset is acquired using Light
Detection And Ranging (LIDAR) technology and is provided by Rijk-
swaterstaat.

For both of the datasets, points having the same planar (x,y) coordinates
are removed. This was performed because of the unique constraint that
an IOT needs to fulfil. Although this uniqueness constrain is only violated
for the approaches where z is an attribute, the cleaned datasets are used
throughout the experiments and benchmarks.

5.2 metrics of performance
In order to be able to assess how well or not the proposed methodology
performs during query execution, it is important to define a set of metrics.
These metrics are different from the ones defined in Section 4.1 because
they are quantitative measures. The following four (4) metrics are defined:
1. Fetching time, 2. Percentage of extra points 3. Depth of the tree, 4. Degree
of merging. The main challenge is to find the balance between the four of
them.

5.2.1 Fetching time

The fetching time, and especially the fetching time of the filter step, should
be relatively fast according to the number of points belonging in the query
region. Nevertheless the user should not wait too much to get an answer. It
is also important that the fetching time is constant even when the size of the
table grows (and the size of response is equal).

Note that the reason why the fetching time of the filter step is the most
important originates from the fact that the current form of the query proce-
dure requires many steps, some of which (with the current implementation)
have to take place outside the database (see Section 5.3.3). In the future
this might be optimised by moving certain functionality inside the database.
Nevertheless, the filter step is directly related to the data structure that is
used.

5.2.2 Percentage of extra points

Another very important factor is the percentage (%) of false hits retrieved
during the filter step compared to the true hits from the refinement step. It
is good that the number of false hits does not outnumber the number of
true hits, otherwise the database spends a lot of time retrieving unwanted
information which will also increase execution time of the refinement step.
In addition to that, if the percentage of false hits is low (e.g. 1 - 10%) then
the refinement step could be even ignored, thus saving processing time at
the cost of some extra data.
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5.2.3 Depth of the tree

The depth of the 2n−tree is of great importance because it directly affects
the number of ranges that are used to approximate the QR. The finer the
TCs that are used for the computation of the ranges, the more accurate is the
result during the filter step (less false hits). On the other hand, the finer the
TC, the more ranges that need to be used for the fetching of the data. Using
a large amount of ranges during query execution might result in a decrease
of the performance of the query. However, this needs to be corroborated
with experiments.

5.2.4 Degree of merging

As presented in Section 4.4.3, the merging of the data also affects query
execution. If the number of ranges is too high, then fetching is expected
to become expensive and merging is the way to limit the number of ranges
obtained. Merging effects are the same as the previous metric: introduce
more false hits (by having less ranges) since more space is added outside
the QR. The higher the degree of merging, the more chance that during the
filter step a higher amount of false hits will be fetched. At the opposite
side, a low degree of merging reduces the number of ranges only by a small
amount and thus query execution remains expensive.

Nevertheless, it is also interesting to investigate whether there is a con-
nection between the depth of the tree and the degree of merging. By that
it is meant, if finer 2n−TCs affect the quality of the merging and thus the
percentage of extra points obtained.

A very important factor of the merging is the choice of good algorithm
that is near linear O(n log n). Having a merging algorithm that is too ex-
pensive makes the whole query process also slow. However, developing the
best algorithm is out of scope for this thesis, which mostly deals with the
efficiency of the data structure.

5.3 implementation

This section describes the most important implementation details of the
method which was theoretically introduced in Chapter 4. For the full im-
plementation the user is referred to the source code available on-line, and
some scripts and SQL code on Appendix D.

5.3.1 The encoding of space and time

The encoding of space and time is perhaps the most influencing factor in the
integration of space and time. One of the implementation decisions was to
encode full resolution Morton keys, thus making the storage of the original
x, y, z and time dimensions not a requirement (they are contained in the key).
This significantly reduces the storage size of the table but imposes one extra
step during the query procedure (decoding). Since SFCs are implemented
from integers alone, the following encoding of space and time takes place
for the two datasets (Table 5.2):

The choice of the above mentioned offsets in the x, y and z dimensions
(columns 2-4) is justified from the fact that positive numbers need to be
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Dataset xo f f

[m]
yo f f

[m]
zo f f

[m]
sx, sy, sz Time

encoding
Scaling
of time

Sand Engine 69,000 440,000 -100 1,000 days since
1/1/1990

10,000

Coastline 4,000 374,000 -100 100 year
(yyyy)

10,000

Table 5.2: The used encodings of space and time for the two datasets (Sand Engine,
Coastline)

derived before applying the needed dimensional scaling. In the case of the
z dimension, the offset imposed is negative since the majority of the heights
are bellow sea level. Offsetting is a very important transformation, as it
significantly reduces the size of the Morton key and as a result the size of
the IOT. Next, the dimensional scaling is defined in column 5. These specific
dimensional scalings correspond to the spatial resolution of the datasets:
mm for the Sand Engine (scaling of 1000) and cm for the Coastline (scaling
of 100).

Although the parameters for the spatial dimensions are straightforward
to be identified, the ideal encoding of time is more complicated. Different
approaches to derive integers from dates are introduced in Section 4.2.4.
Because of the different nature of the time dimension in the two use cases,
also, different encodings of time take place:

• For the Sand Engine use case with a day resolution, it is chosen to
encode time as days passed since 1/1/1990. This specific epoch is
used in order to make it possible to store data from the past. If this is
not needed then the epoch can be changed to a more suitable one.

• For the coastline use case with a year resolution, it is chosen to encode
time in the format yyyy. Because the resolution is so coarse, this type
of formatting does not generate gaps, making it very a appropriate
and straightforward method.

The used encodings of time, although very appropriate for the given use
cases, do not necessarily lead to a useful integration of space and time when
time is part of the SFC key (integrated approach) and later on characteristic
space - time queries are performed. In the current form of the encoding,
space and time are deeply integrated. The correspondence of the units is
consequently 1 mm = 1 day in the Sand Engine use case and 1 cm = 1 year
for the Coastline. This type of organisation makes some of the important
queries (only time and space-time) very expensive, thus violating the first
metric of performance (fast fetching time). A schematic explanation for the
inefficiency of these queries is given in Figure 5.1 (left). In this part of the
figure the correspondence is 1 cm to 1 year. This results in data coming from
year 1 (blue) to be interleaved with data coming from year 2 (red). A way to
avoid this type of integration is to scale time appropriately in order certain
number of points from one year to be stored close to each other (Figure 5.1,
right).
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Figure 5.1: The effect of applying no time scaling and a time scaling of 2 on the
space - time proximity of the points.
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Of course, it cannot be avoided that points from different years are stored
close together, when they are spatially close. This is actually required, oth-
erwise we end up having another non-integrated approach. An example of
how scaling time affects the space-time proximity is shown in Figure 5.2. In
the two examples two different scales of time are applied (2 and 8 respec-
tively). In the original situation (not shown here) every four points of year
1 are interleaved with 4 points of year 2. By applying a scale of 2, the gap
between the two years is increased and now the interleaving happens every
16 points on the curve. Using a scale of 8, increases the number of points
to 256. The ultimate challenge for the use cases is to identify what degree
of space - time proximity balances the metrics of performance for the three
important queries of Section 4.2.1.

In order to find out which scaling of time is the most suitable for the
two use cases, certain tests took place. For the Sand Engine case specifi-
cally, scales 1, 100, 1000 and 10000 were tested. The experiments showed
that applying no scaling makes time queries very inefficient (approximately
50 seconds for 79000 points, one day), but space queries perform very effi-
cient (sub-second). Time only queries are, however, more important for this
specific use case than space ones. For this reason the scale of 10000 was
chosen. Within this configuration the same time query is performed in 0.6
seconds. Inevitably, with such a scale space queries become less efficient.
Nevertheless, the gain in time queries is bigger than the loss in space ones.
The same work flow is also followed in the coastline use case, where again
a scale of 10000 offers better results than no scaling. In the Sand Engine use
case a scale of 10000 means that for a certain day the area grouped is 10m
by 10m, while the coastline use case the grouped area is 100m by 100m per
year. The chosen scale has also the property that it allows future data to be
stored in the same efficient way. More specifically the Sand Engine use cases
allows the storage of hundreds of years in the future, without overflowing
the curve. In coastline use case thousands of future years are possible to
store.

The above explained parameters for the encoding of space and time intro-
duce the need to maintain a metadata table during the loading procedure.
These parameters are very important to be stored otherwise the query proce-
dure cannot be executed. How often this metadata table is updated depends
on how often new data are inserted into the database.

5.3.2 Loading procedure

In Section 4.3 several different solutions for handling the loading procedure
are presented. These solutions depend on the dynamic nature of the use
cases used. The use cases used within this thesis can be characterised as
having a medium dynamic nature. This means, that time is relevant, how-
ever, new data are not streamed very often (highest frequency is once every
day). For this reason, the loading procedure follows the transaction and
main table approach. The transaction table acts as a container for the new
data, while the ”old” data are found sorted in the main table, which is an
IOT. In order to combine the new and old data, a UNION ALL operator is
used. For an overview of the SQL code used to perform the loading, the
reader is referred to Section D.1 of Appendix D.
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5.3.3 Query procedure

The query procedure follows the methodology defined in Section 4.4. The
way in which the query statement is composed depends on the integration
of space and time used, as well as, the type of query asked. An overview
of the query scripts used when posing a query is described in Section D.2
of the Appendix. Of high importance here is to further explain what steps
take place inside or outside the database (and why) and the two different
ways developed to pose the queries. The query geometries and time ranges
that were actually used throughout the next sections are described in Ap-
pendix B.

The current state of the query procedure includes a mixture of inside and
outside the database functionalities. The reason for this type of implemen-
tation comes from the fact that there are no functions available inside the
database that can perform the needed actions. This is also true for the load-
ing procedure, where the Morton conversion is not native to the database
and therefore the data have to be shipped from Python to Oracle. The steps
that take place outside the database within the query procedure are: the
2n−tree decomposition of the query geometry and time ranges and decod-
ing of the key of the filtered points. Inside the database, the filter step
and the refinement step take place. This shipment of data from inside the
database to outside and vice versa, makes the query procedure slightly inef-
ficient. Also, because Python is not a compiled language, certain processes
e.g. the 2n−tree decomposition are a bottleneck in the query execution time.

One of the challenges when storing high resolution SFC keys, is that the
query shape may result in a WHERE clause that has to include a large num-
ber of continuous ranges when a high resolution TCs are used. This might
be even the case when a merging of ranges takes place. For this reason, two
different ways to pose the query have been developed; the usual, WHERE
clause execution and the alternative, where the query is a join between two
tables, the data table and QR range table. The WHERE clause query exe-
cution is self-explanatory, so no further descriptions will be given. On the
other hand, the join of the two tables requires further explanation.

The join methodology starts with the usual 2n−tree decomposition. How-
ever, instead of composing a WHERE clause from the returned ranges, these
are inserted in a separate IOT with columns LOW, UPPER. Because no over-
lap is present between the ranges, the index is built on the LOW column
of the table. In the next step, the data table and the range table are joined
and the result is the filter step of the query procedure. An exemplary SQL

statement using the join method is:

SELECT /*+ USE_NL (t r)*/ t.morton[, t.z]

FROM DATA_TABLE t, RANGES r

WHERE (t.morton BETWEEN r.low AND r.upper );

This method is a very efficient and smart way to retrieve the data as, op-
posite to the size limits of a WHERE clause string, joins have no theoretical
limits. In practice, however, the number of ranges should not be unlimited
because at some point the insertion of the ranges inside the database will
become a bottleneck. Two remarks need to be made for the join method
of posing a query. First of all, there is a need to use an optimiser hint to
make this method work efficiently. Without the hint the optimiser proceeds
to sort the table (although it is already sorted given it is an IOT) and the
execution time is costly. Using hints is an acceptable way of executing a
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statement, although it does not represent the ideal situation. Second of all,
the join method does not provide a relative fast execution time for the non-
integrated approach. The reasons are not obvious but probably having time
as a separate column complicates the join that takes place. As a result, the
query execution of the non-integrated approach takes place using a WHERE
clause, while for the integrated approach the join method is used.

5.4 experiments
The metrics introduced in Section 5.2 were defined to assess the perfor-
mance of the proposed methodology. As mentioned in the specific section,
the goal is to realise which combination of those metrics balances the fetch-
ing time of the filter step. Within this section, the results from a number of
tests performed are analysed. All the tests are executed for the queries of
the Sand Engine use case and using a small table size (20 million points).

5.4.1 Depth of the tree - integrated approach

The depth of the tree experiment studies the effect of using deeper 2n−TCs
for the decomposition of the QR on both the number of false hits obtained
and the fetching time. Because WHERE clauses have practical limits on the
length of the string, this experiment is only performed for the integrated ap-
proach. The join method allows us to use a large number of Morton ranges,
although a limit of 1,000,000 ranges is set for practical reasons. The tests exe-
cuted start from level 9 and proceed up to level 15 of the 2n−tree3. For each
depth, the query is repeated 3 times (directly after each other). In that man-
ner we obtain both cold and hot runs. A hot run means that the query has
been executed once and therefore caching effects take place. In Section C.1.1
of the Appendix, the tables with the results for all queries can be found. The
results represent the average of two hot runs4. Within this section, graphs
from one query per category are represented. The conclusions are, however,
derived by combining the two sources of information.

Figure 5.3 presents a representative example of how space - time queries
(that treat z as an attribute) behave when using finer TCs. The red line
represents how the % of extra points (number of false hits compared to
number of the refined points) is affected, while the blue line represents the
effect on the fetching time. From the graph it is clear that the number of
extra points decreases reciprocally to the number of ranges. At level 15 of
this query the % of extra points is 67%. The fetching time, following a rather
similar trend, decreases up to a certain point and then fluctuates around
0.04 seconds. The fluctuation is, however, very small (around 0.01 seconds)
and it can be ignored. Figure 5.4 is a representative example of how space
only queries are affected by deeper TCs. From the graph is clear to see that
both curves decrease reciprocally to the number of ranges. Actually, the
fastest execution time is achieving less than 10% of extra points. Finally, the
effect on time only queries is depicted in Figure 5.5. Following the same
pattern as before, time only queries are significantly improved by deeper

3 Level 15 is used for practical reasons. The Python script identifying the Morton ranges can
result in very expensive execution times which makes testing very time consuming.

4 Although the cold runs are not presented in this document, it must be noted that their response
time is very similar to the hot runs. For some cases only, the cold run is 0.1 to 0.2 more
expensive than the hot runs.
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TCs. The relationship between the two variables and the number of ranges
is inverse linear, while at level 12 the % of extra points reaches the value of
0 (due to dataset distribution and scaling of time). Time only queries give
very interesting results as they converge the fastest to receiving no false hits.
This reaction is very much caused by the degree of scaling that is used.

To conclude, in the integrated approach that treats z as an attribute, all
types of queries are significantly aided by the finer TCs. In fact, the im-
provement in the % of extra points has no significant negative effect on the
execution time.
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Figure 5.3: Effect of using deeper 2n−Tree Cells on the percentage of extra points
obtained and the fetching time. Case: Space - time queries in the in-
tegrated approach (treatment of z as an attribute). ST-F is a line with
buffer of 5 metres (776 points).
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Figure 5.4: Effect of retrieving data from deeper 2n−Tree Cells on the percentage of
extra points obtained and the fetching time. Case: Space only queries in
the integrated approach (treatment of z as an attribute). S-A represents
a rectangular geometry (112144 points).
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Figure 5.5: Effect of retrieving data from deeper 2n−Tree Cells on the percentage of
extra points obtained and fetching time. Case: Time only queries in the
integrated approach (treatment of z as an attribute). T-A represents one
day (78902 points).
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Figure 5.6: Effect of retrieving data using deeper 2n−Tree Cells on the percentage of
extra points obtained and the fetching time. Case: Space - time queries
in the integrated approach (treatment of z added in the key). ST-F is a
line with buffer of 5 metres (776 points).

So far only the treatment of z as an attribute has been considered. The
question therefore arises, whether adding the z dimension in the Morton
key affects the previously observed trends that treat it separately. For this
reason, the same experiment is repeated for the treatment of z as part of the
key. Figure 5.6 represents the effect that deeper TCs have on the same space
- time query. As with the previous treatment of z, the % of extra points
follows the same pattern of decrease. This is not, however, the case for the
fetching time that sees a slight increase after approximately 100 ranges. Of
course, the fetching time is still bellow 0.1 seconds for a much lower amount
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of extra points, thus making deeper TCs more desirable in this treatment of
z as well. For space only type of queries, the trend is very similar to the
treatment as an attribute, although at level 15 there is a slight increase in
the fetching time. Nevertheless, the response is still sub-second. Time only
queries present no difference between the two treatments, continuing to
converge at the same level of the 2n−tree.

Apart from analysing the patterns between fetching time and the extra
points, it is interesting to also investigate the differences in the amount
of ranges required between the two treatments of z. For this, the ratio:
ranges when z is in the key to ranges when z is attribute is calculated for
all levels available. For a schematic investigation of the effect Figure 5.7 is
prepared. There we can observe that up to level 10 the number of ranges
between the two treatments of z is the same. Then, levels 11 and 12 show
the same amount of increase in the ranges for the three types of queries.
After this level, space - time and space queries follow a different but rather
similar trend. The conclusion is, nonetheless, that the deeper the level of
the 2n−tree, the bigger the ratio, which increases exponentially. This effect
is most probably caused due to the jumps in the Morton curve, that de-
crease the proximity of the points as the number of dimensions interleaved
is increased.
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Figure 5.7: The ratio of ranges returned by the z in the key treatment to the number
of ranges for the z as attribute treatment when moving deeper in the
2n−tree

5.4.2 The degree of merging - non-integrated approach

The degree of merging experiment studies the effect of imposing a different
degree of merging in the same original TCs on both the % of extra points
obtained and the filter fetching time. This test is specially relevant for the
non-integrated approach because of potential limitations on the length of
WHERE clauses. Studying it will allow us to find out which configuration
can balance the filter fetching execution time and the % of extra points. As
with the previous test, each query configuration is repeated 3 times, from
which the average of the two hot runs is used for making conclusions. The
result tables of this experiment for both treatments of z can be found at
Tables C.5 and C.6 of the Appendix. Within this section, graphs from one
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query per category (space -time and space only queries) are represented5.
The conclusions are, however, derived by also generalising the results avail-
able in the tables.
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Figure 5.8: Effect of imposing a different degree of merging in the same original Tree
Cells on the percentage of extra points obtained and the fetching time.
Case: Space - time queries in the non-integrated approach (treatment
of z as an attribute). ST-E represents line with buffer of 5 metres (380

points).
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Figure 5.9: Effect of imposing a different degree of merging in the same original Tree
Cells on the percentage of extra points obtained and the fetching time.
Case: Space only queries in the non-integrated approach (treatment of
z as an attribute). S-D represents line with buffer of 5 metres (11933

points).

5 Keep in mind that time queries are executed without having to identify Morton keys.
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Figure 5.8 presents a representative example of a space - time query while,
Figure 5.9 an example of a space only query. Both types of queries in the
non - integrated approach present the same trends. With the increase of
the number of ranges in the WHERE clause, as expected, the % of extra
points decreases reciprocally. However, opposite to the integrated approach,
a larger number of ranges leads to an exponential increase in the filter fetch-
ing time. For space only queries, even, the increase is so sharp that it results
in fetching times of hundreds of seconds. This behaviour is not suitable
for any of the two use cases. By closely observing the graphs one can re-
alise that a merging of 200 offers a rather good balance between the % extra
points and the fetching time. For this reason, the merging of 200 is used
throughout the rest of the experiments and the benchmarks of the next sec-
tion.

5.4.3 Depth of the tree with merging - non-integrated

Having identified the degree of merging that balances queries in the non-
integrated approach, the depth of tree experiment is performed. Contrary
to the integrated case, a merging to a maximum of 200 ranges takes place
at the same time. This experiment is performed for two reasons: first, to
explore how the non-integrated approach performs when moving deeper in
the tree and second, to find out whether composing the 200 ranges from
deeper TCs has an effect on the % of extra points. The result tables of this
experiment for both treatments of z can be found in Tables C.7, C.8 and C.9,
C.10 of the appendix.

Starting with this experiment, the previous conclusions that fetching time
is increased with a higher number of ranges, is corroborated here as well.
The faster the execution time, the more extra points are returned during the
filter step. This is, however, not ideal as receiving a large amount of extra
points makes the CPU-intensive refinement step a very expensive operation.
The second observation from the results is that composing 200 ranges from
deeper TC results in no significant gain in the % of extra points obtained.
We can therefore already conclude that the non-integrated approach will
not the best solution when managing dynamic point clouds.
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6 BENCHMARK DES IGN AND
RESULTS

Apart from the specific tests performed in the previous chapter, a com-
plete benchmark was designed and executed. Its purpose is to test the
performance of the proposed storage model in terms of storage space, load-
ing time and query response times. The detailed description of the used
datasets is available in Appendix A. Three benchmark stages have been de-
signed for each use case, each one of them being two times bigger than the
previous one. With the three benchmark stages (small, medium, large) the
aim is to compare: how the size of the stored data scales between bench-
marks, what is the effect of adding new spatio- temporal data in batches
and what can we conclude about the scalability of the queries. The final
goal is to gain insight into which storage model is the most optimal for each
use case.

Since both use cases originate from the same coastal monitoring domain,
there are some characteristics of the benchmarks which are shared between
them. First of all, each alternative storage model is run separately from the
rest, until both loading and querying are completed. Second of all, during
the loading procedure the medium and large benchmarks do not include
a fresh reloading of the previous stage. This is done in order to take into
consideration the growing nature of the scenarios. As a result, the new data
are added to the already stored points. Finally, the queries (Appendix B)
are executed for each of the four storage models and all three benchmark
stages (12 combinations in total). Each query is executed both in a cold and
hot system (repeated 6 times) before moving to the next query. The results
that are presented in this document are processed as follows: the most and
least expensive response time are ignored and an average is calculated from
the remaining 4. As a result, the presented number correspond to hot runs.
Only the fetching from the filter step (along with the number of points and
the percentage of the extra points obtained between the two querying steps)
is given in the following tables. This step is the most crucial because it is
directly related to the depth of the 2n−tree and the maximum number of
ranges specified (degree of merging). The rest of the steps can be optimised
further and are, therefore, currently of secondary importance.

approach treatment notation

non-integrated z attribute xy
non-integrated z added xyz
integrated z attribute xyt
integrated z added xyzt

Table 6.1: The benchmark cases and the used notation.

Within the rest of this section, the notation in Table 6.1 is used for the
four storage models executed. For each one of these, the notation is comple-
mented with the characters: S (for small), M (for medium) and L (for large),
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in order to show which benchmark size is being considered for the specific
results.

The rest of the chapter is organised as follows: In Chapter 6 the bench-
mark design and results are analysed. In Section 6.1 and Section 6.2 the
methodology is validated using a naive Oracle spatial approach. Finally, in
Section 6.4 a summary of the results presented is given.

6.1 sand engine
The Sand Engine benchmark stages have approximately the same spatial
extent but different extent on the temporal dimension. The details of the
benchmark stages are available in Table 6.2. As is it is easy to see, the
dataset is not massive in size but has a higher dynamic nature (compared
to the coastline dataset presented in Section 6.2). Some of the results in this
section are also included in Psomadaki et al. [2016].

Stage Points Days Size (MB) Description No. of files

Small 19M 230 347 from 2000 to 2002 230

Medium 44M 554 836 from 2000 to 2006 554

Large 74M 931 1414 from 2000 to 2015 931

Table 6.2: Benchmark stages description of the Sand Engine use case. The size col-
umn corresponds to the size of the LAS files. More information about the
dataset can be found in Section A.2.1.

6.1.1 Loading procedure

Table 6.3 presents the results of the loading procedure for the four storage
models and the three benchmark stages. No parallel processing is used for
any of these steps.

Approach
Time (s)

Size
(MB)

Points Points per sec.

conversion
Load
heap

Load
IOT

Heap IOT Heap IOT

xy - S 105.43 11.79 13.60 471 18,147,709 18,147,709 1,539,024 1,334,390

xy - M 145.14 16.56 49.65 1130 25,561,106 43,708,815 1,543,433 880,339

xy - L 167.75 19.72 78.00 1897 30,205,111 73,913,926 1,531,699 947,614

xyz - S 352.37 9.91 10.5 368 18,147,709 18,147,709 1,830,384 1,728,353

xyz - M 498.79 14.24 34.07 885 25,561,106 43,708,815 1,794,832 1,282,912

xyz - L 590.00 16.77 61.71 1495 30,205,111 73,913,926 1,801,161 1,197,763

xyt - S 349.68 11.79 13.09 471 18,147,709 18,147,709 1,539,024 1,386,380

xyt - M 492.29 16.56 40.39 1130 25,561,106 43,708,815 1,543,433 1,082,169

xyt - L 594.10 19.72 74.11 1897 30,205,111 73,913,926 1,531,699 997,354

xyzt - S 435.48 11.79 10.78 386 18,147,709 18,147,709 1,539,024 1,683,461

xyzt - M 604.27 16.56 33.21 927 25,561,106 43,708,815 1,543,433 1,316,134

xyzt - L 722.08 19.72 57.96 1566 30,205,111 73,913,926 1,531,699 1,275,258

Table 6.3: The loading times for the two integrations of space and time and the two
treatments of z for the Sand Engine use case. For more insight concerning
the Load heap and Load IOT columns refer to Listing D.1 and Listing D.3
respectively.

From the results it is easy to realise that the most expensive phase in the
loading procedure is currently the Morton conversion. The reason behind
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this is that the code being used is non-optimised Python code. In addition to
that, adding one extra dimension in the key (xy→ xyz, xyt→ xyzt), makes
the conversion a more expensive operation. This is an expected behaviour,
given that the complexity of the algorithm increases. Concerning the bulk
loading of the data into the heap table, it can be observed that the process
costs approximately the same amount of time for all four storage models.
This observation can be explained since the same loading utility (SQLLDR)
is being used for the same amount of points. Finally, for the loading into the
IOT it can be distinguished that, between the two integrations of space and
time, the same treatment of z costs approximately the same amount of time.
Having z in the key, makes the creation of the IOT faster. One explanation
for this behaviour could be the use of the NUMBER data type in all columns
being created.

The storage requirements for all four storage models are schematically
presented in Figure 6.1. Apparently, the storage models requiring the most
space are the cases where z is treated as an attribute. Both cases actually
have the same storage requirements. Nonetheless, adding z in the key for
the non-integrated approach (xyz), requires less space than the xyt case (of
the integrated approach). This means that obtaining a 3D key with only the
spatial components requires less space than having a 3D key with the x, y
and time dimensions. Finally, we can observe that the IOT requires slightly
more storage than the corresponding LAS files.

To conclude, among all storage models, the non-integrated approach with
z in the key offers the fastest loading and the least storage requirements.
This could be considered as an expected behaviour since adding new points
in the IOT should not affect the already organised points. However, the
xyzt case of the integrated approach, also, shows very close results and
this suggests that having all four dimensions in one key is a compact and
appropriate solution for storing dynamic point clouds.
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Figure 6.1: The storage requirements of the 4 storage models for the 3 benchmark
stages
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6.1.2 Query procedure

The scalability of the queries is tested within this section. The queries have
been chosen in a way that allows them to be executed in all three benchmark
stages. Like the loading procedure, no parallel processing is used. The
decision was based upon the fact that although parallelisation was enabled
for the queries in certain test cases, only one core was actually being used
during query execution1. Parallelisation, however, seems to work in the non-
integrated approach and during space queries. In space queries the primary
key (time, Morton) is not used for fetching of the data and that seems to
enable parallelisation. To have consistency between our results, no parallel
processing is used.

Table 6.4 presents the results of the hot run of the 12 queries in the non-
integrated approach. The execution order of the queries is as follows: ST-A,
ST-B, S-A, ST-C, T-A, ST-D, S-B, S-C, ST-E, T-B, S-D, ST-F. To have a fair
comparison between the two integrations (due to the different query meth-
ods and the merging of 200 taking place in the non-integrated approach),
in Table 6.5, results from the integrated approach with maximum number
of ranges set also to 200 are presented. In addition to that, the results from
the integrated approach with maximum allowed ranges set to 1,000,000 are
presented in Table 6.6.

From the query results we observe that the integrated approach with
1,000,000 maximum number of ranges offers the fastest response times for
the majority of the queries and the lowest % of extra points. Other more
specific observations are (see also Figure 6.2 and Figure 6.3):

• In all of the three tables the response times for space - time and time
queries are constant between the benchmark stages. This is a desired
characteristic which means that the system adapts well, even when
doubling the size of the database. For space queries, the number of
points increases with each benchmark because more data (days) are
present in the database and thus the output of the queries is larger
(observe the final points columns of the space queries).

• Comparing the two integrations using the same amount of maximum
ranges, we can see that the integrated approach is affected with a lot
extra points. Even so, the response time of the integrated approach
continues to be better for space - time and space queries. Again, the
non-integrated approach is proven to be not the most optimal solution
for querying spatio-temporal point clouds.

• Comparing the two treatments of z in the non-integrated approach,
we see an overall deterioration both in the query response times and
the % of extra points of space - time and space queries when z is
added to the key. z in the key is more expensive as the whole extent of
the z dimension has to be used during the range identification. Time
queries, on the other hand, see an improvement, firstly because time
is dominant and secondly because one less column has to be fetched
from disk.

• Comparing the two treatments of z in the integrated approach we
can observe that: 1. For the case when the maximum number of
ranges is 200, there is an improvement in the response times of all
types of queries. However, the % of extra points for space - time and

1 Possibly a bug in the Oracle database
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some space queries seems to almost double when treating z as part
of the key. 2. When the maximum number of ranges is 1,000,000 we
can see a slight increase (0.1 seconds) in the response time of space
- time queries, and in certain cases double % of extra points. This is
caused because the two storage models do not reach the same maxi-
mum depth in the tree. The solution is, of course, to fetch the same
amount of extra points (go one level deeper). Space queries, have an
overall improvement when z is part of the key, but more % of extra
points are fetched. Time queries are improved when z is in the key
and there is no effect in the % of extra points.

• By comparing the time queries, one can see that the slowest response
times are found in the integrated approach with the merging of 200.
The reason is the large amount of extra points being fetched due to
the high degree of merging. Contrary to the previous case, the rest of
the cases examined have time queries of similar response times.

• By comparing the % of extra points in all three of the tables for both
treatments of z, we can observe that line buffer queries (ST-E, ST-F, S-
D) receive the largest amount of extra points, when compared to poly-
gons and circles. In general, such diagonal geometries with a small
width are difficult to be approximated. Nevertheless, the decomposi-
tion used here is going to be better than a bounding box approxima-
tion (see also Figures 6.4 and 6.5).

• One undesired effect can be found in the space queries of the inte-
grated approach: when moving from the medium to the large bench-
mark the number of extra points seems to double. Although not
shown here, during the large benchmark the decomposition algorithm
reaches one level less compared to the small and medium benchmark.
This can be resolved by developing an algorithm that identifies the
maximum depth of the tree in a more dynamic way.
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id
fetching (s) % extra points Final Points

S M L S M L S M L

z
at

tr
ib

ut
e

ST-A 0.33 0.33 0.33 12 12 12 3927 3927 3927

ST-B 0.22 0.22 0.21 14 14 14 4237 4237 4237

ST-C 0.92 0.91 0.93 12 12 12 2812 2812 2812

ST-D 3.86 3.92 4.03 3 3 3 2185 2185 2185

ST-E 2.94 3.09 3.38 38 38 38 380 380 380

ST-F 1.34 1.57 1.40 137 137 137 327 327 327

S-A 30.66 74.11 128.02 30 29 28 86017 231283 509964

S-B 50.98 122.38 209.89 7 9 8 2788 8934 23949

S-C 24.72 64.30 108.58 11 11 11 11501 32983 54111

S-D 109.10 260.34 444.13 62 62 61 11933 33494 90670

T-A 0.52 0.51 0.51 0 0 0 78902 78902 78902

T-B 1.01 1.01 1.04 0 0 0 157806 157806 157806

z
in

ke
y

ST-A 1.07 1.08 1.12 19 19 19 3927 3927 3927

ST-B 0.65 0.64 0.66 17 17 17 4237 4237 4237

ST-C 1.75 1.86 1.83 40 40 40 2812 2812 2812

ST-D 3.93 3.97 4.30 24 24 24 2185 2185 2185

ST-E 3.39 3.42 3.41 251 251 251 380 380 380

ST-F 1.75 1.94 1.93 497 497 497 327 327 327

S-A 122.95 292.07 503.75 30 29 28 86017 231283 509964

S-B 114.90 291.73 481.49 32 37 33 2788 8934 23949

S-C 105.02 260.18 422.42 22 22 22 11501 32983 54111

S-D 103.44 244.45 417.43 237 237 218 11933 33494 90670

T-A 0.33 0.32 0.31 0 0 0 78902 78902 78902

T-B 0.62 0.63 0.62 0 0 0 157806 157806 157806

Table 6.4: Query response times, the percentage of false hits compared to the ac-
tual number of points and, the points returned by the queries for the
non-integrated approach with maximum number of ranges set to 200.
For more insight about how space - time, space and time queries are per-
formed refer to Listing D.10, Listing D.9, and Listing D.6 respectively.
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id
fetching (s) % extra points Final Points

S M L S M L S M L

z
at

tr
ib

ut
e

ST-A 0.05 0.04 0.04 36 36 36 3927 3927 3927

ST-B 0.09 0.08 0.09 206 206 206 4237 4237 4237

ST-C 0.05 0.05 0.05 111 111 111 2812 2812 2812

ST-D 0.03 0.03 0.03 55 55 55 2185 2185 2185

ST-E 0.02 0.02 0.02 402 402 402 380 380 380

ST-F 0.03 0.03 0.03 798 798 798 327 327 327

S-A 1.50 5.05 14.09 222 309 433 86017 231283 509964

S-B 0.12 0.48 1.32 597 849 925 2788 8934 23949

S-C 0.30 1.04 3.83 338 474 1243 11501 32983 54111

S-D 1.58 5.61 26.08 2339 3095 5392 11933 33494 90670

T-A 3.37 3.39 3.41 710 710 710 78902 78902 78902

T-B 4.84 4.86 4.86 483 483 483 157806 157806 157806

z
in

ke
y

ST-A 0.04 0.04 0.04 136 136 136 3927 3927 3927

ST-B 0.06 0.06 0.06 267 267 267 4237 4237 4237

ST-C 0.04 0.04 0.04 262 262 262 2812 2812 2812

ST-D 0.02 0.02 0.02 130 130 130 2185 2185 2185

ST-E 0.02 0.02 0.02 962 962 962 380 380 380

ST-F 0.02 0.02 0.02 1512 1512 1512 327 327 327

S-A 0.88 2.91 7.80 254 346 439 86017 231283 509964

S-B 0.10 0.31 0.76 900 994 974 2788 8934 23949

S-C 0.25 0.65 2.14 565 568 1281 11501 32983 54111

S-D 0.85 3.11 14.06 2374 3119 5403 11933 33494 90670

T-A 1.84 1.83 1.83 710 710 710 78902 78902 78902

T-B 2.60 2.61 2.63 483 483 483 157806 157806 157806

Table 6.5: Query response times, the percentage of false hits compared to the actual
number of points and, the points returned by the queries for the inte-
grated approach with maximum number of ranges set to 200. For more
insight about how space - time, space and time queries are performed
refer to Listing D.8.
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id
fetching (s) % extra points Final Points

S M L S M L S M L

z
at

tr
ib

ut
e

ST-A 0.05 0.05 0.06 2 2 2 3927 3927 3927

ST-B 0.13 0.12 0.13 1 1 1 4237 4237 4237

ST-C 0.04 0.04 0.04 12 12 12 2812 2812 2812

ST-D 0.03 0.03 0.03 6 6 6 2185 2185 2185

ST-E 0.04 0.04 0.04 27 27 27 380 380 380

ST-F 0.04 0.04 0.04 35 35 35 327 327 327

S-A 0.68 1.73 3.76 15 15 28 86017 231283 509964

S-B 0.10 0.26 0.36 14 16 26 2788 8934 23949

S-C 0.16 0.39 0.53 11 11 22 11501 32983 54111

S-D 0.42 1.09 1.75 46 47 97 11933 33494 90670

T-A 0.59 0.60 0.59 0 0 0 78902 78902 78902

T-B 0.96 0.96 0.95 0 0 0 157806 157806 157806

z
in

ke
y

ST-A 0.11 0.11 0.11 2 2 2 3927 3927 3927

ST-B 0.08 0.08 0.08 4 4 4 4237 4237 4237

ST-C 0.06 0.06 0.06 12 12 12 2812 2812 2812

ST-D 0.12 0.13 0.12 6 6 6 2185 2185 2185

ST-E 0.13 0.13 0.13 50 50 50 380 380 380

ST-F 0.11 0.11 0.11 67 67 67 327 327 327

S-A 0.47 1.17 2.61 30 29 58 86017 231283 509964

S-B 0.08 0.21 0.48 64 72 68 2788 8934 23949

S-C 0.17 0.23 0.41 22 45 46 11501 32983 54111

S-D 0.63 0.59 1.41 100 190 184 11933 33494 90670

T-A 0.42 0.42 0.42 0 0 0 78902 78902 78902

T-B 0.57 0.57 0.58 0 0 0 157806 157806 157806

Table 6.6: Query response times, the percentage of false hits compared to the ac-
tual number of points and, the points returned by the queries for the
integrated approach with maximum number of ranges set to 1,000,000.
For more insight about how space - time, space and time queries are per-
formed refer to Listing D.8.
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Figure 6.2: Schematic representation of the results found in Table 6.4 and Table 6.6.
The x axis represents the points available in the IOT, while the y axis
represents the query response times. Each line also contains the % of
false hits compared to the actual number of points. Case: Space - time
queries
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Figure 6.3: Schematic representation of the results found in Table 6.4 and Table 6.6.
The x axis represents the points available in the IOT, while the y axis
represents the query response times. Each line also contains the % of
false hits compared to the actual number of points. Case: Space only
and time only queries
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6.2 coastline
The Coastline benchmark stages have approximately the same spatial extent
but different extent on the temporal dimension. The details of the bench-
mark stages are available in Table 6.7. Contrary to the Sand Engine dataset,
the Coastline one is more massive in size but lacks dynamic nature (only 4

years are available).

Stage Points years Size (GB) Description No. of files

Small 500M 1 9.4 2012 13

Medium 995M 2 18.7 2012 to 2013 120

Large 2020M 4 37.9 2012 to 2015 338

Table 6.7: Benchmark stages description of the Coastline use case for the Full bench-
mark. The size column corresponds to the size of the LAS files. More
information about the dataset can be found in Section A.2.2.

Because the dataset is massive, first, a simplified small benchmark with
about 140 million points was executed. This small benchmark (same tempo-
ral configuration as Table 6.7) covers the area around the Sand Engine. The
main purpose of this benchmark was to choose the right scaling of the time
dimension (10,000 see also Section 5.3.1). Having configured the use case
the medium and large benchmark were performed. The medium benchmark
covers a big part of the province of South Holland, and the large bench-
mark covers the whole coastline of the province of South Holland. The
results of the above mentioned benchmarks can be found in Section C.2 of
the Appendix. Finally, the full benchmark of the whole coastline is executed
and used within this section to study the scaling behaviour of the storage
model. This stepwise benchmark approach with the different spatial ex-
tents allowed more control over the process. From the results of the small
and medium benchmarks I came to the conclusion that the non-integrated
approach was not a good solution for the time being and therefore, was not
executed for the rest of the benchmarks.

6.2.1 Loading procedure

Table 6.8 presents the results of the loading procedure for the integrated
approach. For the reasons explained in previous sections, no parallel pro-
cessing is taking place in any of the following results.

Approach
Time (hr)

Size
(GB)

Points Points per sec.

conver.
Load
heap

Load
IOT

Heap IOT Heap IOT

xyt - S 2:48 0:05 0:33 11.4 500,212,673 500,212,673 1,452,146 246,034

xyt - M 2:36 0:05 0:47 22.7 494,909,041 995,121,714 1,562,439 352,724

xyt - L 5:38 0:11 0:56 46.2 1,025,476,822 2,020,598,536 1,492,237 593,290

xyzt - S 3:21 0:05 0:11 9.9 500,212,673 500,212,673 1,659,871 746,965

xyzt - M 3:12 0:04 0:19 19.6 494,909,041 995,121,714 1,749,987 853,625

xyzt - L 6:42 0:09 0:40 39.8 1,025,476,822 2,020,598,536 1,737,570 822,512

Table 6.8: The loading times of the integrated approach for the two treatments of z
in the coastline use case (Full benchmark). For more insight concerning
the Load heap and Load IOT columns refer to Listing D.1 and Listing D.3
respectively.
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The observations made for the Sand Engine use case are corroborated
for this use case as well. This time, however, it is easy to see how more
expensive the Morton conversion in Python is, especially when compared
to the loading on the heap table and the IOT. The loading into the heap is a
very fast operation considering the amount of points and is approximately
of the same magnitude for both treatments of z. Contrary to that, adding
z in the key makes the creation of the IOT considerably faster. Actually,
the loading in the IOT when using z as an attribute is unexpectedly slow;
approximately 300,000 points per second when loading 500 million points.
Concerning the storage requirements, when treating z as an attribute, the
size of the database is 20% bigger than the size of the LAS files. On the other
hand, for the z in the key treatment, the storage is closer (5%) to that of the
LAS files. Finally, when comparing the storage sizes of the two treatments
of z, having z as an attribute requires 15% more storage space than when z
is in the key.

To conclude, among the two treatments of z the fastest loading and the
least storage requirements are provided when z is part of the key. This is the
most compact solution as the table only consists of one column containing
all four dimensions (x,y,z,time).

6.2.2 Query procedure

This section examines the scalability of the queries. The queries were picked
such that they could be executed in the small and medium benchmarks
discussed before. This allows me to test whether there are significant dif-
ferences when using a different spatial extent. The execution order of the
queries is as follows: ST-A, S-A, ST-B, ST-C, ST-D, ST-E, ST-F, ST-G, S-B,
S-C. Parallisation is not enabled in any of the queries executed. Table 6.9
presents the query results of the 10 queries executed. Queries ST-F and ST-
G are outside domain in the time dimension for the small benchmark stage
and therefore no data are presented. For both treatments of z, the maximum
number of allowed ranges is set to 1,000,000.

In general, we can conclude that treating z as part of the key offers, in
general, better response times for both space and space - time queries, even
if the z dimension is not used in the selection2. However, the faster response
comes at the cost of more extra points being fetched. This can be easily
resolved by moving deeper into the 2n−tree. For practical reasons this was
not applied because the Python code developed for the range identification
becomes very expensive, something that would have made the benchmarks
very timely to be executed. Other more specific remarks are:

• Both storage models present constant response times for space - time
queries that only depend on the number of points that need to be
fetched and not on the size of the table.

• Space queries, in this case as well, present a doubling of the percentage
of extra points when moving either from the small benchmark stage to
the medium or from the medium to the large. As proposed before, this
can be resolved by having a more dynamic algorithm for identifying
the maximum depth of the tree.

2 If z was to be used in the selection, then the result is expected to be much better.
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• When treating z as part of the key, line buffer queries receive the
largest amount of extra points. For the treatment of z as an attribute
this seems to only apply during space queries.

• When comparing the small (Table C.16), medium (Table C.18), large (Ta-
ble C.20) and full benchmarks (Table 6.9) we can see that the query re-
sponse times remain the same. As opposed to that, the percentage of
extra points is not completely unaffected by the change in the spatial
extents. When moving from the medium to the large benchmark, the
percentage of extra points when z is part of the key seems to increase.
When looking closely at the raw results, one can immediately observe
that the depth of the tree in the large and full benchmark is one level
less than the one used in the medium and small. Again this has to do
with the implemented algorithm for approximating the query geome-
try, which is not dynamic.

id
fetching (s) % extra points Final Points

S M L S M L S M L

xy
t

ST-A 2.29 2.20 2.20 3 3 3 389554 389554 389554

ST-B 1.98 1.95 1.95 4 4 4 342239 342239 342239

ST-C 0.48 0.49 0.48 4 4 4 69339 69339 69339

ST-D 0.46 0.50 0.47 2 2 2 69967 69967 69967

ST-E 0.86 0.88 0.83 4 4 4 134998 134998 134998

ST-F - 2.59 2.48 - 5 5 - 461432 461432

ST-G - 3.15 3.06 - 3 3 - 518702 518702

S-A 0.45 0.96 1.73 2 2 4 71999 151687 301429

S-B 0.14 0.29 0.49 9 9 17 20135 38523 71823

S-C 0.57 1.12 2.27 5 10 10 98382 174746 382500

xy
zt

ST-A 1.25 1.35 1.34 7 7 7 389554 389554 389554

ST-B 1.11 1.22 1.23 8 8 8 342239 342239 342239

ST-C 0.32 0.32 0.33 17 17 17 69339 69339 69339

ST-D 0.41 0.40 0.41 9 9 9 69967 69967 69967

ST-E 0.57 0.60 0.58 17 17 17 134998 134998 134998

ST-F - 1.53 1.53 - 5 5 - 461432 461432

ST-G - 1.97 1.97 - 7 7 - 518702 518702

S-A 0.28 0.58 1.10 8 16 16 71999 151687 301429

S-B 0.10 0.19 0.39 32 32 63 20135 38523 71823

S-C 0.39 0.77 1.65 20 39 39 98382 174746 382500

Table 6.9: The query response times, the percentage of false hits compared to the
actual number of points and, the number of points returned by the queries
in the integrated approach of the coastline dataset (Full benchmark).

6.3 validation and comparison
To validate that our implemented prototype returns the right amount of
points and to have some sort of comparison, the naive approach of using
Oracle spatial and date data types is implemented. For this a 3 dimensional
SDO POINT is used together with 2D R-Tree for fast spatial access. To
also achieve fast access in the time dimension, a B-Tree is built on the time
column. For the SQL scripts used, the reader is referred to Section D.3.
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To perform the validation, the Sand Engine dataset is used. For this the
same benchmark stages are executed, with the same query geometries. The
results of the loading procedure are presented in Table 6.10. When com-
pared to any of the storage models of the proposed methodology (Table 6.3),
certain observations can be made. The total execution time of the loading
procedure is 3 to 6 time more expensive, mostly due to the R-Tree index gen-
eration. The least expensive operation is the B-Tree index. Note, that both
R-Trees and B-Trees are built from scratch when moving from one bench-
mark stage to the next. The storage requirements of the three benchmark
stages are presented in Table 6.11. Again the differences are quite noticeable
when compared to the proposed methodology. In general, the Oracle spa-
tial approach requires 5 times more storage when compared to the storage
model with the highest storage requirements.

Approach
Time (s)

Points
preparation Load R-Tree B-Tree

S 31.04 244.27 891.99 15.37 18,147,709

M 45.07 337.68 2273.38 31.69 43,708,815

L 51.48 400.27 4099.36 73.72 73,913,926

Table 6.10: The loading response times for the validation of the Sand Engine use
case. For more insight concerning how the the data are loaded, refer to
Section D.4.

Approach
Size (MB)

Points
Table R-Tree B-Tree total

S 1007 1097 371 2475 18,147,709

M 2414 2643 891 5948 43,708,815

L 4065 4468 1505 10038 73,913,926

Table 6.11: The storage requirements for the validation of the Sand Engine use case.

id
Total time (s) % extra points Final Points

S M L S M L S M L

ST-A 0.52 1.28 1.89 0 0 0 3927 3927 3927

ST-B 0.83 2.08 3.85 106 106 106 4237 4237 4237

ST-C 0.36 0.72 2.52 116 116 116 2812 2812 2812

ST-D 0.33 0.42 1.00 163 163 163 2185 2185 2185

ST-E 0.29 0.32 0.41 7752 7752 7752 380 380 380

ST-F 0.21 0.28 0.79 11961 11961 11961 327 327 327

S-A 0.52 1.19 2.03 203 213 207 86017 231283 509964

S-B 0.11 0.16 0.24 93 120 105 2788 8934 23949

S-C 0.16 0.28 0.39 27 25 27 11501 32983 54111

S-D 0.17 0.32 0.69 1011 940 860 11933 33494 90670

T-A 0.19 1.97 0.19 0 0 0 78902 78902 78902

T-B 0.31 1.97 0.31 0 0 0 157806 157806 157806

Table 6.12: The query response times, the percentage of false hits of the filter step
compared to the actual number of points and, the number of points
returned by the queries in the validation of the Sand Engine use case.
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When benchmarking the query procedure, the same configuration as de-
fined before is used. The queries are repeated 6 times and the presented
results are the average of four left when excluding the least and the most
expensive response. Since an R-Tree index is built for fast spatial access, the
Oracle database also follows a two step approach during query execution.
However, contrary to the implemented methodology, this two step process
is transparent to the user. To have an idea how well the filter step (using the
SDO FILTER operator) approximates the query geometry, the operator was
executed separately and the number of points was counted. This allows me
to have the same percentage (%) of extra points comparison but this time
using an MBR approximation.

The results from the query execution are available in Table 6.12. Note that
contrary to the proposed storage models (Table 6.6), the times presented
here represent the total query execution time (both filter and refinement
step) and are for most of the cases better than the total time from the imple-
mented methodology. However, this naive approach for managing spatio-
temporal point clouds does not provide constant execution times between
the benchmark stages of space - time queries. This suggests that the com-
bination of an R-Tree and B-Tree index does not scale good. In addition to
that, time queries show a fluctuating behaviour that cannot be explained at
this moment in time. These are crucial characteristics that make this method
not suitable. For the validation part of this benchmark, we can indeed ob-
serve that the implemented methodology does return the correct amount of
points. Finally, when comparing the MBR approximation during the filter
step with the 2n−tree decomposition used within the proposed methodol-
ogy we observe that:

• Axis aligned rectangles (ST-A) are fully approximated using the MBR

solution. The quadtree decomposition (2D) is nevertheless not worse
since it returns 2 % extra points. The 2n−tree decomposition of query
ST-A is depicted in Figure 6.4a.

• Polygons and circles in the validation approach seem to return approx-
imately twice the amount of the actual points during the filter step.
The 2n−tree decomposition, on the other hand, returns less than 15 %
extra points for space - time queries, while space queries have at the
worst case 70% extra points. The quadtree decomposition of a polygon
(ST-B) is depicted in Figure 6.4b and of a circle (S-C) in Figure 6.5a.

• Line buffers are the worst approximated geometries when using MBRs.
In the case of the ST-F query, even, the filter step returns 120 times
more points than the actual number. The 2n−tree decomposition,
however, when being at the right depth can achieve to describe such
geometries very precisely. A focused view of the quadtree decompo-
sition for a line buffer query (ST-E) before any merging takes place is
depicted in Figure 6.5b.

6.4 summary
Within this chapter a benchmark was designed and executed. From the pre-
sented results (as a whole) we can conclude that the integrated approach is
the best way to manage and query dynamic point clouds. From the manag-
ing point of view, this approach offers a very compact storage model, which
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(a) The decomposition of an axis aligned polygon (Query
ST-A) using quadtree cells.

(b) The decomposition of a polygon (Query ST-B) using
quadtree cells.

Figure 6.4: Morton ranges decomposition of polygonal geometries
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(a) The decomposition of a circle (Query S-C) using
quadtree cells.

(b) The decomposition of a line buffer geometry (Query ST-E) using quadtree cells.

Figure 6.5: Morton ranges decomposition of circular and line buffer geometries
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in the case of z in the key, includes an IOT with only one column. From
the query point of view, this approach offers scalable query response times
and significantly less false hits than a MBR approximation, usually used in
today’s spatial databases. Nevertheless, the approach still requires optimi-
sation is certain parts, something that is discussed in Section 7.2.

80



7 CONCLUS ION AND FUTURE WORK

This chapter concludes the research performed in this document. As the
title suggests, in the next pages the conclusions are described (Section 7.1)
and the future work is discussed (Section 7.2).

7.1 conclusions

The conclusions section is composed out the following relevant subsections:
In Section 7.1.1, the research questions introduced in Section 1.3 are being
answered. Section 7.1.2 gives a summary of the overall contribution of this
thesis. Section 7.1.3 presents my reflections about the proposed methodol-
ogy.

7.1.1 Research Questions

This subsection contains the answer to the research question. In doing so,
the sub-questions are being answered first. Finally, the subsection concludes
by answering the main research question.

1. What are dynamic point clouds and what are relevant use cases and requirements
for their querying?

As with all models of the real world, two types of point clouds can be
identified. More specifically point clouds can be considered as static objects,
where it is sufficient to study a phenomenon in a specific moment in time.
In addition to that, point clouds are lately used for identifying changes
occurring throughout time or take place in spatio-temporal analysis, thus
being considered as dynamic objects. The latter spatial representation is
referred in this thesis as a dynamic point cloud.

A very relevant use case for dynamic point clouds can be found in the
context of the coast. Coastal areas, being highly dynamic, require yearly or
daily or even hourly monitoring. One way to monitor the changes occur-
ring around the coast is by acquiring point cloud data. Many researchers,
among which employees of the Deltares institute, make use of point clouds
to perform applications like, coastal change detection, shoreline delineation,
coastal inundation prediction, spatio-temporal visualisations etc.

The most prominent requirements for querying dynamic point clouds are:

• Only space queries This type of query returns all the spatio - temporal
points that are found in a specific area, and is considered as a special
type of query. The special part emerges upon the fact that, as more
spatio-temporal datasets are accumulated over time, the number of
points returned by the same space query increases.
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• Space - time queries This type of query returns all spatio-temporal
objects found in a specific area during a specific time range or moment
in time.

• Only time queries This type of query returns all spatio-temporal ob-
jects found in a specific moment in time or during a specific time
range.

2. What are the relevant parameters that need to be taken into account for the man-
agement of dynamic point clouds when using a SFC approach?

When referring to the overall process of managing and querying dynamic
point clouds, the relevant parameters that need to be taken into account are:

various operations The approach should be able to support more than
just retrieval of the data, i.e. loading, updates, simple analysis (normal
vector calculation).

dynamic insertions The approach used should be able to support the
insertion of new spatio - temporal points without having to rebuild
the dataset from scratch. An example includes adding the coastline of
a neighbouring country e.g. Belgium or adding new yearly data.

scalable operations The data retrieval using the data structure should
not be affected by the size of the database. Querying from a dataset
that has 10 times more points, should be as fast.

time and space efficiency The data structure should lead to a minimised
number of disk accesses and efficient storage.

When querying dynamic point clouds, four more parameters need to be
taken into consideration and be balanced:

fetching time The fetching time of the filter step should be minimised
and require the least possible disk accesses. In addition to that, refer-
ring to the scalable operations, the fetching time should be indepen-
dent of the database size.

percentage of extra points The number of false hits retrieved during
the filter step should be minimised. In case the number is small com-
pared to the final points, then the refinement step which is a CPU
intensive operation, can be ignored.

depth of the tree The depth of the tree used should lead to an accu-
rate decomposition of the Query Region (QR) into ranges, while not
generating an extreme amount of them.

the degree of merging Whenever the number of ranges exceeds a spec-
ified maximum, a merging should take place. The degree of merging
should be defined based on the use case.

3. What kind of SFC approaches can be used to support the integration of space
and time, taking into account the continuous insertions of new points and efficient
querying?

Given that the management and querying of dynamic point clouds should
fulfil two contradictory requirements (space - time proximity for fast re-
trieval and, loading that does not reorganise too much already stored data,
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for fast insertions), two integrations of space and time are used. Each one
of them fulfils one requirement more than the other. The first approach is
the integrated approach that equally uses all dimensions for the generation
of the SFC. A different degree of proximity can be achieved by appropri-
ately scaling the time dimension, relative to the spatial ones. The second
approach is the non-integrated approach, where time dominates over the
spatial components, that are organised internally using a SFC. The former,
achieves better space - time proximity, while the latter can support batch
loadings of new data without having to reorganise the old data. Concern-
ing the latter, this will not be true if we were to add new temporal data of
a completely different area (e.g. add temporal information for Belgium and
Germany). Reorganisation will not take place if the new data are added in
an ascending order for the same spatial extent.

The two options represent two extremes of a continuum. Depending on
whether the z dimension is part of SFC or not, two treatments can be defined
per each type of integration.

4. How do the different SFC approaches compare to each other according to the use
cases?

Through the execution of experiments and benchmarks using two use
cases, one with daily temporal dimension and another with yearly, it was
proven that the best approach to follow is the integrated approach. Because
the methodology is generic one can generalise this result and conclude that
use cases of similar characteristics will also show the same behaviour. When
looking at the two methods separately, one can realise that:

• The non-integrated approach is easy to be implemented and possibly
more portable to other databases that do not have a similar NUMBER
data type like the Oracle database. However, the method appears to
have many disadvantages when it comes to the query procedure. First,
space queries have relatively slow response times. Second, a higher
number of Morton ranges during the query execution seems to have
a negative effect on the fetching time, thus a larger number of extra
points needs to be fetched to achieve a relative fast filter step. Third,
certain discrepancies in query response time can be found for bigger
datasets concerning the scalability requirement. Finally, having the z
dimension in the key significantly worsens query response times of
space - time and space queries.

• The integrated approach is a more compact way to structure dynamic
point clouds. Unlike the non-integrated approach, this method can be
significantly aided by a larger number of Morton ranges during query
execution which is performed as a join between the data table and
a table containing the ranges. Nonetheless, a limit should be set for
practical reasons.

Having z as part of the key, also, does not seam to have a significantly
negative effect, although some more extra points might need to be
fetched. Concerning some disadvantages, this method is very much
dependent on the scaling of the time dimension that needs to be con-
figured using a subset of the whole dataset.

Having given answers to the sub-question above, the main research ques-
tion can also be answered.
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Is a Space Filling Curve (SFC) approach an appropriate method for inte-
grating the space and time components of point clouds in order to support
efficient management and querying (use) in a DBMS?

Yes, as it is corroborated from the experiments studying the metrics of per-
formance and the executed benchmarks, the SFC approach is an appropriate
method for managing dynamic point clouds. Actually the best approach,
given the defined use cases, concerns an equal treatment of the spatial and
time dimensions in the SFC. At this point in time, the approach is platform
dependent (Oracle database) due to the use of the IOT and NUMBER data
type. However, the method is scalable and can be used for a wide variety of
use cases. The user only needs to define the appropriate encoding of space
and time and, scaling of time for the needed use cases.

7.1.2 Contribution

With this thesis I have introduced a new method for managing dynamic
point clouds i.e. point clouds where the time dimension affects the organi-
sation of the points. This method includes using a Space Filling Curve (SFC).
I have investigated two integrations of space and time and have shown that
the integrated approach is the best way to follow for daily and yearly data.
Within this I have also tested two treatments of z (z as an attribute and z
as part of the key), and have validated and compared the proposed method
with a naive Oracle spatial approach.

The proposed methodology fulfils important characteristics such as: wide
variety of operations, dynamic insertions, scalable and efficient queries, to-
gether with a fairly good approximation of the QR that results in less extra
points compared to the usually used MBR approximation.

7.1.3 Reflection and discussion

Six major criticisms need to be made about the developed prototype.

programming language and code quality The first has to do with the
efficiency of the programming language used (Python) and the quality
of the code. These two components make the implemented prototype
not very efficient in its current state. For example, the morton range
generation is an extremely expensive operation and for this reason
was ignored from the benchmark results. The same accounts for the
encoding and decoding of the Morton ranges.

data movement The second has to do with the movement of data from
the database to the Python application and back. The method would
considerably be aided by providing native database functions that can
perform those actions (see Future Work).

focusing on the filter step The third criticism in primarily the result
of the previous two. Due to the chosen programming language and
because of the data movement, I have only considered the filter step
within the tests. This part of the methodology directly uses the data
structure and it is independent of the programming language. The
rest of the steps can be markedly improved with a different approach
(see Future Work). Nevertheless, even when considering expensive
steps, the method remains scalable.

84



focusing on hot runs of the queries The fourth criticism goes to the
studying of the hot runs of the query response times. Because hot runs
are used, it means that it is actually not possible to observe if the least
possible disk accesses take place. Such parameter should have been
studied using the cold runs of the queries. However, cold runs cannot
always be trusted as they might include other operations that the DBMS

performs that are not related to the fetching itself.

space filling curve used The fifth has to do with the SFC used for clus-
tering the points. The one used was chosen for its fast prototyping
capabilities. However, this specific SFC is not optimal at clustering,
compared to other curves like the Hilbert curve, thus affecting the
quality of the clustered points.

combining with gis data Finally, it has to be noted that in its current
form, the prototype does not provide easy integration with other GIS

data, like vector or raster. This is important to mention since one
of the arguments for storing point clouds inside the database is their
full integration with other spatial models. To be able to solve this
limitation a lot of functionality has to be transferred to the database
itself (see Future Work)

7.2 future work
Within this section several recommendations for future work are provided.
The future work has to do with areas that were not investigated due to time
limitations and possibilities for improving the method. Within the following
list, the first two items are the most crucial that should be considered first.

7.2.1 Native database functionality

One of the limitations of my implemented prototype is the movement of
data between the Python application and the DBMS used. Input/ Output op-
erations are always a bottleneck, so the method would benefit from having
native database functionality. This functionality includes the SFC calcula-
tion during loading, the range generation and the decoding of the selected
ranges. This would also allow the two - step filter step to become transpar-
ent to the user, as in the case of the normal spatial operators in mainstream
DBMS. Finally, it is important to consider that such functionality would most
probably be developed using compiled languages (Java or C for the case of
Oracle) and all operations would become much faster when compared to
response times using Python.

Some preliminary work has already been done with the use of C++ code
instead of Python during the loading procedure. The SFC transformation
is still performed outside the database. The code used is developed by
Xuefeng Guan and can be found at: https://github.com/kwan2004/SFCL

ib. Both the Morton and Hilbert curve are used in this case. The results
(column 2) show significant improvement (6 times faster) during the SFC

conversion phase of the xyzt case Table 6.3, when using the Morton curve
(see Table 7.1). However, these numbers are only preliminary results and,
as a result, more research should take place. As part of the future work
is studying all possibilities (both integrations of space and time and both
treatments of z).
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Approach
Morton [s] Hilbert [s]

SFC
conversion

IOT
SFC

conversion
IOT

Small 68.69 10.33 75.81 11.13

Medium 95.27 32.1 104.55 32.2
Full 110.63 57.61 119.99 56.13

Table 7.1: Using C++ code for SFC calculation

7.2.2 Investigating a different SFC

The Morton curve is a SFC that is very easily programmed and extended in
higher dimensions. Nevertheless, a lot of research has shown that its cluster-
ing capabilities are not as optimal as other curves [Faloutsos and Roseman,
1989]. For this reason, the use of a different SFC, and more specifically the
Hilbert curve, is very relevant for future work. For this, one should com-
pare loading times, query response times, the number of ranges used when
decomposing the QR and decoding times. Another thing to investigate is
the scaling of the time dimension, since different curves might require a
different configuration in this area. The researcher should then be able to
conclude which is the best curve to use when managing dynamic point
clouds using SFCs.

From the previously presented Table 7.1, one can easily conclude that
during the loading procedure the two curves compare as follows:

• The SFC conversion is slightly faster for the Morton curve (10%).

• The generation of the IOT is almost the same for the two curves. The
size of the dataset is, however, not massive and specific patterns are
hard to be noticed.

Preliminary tests have also been performed for the query procedure using
the same C++ Library. Also here, patterns are not noticeable when compar-
ing the two curves. This might be affected 1. by the size of the used dataset,
2. the fact that within the tests the z dimension is not selective. Nonetheless,
this needs more evaluation in the future.

7.2.3 Investigation of parallel processing

An important characteristic of today’s computers is the use of multi-core
CPUs that significantly increase performance. This suggests that parallel
processing should be incorporated within our method. Actually this method
should be combined with the first recommendation of native database func-
tionality. Parallel processing can easily take place in the SFC calculation, the
decoding and range generation. Another area that should be considered
for parallelisation is the fetching of the data from the IOT. So far, this does
not seem to work for the system tested (this is already reported to the de-
velopers in a previous project). With parallel processing, though, one can
never be sure about its positive effects, so experiments should be performed.
For example in van Oosterom et al. [2015] there were cases where the out-
of-core parallelisation actually lead to worst response times during query
execution.
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7.2.4 Up-scaled benchmark of trillion points

Larger point clouds are appearing every day. Within this thesis I have tested
a 2 billion point dataset. Such a size is very relevant but an up-scaled bench-
mark of trillion points should also take place to prove that the method is
indeed scalable. Candidate dynamic datasets (also for coastal management)
can be found in the data viewer of the National Oceanic and Atmospheric
Administration (NOAA)1. With a quick search, the data that can be found
start from 1996 and are updated yearly. Concerning the number of points
available these are definitely trillions, given the number of datasets avail-
able.

7.2.5 Higher dimensional keys

Since point clouds are characterised by many attributes (see Section 2.2),
an investigation on whether those attributes or, information about Level
of Detail and quality can also be incorporated into the SFC is meaningful.
Advantages for adding more dimensions inside the SFC are: the compact
storage that solves conflicts between the important dimensions [Lawder and
King, 2001], multidimensional indexing using B-Trees and IOTs. Possible
disadvantages arise when not all the dimensions included in the SFC are
selective, when the SFC keys get too big, when the dimensions included do
not compose a hypercube etc.

7.2.6 Investigating delta queries

One of the most widely used application in the field of coastal monitoring
is the delta query. This query is intended to answer what changes occur
between two time moments. A way to answer this query by immediately
making use of the SFC structure is needed. This is not trivial since the nearest
neighbour between two different scans needs to be identified.

7.2.7 Two- set refinement stage

Although the procedures taking place after the filter step are not considered
within this document, the refinement step would considerably improve by
incorporating knowledge from the filter step. The idea is to use the infor-
mation about the position of a TC relative to the QR. Based on this infor-
mation, the algorithm can already decide what objects already belong to the
response set (Figure 7.1, white cells) and thus ignore them from the PIP oper-
ation. Only the ranges that are partly inside the query geometry (Figure 7.1,
grey cells) need to proceed to the refinement stage. This solution, although
sounding easy to implement, can be very hard in reality. The problem arises
when a merging to a maximum number needs to take place for the white
cells. As explained before, this step adds additional space to the selection,
thus cancelling out the whole idea. In addition to that, merging should now
be done with two sets and not one.

1 https://coast.noaa.gov/dataviewer/
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Figure 7.1: Separating internal ranges and ranges on boundary. White cells are com-
pletely inside the query region and do not need refinement. Grey cells
are partially inside the query region and have to proceed to the refine-
ment stage.

7.2.8 Investigating the generation of blocks

Although the flat model is flexible, it requires a lot of storage. Investigating
the generation of blocks using the same integrations of space - time will
allow more efficient storage and compression. Investigating their size, the
degree of overlapping and non - overlapping and the percentage of full/
under-full blocks when dealing with time evolving point clouds would add
insight to the current point cloud data management storage models.

A possible way to compress the blocks is the following: Starting with
a 128 bit SFC, we can use the highest 64 bits as the block-id. The rest of
the 64 bits will then used within each 4D blocks to define the points. The
gain in storage from this step will be approximately a factor of 2, assuming
that there is a reasonable number of points in the block, e.g. 10,000. Then,
inside the block the points are sorted along the SFC and only the delta-SFC

key value to the previous point in block is stored. This step should also
reduce the storage by a factor of 4. Finally, we can compress the delta-point
numbers (explore using gzip). This should then result in a much more
compact storage. Of course, the drawback with compression is the need
to ”de-compress” the points again when querying. Another thing is that
insertions and deletions require a lot of attention.

Other things that need to be considered are: should all blocks be of equal
size or of equal number of points contained? This will certainly affect the
factor of compression as introduced before. Also, if the latter is chosen, then
a tuning related to the right amount of points in the block should take place.

7.2.9 Even more dynamic data

Having experimented with daily and yearly data the question arises whether
the same structure is suitable for datasets streamed every hour and minute.
Part of the research is to explore loading mechanisms, suitable encoding of
space and time and time scalings.
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7.2.10 Moving objects point cloud

With the development of mobile devices, wireless networks, etc., we are
more than ever faced with objects that move in the 4D space (space and
time). This suggests that not only point clouds representing surfaces should
be considered. Investigating whether moving objects can be managed using
the same integrations of space and time is thus very relevant.

7.2.11 True 4D query

Within this thesis a 4D SFC was tested and has been proven to be a promis-
ing solution for managing dynamic point clouds. However, although z is
included in the key, it was not selective in the queries tested. This part of
the future work will investigate queries that are also selective in the z di-
mension, thus showing the real value of including the z dimension in the
key.
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A DATASETS

This chapter describes in more detail the characteristics of the two datasets
used within this thesis. The datasets were provided by Deltares and are
both open data. This means that all the tests performed within this thesis
can be replicated by interested parties. In general, the two data sets are
very different from each other in the spatial and the temporal component.
However, since they both refer to the country of the Netherlands, they use
the same reference system: the Amersfoort/RD New with EPSG code of
28992.

a.1 overview
The spatial extent of the two datasets is depicted in Figure A.1. The first
data set used is the Sand Engine (red box), while the second is the coastline
of the country of the Netherlands (yellow polygon). As it can be observed
the Sand Engine area is present in both use cases.

Figure A.1: The location of the datasets on the map of the Netherlands
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a.2 characteristics
Within this section more detailed characteristics of the two datasets are pre-
sented. The characteristics have to do with the number of files, the spatial
extent and resolution, the temporal extent and resolution, and finally the
sizes of the data. Both of the datasets are stored in the format LAS1.

a.2.1 Sand Engine

The Sand Engine dataset (or Zandmotor in Dutch) represents measurements
obtained for an experiment taking place in the province South Holland of
the Netherlands. The Sand Engine was created by depositing 21 million cu-
bic meters of sand between the areas Ter Heijde and Kijkduin. The purpose
of this pilot program is to investigate how nature spreads this amount of
sand along the coast as the years go by. In order to see if the experiment
is developing as thought, a monitoring of the area at irregular moments in
time (after storms) takes place. The point clouds are acquired using jet skis
and all-terrain vehicles. Two examples of the Sand Engine point clouds are
shown in Figure A.2 and Figure A.3.

Figure A.2: A point cloud of the Sand Engine use case from the year 2011

Figure A.3: A point cloud of the Sand Engine use case from the year 2015

The characteristics of the Sand Engine dataset are present in Table A.1.
Available data can be found from the year 2011 and 2015. The number of
files represents the different days of the year when the area was monitored,
and on average 7 files per year are available. The size of the total files per
year is also not big, making this use case very small for being a dynamic
point cloud. For this reason, artificial data are created from the original
ones. The characteristics of the artificial data are present in Table A.2. With

1 One remark needs to be made. The files used for the execution of the benchmark were com-
pressed LAS files (LAZ). However, the LAZ files were actually not compressed at all, which
means that although they had the .laz extension, they no compression was applied. This obser-
vation does not affect the results presented in this thesis.
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the artificial data, the number of points for the whole use cases reaches the
73, 913, 926.

Concerning the spatial and temporal component of the dataset, the mon-
itored area is approximately 4.5 x 4.5 km2 and the spatial resolution is in
millilitre (mm). The time dimension spans from 2000 till 2015 (original and
artificial data) and the resolution is in days. Another interesting character-
istic is that each file contains a full point cloud of the area for a given day.
Finally, as with the majority of the temporal data, time is only mentioned
within the file name.

year no of files size (MB)

2011 5 7.8
2012 11 17.4
2013 6 11.6
2014 5 10.7
2015 6 13.2

Table A.1: Characteristics of the original
Sand Engine data.

year no of files size (MB)

2000 76 121.6
2001 70 112.0
2002 84 134.4
2003 83 132.8
2004 84 134.4
2005 77 123.2
2006 80 128.0
2007 87 139.2
2008 87 139.2
2009 86 137.6
2010 76 121.6
2011 8 12.8

Table A.2: Characteristics of the artifi-
cially created Sand Engine
data.

a.2.2 Coastline

The coastline dataset, as the name implies is a series of point cloud data ac-
quired yearly by Rijkswaterstaat (Ministry of Infrastructure and the Environ-
ment) for the monitoring of the area around the coast. In the introduction
of the thesis, the reasons why the coast is so important for the Netherlands
are described shortly. The point cloud of the coastline for the year of 2012 is
depicted in Figure Figure A.4.

The characteristics of the point cloud dataset are presented in Table Ta-
ble A.3. Available data can be found from the year 2012 and 2015. Only
one full point cloud of the coastline is produced every year. The number
of files per year represent the number of tiles that are used. As it can be
observed, the 2012 dataset is different from the rest. In fact years 2013 until
2015 have two different versions, the unfiltered (raw point cloud) and the
filtered (buildings or trees are removed). The 2012 one only represents the
filtered point cloud. For this reason, to be consistent, only the filtered parts
of the rest are used for the benchmarks. In total approximately 2 billion
points are present in all four years. Finally, the size of the data is in GB
scale. Therefore, although the dataset is less dynamic, it is a good candidate
to corroborate the scalability of the methodology.

Concerning the spatial extent and resolution, the point cloud covers the
whole coastline of the Netherlands with a centimetre resolution. The time
extent is 4 years with and the resolution yearly. Similar to the Sand Engine
use case, time is only present in the folder or file name.
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Figure A.4: The coastline point cloud dataset for the year of 2012

year no of files size (GB)

2012 13 9.4
2013 107 9.3
2014 108 9.3
2015 110 9.9

Table A.3: Dataset description of the Coastline use case

a.2.3 Comparison

The two datasets presented are different in nature, size, number of files
and spatial and time resolution. Their different nature poses different re-
quirements in their organisation. For example, the coastline dataset will be
updated only once per year but the amount of data is significantly more
than the Sand Engine. On the other hand, the Sand Engine datasets are
updated more frequently (every day) and therefore, the methodology devel-
oped should not make the database unavailable for a long period of time
with every update. Hence, it is important to see how the data structures
react to the differences. A comparison of the different characteristics of the
datasets is provided in Table A.4.

Dataset Avg. points per file Time resolution Spatial resolution

Sand Engine 100,000 – 200,000 Day mm
Coastline 50,000 – 20,000,000 Year cm

Table A.4: Comparison of the two datasets
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B QUERY GEOMETR IES AND T IME
RANGES

This chapter provides a description of the query geometries that are used
throughout the experiments and benchmarks of this thesis. The spatial com-
ponent of the queries is also given in maps. For testing purposes the query
geometries have different shapes; rectangle, polygon, line with buffer and
circle. Different sizes of the those geometries are also tested. This will give
us an insight as to whether certain geometries behave differently using the
same storage model.

b.1 sand engine
The queries which are executed are described in detail in Table Table B.1.
Type is the type of query as defined in Section 4.2.1. Start and End are
respectively the start and end date requested for retrieval. The time type,
indicates whether the previously mention started and end date are contin-
uous (i.e. between start date and end date) or discrete (i.e. only start date
and end date). Finally, the area gives an indication of the space covered. The
spatial representation of the queries is shown in Figure B.1.

id type start end
time
type

Description
area
(km2)

ST-A s-t 03/01/00 28/01/00 d Large axis - aligned rectangle 0.44

ST-B s-t 10/11/01 - d Large Polygon 0.46

ST-C s-t 01/11/00 15/11/00 c Medium, complex polygon 0.16

ST-D s-t 01/08/01 31/08/01 c Medium polygon 0.04

ST-E s-t 01/08/01 31/08/01 c Line with buffer 5 m 0.015

ST-F s-t 01/01/02 15/01/02 c Large Line with buffer 5 m 0.02

T-A t 25/10/02 26/10/02 c 1 day within the range 20.25

T-B t 02/09/02 05/09/02 c 2 days within the range 20.25

S-A s - - - Small Polygon 0.04

S-B s - - - Small polygon 0.002

S-C s - - - Circle of 50 m radius 0.008

S-D s - - - Diagonal line with buffer 5 m 0.009

Table B.1: The description of the Zandmotor queries in time. In type: s-t stands
for space - time, t for time and s for space. In time type: c stands for
continuous and d for discrete.

b.2 coastline
The queries used for the coastline use case are described in Table B.2 and
have the same attributes as the Sand Engine ones. However, contrary to
the Sand Engine, in this use case time queries are not performed. The rea-
sons are practical. In the full benchmark, the coastline dataset contains
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Figure B.1: The Sand Engine queries (spatial extent)

500,000,000 points per year. Such number of points is not easily processed
with the processing power of today’s computers. If such a query would take
place, it would either require a LoD approach where the detail of the point
cloud is decreased or the points would be requested as tiles, thus leading to
space - time queries. The spatial representation of the queries is shown in
Figure B.2.

id type start end
time
type

Description
area
(km2)

ST-A s-t 2012 - d Large axis - aligned rectangle 0.11

ST-B s-t 2012 - d Medium, complex polygon 0.12

ST-C s-t 2012 - d Large Line with buffer 20 m 0.05

ST-D s-t 2012 - d Small Line with buffer 20 m 0.02

ST-E s-t 2012 - d Medium Line with buffer 20 m 0.04

ST-F s-t 2013 - d Large, complex polygon 0.50

ST-G s-t 2012 2012 c Large, polygon 0.20

S-A s - - - Small Circle with 130 m radius 0.02

S-B s - - - Large Line with buffer 20 m 0.04

S-C s - - - Small Line with buffer 20 ms 0.02

Table B.2: The description of the Coastline queries in time. In type: s-t stands for
space - time, t for time and s for space. In time type: c stands for continu-
ous and d for discrete.
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Figure B.2: The spatial extent of the Coastline queries
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C DETA I LED RESULTS

c.1 sand engine

c.1.1 Depth of tree

The following Tables (C.1 to C.4) contain the results of the experiment de-
scribed in Section 5.4.1 of the current document. The tables include only the
average of the two hot runs.

ID Depth No. ranges Fetching [s] % extra

ST
-A

9 32 0.31 1287

10 72 0.09 256

11 264 0.05 100

12 924 0.07 12

13 3526 0.05 7

14 13600 0.07 2

15 53726 0.07 1

ST
-B

9 14 0.33 1244

10 44 0.11 368

11 139 0.10 284

12 488 0.11 241

13 1827 0.08 115

14 7053 0.06 3

15 27711 0.06 2

ST
-C

9 3 0.17 891

10 22 0.09 470

11 121 0.07 240

12 420 0.07 91

13 1514 0.06 21

14 5805 0.07 11

15 15320 0.05 5

ST
-D

9 10 0.19 1329

10 12 0.08 502

11 56 0.04 159

12 174 0.03 82

13 459 0.05 27

14 1041 0.05 12

15 8954 0.05 5

ST
-E

9 18 0.19 7923

10 18 0.09 3386

11 98 0.03 1257

12 260 0.02 514

13 678 0.04 207

14 2200 0.03 110

15 10799 0.03 50

ST
-F

9 12 0.12 6115

10 17 0.07 2976

11 59 0.04 1557

12 307 0.03 774

13 937 0.03 284

14 3176 0.05 132

15 10378 0.03 67

Table C.1: Depth of the tree experiment.
Case: Space - time queries of
integrated approach with z as
an attribute.

ID Depth No. ranges Fetching [s] % extra
S-

A

9 46 2.17 389

10 150 1.64 274

11 725 1.06 124

12 2798 0.76 61

13 10931 0.67 30

14 41163 0.55 14

15 161734 0.57 7

S-
B

9 22 0.61 4110

10 42 0.16 903

11 45 0.18 903

12 671 0.09 310

13 1842 0.07 126

14 7686 0.08 64

15 24370 0.06 25

S-
C

9 44 1.03 1641

10 84 0.57 804

11 336 0.17 126

12 595 0.16 99

13 3119 0.13 44

14 13113 0.13 21

15 45855 0.10 10

S-
D

9 88 2.43 3740

10 336 1.25 1798

11 1096 0.69 871

12 4769 0.36 392

13 17443 0.25 186

14 76552 0.18 99

15 331700 0.19 45

T-
A

9 624 2.53 500

10 2397 1.69 300

11 9292 0.87 100

12 36400 0.49 0

T-
B

9 624 3.74 350

10 2397 1.67 100

11 9292 0.84 0

Table C.2: Depth of the tree experiment.
Case: Space only and time
only queries of integrated ap-
proach with z as an attribute.

99



ID Depth No. ranges Fetching [s] % extra

ST
-A

9 32 0.21 1287

10 72 0.07 256

11 528 0.07 100

12 2772 0.05 12

13 17630 0.05 7

14 122400 0.07 2

15 967068 0.24 1

ST
-B

9 14 0.21 1244

10 44 0.07 368

11 278 0.06 284

12 1464 0.08 241

13 9135 0.07 115

14 63477 0.07 3

15 498798 0.15 2

ST
-C

9 3 0.10 891

10 25 0.07 470

11 244 0.04 240

12 1334 0.05 91

13 8173 0.07 21

14 57159 0.05 11

15 254619 0.10 5

ST
-D

9 10 0.10 1329

10 12 0.05 502

11 112 0.03 159

12 558 0.05 82

13 2541 0.05 27

14 11505 0.04 12

15 161983 0.07 5

ST
-E

9 18 0.12 7923

10 18 0.06 3386

11 196 0.03 1257

12 816 0.05 514

13 3616 0.03 207

14 21412 0.04 110

15 198029 0.07 50

ST
-F

9 12 0.07 6115

10 17 0.03 2976

11 107 0.02 1557

12 986 0.05 774

13 4738 0.04 284

14 27906 0.05 132

15 166417 0.07 67

Table C.3: Depth of the tree experiment.
Case: Space - time queries of
integrated approach with z as
part of the key.

ID Depth No. ranges Fetching [s] % extra

S-
A

9 46 1.31 389

10 210 0.97 274

11 1327 0.65 124

12 9476 0.48 61

13 64700 0.42 30

14 448392 0.47 14

15 1000000 0.54 11

S-
B

9 22 0.38 4110

10 42 0.11 903

11 49 0.11 903

12 2013 0.09 310

13 9373 0.05 126

14 73122 0.07 64

15 413703 0.14 25

S-
C

9 44 0.63 1641

10 84 0.35 804

11 672 0.12 126

12 1785 0.16 99

13 17653 0.10 44

14 130182 0.11 21

15 775115 0.21 10

S-
D

9 88 1.30 3740

10 336 0.73 1798

11 2110 0.40 871

12 14473 0.23 392

13 87118 0.17 186

14 683951 0.24 99

T-
A

9 624 1.49 500

10 2397 0.99 300

11 18584 0.53 100

12 109200 0.33 0

T-
B

9 624 2.21 350

10 2397 0.97 100

11 18584 0.53 0

Table C.4: Depth of the tree experiment.
Case: Space only and time
only queries of integrated ap-
proach with z as part of the
key.
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c.1.2 The degree of merging

The following tables (C.5 and C.5) contain the results of the experiment
described in Section 5.4.2 of the current document. The tables include only
the average of the two hot runs.

ID No. ranges Depth Fetching [s] % extra

ST
-A

10 19 0.07 62.7
100 19 0.49 3.8
1000 19 4.85 0.4
5151 19 27.51 0

ST
-B

10 19 0.05 47.9
100 19 0.33 5.7
1000 19 3.11 0.7
6864 19 23.78 0.1

ST
-C

10 19 0.08 65.6
100 19 0.64 14.1
1000 19 8.17 1

3567 19 27.63 0.4

ST
-D

10 20 0.08 46.4
100 20 0.11 3.8
1000 20 21.33 0.2
3277 20 68.23 0.1

ST
-E

10 19 0.07 673.2
100 19 0.07 69.7
1000 19 16.86 6.8
3744 19 60.54 2.6

ST
-F

10 19 0.225 2868.8
100 19 0.69 275.2
1000 19 8.17 34.9
10000 19 72.04 3.4

S-
A

10 20 1.11 82.4
100 20 8.41 8.8
1000 20 93.24 0.9
5191 20 475.05 0.2

S-
B

10 22 0.86 43.9
100 22 8.18 4.6
1000 22 91.79 0.6
2810 22 267.13 0.2

S-
C

10 22 0.86 31.9
100 22 7.35 2.9
1000 22 92.20 0.4
5265 22 458.60 0.1

S-
D

10 20 0.91 886.7
100 20 7.31 90.2
1000 20 84.84 10.3
9504 20 799.47 1.2

Table C.5: The degree of merging experiment. Case: Space - time and space only
queries of non-integrated approach with z as attribute.
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ID No. ranges Depth Fetching [s] % extra

ST
-A

10 14 0.04 92.3
100 14 0.57 29.5
1000 14 5.67 6.2
3516 14 18.41 2.4

ST
-B

10 14 0.03 64.3
100 14 0.35 25

1000 14 3.33 6.6
3531 14 11.07 3.7

ST
-C

10 15 0.05 94.7
100 15 0.78 45.7
1000 15 8.41 20.7
3877 15 28.80 5

ST
-D

10 16 0.09 118.1
100 16 0.13 44.7
1000 16 20.87 8.1
8897 16 186.71 2.6

ST
-E

10 15 0.09 1347.1
100 15 0.10 327.6
1000 15 17.24 98.7
4111 15 67.87 50

ST
-F

10 15 0.09 3099.4
100 15 0.85 784.7
1000 15 8.16 193

8652 15 61.78 67.3

S-
A

10 16 1.02 149.4
100 16 8.83 49.5
1000 16 90.82 11.1
10000 16 937.67 4

S-
B

10 17 0.97 395.4
100 17 7.89 53.5
1000 17 91.88 14.3
5206 17 484.66 7.5

S-
C

10 17 0.89 108.9
100 17 7.39 34.2
1000 17 87.93 9.2
10000 17 867.32 2.7

S-
D

10 16 0.98 1349.6
100 16 7.25 334.4
1000 16 82.39 94.6
10000 16 840.16 32.1

Table C.6: The degree of merging experiment. Case: Space - time and space only
queries of non-integrated approach with z as part of the key.
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c.1.3 Depth of tree with merging

The following tables (C.7 to C.10) contain the results of the experiment de-
scribed in Section 5.4.3 of the current document. The tables include only the
average of the two hot runs.

ID Depth No. ranges Fetching [s] % extra

ST
-A

9 10 0.07 151.3
10 16 0.06 42.7
11 18 0.05 33.2
12 54 0.33 12.1
13 84 0.49 7.7
14 183 1.00 2.4
15 200 1.11 1.8
16 200 1.11 1.8
17 200 1.05 1.7
18 200 0.93 1.8

ST
-B

9 6 0.06 91.6
10 13 0.05 55.9
11 27 0.14 28.2
12 53 0.22 13.7
13 105 0.38 7.5
14 200 0.69 3.9
15 200 0.68 3.5
16 200 0.68 3

17 200 0.62 3

18 200 0.66 3.1

ST
-C

9 2 0.1 170.1
10 5 0.13 113.8
11 13 0.10 70.4
12 28 0.06 43.9
13 53 0.07 21.9
14 113 0.90 11.7
15 200 1.55 5.5
16 200 1.6 4.6
17 200 1.54 4.3
18 200 1.28 4.2

ST
-D

9 2 0.28 732.8
10 5 0.21 251

11 8 0.11 102.2
12 13 0.11 60.1
13 25 0.10 27.3
14 48 0.10 12.9
15 101 0.13 5.9
16 198 0.18 2.6
17 200 0.19 2

18 200 0.16 1.8

ST
-E

9 4 0.41 4577.6
10 7 0.26 1930.5
11 12 0.10 954.5
12 25 0.09 436.8
13 48 0.09 207.4
14 100 0.09 110.5
15 200 0.12 52.1
16 200 0.11 40.5
17 200 2.99 37.9
18 200 0.10 37.6

ST
-F

9 10 0.39 4557.8
10 17 0.15 2204.9
11 35 0.08 1143.1
12 71 0.07 553.2
13 141 1.18 284.4
14 200 1.67 163.3
15 200 1.68 146.2
16 200 1.72 139.4
17 200 1.30 137.3
18 200 1.33 136.4

Table C.7: Depth of the tree with
merging experiment. Case:
Space - time queries of non-
integrated approach with z as
an attribute.

ID Depth No. ranges Fetching [s] % extra

S-
A

9 2 2.45 389.9
10 4 1.83 274.9
11 10 1.20 124.5
12 20 1.86 61.2
13 41 3.42 30.4
14 79 6.84 14.9
15 161 13.32 7.4
16 200 16.95 5.1
17 200 16.86 4.6
18 200 16.83 4.5

S-
B

9 1 0.74 4110.8
10 1 0.31 903.3
11 1 0.30 903.3
12 4 0.48 310.2
13 6 0.68 126.4
14 12 1.14 64.4
15 21 1.70 25.2
16 39 3.05 14.4
17 86 6.96 7.5
18 170 13.77 3.3

S-
C

9 2 1.17 1641.7
10 2 0.63 804.8
11 4 0.51 126.4
12 5 0.59 99.3
13 10 0.90 44.5
14 23 1.74 21.8
15 42 3.03 10.6
16 83 6.38 5.1
17 155 11.41 2.6
18 200 15.12 1.8

S-
D

9 4 2.73 3740.9
10 8 1.34 1798.8
11 14 1.25 871

12 30 2.25 392.9
13 56 3.92 186.4
14 123 8.78 99.6
15 200 15.30 61.7
16 200 14.46 49.6
17 200 14.35 47.8
18 200 15.38 47.5

Table C.8: Depth of the tree with
merging experiment. Case:
Space only queries of non-
integrated approach with z as
an attribute.
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ID Depth No. ranges Fetching [s] % extra

ST
-A

9 11 0.05 151

10 20 0.04 43

11 28 0.18 33

12 200 1.08 19

13 200 1.11 20

14 200 1.06 21

15 200 1.10 21

16 200 1.15 21

ST
-B

9 7 0.04 92

10 20 0.12 56

11 51 0.20 28

12 200 0.65 17

13 200 0.66 17

14 200 0.70 17

15 200 0.66 17

16 200 0.67 17

ST
-C

9 3 0.08 170

10 7 0.05 114

11 24 0.06 70

12 109 0.83 44

13 200 1.51 40

14 200 1.50 40

15 200 1.48 40

16 200 1.47 40

ST
-D

9 3 0.16 733

10 6 0.12 251

11 16 0.10 102

12 46 0.11 60

13 164 0.16 27

14 200 5.93 24

15 200 5.81 24

16 200 5.46 24

ST
-E

9 5 0.17 4578

10 9 0.11 1931

11 28 0.10 954

12 91 0.11 437

13 200 4.02 279

14 200 3.88 261

15 200 5.22 251

16 200 3.92 250

ST
-F

9 10 0.12 4558

10 17 0.10 2205

11 59 0.51 1143

12 189 1.61 553

13 200 1.67 503

14 200 1.65 497

15 200 1.61 497

16 200 1.68 496

Table C.9: Depth of the tree with
merging experiment. Case:
Space - time queries of non-
integrated approach with z as
part of the key.

ID Depth No. ranges Fetching [s] % extra

S-
A

9 2 1.56 390

10 5 1.33 275

11 17 1.66 124

12 58 5.04 61

13 200 17.19 30

14 200 18.20 27

15 200 16.61 28

16 200 17.69 27

S-
B

9 1 0.51 4111

10 1 0.18 903

11 1 0.16 903

12 12 1.10 310

13 29 2.34 126

14 112 9.14 64

15 200 16.32 32

16 200 16.41 32

S-
C

9 2 0.79 1642

10 2 0.56 805

11 8 0.80 126

12 12 1.05 99

13 53 3.78 45

14 200 14.83 22

15 200 15.72 20

16 200 14.85 20

S-
D

9 2 0.79 1642

10 2 0.56 805

11 8 0.80 126

12 12 1.05 99

13 53 3.78 45

14 200 14.83 22

15 200 15.72 20

16 200 14.85 20

Table C.10: Depth of the tree with
merging experiment. Case:
Space only queries of non-
integrated approach with z
as part of the key.
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c.1.4 Benchmark (All stages)

The following four tables contain the benchmark results considering all
query steps taking place in our implemented prototype.

Stage refers to the benchmark stage, ID to the query ID, Range calc. refers
to the step that identifies the ranges approximating the QR, No. of ranges
refers the total ranges used to fetch the data (after applying merging), Depth
refers to the original depth used for identifying the ranges, Fetch refers to
the time spent in order to fetch the data from the IOT, Decode refers to the
time spent decoding the ranges in Python, Store refers to the time spent
storing the decoded points into a temporary table, Candidate pts. refers to
the points returned from the filter step, Final pts. refers to the points actually
belonging to the QR, Refinement refers to the time spent in order to refine the
candidate points.

Stage ID
Range
calc. (s)

Range
IOT
(s)

No. of
ranges Depth Fetch

(s)
Decode

(s)
Store

(s)
Candidate

pts
Final
pts

Refinement
(s)

Sm
al

l

ST-A 4.1 0.30 13600 14 0.05 0.08 0.07 4020 3927 0.21

ST-B 29.6 0.43 109843 16 0.13 0.08 0.07 4275 4237 0.22

ST-C 3.1 0.18 5805 14 0.04 0.06 0.07 3140 2812 0.20

ST-D 8.7 0.20 8954 15 0.03 0.05 0.07 2314 2185 0.19

ST-E 83.8 0.27 39329 16 0.04 0.01 0.07 483 380 0.17

ST-F 61.5 0.29 40164 16 0.04 0.01 0.06 443 327 0.17

S-A 66.0 0.29 41163 14 0.68 1.68 0.18 98801 86017 1.43

S-B 176.5 0.42 88119 16 0.10 0.06 0.07 3189 2788 0.20

S-C 77.1 0.29 45855 15 0.16 0.24 0.08 12724 11501 0.33

S-D 357.4 1.09 331700 15 0.42 0.33 0.09 17374 11933 0.38

T-A 10.1 0.28 36400 12 0.59 1.40 0.15 78902 78902 0.27

T-B 3.0 0.20 9292 11 0.96 2.58 0.26 157806 157806 0.45

M
ed

iu
m

ST-A 4.1 0.34 13600 14 0.05 0.08 0.07 4020 3927 0.22

ST-B 31.2 0.47 109843 16 0.12 0.08 0.08 4275 4237 0.22

ST-C 3.1 0.20 5805 14 0.04 0.06 0.07 3140 2812 0.20

ST-D 8.8 0.21 8954 15 0.03 0.05 0.07 2314 2185 0.19

ST-E 82.4 0.28 39329 16 0.04 0.01 0.07 483 380 0.16

ST-F 58.7 0.29 40164 16 0.04 0.01 0.07 443 327 0.17

S-A 154.8 0.47 95420 14 1.73 4.32 0.38 265100 231283 3.14

S-B 404.2 0.77 206773 16 0.26 0.20 0.08 10383 8934 0.30

S-C 185.4 0.49 107388 15 0.39 0.69 0.12 36448 32983 0.67

S-D 822.6 2.32 778217 15 1.09 0.93 0.13 49269 33494 0.79

T-A 10.3 0.27 36400 12 0.60 1.44 0.16 78902 78902 0.27

T-B 2.9 0.18 9292 11 0.96 2.57 0.23 157806 157806 0.42

La
rg

e

ST-A 4.2 0.38 13600 14 0.06 0.08 0.07 4020 3927 0.22

ST-B 29.5 0.47 109843 16 0.13 0.08 0.07 4275 4237 0.22

ST-C 3.7 0.21 5805 14 0.04 0.06 0.07 3140 2812 0.21

ST-D 8.9 0.22 8954 15 0.03 0.05 0.07 2314 2185 0.19

ST-E 82.6 0.29 39329 16 0.04 0.01 0.06 483 380 0.17

ST-F 62.1 0.30 40164 16 0.04 0.01 0.06 443 327 0.17

S-A 85.6 0.35 56727 13 3.76 10.48 0.86 653251 509964 7.19

S-B 221.4 0.58 128030 15 0.36 0.58 0.10 30121 23949 0.55

S-C 99.0 0.39 68493 14 0.53 1.19 0.15 66180 54111 1.02

S-D 363.5 1.40 402797 14 1.75 2.80 0.23 178215 90670 1.95

T-A 10.0 0.29 36400 12 0.59 1.37 0.16 78902 78902 0.25

T-B 2.9 0.21 9292 11 0.95 2.50 0.23 157806 157806 0.41

Table C.11: Benchmark results for all query stages. Case: integrated approach with
z as an attribute.
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Stage ID
Range
calc. (s)

Range
IOT
(s)

No. of
ranges Depth Fetch

(s)
Decode

(s)
Store

(s)
Candidate

pts
Final
pts

Refinement
(s)

Sm
al

l

ST-A 32.9 0.72 122400 14 0.11 0.10 0.07 4020 3927 0.21

ST-B 17.5 0.40 63477 14 0.08 0.11 0.07 4393 4237 0.22

ST-C 65.5 0.37 57159 14 0.06 0.08 0.07 3140 2812 0.20

ST-D 503.0 0.71 161983 15 0.12 0.06 0.07 2314 2185 0.19

ST-E 307.1 0.74 198029 15 0.13 0.02 0.06 570 380 0.17

ST-F 217.1 0.73 166417 15 0.11 0.02 0.06 547 327 0.17

S-A 118.3 0.38 64700 13 0.47 2.42 0.20 112144 86017 1.48

S-B 97.9 0.43 73122 14 0.08 0.12 0.07 4583 2788 0.21

S-C 285.9 0.62 130182 14 0.17 0.35 0.09 14008 11501 0.34

S-D 639.5 2.58 683951 14 0.63 0.61 0.09 23817 11933 0.43

T-A 35.9 0.51 109200 12 0.42 1.77 0.15 78902 78902 0.26

T-B 5.4 0.26 18584 11 0.57 3.29 0.25 157806 157806 0.44

M
ed

iu
m

ST-A 33.0 0.76 122400 14 0.11 0.10 0.07 4020 3927 0.21

ST-B 18.4 0.38 63477 14 0.08 0.11 0.07 4393 4237 0.22

ST-C 67.0 0.37 57159 14 0.06 0.08 0.07 3140 2812 0.20

ST-D 488.0 0.72 161983 15 0.13 0.06 0.07 2314 2185 0.18

ST-E 317.0 0.82 198029 15 0.13 0.02 0.06 570 380 0.16

ST-F 222.6 0.66 166417 15 0.11 0.02 0.06 547 327 0.16

S-A 276.7 0.68 149717 13 1.17 6.26 0.39 298813 231283 3.52

S-B 226.5 0.67 171096 14 0.21 0.38 0.08 15331 8934 0.34

S-C 69.2 0.30 40977 13 0.23 1.20 0.12 47722 32983 0.75

S-D 192.6 0.82 203610 13 0.59 2.11 0.17 97172 33494 1.16

T-A 35.8 0.54 109200 12 0.42 1.78 0.15 78902 78902 0.26

T-B 5.5 0.25 18584 11 0.57 3.44 0.23 157806 157806 0.41

La
rg

e

ST-A 34.3 0.65 122400 14 0.11 0.10 0.07 4020 3927 0.21

ST-B 18.3 0.36 63477 14 0.08 0.11 0.07 4393 4237 0.22

ST-C 65.6 0.34 57159 14 0.06 0.08 0.07 3140 2812 0.20

ST-D 490.6 0.67 161983 15 0.12 0.06 0.07 2314 2185 0.19

ST-E 303.1 0.81 198029 15 0.13 0.02 0.07 570 380 0.17

ST-F 216.9 0.69 166417 15 0.11 0.02 0.06 547 327 0.16

S-A 73.7 0.32 49236 12 2.61 16.34 0.83 806032 509964 8.04

S-B 531.4 1.35 384102 14 0.48 0.99 0.11 40198 23949 0.63

S-C 146.8 0.48 92203 13 0.41 1.74 0.16 78887 54111 1.05

S-D 416.4 1.58 457738 13 1.41 5.30 0.35 257766 90670 2.55

T-A 34.0 0.51 109200 12 0.42 1.76 0.16 78902 78902 0.27

T-B 5.4 0.24 18584 11 0.58 3.38 0.24 157806 157806 0.41

Table C.12: Benchmark results for all query stages. Case: integrated approach with
z as part of the key.
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Stage ID
Range
calc. (s)

Range
IOT
(s)

No. of
ranges Depth Fetch

(s)
Decode

(s)
Store

(s)
Candidate

pts
Final
pts

Refinement
(s)

Sm
al

l

ST-A 0.1 - 54 12 0.33 0.04 0.08 4404 3927 0.22

ST-B 0.1 - 53 12 0.22 0.04 0.08 4818 4237 0.22

S-A 0.1 - 41 13 30.66 0.84 0.21 112144 86017 1.49

ST-C 0.2 - 113 14 0.92 0.03 0.07 3140 2812 0.20

ST-D 0.4 - 198 16 3.86 0.02 0.07 2242 2185 0.19

ST-E 1.9 - 200 17 2.94 0.01 0.06 524 380 0.16

ST-F 2.7 - 200 17 1.34 0.01 0.07 776 327 0.16

S-B 0.1 - 86 17 50.98 0.03 0.07 2996 2788 0.20

S-C 0.1 - 42 15 24.72 0.10 0.09 12724 11501 0.33

S-D 0.2 - 200 15 109.10 0.12 0.09 19299 11933 0.40

T-A 0.0 - 0 0 0.52 0.59 0.17 78902 78902 -
T-B 0.0 - 0 0 1.01 1.17 0.27 157806 157806 -

M
ed

iu
m

ST-A 0.1 - 54 12 0.33 0.04 0.07 4404 3927 0.21

ST-B 0.1 - 53 12 0.22 0.04 0.08 4818 4237 0.23

ST-C 0.2 - 113 14 0.91 0.03 0.08 3140 2812 0.20

ST-D 0.4 - 198 16 3.92 0.02 0.07 2242 2185 0.20

ST-E 1.8 - 200 17 3.09 0.01 0.07 524 380 0.17

ST-F 2.6 - 200 17 1.57 0.01 0.06 776 327 0.17

S-A 0.1 - 41 13 74.11 2.05 0.42 298813 231283 3.41

S-B 0.1 - 86 17 122.38 0.06 0.08 9701 8934 0.29

S-C 0.1 - 42 15 64.30 0.26 0.12 36448 32983 0.66

S-D 0.2 - 200 15 260.34 0.32 0.13 54227 33494 0.85

T-A 0.0 - 0 0 0.51 0.60 0.17 78902 78902 -
T-B 0.0 - 0 0 1.01 1.13 0.25 157806 157806 -

La
rg

e

ST-A 0.1 - 54 12 0.33 0.04 0.08 4404 3927 0.22

ST-B 0.1 - 53 12 0.21 0.04 0.07 4818 4237 0.23

ST-C 0.2 - 113 14 0.93 0.03 0.07 3140 2812 0.20

ST-D 0.4 - 198 16 4.03 0.02 0.07 2242 2185 0.19

ST-E 1.9 - 200 17 3.38 0.01 0.06 524 380 0.16

ST-F 2.7 - 200 17 1.40 0.01 0.06 776 327 0.17

S-A 0.1 - 41 13 128.02 4.31 0.84 653251 509964 7.13

S-B 0.1 - 86 17 209.89 0.15 0.10 25847 23949 0.51

S-C 0.1 - 42 15 108.58 0.43 0.14 59899 54111 0.96

S-D 0.2 - 200 15 444.13 0.88 0.24 146328 90670 1.79

T-A 0.0 - 0 0 0.51 0.59 0.16 78902 78902 -
T-B 0.0 - 0 0 1.04 1.20 0.24 157806 157806 -

Table C.13: Benchmark results for all query stages. Case: non - integrated approach
with z as an attribute.
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Stage ID
Range
calc. (s)

Range
IOT
(s)

No. of
ranges Depth Fetch

(s)
Decode

(s)
Store

(s)
Candidate

pts
Final
pts

Refinement
(s)

Sm
al

l

ST-A 0.4 - 200 12 1.07 0.09 0.08 4669 3927 0.22

ST-B 0.5 - 200 12 0.65 0.10 0.07 4941 4237 0.23

ST-C 1.0 - 200 13 1.75 0.07 0.08 3930 2812 0.21

ST-D 1.8 - 200 14 3.93 0.05 0.07 2715 2185 0.20

ST-E 7.1 - 200 15 3.39 0.02 0.07 1332 380 0.18

ST-F 2.4 - 200 14 1.75 0.04 0.08 1953 327 0.18

S-A 0.3 - 200 13 122.95 1.78 0.19 112145 86017 1.49

S-B 0.7 - 200 15 114.90 0.07 0.07 3678 2788 0.21

S-C 0.4 - 200 14 105.02 0.22 0.08 14009 11501 0.34

S-D 0.9 - 200 14 103.44 0.62 0.12 40168 11933 0.59

T-A 0.0 - 0 0 0.33 1.44 0.15 78902 78902 -
T-B 0.0 - 0 0 0.62 2.68 0.25 157806 157806 -

M
ed

iu
m

ST-A 0.4 - 200 12 1.08 0.09 0.07 4669 3927 0.22

ST-B 0.5 - 200 12 0.64 0.10 0.07 4941 4237 0.22

ST-C 1.0 - 200 13 1.86 0.08 0.07 3930 2812 0.21

ST-D 1.7 - 200 14 3.97 0.04 0.07 2715 2185 0.19

ST-E 7.1 - 200 15 3.42 0.02 0.07 1332 380 0.17

ST-F 2.4 - 200 14 1.94 0.04 0.07 1953 327 0.18

S-A 0.3 - 200 13 292.07 4.57 0.39 298814 231283 3.48

S-B 0.7 - 200 15 291.73 0.20 0.08 12218 8934 0.31

S-C 0.4 - 200 14 260.18 0.62 0.11 40266 32983 0.69

S-D 0.9 - 200 14 244.45 1.70 0.20 112885 33494 1.31

T-A 0.0 - 0 0 0.32 1.44 0.16 78902 78902 -
T-B 0.0 - 0 0 0.63 2.72 0.25 157806 157806 -

La
rg

e

ST-A 0.4 - 200 12 1.12 0.09 0.07 4669 3927 0.21

ST-B 0.5 - 200 12 0.66 0.10 0.08 4941 4237 0.22

ST-C 1.0 - 200 13 1.83 0.08 0.07 3930 2812 0.20

ST-D 1.7 - 200 14 4.30 0.05 0.07 2715 2185 0.19

ST-E 7.1 - 200 15 3.41 0.02 0.07 1332 380 0.18

ST-F 2.4 - 200 14 1.93 0.04 0.07 1953 327 0.18

S-A 0.3 - 200 13 503.75 10.16 0.79 653252 509964 7.10

S-B 0.7 - 200 15 481.49 0.49 0.10 31745 23949 0.56

S-C 0.4 - 200 14 422.42 0.99 0.15 66181 54111 1.01

S-D 0.9 - 200 14 417.43 4.36 0.37 288090 90670 2.80

T-A 0.0 - 0 0 0.31 1.42 0.16 78902 78902 -
T-B 0.0 - 0 0 0.62 2.69 0.25 157806 157806 -

Table C.14: Benchmark results for all query stages. Case: non - integrated approach
with z as part of the key.
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c.2 coastline

This section contains the three additional benchmarks executed as part of
the coastline use case. The purpose of the additional benchmarks was to
configure the scaling of the time dimension and to have more control over
the process. In general it is easier to test specific parameters for a small
benchmark than a full, as the user has to wait more time in the second case.
Also, this type of executing benchmarks allowed us to eliminate a certain
integration of space and time from the very beginning, saving thus a lot of
effort from further benchmark executions.

c.2.1 Small benchmark

The query results of the small benchmark can be found in Table C.16. There
we can observe the query response times and percentages of extra points
from all four storage models discussed within this thesis. It is important
to note again the differences in the ways of posing the queries between
the two integrations of space and time. For the non-integrated approach a
WHERE clause with maximum number of ranges set to 200 is used. For the
integrated approach, the ranges are inserted into an IOT and the query is
executed by performing a join.

Moving on to interpreting the results, we can see that the 200 ranges in
the WHERE clause do not so much affect the percentage of extra points
obtained (with some exceptions). However, the query response times in
the non-integrated approach are 2- 6 times more expensive than the inte-
grated ones. The non-integrated approach is, also, tested in the medium
benchmark (Table C.18), where another undesired effect takes place. Query
ST-G in the medium benchmark stage becomes extremely expensive, only
to become 40 times faster in the next stage. The previous two observations
made me realise that the non-integrated approach is, for the time being, not
a suitable approach. Nevertheless, the approach should have been further
investigated, especially concerning the fluctuation. Because of lack of time,
I excluded the non-integrated approach from any further benchmarks.

Approach
Time (s)

Size
(GB)

Points Points per sec.

morton
prep.

Load
heap

Load
IOT

Heap IOT Heap IOT

xy - S 174.80 28.22 34.12 0.8 35,715,834 35,715,834 1,265,516 1,046,771

xy - M 175.93 24.60 76.49 1.6 37,255,628 72,971,462 1,514,181 954,000

xy - L 336.45 38.58 163.57 3.2 68,522,972 141,494,434 1,775,999 865,039

xyz- S 702.98 25.46 24.78 0.7 35,715,834 35,715,834 1,402,632 1,441,317

xyz - M 753.86 23.38 62.90 1.4 37,255,628 72,971,462 1,593,408 1,160,119

xyz - L 1294.07 38.65 130.70 2.8 68,522,972 141,494,434 1,773,085 1,082,589

xyt - S 709.48 26.74 26.26 0.8 35,715,834 35,715,834 1,335,902 1,360,085

xyt - M 763.42 24.40 75.19 1.6 37,255,628 72,971,462 1,527,176 970,494

xyt - L 1366.19 43.93 136.90 3.2 68,522,972 141,494,434 1,559,965 1,033,561

xyzt - S 888.01 24.76 23.41 0.7 35,715,834 35,715,834 1,442,742 1,525,666

xyzt - M 892.89 22.60 62.45 1.4 37,255,628 72,971,462 1,648,147 1,168,478

xyzt - L 1695.54 39.39 110.57 2.8 68,522,972 141,494,434 1,739,567 1,279,682

Table C.15: The loading times for the two integrations of space and time and the
two treatments of z in the coastline use case (Small benchmark).
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Case id
fetching (s) % extra points Final Points

S M L S M L S M L

xy

ST-A 12.31 11.97 12.14 2 2 2 389554 389554 389554

ST-B 12.22 11.60 12.17 3 3 3 342239 342239 342239

ST-C 2.35 2.50 2.16 10 10 10 69339 69339 69339

ST-D 2.01 2.21 2.42 13 13 13 69967 69967 69967

ST-E 4.84 4.41 4.67 14 14 14 134998 134998 134998

S-A 0.80 2.12 4.02 8 8 8 71999 151687 301429

xy
z

ST-A 12.47 12.77 12.58 11 11 11 389554 389554 389554

ST-B 12.94 13.03 12.66 16 16 16 342239 342239 342239

ST-C 2.97 3.01 2.93 48 48 48 69339 69339 69339

ST-D 1.79 1.77 1.75 43 43 43 69967 69967 69967

ST-E 6.15 6.19 5.97 56 56 56 134998 134998 134998

S-A 2.52 5.32 10.30 14 14 13 71999 151687 301429

xy
t

ST-A 2.17 2.18 2.15 3 3 3 389554 389554 389554

ST-B 1.92 1.92 1.92 4 4 4 342239 342239 342239

ST-C 0.50 0.51 0.49 4 4 4 69339 69339 69339

ST-D 0.50 0.49 0.49 2 2 2 69967 69967 69967

ST-E 0.88 0.88 0.87 4 4 4 134998 134998 134998

S-A 0.48 0.94 1.72 2 2 4 71999 151687 301429

xy
zt

ST-A 1.35 1.37 1.36 3 3 3 389554 389554 389554

ST-B 1.21 1.21 1.22 4 4 4 342239 342239 342239

ST-C 0.39 0.39 0.40 9 9 9 69339 69339 69339

ST-D 0.37 0.36 0.37 9 9 9 69967 69967 69967

ST-E 0.63 0.64 0.64 9 9 9 134998 134998 134998

S-A 0.28 0.57 1.11 8 8 16 71999 151687 301429

Table C.16: The query response times, the percentage of false hits compared to the
actual number of points and the number of points returned by the
queries for the two integrations of space and time and the two treat-
ments of z in the coastline use case (Small benchmark).

c.2.2 Medium benchmark

Approach
Time (s)

Size
(GB)

Points Points per sec.

morton
prep.

Load
heap

Load
IOT

Heap IOT Heap IOT

xy - S 435.74 68.30 67.70 2.0 87,764,427 87,764,427 1,284,995 1,296,373

xy - M 379.61 53.64 164.23 3.9 82,834,612 170,599,039 1,544,180 1,038,781

xy - L 707.39 98.35 313.53 7.4 154,540,077 325,139,116 1,571,281 1,037,027

xyz- S 1824.31 63.24 60.67 1.7 87,764,427 87,764,427 1,387,819 1,446,587

xyz - M 1654.04 47.32 143.92 3.4 82,834,612 170,599,039 1,750,476 1,185,374

xyz - L 3060.91 86.89 270.09 6.4 154,540,077 325,139,116 1,778,666 1,203,818

xyt - S 1846.18 64.65 63.06 2.0 87,764,427 87,764,427 1,357,582 1,391,761

xyt - M 1674.60 53.04 154.04 3.8 82,834,612 170,599,039 1,561,751 1,107,498

xyt - L 3114.51 96.83 345.01 7.3 154,540,077 325,139,116 1,596,072 942,405

xyzt - S 2238.40 59.19 65.23 1.7 87,764,427 87,764,427 1,482,634 1,345,461

xyzt - M 2029.13 47.79 147.83 3.4 82,834,612 170,599,039 1,733,242 1,154,022

xyzt - L 3769.96 87.51 263.20 6.4 154,540,077 325,139,116 1,765,871 1,235,331

Table C.17: The loading times for the two integrations of space and time and the
two treatments of z in the coastline use case (Medium benchmark).
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Case id
fetching (s) % extra points Final Points

S M L S M L S M L

xy
ST-A 13.62 13.47 13.64 2 2 2 389554 389554 389554

ST-B 11.48 11.42 11.50 3 3 3 342239 342239 342239

ST-C 2.56 2.52 2.50 10 10 10 69339 69339 69339

ST-D 2.49 2.52 2.47 13 13 13 69967 69967 69967

ST-E 4.50 4.52 4.50 14 14 14 134998 134998 134998

ST-F - 7.11 7.02 - 2.3 2.3 - 330261 330261

ST-G - 830.72 18.42 - 8.3 8.3 - 518702 518702

S-A 1.12 2.36 4.61 8 8 8 71999 151687 301429

S-B 0.51 0.96 1.76 31.8 31.9 31.6 20135 38523 71823

S-C 2.11 3.74 8.07 19.7 20.4 20.4 98382 174746 382500

xy
z

ST-A 13.58 13.52 13.64 11 11 11 389554 389554 389554

ST-B 11.87 11.87 12.04 16 16 16 342239 342239 342239

ST-C 2.96 2.97 2.91 48 48 48 69339 69339 69339

ST-D 1.75 1.75 1.75 43 43 43 69967 69967 69967

ST-E 5.36 5.39 5.26 56 56 56 134998 134998 134998

ST-F - 8.92 8.86 - 4.1 4.1 - 330261 330261

ST-G - 820.33 21.04 - 40.4 40.4 - 518702 518702

S-A 2.60 5.41 10.75 14 14 13 71999 151687 301429

S-B 0.83 1.60 2.94 55.4 54.8 54.0 20135 38523 71823

S-C 3.94 7.32 16.58 40.9 43.6 45.5 98382 174746 382500

xy
t

ST-A 2.16 2.16 2.16 3 3 3 389554 389554 389554

ST-B 1.93 1.92 1.92 4 4 4 342239 342239 342239

ST-C 0.49 0.50 0.49 4 4 4 69339 69339 69339

ST-D 0.49 0.49 0.49 2 2 2 69967 69967 69967

ST-E 0.88 0.88 0.87 4 4 4 134998 134998 134998

ST-F - 1.84 1.82 - 3.7 3.7 - 330261 330261

ST-G - 3.10 3.02 - 3.2 3.2 - 518702 518702

S-A 0.49 0.95 1.72 2 2 4 71999 151687 301429

S-B 0.16 0.30 0.48 8.7 8.7 16.9 20135 38523 71823

S-C 0.64 1.10 2.31 4.9 10.2 10.2 98382 174746 382500

xy
zt

ST-A 1.36 1.35 1.37 3 3 3 389554 389554 389554

ST-B 1.21 1.23 1.24 4 4 4 342239 342239 342239

ST-C 0.39 0.39 0.40 9 9 9 69339 69339 69339

ST-D 0.37 0.35 0.36 9 9 9 69967 69967 69967

ST-E 0.64 0.63 0.65 9 9 9 134998 134998 134998

ST-F - 1.15 1.14 - 2.3 2.3 - 330261 330261

ST-G - 1.91 1.92 - 6.5 6.5 - 518702 518702

S-A 0.28 0.57 1.13 8 8 16 71999 151687 301429

S-B 0.11 0.18 0.34 17.0 31.9 31.6 20135 38523 71823

S-C 0.41 0.71 1.67 19.7 20.4 38.7 98382 174746 382500

Table C.18: The query response times, the percentage of false hits compared to the
actual number of points and the number of points returned by the
queries for the two integrations of space and time and the two treat-
ments of z in the coastline use case (Medium benchmark).

111



c.2.3 Large benchmark

Approach
Time (s)

Size
(GB)

Points Points per sec.

morton
prep.

Load
heap

Load
IOT

Heap IOT Heap IOT

xyt - S 5232.27 155.47 205.97 5.5 245,905,596 245,905,596 1,581,667 1,193,890

xyt - M 4440.71 136.58 439.40 10.4 219,547,749 465,453,345 1,607,426 1,059,293

xyt - L 8698.05 266.03 860.26 20.1 429,411,108 894,864,453 1,614,151 1,040,226

xyzt - S 6293.14 145.70 180.86 4.9 245,905,596 245,905,596 1,687,750 1,359,646

xyzt - M 5332.41 123.63 394.91 9.2 219,547,749 465,453,345 1,775,912 1,178,631

xyzt - L 10363.12 239.08 820.88 17.6 429,411,108 894,864,453 1,796,128 1,090,128

Table C.19: The loading times for the two integrations of space and time and the
two treatments of z in the coastline use case (Large benchmark).

Case id
fetching (s) % extra points Final Points

S M L S M L S M L

xy
t

ST-A 2.20 2.18 2.20 3 3 3 389554 389554 389554

ST-B 1.93 1.93 1.91 4 4 4 342239 342239 342239

ST-C 0.51 0.50 0.50 4 4 4 69339 69339 69339

ST-D 0.49 0.49 0.49 2 2 2 69967 69967 69967

ST-E 0.90 0.89 0.89 4 4 4 134998 134998 134998

ST-F - 1.83 1.86 - 3.7 3.7 - 330261 330261

ST-G - 3.11 3.34 - 3.2 3.2 - 518702 518702

S-A 0.49 0.95 1.74 2 2 4 71999 151687 301429

S-B 0.16 0.30 0.53 8.7 8.7 16.9 20135 38523 71823

S-C 0.64 1.13 2.48 4.9 10.2 10.2 98382 174746 382500

xy
zt

ST-A 1.36 1.27 1.25 7 7 7 389554 389554 389554

ST-B 1.21 1.11 1.13 8 8 8 342239 342239 342239

ST-C 0.33 0.32 0.31 17 17 17 69339 69339 69339

ST-D 0.40 0.39 0.40 9 9 9 69967 69967 69967

ST-E 0.59 0.57 0.57 17 17 17 134998 134998 134998

ST-F - 1.03 1.03 - 3.7 3.7 - 330261 330261

ST-G - 1.86 1.84 - 6.5 6.5 - 518702 518702

S-A 0.28 0.55 1.03 8 16 16 71999 151687 301429

S-B 0.11 0.19 0.36 31.8 31.9 62.7 20135 38523 71823

S-C 0.42 0.73 1.56 19.7 38.6 38.7 98382 174746 382500

Table C.20: The query response times, the percentage of false hits compared to the
actual number of points and the number of points returned by the
queries for the two integrations of space and time and the two treat-
ments of z in the coastline use case (Large Benchmark).
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c.2.4 Full benchmark (All stages)

Stage ID
Range
calc. (s)

Range
IOT
(s)

No. of
ranges Depth Fetch

(s)
Decode

(s)
Store

(s)
Candidate

pts
Final
pts

Refinement
(s)

Sm
al

l

ST-A 1.6 0.23 4508 19 2.29 4.50 0.43 400985 389554 3.90

ST-B 1.9 0.17 4955 19 1.98 3.90 0.42 355382 342239 3.33

ST-C 10.7 0.24 33327 21 0.48 0.90 0.23 72415 69339 0.96

ST-D 21.9 0.17 17054 22 0.46 0.88 0.22 71600 69967 0.94

ST-E 8.4 0.22 26679 21 0.86 1.59 0.18 140884 134998 1.55

ST-F - - - - - - - - - -
ST-G - - - - - - - - - -
S-A 4.4 0.18 13067 21 0.45 0.92 0.23 73396 71999 0.94

S-B 2.9 0.17 7595 20 0.14 0.27 0.27 21892 20135 0.38

S-C 5.0 0.18 15147 21 0.57 1.27 0.26 103154 98382 1.29

M
ed

iu
m

ST-A 1.7 0.44 4508 19 2.20 4.88 0.52 400985 389554 4.39

ST-B 1.8 0.19 4955 19 1.95 4.26 0.55 355382 342239 3.62

ST-C 11.9 0.27 33327 21 0.49 0.92 0.15 72415 69339 1.00

ST-D 22.9 0.24 17054 22 0.50 0.92 0.14 71600 69967 0.99

ST-E 8.8 0.24 26679 21 0.88 1.83 0.22 140884 134998 1.77

ST-F 0.6 0.17 1307 17 2.59 5.78 0.86 483083 461432 5.59

ST-G 35.4 0.34 71675 20 3.15 6.71 0.72 535058 518702 5.78

S-A 22.0 0.25 23471 21 0.96 1.96 0.23 154573 151687 1.80

S-B 20.9 0.22 22209 20 0.29 0.53 0.12 41864 38523 0.63

S-C 10.8 0.21 11165 20 1.12 2.22 0.26 192594 174746 2.27

La
rg

e

ST-A 1.7 0.89 4508 19 2.20 4.76 0.50 400985 389554 4.46

ST-B 1.8 0.20 4955 19 1.95 4.23 0.50 355382 342239 4.21

ST-C 11.8 0.29 33327 21 0.48 0.90 0.15 72415 69339 1.02

ST-D 21.1 0.22 17054 22 0.47 0.89 0.14 71600 69967 1.02

ST-E 8.9 0.24 26679 21 0.83 1.70 0.21 140884 134998 1.79

ST-F 0.6 0.17 1307 17 2.48 5.51 0.62 483083 461432 4.94

ST-G 34.9 0.40 71675 20 3.06 6.34 0.63 535058 518702 5.58

S-A 11.5 0.20 12151 20 1.73 3.76 0.44 313246 301429 3.36

S-B 12.2 0.19 6320 19 0.49 1.06 0.16 83968 71823 1.09

S-C 27.6 0.24 17847 20 2.27 5.38 0.52 421396 382500 4.50

Table C.21: Benchmark results for all query stages. Case: integrated approach with
z as an attribute of the full benchmark.
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Stage ID
Range
calc. (s)

Range
IOT
(s)

No. of
ranges Depth Fetch

(s)
Decode

(s)
Store

(s)
Candidate

pts
Final
pts

Refinement
(s)

Sm
al

l

ST-A 3.1 0.26 8225 18 1.25 7.01 0.50 417417 389554 4.56

ST-B 3.4 0.21 9044 18 1.11 6.35 0.43 370392 342239 3.93

ST-C 11.7 0.27 30641 19 0.32 1.52 0.25 81210 69339 1.06

ST-D 32.0 0.45 108775 20 0.41 1.41 0.33 76495 69967 1.04

ST-E 8.9 0.24 24310 19 0.57 2.80 0.34 158435 134998 1.79

ST-F - - - - - - - - - -
ST-G - - - - - - - - - -
S-A 4.2 0.20 11284 19 0.28 1.46 0.15 77889 71999 1.00

S-B 2.1 0.18 4158 18 0.10 0.49 0.09 26530 20135 0.45

S-C 5.4 0.22 13936 19 0.39 2.22 0.19 117753 98382 1.43

M
ed

iu
m

ST-A 2.9 0.58 8225 18 1.35 6.88 0.53 417417 389554 4.46

ST-B 3.6 0.21 9044 18 1.22 6.23 0.42 370392 342239 3.85

ST-C 10.6 0.27 30641 19 0.32 1.51 0.15 81210 69339 1.07

ST-D 32.3 0.49 108775 20 0.40 1.38 0.14 76495 69967 1.03

ST-E 8.3 0.25 24310 19 0.60 2.77 0.23 158435 134998 1.89

ST-F 1.9 0.18 5228 17 1.53 7.98 0.64 483083 461432 4.90

ST-G 316.3 0.61 153646 19 1.97 8.91 0.62 552408 518702 5.71

S-A 3.5 0.18 2578 18 0.58 3.10 0.24 175738 151687 2.00

S-B 10.0 0.22 7855 18 0.19 0.97 0.13 50806 38523 0.71

S-C 5.4 0.22 3946 18 0.77 3.88 0.30 242166 174746 2.44

La
rg

e

ST-A 3.1 0.93 8225 18 1.34 7.13 0.48 417417 389554 4.39

ST-B 3.5 0.21 9044 18 1.23 5.88 0.45 370392 342239 3.77

ST-C 11.2 0.28 30641 19 0.33 1.50 0.15 81210 69339 1.08

ST-D 32.6 0.55 108775 20 0.41 1.41 0.14 76495 69967 1.05

ST-E 8.2 0.25 24310 19 0.58 2.87 0.23 158435 134998 1.90

ST-F 1.9 0.20 5228 17 1.53 7.68 0.58 483083 461432 4.88

ST-G 324.9 0.70 153646 19 1.97 9.23 0.61 552408 518702 5.82

S-A 9.2 0.17 3000 18 1.10 5.77 0.43 348564 301429 3.45

S-B 2.9 0.20 2150 17 0.39 2.07 0.19 116864 71823 1.33

S-C 12.8 0.21 5568 18 1.65 8.73 0.56 530600 382500 4.70

Table C.22: Benchmark results for all query stages. Case: integrated approach with
z as a key of the full benchmark.
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D CODE DESCR IPT ION AND SQL
STATEMENTS

This chapter contains a selection of the most important SQL statements that
were used for the implementation of the methodology described in Chap-
ter 4. Apart from the used SQL statements, also other alternatives that were
considered but not used are described. Since, this is a selection of state-
ments, for the full code the reader is referred to the on-line code found at:
https://github.com/stpsomad/DynamicPCDMS.

The chapter is divided into two sections, namely; SQL statements con-
cerning the creation of the tables and the loading, and examples of query
statements.

d.1 loading scripts
The implementation for all four cases examined thoroughly within this the-
sis begins with the preparation phase that concerns the creation of the heap
table. The heap table is an unordered table where the point cloud data are
bulk loaded. The existence of the heap table is temporary because after the
data have been organised, it is dropped.

Listing D.1: Heap table creation for the four cases

-- CREATING HEAP TABLE

-- Case non -integrated (z as an attribute)

CREATE TABLE xy_temp (

time NUMBER ,

morton NUMBER ,

z NUMBER)

TABLESPACE USERS

PCTFREE 0 NOLOGGING;

-- Case non -integrated (z added in code)

CREATE TABLE xyz_temp (

time NUMBER ,

morton NUMBER)

TABLESPACE USERS

PCTFREE 0 NOLOGGING;

-- Case integrated (z as an attribute)

CREATE TABLE xyt_temp (

morton NUMBER ,

z NUMBER)

TABLESPACE USERS

PCTFREE 0 NOLOGGING;

-- Case integrated (z added in code)

CREATE TABLE xyzt_temp (

morton NUMBER)

TABLESPACE USERS

PCTFREE 0 NOLOGGING;
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The bulk loading of the data begins by converting all the required data
into the SFC of our choice. In the case examined the chosen SFC is the morton
curve. For this, a conversion utility has been created, the mortonConverter.
The converter in its current form takes as input a configuration file (*.ini)
that includes parameters like: the format of the files, the integration used,
the treatment of z, the scaling of time, the resolution of time etc. According
to the parameters used, the converter proceeds to the transformation of the
coordinates and the conversion to the morton curve.

This procedure is pipelined with the SQLLDR utility1 of the Oracle Database
that bulk loads external files into the database. The data are sent into the
previously initialised heap table. A general example of use of the morton-
Converter and the SQLLDR utility is:

Listing D.2: Morton corversion pipelined with the SQLLDR utility

python -m pointcloud.mortonConverter [config_file] |

sqlldr [user ]/[ password]@//[ host ]:[ port ]/[ database]

direct=true control=control_file.ctl data=\"-\"

bad=bad_file.bad log=log_file.log

After the bulk loading is completed, the implementation moves to the
second phase of the loading procedure; the Loading. Within this step the
Index Organised Table (IOT) is generated from the previously created heap
table. This step either finalises the loading procedure or the user proceeds
to the phase of gathering the required optimiser statistics.

Listing D.3: IOT creation for the four cases

-- CREATING INDEX ORGANISED TABLE

-- Case non -integrated (z as an attribute)

CREATE TABLE xy

(time , morton , z,

CONSTRAINT xy_PK PRIMARY KEY (time , morton ))

ORGANIZATION INDEX

TABLESPACE INDX

PCTFREE 0 NOLOGGING

AS

SELECT time , morton , z FROM xy_temp;

-- Case non -integrated (z added in code)

CREATE TABLE xyz

(time , morton ,

CONSTRAINT xyz_PK PRIMARY KEY (time , morton ))

ORGANIZATION INDEX

TABLESPACE INDX

PCTFREE 0 NOLOGGING

AS

SELECT time , morton FROM xyz_temp;

-- Case integrated (z as an attribute)

CREATE TABLE xyt

(morton , z,

CONSTRAINT xyt_PK PRIMARY KEY (morton ))

ORGANIZATION INDEX

TABLESPACE INDX

PCTFREE 0 NOLOGGING

AS

SELECT morton , z FROM xyt_temp;

-- Case integrated (z added in code)

1 http://docs.oracle.com/database/121/SUTIL/GUID-DD843EE2-1FAB-4E72-A115-21D97A

501ECC.htm#SUTIL003
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CREATE TABLE xyzt

(morton ,

CONSTRAINT xyzt_PK PRIMARY KEY (morton ))

ORGANIZATION INDEX

TABLESPACE INDX

PCTFREE 0 NOLOGGING

AS

SELECT morton FROM xyzt_temp;

In the case that new data need to be added into the database, the proce-
dure is as follows:

(a) The heap table is created as in Listing D.1.

(a) The new data are bulk loaded into the heap tables as in Listing D.2.

(a) The new and the old data are combined together as in Listing D.4.

Listing D.4: Adding new data to the IOT for the four cases

-- LOADING NEW DATA TO THE INDEX ORGANISED TABLE

-- Case non -integrated (z as an attribute)

CREATE TABLE xy_new

(time , morton , z,

CONSTRAINT xy_new_PK PRIMARY KEY(time , morton ))

ORGANIZATION INDEX TABLESPACE INDX

PCTFREE 0 NOLOGGING

AS

SELECT time , morton , z FROM xy_temp

UNION ALL

SELECT time , morton , z FROM xy;

-- Case non -integrated (z added in code)

CREATE TABLE xyz_new

(time , morton ,

CONSTRAINT xyz_new_PK PRIMARY KEY(time , morton ))

ORGANIZATION INDEX TABLESPACE INDX

PCTFREE 0 NOLOGGING

AS

SELECT time , morton FROM xyz_temp

UNION ALL

SELECT time , morton FROM xyz;

-- Case integrated (z as an attribute)

CREATE TABLE xyt_new

(morton , z,

CONSTRAINT xyt_new_PK PRIMARY KEY(morton ))

ORGANIZATION INDEX TABLESPACE INDX

PCTFREE 0 NOLOGGING

AS

SELECT morton , z FROM xyt_temp

UNION ALL

SELECT morton , z FROM xyt;

-- Case integrated (z added in code)

CREATE TABLE xyzt_new

(morton ,

CONSTRAINT xyzt_new_PK PRIMARY KEY(morton ))

ORGANIZATION INDEX TABLESPACE INDX

PCTFREE 0 NOLOGGING

AS

SELECT morton FROM xyzt_temp

UNION ALL

SELECT morton FROM xyzt;
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An alternative to the previous preparation phase is to use the external ta-
ble2 feature of Oracle. This feature allows to use data outside the database
as if they were a table inside the database. To use external tables the follow-
ing steps need to be followed (Listing D.5):

(a) Oracle directories pointing to the data are created.

(a) The connection between the directory and the database is established.

The reason why I do not use this method is that it requires writing binary
or ASCII files and storing them somewhere on the system. This is not ideal
as it ends up having extra duplication of the data.

Listing D.5: IOT creation for the four cases

CREATE DIRECTORY INPUT_DATA_DIR AS 'DIRECTORY ';
GRANT READ ON DIRECTORY INPUT_DATA_DIR TO [user];

GRANT WRITE ON DIRECTORY INPUT_DATA_DIR TO [user];

CREATE TABLE XY_TEMP_EXT (

time NUMBER ,

morton NUMBER ,

z NUMBER)

ORGANIZATION EXTERNAL(

TYPE ORACLE_LOADER

DEFAULT DIRECTORY INPUT_DATA_DIR

ACCESS PARAMETERS (

RECORDS DELIMITED BY NEWLINE

FIELDS TERMINATED BY ', ')
LOCATION ('*.txt'))

REJECT LIMIT 0;

d.2 query scripts
The queries (presented in Appendix B) are executed by the use of Python
scripts. The queries are loaded into a database table called QUERIES. The
spatial part of the query is loaded using Well Known Text (WKT). The
QUERIES table contains the following information:

(a) The query ID

(a) The dataset in which it belongs (Sand Engine, Coastline)

(a) The type of query (i.e. space - time, only space and only time)

(a) The geometry (NULL if the type of query is time)

(a) The start and end date (NULL if the type of query is space)

(a) The minimum and maximum height (if any)

When a certain query needs to be executed the implemented scripts read
the required information from the QUERIES table.

2 http://docs.oracle.com/database/121/SUTIL/GUID-44323E01-7D72-45EC-915A-99E

596769D9E.htm#SUTIL011
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d.2.1 Filter step

According to the type of integration, treatment of z used and type of query
the Python script uses the required 2n−tree to identify the morton ranges
that approximate the geometry. The SQL statement for the filter step can
be specified in two different ways. Within the following examples, I specify
the morton ranges in the WHERE statement for the non-integrated approach
and I use a join statement for the integrated one.

Time queries

In the non-integrated approach time queries are straight forward and do
not require a two step approach. This is because time is stored separate. A
time query that requests the point between two moments in time for both
treatments of z is specified as in Listing D.6.

Listing D.6: Time query in the non-integrated approach

SELECT time , morton[, z]

FROM xy[z]

WHERE (time BETWEEN 4681 AND 4682)

In the integrated approach time queries follow the two step query process.
The filter step is executed as follows:

(a) The morton ranges are loaded into an IOT named RANGES.

(a) The data table and the RANGES table are joined.

The ranges table has the following schema:

Listing D.7: The initialisation of the IOT containing the morton ranges

CREATE TABLE RANGES(

low NUMBER ,

upper NUMBER ,

CONSTRAINT RANGES_iot_idx PRIMARY KEY (low))

ORGANIZATION INDEX;

The ranges are bulk loaded with the sasme SQLLDR utility. The same
query as in the non-integrated approach is now executed using the follow-
ing SQL statement. Note that an optimiser hint (USE NL (t r)) is being used
as, without it, the proposed execution plan does not provide an efficient
execution time.

Listing D.8: Time query in the integrated approach

SELECT /*+ USE_NL (t r)*/ t.morton[, t.z]

FROM xy[z]t t, RANGES r

WHERE (t.morton BETWEEN r.low AND r.upper );

Space queries

Space queries in the non-integrated approach only filter on the morton col-
umn. In this example the spatial component is a rectangle. The query is
performed as follows:

Listing D.9: Space query in the non-integrated approach

SELECT time , morton , z

FROM xy[z]

119



WHERE (( morton between 170018964766720 and 170019501637631) OR

(morton between 170021917556736 and 170022722863103) OR

(morton between 170022991298560 and 170026212524031) OR

(morton between 170026480959488 and 170029165314047) OR

(morton between 170039902732288 and 170040171167743) OR

(morton between 170040439603200 and 170040708038655) OR

(morton between 170046345183232 and 170046882054143) OR

(morton between 170047150489600 and 170048492666879) OR

(morton between 170049566408704 and 170050103279615) OR

(morton between 170050371715072 and 170054935117823) OR

(morton between 170059230085120 and 170059766956031) OR

(morton between 170060035391488 and 170061377568767) OR

(morton between 170061646004224 and 170061914439679) OR

(morton between 170062451310592 and 170064598794239) OR

(morton between 170065135665152 and 170065404100607) OR

(morton between 170065672536064 and 170067820019711) OR

(morton between 170070504374272 and 170070772809727) OR

(morton between 170072114987008 and 170076678389759) OR

(morton between 170076946825216 and 170077483696127) OR

(morton between 170078557437952 and 170079899615231) OR

(morton between 170080168050688 and 170080704921599) OR

(morton between 193519683633152 and 193519952068607) OR

(morton between 193531226357760 and 193533373841407) OR

(morton between 193533642276864 and 193533910712319) OR

(morton between 193534447583232 and 193539816292351) OR

(morton between 193540890034176 and 193541426905087) OR

(morton between 193541695340544 and 193541963775999) OR

(morton between 193544111259648 and 193546795614207) OR

(morton between 193547064049664 and 193548406226943) OR

(morton between 193570954805248 and 193572028547071) OR

(morton between 193573370724352 and 193573639159807) OR

(morton between 193582765965312 and 193583034400767) OR

(morton between 193583302836224 and 193583571271679) OR

(morton between 193584913448960 and 193585987190783) OR

(morton between 193586524061696 and 193586792497151) OR

(morton between 193591355899904 and 193595650867199) OR

(morton between 193596187738112 and 193596456173567) OR

(morton between 193597798350848 and 193598066786303) OR

(morton between 193598335221760 and 193598603657215) OR

(morton between 193617125703680 and 193619004751871) OR

(morton between 193619273187328 and 193619810058239));

In the integrated approach the same methodology as in the time queries
is followed. The SQL statement is also the same as in Listing D.8.

Space - time queries

Space - time queries in the non-integrated approach could be considered a
combination of time and space queries. By this is meant that the WHERE
clause contains predicates both in the time and morton columns. In the fol-
lowing example the spatial component represents and axis aligned rectangle,
while the temporal component requests two distinct moments in time.

Listing D.10: Space - time query in the non-integrated approach

SELECT time , morton[, z]

FROM xy[z]

WHERE ((time IN (3655, 3680)) AND

(( morton between 151177480110080 and 151178553851903) OR

(morton between 151180701335552 and 151182848819199) OR

(morton between 151544699813888 and 151545773555711) OR

(morton between 151546847297536 and 151552216006655) OR

(morton between 151553289748480 and 151554363490303) OR

(morton between 151555437232128 and 151560805941247) OR

(morton between 151579059552256 and 151580133294079) OR
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(morton between 151581207035904 and 151586575745023) OR

(morton between 151587649486848 and 151588723228671) OR

(morton between 151589796970496 and 151595165679615) OR

(morton between 151682138767360 and 151683212509183) OR

(morton between 151684286251008 and 151689654960127) OR

(morton between 151690728701952 and 151691802443775) OR

(morton between 151692876185600 and 151698244894719) OR

(morton between 151716498505728 and 151717572247551) OR

(morton between 151718645989376 and 151724014698495) OR

(morton between 151725088440320 and 151726162182143) OR

(morton between 151727235923968 and 151732604633087) OR

(morton between 153193967255552 and 153195040997375) OR

(morton between 153196114739200 and 153201483448319) OR

(morton between 153202557190144 and 153203630931967) OR

(morton between 153204704673792 and 153210073382911) OR

(morton between 154114163998720 and 154116311482367) OR

(morton between 154118458966016 and 154120606449663) OR

(morton between 154131343867904 and 154133491351551) OR

(morton between 154135638835200 and 154137786318847) OR

(morton between 154182883475456 and 154185030959103) OR

(morton between 154187178442752 and 154189325926399) OR

(morton between 154200063344640 and 154202210828287) OR

(morton between 154204358311936 and 154206505795583) OR

(morton between 154389041905664 and 154391189389311) OR

(morton between 154393336872960 and 154394410614783) OR

(morton between 154481383702528 and 154761630318591) OR

(morton between 154762704060416 and 154763777802239) OR

(morton between 154764851544064 and 154770220253183) OR

(morton between 154771293995008 and 154772367736831) OR

(morton between 154790621347840 and 154795990056959) OR

(morton between 154797063798784 and 154798137540607) OR

(morton between 154799211282432 and 154804579991551) OR

(morton between 154805653733376 and 154806727475199) OR

(morton between 154893700562944 and 154899069272063) OR

(morton between 154900143013888 and 154901216755711) OR

(morton between 154902290497536 and 154907659206655) OR

(morton between 154908732948480 and 154909806690303) OR

(morton between 154928060301312 and 154933429010431) OR

(morton between 154934502752256 and 154935576494079) OR

(morton between 154936650235904 and 154942018945023) OR

(morton between 154943092686848 and 154944166428671) OR

(morton between 156130651144192 and 156165010882559) OR

(morton between 156199370620928 and 156233730359295) OR

(morton between 156405529051136 and 156410897760255) OR

(morton between 156411971502080 and 156413045243903) OR

(morton between 156414118985728 and 156419487694847) OR

(morton between 156420561436672 and 156421635178495)));

In the integrated approach the query statement is, again, the same as in
Listing D.8.

d.2.2 Refinement step

Ideally the refinement step should be able to be performed together with
the filter one. However, since only the morton keys are stored inside the
database (and not the original dimensions) a decoding of the key needs to
take place first. At this moment in time, there exists no function inside
the database that can do this decoding. For this reason, the application is
”forced” to perform this decoding outside the database. This is not ideal as
a lot of unnecessary and expensive movement of data needs to take place.
Nevertheless, the refinement step is performed as follows.

The result of the filter step is fetched inside the Python code and the
decoding takes place. These data are then returned to the database for the
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final refinement step. Because the SDO PointInPolygon operator in Oracle is
used, the table that is created has the following schema.

Listing D.11: Time query in the integrated approach

CREATE TABLE refinement (

time VARCHAR2 (20),

X NUMBER ,

Y NUMBER ,

Z NUMBER)

Finally, the refinement step is performed. Between the two integrations,
this step differs slightly in that the integrated approach requires an extra
predicate in the time dimension for time and space - time queries. The
refinement step of the previously presented queries are:

Time queries

As mentioned before in the non-integrated approach no further refinement
is required. The query procedure ends with the creation of the previous
table. On the other hand, in the integrated approach a refinement in the
time dimension needs to take place.

Listing D.12: Time refinement query in the integrated approach

CREATE TABLE result

AS SELECT *

FROM (SELECT X, Y, Z, TO_DATE(TIME ,'yyyy/mm/dd') AS TIME

FROM refinement)

WHERE (TIME BETWEEN TO_DATE('2002/10/25 ', 'YYYY/MM/DD') AND

TO_DATE('2002/10/26 ', 'YYYY/MM/DD'));

Space queries

The refinement step in the integrated and non-integrated approach is the
same and includes the execution of a point in polygon operation.

Listing D.13: Space refinement query in the integrated and non-integrated approach

CREATE TABLE result

AS (SELECT *

FROM TABLE (mdsys.sdo_PointInPolygon (CURSOR (

SELECT X, Y, Z, TO_DATE(TIME , 'yyyy/mm/dd') AS TIME

FROM refinement),

MDSYS.SDO_GEOMETRY('POLYGON ((73205.024 452445.009 ,

73465.172 452762.02 , 73537.673 452698.05 ,

73281.789 452379.617 , 73205.024 452445.009)) ',
28992) , 0.001)));

Space - time queries

The refinement step of space - time queries for the non-integrated approach
is the same as the one used for space queries.

Listing D.14: Space - time refinement query in the non-integrated approach

CREATE TABLE result

AS (SELECT *

FROM TABLE(mdsys.sdo_PointInPolygon(CURSOR(

SELECT X, Y, Z, TO_DATE(TIME , 'yyyy/mm/dd') AS TIME

FROM refinement),

MDSYS.SDO_GEOMETRY('POLYGON ((71028.591 451007.796 ,
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71027.169 451654.613 , 71715.212 451656.034 ,

71716.634 451006.374 , 71028.591 451007.796)) ',
28992) , 0.001)));

For the integrated approach, an extra time predicate needs to be added
compared to the non-integrated case.

Listing D.15: Space - time refinement query in the integrated approach

CREATE TABLE result

AS (SELECT *

FROM TABLE (mdsys.sdo_PointInPolygon (CURSOR (

SELECT X, Y, Z, TO_DATE(TIME , 'yyyy/mm/dd') AS TIME

FROM refinement),

MDSYS.SDO_GEOMETRY('POLYGON ((71028.591 451007.796 ,

71027.169 451654.613 , 71715.212 451656.034 ,

71716.634 451006.374 , 71028.591 451007.796)) ',
28992) , 0.001))

WHERE (TIME IN (TO_DATE('2000/01/03 ', 'YYYY/MM/DD'),
TO_DATE('2000/01/28 ', 'YYYY/MM/DD'))));

d.3 validation scripts
To validate that the answers of the queries using the proposed methodology
are correct, a solution using available spatial and date data types was de-
veloped. This solution is also a proof that using 3D-point/ date data types
with normal R-Tree and B-tree indexes is not an efficient alternative.

d.4 loading scripts
The loading follows the same logic as with the proposed methodology. In
the preparation phase the data are transformed to the correct format and
loaded into the database. The table where the spatial data will be inserted
is initialised as follows:

Listing D.16: Initialisation of the spatial table

CREATE TABLE validation (

GEOM SDO_GEOMETRY ,

TIME DATE);

The data are then read from the LAZ files and formatted according to the
rules required by the SQLLDR (Listing D.17). Then, in the loading phase,
the data are bulk loaded into the table (Listing D.18).

Listing D.17: Space - time refinement query in the integrated approach

load data

append into table validation

fields terminated by ','
TRAILING NULLCOLS (

TIME DATE 'YYYY_MM_DD ',
geom COLUMN OBJECT (

SDO_GTYPE INTEGER EXTERNAL ,

SDO_SRID INTEGER EXTERNAL ,

SDO_POINT COLUMN OBJECT (

X FLOAT EXTERNAL ,

Y FLOAT EXTERNAL ,
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Z FLOAT EXTERNAL

)));

Listing D.18: Space - time refinement query in the integrated approach

python -m las2txyz [config_file] |

sqlldr [user ]/[ password]@//[ host ]:[ port ]/[ database]

direct=true control=control_file.ctl data=\"-\"

bad=bad_file.bad log=log_file.log

Then, in order to be able to build spatial indexes, Oracle requires the
insertion of certain spatial metadata.

Listing D.19: Inserting the spatial metadata into the user sdo geom metadata view

INSERT INTO user_sdo_geom_metadata

(table_name , column_name , srid , diminfo)

VALUES ('validation ', 'GEOM', 28992,

SDO_DIM_ARRAY (

SDO_DIM_ELEMENT ('X',
69000,

80000,

0.001) ,

SDO_DIM_ELEMENT ('Y',
449000 ,

460000 ,

0.001) ,

SDO_DIM_ELEMENT ('Z',
-100,

100,

0.001)

));

The spatial index is created using an R-Tree. To be able to also ask efficient
questions in the time dimension, a B-Tree is built on the relevant column.
These two actions are achieved using the following SQL statements.

Listing D.20: Space - time refinement query in the integrated approach

CREATE INDEX valid_rtree_IDX ON validation(GEOM)

INDEXTYPE IS MDSYS.SPATIAL_INDEX

PARAMETERS('sdo_indx_dims =2 tablespace=INDX

layer_gtype=POINT sdo_rtr_pctfree =0 work_tablespace=PCWORK

sdo_fanout =48'');

CREATE INDEX valid_btree_IDX ON validation(TIME);

d.5 query scripts
The same queries are executed using the same QUERIES table. However,
this time the query process is more straightforward and the filter and re-
finement step are performed by the database system. The following exam-
ples present the same queries as presented previously for the three types of
queries.

Time queries

Time queries, like in the non-integrated approach, require only refinement
based on the time column. This is performed in the following way:
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Listing D.21: Space - time refinement query in the integrated approach

CREATE TABLE result AS

(SELECT t.GEOM AS GEOMETRY , t.TIME AS TIME

FROM validation t, queries q

WHERE (q.ID = 5 AND

(t.TIME BETWEEN q.START_DATE AND q.END_DATE )));

Space queries

Space queries require the use of a spatial operator. In this case we require
to obtain all the points that intersect the geometry. This is performed as
follows:

Listing D.22: Space - time refinement query in the integrated approach

CREATE TABLE result AS

(SELECT t.GEOM AS GEOMETRY , t.TIME AS TIME

FROM validation t, queries q

WHERE (q.ID = 3 AND

SDO_ANYINTERACT(t.GEOM , q.GEOMETRY) = 'TRUE'));

Space - time queries

Space - time queries require both a spatial and a time predicate. The query
is performed as follows:

Listing D.23: Space - time refinement query in the integrated approach

CREATE TABLE result AS

(SELECT t.GEOM AS GEOMETRY , t.TIME AS TIME

FROM validation t, queries q

WHERE (q.ID = 1 AND

(t.TIME IN (q.START_DATE , q.END_DATE ))

AND SDO_ANYINTERACT(t.GEOM , q.GEOMETRY) = 'TRUE'));
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(2015). Massive point cloud data management: Design, implementa-
tion and execution of a point cloud benchmark. Computers & Graphics,
49:92–125.

van Oosterom, P. and Vijlbrief, T. (1996). The spatial location code. In
Proceedings of the 7th International Symposium on Spatial Data Handling,
Delft, The Netherlands.

Vazirgiannis, M., Theodoridis, Y., and Sellis, T. (1998). Spatio-temporal com-
position and indexing for large multimedia applications. Multimedia
Systems, 6(4):284–298.

Westoby, M., Brasington, J., Glasser, N., Hambrey, M., and Reynolds, J.
(2012). ‘Structure-from-Motion’photogrammetry: A low-cost, effective
tool for geoscience applications. Geomorphology, 179:300–314.

White, J. C., Wulder, M. A., Vastaranta, M., Coops, N. C., Pitt, D., and
Woods, M. (2013). The utility of image-based point clouds for forest
inventory: A comparison with airborne laser scanning. Forests, 4(3):518–
536.

Wijga-Hoefsloot, M. (2012). Point clouds in a database: Data management
within an engineering company. Master’s thesis, TU Delft, Delft Uni-
versity of Technology.

Xu, X., Han, J., and Lu, W. (1990). Rt-tree: an improved r-tree index structure
for spatiotemporal databases. In Proc. 4th Int’l. Symp. on Spatial Data
Handling.

Zlatanova, S. (2006). 3D geometries in spatial DBMS. In Innovations in 3D
geo information systems, pages 1–14. Springer.

131





E REFLECT ION

This graduation research officially started in November 2015 and it took
more than the usually required 8 months. The reason for this delay was the
fact that I decided that the topic needed more extensive research that was
not possible to complete in the official graduation period. I also took some
time to submit a paper for the 3D Geoinfo conference which took place in
October 2016 in Athens, Greece. The conference was a good opportunity to
present this work to the academic community and I consider myself lucky
that my supervisors (both at the TU Delft and the company Deltares that ini-
tiated the thesis) agreed with my given choice. In the course of the extended
period, however, I did more experiments than the initially considered one’s
and those gave even more insight to the overall topic of managing dynamic
point clouds. An example of this extended work was the cooperation with
a visiting researcher Xuefeng Guan who was dealing with rather similar
research. In his work, time was replaced by the LoD. During the summer,
I actually used his implemented code and run some preliminary tests for
some parts of the future work.

In the beginning of the thesis, the research questions also included the
studying of aspects (like blocking with SFCs) that in the course of time were
proven to be more software oriented and less research-focused and, for this
reason, those aspects were not studied at the end. The research questions
were thus adapted.

The main aim of this Master thesis was to research whether a SFC ap-
proach is an appropriate method for integrating the space and time com-
ponents of point cloud datasets. In other words, the research required the
implementation of a prototype and the execution of experiments and bench-
marks to be able to make an informed conclusion. From those it is corrobo-
rated that the SFC approach is an appropriate method for managing dynamic
point clouds. Actually the best approach concerns an equal treatment of the
spatial and time dimensions in the SFC. The method is scalable and can
be used for a wide variety of use cases. The user only needs to define the
appropriate encoding of space and time and, scaling of time for the needed
use cases.

From the website of the master program, one learns that: ”The science Ge-
omatics is concerned with the acquisition, analysis, management and visualisation
of geographic data with the aim of gaining knowledge and a better understanding of
the built and natural environments.”. This thesis deals with the management
part of the program and uses a wide variety of terms introduced in many
of the courses: space filling curves and spatial clustering, quadtrees, octrees,
spatial indexing techniques, databases, point clouds, programming etc. The
thesis is as a result very technical and in line with the program. In addition
to that, it is also pure research with the results discussed in Chapter 5.

The research conducted in this document is directly applicable to the field
of geomatics. It actually was a continuation of a project ”Massive Point
Clouds for eSciences” where many companies were involved. The prob-
lem of managing dynamic point clouds is a real-world problem and the
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thesis was initiated by Deltares. The company possesses many point cloud
datasets that are used for the monitoring of the Dutch coast and efficient
management of those datasets is an active problem. Of course, the project
being a Master thesis does not completely solve the problem, but a first step
is taken and directions for future work are given in Section 7.2.

The relationship between the project and the wider social context can be
seen by the nature of the datasets used and the cooperation with Deltares.
The Netherlands is a country where the protection of the coast has played a
very important role for its development. Almost one quarter of the land lies
below sea level. Typical flood protection structures include dams, dikes and
dunes. The Dutch coastal policy states that the country should ”hold the
line” meaning that the coastline should be prevented from moving towards
the mainland. For this reason, the Ministry of Transport, Public Works,
and Water Management (Rijkswaterstaat) as part of the coastal monitoring
guidelines performs a yearly survey of the Dutch coast in order to deter-
mine changes in coastal elevations. Another important project is the Sand
Engine. The Sand Engine was created by depositing 21 million cubic meters
of sand between the areas Ter Heijde and Kijkduin. The purpose of this pi-
lot program is to investigate how nature spreads this amount of sand along
the coast as the years go by. In order to see if the experiment is develop-
ing as thought, a monitoring of the area at irregular moments in time (after
storms) takes place. Point clouds have evolved to be a very important source
of information for coastal applications. The usefulness of point cloud data
lies in the fact that point cloud acquisition techniques have become highly
accurate and quick, allowing daily or even hourly collection of data. This
plethora of data leads to dynamic point clouds that need to be efficiently
managed. By studying the available solutions, I realised that current solu-
tions offered by commercial and open-source databases are not enough for
handling this sort of information. Therefore, I implemented a different so-
lution that provides contribution both in the academic community and the
society.

134



colophon
This document was typeset using LATEX. The document layout was gen-
erated using the arsclassica package by Lorenzo Pantieri, which is an
adaption of the original classicthesis package from André Miede.
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