
Thermal-Aware
Designand
Runtime Management

3D Stackedof
Multiprocessors
S U M E E T K U M A R

Thermal-Aware Design and
Runtime Management of

3D Stacked Multiprocessors

Thermal-Aware Design and
Runtime Management of

3D Stacked Multiprocessors

Proefschrift

ter verkrijging van de graad van doctor

aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus Prof. ir. K.C.A.M. Luyben,

voorzitter van het College voor Promoties,

in het openbaar te verdedigen

op dinsdag 15 september 2015 om 12:30 uur

door

Sumeet Susheel KUMAR

Master of Science in Microelectronics, Technische Universiteit Delft

geboren te Kuwait City, Kuwait

This dissertation has been approved by:
Promotor:
Prof. dr. ir. A.-J. van der Veen

Copromotor:
dr. ir. T.G.R.M. van Leuken

Composition of the doctoral committee:

Rector Magnificus,
Prof. dr. ir. A.-J. van der Veen
dr. ir. T.G.R.M. van Leuken
dr. A. Zjajo

voorzitter
Technische Universiteit Delft, promotor
Technische Universiteit Delft, copromotor
Technische Universiteit Delft

Independent members:

Prof. dr. J. Pineda de Gyvez
Prof. dr. F. Pêcheux
Prof. dr. D. Stroobandt
Prof. dr. K.L.M. Bertels
Prof. dr. ir. G.J.T. Leus

Technische Universiteit Eindhoven
Laboratoire d’Informatique de Paris-6
Universiteit Ghent
Technische Universitieit Delft
Technische Universitieit Delft, reservelid

The research described in this dissertation was performed in the Circuits and Systems
Group, Faculty of Electrical Engineering, Computer Science and Mathematics, of
Delft University of Technology, Delft, The Netherlands. This work was partially
supported by the CATRENE programme under the Computing Fabric for High Per-
formance Applications (COBRA) project CA104.

ISBN 978-94-6186-513-7

Copyright c� 2015 by Sumeet Susheel Kumar [sumeetskumar@ieee.org]

Printed by: Gildeprint Drukkerijen - The Netherlands

Summary

The sustained increase in computational performance demanded by next-generation
applications drives the increasing core counts of modern multiprocessor systems.
However, in the dark silicon era, the performance levels and integration density of
such systems is limited by thermal constraints of their physical package. These con-
straints are more severe in the case of three-dimensional (3D) integrated systems,
as a consequence of the complex thermal characteristics exhibited by stacked sil-
icon dies. This dissertation investigates the development of efficient, thermal-aware
multiprocessor architectures, and presents methodologies to enable the simultaneous
exploration of their thermal and functional behaviour.

Chapter 2 examines the efficiency of multiprocessor architectures from the per-
spective of the the memory hierarchy, and presents techniques that focus on the
effective management and transfer of on-chip data in order to minimize the time spent
waiting on memory accesses. In the case of shared-memory multiprocessors, this is
achieved through the proposed Persistence Selective Caching (PSC) and CacheBalan-
cer schemes that influence what data is stored in on-chip caches, where it is stored,
and for how long. This enables the memory hierarchy to adapt to changing execution
behaviour, balance resource utilization, and most importantly, reduce the average
latency and energy per memory access. Further to this, Chapter 2 presents the Pronto
system, which enables efficient data transfers in message-passing multiprocessors by
minimizing the role of the processing element in the management of transfers. Pronto
effectively decreases the overheads incurred in setting up and managing data transfers,
thereby yielding shorter communication latencies. In addition, it also simplifies the
semantics of data movement by abstracting implementation details of communications
from the programmer, thus enabling transfers to be specified entirely at the task level.

The issue of thermal-aware design for 3D Integrated Circuits (IC) using Nagata’s
equation – a mathematical representation of the dark silicon problem – is investigated
in Chapter 3. Significantly, the chapter explores the thermal design space of 3D ICs
in terms of this equation, and proposes a high-level flow to characterize the specific

i

influence of individual design parameters on thermal behaviour of die stacks. The
results of this exploration advance the state-of-the-art by providing new insights into
the critical role of power density, thermal conductivity and stack construction in the
formation of hotspots in 3D ICs. Building on these insights, the Ctherm framework is
proposed for the thermal-aware design of multiprocessor systems-on-chip (MPSoC).
Ctherm enables the concurrent evaluation of thermal and functional performance of
MPSoCs using automatically generated fine-grained area, latency and energy models
for system components, and facilitates the exploration of thermal behaviour early in
the system design flow. The efficacy of the framework is demonstrated using a number
of practical design cases ranging from floorplanning and temperature sensor placement
to application tuning. Together, the characterization and the Ctherm framework further
our understanding of the thermal behaviour of die stacks, and provide a practical
template for the realization of thermal-aware electronic design automation tooling for
3D ICs.

The management of thermal issues that arise in 3D MPSoCs at runtime is ex-
amined in Chapter 4. Temperature control is typically exercised by means of Dynamic
Thermal Management (DTM) which continuously adapt the activity and power dis-
sipation of system components. A significant disadvantage of state-of-the-art DTMs
lies in their inability to account for the non-uniform thermal behaviour of die stacks,
leading to the ineffective management of temperatures and in degraded system per-
formance. In Chapter 4, a novel 3D Dynamic Voltage Frequency Scaling (DVFS)
scheme is proposed that takes these non-uniformities into account within its power
management algorithm, effectively maintains operating temperatures within a safe
range, and maximizes system performance within the available thermal margins at
individual processing elements. Furthermore, the chapter also presents an adaptive
routing strategy to decrease the magnitude of thermal gradients in network-on-chip
based 3D architectures, by directing traffic along paths of low temperature. The
proposed Immediate Neighbourhood Temperature (INT) adaptive routing scheme
actively steers interconnect traffic away from regions with thermal hotspots based only
on temperature information available in the immediate neighbourhood, relying on
the heat transfer characteristics of 3D ICs to avoid the need for a global temperature
monitoring network. The consequent spreading of interconnect activity over multiple
paths results in balanced thermal profiles, and decreased operating temperatures across
the system.

Over the course of these chapters, this dissertation explores the critical issues
impeding the realization of thermal-aware 3D stacked multiprocessors, and details a
multifaceted approach towards addressing the challenges of dark silicon.

ii

For my mother and father,

You have no idea how hard I’ve looked for a gift to bring you. Nothing seemed
right. What’s the point of bringing gold to the gold mine, or water to the ocean.
Everything I came up with was like taking spices to the Orient. It’s no good
giving my heart and my soul because you already have these. So I’ve brought
you a mirror. Look at yourself and remember me.

Rumi

iv

Contents

1 Introduction 1
1.1 Motivation . 4

1.1.1 Architectural Efficiency 4
1.1.2 Thermal Constraints . 5
1.1.3 Temperature Management 6

1.2 Research Questions . 6
1.3 Dissertation Outline . 7
1.4 Publication List . 9

2 Architectural Techniques for Efficient On-Chip Data Management 11
2.1 Naga Architecture Overview . 13
2.2 Low-overhead Message Passing with Pronto 15

2.2.1 Related Work and Motivation 16
2.2.2 The Pronto Message Passing System 17

2.2.2.1 Pronto API . 17
2.2.2.2 Hardware Architecture 19

2.2.3 Experimental Evaluation 22
2.2.3.1 End-to-end Message Transfer Latency 24
2.2.3.2 Communication Overheads 25
2.2.3.3 Application performance with Pronto 26
2.2.3.4 Impact of input dataset size 28
2.2.3.5 Impact of extraneous interconnect traffic on output

jitter . 28
2.2.4 Conclusions . 31

2.3 Improving Data Cache Performance using Persistence Selective
Caching . 32
2.3.1 Related Work . 32

v

2.3.2 Persistence Selective Caching 33
2.3.2.1 Selective Caching Criteria 34
2.3.2.2 Significance of Persistence Threshold 36
2.3.2.3 Limitations . 37

2.3.3 Evaluation . 38
2.3.3.1 AMAT and Energy 38
2.3.3.2 Overheads and Implementation Cost 41

2.3.4 Conclusions . 41
2.4 Runtime Management of Shared Caches using CacheBalancer . . . 42

2.4.1 CacheBalancer . 43
2.4.1.1 Access Rate based Memory Allocation 43
2.4.1.2 Pain-driven Task Mapping 45

2.4.2 Evaluation . 47
2.4.3 Conclusions . 51

3 Exploring the Thermal Design Space in 3D Integrated Circuits 55
3.1 Significance of parameters . 56
3.2 Thermal Characterization of Die Stacks 57

3.2.1 Experimental Setup and Validation 60
3.2.2 Characterization . 61

3.2.2.1 Thermal Conductivity (
eff

) 61
3.2.2.2 Die Thickness and Stack Depth (l

x,y,z

) 64
3.2.2.3 Power Density (Q/A) 65

3.2.3 Conclusions . 66
3.3 Vertical Interconnect . 66

3.3.1 Electrical Performance . 67
3.3.2 Area . 69
3.3.3 Thermal Performance . 70
3.3.4 Conclusions . 72

3.4 Thermal-Aware Design Space Exploration 72
3.4.1 Ctherm Framework . 75

3.4.1.1 Physical Model Generation 75
3.4.1.2 Thermal-Functional Co-simulation Platform . . . 79

3.4.2 Evaluation . 81
3.4.2.1 Validation, Accuracy and Simulation Speed . . . 81
3.4.2.2 Design Cases 84

3.4.3 Additional Media . 89
3.4.4 Conclusions . 90

vi

4 Runtime Temperature and Power Management for 3D Multiprocessors 93
4.1 Temperature-Aware DVFS for Stacked Die Architectures 95

4.1.1 3D DVFS . 96
4.1.1.1 Initial Updates 98
4.1.1.2 Thermal Runout 98
4.1.1.3 Convergence Check 99
4.1.1.4 Pull Up/Pull Down 100
4.1.1.5 Write-Back and Reset: 100

4.1.2 Implementation Considerations 100
4.1.3 Evaluation . 101

4.1.3.1 Per-core Granularity 102
4.1.3.2 Island Granularity 104

4.1.4 Conclusions . 107
4.2 Temperature-Aware Adaptive Routing for Dynamically-Throttled

3D Networks-on-Chip . 108
4.2.1 Background . 109
4.2.2 Immediate Neighbourhood Temperature (INT) Adaptive

Routing . 110
4.2.2.1 Temperature Monitoring 111
4.2.2.2 Temperature Channel Considerations 111
4.2.2.3 Thermal-Aware Dynamic Throttling 112
4.2.2.4 Temperature-Aware Adaptive Routing Algorithm 113

4.2.3 Evaluation . 114
4.2.3.1 Characterization of Throttling 114
4.2.3.2 INT Evaluation 115

4.2.4 Conclusions . 119

5 Conclusions 123
Additional Contributions . 128
Future work . 129

Acronyms 133

Notation 137

Bibliography 141

Samenvatting 155

vii

Acknowledgements 159

Curriculum Vitae 165

Propositions 167

Stellingen 171

viii

1
Introduction

The increasing computational requirements of next-generation applications is an im-
portant driver for the development of high-performance microprocessors. Desktop
processors from the early 2000s supported performance in the range of 100 billion
operations per second (BOPS), and traditionally utilized increasingly higher clock
frequencies to scale performance. Consequently, these devices were rated with a
thermal design power (TDP) of over 100W [1], necessitating the use of extravagant
heatsinks and exotic methods for cooling [2]. Small form factor computing devices
such as mobile phones and ultrabooks on the other hand impose extremely restrictive
TDPs. For instance, in a modern smartphone, the digital workload consisting of con-
trol, data and signal processing aggregates to over 100 BOPS, however, with a power
budget of only 1W [1]. Furthermore, even though the performance requirements of
this workload increase by two orders of magnitude every five years, the power budget
grows only minimally.

Chip multiprocessors (CMP)1 are an effective means of realizing such high com-
putational performance. CMPs integrate a large number of simple processing elements
(PE) that dissipate a relatively small amount of power, into a single integrated circuit
(IC) package [3]. Workloads are divided into tasks that execute concurrently on PEs,
yielding performance improvements that surpass conventional frequency upscaling.
CMPs are thus based on the rationale that high performance can be realized better
through computing in strength rather than computing in speed, with superior power
efficiency. The viability of the concept is evident from the number of production ready
CMPs in the market. Offerings from Ambric [4–7], PicoChip [8, 9], Tilera [10–12],
Intellasys [13, 14] and NEC [15] integrate anywhere between 40 and 336 processing

1Also referred to simply as multiprocessors

1

1. Introduction

Figure 1.1. Cut away of a die stack illustrating Through Silicon Via (TSV) based vertical
interconnections

elements within a single chip. The application domains for these processors are in-
creasingly in the computing, multimedia and signal processing areas, involving large
data sets with high throughput requirements. For instance, the 248-core PicoChip
PC203 is primarily intended as a baseband processor for wireless networks. Similarly,
the 128-core NEC IMAPCAR serves as an image recognition processor at the heart
of automotive collision avoidance systems [16]. The physical constraints imposed by
their operating environments, in both cases, limit TDP to under 3W .

Although the addition of PEs to multiprocessor arrays improves system perform-
ance, technology-related challenges limit the extent to which such arrays can be scaled
up. The first challenge stems from the increase in die size that accompanies the
integration of additional PEs. As yield decreases with increasing die size [17, 18],
performance gains are obtained at the cost of manufacturability. The second, yet
equally important challenge arises due to the limited input/output (I/O) bandwidth
of pin-constrained multiprocessor and memory packages [19], which results in the
performance improvements from the additional PEs being diminished due to memory
and I/O contention [20].

Three-dimensional (3D) integration is a promising solution to these limitations,
facilitating the realization of large multiprocessors in the form of a stack of silicon
dies [21–23]. The stacked dies are interconnected by means of vertical metal wires
known as Through Silicon Vias (TSV), as illustrated in Figure 1.1. 3D integration
essentially reduces the area footprint of multiprocessors by converting planar area
into stack height, effectively reducing the size of individual dies, and thus improving
manufacturing cost. It further facilitates the integration of dies varying in function-

2

(a) (b)

Figure 1.2. Illustration of 3D integrated systems. (a) Multiprocessor with stacked DRAM,
I/Os and power management circuits (b) Integrated computer vision system with stacked
image sensor, data conversion circuitry and processing elements.

ality and process technology node into a single IC package [20, 24]. Consequently,
components such as the Random Access Memory (RAM) can be integrated within
the stack [25–28], and made accessible to PEs through a high-bandwidth wide I/O
interface [19], allowing system performance to be scaled with PE counts. Potentially,
3D could also be used to enable fully integrated systems incorporating sensors, data
converters and PEs, as illustrated in Figure 1.2.

Current application trends indicate that future workloads will require compu-
tational performance in the range of 1 trillion operations per second (TOPS) [1],
necessitating the use of many-core CMPs. At such large scales, however, architectural
inefficiencies have a significant impact on both performance, as well as dependability.
In addition, despite the benefits of 3D integration, die stacks exhibit complex thermal
behaviour that can be detrimental to system performance.

3

1. Introduction

1.1 Motivation
The challenges accompanying the efficient design and dependable operation of large
scale CMPs can be grouped into three categories - architectural efficiency, thermal
constraints, and runtime temperature management.

1.1.1 Architectural Efficiency
Multiprocessor architectures can be broadly classified based on their communication
model into two types - shared-memory and message-passing architectures. Shared-
memory multiprocessors use a global memory space that is shared amongst all PEs.
Data transfer between tasks executing on PEs is implicit, and is managed in hardware
by the underlying memory hierarchy consisting of multiple on-chip caches. However,
synchronization and data sharing must be explicitly managed within shared-memory
architectures, and this increases complexity in applications with significant inter-
task communication. In message-passing based dataflow architectures [29] on the
other hand, applications are described as a set of communicating tasks, with well
defined input and output dependencies. Communicating tasks run asynchronously
on separate PEs and exchange data between their local memories. Tasks fire once
their inputs become valid, and are thus implicitly synchronized. In comparison with
shared-memory, message-passing incurs a higher overhead since data transfers must
be explicitly managed due to the absence of a global address space.

In both message-passing as well as shared-memory architectures, execution time
refers to the amount of time required to complete execution of all constituent tasks
within a given application program. For a task executing on a PE, the execution time
(t
task

) is given as:
t
task

= t
instructions

+ t
memory

(1.1)

where t
instructions

represents the fraction of the task’s execution time spent in arith-
metic, logic and control instructions, and t

memory

the time spent performing memory
load-stores. t

instructions

is largely a function of the code’s complexity and size, as well
as the PE’s microarchitecture - specifically, factors such as instruction latency, branch
predictor accuracy and issue-width [30]. On the other hand, t

memory

is influenced by
the management and transfer of on-chip data, and includes the time spent waiting for
data to be fetched from remote memories, or lower levels of the memory hierarchy.
The access latency of the memories, layout of data across memory banks, and the over-
heads incurred in managing transfers between them together contribute to t

memory

,
and influence the effective performance of the system. The efficient management and

4

1.1. Motivation

transfer of on-chip data is therefore essential to realizing high-performance many core
CMPs.

1.1.2 Thermal Constraints
Power dissipation by components in ICs results in the generation of heat, which causes
operating temperatures to rise. The generated heat is therefore evacuated from the
system by means of a heatsink so as to maintain temperatures within the safe operating
range, and prevent device failure [31]. Nagata [32] determined that the maximum
allowable power dissipation in an IC is constrained by its physical construction, and
the thermal efficiency of its cooling interfaces. Their relationship is given as:

↵N
G

E

t
pd

 g ·�T (1.2)

where �T is the maximum permissible difference between on-chip and ambient tem-
peratures, and represents the available temperature margin at zero power dissipation.
The relation thus indicates that for a planar IC, the activity rate (↵), energy dissipation
(E), clock period (t

pd

) and number (N
G

) of gates that can be integrated into a single
chip is limited by the thermal conductance (g) of its interface with the ambience,
as well as the ambient temperature. This limitation best describes the phenomenon
termed by the semiconductor industry as Dark Silicon, a reference to the large sections
of modern ICs powered down due to thermal considerations. Essentially, Nagata’s
equation dictates that to improve integration densities, components must either be
utilized less, or must dissipate a smaller amount of power (E/t

pd

). Alternatively,
either conductance to ambient must be improved, for instance using a heatsink with a
larger surface area, or ambient temperature must be decreased. The latter serves to
increase the magnitude of available temperature margin�T .

The issue of dark silicon is further complicated in the case of die stacks on account
of their distinct thermal behaviour as compared to planar ICs. In 3D ICs, thermal
conductance g is a function of the physical construction of the die stack, and the
TSV-based vertical interconnect. The value of g drops as distance from the heatsink
increases and as a result, the thermal constraints imposed by (1.2) vary throughout the
die stack. System design approaches that ignore this effect run the risk of yielding
thermally inefficient designs that inadequately utilize available temperature margins.
In order to maximize the performance of a stacked die architecture, it is essential
that the unique thermal characteristics of 3D ICs be taken into account during early
stages of system design. A significant obstacle to achieving this lies in our relatively
shallow understanding of the thermal behaviour of die stacks, and the influence of

5

1. Introduction

the design parameters established by Nagata’s equation on operating temperatures.
The realization of a thermal-aware design flow for 3D architectures is consequently
predicated on the characterization of the thermal design space for die stacks.

1.1.3 Temperature Management
The operating temperature at any point in the IC is dependent on the amount of heat
generated within the system, and the rate at which it is conducted away towards
heat sinking surfaces. The power dissipation of components is determined by ↵
and E, which vary depending on the nature of the workload being executed on the
multiprocessor, and t

pd

. When ↵ is balanced, all PEs dissipate a similar amount of
power, and produce a uniform power density that results in heat generation spread
across the complete area of the IC. However, imbalances in ↵ can lead to a spike in
spatial power density and cause the formation of thermal hotspots. Dynamic Thermal
Management (DTM) strategies are typically invoked in such circumstances to arrest
rising temperatures and maintain them within safe margins. Such an action, on the
other hand, imposes a performance penalty. The unique thermal characteristics of 3D
ICs further complicate this behaviour by producing non-uniform temperature margins
at different tiers of the stack. In order to uniformly extract the full performance
of PEs in a multiprocessor, the DTM strategy must take into account the thermal
characteristics of 3D ICs and the non-uniformities in temperature margins.

Thermal gradients are another undesirable consequence of unbalanced activity
in multiprocessors, and result in the accelerated degradation of devices [31][33].
Reducing the magnitude of these gradients requires temperature awareness within the
architecture, and mechanisms to dynamically steer system activity away from regions
of high temperature.

1.2 Research Questions
The presented motivations can be condensed into the four research questions that are
addressed by this dissertation.

1. How can the performance and efficiency of on-chip memory operations in
multiprocessors be improved?

2. How do the physical design parameters in Nagata’s equation affect the thermal
behavior of 3D Integrated Circuits?

6

1.3. Dissertation Outline

3. How can the knowledge of thermal behaviour be effectively leveraged in the
design of 3D stacked multiprocessors?

4. How can the architecture and operating parameters be efficiently adapted at
runtime to mitigate the severity of thermal issues, and improve execution
performance?

Together, these questions encapsulate the key challenges and issues impeding the
design and efficient operation of 3D stacked multiprocessor systems.

1.3 Dissertation Outline
This dissertation presents architectural techniques to enable the realization of efficient,
high-performance multiprocessors, and facilitate runtime temperature management to
ensure their dependable operation. Most importantly, it provides new insights into the
complex thermal behaviour of 3D ICs, and illustrates how the design space of stacked
die architectures can be effectively explored in order to maximize performance in
the dark silicon era. This dissertation consists of two main themes, architecture and
temperature, examined in light of the research questions outlined in the previous
section.

Chapter 2 presents techniques that aim at minimizing the amount of time spent
by PEs in waiting on memory accesses (t

memory

), as well as decreasing the energy
dissipated within the memory hierarchy, through the efficient management of on-chip
data. These include:

• Pronto - a message-passing system that decreases the overheads for data trans-
fers between communicating tasks in dataflow multiprocessors, yielding shorter
transfer latencies than competing schemes.

• Persistence Selective Caching (PSC) - a selective caching scheme for first level
data caches. PSC minimizes t

memory

by decreasing the average latency for
memory accesses, and improves efficiency by reducing the energy dissipated
per access.

• CacheBalancer - a runtime resource management scheme that balances the
utilization of shared caches in multiprocessors, reducing the latency of accesses
to dynamically allocated memory, as well as the system’s energy density.

7

1. Introduction

Chapter 3 investigates the complex thermal characteristics of die stacks in terms
of the design space described in (1.2). A high-level exploration flow is presented
to examine the influence of stack composition, physical construction, power density
and design of the vertical interconnect on the thermal behaviour of 3D ICs. This
exploration provides new insights into the formation of hotspots in die stacks, and the
role of individual design parameters in their mitigation.

In order to apply these insights, Chapter 3 presents the Ctherm framework for the
thermal-aware design of multiprocessor systems-on-chip (MPSoC). Ctherm facilitates
the concurrent evaluation of the thermal and functional performance of MPSoCs, en-
abling the holistic exploration of candidate design options. The framework automates
the generation of fine-grained area, latency and energy models for components in
order to accurately model power density, and hence thermal behaviour. Chapter 3
highlights the impact of modelling component internals on the accuracy of thermal
estimates, and illustrates the potential of thermal-aware approaches across the design
flow.

Chapter 4 proposes DTM strategies for runtime temperature management in 3D
MPSoCs. These include:

• Temperature-Aware Dynamic Voltage Frequency Scaling (DVFS) - a runtime
power manager that takes into account the non-uniformities in temperature
margins within die stacks when scheduling voltage frequency levels for pro-
cessing elements in the 3D MPSoC. The proposed strategy maximizes execution
performance within the non-uniform thermal constraints prevalent in die stacks,
and outperforms the conventional DVFS approach.

• Immediate Neighbourhood Temperature (INT) Adaptive Routing - an adaptive
routing strategy that balances thermal gradients and decreases hotspot mag-
nitudes in 3D networks on chip (NoC) by actively steering interconnect activity
away from regions of high temperature. The high degree of thermal coupling
between stacked dies eliminates the need for system-wide propagation of tem-
perature information, and enables adaptive routing decisions to be driven by a
simple temperature monitoring network.

Together, the two strategies alleviate the severity of thermal issues in 3D MPSoCs, and
maximize the performance of stacked-die multiprocessors within available temperature
margins at runtime.

8

1.4. Publication List

1.4 Publication List
The contributions of this dissertation have been disseminated through a number of
refereed conference, journal and book publications, in addition to poster presentations
and live demonstrations. Individual chapters include at the end a listing of their
relevant publications. A comprehensive list of all the publications arising out of this
dissertation is provided here as a general overview.

Book Chapters

1. S.S. Kumar, A. Zjajo, R. van Leuken, ”Exploration of the Thermal Design
Space in 3D Integrated Circuits”, Physical Design for 3D Integrated Circuits,
CRC Press, December 2015, Invited Book Chapter

Journal Papers

1. S.S. Kumar, A. Zjajo, R. van Leuken, ”Immediate Neighbourhood Temperature
Adaptive Routing for Dynamically-Throttled 3D Networks-on-Chip” IEEE
Transactions on Circuits and Systems II (TCAS-II), in press

2. S.S. Kumar, M.T.A. Djie, R. van Leuken, ”Pronto: A Low Overhead Message
Passing System for High Performance Many-Core Processors.” International
Journal of Networking and Computing - Special Issue, vol. 4, no. 2, pp.
307-320, July 2014

3. S.S. Kumar, A. Aggarwal, R. Jagtap, A. Zjajo, R. van Leuken, ”System Level
Methodology for Interconnect Aware and Temperature Constrained Power Man-
agement of 3-D MP-SOCs” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 22, no. 7, pp. 1606-1619, July 2014

Conference Papers

1. S.S. Kumar, A. Zjajo, R. van Leuken, ”Physical Characterization of Steady-State
Temperature Profiles in Three-Dimensional Integrated Circuits” Proceedings of
the IEEE International Symposium on Circuits and Systems (ISCAS), 2015

2. S.S. Kumar, A. Zjajo, R. van Leuken, ”Ctherm: An Integrated Framework
for Thermal-Functional Co-simulation of Systems-on-Chip ” Proceedings of
the IEEE/Euromicro International Conference on Parallel, Distributed and
Network-based Processing (PDP), pp.674-681, 2015

9

1. Introduction

3. J. de Klerk, S.S. Kumar, R. van Leuken, ”CacheBalancer: Access Rate and
Pain Based Resource Management for Chip Multiprocessors”, Proceedings of
the International Symposium on Computing and Networking (CANDAR), pp.
453-456, 2014

4. S.S. Kumar, R. van Leuken, ”Improving data cache performance using Persist-
ence Selective Caching,” Proceedings of the IEEE International Symposium on
Circuits and Systems (ISCAS), pp.1945-1948, 2014

5. S.S. Kumar, M.T.A. Djie, R. van Leuken, ”Low Overhead Message Passing for
High Performance Many-Core Processors,” Proceedings of the International
Symposium on Computing and Networking (CANDAR), pp. 345-351, 2013

6. R. Jagtap, S.S. Kumar, R. van Leuken, ”A Methodology for Early Explora-
tion of TSV Placement Topologies in 3D Stacked ICs” Proceedings of the
IEEE/Euromicro Conference on Digital System Design (DSD), pp.382-388,
2012

7. A. Aggarwal, S.S. Kumar, A. Zjajo, R. van Leuken, “Temperature constrained
power management scheme for 3D MPSoC,” Proceedings of the IEEE Workshop
on Signal and Power Integrity (SPI), pp. 7-10, 2012

Posters and Demonstrators

1. S.S. Kumar, A. Aggarwal, R. Jagtap, A. Zjajo, R. van Leuken, “Interconnect
and Thermal Aware 3D Design Space Exploration”, Invited Presentation and
Poster, ICT.OPEN, Eindhoven, The Netherlands, 2013

2. S.S. Kumar, R. van Leuken, A. Michos, A. Chahar, J. de Klerk, “Naga High-
Performance Array Processor”, Poster and Demonstrator, University Booth –
Design Automation and Test in Europe (DATE), Grenoble, France, March 2013

10

2
Architectural Techniques for Efficient
On-Chip Data Management

The evolution of microprocessors from single-core towards the present day many-
core is driven by the performance requirements of next-generation applications. The
effective translation of their large PE counts into actual execution performance, how-
ever, remains hinged upon the efficiency of their underlying hardware and software
architectures.

Reiterating from Chapter 1, the execution time (t
task

) for a task executing on a
PE is given as:

t
task

= t
instructions

+ t
memory

(2.1)

where t
instructions

represents the fraction of the task’s execution time spent in arith-
metic, logic and control instructions, and t

memory

the time spent performing memory
load-stores. While t

instructions

is primarily a function of the PE’s microarchitecture,
t
memory

is influenced by the efficiency of on-chip data management. Specifically, in
the case of message-passing architectures, t

memory

depends on the efficiency of data
transfer between distributed memories, and the efficiency of the memory hierarchy in
the case of shared-memory architectures.

In message-passing dataflow architectures, tasks execute concurrently on separate
PEs, and communicate in a producer-consumer fashion according to their task graph
[29]. Tasks begin execution once their inputs become ready, and upon completion,
pass their output data to the next waiting task. Since communication in conventional
message-passing architectures [34] is managed explicitly, the latencies for these
operations is reflected in the execution time of tasks.

t
task

= (t
computation

+ t
mp

) + (t
transfer

+ t
fc

) (2.2)

11

2. Architectural Techniques for Efficient On-Chip Data Management

Thus, in addition to the time t
computation

spent performing computations, t
mp

is spent
in executing message-passing library functions to manage transfers. Furthermore,
although the actual transfer incurs an aggregate latency of t

transfer

, an additional
overhead t

fc

is incurred in synchronizing and implementing flow control between the
communicating tasks.The magnitude of t

mp

and t
fc

together indicate the efficiency of
the message-passing implementation, and influence the overheads incurred during data
transfers. Reducing these overheads is essential in improving execution performance.

In cache-based shared-memory architectures, t
memory

can be represented in terms
of average memory access time (AMAT or t

AMA

), a metric that indicates the efficiency
of the memory hierarchy.

t
task

= t
instructions

+ (M
A

· t
AMA

) (2.3)

where t
AMA

= µ
hit

· t
hit

+ µ
miss

· t
miss

(2.4)

M
A

refers to the total number of memory accesses made by the application, µ
hit

and µ
miss

are the hit and miss rate of the data cache, with latency t
hit

and t
miss

respectively. Although this equation holds for both instruction as well as data caches,
we focus on the data memory hierarchy alone. Hit rate refers to the fraction of memory
references for which the requested data is found within the PE’s private Level-1 data
cache (L1D), while the remaining references constitute misses that necessitate a fetch
operation from lower levels of the memory hierarchy. The latency for a reference
resulting in a hit (t

hit

) depends on the configuration of the data cache, and is typically
in the range of 1� 3 clock cycles [35]. The penalty for a miss (t

miss

), on the other
hand, is much larger, and depends on the cache line size, bandwidth of the interconnect,
miss rate of the lower level caches and their miss penalty. In network-on-chip (NoC)
based multiprocessors, t

miss

is also influenced by the communication distance (hop
count) between PEs and the lower level caches, as well as by contention within the
interconnect and shared caches. Improving execution performance for cache-based
multiprocessors necessitates efficient data management within the system so as to
increase hit rate, as well as minimize t

hit

and t
miss

.
In this chapter, we present three architectural techniques for efficient on-chip data

management for both message-passing as well as shared-memory multiprocessors.
These include:

1. Pronto: A low overhead message-passing system which simplifies the semantics
of data movement between communicating tasks by performing buffer manage-
ment, message synchronization and address translation directly in hardware.
This results in transfer latencies upto 30% shorter than state-of-the-art propos-
als. In terms of (2.2), Pronto reduces t

mp

by minimizing the role of the PE in

12

2.1. Naga Architecture Overview

managing transfers, and t
fc

through its use of reservation-based message flow
control.

2. Persistence Selective Caching (PSC): A selective caching scheme that identifies
reusable data at runtime, and services references to them from a low-latency
assist cache. This reduces the hit latency t

hit

for a majority of references,
and yields t

AMA

(AMAT) upto 59% lower than conventional data caches. In
addition, the small size of the assist, coupled with its high hit rate result in a
75% reduction in average energy per access.

3. CacheBalancer: A runtime resource management scheme that balances the
utilization of shared caches, and minimizes the cost of fetching data from lower
levels of the memory hierarchy. CacheBalancer reduces shared cache contention
by up to 60% and improves execution performance by 22%.

2.1 Naga Architecture Overview
The base platform for this dissertation is a generic many-core processor architecture
- Naga - targeted towards the acceleration of applications in the multimedia and
computing domains. The distinct characteristics of each of these domains makes them
well suited for either shared-memory, or message-passing architectures. While this
makes the choice of communication model trivial for applications from either of the
two domains, the general purpose nature of Naga necessitates the inclusion of both
models in the architecture. The Alewife machine [36] was based on a similar line of
reasoning, where Kubiatowicz argued that the advantages of a dual model stemmed
from practical design considerations including communication cost, memory access
latencies and programmability [37]. While the end goal for such integration is to
enable flexibility in the selection of a communication model at the task level, this
leads to a number of complications pertaining to the management of the memory
address space, and interference between communications of the two models [37].
For the purpose of this dissertation, we avoid the complexities of such fine-grained
mixed models, and instead utilize two separate sub-arrays, each implementing either
shared-memory or message-passing. Naga thus incorporates two sub-arrays – the
message-passing NagaM, and shared-memory NagaS. An illustration of these sub-
arrays is shown in Figure 2.1. Among the architectural techniques presented in this
chapter, Pronto uses the NagaM as its base system, while PSC and CacheBalancer use
the NagaS.

13

2. Architectural Techniques for Efficient On-Chip Data Management

Figure 2.1. Illustration of the Naga many-core with the shared-memory based NagaS,
and message-passing NagaM sub-arrays

The NagaM sub-array is a dataflow accelerator primarily for multimedia and
signal processing workloads. It uses ⇢-VEX Very Long Instruction Word (VLIW) PEs
[38] which provide a performance benefit by exploiting inherent Instruction Level
Parallelism (ILP) within executing tasks. PEs are placed within tiles containing private
data and instruction memories, and a message passing communication interface. At
runtime, tasks are spawned and pinned onto PEs according to the task graph, with
communicating nodes mapped as close to one another as possible, by a runtime
mapper in the host processor. Each task executes asynchronously on a ⇢-VEX PE
upon its input data becoming ready, and produces data that similarly triggers the
next task in the graph. Fast dual-ported memories (MEM) serve as data I/O for the
accelerator, and store the input data to, and output data from the head and tail of the
task graph respectively. Although multiple are shown in Figure 2.1, we assume only a
single dual-ported memory in the array for simplicity. A conceptual overview of the
NagaM accelerator is provided in Figure 2.2.

NagaS on the other hand, is a conventional shared-memory architecture with a
two-level cache memory hierarchy, intended for general purpose compute applications.
Tiles incorporate a simple Reduced Instruction Set Computing (RISC) PE, private
instruction and data caches, and a cache controller. In order to maximize cache
memory bandwidth, L2 cache banks implement slicing [39] to split the shared address

14

2.2. Low-overhead Message Passing with Pronto

Figure 2.2. NagaM accelerator with host processor (HOST), and dual ported memory
buffer (MEM). Only the Head and Tail tasks of the mapped task graph read from and
write to the memory buffer respectively.

space into slices, with each mapping to a single bank [40]. NagaS uses the threaded
model of execution, allowing applications executing on the host to spawn threads on
the array’s PEs.

Both NagaM and NagaS use the R3 NoC interconnect [41]. R3 is a wormhole
routed, best-effort, packet-switched NoC that enables stacked-die architectures by
facilitating the creation of 3D meshes with Through Silicon Via (TSV) based vertical
links. The network uses a dimension-ordered Z-X-Y routing algorithm that routes
interconnect traffic based only on source and destination network addresses. The
simplistic architecture of the R3 NoC allows us to evaluate the actual impact of the
architectural techniques presented in this chapter without any performance boosts
due to interconnect optimizations. Interconnect performance is treated separately in
Chapter 4.

2.2 Low-overhead Message Passing with Pronto
Existing message-passing implementations rely largely on feature-rich software librar-
ies to manage the transfer of messages between PEs. Thus, in addition to specifying
what data must be moved between executing tasks, the programmer must also manage
the actual transfer and the corresponding resource reservations. This is detrimental for
two reasons. Firstly, it results in communication operations being managed through the
PE, thus increasing execution time as well as communication latency. Secondly, it re-
quires the implementation aspects of the underlying message passing communications
architecture to be exposed to the programmer, thereby increasing complexity.

15

2. Architectural Techniques for Efficient On-Chip Data Management

In this section we present Pronto, a low overhead message passing system for
many-core processors. Data transfers with Pronto are initiated using a compact set
of simple yet highly effective functions that provide a layer of abstraction separating
the programmer’s view of inter-task communication, and its actual implementation
in the underlying hardware architecture. Operations such as address translation,
synchronization of transfers and resource management are handled entirely in hard-
ware, simplifying the programming model and minimizing the time spent by PEs in
executing non-task related operations.

2.2.1 Related Work and Motivation
A number of many-core processors, both in academia as well as the industry, im-
plement message passing for inter-task communication. For instance, the 430-core
picoArray uses basic message passing put and get functions to transfer data between
concurrently executing tasks [42]. During compilation, tasks are mapped onto PEs and
their communication flows converted into interconnect schedules. Since interconnect
arbitration and resource reservations are performed at compile-time, communications
do not incur any additional latency penalties related to these operations are runtime.
The dataflow based Ambric Massively Parallel Processor Array [5] implements a
similar methodology although with a hierarchical interconnect structure. The Intel
SCC [43] on the other hand performs all required reservations at runtime rather than
statically. Message passing is implemented through a global shared address space
accessible through each PE’s Message Passing Buffer (MPB) [44]. Tasks executing
on PEs share data through virtual connections established by dynamically allocating
common memory objects within this space, using functions from the RCCE library
[45]. Synchronization, ordering of messages and shared accesses must be managed
through a programmer-enforced protocol in software.

Apart from these implementations, there also exist individual message passing
proposals based on the MPI standard [46] often with specific objectives. For instance,
QoS-ocMPI adds Quality of Service (QoS) support into a subset of MPI functions,
specifically for NoC based multiprocessors [34], thus allowing critical transfers to
occur through a reserved channel, i.e. with throughput guarantees. Another proposal,
TMD-MPI [47], adapts MPI towards supporting message passing between processors
across multiple Field Programmable Gate Arrays (FPGA). It essentially abstracts the
complexity of inter-chip communication, instead providing the programmer with a
homogeneous view of the system. Despite their merits, these proposals are largely
based on the original MPI standard, which itself is intended for large distributed
memory systems [46]. This objective of the standard reflects in the overheads incurred

16

2.2. Low-overhead Message Passing with Pronto

due to its use in resource constrained many-core processors. Psota and Agarwal
noted this in their proposal rMPI, indicating the need for a simple message passing
Application Programming Interface (API) with a small memory footprint to replace
MPI in chip multiprocessors [48].

The drawbacks of heavy software libraries reflect primarily in the latency of
data transfers. Proposals without static scheduling and resource reservations often
require the MPB and synchronization of data transfers to be explicitly managed by
the programmer. These operations are performed through functions of the software
library executed on the PE, and result in a non-zero t

mp

that is dependent on the
operation’s latency. Consequently, the latency incurred to setup and manage transfers
is higher than if the same were managed in hardware. Therefore, by removing the need
for explicit management of the MPB and synchronization of data transfers through
function calls, the latency of transfers could be greatly reduced. This would also serve
to abstract the implementation of the message passing system from the programmer,
and simplify the semantics of inter-task communication.

2.2.2 The Pronto Message Passing System
The performance gains of many-cores over sequential implementations are quickly lost
as communication overheads approach task execution times [48]. In order to maximize
throughput of the many-core array, it is important that message transfer latencies be
kept low. By implementing transfer management functions in hardware, PEs are
released from having to explicitly oversee data transfers, thereby allowing them to
perform useful work instead. Pronto uses a Direct Memory Access (DMA) engine
based message passing system for data transfers. Data blocks are moved between
tile-local memories using hardware managed Message Passing Buffers (MPB) over
the R3 NoC interconnect. Figure 2.3 illustrates the architecture of a NagaM PE tile
with the Pronto message-passing interface.

2.2.2.1 Pronto API

Executing tasks communicate through calls to four simple message passing functions
of the Pronto API, as listed in Table 2.1. These functions are essentially shells that set
Pronto’s hardware registers with the parameters of the message transfer. In contrast
to the heavy send and receive primitives of existing message passing libraries, our
API’s functions are extremely light-weight, consisting only of a few writes to memory
mapped control registers.

17

2. Architectural Techniques for Efficient On-Chip Data Management

Figure 2.3. NagaM tile containing a ⇢-VEX processing element, local memories, Pronto
message passing interface and a network interface

Table 2.1. Pronto Message Passing API for NagaM

FUNCTION ARGUMENTS
MP send() destination task id, length, local memory address of data

MP receive() source task id, length, local memory address for data
MP mread() local memory address for data, length, MEM address
MP mwrite() local memory address of data, length, MEM address

The MP send and MP receive functions are always called in pairs between com-
municating tasks, with the calls specifying only the size of the message, its location
in the tile’s local memory, and the sender/recipient’s task ID. This provides a high
level of abstraction, hiding details such as the actual physical PE onto which tasks are
mapped. Each argument of the function calls maps to a particular control register of
the Pronto interface, as listed in Table 2.2. The Pronto architecture allows program-
mers to extend the software API by defining multiple message types through the CR4
control register. During message transfers, the contents of this register are encoded
into the message header (also known as message envelope), enabling control signaling
between executing tasks.

2.2.2.2 Hardware Architecture

The control registers together with the software API act as an interface between the
executing application code and the Pronto hardware. Rather than actually performing

18

2.2. Low-overhead Message Passing with Pronto

Table 2.2. Control Register Mappings

CR1 CR2 CR3 CR4
MP send() Local memory address Length Dest. Task ID Type (DAT)

MP mwrite() Local memory address Length MEM address Type (MWR)
MP receive() Source Task ID Length Local memory address Type (DAT)
MP mread() MEM address Length Local memory address Type (MRD)

the transfer through software, the message passing functions of our API only configure
Pronto’s control registers to initiate transfers between communicating tasks. The
actual transfer is performed and managed by the hardware architecture itself. The
following subsections examine Pronto’s management of the MPB, flow control and
synchronization of messages, and its abstraction of physical addressing from the
programmer.

(i) Address Translation As previously mentioned, the MP send and MP receive
functions specify message transfers using task IDs of the recipient and source respect-
ively, instead of their physical PE addresses. This is enabled by a per-tile Address
Translation Table (ATT) programmed during task mapping, which translates program-
mer specified task IDs into the physical network addresses of the corresponding PEs.
Consequently, the communication semantics for Pronto completely abstract details
such as the physical address of PEs, and allow all inter-task communications to be spe-
cified at the task level itself. In addition to reducing the complexity of programming
using message passing, this abstraction also permits task mappings to be adapted at
runtime without requiring the software to be recompiled since physical addresses of
PEs are not specified anywhere in the code.

(ii) Buffer Management Before any data can actually be transmitted, it is essen-
tial for the sending node’s message passing interface to determine whether sufficient
free space exists in the downstream MPB. This is achieved through the use of a
message envelope containing the source node’s physical address, the amount of MPB
space requested and the type of the message. Envelopes are handled at the downstream
node on a first-come-first-served basis, with accepted envelopes resulting in the MPB
reserving the requested chunk of memory for the impending message. The buffer
manager actively tracks the utilization of the MPB through a status table, as shown in
Figure 2.4. Upon arrival of each message, the buffer manager translates the source
node address into its corresponding task ID, and places this information together with
the MPB memory address at which the message is located into a free tuple of the status

19

2. Architectural Techniques for Efficient On-Chip Data Management

Figure 2.4. Illustration of buffer management and message ordering in the Message
Passing Buffer (MPB)

table in a circular FIFO-like manner. A pointer indicates the oldest waiting message
entry in the table, illustrated as an emboldened tuple in Figure 2.4. A successful
reservation results in an acknowledgement to the upstream node indicating that the
transfer may commence. In the event of insufficient MPB space, the corresponding
envelope is buffered until the requested space becomes available. Therefore, no negat-
ive acknowledgements are returned, preventing repeated envelope transmissions from
the stalled sender. Since only a single envelope is required per message regardless
of its size, the overhead it poses remains fixed, and is quickly amortized during burst
transfers.

Envelopes are generated automatically once an MP send call moves a complete
block of data into the MPB. Therefore, destination MPB reservations are handled
automatically by the DMA engine rather than explicitly by the programmer. The
motivation for using a message envelope is two fold:

1. The R3 NoC used in the NagaM enforces a protocol allowing for a maximum
payload of 64B (16 words) per packet. Larger payloads are split into multiple
packets, each of which is arbitrated separately by the R3 router’s round robin
arbiter. Multiple tasks communicating concurrently with a downstream task
would result in the latter’s MPB being inundated with only parts of messages,
necessitating a buffer of a larger capacity. On the other hand, the use of message

20

2.2. Low-overhead Message Passing with Pronto

envelopes and the reservation based message flow control system ensures
that received messages can always be stored as a whole, and that transfers
commence only upon reservation of sufficient storage in the MPB. Furthermore,
the mechanism simplifies buffer management by allocating memory on a per-
message basis rather than per-source.

2. The message envelope and reservation based message flow control further
ensure that packets belonging to messages in flight do not end up blocked
in router FIFOs due to a full downstream MPB. Given the NoC’s best effort
nature, this would lead to blocked links, and give rise to the possibility of
network deadlocks due to the absence of time-outs and packet dropping in the
R3 architecture. Our mechanism therefore separates flow-control and buffering
for the message passing system from that of the NoC.

Multiple requests from different upstream nodes to a single MPB are handled
sequentially, although once accepted, transfers may proceed concurrently. This is
possible since the buffer manager allocates disjoint blocks of memory to each transfer,
allowing received words to be placed in their appropriate MPB memory locations
simply based on their source. The MP send function does not specify the destination
memory address for any transfer. Where this data is placed in the receiving node’s
local memory is determined by the arguments of the MP receive call at the destination,
essentially simplifying the semantics of data movement in the system. Needless to
say, each node may only hold one request (both active and pending) to any particular
downstream node at any given point in time. Furthermore, words constituting a
message must form a contiguous block in memory, i.e. they must be located at
sequential memory addresses.

(iii) Ordering of Messages at Destination The buffer manager preserves the
entry order of incoming data blocks using the status table, ensuring that the oldest
received block is popped from the buffer when requested by the executing task. In the
case of concurrent tasks with uneven loads where the upstream task generates multiple
data blocks during a single run of the downstream task, this mechanism guarantees
that blocks are consumed in the same order as they are generated. Received blocks
are moved into the local data memory of the PE once the MP receive function with
the corresponding source task ID is called.

In case a task produces more than one type of output data, a programmer defined
protocol must be enforced to order the MP send and corresponding MP receive calls.
This is because the functions do not include any details of the destination memory

21

2. Architectural Techniques for Efficient On-Chip Data Management

address for the remote task, thus making it difficult to determine which data block
the message contains. Given the nature of dataflow based programs and their definite
input-output dependencies, this ordering is trivial to enforce. Therefore, if a task
generates two outputs and sends them in one order, the downstream task must call
MP receive in this exact same order. This is illustrated in Figure 2.4 which shows
the MPB of a destination node receiving messages from a number of nodes, even
before older messages already waiting in the buffer are consumed. When MP receive
is called, the waiting messages from the requested source task ID are returned to the
PE in the order in which they arrived.

The MP receive function is blocking, and hence stalls the PE until data from the
specified source is received by the MPB. The MP send function, on the other hand, is
non-blocking except for when the local MPB’s output buffer is full in addition to the
downstream MPB’s input buffer. In this case, execution is stalled by clock-gating the
local PE. Proper load-balancing of tasks to ensure that they incur similar execution
times minimizes the occurrence of such buffer full/empty stalls. We illustrate this in
the following subsection with the JPEG decoder.

2.2.3 Experimental Evaluation
We evaluate Pronto using a cycle-accurate HDL based simulation model of NagaM.
The model uses 18 ⇢-VEX processing elements connected over a 4x5 mesh topology
network, with a single data memory buffer from which task graphs fetch their input
data, and write their output to. Although a practical hardware implementation would
place limitations on the size of this buffer, for the purpose of our simulations, we
impose no such constraints. This does not affect the validity of the presented results
since the evaluation focuses primarily on the message passing system within the array,
and its consequent impact on application performance. The MPB is sized at 512B
(128-words) for the input, and 256B (64-words) for the output.

Three dataflow workloads are used to analyze the performance impact and scalab-
ility of Pronto: JPEG decoder, Moving Average FIR filter and a custom test workload.
The JPEG decoder from the MiBench benchmark suite [49] implements the decoding
of JPEG images into the Bitmap format. The conversion process involves three stages,
namely Huffman decoding, Inverse Discrete Cosine Transform (IDCT) and colour
conversion. The original sequential implementation of the JPEG decoder from the
benchmark suite was parallelized manually by converting each of its three stages into
concurrently executable tasks, with the Pronto API functions used for data transfer.
After initial experiments, a more effective four-stage JPEG decoder was developed to
overcome inefficiencies noted in our three-stage implementation. The two versions are

22

2.2. Low-overhead Message Passing with Pronto

Figure 2.5. Task graphs for the JPEG-3, JPEG-4, FIR and CUSTOM workloads.

identified as JPEG-3 and JPEG-4, with the suffix signifying the number of concurrent
stages in their task graphs. The input data set for these workload consists of a 512x512
pixel JPEG encoded image.

The Moving Average FIR filter workload is used in signal processing applications
to remove unwanted noise in signals. The filter essentially implements the equation
listed in (2.5), where x and y represent the input and output signals respectively, with
N samples.

y[i] =
1

N
x[i] +

1

N
x[i� 1] +

1

N
x[i� 2] + ...+

1

N
x[i�N � 1] (2.5)

The nature of this algorithm allows it to be partitioned into multiple concurrent tasks,
each with a similar computational load. However, partitioning may only be beneficial
upto a certain point, after which communication latencies become comparable to the
execution time of tasks themselves, thus limiting further performance gains. The
Custom application represents an ideal dataflow workload with identical concurrent
tasks. Such partitioning can be expected to minimize execution stalls. Figure 2.5
illustrates the task graphs for the JPEG-3, JPEG-4, Moving Average FIR filter and
Custom workloads.

The evaluation of Pronto consists of five separate experiments that determine:

1. End-to-end message transfer latency

23

2. Architectural Techniques for Efficient On-Chip Data Management

Table 2.3. Comparison of average transfer latency per word

LATENCY PER WORD (CYCLES) BURST SIZE (WORDS)
OCMPI [34] 32.9 256

[50]-SHARED QUEUE 20 64
[50]-SCRATCH QUEUE DMA 9 64

PRONTO 6.48 64

2. Communication overheads

3. Application performance with Pronto

4. Impact of input dataset size

5. Impact of extraneous interconnect traffic on output jitter

The following subsections describe each of these experiments, and provide an overview
of the obtained results.

2.2.3.1 End-to-end Message Transfer Latency

The performance of Pronto is first evaluated in terms of its message transfer latency
per hop, i.e. the latency incurred in transferring a message between two adjacent
nodes. For this, two tasks are pinned onto neighbouring PEs in the NagaM array. The
first task generates a burst of 64 data words and transfers these using an MP send
call to the second task which then receives the burst using MP receive. In order to
accurately estimate the transfer latency, these measurements are performed without
any extraneous interconnect traffic (zero network load). The obtained latencies are
listed in Table 2.3. The same table also includes the transfer latency for similar sized
bursts from literature - Francesco’s Shared Queue and Scratch Queue DMA [50],
and the MPI derivative for multiprocessors with on-chip interconnects - ocMPI [34].
Pronto is observed to have a transfer latency 30% lower than the closest distributed
memory based proposal, Scratch Queue DMA [50]. Note that the use of a larger burst
size of 256 words works in favour of ocMPI since the overheads of transfer setup are
better amortized by large bursts. Despite this, the overall per word transfer latency of
ocMPI is observed to be significantly larger than that of Pronto, indicating the higher
transfer overheads of MPI-based systems.

The transfer of the message envelope and the downstream node’s acknowledge-
ment of buffer reservation impose a one-time latency overhead for each message.
While message envelopes indicate the source node and quantum of MPB space

24

2.2. Low-overhead Message Passing with Pronto

0

0.2

0.4

0.6

0.8

1

0

20

40

60

80

100

JPEG-3 JPEG-4 FIR Custom

Tr
an

sf
er

 O
ve

rh
ea

d
(%

)

Ti
m

e
(µ

s)

Execution Stall Communication Transfer Overhead

Figure 2.6. Breakdown of task execution as a fraction of its total execution time. The
transfer overhead reflects the overhead imposed by message envelopes as a percentage
of total execution time.

required at the destination, the former is already included into the packet header
according to the R3’s protocol. Therefore, the message envelope in NagaM is a 2-flit
packet consisting of the header and a single flit containing an integer value of the
required MPB space. The envelope length remains the same regardless of message
size. A 64 word message on the R3 NoC is sent in 4 packets, or 68 flits in total. A
single message envelope and the corresponding downstream MPB acknowledgement
result in 3 additional flits (2 for the envelope and 1 for the acknowledgement) being
exchanged between the nodes. This constitutes an overhead of under 5% for a 64
word message.

2.2.3.2 Communication Overheads

In order to determine the transfer overhead for messages in terms of total execution
time, we mapped single instances of workload task graphs onto the array with zero
network load. Figure 2.6 illustrates the fraction of total execution time spent in
execution, stalls due to a full/empty MPB and in communication across different
workloads. The same figure also indicates the overhead imposed by message envelopes
as a fraction of total execution time. As previously mentioned, only one envelope
and its corresponding acknowledgement are generated for each message transfer.
Consequently, the number of envelopes and acknowledgements exchanged over the
interconnect depends only on the number of messages transferred, and not their size.
In general, the transfer overhead of the message envelopes constitutes less than 0.5%
of the total execution time across all workloads. The time spent stalled due to a

25

2. Architectural Techniques for Efficient On-Chip Data Management

full/empty buffer is primarily caused by imbalances between the tasks, and this can be
reduced by precise partitioning and load-balancing. Frameworks such as Daedalus
[51] enable such analysis and help in precise partitioning of workloads for high
performance and scalability.

The consequences of inefficient partitioning in the case of the JPEG-3 workload
are also illustrated in Figure 2.6. Initial runs of the workload on the NagaM array
revealed an imbalance in the runtime of its three constituent stages. The IDCT stage in
particular was observed to run close to six times as long as the Huffman decoding stage,
resulting in repeated execution stalls for the latter. The IDCT stage was subsequently
partitioned further into two concurrent tasks to address the imbalance in task loads,
as shown earlier in Figure 2.5. The resulting implementation reduced buffer-related
execution stalls by 38% and reduced execution time by 45% as compared to the three-
stage version. Although the number of message transfers in both implementations is
identical, Pronto’s transfer overhead appears higher in the case of JPEG-4 due to the
reduced execution time.

2.2.3.3 Application performance with Pronto

Execution performance can be improved in two ways - by increasing the number
of concurrently executing tasks through fine grained partitioning, and by increasing
the number of instances of the task graph executing in parallel. We observe from
Figure 2.7 that the former does not always yield significant returns. In the case of the
FIR filter for instance, the speedup obtained through fine-grained partitioning tends
to flatten out beyond 6 tasks for a 6400 sample input size as a consequence of the
reduction in computational load per task to a level where communication latencies
become significant.

Instantiation of multiple instances of the task graph on the other hand allows
for exploitation of data-level parallelism, thus achieving greater speedup and higher
throughput. Figure 2.8(a) reports the execution speedup for the workloads with a
varying number of parallel instances of the task graph, over sequential execution on
the host PE. A linear improvement in speedup is observed as the number of parallel
instances executing on the NagaM array is increased. The corresponding throughputs
for these workloads considering a 200MHz clock frequency are reported in Figure
2.8(b). Note that since the FIR workload generates output data blocks of size 376B
as against 256B for the Custom workload, the two yield very similar throughputs
despite their significantly different speedups. In comparison, the JPEG decoder
generates larger output data blocks of size 768B, thus explaining its prominently
higher throughput.

26

2.2. Low-overhead Message Passing with Pronto

0

1

2

3

4

5

6

7

8

2 3 4 5 6 7 8

S
pe

ed
up

Concurrent Tasks/Task Graph

JPEG FIR Custom

Figure 2.7. Performance improvements obtained with fine-grained partitioning

2.2.3.4 Impact of input dataset size

The runtime of all workloads is influenced by the size of their input datasets. When the
number of concurrent tasks per task graph as well as the number of parallel instances
of the task graph are fixed, the runtime can be expected to increase as the input dataset
size is increased. A longer runtime can however be beneficial as it tends to amortize
the impact of communication and configuration overheads. Most significantly, a
longer runtime softens the impact of ATT configuration that occurs when the task
graph is spawned on the NagaM array. To estimate the performance impact of such
overheads, we varied the input dataset size for workloads, effectively changing their
runtime. Figure 2.9 reports the speedup obtained over sequential execution across
different dataset sizes.

The figure indicates small improvements in speedup with increasing dataset size.
Note that with the 64x64/800 samples dataset, the overall execution time for most
workloads is low enough for the the ATT configuration operation to constitute a
moderate overhead. With larger dataset sizes on the other hand, speedup improvements
are less pronounced, since the configuration operation no longer forms an appreciable
fraction of total execution time. These results suggest that overheads of Pronto within
the NagaM architecture are sufficiently low so as to yield similar speedups across a
range of input dataset sizes.

2.2.3.5 Impact of extraneous interconnect traffic on output jitter

Given the best-effort nature of NagaM’s NoC, it is prudent to evaluate the impact of
extraneous interconnect traffic on the variation in arrival rate of data blocks.

The eventual integration of NagaM and NagaS into a single multiprocessor array

27

2. Architectural Techniques for Efficient On-Chip Data Management

0

2

4

6

8

10

12

14

16

1 2 3 4

Sp
ee

du
p

Parallel Task Graph Instances

JPEG-4 FIR Custom

(a)

0

10

20

30

40

50

60

70

80

1 2 3 4

Th
ro

ug
hp

ut
 (M

B
/s

)

Parallel Task Graph Instances

JPEG-4 FIR Custom

(b)

Figure 2.8. (a) Execution speedup relative to sequential execution on the host PE
(sequential exection times - JPEG-4: 105.3µs, FIR: 115.8µs and Custom: 106.1µs) (b)
Throughput at 200MHz

will cause the message-passing and shared-memory architectures to share a common
system interconnect. For this reason, it is prudent to evaluate the impact of extraneous
interconnect traffic due to the shared-memory NagaS, on the variation in arrival times
for data blocks in the message-passing NagaM. This is done by emulating cache
related traffic in the interconnect through a set of Traffic Injectors (TI) placed at the
North and South edges of the array. Injectors at the northern edge emulate cache miss
and write-back requests directed towards those on the southern edge. These requests
vary in size from 4B (cache miss) to 64B (cache line write-back) at various injection
rates, emulating extremely pessimistic miss rates. The injectors on the southern edge
respond with appropriately sized packets to the requesting injector, as illustrated in
Figure 2.10. Multiple parallel instances of a task graph are mapped onto PEs of the
array, with task data blocks moving in a direction orthogonal to the injected synthetic

28

2.2. Low-overhead Message Passing with Pronto

0

1

2

3

4

5

64x64 px / 128x128 px / 256x256 px / 512x512 px /

800 samp. 1600 samp. 3200 samp. 6400 samp.

Sp
ee

du
p

Input Dataset Size

JPEG-3 JPEG-4 FIR Custom

Figure 2.9. Speedup with varied input dataset sizes

(a) (b)

Figure 2.10. (a) NagaM array with traffic injectors simulating cache traffic. Tasks are
mapped to PEs within the highlighted region of the array. (b) Illustration of relative
directions of task data and injected traffic - orthogonal and inline.

traffic. The output jitter is measured as the variation from expected arrival time for
data blocks at the memory buffer (MEM) averaged over the entire execution of the
workload for a given input dataset.

The measured output jitter for workloads at different injection rates for the case
when task data blocks and synthetic traffic flow in orthogonal directions is reported
in Figure 2.11(a). In order to provide a comparison, we adapted the traffic injectors
and task mapping such that the injected traffic and task data blocks flow inline with
one another as shown in Figure 2.10(b). The average variation across workloads and
injection rates is observed to drop from the earlier peak of 2% to under 1% with this

29

2. Architectural Techniques for Efficient On-Chip Data Management

0

0.5

1

1.5

2

2.5

JPEG-4 Custom FIR

A
ve

ra
ge

 V
ar

ia
tio

n
(%

)

Injection Rate (Packets/cycle)

Flow 1 Flow 2 Flow 3 Flow 4

(a)

0

0.5

1

1.5

2

2.5

JPEG-4 Custom FIR

A
ve

ra
ge

 V
ar

ia
tio

n
(%

)

Injection Rate (Packets/cycle)

Flow 1 Flow 2 Flow 3 Flow 4

(b)

Figure 2.11. Average arrival time variation for: (a) orthogonal flows and (b) inline flows

new mapping. This can be seen in Figure 2.11(b). Rather than the injection rate, it is
the relative direction of interconnect traffic that significantly influences arrival time
variations for data blocks.

In the first case, the XY routing algorithm of the network results in increased
contention in the North-South network links on account of their utilization by both
injected traffic as well as data blocks moving to and from the memory buffer. As a
consequence, the head stages of all graph instances remain stalled until their requested
data blocks arrive, resulting in accumulation of the delay at all subsequent stages. In
the second case, due to the location of the head task for each task graph instance, input
data blocks are routed in a direction orthogonal to the injected traffic. Consequently,
input data blocks encounter little contention in their path, and therefore do not delay
task execution. Output data blocks from the tail moving towards the memory buffer
similarly incur minimal delays. Contention at the memory buffer itself, on the other

30

2.2. Low-overhead Message Passing with Pronto

hand, contributes to the variations observed for workloads in Figure 2.11(b).
Although interconnect traffic affects the transfer latencies for intermediate data

blocks moving between stages of a task graph, the actual impact is minimized due to
the relatively smaller hop count for such transfers as compared to those directed at
the memory buffer. This is a consequence of the mapping algorithm’s placement of
communicating tasks on neighbouring cores, often resulting in single hop transfers.
Even in the case of JPEG-4 where the IDCT 1 and IDCT 2 tasks communicate with the
colour conversion and Huffman stages over a multi-hop path, interconnect contention
is seen to have a smaller impact on output jitter. Interestingly, it is also observed that
due to imbalances in execution times of workload tasks, arrival time variations are
evened out by buffer full stalls, resulting in decreased jitter.

These results indicate that contention is better tolerated by data blocks moving
between intermediate stages of the task graph, than by those moving between the
head/tail tasks and the memory buffer. Contention in the path of data blocks moving
to and from the memory buffer are observed to cause high arrival time variations.
Mapping strategies that result in such critical data flows following orthogonal paths to
extraneous interconnect traffic can significantly reduce output jitter, as observed in
Figure 2.11(b).

2.2.4 Conclusions
This section presented the Pronto low overhead message passing system for many-core
processors. By implementing functions to manage message transfer, synchronization,
address translation and buffer management directly in hardware, Pronto reduces
message transfer latencies by upto 30% in comparison to state-of-art DMA-based
proposals. The reservation based message flow control system implemented through
the use of message envelopes imposes an overhead of under 5% for 64 word burst
transfers, constituting less than 0.5% of the total execution time of workloads such as
the JPEG decoder and FIR filter. In addition to the low latency, the presented system
simplifies the semantics of data movement by abstracting the implementation details
of the communications architecture from the programmer, enabling data transfers
to be specified at the task level. The speedup over sequential execution obtained
with Pronto in an 18-core NagaM array is found to scale linearly with the number
of parallel task graph instances, with similar performance across a range of input
dataset sizes. An analysis of the impact of the relative direction of task data flows
and extraneous interconnect traffic on the arrival time for output data indicated that
blocks moving between the memory buffer and the head/tail of task graphs result in
the highest arrival time variations when delayed due to contention. These effects are

31

2. Architectural Techniques for Efficient On-Chip Data Management

mitigated by adapting the task mapping to ensure that performance critical data move
in a direction orthogonal to extraneous interconnect traffic. This finding is critical
towards enabling the future integration of NagaM and NagaS.

2.3 Improving Data Cache Performance using
Persistence Selective Caching

The limited size of L1 caches in comparison to the data set of modern applications
leads to the emergence of expensive misses, necessitating latency and energy in-
tensive accesses to lower levels of the memory hierarchy (t

miss

). Although large
set-associative caches appreciably reduce miss rates, their size causes them to have
a higher hit latency (t

hit

), and consume more energy per access than smaller direct-
mapped caches.

This section presents the Persistence Selective Caching (PSC) scheme which
reduces average memory access time (t

AMA

or also AMAT) through the selective
caching of reusable lines in a small, fully-associative assist cache. The reuse potential
of a line is estimated at runtime based on its access persistence, i.e. the number
of accesses to the line within a certain window of data references by the processor.
Lines with sufficient access persistence are moved from the L1 data cache (L1D)
into the assist cache from where subsequent references to them are serviced. Due
to the assist’s small size, these references incur a shorter hit latency, and consume
considerably lesser energy than an L1D access. PSC’s selectivity ensures that only
the most reusable lines are moved to the assist, leading to a significant reduction in
the number of cache line movements (swaps), and thus lower energy per access than
competing schemes.

2.3.1 Related Work
A number of studies have, in the past, used small memory buffers to augment the
capacity of the main L1D, and thus improve performance and energy consumption.
In this dissertation, such memory structures are referred to as assist caches. The
Filter cache [52] for instance is an assist that reduces energy consumption for cache
memory accesses by using a very small memory buffer in between the processor
and L1D. However, these energy savings are obtained at the cost of increased access
latencies, and thus higher AMAT. The Victim Cache (VC) [53] on the other hand aims
to decrease AMAT by reducing the cost of conflict misses. The VC stores victims

32

2.3. Improving Data Cache Performance using Persistence Selective Caching

of L1D evictions such that in the event of future references to them, the lines can
be returned to the L1D in a single cycle rather than through a long latency, energy
consuming cache miss. On a VC hit, the requested line is moved to the L1D, and the
corresponding entry from the L1D evicted to the VC. This swap operation constitutes
an energy overhead, and is a significant disadvantage of the victim cache. Stiliadis et
al. overcame this disadvantage with their proposal, Selective Victim Caching (SVC)
[54]. In SVC, the swap operation is prevented from occurring if the incumbent L1D
cache line is found to be more reusable than the requested VC line. SVC considerably
reduces the number of swaps as compared to a conventional victim cache with the
same miss rate and latency improvements.

However, these proposals consider the L1D as the primary target for data refer-
ences by the processor, and the assist as an auxiliary cache. A majority of references
are thus serviced by the larger L1D cache, and consequently, the relatively shorter
latency and energy per access of the assist cache remain unexploited. Duong’s L0
scheme (I1P101 in particular) [55] and the HitME cache [56] are examples of cache
organizations that service a majority of data references through an assist placed along-
side the L1D. In these proposals, any cache line that is referenced atleast once in the
L1D is immediately moved to the assist. Subsequent accesses to these lines, for as
long as they remain in the assist, incur a relatively shorter access latency and energy.
However, L1D cache lines are moved to the assist without determining how much
potential they have for reuse. If the assist-cached lines are not sufficiently reused so as
to amortize the energy consumed in moving them from the L1D, any latency benefits
obtained will be at the cost of increased energy consumption. In addition, moving lines
following just a single access results in the small cache quickly becoming inundated,
further resulting in a large number of evictions back to the L1D. These cache line
movements constitute an energy overhead, and thus it is imperative that the assist
caching strategy implement some selectivity in moving lines to the assist cache.

2.3.2 Persistence Selective Caching
PSC is a selective caching scheme that aims to reduce AMAT and energy per access
by servicing a majority of data references through a small, fully-associative assist
cache, while minimizing the number of cache lines moved to this cache from the L1D.
It achieves this by limiting use of the assist cache to only those cache lines that are
most frequently accessed. PSC is based on the premise that frequently accessed cache
lines have potential for reuse, and are therefore likely to be referenced again. The
reuse potential of a line is determined based on its access persistence, i.e. the number
of accesses to the cache line within a small window of references. Lines that exhibit

33

2. Architectural Techniques for Efficient On-Chip Data Management

Figure 2.12. Architecture of the PSC assist cache and its interface for cache line swaps
with the L1D

persistence equal to or greater than a certain threshold level are regarded as reusable
and subsequently elevated to the assist cache. Due to its small size, references to data
stored in the assist incur a relatively shorter access latency, and consume a smaller
amount of energy than the L1D.

The PSC assist cache is illustrated in Figure 2.12. Both the assist and L1D are
probed in parallel on references by the processor. Since the two are mutually exclusive
in their content, cache lines may reside in either cache but not both simultaneously.
Consequently, a reference to a line may hit in either, or miss in both, with the latter
case serviced through the L1D alone. To enable the swapping of cache lines between
the two caches, the architecture includes an interface for the exchange of data, tags
and hit/miss information as illustrated in Figure 2.12. PSC does not influence the
caching of lines by the L1D from lower level caches and is thus non-filtering, unlike
the Filter cache [52] and SVC [54]. This ensures that the full capacity of the L1D is
always available irrespective of the amount of data reuse present in the application.

2.3.2.1 Selective Caching Criteria

The threshold level of access persistence that lines require in order to be elevated to
the assist cache is defined in terms of two parameters:

• R
min

: The number of references required to a line for it to be regarded as
frequently used and hence, as reusable.

34

2.3. Improving Data Cache Performance using Persistence Selective Caching

Figure 2.13. Algorithms for the L1D and PSC assist cache

• W : The number of references within which the R
min

condition must be met.
Each sequence of W references by the processor is considered as a window.

These two parameters essentially define PSC’s selectivity in elevating L1D cache
lines to the assist cache. Since access persistence is strongly dependent on memory
access patterns, these parameters can be expected to have different optimal values for
different applications.

The working of a data cache with a PSC assist is illustrated in Figure 2.13.
Elevation decisions are made following L1D hits, after the requested data is returned
to the processor. The decision to elevate a cache line to the assist is based on its access
count. However, in order to account for changing memory access patterns of the
workload and thus temporal variations in cache line usage, this count is considered
valid only within the window of W references during which it is updated. The active

35

2. Architectural Techniques for Efficient On-Chip Data Management

window at any point in time is indicated by the WIN register, the value of which is
incremented after every W references. Cache lines are stamped with this value to
indicate the window active at the time of the reference. If during a subsequent access
to the line, this stamp is found to differ from the value in the WIN register, the line’s
access count is considered invalid and is reset, and its WIN stamp updated.

On the other hand, if the values are found to be matching, the access count is
considered valid and is compared with R

min

to evaluate whether the line can be
elevated to the assist. Therefore, if a line is accessed atleast R

min

times within the
current reference window, it is moved across the swap interface and placed within
an available slot in the fully-associative assist cache. In the event that no free slot
exists, the assist cache line with the least persistence is evicted and moved back to the
L1D, while the newly elevated line is stored in the resulting free slot. The line evicted
from the assist may however map to a different set inside the L1D and subsequently
displace other useful data in that set. This is referred to as an induced replacement and
can ironically increase contention in the L1D. In general, the occurrence of induced
replacements decreases as PSC’s selectivity is increased.

2.3.2.2 Significance of Persistence Threshold

The R
min

parameter of the threshold has a significant influence on AMAT and energy
consumption since it determines the selectivity of PSC, and controls the number of
elevations to the assist. Effectively, it determines the number of references for which
the lower access latency of the assist is incurred. The use of an R

min

value lower
than the application’s optimal results in a large number of cache lines being elevated
to the assist, and consequently, an aggravated induced replacement rate and energy
overhead. On the other hand, a value higher than the optimal limits elevation to only
those lines with exceptional amounts of access persistence. Both of these strategies
can be employed to achieve specific performance or energy targets.

The W parameter determines the period in which reuse is measured. It enables
the access count to not only reflect how often cache lines are referenced, but also
when. This allows the PSC assist to selectively cache and accelerate references to the
currently active data set. The parameter also helps limit the width of access counters
used to track persistence since the maximum number of accesses possible to a cache
line within any window is always W , and thus the counter width is log2(W).

36

2.3. Improving Data Cache Performance using Persistence Selective Caching

Table 2.4. System Configuration

PROCESSOR
Architecture 32b SimpleScalar/ARM
Issue Width 1 instruction/cycle

MEMORY HIERARCHY
L1 Data Cache 1KB, 8KB, 32KB, 64KB / 4-way
L1 Hit Latency 1, 2, 3, 3 cycles resp.
Miss Penalty 64 cycles
Assist Cache (PSC/SVC/L0) 512B / Fully Associative
Assist Hit Latency 1 cycle
L2 Data Cache 1MB / 8-way
Line Size/Write Policy 64B / Write-back

2.3.2.3 Limitations

For an application, the overall optimal persistence threshold is one that results in a
significant portion of data references being serviced through the assist cache, while
minimizing the number of cache line swaps performed. Such a threshold ensures a
shorter latency and lower energy per access, and its value can be expected to vary
for different applications. To evaluate the complete envelope of operation of PSC,
we determine the optimal persistence thresholds used in this dissertation through an
exploratory simulation. Although time consuming, the simulation provides valuable
insights into the characteristics of the PSC assist cache, and how the persistence
threshold affects its performance. However, given that systems incorporating the PSC
assist may execute a range of applications with distinct characteristics, it may not
be realistic to expect such an exhaustive characterization of each. One promising
approach to determining the persistence threshold is compile-time analysis [57–59].
Gonzales et al. [57] incorporate reuse, volume and interference analyses into their
locality analysis compiler, providing information on the type of reuse in cache lines,
the reuse distance, and potential conflicts that could occur between these lines in the
data cache. Using such analysis methodologies, the value of the parameters R

min

and
W can be determined based on characteristics such as reuse type, reuse distance and
reuse volume.

We note that even optimal thresholds represent only an approximate best case.
Through the course of execution, memory access patterns and application behaviour
often change significantly, and factors such as the reuse distance and stride length [60]
of accesses change as well. This indicates the need for an adaptive strategy that tunes
both R

min

and W components of the persistence threshold accurately based on the
variations in execution behaviour.

37

2. Architectural Techniques for Efficient On-Chip Data Management

Table 2.5. Access Persistence Thresholds

blowfish dijkstra ghostscript gsm ispell mad sha
R

min

70 30 70 70 100 90 130
W 2048 512 1024 2048 2048 1024 1024

2.3.3 Evaluation
We evaluate Persistence Selective Caching (PSC) using trace driven simulations.
Data memory traces are generated using SimpleScalar/ARM [61] for a single issue
processor, and subsequently passed into a trace-driven cache simulator. The simulator
models a conventional data cache together with the PSC assist, Selective Victim
Cache (SVC) and write-back L0 cache according to the configurations listed in Table
2.4. For each simulated cache, the corresponding latency, area and power data are
gathered using CACTI [35] for the 32nm technology node. The access latencies of
the caches are also listed in Table 2.4. Seven workloads from the MiBench embedded
benchmark suite [49] are used in the evaluation. The persistence threshold for each
is determined through an exploratory simulation as previously mentioned, and the
corresponding R

min

and W values obtained are listed in Table 2.5. These reflect the
access persistence of the most frequently used data set within the workloads.

2.3.3.1 AMAT and Energy

Figure 2.14(a) illustrates the percentage of memory references that hit in the L1D, hit
in the assist cache, and miss in the L1D. In a conventional cache, all data references
either result in an L1D hit, or in a miss, causing the line to be fetched from lower
level caches. In the case of the L0, on each L1D hit, the requested line is moved to the
assist cache from where subsequent references to it are serviced. Though this yields a
benefit in terms of access latency, since cache lines are moved into the L0 following
just a single hit, it results in a large number swaps between the two caches. The swap
count for the L0 is accordingly observed to be higher than for other schemes across
workloads. Since PSC applies access persistence as the condition for elevations, lines
are not moved into the assist until they demonstrate sufficient potential for reuse. This
drastically reduces the number of swaps as compared to the L0. For instance, in the
case of the dijkstra workload using an L0 assisted 32KB data cache, over 20E6
swaps occur, while with PSC, this is reduced to 8E3 with better AMAT and energy
reductions. Similarly, for blowfish with a PSC assisted 8KB data cache, a 45%
improvement in AMAT is obtained from only 18 cache line elevations to the assist.
Effectively, 80% of all data references by blowfish hit this small set of cache lines in

38

2.3. Improving Data Cache Performance using Persistence Selective Caching

the assist as seen from Figure 2.14(a). This observation highlights the reusability of
cache lines that exhibit access persistence, and illustrates the significant performance
gains that can be obtained from the selective caching of reusable lines in low-latency
assists.

Figure 2.14(b)-(d) illustrate how the servicing of references from the assist, se-
lectivity in elevations and reduction in cache contention translate into AMAT im-
provements and energy savings. PSC is observed to yield consistently lower AMATs
than conventional data caches across all workloads and cache configurations. When
compared to SVC and L0, PSC offers superior improvements in terms of both access
latency as well as energy. These improvements are more pronounced for the larger
caches whose higher access latency and energy consumption considerably magnify
the negative repercussions of the SVC and L0. The SVC offers little benefit for L1D
caches larger than 8KB with the workloads used. Conversely, in the case of the small
1KB cache, the benefits of PSC are not as pronounced since both the assist and the L1D
have the same access latency. The AMAT improvements obtained for small caches
stem from the miss rate reductions achieved through the dynamic associativity [53]
added to contentious sets by the assist. PSC’s performance in such caches matches
that of SVC in terms of AMAT as well as energy. The most significant improvements
are observed when PSC is used with larger set-associative caches with access latencies
greater than that of the assist.

Although unselectively moving cache lines to the assist and servicing references
to them with a short 1 cycle latency can sometimes yield AMAT benefits, the frequent
occurrence of swaps always results in higher energy consumption. An example of
this is the blowfish workload with the 32KB data cache where the PSC and L0
are observed to offer similar AMAT improvements, but while the L0 incurs a large
number of swaps in doing so, the PSC yields the same improvements with only 29
swaps. Using access persistence as the selectivity criterion therefore results in a
large reduction in the number of cache line movements as compared to the L0 assist.
Unselective movement of data in the case of the L0 also results in aggravated miss
rates due to induced replacements, and higher energy consumption.

In the case of the SVC, despite its miss rate reduction, since a negligible fraction of
references are serviced through the small assist, the AMAT and energy improvements
obtained are small. For most cases in Figure 2.14(b) and (c), PSC results in AMAT
upto 59% shorter, and energy consumption upto 75% lower than conventional data
caches, as well as competing schemes. Note that in computing the energy per access
in the case of PSC, we took into account the overheads of selective caching and
maintaining of access counts and window timestamps as well.

39

2. Architectural Techniques for Efficient On-Chip Data Management

0%

25%

50%

75%

100%
S

V
C

L0

P

S
C

S

V
C

L0

P

S
C

S

V
C

L0

P

S
C

S

V
C

L0

P

S
C

S

V
C

L0

P

S
C

S

V
C

L0

P

S
C

S

V
C

L0

P

S
C

S

V
C

L0

P

S
C

S

V
C

L0

P

S
C

S

V
C

L0

P

S
C

S

V
C

L0

P

S
C

S

V
C

L0

P

S
C

S

V
C

L0

P

S
C

S

V
C

L0

P

S
C

S

V
C

L0

P

S
C

S

V
C

L0

P

S
C

S

V
C

L0

P

S
C

S

V
C

L0

P

S
C

S

V
C

L0

P

S
C

S

V
C

L0

P

S
C

S

V
C

L0

P

S
C

S

V
C

L0

P

S
C

S

V
C

L0

P

S
C

S

V
C

L0

P

S
C

S

V
C

L0

P

S
C

S

V
C

L0

P

S
C

S

V
C

L0

P

S
C

S

V
C

L0

P

S
C

blowfish dijkstra ghostsc gsm ispell mad sha blowfish dijkstra ghostsc gsm ispell mad sha blowfish dijkstra ghostsc gsm ispell mad sha blowfish dijkstra ghostsc gsm ispell mad sha

Miss Assist Hit L1 Hit Cache Line Swaps

1KB 8KB 64KB 32KB

(a) Distribution of Memory References

0

0.5

1

1.5

2

2.5

bl
ow

fis
h

di
jk

st
ra

gh
os

ts
cr

ip
t

gs
m

is
pe

ll

m
ad

sh
a

bl
ow

fis
h

di
jk

st
ra

gh
os

ts
cr

ip
t

gs
m

is
pe

ll

m
ad

sh
a

bl
ow

fis
h

di
jk

st
ra

gh
os

ts
cr

ip
t

gs
m

is
pe

ll

m
ad

sh
a

bl
ow

fis
h

di
jk

st
ra

gh
os

ts
cr

ip
t

gs
m

is
pe

ll

m
ad

sh
a

1KB 8KB 32KB 64KB

A
M

AT

SVC L0 PSC

(b) Normalized Average Memory Access Time (AMAT)

0

0.5

1

1.5

2

2.5

3

bl
ow

fis
h

di
jk

st
ra

gh
os

ts
cr

ip
t

gs
m

is
pe

ll

m
ad

sh
a

bl
ow

fis
h

di
jk

st
ra

gh
os

ts
cr

ip
t

gs
m

is
pe

ll

m
ad

sh
a

bl
ow

fis
h

di
jk

st
ra

gh
os

ts
cr

ip
t

gs
m

is
pe

ll

m
ad

sh
a

bl
ow

fis
h

di
jk

st
ra

gh
os

ts
cr

ip
t

gs
m

is
pe

ll

m
ad

sh
a

1KB 8KB 32KB 64KB

Sp
ee

du
p

SVC L0 PSC

(c) Normalized AMAT Speedup

0
0.5

1
1.5

2
2.5

3
3.5

4

bl
ow

fis
h

di
jk

st
ra

gh
os

ts
cr

ip
t

gs
m

is
pe

ll

m
ad

sh
a

bl
ow

fis
h

di
jk

st
ra

gh
os

ts
cr

ip
t

gs
m

is
pe

ll

m
ad

sh
a

bl
ow

fis
h

di
jk

st
ra

gh
os

ts
cr

ip
t

gs
m

is
pe

ll

m
ad

sh
a

bl
ow

fis
h

di
jk

st
ra

gh
os

ts
cr

ip
t

gs
m

is
pe

ll

m
ad

sh
a

1KB 8KB 32KB 64KB

En
er

gy
 p

er
 A

cc
es

s

SVC L0 PSC

(d) Normalized Average Energy per Access

Figure 2.14. (a) Distribution indicating the fraction of memory references that result
in an L1D hit, miss and assist cache hit for each workload with the Selective Victim
Cache (SVC), L0 and Persistence Selective Caching (PSC) assist. The number of cache
line swaps normalized to the total number of references is also indicated. (b) Average
Memory Access Time (AMAT) (c) AMAT speedup and (d) Average energy per access
normalized to a conventional 4-way L1D of size 1KB, 8KB, 32KB and 64KB.

40

2.3. Improving Data Cache Performance using Persistence Selective Caching

Table 2.6. Area overhead relative to a conventional L1D

SVC L0 PSC
1KB 46% 46% 52%
8KB 1.2% 1.2% 7.3%
32KB 1% 1% 7%
64KB 0.8% 0.8% 7%

2.3.3.2 Overheads and Implementation Cost

The swap operation for the PSC is identical to that of the SVC except for the fact that
lines evicted from the PSC assist may map to a different set in the L1D than from
which the newly elevated line originated. This necessitates an additional L1D lookup
and in case the set is fully occupied, an extra cycle for the corresponding eviction
(an induced replacement). However, the extremely low number of swaps that occur
with PSC offsets any disadvantages that such overheads may pose. Adopting a very
pessimistic estimate for time per PSC swap as twice that of SVC swap time (6 cycles
and 3 cycles [54] respectively), the total time spent in cache line swaps is still upto
90% lower for PSC as compared to SVC, and over 99% lower than the unselective L0
assist.

Table 2.6 lists the area overhead of the PSC scheme as compared to a conventional
data cache. For the PSC, a 11b access count (corresponding to a window size of 2048
references), and a 21b window stamp were considered, translating to 4B of extra tags
per line in both the L1D and the assist cache. The implementation overheads for the
selective caching logic itself are minimal, comprising primarily of a small number of
comparators and adders. Also listed in the same table are the overheads of the SVC
and L0 (all assists in the table are of size 512B).

2.3.4 Conclusions
Persistence Selective Caching (PSC) improves AMAT and energy by caching reusable
lines in a low-latency, low-energy assist cache. PSC identifies reusable cache lines
at runtime based on their access persistence, and by reducing the hit latency for
these lines, improves AMAT by upto 59% as compared to conventional data caches.
Furthermore, allowing only reusable lines into the assist, PSC reduces the number
of cache line swaps between the L1D and assist cache, and thus decreases average
energy per access by upto 75% over competing assist caches. These results illustrate
the benefits of selective caching using low-latency assists, and highlight the significant
amount of data reuse present in some applications.

41

2. Architectural Techniques for Efficient On-Chip Data Management

2.4 Runtime Management of Shared Caches using
CacheBalancer

The dominance of miss penalty (t
miss

) in the AMAT of caches in large multiprocessors
is indicative of the growing importance of on-chip data management. With increasing
system size, it is imperative that close attention be paid to where data used by tasks is
stored in order to minimize access costs.

Memory allocators are used by application programs to dynamically manage their
memory at runtime, through the allocation of additional blocks for storage, or the
release of unused blocks back to the system. The allocated memory forms part of the
global heap. In conventional allocators [62], memory is allocated at the first available
address where a contiguous free block of the requested size exists. Consequently, the
allocated memory can reside anywhere within the bounds of the heap. Considering
the use of cache slicing in non-uniform cache access (NUCA) based multiprocessors
such as NagaS, this raises the possibility of the allocated memory block residing
in a distant cache bank. Accesses latencies are aggravated as a result of the longer
interconnect path between PEs and the cache bank. Since the lower level cache banks
are accessed primarily on L1D misses, the increased access latency translates to a
higher miss penalty (t

miss

).
There exists a significant body of work that addresses the issue of memory alloca-

tion to improve access latencies. Distance awareness [63] is a scheme that allocates
memory pages in cache banks close to the requesting PE, thereby reducing the com-
munication latency for accesses. However, in doing so, the scheme forces all data
allocated by a PE to be localized in a single cache bank, resulting in expensive ca-
pacity misses. This drawback is avoided by tracking the number of active pages in
every cache bank in the system. The authors in [63] consider a threshold beyond
which pages spill into neighbouring caches. [64] proposes a similar principle using
software counters to track the difference in the number of allocated memory pages per
cache bank. Both proposals aim to localize memory allocations around the requesting
processor, and relax this rule progressively based on the size of the dataset already
allocated in target banks. Although these prevent caches from overflowing due to
excessive allocations in any single bank, such approaches ignore the actual utilization
of data cached in the banks. For instance, a cache may have only a few allocated pages
but be very heavily utilized by PEs, resulting in long access latencies. Allocating more
data in the same bank would only exacerbate this problem [65]. It is therefore essential
to consider the actual utilization of caches alongside conventional communication
distance when performing memory allocations.

42

2.4. Runtime Management of Shared Caches using CacheBalancer

In multiprocessor environments, task mapping also plays a crucial role in de-
termining the spread of data across cache banks, and thus memory access latencies.
For instance, tasks sharing data must be mapped onto PEs located close to the bank
caching this data in order for their access latency to be low [66]. However, each new
task mapped onto the system increases utilization of cache banks to a different extent
based on its memory access patterns and execution characteristics. It is therefore
prudent to guide task mapping based on the characteristics of the application’s tasks
in order to uniformly utilize available cache memory resources, and thus minimize
memory access latencies.

In this section, we propose a runtime resource management scheme named
CacheBalancer that improves the utilization of on-chip shared caches and reduces
access latencies in chip multiprocessor systems. CacheBalancer incorporates a utiliza-
tion and communication distance-aware memory allocator that avoids heavily accessed
cache banks, easing contention, and consequently reducing the access latency for
allocated data. Furthermore, CacheBalancer uses information on the execution char-
acteristics of tasks gathered from profiling and static analysis to determine their
influence on other tasks in the system, through a metric called Pain. This metric is
used at runtime to determine a task map that balances cache utilization, and minimizes
inter-task interference due to shared system resources such as interconnect links and
caches.

2.4.1 CacheBalancer
The CacheBalancer consists of two parts: An Access Rate based memory allocator,
and a Pain-driven task mapper. The following subsections examine each part in detail.

2.4.1.1 Access Rate based Memory Allocation

While existing schemes within the state-of-the-art implement distance-aware [63]
and cache capacity aware [64] memory allocation to overcome the limitations of
conventional allocators, they result in the non-uniform utilization of on-chip cache
resources. CacheBalancer uses a metric called Access Rate to determine the relative
utilization of cache banks. Access rate is defined as the ratio of the number of accesses
made to a particular cache bank versus the total number of shared cache accesses in
the system. A high access rate indicates that a cache bank is frequently accessed, i.e.
a hot cache. Conversely, a low access rate indicates a relatively less accessed cache
bank, or a cold cache. CacheBalancer uses two access rate thresholds to determine if
cache banks are hot or cold. These are determined as:

43

2. Architectural Techniques for Efficient On-Chip Data Management

✓
hot

(p
i

,m
j

) = � · � (2.6)

✓
cold

(p
i

,m
j

) =
�

� ·HC(p
i

,m
j

)
(2.7)

where ✓
hot

and ✓
cold

represent the access rate thresholds for a cache bank to be
considered as hot and cold respectively, � is the mid-range value of the access rate
across N cache banks in the system, and HC(p

i

,m
j

) is the hop-count along the
interconnect path between PE p

i

and cache bank m
j

. The � and � parameters are
integer constants that control the distribution of the allocated memory. � for instance
influences the memory allocator’s sensitivity to hot caches. � on the other hand affects
the spread of data by limiting candidate cache banks based on their distance from
the allocating PE. A high value forces the localization of data, while a low value
enables the allocation of data across a larger number of cache banks. Due to their
characteristics, these parameters could be used within a runtime manager to adapt
memory allocations based on system utilization, power and reliability. This is an
important topic to be explored in the future.

� is derived using , the set of access rates for N cache banks, as:

� = midrange(max(),min()) (2.8)

 = { 0, 1, 2, ..., N�1} (2.9)

where
x

is the access rate of cache bank x.
Access rates are measured using two 8b access counters per cache bank. In order

to prevent temporal fluctuations in access rates from causing oscillations in memory
allocation targets, access rate samples are filtered using a moving average filter. Thus,
the counters are sampled every 500 cycles and averaged with a finite number of
previous samples in order to eliminate temporal spikes, and determine the current
access rate. The calculated value is subsequently stored in a dedicated subsection
of the address space accessible through the memory hierarchy. In order to allocate
memory, the memory allocator function is called from tasks executing on PEs. This
function first computes the ✓

hot

and ✓
cold

thresholds using the cache bank access rates,
and invokes the selection algorithm listed in Figure 2.15 to obtain a target cache bank.

The algorithm identifies a candidate cache bank with access rate below the
threshold ✓

hot

, preventing over-utilization by checking the number of pages already
allocated at the banks. Memory allocation is avoided at cache banks that are heavily
accessed, and those that would overflow with further allocation. Page counters track
allocation at each bank relative to the lowest page count amongst all banks. The

44

2.4. Runtime Management of Shared Caches using CacheBalancer

1: initial cache bank closest cache bank to PE
2: x initial cache bank
3: if Access rate[x] > ✓

hot

|| Allocated page count[x]> Max. pages per bank then
4: x next candidate cache bank
5: while Access rate[x] > ✓

cold

&& Allocated page count[x] > Max. pages per bank do
6: x next candidate cache bank
7: if x==NULL then
8: x initial cache bank
9: break

10: if Allocated page count[x]==0 then
11: Allocated page count[x] number of pages to allocate
12: minimum pages find minimum non-zero page count
13: for every cache bank y do
14: Allocated page count[y] Allocated page count[y]-minimum pages
15: else
16: Allocated page count[x] number of pages to allocate
17: Target cache bank x
18: Return Target cache bank

Figure 2.15. Access rate based cache bank selection

lowest count is re-computed every time an allocation occurs in the bank with the least
allocated pages. Once a suitable candidate bank is found, memory is allocated in a
corresponding subsection of the address space.

2.4.1.2 Pain-driven Task Mapping

The utilization of cache banks is also very strongly influenced by the nature of tasks
executing on PEs within the system. Memory-intensive tasks are more likely to utilize
cache banks heavily than their counterparts with smaller data sets. In addition, the
performance of tasks can become inter-dependent when they share a cache, especially
when their execution characteristics vary significantly. It is therefore essential for
task characteristics to be taken into consideration during task mapping in order to
uniformly utilize system resources and minimize inter-task interference.

CacheBalancer uses an adapted version of the Pain metric of Zhuravlev et al. [67]
to guide the mapping of tasks onto PEs. The metric describes, for each executing task,
the performance degradation that would be experienced if a certain new task were to
be mapped onto a particular PE. Pain is measured in terms of three parameters: Cache
Intensity, Cache Sensitivity, and Communication Impact.

45

2. Architectural Techniques for Efficient On-Chip Data Management

(i) Cache Intensity This parameter indicates how aggressively a cache bank is
used by tasks. For each cache bank i, it is given as:

Z(m
i

) =
X

⇡

j

2⇧
i

z
i

(⇡
j

,m
i

) (2.10)

where ⇡
j

is a task within the set of tasks ⇧
i

that use the cache bank m
i

. z
i

(⇡
j

,m
i

)
is the average number of task ⇡

j

’s memory accesses that reference cache bank m
i

. Its
value can be estimated using memory access profilers such as plugin [68], cprof [69]
and Quad [70]. Since the actual number of accesses may only be known at runtime,
the obtained estimates can be coupled with appropriate runtime meta data to obtain an
accurate value. Cache intensity hence measures how heavily cache banks are used by
executing tasks.

(ii) Cache Sensitivity This parameter indicates the sensitivity of tasks to conten-
tion in shared cache banks. It is measured as the likelihood of a task’s memory hits
turning into misses as a result of cache contention. Sensitivity is specified as the
product of the stack distance profile [71] of the task’s hits in the cache [67], and the
probability of eviction from each stack position. The stack positions correspond to
the order in which cache lines would be evicted in the event of contention in the set.
Thus, x = 1 corresponds to the most recently used, and x = n the least recently used
sets. Cache sensitivity is given as:

S(⇡
i

) =
nX

x=1

x

1 + n
· h(x) (2.11)

where n is the set-associativity of the cache bank, and h(x) is the number of hits by
the task at stack position x. h(x) is similar to the access persistence metric used in the
context of PSC, and requires characterization of the task’s memory access profile [72].
This can be done using the same tools as used in the case of cache intensity, and also
using Zhuravlev’s extension [67] for the PIN dynamic instrumentation framework
[73].

(iii) Communication Impact This parameter encapsulates the cost of accessing
shared data located in a specific cache bank, over the shared interconnect. It therefore
determines the degree of performance loss induced due to interconnect contention and
communication distance resulting from a certain task mapping. For each candidate
mapping map(⇡

i

) ! p
q

where p
q

is a PE, the communication impact is given as:

46

2.4. Runtime Management of Shared Caches using CacheBalancer

CI(⇡
i

| map(⇡
i

) ! p
q

) =
X

m

j

2M
i

2 ·HC(p
q

,m
j

) · Z(m
j

) · S(⇡
i

) (2.12)

HC(p
q

,m
j

) represents the hop count between PE p
q

and cache bank m
j

used by the
task. Note that the hop count is doubled in order to account for the fact that memory
accesses consist of both requests and responses.

The pain in terms of cache intensity, cache sensitivity and communication impact
is given for a task ⇡

i

assuming a candidate mapping on PE p
j

as:

Pain(⇡
i

)
⇡

i

!p

j

=

✓ X

m

j

2M
⇡

i

S(⇡
i

) · Z(m
j

)

◆

| {z }
due to shared caches

+

✓
CI(⇡

i

| map(⇡
i

) ! p
j

)

◆

| {z }
due to interconnect

(2.13)
where M

⇡

i

represents the set of caches used by a task ⇡
i

. At runtime, the task
mapper evaluates the effective pain for each candidate mapping, and assigns tasks
onto available PEs that yield the lowest pain.

Since this mapping is performed at runtime, searching through the combination
space could be a time-consuming process. In order to reduce the complexity of the
search operation, the mapper orders the waiting task pool based on task importance.
This is determined as the product of cache sensitivity, cache intensity, and data set
size. Tasks with higher importance are mapped first, with full fidelity in evaluations
of mapping options. On the other hand, tasks with lower importance can be mapped
with a lower search effort. As mapping progresses, the available options decrease and
thus, the search space also decreases. In total, the mapping function has a complexity
of O(p) per task in a system with p processors. In the average case, for n tasks, the
complexity is O(pn · log(n)), and O(pn2) in the worst case.

2.4.2 Evaluation
CacheBalancer is evaluated using a cycle-accurate SystemC model of the R3 NoC [41]
based NagaS array, illustrated in Figure 2.16. The simulator is configured according
to the configuration in Table 2.7. CacheBalancer is implemented in C as a linkable
library. Its memory allocator and task mapper can be invoked from application
software by including the library at compile-time. In order to emulate worst-case
conditions, CacheBalancer is tested with a synthetic workload that uses parallel tasks
to repeatedly allocate and write to memory pages, thus stressing the shared caches,
and exposing their resulting memory access latency.

47

2. Architectural Techniques for Efficient On-Chip Data Management

Figure 2.16. R3 network-on-chip based NagaS array

Table 2.7. System Configuration

Processing Elements 32
Instruction Set Architecture 32b Microblaze

L1 Instruction Cache 4KB/2-way/64B
L1 Data Cache 64KB/4-way/64B
L2 Cache Banks 128KB/8-way/64B

Number of L2 Cache Banks 8/16
Total L2 Cache Capacity 1024KB/2048KB

Interconnect Topology 4⇥ 4⇥ 4 (3D Mesh)
Tech. Node/Clock 90nm/200MHz

Figure 2.17 reports the normalized execution time for the workload with varying
number of PEs, using the conventional memory allocator (round robin) [62], distance
aware allocator [63], CacheBalancer’s access rate based allocator (cachebalancer-
alloc), and the complete CacheBalancer scheme comprising of the allocator as well as
the pain-driven task mapper (cachebalancer-full). The system is evaluated with two
different ratios of PEs to shared caches - 32 : 8 and 32 : 16, and the execution time
results corresponding to these are reported in Figure 2.17(a) and (b) respectively.

In Figure 2.17(a), the ratio of PEs to shared caches is high, thus emulating a
high-contention scenario. In this case, cachebalancer-full is observed to provide upto
22% lower execution time compared to the distance aware scheme. The minimiza-
tion of communication distance in the case of the distance aware allocator reduces
communication latency at the cost of cache contention. CacheBalancer on the other
hand prioritizes the minimization of cache contention, even at the cost of slightly

48

2.4. Runtime Management of Shared Caches using CacheBalancer

 0.8

 0.9

 1

 1.1

 1.2

 4 8 12 16 20 24 28 32

N
or

m
.E

xe
cu

tio
n

Ti
m

e

PEs

round robin
distance aware

cachebalancer-alloc
cachebalancer-full

 0.9
 0.95

 1
 1.05
 1.1

 1.15
 1.2

 1.25
 1.3

 1.35
 1.4

 4 8 12 16 20 24 28 32

N
or

m
. E

xe
cu

tio
n

Ti
m

e

PEs

round robin
distance aware

cachebalancer-alloc
cachebalancer-full

(a) (b)

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
or

m
al

iz
ed

 R
eq

ue
st

s

Cache bank index

distance aware
cachebalancer-full

(c)

Figure 2.17. Execution time using different schemes normalized to the distance aware
allocator. Multiprocessor system includes 32 PEs and varying number of cache banks -
(a) 8 cache banks, (b) 16 cache banks. (c) Cache bank utilization for system with 32 PEs
and 16 banks

increased communication distances. The rationale behind this lies in the fact that com-
munication latencies can be improved by means of optimizations to the interconnect
architecture [74], and also because minor differences in communication distance have
a relatively small impact on overall performance. For instance, even with a slightly
higher (1 hop) communication distance, CacheBalancer has a positive influence on
performance. This benefit is obtained mainly from the reduction in contention at the
shared cache banks. However, with increasing number of PEs, the available cache
memory bandwidth is quickly exhausted. At this point, CacheBalancer’s performance
matches that of the distance aware scheme. Figure 2.17(b) reports the execution time

49

2. Architectural Techniques for Efficient On-Chip Data Management

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 4 8 12 16 20 24 28 32

N
o

rm
a

liz
e

d
 E

n
e

rg
y

PEs

round robin
distance aware

cachebalancer-alloc
cachebalancer-full

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 4 8 12 16 20 24 28 32

N
o

rm
a

liz
e

d
 E

n
e

rg
y

PEs

round robin
distance aware

cachebalancer-alloc
cachebalancer-full

(a) (b)

Figure 2.18. Normalized energy dissipation with (a) 8 cache banks (b) 16 cache banks

results for a larger number of shared caches. In this case, the topology of the system
results in a larger number of shared cache banks in the vicinity of PEs. Consequently,
the distance aware allocator experiences reduced contention at the banks as compared
to the round robin scheme. Due to this, the execution time benefits of CacheBalancer
appear smaller than for the previous case.

The distance-aware allocator prioritizes the use of the closest cache banks, and
consequently, utilizes only 8 of the 16 banks in the system. CacheBalancer on the
other hand utilizes all 16 banks, yielding a more uniform spread of access across the
shared caches, and reduces contention by upto 60%. This is clearly evidenced in
Figure 2.17(c). These simulations use a hot cache sensitivity (�) of 1 and allocation
spread (�) of 2 hops.

In addition to decreasing execution time, decreasing contention also has a sig-
nificant impact on the energy dissipation of caches. This is especially true when
cache bandwidth is constrained. The energy dissipated in the two cases, normalized to
round robin allocation with 32 PEs, is reported in Figure 2.18. Reducing contention
at cache banks decreases the occurrence of conflict misses, and eases congestion
in the interconnect. The benefits of CacheBalancer in this regard are observed in
Figure 2.18(a) where the ratio of PEs to caches results in high contention at cache
banks. On the other hand, the already low contention at banks in Figure 2.18(b) causes
CacheBalancer to yield little benefit in terms of energy dissipation.

Nevertheless, in both cases, energy density is decreased by over 50% due to the
spreading of cache utilization across all banks in the system. Thus for a given number
of cache accesses, CacheBalancer spreads the corresponding energy dissipation over a
larger area than competing allocators. Figure 2.19 reports the energy density obtained

50

2.4. Runtime Management of Shared Caches using CacheBalancer

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 4 8 12 16 20 24 28 32

N
o
rm

.
E

n
e

rg
y

D
e
n

si
ty

PEs

distance aware
cachebalancer-alloc

cachebalancer-full

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 4 8 12 16 20 24 28 32

N
o
rm

.
E

n
e

rg
y

D
e
n

si
ty

PEs

distance aware
cachebalancer-alloc

cachebalancer-full

(a) (b)

Figure 2.19. Energy density normalized to the round-robin allocator with (a) 8 cache
banks (b) 16 cache banks

with the different allocators. Energy density is a critical factor that influences operating
temperatures in ICs. Its reduction prevents the occurrence of performance degrading
thermal emergencies. The effects of energy density are treated in more detail in
Chapter 3.

2.4.3 Conclusions

This section presented CacheBalancer, a runtime resource management scheme for
chip multiprocessors that uses the access rate and pain metrics to guide memory
allocation and task mapping. The scheme achieves upto 60% lower contention by
improving utilization of available cache banks, and reduces execution time by upto
22% as compared to competing proposals. Furthermore, by improving utilization of
shared cache resources, it yields upto 50% lower energy density than other proposals.
The presented CacheBalancer in this dissertation is only a proof of concept, and
requires further exploration to determine the full significance and impact of parameters
such as �, �, ✓

hot

, ✓
cold

, and their derivation. These topics require further investigation,
and integration within Naga and its tooling.

51

2. Architectural Techniques for Efficient On-Chip Data Management

Summary
The performance of a multiprocessor is strongly influenced by the efficiency of
its underlying communication model, which determines t

memory

, the fraction of
execution time spent stalled on memory load-stores. In the first part of this chapter,
we presented the Pronto message-passing system to improve the efficiency of data
transfer between distributed memories in the NagaM multiprocessor. The proposed
system minimizes PE involvement in the management of data transfers, and reduces
transfer overheads through the use of message envelopes for flow control.

In the second part, we proposed Persistence Selective Caching (PSC) to improve
management of data in the L1 cache so as to reduce hit time (t

hit

) and decrease miss
rate. By accelerating references to reusable data, PSC yields upto 59% reductions in
average memory access time (AMAT), and upto 75% reduction in average energy per
access, over competing schemes. The efficacy of PSC is indicative of the significant
data reuse present in general applications.

In the third part, we proposed the CacheBalancer scheme to efficiently manage
cache resources in non-uniform cache access (NUCA) multiprocessors. CacheBal-
ancer combines a dynamic memory allocator and a runtime task mapper, in order to
minimize access costs for the last level caches. In addition to improving execution
performance by 22%, CacheBalancer mitigates contention by increasing the utilization
of available cache resources. This yields upto 50% lower energy densities within the
system.

Associated Publications
The topics presented in this chapter are covered in the following publications:

1. S.S. Kumar, M.T.A. Djie, R. van Leuken, ”Pronto: A Low Overhead Message
Passing System for High Performance Many-Core Processors.” International
Journal of Networking and Computing - Special Issue, vol. 4, no. 2, p. 307-320,
July 2014

2. S.S. Kumar, M.T.A. Djie, R. van Leuken, ”Low Overhead Message Passing for
High Performance Many-Core Processors,” Proceedings of the International
Symposium on Computing and Networking (CANDAR), pp. 345-351, 2013

3. S.S. Kumar, R. van Leuken, ”Improving data cache performance using Persist-
ence Selective Caching,” Proceedings of the IEEE International Symposium on

52

2.4. Runtime Management of Shared Caches using CacheBalancer

Circuits and Systems (ISCAS), pp. 1945-1948, 2014

4. J. de Klerk, S.S. Kumar, R. van Leuken, ”CacheBalancer: Access Rate and
Pain Based Resource Management for Chip Multiprocessors”, Proceedings of
the International Symposium on Computing and Networking (CANDAR), pp.
453-456, 2014

53

2. Architectural Techniques for Efficient On-Chip Data Management

54

3
Exploring the Thermal Design Space in 3D
Integrated Circuits

Three-dimensional integrated circuits (3D IC) are composed of multiple stacked
dies interconnected using Through Silicon Vias (TSV). These enable the high-density
integration of devices without increasing the area footprint of the system. However,
the number of devices that can be integrated within the system is limited by its thermal
behaviour. Nagata [32] determined this limit as:

↵N
G

E

t
pd

 g ·�T (3.1)

where N
G

is the number of gates in the system, E is their energy dissipation, and
t
pd

is the clock period. The relation dictates that the maximum number of gates that
can be integrated within an IC is limited by the average thermal conductance g and
temperature difference�T between the dissipating elements and the ambient air. In
order to increase integration density, either energy dissipation of the gates, or their
activity rate must be decreased. Alternatively, the thermal conductance of the system
must be improved so as to efficiently dissipate the larger amount of generated heat.
(3.1) essentially specifies the thermal design space for 3D ICs in terms of its most
significant parameters.

In this chapter, we characterize the influence of these design parameters on the
thermal behaviour of die stacks, and examine the factors influencing the formation and
mitigation of hotspots. In the second half of this chapter, the insights obtained from
this exploration are applied within a novel framework to enable the thermal-aware
design of 3D stacked multiprocessors, providing a means for uncovering thermal
issues and addressing them early in the design flow.

55

3. Exploring the Thermal Design Space in 3D Integrated Circuits

3.1 Significance of parameters
The heat flow between power dissipating elements and sink surfaces in 3D ICs follows
the Fourier heat transfer equation [75]:

c
v

�T

�t
= r(G ·rT) +Q (3.2)

where rT =

2

4
�T

�x

�T

�y

�T

�z

3

5 and Q / ↵N
G

E

t
pd

(3.3)

Q is the heat flowing from a power dissipating element towards multiple sink surfaces,
at a rate �T/�t through a material of volumetric heat capacity c

v

. The conductance
matrix G defines the thermal conductance along the orthogonal x, y and z axes of
the material as a function of effective thermal conductivity (

eff

) of the materials
encountered along those respective axes. Ignoring the direction of heat flow, equation
(3.2) can be rewritten in steady-state form, for any single dimension x, y or z as:

Q = g
x,y,z

·�T where g
x,y,z

=
eff

A

l
x,y,z

(3.4)

where g
x,y,z

is the effective thermal conductance along the selected dimension. This
equation indicates the relationship between thermal conductance, and effective thermal
conductivity of the material. The conductance g

x,y,z

across a die layer is thus a
function of its

eff

, its area (A), and its material thickness (l
x,y,z

). The
eff

of a layer
is not only dependent on its material, but also on structures such as TSVs which act as
high conductance thermal pathways, improving the overall conductivity of the layer
itself. For a material layer with TSVs, the

eff

may be computed as the weighted
average of the thermal conductivities of the TSV material (

tsv

) and the layer material
(

mat

) respectively, as given in (3.5).

eff

= A
tsv

tsv

+A
mat

mat

(3.5)

A
tsv

= n(⇡r2
tsv

) and A
mat

= (h
die

w
die

)�A
tsv

(3.6)

A
mat

is the area of the material layer in a die with length h
die

and width w
die

, and
A

tsv

represents the total area of n TSVs of radius r
tsv

on this layer.
From (3.4), the magnitude of thermal gradients observed at a given point across

any layer of the stack is determined by effective thermal conductivity (
eff

) of that

56

3.2. Thermal Characterization of Die Stacks

layer, its thickness, and the power density at that point in the die stack. Lateral thermal
gradients on stacked dies are predominantly influenced by the effective thermal
conductivity of the bulk silicon. As

eff

increases more heat is conducted away from
the power dissipation site resulting in a better spread of temperatures. Low

eff

on
the other hand results in the stagnation of heat and thus the formation of hotspots. As
the thickest die layer, the bulk silicon’s

eff

also determines the heat flow to other
dies in the stack, thereby affecting vertical thermal gradients. Improving conductivity
increases heat flow towards the sink surfaces, yielding lower peak temperatures in
stacked dies.

The spread of temperatures is also dependent on die thickness (l
x,y,z

). The use of
die thinning to improve integration density causes a decrease in the thickness of bulk
material, which hampers the lateral spreading of heat, and leads to the formation of
high temperature hotspots. The spread of temperatures is however limited by lateral
thermal resistance beyond a certain die thickness. Therefore, dies thinner than this
threshold can be expected to experience hotspots of greater magnitude than thicker
dies. In 3D ICs, l

x,y,z

can also be considered as the effective length of the heat flow
path between the power dissipating elements and the sink. Consequently, the thermal
conductance of the heat flow path decreases as stack depth increases.

Power density influences the concentration of generated heat (Q) in die stacks, and
can increase the peak temperatures of hotspots. However, since vertical heat flow is
determined by

eff

, the temperature gradient of a die is predominantly affected only
by local power dissipation as well as dissipation in the tiers directly above and below
it. Heat from other tiers in the stack, in the steady-state condition, raises the overall
operating temperature of all the dies. Consequently, increasing power density causes
the temperature profiles to shift to higher ranges, while temperature gradients are
affected only if the dissipated power is in a tier with sufficient

eff

to the observation
die.

3.2 Thermal Characterization of Die Stacks
In conventional single-die ICs, the heat dissipated by circuit elements is conducted
to the heatsink through a relatively small number of intermediate layers. In 3D
ICs on the other hand, each die can add up to 12 layers of varying thickness and
conductivity to the heat flow path between dissipating elements and the heatsink
[76]. This impedes the flow of heat away from power dissipation sites, and results in
aggravated operating temperatures. A number of studies in literature examine specific
thermal characteristics of die stacks. Oprins et al. [77] investigated the thermal

57

3. Exploring the Thermal Design Space in 3D Integrated Circuits

Figure 3.1. Thermal characterization flow

coupling between memory and logic dies in a two-tier stack in order to determine
operating temperatures and thermal profiles in the memory. Their study used a
thermal model calibrated with a 130nm stacked-die silicon test chip, and examined
the influence of microbumps and underfill thermal conductivity on peak temperatures.
Clarke et al. [78] characterized the influence of stacked memory on hotspot formation
in underlying logic tiers. Their work revealed the non-trivial nature of heat flow
within 3D ICs, and uncovered the benign influence of symmetric metallization in
memories on hotspot temperatures. Matsumoto et al. [79] performed an experimental
measurement of thermal resistance of multi-layer die stacks interconnected with C4
microbumps, highlighting the dependence of thermal resistance on microbump pitch
and size. Similarly, Vaisband et al. [80, 81] investigated thermal conduction paths
within a two-tier die stack in order to evaluate the magnitude of heat transfer between
dies, and to characterize the temperature dependence of thermal conductivity.

The design of the Through Silicon Via (TSV) based vertical interconnect signific-
antly influences thermal conductivity, and thereby impacts system performance. In
addition to TSVs, the composition and depth of die stacks, die thickness, location

58

3.2. Thermal Characterization of Die Stacks

Figure 3.2. Illustration of the equivalent electrical model used to determine the temperat-
ure of thermal cells

of power dissipating elements, and stack power density also form critical design
parameters that influence thermal behaviour. A high-level exploration flow is used to
characterize the influence of these parameters on the thermal behaviour of die stacks.
The flow comprises of two stages: thermal conductivity estimation, and thermal
simulation, as shown in Figure 3.1. In the first stage, input design and technology
parameters are translated into a physical model of the die stack. This describes the
dies and their constituent layers, materials and dimensions, floorplans, peak power
dissipation values for components, locations of temperature sensors, and the number
and dimensions of TSVs used in the design. The thermal conductivity of each layer
in the stack is computed using (3.5) alongwith a material database. The resulting
physical model contains all the requisite data for accurate thermal modelling of the die
stack. In the second stage of the flow, the thermal behaviour of this model is simulated
in order to obtain fine-grained steady-state temperature maps corresponding to the
peak power dissipation of components. In order to do this, a thermal simulator is used
[82].

Thermal simulation begins with the discretization of the die stack into a grid of
thermal cells, each representing a unit of heat generation (Q), and temperature (T),
as illustrated in Figure 3.2. The thermal conductance (g) between cells essentially
determines the heatflow across the die, and is derived from (3.4). The Resistance-
Capacitance (RC) network within each cell represents the electrical equivalent of
that cell’s thermal relationship with its neighbours. In order to simulate thermal

59

3. Exploring the Thermal Design Space in 3D Integrated Circuits

behaviour, power values are inserted into the appropriate thermal grid current sources
corresponding to the locations of power dissipating elements. This results in a rise
in local temperature, and depending on the magnitude of conductance (g

x,y,z

), the
temperature of neighbouring thermal cells as well. The inclusion of a capacitance
representing the specific heat capacity (c

v

) of the silicon allows modelling of both
steady-state as well as transient thermal behaviour. The accuracy of the model,
however, is largely dependent on the dimensions of the thermal grid, which in turn has
a considerable influence on runtime. Since power and temperature are considered to
be uniform within a thermal cell, large dimensions can result in loss of accuracy. For
instance, if a small circuit element dissipates 100% of the power within a thermal cell,
large cell dimensions would result in that total power being considered as having been
dissipated over the entire cell’s area - thereby erroneously modelling a lower power
density. Furthermore, this would result in overly optimistic temperature estimates. On
the other hand, very small cell dimensions result in the generation of a massive thermal
model, increasing system memory usage considerably, and resulting in long runtimes.
More recent thermal simulators eliminate this problem by using a non-uniform grid
that uses variable sized thermal cells to better model the spatial differences in floorplan
complexity and power dissipation [75][83].

3.2.1 Experimental Setup and Validation
In order to validate our characterization flow, we created a physical model of the 3D
stacked test chip described in [76] and carefully calibrated the heat transfer co-efficient
of the connection to ambient using available data. Thereafter, we carried out a series
of thermal simulations using test floorplans containing heating elements of size and
power dissipation identical to those in [76]. Our setup accurately reproduced the same
temperature profiles, with a maximum temperature deviation of 6% at hotspot peaks.

The experimental setup utilizes a 3D stack consisting of a 250µm base die with
multiple thinner dies bonded above using 1µm thick bonding layers, as illustrated
in Figure 3.3. Each die in the stack contains five configurable power dissipating
elements of 50µm ⇥ 50µm to generate heat. The complete stack is connected to
ambient air through an interface with the previously calibrated heat transfer co-
efficient. The material composition and layer dimensions for dies is identical to the
3D test chip described in [76]. The dies used in the characterization have a size of
2000µm⇥ 2000µm, and the thermal simulations use a grid width of 10µm, which
provides good accuracy with acceptable simulation times. Simulations are carried out
using the 3D-ICE thermal simulator [82] and are run until steady state temperatures
are reached. To quantify the variation in temperatures with changing parameter values,

60

3.2. Thermal Characterization of Die Stacks

 30

 32

 34

 36

 38

 40

N
o
rm

a
liz

e
d
 T

e
m

p
e
ra

tu
re

 R
is

e
 (

K
/W

)

 0

 500

 1000

 1500

 2000

 0 500 1000 1500 2000

µ
m

µm

y=500

Site 3

Site 0

Site 2

Site 1

Site 4

Figure 3.3. Composition of the die stack and normalized map of temperature rise across
the die with all heaters dissipating 25mW

the normalized temperature profile along the horizontal line at y = 500µm is plotted.
For clarity of presentation, we only apply power at Site 3, keeping all other heaters on
the die idle. This allows us to clearly observe the temperature gradients that result
from power dissipation at a single site under different physical conditions.

3.2.2 Characterization
The following sections examine the influence of effective thermal conductivity, die
thickness and stack depth, and stack power density on temperature profiles.

3.2.2.1 Thermal Conductivity (
eff

)

The formation of hotspots is critically influenced by the effective thermal conductivity
of the bulk silicon, as observed in Figures 3.4(a)-(f) which depict the temperature
rise across the dissipating die with increasing

eff

. This die forms the middle layer
of a five-die stack mounted on a 250µm base, and dissipates 120mW of power at
the Site 3 heater. As effective conductivity increases, the heat produced due to this

61

3. Exploring the Thermal Design Space in 3D Integrated Circuits

 30

 32

 34

 36

 38

 40

N
o

rm
.

T
e

m
p

e
ra

tu
re

 R
is

e
 (

K
/W

)

 0

 500

 1000

 1500

 2000

 0 500 1000 1500 2000

µ
m

µm

 30

 32

 34

 36

 38

 40

N
o

rm
.

T
e

m
p

e
ra

tu
re

 R
is

e
 (

K
/W

)

 0

 500

 1000

 1500

 2000

 0 500 1000 1500 2000

µ
m

µm

(a) 1⇥ (d) 10⇥

 30

 32

 34

 36

 38

 40

N
o
rm

.
T

e
m

p
e

ra
tu

re
 R

is
e
 (

K
/W

)

 0

 500

 1000

 1500

 2000

 0 500 1000 1500 2000

µ
m

µm

 30

 32

 34

 36

 38

 40

N
o
rm

.
T

e
m

p
e

ra
tu

re
 R

is
e
 (

K
/W

)

 0

 500

 1000

 1500

 2000

 0 500 1000 1500 2000

µ
m

µm

(b) 1.8⇥ (e) 50⇥

 30

 32

 34

 36

 38

 40

N
o
rm

.
T

e
m

p
e

ra
tu

re
 R

is
e
 (

K
/W

)

 0

 500

 1000

 1500

 2000

 0 500 1000 1500 2000

µ
m

µm

 30

 32

 34

 36

 38

 40

N
o
rm

.
T

e
m

p
e

ra
tu

re
 R

is
e
 (

K
/W

)

 0

 500

 1000

 1500

 2000

 0 500 1000 1500 2000

µ
m

µm

(c) 4⇥ (f) 100⇥

Figure 3.4. Thermal map depicting normalized temperature rise across the observation
die with increasing effective thermal conductivity relative to conventional silicon (1⇥).

localized power dissipation is conducted more efficiently to adjacent dies in the stack,
and in turn to the sink surfaces. The generated heat is thus prevented from stagnating
in the die, thereby resulting in a decreased hotspot temperature, and smaller thermal
gradients. Figure 3.5 shows the change in temperature profiles observed with varying

eff

values. Note that
eff

is specified relative to the thermal conductivity of pure
silicon.

The Figures 3.4 and 3.5 also illustrate the improved heat spread due to decreased
lateral thermal resistance resulting from the higher

eff

. The lateral spread of heat

62

3.2. Thermal Characterization of Die Stacks

 30

 40

 50

 60

 70

 80

 0 500 1000 1500 2000

N
o
rm

.
T

e
m

p
e
ra

tu
re

 R
is

e
 (

K
/W

)

Distance from die edge (µm)

1x
1.2x
1.4x
1.8x

2x

4x
8x

10x
50x

100x

Figure 3.5. Influence of effective thermal conductivity on normalized temperature rise in
the observation die

Table 3.1. Variation in the size of sensing zones for different measurement accuracies
with changing thermal conductivity

ACCURACY-LINKED SENSING
ZONE RADIUS (µm)

eff

0K 1K 2K 3K
1⇥ 0 80 360 1460

1.2⇥ 0 80 480 1460
1.4⇥ 0 100 620 1460
1.8⇥ 0 120 1140 1460
2⇥ 20 120 1460 1460
4⇥ 20 280 1460 1460
8⇥ 20 1460 1460 1460
10⇥ 20 1460 1460 1460

100⇥ 300 1460 1460 1460

holds a number of implications for the placement of temperature sensors. The accuracy
of temperature sensors is influenced by their distance from the hotspot [75], and
owing to their size, sensors cannot always be placed at close proximity to the region
of interest. This necessitates the use of calibration techniques to offset induced
measurement errors [75][84]. We observe that the radius of the zone within which
hotspot temperatures can be tracked with 100% accuracy increases with

eff

. Table
3.1 lists the maximum radius of sensing zones within which temperatures can be
measured to within 0K, 1K, 2K and 3K accuracy of the hotspot. The radius is
observed to increase with

eff

, indicating that temperature sensor placement becomes

63

3. Exploring the Thermal Design Space in 3D Integrated Circuits

less restrictive as effective thermal conductivity increases.

 30

 40

 50

 60

 70

 80

 0 500 1000 1500 2000

N
o
rm

.
T

e
m

p
e

ra
tu

re
 R

is
e
 (

K
/W

)

Distance from die edge (µm)

5µm
12µm
25µm
40µm

60µm
100µm
200µm

 30

 40

 50

 60

 70

 80

 0 500 1000 1500 2000
N

o
rm

.
T

e
m

p
e

ra
tu

re
 R

is
e
 (

K
/W

)
Distance from die edge (µm)

0
1

2
3

4

(a) (b)

Figure 3.6. (a) Influence of varying die thickness on normalized temperature rise.
(Thickness of base die: 250µm) (b) Influence of stack depth on normalized temperature
rise on an active observation die mounted on a 250µm thick base die. (Thickness of
observation/stacked dies: 25µm)

3.2.2.2 Die Thickness and Stack Depth (l
x,y,z

)

Figure 3.6(a) shows the temperature profile on a single die of varying thickness,
stacked above a 250µm base die. The thickness of the die is observed to influence the
peak temperatures of hotspots. The relatively shallow depth of bulk silicon in thin dies
inhibits the spread of heat away from the hotspot, and thus causes the highest peak
temperatures. While increasing the thickness improves lateral spreading, this benefit
diminishes as die thickness exceeds 100µm. The influence of die thickness can also
be emulated by a stack of dies. Figure 3.6(b) reports the temperature profiles resulting
from the stacking of multiple 25µm thick dies on top of the dissipating die used in the
previous case. Peak temperatures are seen to decrease as stack depth increases. The
additional dies stacked above the dissipating die in this case serve as bulk material
and facilitate the lateral spreading of generated heat, as evidenced by the increased
temperature rise registered at the eastern edge of the die. The heat spreading effect is
observed for stacks with up to two-dies above the dissipating die, and translates to an
effective thickness ceiling of 75µm (excluding the base die), which is lower than the
100µm ceiling observed in the previous case. This observation is explained by the

64

3.2. Thermal Characterization of Die Stacks

 0

 5

 10

 15

 20

 25

 30

 0 500 1000 1500 2000

T
e

m
p

e
ra

tu
re

 R
is

e
 (

K
)

Distance from die edge (µm)

1x Above

2x Above

1x Above + 1x Local

2x Above + 1x Local

 0

 5

 10

 15

 20

 25

 30

 0 500 1000 1500 2000

T
e

m
p

e
ra

tu
re

 R
is

e
 (

K
)

Distance from die edge (µm)

1x Below

2x Below

1x Below + 1x Local

2x Below + 1x Local

(b)

Figure 3.7. Influence of stack power density on the actual temperature rise in an observa-
tion die. Power sources (a) above observation die (b) below observation die. Note that
the case marked +Local uses an active Site 3 heater on the observation die. Each heater
dissipates 120mW of power.

fact that die stacks contain a range of materials such as silicon dioxide, which have
a thermal conductivity much lower than that of silicon. Consequently, the thermal
characteristics of a die stack with effective thickness of 100µm are certain to differ
from those of a single die of the same thickness.

3.2.2.3 Power Density (Q/A)

Figure 3.7 shows the temperature profile of an observation die located in the middle
of a five-die stack mounted on a 250µm base die. The graph reports the temperature
rise experienced in the observation die due to power dissipated at Site 3 heaters on
other tiers of the stack, i.e. changing stack power density. Since the primary sink in
the stack is located at the surface of the topmost die, generated heat must flow through
all intermediate dies. This is evidenced by the higher temperature rise noted when the
dissipating dies are located below the observation die. However, it is interesting to note
that similar behaviour is observed even when the dissipating dies are placed above the
observation die. This leads us to conclude that in addition to the heat flowing towards
the primary sink, significant conduction also occurs towards other sink surfaces in the
stack, resulting in complex heat flow patterns. The overall steady-state temperature,
on the other hand, is observed to be notably influenced by the stack power density and
the heat transfer co-efficient of the sink. It is therefore important to take the maximum

65

3. Exploring the Thermal Design Space in 3D Integrated Circuits

power density of the stack into consideration when determining the specifications of
the heatsink and heatspreader.

3.2.3 Conclusions

The magnitude of hotspots and the shape of temperature profiles in dies are observed
to be inherently linked to the power density, stack height and thermal conductivity of
the die stack. This indicates that the available temperature margin at any point in a 3D
IC is dependent on a complex set of design parameters. This observation indicates that
it is necessary to evaluate the thermal behaviour of the system early in the exploration
flow, in order to obtain a dependable, thermally efficient design.

3.3 Vertical Interconnect

Thermal conductivity (
eff

) is observed to have a significant influence on the thermal
behaviour of die stacks, and is determined by the number, size and material of
the Through Silicon Vias (TSV) that form the vertical interconnect. The vertical
interconnect is therefore a crucial component, and its design must take into account
the unique electrical, mechanical and thermal characteristics of TSVs.

Although TSVs can be placed anywhere in the design, their use is disruptive due
to their occupation of active silicon area. The placement of TSVs at certain locations
could result in the displacement of circuit elements, and necessitate physical design
re-runs. Jagtap et al. [85] determined that four generic placement topologies - Border,
Bundle, Shielded and Isolated, form the corner points of the vertical interconnect
design space in terms of noise voltage, area penalty and placement feasibility. The
Border topology is based upon the rationale that if TSVs are placed along the periphery
of the design like I/O pins then the resulting central rectangular area can be completely
used for placement of devices. Thus, existing planar design practices and algorithms
can be retained. With a closely packed Bundle of TSVs, an enclosure around the
bundle can be blocked out for placement of devices causing minimal disruption to
existing place and route tools. The Shielded topology is a form of the bundle topology
with improved signal integrity. In the Isolated topology, TSVs are placed at a large
distance from one another in order to minimize electrical interference and other
coupling effects. We use these topologies to highlight the effects of TSV placement
on performance and cost. The four topologies are illustrated in Figure 3.8.

66

3.3. Vertical Interconnect

Figure 3.8. Illustration of Through Silicon Via (TSV) placement topologies. Keep Out
Zone (KOZ) dimensions are indicated for each, together with the TSV diameter (D) and
spacing (S). Schematics also illustrate capacitive coupling between aggressor and victim
TSVs.

3.3.1 Electrical Performance

The short vertical communication path facilitated by 3D stacking enables faster
communication as compared to longer lateral wiring [86]. However, the disruptive
nature of TSVs often means that they must be placed away from active devices, and
interconnected using lateral wires. This results in an increased effective capacitance
between the driver and load, and consequently, in a higher propagation delay and

67

3. Exploring the Thermal Design Space in 3D Integrated Circuits

Table 3.2. Results of TSV topology exploration for an on-chip communication block in
45nm

Border Bundle Shielded Isolated
Performance metric
Min. Capacitance (fF) 26 80 80 26
Max. Capacitance (fF) 184 152 176 186
Min. Delay (ps) 7 20 19 7
Max. Delay (ps) 47 38 44 47
Max. Increase in Delay (ps) 5 23 8 1
Normalized Noise (Margin: 0.34) 0.16 0.42 0.11 0.05
Freq. (GHz) 13.9 15.8 14.5 13.9
Freq. With noise (GHz) 13.0 11.6 12.9 13.7
Percent decrease 7 27 11 1
Cost metric
Total capacitance (fF) 8080 8276 9092 6970
Total TSV area (µm2) 3328 5220 10422 3126
Percent TSV area 4.0 6.2 12.4 3.7

power dissipation. Since the length of lateral wiring is determined by the topology
in use and the location of TSVs with respect to their driver/load, the propagation
delay can vary between nets. This is seen in Table 3.2, which lists the results of
a performance-cost evaluation of different TSV topologies for a 300µm ⇥ 300µm
macro of an on-chip communication block in the 45nm technology node.

Noise due to capacitive coupling between TSVs in close proximity also influences
electrical performance. Firstly, simultaneous signal transitions in aggressor TSVs
can induce propagation delays in critical victim nets. Secondly, coupling can induce
spurious transitions in victim nets and cause errors in the transferred data. It is there-
fore essential to space TSVs sufficiently, or incorporate measures to mitigate signal
integrity issues within the vertical interconnect. Shielding is one such method which
reduces coupling between nets by separating them with a grounded line. Although
this increases capacitance to ground, and thus propagation delay as well as power, it
decreases noise voltage to within acceptable margins.

In Table 3.2, the Bundle topology shows a worst case normalized capacitive
coupling noise of 0.42, which violates the noise margin of 0.34 for the 45 nm
technology node [87]. The Isolated topology on the other hand, exhibits a much
lower normalized noise value of 0.05, well within the margin, on account of the
wide spacing between its TSVs. Similarly, increased capacitance to ground with the
Shielded topology results in better noise performance than the Border topology. The
resulting frequency for vertical links in each topology is calculated by adding a Setup
Time of 25 ps to the path delay, and any increase in this delay due to noise limits

68

3.3. Vertical Interconnect

the maximum achievable operating frequency. This is highlighted in the case of the
Bundle topology where the relatively high coupling noise causes a 27% reduction in
operating frequency compared to that of the same topology without noise. The wide
spacing of TSVs in the Isolated topology reduces the impact of capacitive coupling,
resulting in a mere 1% difference between frequencies with and without noise.

3.3.2 Area
The difference in the co-efficient of thermal expansion of TSVs and silicon means that
the two expand by different amounts when heated. As a consequence, TSVs expand
more than their surrounding silicon, and create regions of stress in their immediate
vicinity. In order to insulate circuit elements from potential damage due to this stress,
TSVs are enveloped by a Keep Out Zone (KOZ) within which no active devices are
placed. In electrical terms, KOZ is defined as the area around a TSV where change in
saturation current �Idsat for MOSFETs is greater than 5% [88]. Mercha et al. [88]
analyzed the impact of thermo-mechanical stresses induced during TSV formation
on device integrity and observed that for TSVs arranged in a row or in a bundle, the
stress components add up and thus propagate larger distances into the surrounding
silicon. Consequently, the dimensions of the KOZ vary with the topology. For 40 nm
devices [88], given TSV diameter (D) and spacing (S), the guidelines on KOZ sizing
can be summarized as:

1. KOZ is equal along both axes of a single TSV.

2. Devices cannot be placed between two TSVs when spacing S = D as�Idsat
in this region exceeds 5%.

3. KOZ decreases with increasing TSV spacing. KOZ2D = 2.5µm when S=2D,
KOZ3D = 2µm when S = 3D, and KOZ4D = 1.25µm when S � 4D.

4. KOZ dimensions vary when TSVs are placed in a row with S = D. KOZ2 =
1.53µm for a row of 2 TSVs, KOZ3 = 2µm for a row of 3 TSVs, and
KOZ4 = 2.125µm for a row of more than 4 TSVs.

For an isolated TSV, the aggregate area including the KOZ is about 2.6 times
the area of the TSV itself, which is a significant overhead. Moreover, this factor
varies according to whether TSVs are arranged in a row or in a matrix, implying that
the KOZ must be accounted for in the estimation of total TSV area penalty. This is
observed Table 3.2, where the Border, Bundle and Isolated topologies, despite being

69

3. Exploring the Thermal Design Space in 3D Integrated Circuits

 33

 33.5

 34

 34.5

 35

N
o
rm

.
T

e
m

p
e
ra

tu
re

 R
is

e
 (

K
/W

)

 0

 500

 1000

 1500

 2000

 0 500 1000 1500 2000

µ
m

µm

(a)

 33

 33.5

 34

 34.5

 35

N
o
rm

.
T

e
m

p
e
ra

tu
re

 R
is

e
 (

K
/W

)

 0

 500

 1000

 1500

 2000

 0 500 1000 1500 2000

µ
m

µm

(b)

Figure 3.9. Heatmaps corresponding to power dissipation at 5 heaters on the middle die
of a five-tier stack, with the (a) Shielded and (b) Isolated topologies

equal in terms of their TSV count, pose significantly different area overheads. In area
constrained designs, KOZ spacing requirements can make topologies unfeasible if all
TSVs cannot fit within the available placement windows.

3.3.3 Thermal Performance
The total number of TSVs in the vertical interconnect is effectively a function of
the system architecture, electrical noise performance requirements, and the area con-
straints for the design. Since TSV count influences the effective thermal conductance
k
eff

in (3.5), topologies also have an influence on the resulting thermal profile in
die stacks. In topologies that incorporate shielding TSVs, the additional thermal
conductance results in decreased peak temperatures and hotspot dimensions. Figure

70

3.3. Vertical Interconnect

 31

 31.5

 32

 32.5

 33

 33.5

 34

 34.5

 35

 0 500 1000 1500 2000

N
o

rm
a

liz
e

d
 T

e
m

p
e

ra
tu

re
 R

is
e

 (
K

/W
)

Distance from die edge (µm)

Shielded
Isolated

(a)

0 50 100 150 200 250 300 350
0

5000

10000

15000

Time (ms)

F
re

q
u

e
n

cy
 (

M
H

z)

Shielded Isolated

(b)

Figure 3.10. (a) Steady-state peak temperature profile corresponding to Shielded and
Isolated TSV topologies. (b) Aggregated frequency profile corresponding to execution
of computational workload on a three-tier multiprocessor with Shielded and Isolated
topologies. Note: The trace for Shielded ends 38ms earlier than that of Isolated due to
faster completion of execution.

3.9 illustrates the heatmaps corresponding to power dissipation at five heaters on the
middle die of a five-tier stack, with the Shielded and Isolated TSV topologies. Due
to its greater number of TSVs, the Shielded topology exhibits an effective thermal
conductance 1.8⇥ greater than that of the Isolated topology. This results not only in
decreased hotspot size, but also in a lower steady-state peak temperature profile as
depicted in Figure 3.10(a). This additional temperature margin, although small, can
yield an appreciable improvement in system performance.

To illustrate this, the two topologies are deployed within a three-tier mulitprocessor

71

3. Exploring the Thermal Design Space in 3D Integrated Circuits

with 12 PEs, and a temperature-aware power manager. During thermal emergencies,
voltage and frequency levels are scaled down in order to limit power dissipation and
prevent hotspots from forming [83]. The additional temperature margin realized with
the Shielded topology enables the operation of PEs at higher frequencies, and improves
overall system performance. This is observed in Figure 3.10(b) where the the execution
of the application program completes 38ms faster with the Shielded topology, than
with the Isolated topology. Essentially, the additional thermal conductance afforded
by the shield TSVs yields a 11% improvement in the multiprocessor’s execution
performance without any modifications to the architecture.

3.3.4 Conclusions
The vertical interconnect design space is complicated by the mechanical and thermal
effects of TSVs. KOZ sizing is strongly dependent on the TSV topology, and can
influence placement feasibility in area constrained designs. Similarly, system perform-
ance is affected not only by the electrical performance of TSV topologies, but also
by their thermal effects. These effects of TSV based vertical interconnects make it
essential for topology exploration to be performed early in the system design flow,
and to be integrated within the design space exploration environment.

3.4 Thermal-Aware Design Space Exploration
Design space exploration (DSE) involves the evaluation of architectural and system
design options in terms of performance and associated cost. In light of increasing
integration densities and the shift towards stacked-die architectures, the thermal
constraints indicated by Nagata’s equation (3.1) begin to assume greater significance,
and form an important aspect of the design space that must also be concurrently
evaluated. Early knowledge of runtime thermal behaviour of systems is invaluable
in guiding architectural and system-level design decisions, and help minimize the
mismatch between design-time estimates and actual runtime system performance. In
addition, it can yield efficient designs that maximize performance within the available
thermal constraints [83].

Over the years, a number of methodologies, frameworks and tool flows have been
proposed to meet this need for thermal-aware DSE (tDSE). Skadron et al., proposed
one of the earliest thermal-functional co-simulation frameworks comprising of the
SimpleScalar architectural simulator [61] and the Hotspot thermal model [83, 89].
Their pioneering work was followed by a number of other proposals such as [90],

72

3.4. Thermal-Aware Design Space Exploration

which integrates a multiprocessor simulator with a static thermal model to enable
thermal-aware performance evaluation of a low power multiprocessor system-on-chip
(MPSoC). Proposals like [91] and [92] improve the coupling between functional and
thermal simulators to enable modelling of Dynamic Thermal Management (DTM)
schemes, and others such as [93] and [94] enable the thermal-exploration of system-
designs using SystemC/TLM models. The growing popularity of 3D design for systems-
on-chip (SoC) has led to the development of methodologies such as Pathfinder3D [95]
and PathfindingFlow [96] for the thermal-aware exploration of the 3D design space,
and the MEVA-3D [97] floorplanner for physical design and performance estimation
of 3D microarchitectures.

Despite their merits, all the surveyed proposals exhibit a number of limitations that
motivate this paper. Firstly, the existing proposals require power and latency models
to be provided as an input along with system floorplans. Since such methodologies are
most often used in tDSE scenarios, abstractions are used to avoid the time-consuming
development of detailed models and component floorplans for each configuration
at each design point. While this enables the fast and simple revision of system
specifications, it leads to inaccuracies in thermal characterization [83]. Secondly,
existing methodologies do not model the internal organization of components such as
caches, resulting in abstractions that hide the internal power dissipation characteristics
of individual components. The ability to accurately characterize component thermal
behaviour is a prerequisite to developing thermally efficient systems. Thirdly, existing
methodologies require the thermal simulation to be repeated from scratch even for
minor modifications and optimizations to the system, eg. a change in the DTM’s
critical temperature.

We seek to address the shortcomings of state-of-the-art methodologies with our
proposal - Ctherm - which is an integrated co-simulation framework that enables
thermal-aware design of MPSoCs. It simplifies the design process by automating the
generation of detailed floorplans and area-latency-energy (ALE) models for compon-
ents from the input system specification. Abstract components in the system-level
floorplans are replaced with the generated floorplans, preserving the flexibility af-
forded by abstraction while removing the inaccuracy associated with their use. The
modeled system is instantiated as a SystemC virtual platform together with an embed-
ded thermal engine in the cycle-accurate co-simulation stage to estimate functional as
well as thermal performance.

73

3. Exploring the Thermal Design Space in 3D Integrated Circuits

Figure 3.11. Ctherm framework for thermal-functional co-simulation

74

3.4. Thermal-Aware Design Space Exploration

3.4.1 Ctherm Framework
The Ctherm framework consists of two stages: the physical model generator, and
the thermal-functional co-simulation platform. These stages enable the translation
of input specifications into a physical model of the system, and subsequently, the
thermal-functional evaluation of the model to determine system performance and
thermal efficiency. The Ctherm framework is illustrated in Figure 3.11.

3.4.1.1 Physical Model Generation

The physical model consists primarily of a system-level floorplan and area-latency-
energy (ALE) models for components. We generate the physical model in two stages;
first, by estimating the latency, energy and dimensions for components based on their
configuration, and second, generating fine-grained floorplans for individual compon-
ents based on these estimates, and inserting them into the system-level floorplan.

(i) Area-Latency-Energy Model The thermal behaviour of components is largely
dependent on their internal organization, power dissipation characteristics and area.
Accurate characterization requires detailed models of the energy and latency per
operation of each component, together with the area of its constituent functional
units. ALE data for generic components such as cache memories, interconnects and
simple processor cores can be generated using existing parameterizable estimators
[35][98][99]. Since SoCs are often composed of such generic components, Ctherm
integrates a number of state-of-the-art estimators within its configuration generator.
A Python interpreter is used to translate input system specifications into a suitable
format for each estimator, and further convert the outputs of each into usable ALE
data. ALE models contain estimates of dimensions for components and their con-
stituent functional units, architectural organization (such as number of cache banks,
interconnect ports), as well as energy and latency per operation, and per functional
unit.

Cache ALE estimation The internal organization of on-chip cache memories
often vary based on the configuration (size, associativity and cache line size) as well as
the chosen design target (minimized area, latency and power dissipation). For instance,
optimizations such as wordline and bitline segmentation that are used to reduce access
energy also result in large Static RAM (SRAM) arrays being divided into multiple
smaller sub-banks, each with its own decoder, sense amplifier, comparators and output
drivers. This change in organization can significantly affect how dissipated power

75

3. Exploring the Thermal Design Space in 3D Integrated Circuits

func. unit dimensions bitline segmentation access latency
decoders wordline segmentation cache size

output drivers sense amp/driver mux associativity
comparators sharing factor (Nspd) line size

sense amplifiers energy per func. unit

Figure 3.12. ALE data for cache memories

Figure 3.13. Access power distribution across sub-banks in a cache data array with
varying Nspd

is distributed across the the entire cache area. Thus, it is essential to include such
estimates into ALE models in order to obtain an accurate thermal characterization
of components. A summary of data included within cache ALE models is listed in
Figure 3.12.

The wordline sharing factor (N
spd

) parameter best illustrates the effect of changing
component internal organization on power distribution. This factor specifies the
number of cachelines stored per SRAM wordline, and is used to optimize caches to
meet specific power, area or latency constraints. N

spd

essentially also determines
which SRAM banks are activated on memory accesses. For instance, a value greater
than one results in the same SRAM wordline line being activated for accesses to all
cache lines that share it, and conversely for N

spd

values lesser than one, multiple
SRAM wordlines being activated for accesses to a single cache line. The location of
the dissipated power for accesses is observed to be strongly linked to the N

spd

value,
and in cases can result in the formation of thermal hotspots. Ignoring this parameter
during thermal simulation results in the power dissipated on accesses to be distributed
across the entire cache’s area, as illustrated by the Abstracted case in Figure 3.13.

Interconnect ALE estimation Network-on-Chip (NoC) interconnect routers con-
sist of multiple input/output ports arranged around a central crossbar switch. The
area, latency and energy of routers is influenced by the width of the NoC links, their
physical length (effective capacitance), and the number of ports. In 3D routers, the

76

3.4. Thermal-Aware Design Space Exploration

ports # TSV
driver energy TSV topology

crossbar energy TSV conductivity
input port energy func. unit dimensions

arbiter energy

Figure 3.14. ALE data for interconnect routers

effective capacitance of the vertical interconnect is influenced by the TSV dimensions
and placement topology. For this reason, interconnect ALE estimation also incorpor-
ates a methodology for TSV topology exploration [100], and the generated estimates
are integrated into the router ALE model, shown in Figure 3.14.

TSV Topology Exploration Ctherm integrates Jagtap et al.’s methodology for
TSV topology exploration [85]. The methodology evaluates candidate topologies
in terms of their electrical performance, implementation cost, and feasibility after
incorporating topology-specific KOZ. The results from this exploration allow the
initial floorplan to be revised in order to incorporate the optimal TSV topology,
and thus account for the thermal influence of the vertical interconnect on system
performance.

Processor ALE estimation The ALE model for processors can be generated in
one of two ways - per instruction, and per pipeline stage. The former lumps the power
of individual pipeline stages into an aggregate value for each instruction, while the
latter specifies a generalized average power value per pipeline stage regardless of
the actual instruction. Processor ALE models consist primarily of functional unit
dimensions, and the power dissipation at the chosen granularity.

For other components, custom ALE estimators can be added to the framework by
simply extending the Python interpreter. However, for components with optimized
implementations, and those for which no parametrizable estimators exist, custom ALE
models must be provided as an input to the configuration generator.

(ii) Floorplan Generation To enable fine-grained thermal characterization of sys-
tems, Ctherm automates the generation of floorplans based on component dimensions
extracted from ALE models, using specific Python based planning routines for each
component type. These routines only require specification of the anchor position for
components in the system floorplan. The pseudo-code for the planning routines used
for memories, interconnect routers and processing elements is listed in Figure 3.15.
For components without a rigid internal organization, such as PEs, functional units are

77

3. Exploring the Thermal Design Space in 3D Integrated Circuits

1: ———————– CACHES —————————–
2: placement position initial anchor position
3: for each functional unit in cache do
4: GET(dimensions, pitch, count) from ALE model
5: GET(row count, column count) from ALE model
6: for rows in [0 to row count] do
7: for cols in [0 to column count] do
8: PLACE UNIT(identifier,placement position,dimensions)
9: placement position CALCULATE NEXT PLACEMENT POSITION()

1: ———— INTERCONNECT ROUTERS —————-
2: GET(dimensions, ports) from ALE model
3: GET(TSV topology, TSV count) from ALE model
4: placement position CALCULATE CENTER POINT(initial anchor position,dimensions)
5: for each functional unit in interconnect router do
6: if functional unit == Crossbar then
7: PLACE UNIT(identifier, placement position, dimensions)
8: else if functional unit == I/O Port then
9: for each port in interconnect router do

10: placement position CALCULATE NEXT PLACEMENT POSITION()
11: PLACE UNIT(identifier, placement position, dimensions)
12: else
13: PLACE TSVS(topology, count)

1: ————– PROCESSING ELEMENTS —————
2: GET(dimensions) from ALE model
3: placement position initial anchor position
4: for each functional unit in processing element do
5: PLACE UNIT(identifier, placement position, dimensions)
6: placement position CALCULATE NEXT PLACEMENT POSITION()

Figure 3.15. Routines for generation of fine-grained cache memory, interconnect router
and processing element floorplans.

placed at Manhattan distance from one another with a target aspect ratio determined
by the system floorplan. Although basic, Ctherm’s routines can be extended with
techniques such as [101] for fast thermal-aware floorplanning of tiles, and [102]
for minimizing the wirelength between functional units. Furthermore, support for
components such as programmable accelerators can be added through the inclusion of
additional planning routines.

The floorplanner computes the overall die size, and generates a die descriptor

78

3.4. Thermal-Aware Design Space Exploration

containing a physical description of the die and its material properties, in addition
to the detailed system floorplan. For 3D stacked SoCs, the floorplanner is executed
iteratively till floorplans for each die have been generated, and the stack descriptor
describes each die of the stack together with a path to its corresponding floorplan.
This descriptor also includes the inter-tier thermal conductivity corresponding to the
chosen TSV count and topology.

3.4.1.2 Thermal-Functional Co-simulation Platform

The second stage of the Ctherm framework performs the thermal-functional evaluation
of the SoC using the generated physical model, and the input SystemC top-level file
configured with the system specifications. The co-simulator consists of a cycle-
accurate simulation engine integrated with an embedded thermal simulator. The
simulation engine instantiates components from the SoCLiB IP library [103] which
consists of an extensive set of SystemC behavioural models for processor cores,
interconnects, caches, memories, controllers and accelerators. Thermal simulation of
modeled platforms is enabled by an adapted version of the 3D-ICE thermal simulation
engine [82], embedded within the co-simulation platform core.

(i) Power Mapper A thermal model for the system is generated based on the die
descriptor and floorplan generated in the previous stage of the framework. The die is
discretized into a grid of thermal cells, with cell size determining the resolution of the
resulting thermal maps, and also complexity of the thermal model. The thermal model
generation step is performed only once per simulation run, and usually completes in
under a minute for cell sizes of 50µm. Logging of thermal maps on the other hand
poses a significant overhead that is dependent on thermal cell size. However, since
temperatures on die do not change at the one-cycle time scale, a logging interval of
50µs provides sufficient resolution for visualization of hotspots in most simulations,
with an acceptable overhead.

SystemC components of the SoCLiB IP library are augmented with an activity
tracking function that logs the operations performed by their constituent functional
units on a cycle-accurate basis. All activity frames are evaluated at the start of
every thermal simulation time step, and are converted into a detailed power map
using the corresponding ALE model for each component. Since the model contains
internal organization details of components, an exact list of units activated and their
corresponding power dissipation can be computed by the power mapper.

The thermal simulation is triggered once activity data has been collected from all
components, at a rate determined by the thermal time step. Time steps larger than the

79

3. Exploring the Thermal Design Space in 3D Integrated Circuits

Figure 3.16. Illustration of checkpointing run generating thermal checkpoints, followed
by fast forwarded runs using saved thermal checkpoints.

execution step requires aggregation or averaging of power maps until insertion, which
can result in false hotspots and false blurring of hotspots respectively.

(ii) Checkpointed Thermal Simulation Thermal simulations are normally car-
ried out for the same duration of time as the functional simulation. However, in some
cases, the thermal behaviour that we want to characterize can occur much later in
the simulation. In order to observe this behaviour in isolation, Ctherm supports the
discrete starting and stopping of the thermal simulation engine at any time during the
execution. This is achieved through the Thermal Simhelper component which acts
as an interface between the virtual and co-simulation platforms, enabling control of
the thermal simulation both from the behavioural model of components, as well as
from software executing on the virtual platform. With thermal simulation disabled,
functional simulation speed increases by a minimum of 30%.

A drawback of this approach is that it results in the loss of thermal continuity
until the point thermal simulation is enabled. Therefore, fast-forwarding from the
start of functional simulation results in the thermal simulation starting with a die at
initial temperature (ambient). To overcome this, we integrated the ability to save
thermal checkpoints to disk using the Thermal Simhelper. Furthermore, we adapted
the 3D-ICE core to initialize the system’s thermal model using user-specified check-
points. Consequently, Ctherm allows the saving of thermal checkpoints to disk during
simulation, and the initialization of the system’s thermal state with any user specified
checkpoint during the simulation. In order to do this, thermal simulation is first

80

3.4. Thermal-Aware Design Space Exploration

performed for the time interval that will be fast-forwarded, and a thermal checkpoint
is created at the end, as illustrated in Figure 3.16. Subsequent thermal simulations
can begin directly at the point of interest, after initializing the thermal state with the
saved checkpoint. Once initialized, the system appears as if thermal simulation has
been running since the beginning. Checkpointed simulations can drastically cut time
spent in simulating specific temporal effects, and testing systems post optimization.
In addition to thermal checkpointing, Simhelper also allows the temperature map of
the die to be saved and read at any point during the co-simulation. These maps can be
sampled at discrete locations to emulate temperature sensor readouts.

3.4.2 Evaluation
The effectiveness of Ctherm is illustrated using real design cases, each performed
on an Intel PentiumD 3.0GHz machine with 4GB memory. CACTI [35], WATTCH
[98] and ORION [99] are used as ALE estimators for caches, processors and the
system interconnect respectively. All design cases consider the 90nm technology
node, a 200MHz clock frequency and a 340K (67�C) critical temperature. The results
of the evaluation are presented in two parts, starting with the accuracy of thermal
characterization and simulation speed. This is followed by the four design cases.

3.4.2.1 Validation, Accuracy and Simulation Speed

Since Ctherm implements changes to the 3D-ICE core in order to enable thermal
checkpointing, the effect of these modifications was validated against an unmodified
version. The two versions were found to produce matching thermal profiles, and
the implemented modifications were found to induce no errors or variations in the
thermal simulation results. The modified version therefore has the same accuracy
and correctness as the standard 3D-ICE core. To verify the power mapper, the total
power inserted per operation during the simulation was validated against the values
reported by the ALE estimators, and the locations of these insertions were compared
against manually computed locations and verified to be correct across different system
configurations.

Ctherm improves thermal simulation accuracy by using generated fine-grained
internal floorplans for components. This enables the accurate distribution of dissip-
ated power across the constituent functional units of components. To illustrate the
advantage such fine-grained modelling provides, we examine the influence of varying
the wordline sharing factor (N

spd

) on the temperature profile of a 32KB data cache

81

3. Exploring the Thermal Design Space in 3D Integrated Circuits

 300

 305

 310

 315

 320

 325

 330

 335

 340

Conv(>1) Conv(=1) Conv(<1) Ctherm(>1) Ctherm(=1) Ctherm(<1)
 0

 20

 40

 60

 80

 100

 120

T
e
m

p
e
ra

tu
re

 (
K

)

T
e
m

p
e
ra

tu
re

 I
n
a
cc

u
ra

cy
 (

%
)

Peak Temperature
Minimum Temperature

Hotspot Temperature Inaccuracy

Figure 3.17. Comparison of thermal simulation with abstract floorplans (Conv) and
thermal simulation using Ctherm’s fine grained floorplans (Ctherm) for a cache memory
with varying wordline sharing factor (Nspd). Three cases: Nspd > 1, Nspd = 1,
Nspd < 1.

following 1E5 sustained accesses to a single cacheline. This evaluation follows the
illustration previously shown in Figure 3.13.

The three cache organizations (N
spd

> 1, N
spd

= 1, and N
spd

< 1) are first
evaluated using the conventional thermal simulation approach (Conv), i.e. abstracting
component internals. This abstraction results in the distribution of dissipated power
across the complete area of the cache, and thus the peak and minimum temperatures for
the three are identical as observed in Figure 3.17. The organizations are subsequently
evaluated using Ctherm’s fine-grained floorplans which account for the N

spd

parameter.
The results of this evaluation reveal remarkable differences in the peak temperature
for each case, indicating the presence of a hotspot especially in the case of N

spd

> 1.
The difference in temperature profiles as a result of varying distribution of dissipated
power are clearly visible in Figure 3.18(b)-(d). The temperature map obtained with
abstracted component internals in Figure 3.18(a) on the other hand incorrectly reports
peak temperatures up to 70% lower than those obtained with fine-grained simulation.
This highlights the importance of fine-grained floorplans during tDSE and thermal-
aware system design.

The speed of the Ctherm framework largely depends on the complexity of the
system being evaluated, granularity of thermal simulation and die size. In order to
provide an idea of the average simulation speed in realistic design scenarios, we
report the runtime Ctherm incurred in performing the four design cases listed in the
following section. The simulation speeds per design case are reported in Table 3.3
alongside the corresponding die and thermal cell (Tcell) sizes.

82

3.4. Thermal-Aware Design Space Exploration

 300

 305

 310

 315

 320

 0

 100

 200

 300

 400

 500

 0 200 400 600 800 1000 1200 1400

µ
m

µm

 300

 305

 310

 315

 320

 0

 100

 200

 300

 400

 500

 0 200 400 600 800 1000 1200 1400

µ
m

µm

(a) (b)

 300

 305

 310

 315

 320

 0

 100

 200

 300

 400

 500

 0 200 400 600 800 1000 1200 1400

µ
m

µm

 300

 305

 310

 315

 320

 0

 100

 200

 300

 400

 500

 0 200 400 600 800 1000 1200 1400

µ
m

µm

(c) (d)

Figure 3.18. Heatmaps for 32KB data cache using (a) conventional thermal-simulation
with abstracted cache internals, and Ctherm with fine-grained cache floorplans for (b)
Nspd > 1, (c) Nspd = 1, (d) Nspd < 1. Temperatures are measured in Kelvin (K).

Table 3.3. Simulation speed across design cases listed in Section 3.4.2.2

Case Tcell Size Die Size Sim. Speed
(µm) (µm ⇥ µm) (cycles/min)

(i) (FP A,FP B) 100 1400⇥ 1200 200K
(i)(FP C,FP D) 100 700⇥ 1200 (⇥2) 200K

(ii) 100 1400⇥ 1200 400K
(iii) 50 1350⇥ 850 215K
(iv) 100 700⇥ 600 600K

83

3. Exploring the Thermal Design Space in 3D Integrated Circuits

Table 3.4. Thermal-aware performance estimates for floorplan exploration. * marks
thermal runaway.

FP A FP B FP C FP D
Cumulative CPI 1.07 1.05 1.33 1.24
Data Refs/cycle 0.265 0.270 0.215 0.229
Avg. Off Time 55% 45% 100%* 100%*

3.4.2.2 Design Cases

In this section, we illustrate the applicability of Ctherm using four specific design
cases.

(i) 2D/3D Floorplan Selection On account of severe space constraints in portable
devices, embedded MPSoCs cannot afford to have extravagant heatsinks, and it is
therefore important for them to be designed for operation within an extremely narrow
thermal envelope. This design case involves the evaluation of floorplan options for
a multiprocessor array with four processing elements (PE). Candidate floorplans for
the array are illustrated in Figure 3.19(a). Each floorplan depicts four tiles containing
a simple RISC PE, private 4KB 2-way instruction and data caches, a 64b 5-port
network-on-chip router connecting to neighbouring tiles and a temperature sensor
at the location marked as +. Floorplan FP A represents a homogeneous array
of identical tiles arranged across the die. In FP B, tiles are mirrored across the
vertical axis in order to increase the distance between PEs and thus decrease thermal
interference. FP C is a two tier die-stacked implementation of the same system.
Such an arrangement however creates a region of high power density by stacking
PEs one above the other. FP D mitigates this issue by mirroring the floorplans of
both tiers with a checkerboard pattern of PEs. In terms of (3.1), these floorplans
vary in their power density (Q/A), and distance of power dissipating elements from
the heatsink surfaces (l

x,y,z

). A Dynamic Thermal Management (DTM) scheme is
included in PE tiles to disable switching activity as soon as the critical temperature is
breached, with a reactivation temperature margin of 2K. The dijkstra shortest-path
benchmark from the MiBench suite [49] is used as a test workload for the virtual
platform. The thermal and functional performance of the system for each floorplan is
reported in Table 3.4.

Average Off Time indicates the fraction of the simulation time for which PEs
remained disabled due to a DTM action, thus indicating the thermal efficiency of
floorplans. FP B’s spreading out of PEs is seen to result in decreased average off
time, causing a decrease in the number of cycles taken to execute the workload, i.e.
cycles per instruction (CPI). Figure 3.19(b) illustrates the thermal maps for each

84

3.4. Thermal-Aware Design Space Exploration

 336

 338

 340

 342

T
e
m

p
e
ra

tu
re

 (
K

)

 336

 338

 340

 342

T
e
m

p
e
ra

tu
re

 (
K

)

 336

 338

 340

 342

T
e
m

p
e
ra

tu
re

 (
K

)

 336

 338

 340

 342

T
e
m

p
e
ra

tu
re

 (
K

)

 336

 338

 340

 342

T
e
m

p
e
ra

tu
re

 (
K

)

 336

 338

 340

 342

T
e
m

p
e
ra

tu
re

 (
K

)

 336

 338

 340

 342

T
e
m

p
e
ra

tu
re

 (
K

)

 336

 338

 340

 342

T
e
m

p
e
ra

tu
re

 (
K

)

(a) (b)

Figure 3.19. (a) Floorplan options for the four-PE multiprocessor array. Temperature
sensor locations are marked as +. (b) Thermal maps sampled during execution of the
MiBench-dijkstra workload. Note: Tier 0 is located close to the heatsink/connection to
ambient, temperatures are measured in Kelvin (K).

floorplan. These were automatically generated by Ctherm together with the floorplan
overlay. The 3D options FP C and FP D split the four PEs over two dies, thus
halving the overall area footprint for the system, without changing the total power
dissipation. Since the power dissipated by PEs is conducted to the ambience through

85

3. Exploring the Thermal Design Space in 3D Integrated Circuits

 330

 332

 334

 336

 338

 340

 0 1e+06 2e+06 3e+06 4e+06 5e+06

T
e
m

p
e
ra

tu
re

 (
K

)

Cycles

Assisted
Unassisted

Figure 3.20. Comparison of temperature profiles obtained using a conventional data
cache (Unassisted), and a data cache with an 8-entry assist (Assisted).

the surface of the die, this reduction results in decreased cooling efficiency. In fact,
the cooling efficiency of the 3D configuration is constrained to such an extent that
even after disabling all switching activity in the system, temperatures continue to rise
due to the leakage power dissipation. Floorplans FP C and FP D thus encounter a
thermal runaway. This result indicates that in order to use the 3D design points, either
cooling efficiency must be improved, or leakage control/power gating mechanisms
must be integrated into the architecture to limit leakage power dissipation especially
in lower tiers of the stack.

(ii) Thermal-aware Architecture Exploration In Chapter 2.3.2, we presented
the persistence selective caching (PSC) scheme which used a small fully associative
assist cache to decrease the average latency and energy for data cache accesses. We
evaluate the thermal impact of such a cache assist on the performance of uniprocessor
SoC consisting of a single PE, a 64KB 4-way data cache and an 8KB 2-way instruction
cache. A multi-dimensional array implementation of the first sum (kernel11) workload
from the Livermore Loop Kernels benchmark [104] is executed on the platform, with
an array size of 168⇥168. The assist scheme is observed to reduce the average latency
of memory accesses, and consequently CPI by up to 24% compared to a conventional
data cache. While this improves performance, it results in execution proceeding at
a faster rate, leading to a quicker ramp up of temperatures as seen in Figure 3.20.
However, since CPI is reduced, execution performance completes approximately 1
million cycles earlier, leading to a peak temperature that is 0.9K lower than the
conventional data cache. In terms of (3.1), PSC increases activity rate (↵) of PEs,

86

3.4. Thermal-Aware Design Space Exploration

(a)

 330

 331

 332

 333

 334

 335

 336

 337

 338

 0 1e+06 2e+06 3e+06 4e+06 5e+06

T
e

m
p

e
ra

tu
re

 (
K

)

Cycles

Actual
A
B
C

D
E
F

(b)

Figure 3.21. (a) Floorplan indicating candidate locations for temperature sensors. (b)
Tracking from each sensor location compared to the actual temperature of the PE.

and decreases heat generation by reducing energy dissipation (E). Consequently,
any architectural optimization that affects activity rate must be evaluated in light of
their thermal effects in order to obtain a realistic estimate of their actual impact on
performance.

(iii) Temperature Sensor Placement The ability to monitor die temperature is a
prerequisite for performing runtime thermal management. Modern on-chip sensors
rely on a range of techniques to measure temperature [105][106][107]. However, in
order to enable accurate digital readouts of the measurement, sensors usually integrate
an analog-to-digital converter (ADC) [105][108] or a time-to-digital converter (TDC)
[106], which occupies a considerable amount of area. Their size therefore limits
the number, as well as the locations at which such sensors can be placed. Sensors

87

3. Exploring the Thermal Design Space in 3D Integrated Circuits

located far from hotspots exhibit delayed responses and inaccurately measure hotspot
temperature, as we illustrate in this design case. It is therefore prudent to evaluate
placement options for sensors by using thermal-functional co-simulation of the system.
In the event that a sensor cannot be placed close to a hotspot, results of the co-
simulation yield information on how to calibrate the DTM’s temperature margins so
as to better track hotspot temperatures.

Figure 3.21(a) shows a 1350µm⇥850µm die with a single PE and its caches.
The ideal temperature sensor location is marked with a + symbol, while candidate
locations for sensor placement are indicated with labels A through F . Locations
shown inside the caches are situated in wiring tracks with unused active regions.
Figure 3.21(b) plots the rise in PE temperature as a function of time, and also the
perceived temperature rise at each sensor location. Due to their distance from the
PE, sensors at C and F exhibit a delayed response, and report temperature readings
2K lower than the actual. A DTM using sensors at these locations must account
for this inaccuracy in its temperature margins in order to effectively control system
temperature.

(iv) Thermal Impact of Software Workloads The thermal behaviour of pro-
cessors in SoCs is largely determined by the workloads that execute on them. Minor
changes to the software algorithm can have a drastic impact on both execution perform-
ance as well as system power and thermal profiles. To illustrate this, we extend the
first sum workload of design case 2 with an additional kernel option (B). The original
kernel (A) performs the first sum computation in a column-first manner, while the new
kernel (B) follows a row-first approach. The kernels are precluded by an initialization
of the multidimensional arrays, which executes for approximately 2.75M cycles,
following which the computation begins. In order to emulate the iterative nature of
optimizations and thermal evaluations for workloads, each kernel’s evaluation was
repeated 10 times. Two sets of runs were performed, one using the conventional
continuous thermal simulation, and another using Ctherm’s checkpointed simulation.

The conventional approach without checkpointing requires the simulation to be
restarted from the beginning of execution following each optimization to the kernel.
This means that in addition to the kernel under test, all other sections of the program
must also be re-simulated. Thus, the initialization section is simulated a total of 20
times, 10 times for each kernel. Note that since each simulation in the conventional
approach causes the entire program to be executed, the runtime of the initialization
section is included within that of the kernels. With the checkpointed approach, on
the other hand, the initialization is simulated only once and its resulting thermal

88

3.4. Thermal-Aware Design Space Exploration

Table 3.5. Comparison of conventional and checkpointed thermal simulation runtime

ITERATIONS RUNTIME (SECONDS)
Conv Checkpointed Conv Checkpointed

Initialization 20 1 - 159
Kernel A 10 10 2060 760
Kernel B 10 10 4640 3340

Total Runtime (seconds) 6700 4259
Improvement over Conventional Approach 36%

 330

 335

 340

 345

 350

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06
 0

 5

 10

 15

 20

 25

 30

 35

T
e

m
p

e
ra

tu
re

 (
K

)

A
ve

ra
g

e
 P

o
w

e
r

(m
W

)

Cycles

Init Temp.
Kernel A Temp.
Kernel B Temp.

Init. Power
Kernel A Power
Kernel B Power

Figure 3.22. Temperature and power profiles for initialization, kernel A and kernel B of
the extended first sum workload

map saved as a checkpoint. This checkpoint is subsequently used as a starting point
for each kernel’s thermal simulation, thereby allowing the initialization to be fast-
forwarded. Total runtime is consequently decreased by 36% as observed in Table
3.5. The temperature and power profiles for the initialization and the two kernels are
reported in Figure 3.22. The row-first approach of kernel B results in a high miss-
rate observable from the repeated fluctuations in its power trace. This consequently
increases runtime, resulting in a higher leakage energy consumption, and a peak
temperature over 4K higher than that of kernel A.

3.4.3 Additional Media
Ctherm enables the generation of videos depicting transient variations in on-chip
temperature due to power dissipation in components. Two such videos are available
for demonstration purposes. The first video [109] depicts the transient response of
a PE and its 32KB data cache during the first 2.3 million cycles of the execution of
the Lee circuit routing algorithm. The second video [110] depicts the fine-grained

89

3. Exploring the Thermal Design Space in 3D Integrated Circuits

internal temperature map of a 32KB data cache.

3.4.4 Conclusions
Ctherm is an integrated framework that enables the thermal-aware design space ex-
ploration of systems-on-chip. It enables the characterization of internal component
thermal behaviour by using fine-grained physical models for components, automat-
ically generated from input system specifications. Ctherm’s fine-grained modelling
improves accuracy of hotspot temperature resolution by up to 70% as compared to
the conventional approach that abstracts component internals. Furthermore, by intro-
ducing thermal checkpointing, the framework enables discrete thermal simulations
which reduce the runtime of post-optimization evaluation runs by up to 36% over the
conventional continuous simulation approach.

Summary
The performance and integration density of modern ICs is constrained by their physical
characteristics and the thermal efficiency of their cooling interfaces. The complex
thermal characteristics of 3D ICs further aggravate this issue due to their non-uniform
heat transfer characteristics. In this chapter, we investigated the steady-state thermal
behaviour of 3D ICs using a high-level characterization flow, and determined the
impact of parameters in Nagata’s equation. The characterization uncovered the
critical influence of power density on hotspot magnitudes, the significance of thermal
conductivity in determining temperature gradients, and the impact of stack depth on
temperature profiles in 3D ICs. We further investigated how the choice of vertical
interconnect topology influences electrical performance, area overheads, and thermal
performance. Based on this understanding, we proposed the Ctherm framework that
enables the thermal-aware exploration of the multiprocessor design space, facilitating
the evaluation of system performance in light of runtime physical effects.

Associated Publications
The contents of this chapter are derived from the following publications:

1. S.S. Kumar, A. Aggarwal, R. Jagtap, A. Zjajo, R. van Leuken, ”System Level
Methodology for Interconnect Aware and Temperature Constrained Power Man-

90

3.4. Thermal-Aware Design Space Exploration

agement of 3-D MP-SOCs” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 22, no. 7, pp. 1606-1619, July 2014

2. S.S. Kumar, A. Zjajo, R. van Leuken, ”Exploration of the Thermal Design
Space in 3D Integrated Circuits”, Physical Design for 3D Integrated Circuits,
CRC Press, December 2015, Invited Book Chapter

3. S.S. Kumar, A. Zjajo, R. van Leuken, ”Physical Characterization of Steady-State
Temperature Profiles in Three-Dimensional Integrated Circuits” Proceedings of
the IEEE International Symposium on Circuits and Systems (ISCAS), 2015

4. S.S. Kumar, A. Zjajo, R. van Leuken, ”Ctherm: An Integrated Framework
for Thermal-Functional Co-simulation of Systems-on-Chip ” Proceedings of
the IEEE/Euromicro International Conference on Parallel, Distributed and
Network-based Processing (PDP), pp.674-681, 2015

5. R. Jagtap, S.S. Kumar, R. van Leuken, ”A Methodology for Early Explora-
tion of TSV Placement Topologies in 3D Stacked ICs” Proceedings of the
IEEE/Euromicro Conference on Digital System Design (DSD), pp. 382-388,
2012

6. A. Aggarwal, S.S. Kumar, A. Zjajo, R. van Leuken, “Temperature constrained
power management scheme for 3D MPSoC,” Proceedings of the IEEE Work-
shop on Signal and Power Integrity (SPI), pp. 7-10, 2012

Associated Posters and Demonstrators
1. S.S. Kumar, A. Aggarwal, R. Jagtap, A. Zjajo, R. van Leuken, “Interconnect

and Thermal Aware 3D Design Space Exploration”, Invited Presentation and
Poster, ICT.OPEN, Eindhoven, The Netherlands, 2013

2. S.S. Kumar, R. van Leuken, A. Michos, A. Chahar, J. de Klerk, “Naga High-
Performance Array Processor”, Poster and Demonstrator, University Booth –
Design Automation and Test in Europe (DATE), Grenoble, France, 2013

91

3. Exploring the Thermal Design Space in 3D Integrated Circuits

92

4
Runtime Temperature and Power
Management for 3D Multiprocessors

In large scale multiprocessor systems-on-chip (MPSoC), the utilization of processing
elements (PE) varies based on the nature of the workload under execution. Heavily
utilized PEs dissipate a greater amount of power and in thermally constrained systems,
result in the formation of thermal hotspots. In 3D stacked multiprocessors, due to
the thermal coupling between stacked dies, high activity in one tier can result in the
formation of thermal hotspots on other over- and under-lying tiers. Sustained thermal
gradients and high operating temperatures can however be detrimental to reliability,
and result in the accelerated degradation of devices [31, 33]. Dynamic Thermal
Managers (DTM) are therefore used to control on-chip temperatures at runtime by
reducing the dynamic power dissipation of components. DTMs typically achieve such
a reduction by decreasing the switching activity of components. However, this also
results in degraded system performance [83].

The efficiency with which heat can be evacuated from a 3D IC is effectively a
function of the system’s physical characteristics and the thermal efficiency of its
cooling interfaces, as previously discussed. For a tiled-multiprocessor, this is shown
with an equivalent of Nagata’s equation [32]:

↵
t

(N
t

N
g

)E
t

t
pd

 g ·�T
max

where g =
eff

A

l
x,y,z

(4.1)

where N
t

represents the number of PE tiles each with N
g

gates, energy dissipation
E

t

, average activity rate ↵
t

and a clock period t
pd

. �T
max

represents the maximum
permissible temperature difference between the components on-chip and the ambience
through heat transfer surfaces of area A, situated at a distance l

x,y,z

from the power

93

4. Runtime Temperature and Power Management for 3D Multiprocessors

dissipation site. Note that although heat is also dissipated by the side walls, for
simplicity of explanation, we only consider the primary heatsink situated at the top
of the stack.

eff

represents the effective thermal conductivity of the die stack and
its through silicon vias (TSV), while g is the effective thermal conductance between
power dissipating elements and the heatsink surface. While the right hand side of
(4.1) represents the thermal properties of the die-stack and its cooling surfaces, the
left hand side determines the dynamic power dissipation of the system, which is of
the general form:

P
dynamic

=
E

dynamic

t
pd

(4.2)

where E
dynamic

= ↵V 2C
L

(4.3)

) P
dynamic

/ ↵V 2

t
pd

or P
dynamic

/ ↵V 2f (4.4)

where P
dynamic

is the dynamic power dissipation, E
dynamic

is the dynamic energy
dissipated per clock period t

pd

, V and f are the operating voltage and frequency
levels respectively, and ↵ is the activity rate of components with load capacitance
C
L

. Runtime power management techniques primarily focus on controlling the three
variables in (4.4), and can be categorized as:

• Activity Control: Techniques that vary the temporal behaviour of components
to control their activity (↵). Such techniques are generally implemented at the
architecture-level. Examples include thermal-aware instruction steering [111],
pipeline throttling [112] and dynamic interconnect throttling [113][114][115].

• Voltage-Frequency Control: Techniques that vary the operating voltage(V)
and frequency (f) to control power dissipation (P

dynamic

). Such techniques are
generally implemented at the system- and circuit-level.

• Clock and Power Gating: Techniques which freeze the clock signal (t
pd

!
1) and disconnect the component from the power supply (E

t

= 0), effect-
ively stopping all switching activity in the gated component. While clock
gating can be implemented at either system- or circuit-level, power gating is a
predominantly circuit-level technique.

Clock and power gating are effective in arresting thermal emergencies. However,
because they completely stall all activity in the gated component, they drastically
reduce system performance [116]. For this reason, they are used as a last-resort when
other techniques are ineffective [117]. Activity and Voltage-Frequency control, on the

94

4.1. Temperature-Aware DVFS for Stacked Die Architectures

other hand, are used for power management since they enable fine-grained control of
↵
t

, E
t

and t
pd

.
As we observed in Chapter 3.2, the magnitude of thermal hotspots and temper-

ature gradients is directly influenced by stack power density. Effective regulation of
power dissipation, and control of on-chip temperatures is therefore essential towards
harnessing the performance of large, 3D stacked many-core processor arrays, and
ensuring dependable operation. In this chapter, we propose two techniques that fulfil
these essential requirements. These include:

• A temperature-aware Dynamic Voltage Frequency Scaling (DVFS) scheme that
regulates power dissipation of PEs in 3D stacks, while taking into account their
physical position, utilization, and thermal relationship with other PEs in the
system. The proposed technique maximizes execution performance within the
available temperature and power budgets.

• A temperature-aware adaptive network-on-chip (NoC) routing strategy that
balances temperature profiles and reduces thermal gradients in 3D stacked
multiprocessors by adaptively routing interconnect traffic away from hotspots.

The proposed techniques enable the many-core system to adapt to changing operating
conditions, maximizing performance within the constraints of prevailing thermal
conditions, and effectively managing power dissipation in order to reduce variations
in on-chip temperatures.

4.1 Temperature-Aware DVFS for Stacked Die
Architectures

Dynamic Voltage Frequency Scaling (DVFS) is a well known runtime technique that
varies the operating voltage and frequency of PEs in order to manage their power
dissipation [118–122]. DVFS schemes rely on the premise that for most applications,
execution performance can be marginally decreased without violating deadlines.
Consequently, the system can be continuously adapted to better match application
performance requirements with the available power budget. DVFS schemes have also
been used to manage on-chip temperatures in multiprocessor systems [83, 123, 124].
In [124] for instance, voltage and frequency (V-F) levels are scaled to control power
dissipation based on local temperatures. However, this scheme does not account for
thermal dependencies between PEs while making power management decisions, and

95

4. Runtime Temperature and Power Management for 3D Multiprocessors

consequently, applying it to 3D ICs is non-trivial considering the predominance of
thermal coupling between stacked dies [125]. Sabry et al. highlighted this inefficacy
of conventional DVFS [126] by analyzing the variation in thermal conditions between
the extremities of deep stacks. They found that the complex nature of heat flow within
die stacks resulted in PEs on the lowest tiers turning off more often than others. Their
solution consequently focussed on improving thermal conditions in deep tiers through
the use of a microchannel liquid cooling system. Ayala et al. similarly proposed
thermal TSVs as a method of evacuating heat generated in deep tiers [127]. Zhu et al.
[128] on the other hand used a combination of scheduling, workload migration and
run-time power budgeting to improve the performance of 3D stacked multiprocessors.

The thermal relationship between components in a 3D IC is a function of the
effective thermal conductance of the heat flow path between them. This conductance
consists of two parts: conductance between the components, and conductance between
the power dissipating component and the heat sinking surface. Consequently, the
thermal impact on a victim PE is strongly influenced by the proximity of the power
dissipating PE to the heat sinking surface, and by the magnitude of thermal coupling
between the two PEs. The proposals of Sabry et al. [126] and Ayala et al. [127]
focus on increasing conductance to the heat sink in order to mitigate heatflow between
thermally coupled power dissipating elements in die stacks. Zhu’s proposal [128]
focuses on achieving the same result by migrating application tasks towards PEs with
a lower conductance to the victim PE.

We propose a novel temperature-aware power management strategy that relies
on the observation that the temperature of a PE is influenced not only by its local
power dissipation, but also its position in the die stack and thermal relationship with
other power dissipating elements within the system. The proposed 3D DVFS strategy
evaluates the feasibility of V-F scaling on PEs at runtime by evaluating the thermal
implications of such an action on other neighbouring PEs. This enables the optimal
utilization PEs under a given temperature and power budget, while preventing those on
deep tiers from being switched off due to thermal emergencies. 3D DVFS outperforms
conventional DVFS both in its ability to maintain the temperatures of all PEs stable,
as well as in its improvement of performance by increasing the aggregate system
frequency.

4.1.1 3D DVFS
Figure 4.1 illustrates a Power Manager (PM) implementing 3D DVFS, and its control
inputs and outputs. In order to determine appropriate V-F levels for PEs in a stack,
3D DVFS utilizes runtime monitoring of physical conditions such as activity, power

96

4.1. Temperature-Aware DVFS for Stacked Die Architectures

Figure 4.1. Control loop and inputs for the power management scheme

dissipation and on-chip temperatures. Coupled with a physical model of the die stack
indicating the position of PEs and their thermal relationships, these vectors provide an
effective information base for V-F scaling decisions.

DVFS decisions are made by the algorithm shown in Figure 4.2. The algorithm
is invoked once at the beginning of each control period. This period essentially
determines how often V-F scaling is performed in the system, and its duration depends
primarily on two factors: the degree of temporal variation in PE activity, and the
sampling rate of temperature sensors. The former is dependent on the behaviour of
the application program, and how its characteristics vary as execution progresses.
The latter is dependent on the thermal inertia of the system, which determines the
timescales at which temperature variations are perceivable. In general, variations
of under 0.5K are perceivable in the 10-100µs timescale, and temperature sensors
are therefore typically sampled at intervals within this range. It is important that
the control period be sufficiently short so as to enable V-F levels to be quickly
adapted following changes in application activity, yet sufficiently long to minimize
the overheads of frequent power management.

The algorithm shown in Figure 4.2 is divided into several stages, namely, Initial
Updates, Thermal Run-out, Convergence Check, Pull-up/ Pull-down, and Write-back
and Reset. No scaling decisions are made in the first two control periods after system
startup. The system is initialized at maximum V-F levels, and begins execution with
the maximum power dissipation.

97

4. Runtime Temperature and Power Management for 3D Multiprocessors

Figure 4.2. Flowchart illustrating the various stages of the power management algorithm

4.1.1.1 Initial Updates

At the beginning of each control period, the difference between the actual power
dissipation and the power budget value is computed. This value represents the available
budget that can be utilized by V-F upscaling. In the event that new temperature values
are available, the difference between the actual and the critical temperatures of each
PE is also computed.

4.1.1.2 Thermal Runout

This step ensures that the temperature of each PE is maintained within the safety
margin. Each PE i is assigned a weight:

weight = w
a

(1� ↵
i

) + w
b

·G(victimPE, i) (4.5)

where w
a

and w
b

are co-efficients whose values are obtained through a linear regres-
sion, once the physical structure of the stack is known. ↵

i

is the average activity of
PE

i

, while G represents the normalized thermal conductance matrix. Each row in
the matrix holds normalized thermal conductances between a particular PE and all
the others in the system. In the event that a PE is close to its critical temperature, a
thermally related PE with the highest weight is chosen for V-F downscaling. From

98

4.1. Temperature-Aware DVFS for Stacked Die Architectures

the equation, a less active PE with a high thermal conductance with the victim is con-
sidered to have the heaviest weight, and is thus the prime candidate for downscaling.
Following each scaling decision, the thermal impact of the new V-F levels of PE

i

on
the victim PE

j

is computed in terms of the projected temperature difference �T
j

.

�T
j

=
1

G(i, j)
↵
i

(V
i new

2f
i new

� V
i old

2f
i old

) (4.6)

�T
j

=
1

G(i, j)
↵
i

�(V
i

2f
i

) (4.7)

where �T
j

is the projected temperature difference arising at PE
j

due to scaling of
V-F levels from (V

i old

, f
i old

) to (V
i new

, f
i new

) at PE
i

with activity rate ↵
i

. G(i, j)
represents the effective thermal conductance of the heat flow path between the two
PEs.

If a scaling action does not sufficiently decrease the temperature of a victim, the
next candidate PE is selected and scaled down. This process continues until the
aggregate �T is sufficient to bring the victim PE’s temperature under the critical value.
However, in the event that the victim remains at or exceeds the critical temperature,
it is clock gated. It is recommended that the range of V-F values supported by the
algorithm be set keeping in mind the power budget value. This ensures that even in the
extreme case where all PEs are pulled down to their minimum V-F level, their power
dissipation falls well within the power budget, thereby allowing the temperature of
the critical PE to be brought within the safe margin.

Repeated fluctuations between V-F levels may, however, be observed in certain
cases, incurring large performance and power penalties. As a means to avoid this, the
V-F levels of PEs that were scaled down due to a victim are prevented from being
reinstated until the victim is within the safe temperature margin. This is implemented
by means of a special flag that can only be reset in the Initial Updates stage of the
algorithm.

4.1.1.3 Convergence Check

In order to prevent frequent fluctuations in V-F levels, the algorithm considers the
power value as converged when the actual power dissipation falls between 98% and
100% of the power budget value. On the other hand, if actual power is determined to
fall below 98% of the budget, V-F levels may be scaled up in the Pull Up/Pull Down
stage of the algorithm.

99

4. Runtime Temperature and Power Management for 3D Multiprocessors

4.1.1.4 Pull Up/Pull Down

In this stage V-F levels of PEs is scaled in the event that actual power remains below
98% of the budget value. The PEs on which V-F scaling occurs is determined using
the weighted equation:

weight
pe

= w
c

· ↵
normalized

+ w
d

· temperature margin
normalized

+w
e

· height
normalized

+ w
f

· area
normalized

(4.8)

where w
c

, w
d

, w
e

and w
f

are weights whose values are determined through a linear
regression at design time, and serve to establish the impact of their corresponding
parameters. Since the height of the stack and area of PEs may be expected to remain
constant even through floorplan revisions, and the temperature margin fixed within
a range of operating temperatures, only the utilization can be considered as variable
in this equation. However, since even the value of utilization can be generalized
for a homogeneous MPSoC, these weights only need to be determined once for a
given design. Following each scaling decision, the thermal impact of the candidate
V-F levels is determined using (4.7), as previously explained in the Thermal Runout
stage. Therefore, V-F scaling to maximize utilization of the power budget can only be
performed if the temperature budget permits.

The PE with the largest weight is chosen for voltage-frequency upscaling. This
upscaling is performed iteratively until no more PEs can be pulled up or if the total
power reaches the 98% window of convergence with the budget value. In the event
that the budget has been exceeded, the pull down stage is invoked in order to achieve
convergence. For V-F downscaling, the PE with the smallest weight is selected and
the pull down is performed iteratively until no more PEs can be pulled down or until
the total power falls below the budget value. At each instance of pull up and pull
down, the difference between the PE’s actual and critical temperatures is updated.

4.1.1.5 Write-Back and Reset:

Finally, the V-F level determined for each PE is actuated along with the gating signals
if required. At this stage, internal parameters are reset, and the algorithm is suspended
until the next control cycle.

4.1.2 Implementation Considerations
The use of on-chip power managers and V-F level shifters is motivated by the need
for fast response times and fine-grained control of spatial power dissipation [129].
3D integration offers the additional possibility of integrating power management

100

4.1. Temperature-Aware DVFS for Stacked Die Architectures

hardware into the stack in the form of a dedicated die, or within an active interposer at
the base of the die stack [130]. While this dissertation does not explore the hardware
implementation of the power manager, this aspect of the design is discussed to
provide a more complete understanding of the deeper implications of on-chip power
management.

The first challenge pertains to the design and implementation of voltage domains
in the system. Dynamic Voltage Scaling (DVS) at the core-granularity requires each PE
to have a dedicated voltage regulator [129]. While this provides the fastest response
times, it constitutes a significant area and power overhead in large MPSoCs. An
alternative approach, used by the AsAP-2 many-core array involves using multiple
supply rails operating at different voltages [131]. Rather than scaling voltage, PEs
simply attach themselves to the supply rails corresponding to their assigned voltage
level. This approach enables fast transitions between voltage levels (2ns [132]) and
facilitates power gating, however, at the cost of increased complexity in the power
delivery network. A middle path between the two approaches involves grouping
multiple PEs into a single voltage domain, or voltage islands. Each island therefore
has a single power delivery network and a dedicated voltage regulator. Although this
decreases design complexity, it results in the under-utilization of temperature and
power budgets since all PEs are forced to operate at the same voltage. 3D DVFS,
however, effectively mitigates such losses.

The second challenge pertains to the design and implementation of Dynamic
Frequency Scaling (DFS) in the system. The simplest approach involves using a divider
to derive a variable frequency local version of a global clock signal. However, large
SoCs are increasingly migrating towards a globally asynchronous locally synchronous
(GALS) strategy to reduce design complexity and mitigate timing issues in large
systems. Local clocks can in this case be generated using a ring-oscillator with a
configurable divider [131]. The costs of implementing per-core DFS are low given the
relatively small size of the oscillator compared to MPSoC tiles. Consequently, DFS is
most often implemented at per-core granularity, even in systems with voltage-islands
[133]. By supporting multiple frequency levels for each voltage, large islands can be
prevented from completely switching between voltage levels by performing only DFS
on their constituent PEs.

4.1.3 Evaluation
In order to evaluate and compare the proposed 3D DVFS strategy with the state-
of-the-art, a cycle accurate SystemC model of the power manager was created. A
corresponding power model for the PE was generated for various voltage-frequency

101

4. Runtime Temperature and Power Management for 3D Multiprocessors

Table 4.1. System Configuration

SYSTEM POWER MANAGEMENT
System Size 3⇥2⇥2 Cooling Heatspreader + Sink

Processor 32b PISA Heat Transfer Co-efficient 1E5 Wm�2K�1

Tech. Node 90nm TSV/tile 74
Die Size 9mm ⇥ 9mm Convergence Window 2%

Temp. Sensors 12 (1 per tile) Temp. Margin 2K
Temp. Accuracy 1K Critical Temp. 320K

Sampling Interval 1ms Control Period 50µs

Table 4.2. DVS levels with corresponding DFS levels

CLOCK GATED FREQUENCY 1 FREQUENCY 2
Voltage 1 0.855V 0MHz 700MHz 800MHz
Voltage 2 0.956V 0MHz 900MHz 1000MHz
Voltage 3 1.048V 0MHz 1100MHz 1200MHz

operating points using Wattch [98] for the PISA instruction set architecture [61].
The basicmath workload of the MiBench benchmark suite [49] was used as a test
application. This particular workload contains a mix of varied computations and
load-store operations, incorporates transient variations in behaviour throughout its
execution, and represents the activity patterns of a typical computation kernel [60].
The system configuration used for the evaluation is listed in Table 4.1, and the V-F
levels supported by the power manager, in Table 4.2. The temperature sampling
interval was set taking the measurement accuracy into account.

The proposed 3D DVFS strategy is compared against conventional 2D DVFS
[124] at both per-core as well as island granularities. The three-tier stack and its island
partitioning are illustrated in Figure 4.3.

4.1.3.1 Per-core Granularity

Figure 4.4(a) illustrates the temperature of PE0, situated on the lowest tier of the
three-tier stack with both the conventional 2D DVFS as well as the presented 3D
DVFS strategies. Conventional 2D DVFS schemes consider the temperatures of PEs
independently and are oblivious to the physical structure of the stack. Consequently,
the temperature is observed to fluctuate within the margin, and occasionally breach the
critical limit resulting in the PE being clock gated and its execution stalled. The new
3D approach however is observed to maintain temperatures well below the temperature
margin without any fluctuations. As a result, PE0 completes execution of its task much
sooner with the new approach, than with the conventional approach. This is observed

102

4.1. Temperature-Aware DVFS for Stacked Die Architectures

Figure 4.3. Voltage Island partitioning

0 50 100 150 200 250 300 350
300

305

310

315

320

Time (ms)

T
e

m
p

e
ra

tu
re

 (
K

)

3D DVFS
2D DVFS
Critical Temperature
Temperature Margin

(a)

0 50 100 150 200 250 300 350

0

1

2

3

4

5

6

Time (ms)

D
V

F
S

 le
ve

l

2D DVFS 3D DVFS

(b)

Figure 4.4. (a) Operating temperature of a PE on the lowest tier of the stack illustrating
the effective temperature control with the new approach. (b) Operating voltage-frequency
levels on PE0

103

4. Runtime Temperature and Power Management for 3D Multiprocessors

Table 4.3. Comparison of execution performance with each DVFS strategy

2D DVFS 3D DVFS
Total Execution Time 336.5ms 260.35ms
Stall Time in Tier 0 106.5ms 0ms

Tier 0 Performance Loss 78.38% 38.48%
Tier 1 Performance Loss 29.28% 37.8%
Tier 2 Performance Loss 0% 29.34%

in Figure 4.4(a), with the temperature profile for the new approach terminating close
to the 250ms mark, well ahead of the conventional approach which extends upto
340ms.

The corresponding V-F profiles are shown in Figure 4.4(b) for PE0. In the new
approach, the weighted equation used to determine candidates for scaling ensures that
the temperature of PEs on the lowest tiers of the stack is considered before switching
any voltage-frequency levels. As a consequence, all PEs are operated at voltage-
frequency levels lower than the maximum thereby reducing their power dissipation,
and ensuring that they never cross the critical temperature margin. This results in a
more uniform utilization of PEs within the system, and eliminates execution stalls
due to thermal runoff. This yields a performance improvement of upto 19.55%. The
summary of the execution performance with both schemes is presented in Table 4.3.
Furthermore, since PEs remain operation as a consequence of the lower temperatures,
aggregate operating frequency of the MPSoC is increased, as indicated in Figure 4.5.

In Chapter 3.3, we explored the implications of TSV topologies on thermal
performance, and consequently on execution performance with a conventional DVFS
scheme. The shielded topology was found to be thermally superior due to its higher
TSV count, and consequently, yielded better execution performance than the isolated
topology. Figure 4.5 illustrates the sum of frequencies for the MPSoC achieved with
the shielded and isolated topologies, with both power management strategies. 3D
DVFS minimizes the execution performance difference between the two topologies
by effectively managing the temperature and power budgets. The weighted selection
of candidate PEs for scaling essentially adapts power dissipation in the stack to match
the available vertical thermal conductance. Thus, when coupled with 3D DVFS, the
isolated topology is more preferable than the shielded topology on account of its lower
area overheads.

4.1.3.2 Island Granularity

The stack is subsequently partitioned into voltage islands as illustrated in Figure
4.3. The process essentially groups vertically adjacent PEs with strong thermal

104

4.1. Temperature-Aware DVFS for Stacked Die Architectures

0 50 100 150 200 250 300
0

5000

10000

15000

Time (ms)

F
re

q
u

e
n

cy
 (

M
H

z)

2D DVFS 3D DVFS

(a)

0 50 100 150 200 250 300 350
0

5000

10000

15000

Time (ms)

F
re

q
u

e
n

cy
 (

M
H

z)

2D DVFS 3D DVFS

(b)

Figure 4.5. Sum of frequencies of all PEs with: (a) Shielded topology, (b) Isolated
topology. Note that the sum of frequencies achieved with the shielded topology using
the conventional 2D approach is higher as compared to the Isolated case, resulting in
the reduction of execution time. The proposed 3D DVFS approach achieves shorter
execution times than the 2D approach with both topologies.

relationships into a single voltage domain. Similar to the previous experiment, the
voltage island partitioned stack with the proposed scheme is compared to a stack with
a per-core 2D DVFS scheme. The total power dissipation for the two schemes is
shown in Figure 4.6(a). While both schemes maintain power dissipation well within
the set power budget, the proposed 3D DVFS approach is seen to result in a smoother
profile with much fewer fluctuations than the 2D approach. The sum of frequencies in
Figure 4.6(b) is also observed to be smoother with the new approach. Table 4.4 lists
the total number of voltage-frequency transitions that occur during execution in the
MPSoC, with both the conventional 2D as well as the new 3D DVFS schemes. Our
scheme is seen to result in fewer transitions at each PE, as well as fewer fluctuations
in the aggregate frequency of the system as compared to the conventional 2D scheme.

105

4. Runtime Temperature and Power Management for 3D Multiprocessors

0 50 100 150 200
0.25

0.50

0.75

1.0

Time (ms)

N
o

rm
a

liz
e

d
 P

o
w

e
r

3D DVFS - Island

2D DVFS - Per Core

Power Budget

(a)

0 50 100 150 200 250
0

5000

10000

15000

Time (ms)

F
re

q
u

e
n

cy
 (

M
H

z)

 3D DVFS - Island
2D DVFS - Per Core

(b)

Figure 4.6. (a) Total power dissipation of the stack (b) Sum of frequencies with PEs
grouped into islands

With the 2D scheme, PEs on the upper tiers are found to operate at the highest
frequency level that their local power and temperature budgets allow. On the other
hand, those on lower tiers run at much lower frequencies on account of their increased
temperature. The new scheme considers the temperature of PEs on lower tiers while
scaling the island voltage and the frequency of individual PEs on higher tiers. This
effectively improves the performance of PEs deep within the stack. The island
partitioning however, also restricts PEs in the upper tiers to voltage-frequency levels
lower than that achievable with the per-core 2D approach, i.e. only a part of the
available performance from the upper PEs is utilized. The two approaches are noted
to present similar results in terms of execution performance. While the 2D approach
offers this performance primarily from PEs in tiers closer to the heatsink, the new 3D
approach achieves the same performance by ensuring that PEs even in the lower tiers

106

4.1. Temperature-Aware DVFS for Stacked Die Architectures

Table 4.4. Voltage-Frequency level transitions with the conventional 2D approach and
the new 3D approach

PER CORE ISLAND
2D DVFS 3D DVFS 2D DVFS 3D DVFS

TIER 2

PE 11 1 5 16 23
PE 10 1 6 18 5
PE 9 1 6 19 5
PE 8 1 7 22 11

TIER 1

PE 7 16 4 17 23
PE 6 12 5 20 5
PE 5 12 5 19 5
PE 4 11 6 25 13

TIER 0

PE 3 33 6 29 33
PE 2 31 7 28 9
PE 1 31 5 26 9
PE 0 33 7 31 17

AGGREGATE FREQ. 67 30 111 57

remain active. This leads to a more uniform utilization of all PEs in the MPSoC rather
than the preferential utilization of only a few close to the heatsink. The similarity in
temperature and frequency profiles illustrates that the performance of 2D per-core
DVFS can be achieved even while using voltage islands. Since our proposed scheme
achieves this performance through the uniform utilization of all PEs in the MP-SoC,
devices can be expected to wear more evenly than with the conventional scheme which
results in the over-utilization of cooler PEs.

4.1.4 Conclusions
The complex nature of heatflow paths within 3D MPSoCs results in non-uniform
operating conditions for stacked components. Conventional 2D Dynamic Voltage Fre-
quency Scaling (DVFS) schemes do not take the thermal characteristics of die stacks
into account when performing power management. This results in the preferential
utilization of cooler PEs, and degraded performance due to the under-utilization of sys-
tem resources. To address the short-comings of state-of-the-art schemes, we proposed
a novel temperature-aware 3D DVFS strategy that takes into account the physical
composition of the die stack, positional information of PEs as well as runtime system
conditions when making power management decisions. Using this information, the
proposed 3D DVFS strategy evaluates the feasibility of V-F scaling on PEs at runtime
by evaluating the thermal implications of such an action on other neighbouring PEs.
The proposed strategy enables the optimal utilization PEs under a given temperature

107

4. Runtime Temperature and Power Management for 3D Multiprocessors

and power budget, while preventing those on deep tiers from being switched off
due to thermal emergencies. Execution performance is improved by upto 19.55% as
compared to state-of-the-art schemes for per-core DVFS granularity with uniform
utilization of PEs across the stack, and smoother V-F profiles. Furthermore, when
used at island-granularity, the proposed 3D DVFS scheme’s performance matches that
of conventional 2D DVFS at per-core granularity, facilitating a decrease in overheads
of voltage regulators without any performance loss.

4.2 Temperature-Aware Adaptive Routing for
Dynamically-Throttled 3D Networks-on-Chip

Multiprocessors such as Naga rely on the system interconnect to move data between
tiles. Average switching activity per tile (↵

t

) from (4.1) can thus be broken down into
its two constituent parts: activity due to functional operations (such as processing and
memory load-stores), and activity due to communication over the interconnect. ↵

t

is
given as:

↵
t

= ↵
p

E
p

E
t

+ ↵
r

E
r

E
t

(4.9)

where E
p

and E
r

represent the average energy dissipation of the functional compon-
ents within the tile and the interconnect router respectively, with corresponding activity
rates ↵

p

and ↵
r

. E
t

is the average total energy dissipation of the tile. The network-on-
chip (NoC) interconnect in modern MPSoCs consumes a significant amount of power,
and can consequently aggravate thermal imbalances in the system. For instance, inter-
connect traffic routed close to highly active PEs increases power density in the region,
and can thus result in elevated operating temperatures, i.e. a thermal hotspot. If traffic
were instead steered away from such critical regions by a temperature-aware routing
strategy, the amount of interconnect power dissipated near high-activity nodes would
reduce. This would yield more balanced operating temperatures, prevent invocation
of the DTM, and accordingly minimize performance losses.

In this section, we propose the Immediate Neighbourhood Temperature (INT)
adaptive routing algorithm which balances operating temperatures across 3D NoCs by
incrementally routing packets along low temperature minimal paths. INT eliminates
the need for system-wide temperature awareness, and instead utilizes only local
temperature information from adjacent routers to drive output port selection for in-
flight packets. INT outperforms state-of-the-art proposals [134–136], yielding shorter
communication latencies, lower congestion, and balanced temperature profiles. Our

108

4.2. Temperature-Aware Adaptive Routing for Dynamically-Throttled 3D
Networks-on-Chip

work demonstrates the effectiveness of localized temperature information in driving
adaptive routing in 3D ICs.

4.2.1 Background
Following Skadron’s early work on temperature aware microarchitectures [83], a
number of proposals have addressed the issue of temperature management in MPSoCs.
The proposals vary in the parameters that they use to control temperatures, and in their
effect on equation (4.1). In proposals such as ThermalHerd [114], interconnect traffic
is steered away from thermal hotspots along paths with a low thermal correlation
(effective thermal conductance g) with the heat source. However, such an approach
requires a comprehensive analysis of heat flow paths within the chip at design time,
which is especially complicated in the case of 3D ICs due the complex nature of heat
flow in multi-die stacks. Furthermore, the storage of correlation data at every node
poses a considerable overhead.

Other schemes rely on an indirect method to control temperature. Thermal-aware
throttling reduces the activity of routers (↵

r

) based on the available temperature
margin (�T

max

��T). However, as temperature increases, routers are increasingly
throttled reducing not only power dissipation but also throughput. In highly active
regions of the interconnect, the decreased throughput results in congestion. Regional
Congestion Awareness (RCA) [134] provides a means to aggregate and propagate this
congestion information across the interconnect over a dedicated monitoring network.
At each router, the RCA network aggregates congestion information from the two
quadrants surrounding each output port together with local congestion information,
and propagates this value to neighbouring routers. Congestion-aware adaptive routing
on an interconnect with thermal-aware throttling effectively acts as a temperature-
aware routing strategy. This is the principle of Traffic and Thermal Awareness Routing
(TTAR) [135]. There are two main disadvantages of this approach. Firstly, it assumes
that congestion always implies a thermal hotspot. However, congestion can also be a
consequence of actual interconnect traffic in a relatively lower temperature region of
the chip. In such a case, the path of least congestion need not necessarily form the
path of least temperature. Secondly, the aggregation and propagation of congestion
information across the network poses an overhead in terms of complexity as well as
power.

Another competing scheme, notable for its simplicity, is Downward Routing [136]
1. This scheme minimizes the amount of routing activity occurring in tiers farther

1[136] considers the heatsink to be situated at the bottom of the die stack, hence the name Downward

109

4. Runtime Temperature and Power Management for 3D Multiprocessors

from the heatsink and most prone to overheating. Instead, it preferentially routes
packets towards higher tiers which dissipate their heat more effectively on account of
their proximity to the heatsink. By minimizing ↵

r

in tiers with the highest distance
from the heatsink (l

z

), Downward Routing decreases temperatures in the stack and
thus reduces the magnitude of throttling induced in routers. On the other hand, it
results in the under-utilization of routing resources on lower tiers of the die stack, and
increases congestion on the tiers close to the heatsink.

A complex derivative of TTAR is the Traffic and Thermal Aware Beltway Adaptive
Routing (TTABR) scheme which uses a set of concentric non-minimal routing paths to
bypass central regions of congestion and high-temperature. However, the proposal
assumes that thermal hotspots occur only in the center of the die, and not along the
critical beltway paths on the periphery. Thermal maps shown later in this chapter
illustrate this to be an unrealistic assumption.

A number of proposals use unique techniques to detect and adapt traffic flows
at runtime. For instance, [137] uses a dynamic programming approach to determine
optimal traffic paths at runtime, while [138] proposes an artificial neural network to
predict the location of thermal hotspots based on runtime monitoring. On the other
hand, schemes such as [139] implement a limited proactive strategy that reverts to
conventional deterministic routing once thermal hotspots have formed in the system.

4.2.2 Immediate Neighbourhood Temperature (INT) Adaptive
Routing

Temperature, unlike congestion information, does not need to be propagated across the
network in order to support thermal-aware routing. The physical nature of heat transfer
results in thermal hotspots influencing the temperature of tiles in their immediate
vicinity. This observation is even more significant in 3D IC where the magnitude of
thermal conduction between the thin stacked dies results in hotspots spread across
multiple tiers. Consequently, the temperature of candidate links in the direction of
the thermal hotspot appear higher than others in the direction of cooler regions. This
effectively removes the need for an aggregate-propagate type monitoring network, and
enables temperature-aware adaptive routing to be implemented based on information
available from routers in the immediate vicinity alone. In this work, interconnect
activity ↵

r

is controlled using both a thermal-aware throttling mechanism in direct
response to local temperature, as well as an adaptive routing strategy that steers
interconnect traffic away from regions of high temperature.

Routing. In this dissertation, we consider the heatsink to be situated on top of the stack.

110

4.2. Temperature-Aware Adaptive Routing for Dynamically-Throttled 3D
Networks-on-Chip

(a)

(b) (c)

Figure 4.7. Illustration of (a) INT router architecture (b) MPSoC array with INT-based
network-on-chip with separate temperature and data channels (c) Exchange of temperat-
ure information between immediate neighbour routers in a 3D stack.

4.2.2.1 Temperature Monitoring

Temperature monitoring is performed locally through the use of one or more thermal
sensors integrated within each tile. Sensors integrate an analog-to-digital converter
(ADC) to provide digital temperature measurements in every sampling interval. The
digital temperature value is stored within the router’s Temperature Monitor, shown
in Figure 4.7(a), and is used to control thermal-aware dynamic throttling in the local
router, as well as to provide a basis for adaptive routing at neighbouring routers.

4.2.2.2 Temperature Channel Considerations

Unlike in RCA where congestion information must be aggregated and propagated
across the network, INT relies only on temperature information available in the

111

4. Runtime Temperature and Power Management for 3D Multiprocessors

1: Address
local

 (x
local

, y
local

, z
local

)
2: Address

dest

 (x
dest

, y
dest

, z
dest

)
3: if Address

local

== Address
dest

then
4: Selected Port Local
5: else
6: Candidate Ports Perform initial OE routing
7: Fetch Temperatures of Candidates
8: Preferred Candidates Candidate port with lowest temperature
9: if Preferred Candidates >1 then

10: if Up is a Preferred Candidate then
11: Selected Port Up
12: else
13: Selected Port First Preferred Candidate
14: else
15: Selected Port First Preferred Candidate
16: Route packet onto Selected Port

Figure 4.8. INT Routing Algorithm

immediate neighbourhood. This effectively reduces the amount of logic within the
monitoring network. INT’s temperature monitor only consists of a few registers
to store the latest temperature measurements from neighbouring routers, as well as
the local temperature. The local temperature is placed on the outgoing temperature
channels to the router’s immediate neighbours, as shown in Figure 4.7(b) and (c). The
area and power overheads imposed by this channel are mainly due to the link drivers.
The magnitude of these overheads is determined by the width of the temperature vector,
which in turn depends on the resolution of the temperature sensor, and the maximum
operating range. However, given the non-aggregating nature of this monitoring
network, transitions on the temperature channel occur only once new temperature
measurements are available from the sensor (typically every 50µs). The power
overheads of the temperature channel are thus minimal as compared to the data
channel, and RCA-type networks.

4.2.2.3 Thermal-Aware Dynamic Throttling

Throttling influences the rate at which traffic flows through an interconnect router,
thereby influencing activity (↵

r

) and hence, power dissipation. The crossbar switch
and output link drivers account for over 80% of the dynamic power dissipation of
the complete router. Our throttling approach therefore focuses on controlling activity
within these components, and is implemented within the link arbiters of output ports

112

4.2. Temperature-Aware Adaptive Routing for Dynamically-Throttled 3D
Networks-on-Chip

as shown in Figure 4.7(a). When throttling is applied, a varying number of stall cycles
is introduced between the polling of successive ports by the round-robin arbiter. The
amount of throttling invoked is dependent on temperature, and the range of available
levels can be controlled using a set of registers within each router. These registers
specify the maximum permissible throttling level, ensuring that throughput on a link
never falls below a certain minimum due to throttling. However, this also limits the
level of temperature control that the interconnect can exercise.

In addition to controlling ↵
r

, throttling also affects the performance of processing
elements in dataflow architectures, where execution of tasks is dependent on the
presence of the necessary triggering data within the tile’s message passing buffers.
Since throttling decreases the throughput of routers, triggering of tasks is delayed, and
PE activity (↵

p

) is thus decreased.

4.2.2.4 Temperature-Aware Adaptive Routing Algorithm

Temperature-aware path selection in INT consists of two steps. In the first step, an
initial routing of the packet is performed using the Odd-Even (OE) algorithm [140],
identifying the candidate output ports that could be used to reach the destination.
The algorithm returns a set of candidate output port options corresponding to the
available minimal paths to the destination router. The generated set encapsulates the
ports through which the waiting packet can be ejected, while respecting OE’s turn
restrictions that guarantee deadlock freedom within the network. INT’s second step
consists of identifying the candidate port with the least temperature from this set. This
port is referred to as the preferred candidate, and it is used to eject the packet towards
its destination. INT’s output port selection is therefore thermal-adaptive, steering
interconnect traffic in response to temperature, within the set of available minimal
paths.The INT routing algorithm is listed in Figure 4.8. For a given quantum of traffic,
INT influences the following terms of (4.1):

• ↵
r

/A: INT spreads the utilization of interconnect routers over a larger area by
adaptively routing packets over multiple paths based on the available temperat-
ure margin (�T

max

-�T).

• ↵
r

/↵
t

: INT reduces interconnect traffic in regions of high activity (↵
t

) which
typically exhibit higher operating temperatures.

• ↵
r

/l
z

: When temperatures permit, INT preferentially routes packets intended
for tiers closer to the heatsink in the Z-dimension first. When the Z path is

113

4. Runtime Temperature and Power Management for 3D Multiprocessors

Table 4.5. SYSTEM CONFIGURATION

MULTIPROCESSOR NETWORK-ON-CHIP
System Size 4⇥4⇥4 Flit Width 38b
D-/I-Mem 64KB/16KB FIFO Depth 16 flit

DMA Buffers 8KB Packet Size 4B/32B/64B
PE 32b RISC Port Count 7

PHYSICAL
Tech Node 90nm Frequency 500MHz
Tile Size 2mm⇥1.4mm Heat Transfer Co-eff. 100 Wm�2K�1

Temp. Range 300-370K Trigger Temp. 332K
Sensor Accuracy 0.5K Sampling Interval 50 µs

blocked by a thermal hotspot, packets are adaptively routed towards the coolest
direction permitted by their minimal path.

4.2.3 Evaluation
INT is evaluated using the Ctherm cycle-accurate thermal-functional co-simulation
framework with a SystemC model of the NagaM multiprocessor. The evaluation
consists of two parts - first, the characterization of thermal-aware throttling mechanism
and its effect on power and performance, and second, the evaluation of the INT routing
algorithm under varying traffic conditions, and number of thermal hotspots. The
system configuration is listed in Table 4.5. The test platform consists of 64 tiles
arrayed over 4 tiers with 16 nodes each. Tiles incorporate a processing element,
memories, a DMA controller implementing the Pronto message-passing system, and a
NoC router, as illustrated earlier in Figure 4.7(b).

4.2.3.1 Characterization of Throttling

The throttling mechanism is characterized using a single router with an emulated
temperature input. Figure 4.9 illustrates the relationship between average power
dissipation, throughput and throttling levels. Each level on the x-axis corresponds
to a 0.5K increment over the triggering temperature. Throttling levels thus increase
with rising temperatures, enabling a steeper decrease in power dissipation to arrest
temperature rise. This however has a significant impact on throughput. This obser-
vation motivates the use of a temperature-aware routing strategy that can prevent
such temperature peaks from forming. To demonstrate the influence of ↵

r

on ↵
p

in
dataflow and memory-bound systems, PEs in the characterization setup are configured
to execute a fixed set of simple integer operations for every data word that arrives into
the DMA’s message passing buffer. When the buffer is empty, execution is stalled.

114

4.2. Temperature-Aware Adaptive Routing for Dynamically-Throttled 3D
Networks-on-Chip

 0

 1

 2

 3

 4

 5

 0 20 40 60 80 100 120 140
 0

 0.05

 0.1

 0.15

 0.2

T
h
ro

u
g
h
p
u
t
(b

yt
e
s/

cy
cl

e
)

A
ve

ra
g
e
 P

o
w

e
r

(W
)

Throttling Levels

Throttling

Throughput
Power

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

IP
C

A
ve

ra
g

e
 P

o
w

e
r

(W
)

Throttling Levels

PE Throttling

IPC Power

(a) (b)

Figure 4.9. Influence of throttling on router power and (a) Throughput (b) Effective
instructions per cycle (IPC) of PE

Figure 4.9(b) reports the average instructions per cycle (IPC) and power dissipation
within a 50K cycle window corresponding to each router throttling level. This result
indicates that in MPSoCs with significant inter-tile communication, the interconnect
can be used to regulate ↵

p

.

4.2.3.2 INT Evaluation

The evaluation of INT utilizes three synthetic traffic patterns: hotspot (10%), uniform
random and bit transpose. Packets are injected into the network by synthetic traffic
generators that target destinations according to the probability density function of the
traffic pattern.

In order to test the ability of the various routing algorithms in balancing tem-
peratures, the evaluation also uses a variable number of thermal hotspots placed at
random locations within the system. These hotspots are obtained from the execution
of a load-compute-store loop on tile PEs, resulting in a constant power dissipation
that is interconnect-independent. This behaviour is characteristic of long running
compute-bound workloads which are unaffected by interconnect performance once
their triggering data has arrived at the tile. Although the routing strategies are eval-
uated in the presence of 4 and 8 such thermal hotspots inside the 3D mesh, since
the general performance trends of both are similar, we only present the results from
the evaluation with 8 thermal hotspots for brevity’s sake. INT is compared with 3
other routing strategies: Downward routing [136], TTAR [135] and an adapted version
of TTAR that additionally incorporates a dedicated temperature monitoring RCA
network (TTAR+). The INT and TTAR cases use an 8-bit monitoring network for

115

4. Runtime Temperature and Power Management for 3D Multiprocessors

Tier-0 Tier-1 Tier-2 Tier-3

 330

 332

 334

 Tier 0

DMEM

IMEMPE

DMA

 RTR

 Tier 0

 330

 332

 334

 Tier 1

DMEM

IMEMPE

DMA

 RTR

 Tier 1

 330

 332

 334

T
e

m
p

e
ra

tu
re

 (
K

)

 Tier 2

DMEM

IMEMPE

DMA

 RTR

 Tier 2

 330

 332

 334

T
e

m
p

e
ra

tu
re

 (
K

)

 Tier 3

DMEM

IMEMPE

DMA

 RTR

INT (proposed)

 330

 332

 334

 Tier 0

DMEM

IMEMPE

DMA

 RTR

 Tier 0

 330

 332

 334

 Tier 1

DMEM

IMEMPE

DMA

 RTR

 Tier 1

 330

 332

 334

T
e

m
p

e
ra

tu
re

 (
K

)

 Tier 2

DMEM

IMEMPE

DMA

 RTR

 Tier 2

 330

 332

 334

T
e

m
p

e
ra

tu
re

 (
K

)

 Tier 3

DMEM

IMEMPE

DMA

 RTR

Downward Routing [136]

 330

 332

 334

 Tier 0

DMEM

IMEMPE

DMA

 RTR

 Tier 0

 330

 332

 334

 Tier 1

DMEM

IMEMPE

DMA

 RTR

 Tier 1

 330

 332

 334

T
e

m
p

e
ra

tu
re

 (
K

)

 Tier 2

DMEM

IMEMPE

DMA

 RTR

 Tier 2

 330

 332

 334

T
e

m
p

e
ra

tu
re

 (
K

)

 Tier 3

DMEM

IMEMPE

DMA

 RTR

TTAR [135]

 330

 332

 334

 Tier 0

DMEM

IMEMPE

DMA

 RTR

 Tier 0

 330

 332

 334

 Tier 1

DMEM

IMEMPE

DMA

 RTR

 Tier 1

 330

 332

 334

T
e

m
p

e
ra

tu
re

 (
K

)

 Tier 2

DMEM

IMEMPE

DMA

 RTR

 Tier 2

 330

 332

 334

T
e

m
p

e
ra

tu
re

 (
K

)

 Tier 3

DMEM

IMEMPE

DMA

 RTR

TTAR+

Figure 4.10. Temperature maps from uniform random traffic with 8 thermal hotspots
with different routing strategies. Temperatures are measured in Kelvin (K).

temperature and congestion, respectively. For TTAR+, temperature and congestion in-
formation are carried over independent 5-bit and 3-bit networks, respectively. In order
to compensate for the loss in temperature resolution due to the decreased vector width,
the monitoring temperature range was decreased to 330K-345K. The congestion
resolution although decreased is still sufficient to discriminate between paths.

(i) Thermal Performance Figures 4.10(a)-(d) illustrate temperature maps of tiers
0 and 3 of the die-stack with each routing algorithm following 750K simulation cycles

116

4.2. Temperature-Aware Adaptive Routing for Dynamically-Throttled 3D
Networks-on-Chip

at the peak injection rate with uniform random traffic and a total of 8 thermal hotspots.
INT is observed to provide the most balanced temperature profiles, and the lowest
peak temperatures amongst all the tested schemes. Downward routing provides a
similar balance, however, with increased latency and congestion as observed in Figure
4.11. In the case of TTAR, the temperature imbalance occurs as a consequence of
network traffic being routed through high temperature regions with low congestion.
The figures also illustrate the high degree of thermal coupling between stacked dies.

The efficacy of the interconnect in balancing temperature differences in the system
requires the presence of sufficient traffic. At low injection rates, the influence of
network traffic on temperatures is relatively small. As a consequence, despite its
temperature awareness, INT yields peak temperature differences identical to the com-
peting schemes, evidenced in Figure 4.11. With increasing network traffic however,
the activity and power dissipation of the interconnect assumes increasing significance,
and the effects of temperature-aware routing become evident.

(ii) Latency and Congestion Figure 4.11 also illustrates the average packet latency
and network congestion resulting from the use of each routing strategy. In a network
with temperature-dependent throttling, packet latencies are influenced by operating
temperatures as well as network congestion. Congestion aware routing strategies like
TTAR offer significantly low latencies on account of their avoiding high traffic regions.
However, this often results in the routing of packets close to interconnect-independent
thermal hotspots. Consequently, operating temperatures rise, and as throttling is
invoked, packet latencies increase. Downward routing on the other hand prevents the
formation of high temperature regions by routing traffic towards higher tiers. This
has the effect of increasing network congestion on the cooler tiers, and drastically
increasing packet delivery latencies. INT’s routing of packets based on operating
temperatures results in a decreased chance of encountering a heavily throttled router.
This ensures that packets remain on higher throughput paths, reducing the congestion
caused due to slow moving traffic in the network. The latency benefits obtained as
a result of INT’s temperature-adaptive routing are observed in Figure 4.12, which
reports the latency distribution across network nodes at the peak injection rate. In the
case of TTAR+, the power overheads incurred due to the propagation of monitoring
information across the system are so considerable that they result in elevated operating
temperatures, yielding higher latencies.

Figure 4.12 also illustrates the preferential use of certain tiers by each routing
strategy. For instance, Downward routing results in the preferential utilization of
higher tiers located closer to the heatsink. Consequently, congestion in these tiers is

117

4. Runtime Temperature and Power Management for 3D Multiprocessors

hotspot 10% uniform random bit transpose

 0

 3

 6

 0.75 1 1.25

T
e
m

p
e
ra

tu
re

 D
iff

e
re

n
ce

 (
K

)

Injection Rate (packets/cycle)

INT
Downward

TTAR
TTAR+

 0

 3

 6

 1 1.5 2 2.5
T

e
m

p
e
ra

tu
re

 D
iff

e
re

n
ce

 (
K

)
Injection Rate (packets/cycle)

INT
Downward

TTAR
TTAR+

 0

 3

 6

 1 1.5 2 2.5

T
e
m

p
e
ra

tu
re

 D
iff

e
re

n
ce

 (
K

)

Injection Rate (packets/cycle)

INT
Downward

TTAR
TTAR+

 0

 250

 500

 750

 1000

 0.75 1 1.25

A
ve

ra
g
e
 L

a
te

n
cy

 (
cy

cl
e
s)

Injection Rate (packets/cycle)

INT
Downward

TTAR
TTAR+

 0

 250

 500

 750

 1000

 1 1.5 2 2.5

A
ve

ra
g
e
 L

a
te

n
cy

 (
cy

cl
e
s)

Injection Rate (packets/cycle)

INT
Downward

TTAR
TTAR+

 0

 250

 500

 750

 1000

 1 1.5 2 2.5

A
ve

ra
g
e
 L

a
te

n
cy

 (
cy

cl
e
s)

Injection Rate (packets/cycle)

INT
Downward

TTAR
TTAR+

 0

 25

 50

 75

 100

 0.75 1 1.25

A
ve

ra
g
e
 C

o
n
g
e
st

io
n
 (

%
)

Injection Rate (packets/cycle)

INT
Downward

TTAR
TTAR+

 0

 25

 50

 75

 100

 1 1.5 2 2.5

A
ve

ra
g
e
 C

o
n
g
e
st

io
n
 (

%
)

Injection Rate (packets/cycle)

INT
Downward

TTAR
TTAR+

 0

 25

 50

 75

 100

 1 1.5 2 2.5

A
ve

ra
g
e
 C

o
n
g
e
st

io
n
 (

%
)

Injection Rate (packets/cycle)

INT
Downward

TTAR
TTAR+

Figure 4.11. Peak temperature difference, average packet delay and average congestion
with 8 thermal hotspots for different traffic patterns. In the figures, the data lines end at
different injection rates corresponding with the saturation throughput of the network.

aggravated. TTAR on the other hand routes traffic towards regions of least congestion.
However, its inability to directly sense temperature results in the over utilization of
deeper tiers, and in the throttling of routers. Latencies are thus observed to worsen with
increasing distance from the heatsink. Similar behaviour is noted for TTAR+ as well.
In contrast, INT thermal-aware routing function avoids regions of high temperature,
and reduces the magnitude of throttling invoked in the network. Latencies are thus
lower even in the deeper tiers. The central tiers of the stack exhibit a higher latency
due to the volume of passing traffic, however, this is observed even for other routing
strategies.

(iii) Overheads Table 4.6 lists the area and power overheads imposed by each
routing strategy. Note that the area overheads listed for RCA derivatives such as

118

4.2. Temperature-Aware Adaptive Routing for Dynamically-Throttled 3D
Networks-on-Chip

 0

 100

 200

 300

 0

 100

 200

 300

A
ve

ra
g

e
 L

a
te

n
cy

 (
cy

cl
e

s)

 0 10 20 30 40 50 60 70

Node

 10 20 30 40 50 60 70

Node

 0

INT Downward Routing

TTAR TTAR+

Figure 4.12. Latency distribution among network nodes for uniform random traffic at
peak injection rate.

Table 4.6. Overheads

WIDTH AREA POWER
INT 8-bit 0.9% < 0.1%

TTAR 8-bit 10.7% 25%
TTAR+ 8-bit 10.7% 61%

DOWNWARD X 0% 0%

TTAR and TTAR+ does not include the computational resources required to perform
the weighted summation. In the present work, these are considered to be integrated
within the area of the crossbar switch. The aggregate-propagate network for these
cases is approximated as an 8-bit point-to-point network with a single-entry input
buffer per port.

4.2.4 Conclusions
In this section, we presented the Immediate Neighbourhood Temperature (INT) ad-
aptive routing algorithm for dynamically-throttled networks-on-chip. Unlike state-of-
the-art proposals which rely on complex aggregate-propagate networks, INT bases
adaptive routing decisions solely on temperature information from neighbouring
routers, thus minimizing monitoring overheads. Interconnect traffic is steered away
from regions of high temperature, yielding balanced thermal profiles, with up to 25%

119

4. Runtime Temperature and Power Management for 3D Multiprocessors

lower thermal gradients. Furthermore, as a consequence of lower operating temper-
atures and adaptive routing, communication latencies are improved, and network
congestion decreased by up to 50% even in the presence of system thermal hotspots.
In addition to the adaptive routing strategy, we illustrated the inter-dependence of PE
and interconnect activity, and consequently demonstrated how interconnect throttling
could be used to control power dissipation of PEs in dataflow multiprocessors.

Summary
While frameworks such as Ctherm enable the realization of a thermally efficient
system, actual temperature profiles at runtime are a consequence of the workload that
is executed on the multiprocessor. For this reason, Dynamic Thermal Management
(DTM) schemes are used to control power dissipation through a range of schemes
in order to limit temperatures to within a safe operating range. Dynamic Voltage
Frequency Scaling (DVFS) based DTM strategies provide fine-grained control of power
dissipation, allowing performance levels to be varied according to the magnitude of the
thermal emergency. However, due to non-uniformities in temperature margins in 3D
ICs, conventional 2D DVFS strategies result in frequent voltage and frequency level
transitions, and degraded performance. In this chapter, we proposed a novel 3D DVFS
strategy, that takes the thermal characteristics of 3D ICs into account, and maximizes
utilization of the non-uniform temperature margins within die stacks at runtime. This
yields an improvement in aggregate system performance. Furthermore, in order to
control temperature gradients occurring as a consequence of activity imbalances, we
proposed the INT adaptive routing algorithm that steers interconnect traffic away
from regions of high temperature. Due to the spread in interconnect traffic, peak
temperatures are reduced, and the magnitude of thermal gradients decreased. Finally,
due to the reduction in operating temperatures, interconnect latencies are improved.

Associated Publications
1. S.S. Kumar, A. Aggarwal, R. Jagtap, A. Zjajo, R. van Leuken, ”System Level

Methodology for Interconnect Aware and Temperature Constrained Power Man-
agement of 3-D MP-SOCs” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 22, no. 7, pp. 1606-1619, July 2014

2. S.S. Kumar, A. Zjajo, R. van Leuken, ”Immediate Neighbourhood Temperature
Adaptive Routing for Dynamically-Throttled 3D Networks-on-Chip” IEEE

120

4.2. Temperature-Aware Adaptive Routing for Dynamically-Throttled 3D
Networks-on-Chip

Transactions on Circuits and Systems II (TCAS-II), in press

3. A. Aggarwal, S.S. Kumar, A. Zjajo, R. van Leuken, “Temperature constrained
power management scheme for 3D MPSoC,” Proceedings of the IEEE Workshop
on Signal and Power Integrity (SPI), pp.7-10, 2012

121

4. Runtime Temperature and Power Management for 3D Multiprocessors

122

5
Conclusions

This dissertation investigates the efficient design, and dependable operation of high
performance, thermal-aware chip multiprocessors. The realization of such machines
is impeded by three challenges – efficiency of the architecture, thermal constraints,
and runtime temperature management. Essentially, these challenges can be translated
into the primary objectives of this dissertation - to realize an efficient multiprocessor,
to enable its thermal-aware design, and to empower it with the ability to adapt to
changing thermal conditions at runtime. This final chapter reviews the most significant
conclusions that were derived in the course of achieving these objectives, and outlines
how these contributions strengthen and advance the state of the art in thermal-aware
multiprocessor design. This is done in the context of the research questions that were
posed earlier in Chapter 1.

How can the performance and efficiency of on-chip memory operations in mul-
tiprocessors be improved?

In large multiprocessors, the management of data has a key role to play in the
performance and efficiency of on-chip memory operations. At the scale required to
achieve trillion operations per second (TOPS) performance levels, it is important
to pay close attention to what data is stored in on-chip memories, where it is stored
in the system, and for how long. These are essential factors that must be given due
consideration when designing memory hierarchies for multiprocessors of scale. The
importance of these factors was demonstrated in Chapter 2, across all three proposals
- Pronto, Persistence Selective Caching (PSC), and CacheBalancer.

Conventional wisdom in memory hierarchy design has focused on reducing the
occurrence of cache misses, and the magnitude of their associated penalties. This

123

5. Conclusions

dissertation showed how the converse approach, i.e. focussing on cache hits instead
of misses, can yield massive performance and energy benefits. For an application
with sufficient data reuse, cache hits represent the common case, and it is essential for
the memory hierarchy design to leverage this fact in order to improve performance.
Our proposed Persistence Selective Caching (PSC) scheme, demonstrated the benefits
of accelerating the common case, and highlighted the significant amount of reuse
present in a number of standard workloads. For certain applications from the Mibench
benchmark suite, average memory access time (AMAT) was decreased by upto 59% by
accelerating references to as few as 7 cache lines. PSC also demonstrated a secondary
benefit of using cache assists in the memory hierarchy – the energy per memory access
was decreased by upto 75%. These are significant improvements in performance and
efficiency, achieved with relatively small hardware overheads.

With the growing size of multiprocessor systems, the physical location of the data
in relation to its consumer becomes a matter of concern. The latency and energy costs
associated with accessing data located in distant on-chip cache memory banks are of
considerable magnitude. When coupled with the additional penalties incurred due
to the unbalanced utilization of system resources, these costs diminish the execution
performance of the multiprocessor. This observation highlights the need to apply
knowledge of the system’s physical organization and runtime state when managing
system resources.

Finally, in order to make memory operations more predictable, it is important
to look into the interaction between communication flows in the multiprocessor
interconnect. It is observed that the head and tail sections of data flows within task
graphs are more susceptible to jitter (variation in arrival time) in the presence of
network contention, than intermediate sections. These sensitive sections tend to
delay the triggering of tasks, producing latency variations that cannot be hidden by
successive stages of the graph. The jitter resulting from contention in intermediate
sections on the other hand, is far less pronounced. This indicates that contention
sensitivity varies throughout the task graph, and that the magnitude of jitter induced
in the output depends primarily on the amount of contention experienced by the head
and tail edges. To ensure predictability of output data, it crucial for interconnect
contention to be reduced around such sensitive sections.

How do the physical design parameters in Nagata’s equation affect the thermal
behavior of 3D Integrated Circuits?

Due to the relatively nascent state of 3D integration, the thermal behaviour of die
stacks is not well understood. The most significant contribution of this dissertation

124

lies in its advancement of the state of the art in this very regard. Chapter 3 presented
a detailed characterization of the thermal design space of 3D ICs, and examined the
specific influence of individual design parameters on the operating temperatures and
thermal gradients in die stacks.

The characterization revealed the dominant role of effective thermal conductivity
(

eff

) in determining operating temperatures in die stacks. Dependent on the design of
the Through Silicon Vias (TSV) based vertical interconnect, the

eff

parameter affects
the magnitude of heat flowing across and through dies within the stack, essentially
changing the shape of operating temperature profiles. Thermal hotspots are found
to be completely mitigated when

eff

is raised sufficiently. In general, the range of
variation observed in temperatures with changing

eff

indicates the need to take the
parameter into consideration within simulation models during evaluation of thermal
behaviour. The parameter also holds repercussions for the runtime management of the
system by impacting the placement of on-chip temperature sensors. For instance, with
increasing conductivity, the size of the window within which sensors can accurately
track the temperature of a hotspot center also increases. Consequently, the design
rules for the placement of temperature sensors can be relaxed, allowing them to be
placed farther away from the hotspot location, without losing accuracy. The placement
strategy is therefore dependent on

eff

, and in turn, on vertical interconnect design.
The vertical interconnect is in itself a structure with a complex design space.

While evaluating the performance of this structure, it is prudent to note that seemingly
insignificant differences in thermal performance can have a considerable impact on
effective system performance. This was highlighted in Chapter 3, where a meagre 0.5K
of additional temperature margin afforded by the Shielded TSV topology yielded a
11% improvement in the execution performance over the competing Isolated topology.
This observation underlines the importance of including

eff

in thermal evaluations.
From a system design perspective, power density was observed to have a similarly

critical influence on operating temperature. Unlike
eff

, power density is a result of
floorplanning choices within the 3D stack. While the integration of power dissipat-
ing elements within a die stack inevitably raises operating temperature, an uneven
spread in the dissipated power results in the formation of thermal hotspots which are
detrimental to the system’s reliability. The key to mitigating hotspot formation lies in
adapting system floorplans to reduce power density.

Apart from the influence of these parameters, the thermal characterization also
confirmed the non-uniform nature of temperature margins within die stacks. Power
dissipating elements situated on deep tiers of the stack experience a decreased op-
erating head room as compared to their counterparts on higher tiers as a result of
increased thermal resistance. System performance is thus non-uniform in 3D ICs,

125

5. Conclusions

and estimating it accurately at design time requires the inclusion of runtime thermal
effects in the design flow.

How can the knowledge of thermal behaviour be effectively leveraged in the
design of 3D stacked multiprocessors?

The evaluation of effective thermal performance of architectural and system design
choices is essential in realizing thermal-efficient 3D stacked multiprocessors. In
particular, the ability to perform closed-loop co-simulation of thermal and functional
behaviour are fundamental to realistically modeling the influence of runtime physical
effects, and the consequences of their mitigation. This is especially important since
the variability of runtime operating conditions necessitates the constant adaptation
of system parameters in order to maximize performance within physical constraints.
The ability to model this is predicated on the existence of a closed-loop simulation
platform such as Ctherm, presented in Chapter 3.

The accuracy of the modeled behaviour is linked to the granularity of spatial
and temporal power models. Proposals within the state of the art exhibit serious
shortcomings in this regard. Most commonly, proposals average power dissipation of
components over multiple cycles in order reduce simulation time. As a result of the
decreased fidelity of power data, peaks that would normally result in hotspots are not
accurately modelled by the existing proposals. A more serious disadvantage lies in
their abstraction of component internals when mapping dissipated power to physical
locations in the floorplan. Such abstraction results in significantly lower accuracy, and
yields highly optimistic estimates of thermal behaviour since it ignores the influence
of power density. For instance, in the evaluation of the thermal behaviour of a cache
memory, inclusion of fine-grained component internals revealed the existence of
thermal hotspots at locations where state of the art approaches indicated low operating
temperatures. This thermal behaviour was found to drastically vary as the internal
organization was changed, primarily as a consequence of changing power density.
It is therefore imperative that the internal organization of components be taken into
account when evaluating thermal behaviour.

Furthermore, any architectural modification that impacts the latency of operations,
effectively changes the power dissipation characteristics of the component. While the
modification that yielded this latency benefit could be small in terms of hardware cost,
the thermal impact of the decreased latency (thus higher power dissipation) could be
significant. It is for this reason that cycle-accurate modeling of component behaviour
is essential when performing thermal simulation.

It must be noted that design effort for creating these fine-grained component

126

models manually is prohibitively high, and unrealistic in the context of production
design space exploration (DSE) flows. However, Ctherm demonstrated how such
a flow can be realized practically with automated model generators to simplify the
evaluation of specific candidate design options.

How can the architecture and operating parameters be efficiently adapted at
runtime to mitigate the severity of thermal issues, and improve execution per-
formance?

Despite the use of thermal-aware design practices, the variability of runtime
operating conditions necessitates the use of Dynamic Thermal Management (DTM) to
control temperature. DTM strategies arrest thermal emergencies by limiting power
dissipation in regions of high temperature. However, their inability to adapt to
the unique thermal characteristics of die stacks limits the efficacy of conventional
DTM strategies. For instance, conventional Dynamic Voltage Frequency Scaling
(DVFS), when applied to a 3D multiprocessor, results in the preferential utilization
of processing elements (PE) situated closer to the heatsink over those on deeper
tiers. This is a consequence of the non-uniform thermal margins prevalent in die
stacks. To realize an effective DTM strategy for 3D systems, it is essential for these
non-uniformities to be taken into account within the decision making algorithm. This
enables system performance to be maximized within the thermal margins available
at individual PEs, while reducing the chances of a DTM action pushing any part
of the system into a thermal emergency. It may be observed that although such an
approach results in PEs operating below their full performance level, overall system
performance is effectively improved. This was demonstrated in Chapter 4, where
a 19.55% improvement in execution performance was obtained by incorporating
knowledge of non-uniform thermal margins into the design of the DTM strategy for a
3D multiprocessor.

Chapter 4 also proposed the Immediate Neighbourhood Temperature (INT) ad-
aptive routing strategy to balance thermal profiles in 3D networks-on-chip (NoC).
Conventional thermal-aware NoC architectures rely on complex aggregate-propagate
networks to provide a system-wide view of temperatures at every node. However, the
overheads of relaying global temperature information are so high that they actually
increase operating temperatures, and consequently degrade system performance when
used in conjunction with dynamic throttling. On the other hand, adaptive routing
based only on temperature information available in the immediate vicinity of the
router allows packets to be incrementally routed along low temperature paths without
the overhead of an expensive monitoring network. This approach was demonstrated

127

5. Conclusions

to reduce thermal gradients 25% better than conventional strategies, with negligible
overheads. Furthermore, this strategy has the effect of spreading interconnect activity
over a large area, yielding operating temperature reductions and thus upto 50% lower
network congestion in the presence of thermal-aware dynamic throttling.

Finally, it was discovered that although congestion can be used within thermal-
aware dynamically throttled NoCs as an indicator of temperature, basing adaptive
routing decisions on it can erroneously result in high traffic regions being mistaken for
thermal hotspots. For this reason, it is prudent to drive the adaptive routing function
using actual temperature measurements.

In summary, this dissertation provides insight into the architectural features, design
methodologies and runtime strategies required to effectively realize high-performance
thermal-aware multiprocessors. It furthers the state of the art of 3D IC design through
its characterization of thermal behaviour of die stacks, and its examination of the
influence of individual design parameters on operating temperatures. Importantly, it
demonstrates a practical thermal-aware DSE framework that enables the co-simulation
of both thermal and functional behaviour of system design options, and highlights
the importance of considering physical effects such as temperature early in the ar-
chitecture and system design flows. Such a holistic approach is essential in ensuring
dependability and harnessing multiprocessor performance in the dark silicon era. It
is hoped that this framework will serve as a template for thermal-aware Electronic
Design Automation (EDA) tooling of the future, and provide a sense of the critical
issues that designers must actively address in order to successfully realize dependable
3D systems.

Additional Contributions
In addition to the scientific contributions outlined above, this dissertation also gener-
ated a range of software tooling. These are summarized below:

• Ctherm: The framework described in Chapter 3 was implemented using a
Python front-end, SystemC-based exploration and simulation engines, and an
adapted version of the 3D ICE thermal simulator. The outputs are processed
using a combination of gnuplot and ffmpeg to enable still and video-based
visualizations of thermal behaviour.

• TMFab: This is a cycle-accurate simulation platform that models a 3D stacked
chip multiprocessor incorporating the transactional memory concurrency con-
trol paradigm. TMFab was developed alongside the SoCLiB based platform

128

used within Ctherm. The platform also supports detailed power tracing and
debugging of PEs. Details of the TMFab platform are available in [141–143].

• Simulation models: Cycle-accurate SystemC simulation models were developed
for all the components introduced in this dissertation. These models are integ-
rated within the SoCLiB component library and contain the necessary activity
monitors to implement power modelling. Pronto is implemented as a VHDL-
based simulation model.

• Software Libraries: Extensive software libraries were created to support the
Naga multiprocessor. These include pthread-like libraries to manage execution
of tasks, control their mapping, perform file and terminal I/O, and implement
inter-task communication. Furthermore, additional libraries were created to
implement CacheBalancer, and functions to control the thermal simulator from
the virtual platform. These libraries also contain architecture specific code
written in Microblaze assembly. Examples include the bootstrapper, exception
handler and interrupt service routine.

At the time of writing, plans exist to release a number of these tools and simulation
models into the public domain.

Future Work
From our experiences with building the Naga multiprocessor and its associated tooling,
we find a number of topics worthy of future exploration. These are listed below:

Naga Multiprocessor Architecture

• The integration of the NagaM and NagaS into a single homogeneous multipro-
cessor forms the next step in Naga’s evolution. Critical challenges in this regard
pertain to the integration of the message-passing and shared-memory address
spaces into a single unit, and prevention of contention between workloads of
varying criticality.

• Reliability aspects such as device degradation due to aging, device failure and
dynamic faults are important practical issues that should also be addressed.

129

5. Conclusions

• In this dissertation, we evaluated the efficacy of the PSC scheme in reducing
AMAT and energy per access. However, the persistence thresholds were de-
termined through an exploratory simulation. In order to maximize applicability,
it is important to investigate simpler methods to determine the threshold. We
envision two possibilities in this regard - a compiler-based technique, and a
feedback-based control loop. In the first method, thresholds are determined
based on static analysis of the application program’s memory access patterns.
This would enable thresholds to be embedded within the binary, and facilitate
configuration of the assist at runtime. In the second method, thresholds are
determined based on cache contention and memory access patterns at runtime.
Despite its complexity, this method is promising as it provides a means to
alleviate cache contention due to thrashing in multi-threaded environments.

• The CacheBalancer concept evolved rather late in Naga’s development, and
consequently, only a limited evaluation could be performed. Further develop-
ment requires a detailed characterization of the impact of ↵, �, ✓

hot

and ✓
cold

parameters on temperature, and execution performance.

Thermal Modelling

• The Ctherm framework presently relies on the 3DICE thermal model, mainly
due to its well structured code and excellent documentation. However, future
efforts must focus on fine-grained thermal models [75] that account for heat
spreading at the device level and include factors such as thermal diffusivity
(variation in k with temperature). The latter acts as a source of inaccuracy at
the higher end of the operating temperature range. In addition to accuracy, it is
also important to consider parallelizing the model to reduce execution time.

Thermal Characterization of Die Stacks

• In this dissertation, we considered only the steady state behaviour of die stacks.
However, it is also important to examine transient behaviour in relation to
vertical interconnect properties and heatsink dimensions. Furthermore, although
TSVs are considered critical in 3D ICs, a number of recent proposals replace
them with inductive links [144]. These reduce vertical thermal conductance,
and can potentially alter the heat flow characteristics that we established in this
dissertation. It is prudent for other types of vertical interconnect structures to
also be included in the characterization of 3D ICs.

130

• The TSV topology exploration in Chapter 3 considered only electrical perform-
ance, KOZ requirements and thermal behaviour of candidate topologies. From
recent interactions with industry representatives, we are led to believe that TSV
yield is also significantly impacted by placement topology. Consequently, the
characterization framework could be extended with a set of design rules for
TSV placement that take yield into account.

Ctherm Framework

• The current version of Ctherm only includes basic algorithms for system-
level floorplanning multiprocessors. Future versions could include a more
sophisticated floorplanner [101][102], and automated placement of temperature
sensors. Based on this placement, a calibration plan for sensors can be generated
by the floorplanner.

• While Ctherm supports the integration of custom power models, this can be
further enhanced by developing a methodology for generating ALE estimators
for non-standard components. This effort requires the development of a pseudo-
synthesis methodology capable of determining an approximate gate level netlist,
and estimating its area, latency and energy dissipation.

• Presently, the co-simulation setup ignores the power dissipation of temperature
sensors which, however, can be significant at high accuracies (⇠0.1K) [105].
Aging and temperature-related reliability effects can also be integrated into the
setup to better evaluate the lifetime of systems, and the reliability impact of
design decisions.

Temperature and Power Management

• The influence of scheduling and task mapping strategies on operating temperat-
ures, and techniques for mitigating thermal emergencies through such strategies
must be prioritized.

• The decision logic in the 3D DVFS scheme proposed in Chapter 4 relies
on a weighted equation to determine the candidate PE for V-F scaling. The
weights are presently determined through an exploratory simulation. Their
determination should, however, be integrated into the characterization flow.
Furthermore, the proposed scheme should also be evaluated with stacked voltage
islands.

131

5. Conclusions

• The design of the power delivery network is critical in the context of many-core
multiprocessors like Naga. In particular, the complexity of power distribution,
power dissipation of voltage regulators and ring oscillators and their integration
into the system as part of an active interposer or dedicated die are topics that
are interesting to explore in the next phase of Naga’s evolution.

132

Acronyms

Acronyms

BOPS Billion operations per second

TDP Thermal design power

CMP Chip multiprocessor

PE Processing element

I/O Input/Output

3D IC Three-dimensional integrated circuit

TSV Through silicon via

RAM Random access memory

TOPS Trillion operations per second

DTM Dynamic thermal management

AMAT Average memory access time

L1D Level 1 data cache memory

NoC Network-on-chip

PSC Persistence selective caching

VLIW Very long instruction word

ILP Instruction level parallelism

MPB Message passing buffer

133

Acronyms

QoS Quality of service

GT Guaranteed throughput

MPI Message Passing Interface standard

FPGA Field programmable gate array

API Application programming interface

DMA Direct memory access

ATT Address translation table

FIFO First in first out

HDL Hardware description language

FIR Finite impulse response

IDCT Inverse discrete cosine transform

TI Traffic injector

VC Victim cache

SVC Selective victim cache

NUCA Non-uniform cache access

RC Resistance-capacitance

KOZ Keep out zone

DSE Design space exploration

tDSE Thermal-aware design space exploration

MPSoC Multiprocessor system-on-chip

ALE Area-latency-energy

SRAM Static Random Access Memory

CPI Cycles per instruction

134

Acronyms

ADC Analog-to-digital converter

TDC Time-to-digital converter

V-F Voltage-frequency

DVFS Dynamic voltage frequency scaling

INT Immediate neighbourhood temperature

PM Power manager

DVS Dynamic voltage scaling

DFS Dynamic frequency scaling

GALS Globally asynchronous locally synchronous

RCA Regional congestion awareness

TTAR Traffic and thermal awareness routing

TTABR Traffic and thermal aware beltway routing

OE Odd-even routing

IPC Instructions per cycle

135

Acronyms

136

Notation

Notation

t
task

Total execution time of a task

t
instructions

Time spent in execution of arithmetic, logic and control instructions

t
memory

Time spent in execution of memory load-stores

↵ Activity rate

N
G

Number of gates

E Energy dissipation per gate

t
pd

Clock period

g Thermal conductance

�T Temperature difference between IC and ambience

t
computation

Time spent in executing actual computation

t
mp

Time spent in executing message-passing library functions

t
transfer

Aggregate latency for transfer

t
fc

Overhead incurred for synchronizing and implementing flow
control between communicating tasks

t
AMA

Average memory access time

µ
hit

Fraction of all memory references that hit in the cache

µ
miss

Fraction of all memory references that miss in the cache

M
A

Total number of memory accesses

137

Notation

t
hit

Hit latency

t
miss

Miss latency (also referred to as miss penalty)

R
min

Minimum number of references required for a line to be regarded
as reusable

W Reference window size

✓
hot

Access rate threshold for a cache bank to be considered as hot

✓
cold

Access rate threshold for a cache bank to be considered as cold

� Hot cache sensitivity

 Access rate of a cache bank

 Set of access rates of all cache banks within a multiprocessor

� Mid-range value of

� Allocation spread

HC(p
i

,m
j

) Hop count between PE p
i

and cache bank m
j

Z(m
i

) Intensity with which a cache bank m
i

is utilized by executing tasks

z
i

(⇡
j

,m
i

) Intensity with which task ⇡
j

utilizes cache bank m
i

⇧
i

Set of all executing tasks

S(⇡
i

) Cache sensitivity of task ⇡
i

h(x) Number of hits to data at stack position x

CI Communication impact of a task mapping

M Set of all cache banks in the multiprocessor

c
v

Volumetric heat capacity

�T

�t

Transient temperature response

Q Generated heat

138

Notation

rT Steady state temperature gradient along x, y and z dimensions

eff

Effective thermal conductivity

A Area

l
x,y,z

Distance from heatsink surfaces along the x,y and z dimensions

A
tsv

Effective area of TSV

A
mat

Effective area of layer material

tsv

Thermal conductivity of TSV material

mat

Thermal conductivity of layer material

r
tsv

Radius of TSV

h
die

Length of silicon die

w
die

Width of silicon die

Q/A Power density

KOZ Dimensions of Keep Out Zone

S Inter-TSV spacing

D TSV diameter

↵
t

Average activity rate of components within a tile

N
t

Number of tiles

E
t

Average energy per tile

�T
max

Maximum temperature margin at zero power dissipation

�T
max

��T Actual temperature margin

P
dynamic

Dynamic power dissipation

V Operating voltage

f Frequency

139

Notation

C
L

Load capacitance

w
a

� w
f

Weights for voltage-frequency scaling

G Normalized thermal conductance matrix

�T Projected temperature change

↵
p

Activity rate of processing element

↵
r

Activity rate of network-on-chip router

E
p

Energy dissipation of processing element

E
p

Energy dissipation of router

140

Bibliography

Bibliography

[1] K. van Berkel, “Multi-core for mobile phones,” in Proceedings of the Confer-
ence on Design, Automation and Test in Europe, pp. 1260–1265, Mar. 2009.

[2] G. Xu, “Evaluation of a liquid cooling concept for high power processors,” in
Proceedings of the IEEE Semiconductor Thermal Measurement and Manage-
ment Symposium, pp. 190–195, Mar. 2007.

[3] S. Borkar, “Thousand core chips: A technology perspective,” in Proceedings of
the Design Automation Conference, pp. 746–749, Jun. 2007.

[4] M. Butts, “Synchronization through communication in a massively parallel
processor array,” IEEE Micro, vol. 27, pp. 32–40, Sept. 2007.

[5] B. Hutchings, B. Nelson, S. West, and R. Curtis, “Comparing fine-grained
performance on the ambric mppa against an fpga,” in Proceedings of the
International Conference on Field Programmable Logic and Applications,
pp. 174–179, Sept. 2009.

[6] M. Haselman and et al., “Fpga vs. mppa for positron emission tomography
pulse processing,” in Proceedings of the International Conference on Field
Programmable Technology, pp. 231 – 238, Dec. 2009.

[7] M. Butts, B. Budlong, P. Wasson, and E. White, “Reconfigurable work farms
on a massively parallel processor array,” in Proceedings of the International
Symposium on Field-Programmable Custom Computing Machines, pp. 206 –
215, Apr. 2008.

[8] G. Panesar, D. Towner, A. Duller, A. Gray, and W. Robbins, “Deterministic
parallel processing,” International Journal of Parallel Programming, vol. 34,
pp. 323–341, Mar. 2006.

141

Bibliography

[9] G. Panesar, “One die. 300 processors. real systems.,” in Presentation at Mul-
ticore Expo, Mar. 2006.

[10] A. Agarwal, “The tile processor: A 64-core multicore for embedded processing,”
in Proceedings of the IEEE High Performance Extreme Computing Workshop,
Sept. 2007.

[11] S. Bell and et al., “Tile64 - processor: A 64-core soc with mesh interconnect,”
in Proceedings of the IEEE International Solid-State Circuits Conference -
Digest of Technical Papers, pp. 588 – 598, Feb. 2008.

[12] A. Agarwal, L. Bao, and et al., “Tile processor: Embedded multicore for
networking and multimedia,” in Proceedings of the HotChips Symposium, Aug.
2007.

[13] I. Corporation, “Seaforth 40c18 product brief,”

[14] F. Diotalevi, A. Fijany, M. Montvelishsky, and J.-G. Fontaine, “Very low power
parallel implementation of stereo vision algorithm on a solar cell powered mimd
many core architecture,” in Proceedings of the IEEE Aerospace Conference,
pp. 1 – 13, Mar. 2011.

[15] S. Kyo and S. Okazaki, “Imapcar: A 100 gops in-vehicle vision processor
based on 128 ring connected four-way vliw processing elements,” Journal of
Signal Processing Systems, vol. 62, pp. 5–16, 2011.

[16] S. Kyo and S. Okazaki, “In-vehicle vision processors for driver assistance
systems,” in Proceedings of the Asia and South Pacific Design Automation
Conference, pp. 383 – 388, Mar. 2008.

[17] S. Borkar, “Designing reliable systems from unreliable components: the chal-
lenges of transistor variability and degradation,” IEEE Micro, vol. 25, pp. 10 –
16, nov.-dec. 2005.

[18] J. W. McPherson, “Reliability challenges for 45nm and beyond,” in Proceedings
of the Design Automation Conference, pp. 176–181, 2006.

[19] T. Zhang, C. Xu, K. Chen, G. Sun, and Y. Xie, “3d-swift: A high-performance
3d-stacked wide io dram,” in Proceedings of the Great Lakes Symposium on
VLSI, pp. 51–56, 2014.

142

Bibliography

[20] L. Madden, “Heterogeneous 3-d stacking, can we have the best of both (tech-
nology) worlds?,” in Proceedings of the ACM International Symposium on
Physical Design, pp. 1–2, 2013.

[21] R. Patti, “Three-dimensional integrated circuits and the future of system-on-
chip designs,” Proceedings of the IEEE, vol. 94, pp. 1214 – 1224, Jun. 2006.

[22] P. Franzon, W. Davis, and T. Thorolffson, “Creating 3d specific systems: Ar-
chitecture, design and cad,” in Proceedings of the Design, Automation Test in
Europe Conference Exhibition, pp. 1684 – 1688, Mar. 2010.

[23] S. W. Yoon, D. W. Yang, J. H. Koo, M. Padmanathan, and F. Carson, “3d tsv
processes and its assembly/packaging technology,” in Proceedings of the IEEE
International Conference on 3D System Integration, pp. 1 – 5, Sept. 2009.

[24] S. Goel and et al., “Test and debug strategy for tsmc cowos stacking process
based heterogeneous 3d ic: A silicon case study,” in Proceedings of the IEEE
International Test Conference, pp. 1–10, Sept. 2013.

[25] B. Black and et al., “Die stacking (3d) microarchitecture,” in Proceedings of
IEEE/ACM Symposium on Microarchitecture, 2006.

[26] K. Puttaswamy and G. Loh, “3d-integrated sram components for high-
performance microprocessors,” IEEE Transactions on Computers, vol. 58,
pp. 1369 – 1381, Oct. 2009.

[27] H. Sun and et al., “3d dram design and application to 3d multicore systems,”
IEEE Design Test of Computers, vol. 26, pp. 36 – 47, Sept.-Oct. 2009.

[28] T. Zhang and et al., “A customized design of dram controller for on-chip 3d
dram stacking,” in Proceedings of IEEE Custom Integrated Circuits Conference,
pp. 695 –705, Sept. 2010.

[29] E. A. Lee and T. Parks, “Dataflow process networks,” in Proceedings of the
IEEE, pp. 773–799, 1995.

[30] J. L. Hennessy and D. A. Patterson, Computer Architecture, Fourth Edition: A
Quantitative Approach. Morgan Kaufmann Publishers Inc., 2006.

[31] K. Ramakrishnan and e. al., “Variation impact on ser of combinational circuits,”
in International Symposium on Quality Electronic Design, pp. 911–916, Mar.
2007.

143

Bibliography

[32] M. Nagata, “Limitations, innovations, and challenges of circuits and devices
into a half micrometer and beyond,” IEEE Journal of Solid-State Circuits,
vol. 27, pp. 465–472, Apr 1992.

[33] H. Kufluoglu and M. Ashraful Alam, “A computational model of nbti and hot
carrier injection time-exponents for mosfet reliability,” Journal of Computa-
tional Electronics, vol. 3, no. 3-4, pp. 165–169, 2004.

[34] J. Joven, F. Angiolini, D. Castells-Rufas, and J. Carrabina, “Qos-ocmpi: Qos-
aware on-chip message passing library for noc,” in Workshop on Programming
Models for Emerging Architectures, 2010.

[35] N. Muralimanohar et. al, “Optimizing nuca organizations and wiring altern-
atives for large caches with cacti 6.0,” in Proceedings of the International
Symposium on Microarchitecture, pp. 3–14, 2007.

[36] A. Agarwal and et al., “The mit alewife machine: A large-scale distributed-
memory multiprocessor,” in Proceedings of Workshop on Scalable Shared
Memory Multiprocessors, 1991.

[37] J. Kubiatowicz, PhD Dissertation: Integrated Shared-Memory and Message-
Passing Communication in the Alewife Multiprocessor. Massachusetts Institute
of Technology, 1998.

[38] S. Wong, T. van As, and G. Brown, “p-vex: A reconfigurable and extensible
softcore vliw processor,” in Proceedings of the International Conference on
Field Programmable Technology, pp. 369–372, 2008.

[39] C. Kim, D. Burger, and S. Keckler, “Non-uniform cache architectures for
wire-delay dominated on-chip caches,” IEEE Micro, vol. 23, pp. 99–107, Nov
2003.

[40] O. Lempel, “Second generation intel core processor family: Intel core i7, i5
and i3,” in Presentation at the HotChips Symposium, 2011.

[41] S. Kumar and R. van Leuken, “A 3d network-on-chip for stacked-die trans-
actional chip multiprocessors using through silicon vias,” in Proceedings of
the International Conference on Design Technology of Integrated Systems in
Nanoscale Era (DTIS), pp. 1–6, Apr. 2011.

144

Bibliography

[42] J. F. Broenink, G. H. e. Hilderink, A. Duller, G. Panesar, and D. Towner,
“Parallel processing — the picochip way!,” in Communicating Processing
Architectures, pp. 125–138, 2003.

[43] J. Howard and et al., “A 48-core ia-32 processor in 45 nm cmos using on-die
message-passing and dvfs for performance and power scaling,” IEEE Journal
of Solid-State Circuits, vol. 46, pp. 173 – 183, Jan. 2011.

[44] R. F. van der Wijngaart, T. G. Mattson, and W. Haas, “Light-weight commu-
nications on intel’s single-chip cloud computer processor,” SIGOPS Operating
Systems Review, vol. 45, pp. 73–83, Feb. 2011.

[45] T. G. Mattson et al., “The 48-core scc processor: the programmer’s view,” in
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 1–11, 2010.

[46] M. P. Forum, “Mpi: A message-passing interface standard,” tech. rep., 1994.

[47] M. Saldana and P. Chow, “Tmd-mpi: An mpi implementation for multiple pro-
cessors across multiple fpgas,” in Proceedings of the International Conference
on Field Programmable Logic and Applications, pp. 1–6, 2006.

[48] J. Psota and A. Agarwal, “rmpi: message passing on multicore processors with
on-chip interconnect,” in Proceedings of the International Conference on High
Performance Embedded Architectures and Compilers, pp. 22–37, 2008.

[49] M. R. Guthaus et al., “Mibench: A free, commercially representative embedded
benchmark suite,” in Proceedings of the International Workshop on Workload
Characterization, pp. 3–14, 2001.

[50] P. Francesco, P. Antonio, and P. Mar.al, “Flexible hardware/software support for
message passing on a distributed shared memory architecture,” in Proceedings
of the Conference on Design, Automation and Test in Europe, pp. 736–741,
2005.

[51] H. Nikolov et al., “Daedalus: Toward composable multimedia mp-soc design,”
in Proceedings of the Design Automation Conference, pp. 574–579, 2008.

[52] J. Kin, M. Gupta, and W. H. Mangione-Smith, “The filter cache: an energy
efficient memory structure,” in Proceedings of the International Symposium on
Microarchitecture, pp. 184–193, 1997.

145

Bibliography

[53] N. P. Jouppi, “Improving direct-mapped cache performance by the addition
of a small fully-associative cache and prefetch buffers,” SIGARCH Computer
Architecture News, vol. 18, pp. 364–373, May 1990.

[54] D. Stiliadis and A. Varma, “Selective victim caching: A method to improve
the performance of direct-mapped caches,” IEEE Transactions on Computers,
vol. 46, pp. 603–610, May 1997.

[55] N. Duong et al., “Revisiting level-0 caches in embedded processors,” in Pro-
ceedings of the International Conference on Compilers, Architectures and
Synthesis for Embedded Systems, pp. 171–180, 2012.

[56] A. Janapsatya, S. Parameswaran, and A. Ignjatovic, “Hitme: Low power hit
memory buffer for embedded systems,” in Proceedings of the Asia and South
Pacific Design Automation Conference, pp. 335–340, 2009.

[57] F. J. Sanchez, A. Gonzalez, and M. Valero, “Software management of selective
and dual data caches,” in IEEE Technical Committee on Computer Architecture
Newsletter - Special Issue on DSM and related issues, pp. 3–10, 1997.

[58] K. Beyls and E. H. D’holl, “Reuse distance as a metric for cache behavior,” in
Proceedings of the IASTED Conference on Parallel and Distributed Computing
and Systems, pp. 617–662, 2001.

[59] G. Rivera and C. wen Tseng, “Data transformations for eliminating conflict
misses,” in In Proceedings of the Conference on Programming Language
Design and Implementation, pp. 38–49, 1998.

[60] K. Hoste and L. Eeckhout, “Comparing benchmarks using key
microarchitecture-independent characteristics,” in Proceedings of the
International Symposium on Workload Characterization, pp. 83–92, 2006.

[61] T. Austin, E. Larson, and D. Ernst, “Simplescalar: an infrastructure for com-
puter system modeling,” IEEE Computer, vol. 35, pp. 59 – 67, feb 2002.

[62] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wilson, “Hoard: A
scalable memory allocator for multithreaded applications,” ACM SIGPLAN
Notices, vol. 35, pp. 117–128, Nov. 2000.

[63] S. Cho and L. Jin, “Managing distributed, shared l2 caches through os-level
page allocation,” in Proceedings of the International Symposium on Microar-
chitecture, pp. 455–468, 2006.

146

Bibliography

[64] A. Ros, M. Cintra, M. Acacio, and J. Garcia, “Distance-aware round-robin
mapping for large nuca caches,” in Proceedings of the International Conference
on High Performance Computing, pp. 79–88, Dec 2009.

[65] L. Tang, J. Mars, and M. L. Soffa, “Contentiousness vs. sensitivity: Improving
contention aware runtime systems on multicore architectures,” in Proceedings
of the International Workshop on Adaptive Self-Tuning Computing Systems for
the Exaflop Era, pp. 12–21, 2011.

[66] T. Agarwal, A. Sharma, A. Laxmikant, and L. Kale, “Topology-aware task
mapping for reducing communication contention on large parallel machines,”
in Proceedings of the International Parallel and Distributed Processing Sym-
posium, p. 10, Apr. 2006.

[67] S. Zhuravlev, S. Blagodurov, and A. Fedorova, “Addressing shared resource
contention in multicore processors via scheduling,” SIGPLAN Notices, vol. 45,
no. 3, pp. 129–142, 2010.

[68] C. Feenstra, “A memory access and operator usage profiler framework for hls
optimization,” MSc. Thesis, Delft University of Technology, 2011.

[69] W. van Teijlingen, “Determining performance boundaries and automatic loop
optimization of high-level system specifications,” MSc. Thesis, Delft University
of Technology, 2014.

[70] S. A. Ostadzadeh, R. J. Meeuws, C. Galuzzi, and K. Bertels, “Quad: A memory
access pattern analyser,” in Proceedings of the International Conference on
Reconfigurable Computing: Architectures, Tools and Applications, pp. 269–
281, 2010.

[71] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger, “Evaluation techniques
for storage hierarchies,” IBM Systems Journal, vol. 9, pp. 78–117, June 1970.

[72] G. Almási, C. Caşcaval, and D. A. Padua, “Calculating stack distances effi-
ciently,” SIGPLAN Notices, vol. 38, pp. 37–43, June 2002.

[73] C.-K. Luk and et al., “Pin: Building customized program analysis tools with
dynamic instrumentation,” in Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation, pp. 190–200, 2005.

[74] W. Dally, “Virtual-channel flow control,” IEEE Transactions on Parallel and
Distributed Systems, vol. 3, pp. 194–205, Mar 1992.

147

Bibliography

[75] A. Zjajo, N. van der Meijs, and R. van Leuken, “Dynamic thermal estimation
methodology for high-performance 3-d mpsoc,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 22, pp. 1920–1933, Sept 2014.

[76] H. Oprins and et al., “Fine grain thermal modeling and experimental validation
of 3d-ics,” Microelectronics Journal, vol. 42, pp. 572–578, Apr. 2011.

[77] H. Oprins and et al., “Numerical and experimental characterization of the
thermal behavior of a packaged dram-on-logic stack,” in Proceedings of the
Electronic Components and Technology Conference, pp. 1081–1088, May
2012.

[78] R. Clarke and et al., “Thermal modeling of 3-d stacked dram over sige hbt
bicmos cpu,” IEEE Access, vol. 3, pp. 43–54, 2015.

[79] K. Matsumoto and Y. Taira, “Thermal resistance measurements of interconnec-
tions, for the investigation of the thermal resistance of a three-dimensional (3d)
chip stack,” in Proceedings of the Semiconductor Thermal Measurement and
Management Symposium, 2009, pp. 321–328, Mar. 2009.

[80] B. Vaisband, I. Savidis, and E. Friedman, “Thermal conduction path analysis
in 3-d ics,” in Proceedings of the International Symposium on Circuits and
Systems, pp. 594–597, Jun. 2014.

[81] I. Savidis and E. G. Friedman, “Thermal coupling in tsv-based 3-d integrated
circuits,” in Workshop on 3D Integration - Design, Automation and Test in
Europe, Mar 2014.

[82] A. Sridhar et. al, “3d-ice: Fast compact transient thermal modeling for 3d ics
with inter-tier liquid cooling,” in Proceedings of the International Conference
on Computer-Aided Design, pp. 463–470, 2010.

[83] K. Skadron et. al, “Temperature-aware microarchitecture: Modeling and im-
plementation,” ACM Transactions on Architectural Code Optimizations, vol. 1,
no. 1, pp. 94–125, 2004.

[84] S. Memik, R. Mukherjee, M. Ni, and J. Long, “Optimizing thermal sensor
allocation for microprocessors,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 27, pp. 516–527, Mar. 2008.

[85] R. Jagtap, “A methodology for early exploration of tsv interconnects in 3d
stacked ics,” Master’s thesis, Delft University of Technology, Sept. 2011.

148

Bibliography

[86] R. Jagtap, S. S. Kumar, and R. van Leuken, “A methodology for early explor-
ation of tsv placement topologies in 3d stacked ics,” in Proceedings of the
Euromicro Conference on Digital System Design, pp. 382–388, Sept. 2012.

[87] S. Hanson, M. Seok, D. Sylvester, and D. Blaauw, “Nanometer device scaling
in subthreshold circuits,” in Proceedings of the Design Automation Conference,
pp. 700–705, Jun. 2007.

[88] A. Mercha et al., “Comprehensive analysis of the impact of single and arrays of
through silicon vias induced stress on high-k / metal gate cmos performance,”
in Proceedings of the IEEE International Electron Devices Meeting, pp. 2.2.1 –
2.2.4, Dec. 2010.

[89] W. Huang and et al., “Hotspot: a compact thermal modeling methodology for
early-stage vlsi design,” IEEE Transactions on Very Large Scale Integrated
(VLSI) Systems, vol. 14, no. 5, pp. 501–513, 2006.

[90] G. Paci et. al, “Exploring ”temperature-aware” design in low-power mpsocs,”
in Proceedings of the Design, Automation and Test in Europe Conference
Exhibition, pp. 838–843, 2006.

[91] D. Atienza et. al, “Hw-sw emulation framework for temperature-aware design
in mpsocs,” ACM Transactions on Design Automation of Electronic Systems,
vol. 12, pp. 26:1–26:26, May 2008.

[92] A. Bartolini et. al, “A virtual platform environment for exploring power, thermal
and reliability management control strategies in high-performance multicores,”
in Proceedings of the Great Lakes Symposium on VLSI, pp. 311–316, 2010.

[93] T. Bouhadiba et. al, “Co-simulation of functional systemc tlm models with
power/thermal solvers,” in Proceedings of the International Symposium on
Parallel and Distributed Processing, pp. 2176–2181, 2013.

[94] A. Varma, High-speed Performance, Power and Thermal Co-simulation for
SoC design. PhD thesis, University of Maryland, 2007.

[95] S. Priyadarshi et. al, “Thermal pathfinding for 3-d ics,” IEEE Transactions on
Components, Packaging and Manufacturing Technology, vol. 4, no. 7, pp. 1159–
1168, 2014.

149

Bibliography

[96] D. Milojevic and et al., “Automated pathfinding tool chain for 3d-stacked integ-
rated circuits: Practical case study,” in Proceedings of the IEEE International
Conference on 3D System Integration, pp. 1–6, 2009.

[97] J. Cong et. al, “An automated design flow for 3d microarchitecture evaluation,”
in Proceedings of the Asia and South Pacific Design Automation Conference,
pp. 384–389, 2006.

[98] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a framework for
architectural-level power analysis and optimizations,” in Proceedings of the
International Symposium on Computer Architecture, pp. 83–94, 2000.

[99] A. Kahng, B. Li, L.-S. Peh, and K. Samadi, “Orion 2.0: A fast and accurate noc
power and area model for early-stage design space exploration,” in Proceedings
of the Design, Automation, Test in Europe Conference Exhibition, pp. 423–428,
2009.

[100] S. Kumar, A. Aggarwal, R. Jagtap, A. Zjajo, and R. van Leuken, “System level
methodology for interconnect aware and temperature constrained power man-
agement of 3-d mp-socs,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 22, pp. 1606–1619, Jul. 2014.

[101] D. Cuesta, J. Risco-Martin, J. Ayala, and D. Atienza, “3d thermal-aware floor-
planner for many-core single-chip systems,” in Proceedings of the Latin Amer-
ican Test Workshop, pp. 1–6, 2011.

[102] D. Cuesta, J. Risco-Martin, J. Ayala, and J. Hidalgo, “3d thermal-aware floor-
planner using a moea approximation,” Integration, the VLSI Journal, vol. 46,
no. 1, pp. 10–21, 2013.

[103] SoCLiB-Project, “Soclib: an open platform for virtual prototyping of multi-
processors system on chip.” Available at http://www.soclib.fr.

[104] F. Mahon, The Livermore Fortran Kernels: A Computer Test of the Numerical
Performance Range. Lawrence Livermore National Laboratory, 1986.

[105] U. Sonmez, R. Quan, F. Sebastiano, and K. Makinwa, “A 0.008-mm2 area-
optimized thermal-diffusivity-based temperature sensor in 160-nm cmos for
soc thermal monitoring,” in Proceedings of the European Solid State Circuits
Conference, pp. 395–398, Sept 2014.

150

Bibliography

[106] P. Chen, C.-C. Chen, C.-C. Tsai, and W.-F. Lu, “A time-to-digital-converter-
based cmos smart temperature sensor,” IEEE Journal of Solid-State Circuits,
vol. 40, pp. 1642–1648, Aug 2005.

[107] A. Zjajo, N. van der Meijs, and R. van Leuken, “A 11 µw 0�c-160�c temperature
sensor in 90 nm cmos for adaptive thermal monitoring of vlsi circuits,” in
Proceedings of the IEEE International Symposium on Circuits and Systems,
pp. 2007–2010, 2012.

[108] A. Bakker, “Cmos smart temperature sensors - an overview,” in Proceedings of
IEEE Sensors, vol. 2, pp. 1423–1427 vol.2, 2002.

[109] S. S. Kumar, “Realtime thermal map of pe and data cache,” 2015. Available at
http://youtu.be/3r8bllNRifM.

[110] S. S. Kumar, “Realtime thermal map of a data cache,” 2015. Available at
http://youtu.be/vxPmUNYImes.

[111] P. Chaparro, J. Gonzalez, and A. Gonzalez, “Thermal-aware clustered microar-
chitectures,” Proceedings of the International Conference on Computer Design,
pp. 48–53, 2004.

[112] S.-W. Lee and J.-L. Gaudiot, “Throttling-based resource management in high
performance multithreaded architectures.,” IEEE Transactions on Computers,
vol. 55, no. 9, pp. 1142–1152, 2006.

[113] L. Shang, L.-S. Peh, and N. Jha, “Powerherd: a distributed scheme for dynam-
ically satisfying peak-power constraints in interconnection networks,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 25, pp. 92–110, Jan 2006.

[114] K. Puttaswamy and G. H. Loh, “Thermal herding: Microarchitecture techniques
for controlling hotspots in high-performance 3d-integrated processors,” in
Proceedings of the International Symposium on High Performance Computer
Architecture, pp. 193–204, 2007.

[115] K. K. Chang, R. Ausavarungnirun, C. Fallin, and O. Mutlu, “HAT: heterogen-
eous adaptive throttling for on-chip networks,” in Proceedings of the Interna-
tional Symposium on Computer Architecture and High Performance Computing,
pp. 9–18, 2012.

151

Bibliography

[116] H. Jacobson and et al., “Stretching the limits of clock-gating efficiency in
server-class processors,” Proceedings of the International Symposium on High
Performance Computer Architecture, vol. 0, pp. 238–242, 2005.

[117] E. Le Sueur and G. Heiser, “Slow down or sleep, that is the question,” in
Proceedings of the USENIX Annual Technical Conference, 2011.

[118] M. Keating, D. Flynn, R. Aitken, A. Gibbons, and K. Shi, Low Power Meth-
odology Manual: For System-on-Chip Design. Springer Publishing Company,
Incorporated, 2007.

[119] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi, “An
analysis of efficient multi-core global power management policies: Maximizing
performance for a given power budget,” in Proceedings of the International
Symposium on Microarchitecture, pp. 347–358, 2006.

[120] G. Semeraro and et al., “Energy-efficient processor design using multiple clock
domains with dynamic voltage and frequency scaling,” in Proceedings of the
International High-Performance Computer Architecture Symposium, pp. 29–40,
2002.

[121] Q. Wu, P. Juang, M. Martonosi, and D. W. Clark, “Voltage and frequency
control with adaptive reaction time in multiple-clock-domain processors,” in
Proceedings of the International Symposium on High-Performance Computer
Architecture, pp. 178–189, 2005.

[122] S. Herbert and D. Marculescu, “Analysis of dynamic voltage/frequency scaling
in chip-multiprocessors,” in Proc. ACM/IEEE Int Low Power Electronics and
Design (ISLPED) Symp, pp. 38–43, 2007.

[123] M. Bao, A. Andrei, P. Eles, and Z. Peng, “On-line thermal aware dynamic
voltage scaling for energy optimization with frequency/temperature dependency
consideration,” in Proceedings of the Design Automation Conference, pp. 490–
495, Jul. 2009.

[124] X. Wang, K. Ma, and Y. Wang, “Adaptive power control with online model
estimation for chip multiprocessors,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 22, pp. 1681 – 1696, oct. 2011.

[125] S. S. Kumar, A. Zjajo, and R. van Leuken, “Physical characterization of steady-
state temperature profiles in three-dimensional integrated circuits,” in Interna-
tional Symposium on Circuits and Systems, May 2015 (in press).

152

Bibliography

[126] M. M. Sabry, D. Atienza, and A. K. Coskun, “Thermal analysis and active
cooling management for 3d mpsocs,” in Proceedings of the International
Symposium on Circuits and Systems, pp. 2237–2240, 2011.

[127] J. L. Ayala, A. Sridhar, and D. Cuesta, “Invited paper: Thermal modeling and
analysis of 3d multi-processor chips,” Integration, the VLSI Journal, vol. 43,
pp. 327–341, Sept. 2010.

[128] C. Zhu et al., “Three-dimensional chip-multiprocessor run-time thermal man-
agement,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 27, pp. 1479 – 1492, aug. 2008.

[129] W. Kim, M. Gupta, G.-Y. Wei, and D. Brooks, “System level analysis of
fast, per-core dvfs using on-chip switching regulators,” in Proceedings of the
International Symposium on High Performance Computer Architecture (HPCA),
pp. 123–134, Feb 2008.

[130] F. Clermidy, F. Darve, D. Dutoit, W. Lafi, and P. Vivet, “3d embedded multi-
core: Some perspectives,” in Proceedings of the Design, Automation Test in
Europe Conference Exhibition, pp. 1–6, Mar. 2011.

[131] D. Truong and et al., “A 167-processor computational platform in 65 nm cmos,”
IEEE Journal of Solid-State Circuits, vol. 44, pp. 1130 – 1144, Apr. 2009.

[132] D. Truong and et al., “A 167-processor 65 nm computational platform with
per-processor dynamic supply voltage and dynamic clock frequency scaling,”
in Proceedings of the IEEE Symposium on VLSI Circuits, pp. 22 – 23, Jun.
2008.

[133] N. Ioannou, M. Kauschke, M. Gries, and M. Cintra, “Phase-based application-
driven hierarchical power management on the single-chip cloud computer,”
in Proceedings of the International Conference on Parallel Architectures and
Compilation Techniques, pp. 131–142, Oct 2011.

[134] P. Gratz, B. Grot, and S. Keckler, “Regional congestion awareness for load
balance in networks-on-chip,” in Proceedings of the International Symposium
on High Performance Computer Architecture, pp. 203–214, Feb 2008.

[135] S.-Y. Lin and e. al., “Traffic- and thermal-aware routing for throttled three-
dimensional network-on-chip systems,” in Proceedings of the International
Symposium on VLSI Design, Automation and Test, pp. 1–4, Apr. 2011.

153

Bibliography

[136] C.-H. Chao and e. al., “Traffic- and thermal-aware run-time thermal man-
agement scheme for 3d noc systems,” in Proceedings of the International
Symposium on Networks-on-Chip, pp. 223–230, May 2010.

[137] N. Dahir, R. Al-Dujaily, T. Mak, and A. Yakovlev, “Thermal optimization in
network-on-chip-based 3d chip multiprocessors using dynamic programming
networks,” ACM Transactions on Embedded Computing Systems, vol. 13,
pp. 139:1–139:25, Apr. 2014.

[138] E. Kakoulli, V. Soteriou, and T. Theocharides, “Intelligent hotspot prediction for
network-on-chip-based multicore systems,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 31, pp. 418–431, Mar.
2012.

[139] F. Liu, H. Gu, and Y. Yang, “Dtbr: A dynamic thermal-balance routing al-
gorithm for network-on-chip,” Computers and Electrical Engineering, vol. 38,
pp. 270–281, Mar. 2012.

[140] G.-M. Chiu, “The odd-even turn model for adaptive routing,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 11, pp. 729–738, July 2000.

[141] A. Michos, “A novel concurrent validation scheme for hardware transactional
memory,” Master’s thesis, TU Delft, 2012.

[142] J. de Klerk, “Cachebalancer: A communication latency and utilization aware
resource manager,” Master’s thesis, Delft University of Technology, 2014.

[143] S. Kumar, “Tmfab: A transactional memory fabric for chip multiprocessors,”
Master’s thesis, Delft University of Technology, 2010.

[144] N. Miura and et al., “A scalable 3d heterogeneous multicore with an inductive
thruchip interface,” IEEE Micro, vol. 33, pp. 6–15, Nov 2013.

154

Samenvatting

De aanhoudende stijging van de door een nieuwe generatie toepassingen geëiste rek-
enprestaties drijft het aantal rekeneenheden van de moderne multiprocessor-systemen
omhoog. In het dark silicium tijdperk worden de prestaties en de integratiedich-
theid van dergelijke systemen echter bemoeilijkt door thermische beperkingen. Deze
beperkingen worden groter bij driedimensionale (3D) geı̈ntegreerde systemen, als
gevolg van de complexe thermische eigenschappen van de 3D IC’s. Dit proefschrift
onderzoekt het ontwerp van efficiënte, temperatuur-gestuurde multiprocessor archi-
tecturen, en presenteert methoden om gelijktijdige optimalisatie van thermisch en
functioneel gedrag mogelijk te maken. Deze onderwerpen worden in drie achtereenvol-
gende hoofdstukken behandeld waarbij ieder hoofdstuk een specifiek thema behandelt.

Hoofdstuk 2 onderzoekt de efficiëntie van multiprocessor architecturen vanuit het
perspectief van de geheugenhiërarchie en presenteert technieken die gericht zijn op
het effectieve beheer en overdracht van on-chip gegevens en op minimalisatie van
de tijd die gebruikt wordt voor geheugentoegang. In het geval van shared geheugen
multiprocessor architecturen, wordt dit bereikt door Persistence Selective Caching
(PSC) en CacheBalancer schema’s die invloed hebben op welke gegevens worden
opgeslagen in on-chip geheugens, waar ze worden opgeslagen, en voor hoe lang.
Hierdoor kan de geheugenhiërarchie zich aanpassen aan veranderend functioneel
gedrag, het gebruik van hardware componenten balanceren en, het allerbelangrijkste,
de gemiddelde wachttijd en energie per geheugentoegang verminderen. Hoofdstuk 2
presenteert het Pronto systeem dat een efficiënte overdracht van gegevens mogelijk
maakt bij het verwerken van berichten van en naar microprocessoren, door de rol van
het verwerkingselement in het beheer van de gegevensoverdrachten te minimaliseren.
Pronto vermindert op effectieve wijze de indirecte kosten bij het opzetten en beheren
van gegevensverwerkingen waardoor de communicatie-wachttijden korter worden.
Bovendien vereenvoudigt Pronto de semantiek van de gegevensbeweging doordat
implementatie-details van berichtencommunicatie voor de software programmeur
worden verborgen waardoor transfers uitsluitend op taak-niveau kunnen worden

155

Samenvatting

gespecificeerd.
Thermische-bewust ontwerp voor 3D Integrated Circuits (IC) door middel van de

Nagata’s vergelijking - een wiskundige voorstelling van het dark silicium probleem –
wordt onderzocht in hoofdstuk 3. Dit hoofdstuk verkent de thermische ontwerpruimte
van 3D-IC’s gebaseerd op deze vergelijking, en stelt een hoog niveau ontwerppro-
ces voor om de specifieke invloed van individuele ontwerpparameters op thermisch
gedrag van 3D IC’s te karakteriseren. De resultaten van deze verkenning verbeteren
de state-of-the-art door de verkregen nieuwe inzichten in de kritieke rol van ver-
mogensdichtheid, thermische geleidbaarheid en 3D constructie bij de vorming van
hotspots in 3D IC’s. Voortbouwend op deze inzichten is Ctherm ontwikkeld ten beho-
eve van thermische-bewust ontwerp voor multiprocessor systems-on-chip (MPSoC).
Ctherm maakt de gelijktijdige beoordeling van thermische en functionele prestaties
van MPSoC’s mogelijk aan het begin van het systeemontwerp en vergemakkelijkt
de exploratie van thermisch gedrag met behulp van een automatisch gegenereerd
fijnkorrelig opgedeeld silicium oppervlak, alsmede wachttijd en energiemodellen van
systeemcomponenten. De effectiviteit van dit raamwerk wordt aangetoond door de
toepassing van een aantal praktische ontwerpen variërend van floorplanning en tem-
peratuursensor plaatsing en rekentaken. De karakterisering en de Ctherm omgeving
verbeteren ons begrip van het thermisch gedrag van 3D IC’s, en geeft ons een praktisch
sjabloon voor het realiseren van thermisch-bewuste ontwerpgereedschappen voor 3D
IC’s.

Het beheren van de thermische problemen die zich voordoen in 3D MPSoCs
wordt onderzocht in hoofdstuk 4. Temperatuurregeling wordt typisch uitgevoerd
door middel van Dynamische Thermal Management (DTM) door continu activiteit
en energiegebruik van systeemcomponenten aan te passen. Een belangrijk nadeel
van state-of-the-art DTM ligt in haar onvermogen rekening te houden met het niet-
uniforme thermische gedrag van 3D IC’s, wat leidt tot ineffectief beheer van temperat-
uren en tot slechtere systeemprestaties. In hoofdstuk 4 wordt een nieuw 3D Dynamic
Voltage Frequency Scaling (DVFS) algoritme geı̈ntroduceerd dat rekening houdt met
deze ongelijkmatigheden, effectief temperaturen handhaaft binnen een veilig bereik,
en systeemprestaties maximaliseert binnen de beschikbare thermische marges van
de individuele verwerkingselementen. Dit hoofdstuk presenteert ook een adaptieve
verbindingspaden-strategie om de impact van de thermische gradiënten van netwerk-
on-chip gebaseerde 3D-architecturen te verlagen door dataverkeer langs verbindingen
met een laag temperatuurprofiel te sturen. De beschreven Immediate Neighbourhood
Temperatuur (INT) adaptieve verbindingspaden methode reduceert dataverkeer van ge-
bieden met thermische hotspots, gebaseerd op temperatuur-informatie over de directe
omgeving en op de warmteoverdrachtskenmerken van 3D IC’s, zonder de noodzaak

156

Samenvatting

van een globaal temperatuur-meet netwerk. De daaruit voortvloeiende verspreiding
van dataverkeer over meerdere verbindingspaden resulteert in een evenwichtiger
thermisch profiel en verlaagde bedrijfstemperaturen van het systeem.

Dit proefschrift onderzoekt de kritieke problemen die het realiseren van thermisch
geoptimaliseerde 3D IC’s bemoeilijken, en detailleert voor de reductie van het dark
silicium verschijnsel veelzijdige oplossingen.

157

Samenvatting

158

Acknowledgements

Our legacy lies in our people – those whose lives we form a part of, and those that
become an inseparable part of our own. Through all the greatness that we achieve,
it is these people that define the sum total of who we are and the value of what we
contribute. This dissertation is the end result of a journey that began a little over 6
years ago. I had only just started my Msc thesis, and was thrilled to be building my
first multiprocessor. Little did I realize that this project would go on to seed what
eventually became the Naga many-core processor. Hidden amongst its many victories,
this journey also played host to innumerable setbacks and disappointments. It is
through these that I came to understand and accept failure as an important element of
the learning process. This final chapter of my dissertation is dedicated to honouring
those that gave me the strength to stand tall through countless battles, and the courage
to take the road less traveled.

First, Rene van Leuken. Rene has been my advisor since I started working at
the Circuits and Systems (CAS) group as an Msc student in the winter of 2008. He
gladly obliged when I went up to him looking for an extra project to do alongside
my coursework. Whether he was actually glad, safe to say, we will never know.
Rene is a man with a calm demeanour, and an extremely sharp mind. He is most
often that person in the room who, at the end of a technical discussion, with the
simplest of questions, demolishes even the most solid argument. He is capable of
administering a potent dose of humility to the ambitious student drunk on success,
and instilling fearlessness in those in doubt of their own abilities. He exhibits the
traits of a great teacher – someone that treats his students with respect, giving them
a chance to learn regardless of their background. I shall forever hold great respect
for him, and remember his willingness to put his weight behind plans simply on the
basis of my word. There is much more that I could say about him, but I suspect it
would be inappropriate to have an acknowledgement longer than the dissertation itself.
Nevertheless, Rene’s efforts are as intricately woven into this dissertation as my own.

Amir Zjajo and I started working together only towards the end of the second

159

Acknowledgements

year of my PhD. Our fascination for power and temperature management pulled us
into what became an intensive two year effort that yielded some of our most exciting
results. It is with Amir that I progressed from writing like an academic, to writing like
a scientist. This is no coincidence, as Amir himself is a brilliant scientist. Judicious
in his work, meticulous in his reviews, gentle by nature, and a good listener, Amir is
the kind of teacher that every budding scientist needs. One cannot help but become a
little more intelligent just by spending an afternoon with him. That this dissertation is
in the form it has taken today is a testament to Amir.

It has been my privilege to have had Alle-Jan van der Veen as my promotor
through the course of my PhD. He is an extremely intelligent man with standards
higher than the stack of books that occupy his desk at any given point in time. I hold a
deep sense of respect for his ability to delve into subjects so distinct from his own, and
quickly develop a profound understanding of its most intimate concepts. His incisive
comments are often all that one needs to convert a good scientific argument into an
excellent one. Over the years, I have developed a sincere appreciation for his role in
nurturing CAS, and leading it through what I knew were tough times.

Michel Berkelaar’s role in this journey is that of a guiding light, much like Gandalf
in the Lord of the Rings. His humble disposition masks an extremely sharp intellect,
and his intuitive understanding of human sensitivities lends his every critique a
genuine sense of encouragement. He seems to always have a clear sense of what is
important, and is empowered with the ability to deliver profound clarity even in times
of confusion. A lifetime of gratitude would be insufficient in matching the value of
his counsel.

Alexander and Huib contributed immensely to the design of Naga, and the in-
frastructure for SystemC simulation and high-level synthesis. It is their invaluable
experience and insight that enabled many of the system design activities that we
executed during the COBRA project.

I am sincerely grateful to Dirk Stroobandt, Jose Pineda de Gyvez, Francois
Pecheux, Koen Bertels and Geert Leus for taking the time to read this dissertation, and
for agreeing to be part of my defense committee. It was Francois that introduced me
to the SoCLiB simulation platform which quickly became our simulation framework
of choice. Was it not for our meeting, Ctherm would be an order of magnitude slower
in its simulation speed. It was Prof. G Indumathi and Prof. Raveesha K.H. who
provided me with much inspiration and encouragement early in my academic career.
I will remain eternally grateful to both of them.

Like a parent, my greatest joys came to me through my students. It was my
privilege to serve both formally and informally as advisor to a large group of bright
students working on their thesis projects, and in the process watch them develop into

160

Acknowledgements

independent, fearless, critical-thinking engineers. It is through the eyes of Radhika and
Arnica (my dearest friends and the two first ladies of COBRA), Tasos, Mitzi, Anupam,
Jayesh, Jurrien, Kim and Ram that I got to explore subjects which I otherwise would
never have had enough time for. Martijn, Milovan, Keke, Jaco, Wouter and Kiki were
kind enough to involve me in decisions at important junctures in their work, and made
for great company in the 17th floor design room. It is this set of people that defines to
a great extent what I take away from my PhD, and who I became in the course of it.
Their street signs are not the only mark they leave behind.

Minaksie Ramsoekh, the glue that holds everything together. CAS is a diverse
group in both its technical focus as well as its staff. Minaksie is that smiling force
that transcends all this diversity, and turns it into the friendly cohesive unit that it is.
Her personal connection with every member of the group is abundantly clear in the
sheer number of inside jokes she has running with most of us. Since I left CAS, I’ve
missed seeing her in the morning, listening to her singing old Hindi songs. I now look
forward to getting yelled at by her for not coming to visit more often. CAS would be
very different without her. The same holds for Rosario whose work keeps our many
projects ticking like clockwork.

Antoon Frehe’s efforts in keeping our compute infrastructure running smoothly
meant that I never spent a day without access to my machine. Despite having troubled
him for over 7 years, he’s still as friendly as the day I first met him. Always ready to
help, never without a solution, and proactive to the bone, Antoon is one cool system
admin that I’m very grateful to have worked with. I must also thank Snits for tirelessly
working with me through all these years, and for being a faithful companion on the
17th floor. A large friendly bunch of students and staff members made CAS a lively
and truly memorable place to be. Jorge and Andrea Simonetto brought our social
activities to life with their enthusiasm and energy. Raj, Chocka, Venkat, Sundeep,
Augusto, Esteban, Seyran, Shahzad, Mohammad Karami, Hadi, Hamid, Rocio, Sina,
Francesco, Georg, Yuki, Shingo, Matt, Dony, Tao, Mu, Hyung-June, Qin, Yu Bi,
Shahrzad, Andrea, Harald, Millad, Adib, Jeroen and Yan Xie made for wonderful
colleagues. Wim, thank you for the many wonderful conversations.

There were also many others outside of CAS that made my experience so memor-
able. The ever sharply dressed Said Hamdioui was the one that chaperoned me at my
first conference (DATE 2011), and graciously introduced me to the rockstars of our
field. Koen, Stephan, Zaid and Carlo served as committee members for the defenses
of a majority of our Msc students, and in doing so, provided important feedback that
influenced the course of our work. Many thanks go out to Roel Seedorf and Anthony
Brandon for their willingness to help out with the Rvex VLIW core. On a daily basis,
Roy and Mariska provided the friendliest conversations at the Service Point, as did

161

Acknowledgements

the Sodexo ladies who, in addition, made sure that what I wanted to eat was always
available. I sincerely thank Nininha Tavares for being so friendly and for taking care
of our working environment so well.

Hannelore, Judith, Germaine, Willem, Mary, Marlies, Ismail and Ineke deserve
special mention for giving me an opportunity to do something different every summer
since 2009. The Introduction Programme is something that has become an inseparable
part of me, and has given me wonderful friends and the best of memories. Not to
forget, it was where I learnt the art of bartending. Young Mi, thank you for getting me
involved in the programme’s equivalent for PhD students.

Belgian beer, good food and genuine conversations are essential towards suc-
cessfully overcoming the daily challenges of exploratory research. I thankfully find
myself surrounded by dear friends that are in no short supply of any of these three.
Adi, Rohan and Sarah, Yash, Raj, Puneet, Ghazaleh, Renu, Ashima, Arvind, Despina,
Valia, Niraj, Suriya, Karthik, Phadnis, Elisa and Eduard, Chocka, Sachin, Manju,
Sridevi and Rein, Axy and Ravi, Luisa, Trivik, Nundlall, Eleonora, Mallika, and
Kajal, are some of the dear people that brought me much happiness and fulfilment
outside of work. It is in their company that I found my life enriched with music, dance,
theater, drama, magic, meditation, startups, philosophy, tiramisu, American candy,
travel, and most importantly, love. Yash also served as my ”external consultant” on
thermodynamics. The fun group of people at bootcamp, the lindyhop group, and the
folks at Delftsbleau made for excellent companions.

Growing up as the youngest in my family, I was always awestruck by the stellar,
larger than life personalities of my sisters. I often found myself wondering how they
became as amazing as they are. Two decades have passed, and I’m still in search
of that answer. Their strength and concrete will are inspiring, and their unrelenting
concern for me serves as a constant reminder of what unconditional love really is.
My parents taught me the importance of hard work and sincerity by example. They
taught me the importance of fighting for principle, of being fearless in the face of
every adversity if you believed your actions to be just, and right. They instilled in
me the values that I hold dearly to this day – compassion, kindness, selflessness,
unconditional respect for people and animals, courage, and faith. Everything good in
me, I’ve received from them. And I shall consider it my fortune if I can give to my
children as much as they’ve given me. I am but a reflection of my family.

I’ve always believed in the adage – “A rough road leads to the stars”. However,
prolonged travel over rough roads, just as in real life, can leave you disoriented, and
wondering why you chose that road in the first place. At such times, it was Sharmishta
that was my voice of reason. It was her reassurance that gave me peace even in the
middle of the fiercest storms, and the strength to persevere. In moments of uncertainty

162

Acknowledgements

she gave me clarity, and in those of weakness, she gave me strength. Through the ups
and downs, she kept me anchored, never letting complacence or failure get the better
of me. And most importantly, she constantly reminded me of the importance of being
a good human being. Her support and encouragement has been truly limitless.

To all of these people, and many more that I could not mention, I am sincerely
grateful. Their contributions are deeply embedded within this dissertation, and forever
within myself.

163

Acknowledgements

164

Curriculum Vitae

Sumeet Kumar was born on 18th September
1986 in Kuwait, and grew up in the Indian
city of Bangalore. He received the Bach-
elor of Engineering degree in Electronics and
Communications from the CMR Institute of
Technology (affiliated to the Visveswaraiah
Technological University) in 2008. In the
first half of the same year, he led a team de-
veloping energy-efficient instruction set ex-
tensions for a sensor control network pro-
cessor at Indrion Technologies, Bangalore.
He received the Master of Science degree in
Microelectronics for his work on the TMFab
transactional memory fabric for chip multi-
processors, and the R3 router architecture for 3D networks-on-chip. From February
2011, Sumeet worked as a PhD researcher with the Circuits and Systems group at the
Delft University of Technology on the CATRENE funded Computing Fabric for High
Performance Applications (COBRA) project. He is a Graduate Student Member of
the IEEE, IEEE Circuits and Systems Society and the IEEE Computer Society, and
serves on the Program Committee of the International Symposium on Networking
and Computing (CANDAR), and as reviewer for the ACM Transactions on Embedded
Computing Systems (TECS). In his free time, he enjoys bouldering and dancing the
lindy hop.

Since March 2015, Sumeet works with the Imaging and Camera Technologies
Group (ICG) of Intel Corporation in Eindhoven, The Netherlands as Processor Tools
Engineer, designing domain-specific tools for the development of next-generation
media processing architectures.

165

Propositions

Propositions

1. The intelligent application of relatively small amounts of hardware can greatly
improve system performance and efficiency. [Chapter 2]

2. Seemingly insignificant variations in temperature margins within die stacks
have a considerable impact on the effective performance of 3D stacked multi-
processors. [Chapter 3]

3. The accurate simulation of operating temperatures is predicated on the granu-
larity of spatial and temporal power models used during thermal-aware design
space exploration. Though abstraction is a system architect’s friend, it is reality
that sours their relationship. [Chapter 3]

4. Thermal constraints in 3D stacked ICs are far more severe than those in conven-
tional single-die ICs. Adaptability is key to sustaining performance in the dark
silicon era. [Chapter 3,4]

5. The wide adoption of 3D stacking is hindered by the lack of clearly defined roles
for vendors in the semiconductor supply chain. The definition of an industry
standard dictating electrical interconnect, power and thermal specifications
for plug-and-play 3D integration will facilitate the unfettered development of
innovative systems without the hassles of intellectual property licensing.

6. We are inherently sequential in our thinking. The successful parallel program-
ming model will respect this limitation.

7. Learning through practice results in the creation of deep-seated knowledge. It is
essential to incorporate the element of practice within all aspects of education.

8. In a constructive democratic system, it is imperative for stakeholders to distin-
guish the rationality of opinions from that of the individuals that hold them.

167

Propositions

9. That our perceptions are coloured by our experiences is both our fortune, as
well as our misfortune.

10. The strength of one’s character lies in one’s ability to do that which is right
instead of that which is good.

These propositions are regarded as opposable and defendable, and have been approved
as such by the promotors prof.dr.ir. A.-J. van der Veen and dr.ir. T.G.R.M. van Leuken.

168

Stellingen

170

Stellingen

Stellingen

1. De intelligente toepassing van relatief kleine aantallen van hardware compon-
enten kan systeem prestaties en efficiëntie sterk verbeteren. [Hoofdstuk 2]

2. Schijnbaar onbeduidende variaties van de temperatuur marges in 3D IC’s heeft
aanzienlijke invloed op de effectieve prestaties van de aanwezige multipro-
cessors. [Hoofdstuk 3]

3. Nauwkeurige simulatie van bedrijfstemperaturen tijdens het onderzoeken van
thermisch gevoelige ontwerpruimte wordt gegeven door de compositie van de op
ruimte en tijd gebaseerde vermogensmodellen. Alhoewel abstractie veelal een
vriend van de systeemarchitect is, maakt de werkelijkheid hun relatie moeizaam.
[Hoofdstuk 3]

4. Thermische beperkingen in 3D IC’s zijn veel ernstiger van aard dan die in
conventionele IC’s. De sleutel tot het behoud van prestatie in het ‘dark’ silicium
tijdperk is aanpassingsvermogen. [Hoofdstuk 3,4]

5. De brede invoering van 3D IC’s wordt belemmerd door het ontbreken van
duidelijk omschreven rollen voor leveranciers in de semiconductor productieketen.
De definitie van een industriestandaard voor verbindingen, vermogen en ther-
mische specificaties voor plug-and-play 3D-integratie zal de onbelemmerde
ontwikkeling van innovatieve systemen vergemakkelijken, zonder het gedoe
over gebruiksrechten van intellectueel eigendom.

6. Wij zijn inherent sequentieel in ons denken. Een succesvol parallel program-
meer model zal deze beperking respecteren.

7. Leren door te doen resulteert in de creatie van diepgewortelde kennis. Het is
essentieel om het element van praktijk te integreren in alle aspecten van het
onderwijs.

171

Stellingen

8. In een constructief democratisch systeem is het noodzakelijk voor de stakehold-
ers om de rationaliteit van meningen te scheiden van de rationaliteit van de
individuen die deze mening hebben.

9. Dat onze waarnemingen worden gekleurd door onze ervaringen is zowel ons
geluk als ons ongeluk.

10. De kracht van iemands karakter ligt in zijn vermogen om dat wat juist is te doen
in plaats van dat wat goed is.

Deze stellingen worden opponeerbaar en verdedigbaar geacht en zijn als zodanig
goedgekeurd door de promotoren prof.dr.ir. A.-J. van der Veen en dr.ir. T.G.R.M. van
Leuken.

172

	Main Title
	Title Page
	Copyright
	Dedication
	Table of Contents
	Introduction
	Motivation
	Architectural Efficiency
	Thermal Constraints
	Temperature Management

	Research Questions
	Dissertation Outline
	Publication List

	Architectural Techniques for Efficient On-Chip Data Management
	Naga Architecture Overview
	Low-overhead Message Passing with Pronto
	Related Work and Motivation
	The Pronto Message Passing System
	Pronto API
	Hardware Architecture

	Experimental Evaluation
	End-to-end Message Transfer Latency
	Communication Overheads
	Application performance with Pronto
	Impact of input dataset size
	Impact of extraneous interconnect traffic on output jitter

	Conclusions

	Improving Data Cache Performance using Persistence Selective Caching
	Related Work
	Persistence Selective Caching
	Selective Caching Criteria
	Significance of Persistence Threshold
	Limitations

	Evaluation
	AMAT and Energy
	Overheads and Implementation Cost

	Conclusions

	Runtime Management of Shared Caches using CacheBalancer
	CacheBalancer
	Access Rate based Memory Allocation
	Pain-driven Task Mapping

	Evaluation
	Conclusions

	Exploring the Thermal Design Space in 3D Integrated Circuits
	Significance of parameters
	Thermal Characterization of Die Stacks
	Experimental Setup and Validation
	Characterization
	Thermal Conductivity (eff)
	Die Thickness and Stack Depth (lx,y,z)
	Power Density (Q/A)

	Conclusions

	Vertical Interconnect
	Electrical Performance
	Area
	Thermal Performance
	Conclusions

	Thermal-Aware Design Space Exploration
	Ctherm Framework
	Physical Model Generation
	Thermal-Functional Co-simulation Platform

	Evaluation
	Validation, Accuracy and Simulation Speed
	Design Cases

	Additional Media
	Conclusions

	Runtime Temperature and Power Management for 3D Multiprocessors
	Temperature-Aware DVFS for Stacked Die Architectures
	3D DVFS
	Initial Updates
	Thermal Runout
	Convergence Check
	Pull Up/Pull Down
	Write-Back and Reset:

	Implementation Considerations
	Evaluation
	Per-core Granularity
	Island Granularity

	Conclusions

	Temperature-Aware Adaptive Routing for Dynamically-Throttled 3D Networks-on-Chip
	Background
	Immediate Neighbourhood Temperature (INT) Adaptive Routing
	Temperature Monitoring
	Temperature Channel Considerations
	Thermal-Aware Dynamic Throttling
	Temperature-Aware Adaptive Routing Algorithm

	Evaluation
	Characterization of Throttling
	INT Evaluation

	Conclusions

	Conclusions
	Additional Contributions
	Future work

	Acronyms
	Acronyms
	Notation
	Notation
	Bibliography
	Samenvatting
	Acknowledgements
	Curriculum Vitae
	Propositions
	Stellingen

