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Fig. 1. Render of the Night Cityscape scene. Comparison of the
first frame between the original ReSTIR paper, our method and a
reference render. Rendered with M = 23, 1 sample per pixel

Abstract
The efficient rendering of scenes with many light sources

remains one of the most challenging problems in real-time
ray tracing. As the complexity of virtual environments con-
tinues to increase, with some scenes containing thousands
of light sources, traditional Monte Carlo methods strug-
gle to achieve acceptable noise levels under real-time con-
straints. This paper introduces a novel approach that com-
bines Reservoir-based Spatiotemporal Importance Resam-
pling (ReSTIR) with a specialised bounding volume hierar-
chy (BVH) structure to enhance light candidate generation
for scenes with many light sources. The BVH-assisted can-
didate generation is tested on multiple scenes, resulting in a
significant decrease in image noise levels measured with the
root mean squared metric (RMSE), along with improved vi-
sual quality from the first frame onward, especially in scenes
with numerous light sources illuminating local areas.

1. Introduction
Real-time rendering of scenes illuminated by many light
sources presents a significant computational challenge in
computer graphics. While ray tracing provides physically ac-
curate lighting solutions, the computational cost of evaluating
contributions from numerous light sources makes achieving
real-time performance difficult. In production environments,
tracing even a single ray per pixel may only be feasible on
high-end hardware, making the efficient use of each sample
critical for maintaining interactive frame rates. Reservoir-
based Spatio-temporal Importance Resampling (ReSTIR), in-
troduced by [Bitterli et al. 2020], represents a big advance
in handling complex lighting environments efficiently. Their
original algorithm demonstrates remarkable efficiency im-
provements, demonstrating similar visual fidelity, while of-
fering a speed-up by a factor of 6×-60× compared to Re-
sampled Importance Sampling (RIS) when rendering direct
lighting. ReSTIR works by repeatedly resampling a set of
candidate light samples and applying both spatial and tem-
poral resampling to leverage information from samples for
similar shading points, effectively multiplying the number of
samples considered per pixel, without the need for additional
sampling.

The original ReSTIR algorithm demonstrated the power of
spatio-temporal resampling for direct lighting but did not fo-
cus on optimising candidate generation. Recent extensions
like ReSTIR GI [Ouyang et al. 2021] and ReSTIR PT [Lin et
al. 2022] have expanded the technique to handle global illu-
mination, but still face challenges with initial candidate selec-
tion in many light scenarios. Meanwhile, dedicated research
on many-light sampling [Moreau et al. 2019; Boksansky et al.
2021; Shah et al. 2023] has explored specialized data struc-
tures without fully leveraging the benefits of reservoir-based
resampling.

The paper by [Moreau et al. 2019] has explored hierarchi-
cal data structures to accelerate direct lighting calculations.
For instance, dynamic many-light importance sampling ap-
proaches utilizing bounding volume hierarchies (BVHs) have
shown promise in efficiently identifying relevant light sources
[Moreau et al. 2019]. However, these approaches have a
high cost in both candidate generation and maintenance in dy-
namic scenes due to the frequent updates required for the ac-
celeration structures, potentially offsetting their performance
benefits [Moreau et al. 2019].

Despite these advances, the initial candidate generation phase
of ReSTIR, often chosen to be a uniform random selection,
remains a bottleneck when dealing with vast numbers of lo-
cally illuminating lights. The world-space properties of the
shading points and the light sources are not considered, which
can lead to suboptimal convergence rates and reduced render-
ing quality when real-time conditions strictly constrain sam-
ple budgets. [Boksansky et al. 2021].

Building on these foundations, we propose an integration of
ReSTIR with a specialised BVH, containing light sources and
their respective volumes of influence. While the light samples
are evaluated and reused by the ReSTIR algorithm, the light
candidates are generated by performing point queries for the
shading point to identify relevant light sources. We will inves-
tigate whether it is possible to integrate the BVH candidate
selection into the ReSTIR pipeline, and compare the perfor-
mance of the said candidate generation method on the aspects
of convergence speed, render time and memory usage against
that of the original ReSTIR with the goal to speed-up conver-
gence of many light renders like the scene demonstrated in
Figure 1

The remainder of this paper will describe the problem, the
proposed algorithm, the experiment methodology and the
conclusion in detail.

2. Problem Statement & Background
The rendering equation, as can be seen in Equation (1) ex-
presses the outgoing radiance Lo at point y in direction ω0

as an integral over all incoming directions ωi. In real-time
ray tracing—especially in scenes with dozens or hundreds
of streetlamps—the brute-force evaluation of this integral is
expensive. Instead, Monte Carlo integration approximates it
by randomly sampling incoming directions. To keep vari-
ance low, we employ importance sampling: we bias our sam-
ples toward directions (and thus light sources) that contribute



most through the bidirectional reflectance distribution func-
tion (BRDF) fr and the geometry term cos θi. Choosing the
right subset of lights for sampling is important in complex
environments since any light might potentially be relevant to
the shading without a beforehand evaluation of fr.

Lo(y, ω0) =

∫
Ω

fr(y, ωi → ω0)Li(y, ωi) cos θi dωi (1)

2.1. Light Sampling
Uniform sampling, which selects one light at random per
shading point and progressively averages the pixel colour af-
ter many iterations, often results in high variance and thus
noisy images. This is because lights in the distance, which
are less visible, are equally likely to be sampled as nearby
ones. An improved technique for sampling is Importance
Sampling (IS), which aims to reduce variance by sampling
N samples from an easier to sample distribution. We choose
a distribution p ∝ fr(ω) cos θ and calculate the Monte Carlo
estimate as described in Equation (2). In practice, instead of
a direction, a point on the light is sampled, which is then con-
verted to a direction to calculate the rendering equation. For
readability purposes, we will denote Lo as

∫
X
f(x) dx, where

f(x) ≡ fr(ω(x))Li(ω(x)) cos θ after dropping the viewing
direction ω0 and the shading point y, and introducing the con-
version function ω(x) from a point x on the light to a direc-
tion ω.

⟨L⟩IS =
1

N

N∑
i

f(xi)

p(xi)
≈ L [Bitterli et al. 2020] (2)

Perfect IS would sample from the actual distribution, which
is hard to normalise, thus sample from. Because of that an
easier to sample, but yet similar distribution is often used to
obtain good results, for example by evaluating the solid an-
gle and skipping the expensive visibility test. Still, IS has to
evaluate the probabilities for all lights to be able to sample
correctly.

2.2. Resampled Importance Sampling
Resampled Importance Sampling (RIS) is a technique intro-
duced to reduce the cost of IS by numerical sampling from a
distribution that is difficult to sample from analytically [Tal-
bot et al. 2005]. RIS works by selecting M candidates from
the total light area L with an easy-to-evaluate function, which
we call the source probability distribution function p. This
can even be a uniform distribution. Then we select the actual
sample xi from the selected M samples using the original,
more expensive to sample, target probability density function
(PDF) p̂. The target PDF can be the BRDF, but also a mix-
ture of visibility, geometry term and light contributions. It
is important to note that the expensive to sample from target
PDF is evaluated for M samples, where M ≪ L, but is not
sampled from. The M samples are given a weight, wi like in
Equation (3), which defines the distribution the final sample
is drawn from. A sample y ≡ xi is selected with RIS using
the estimator in Equation (4)

p(xi|x) =
w(xi)∑M
j w(xj)

where w(x) =
p̂(x)

p(x)
(3)

⟨L⟩MRIS =
f(x)

p̂(y)
·

 1

M

M∑
j

w(xj)

 [Bitterli et al. 2020] (4)

2.3. ReSTIR
Reservoir Spatio-temporal Importance Sampling (ReSTIR)
combines RIS with reservoir sampling and introduces spatio-
temporal reuse [Bitterli et al. 2020].

A reservoir is a data structure that holds one or more sam-
ples selected from a larger set, while also keeping track of
the number of candidates for which the reservoir was updated
with (M ) and the total weight of those candidates (wsum)
[Wyman 2021]. This reservoir can be used effectively for
RIS, as we only choose one sample from a stream of sam-
ples. The reservoirs are updated according to Algorithm 1.

Algorithm 1 Weighted Reservoir Sampling [Wyman 2021]

Global:
reservoir R,
total weight wsum ← 0,
sample count M ← 0

Function update(Si, wi):
wsum ← wsum + wi

M ←M + 1
ξ ← rand() ∈ [0, 1]
if ξ < wi/wsum then

R← Si

Function combine(R1, w1, M1, R2, w2, M2):
wsum ← w1 + w2

Mc ←M1 +M2

ξ ← rand() ∈ [0, 1]
if ξ < w1/wsum then

Rc ← R1

else
Rc ← R2

return Rc, wsum,Mc

ReSTIR keeps a fixed-size reservoir of light samples for ev-
ery pixel and updates the reservoirs during the RIS process.
Then it applies temporal reuse by merging the reservoir of the
pixel from the previous frame, and spatial reuse by merging
the reservoirs of the surrounding pixels. This reuse effec-
tively multiplies the number of samples considered per pixel
without the need to sample more.

The original ReSTIR algorithm, however, needs multiple
frames to find relevant light sources when used on a scene
with many lights, especially when there is a multitude of light
sources affecting a small, local region. To accelerate the light
selection and steer towards faster convergence, we suggest



building a bounding-box volume hierarchy (BVH) accelera-
tion structure to hold the light sources within their respective
volume of influence. This structure will then be used to cull
irrelevant light sources for any shading point. This effectively
sets the source distribution p(x) = 0 for all x whose influence
volume does not contain the shading point. To avoid bias that
could result from this, we suggest interleaving the samples
from the acceleration structure with uniformly drawn sam-
ples.

3. Proposed Algorithm
In the original ReSTIR paper [Bitterli et al. 2020], sam-
ples are generated uniformly over the area of emitters with
a source distribution p, as shown in Algorithm 2. In contrast,
we aim to sample emitters in a scene-aware fashion, prioritis-
ing those lights that are most likely to contribute to the shad-
ing point.

Our approach relies on an acceleration structure—in our case,
a BVH built over each light’s “influence volume”—which is
constructed once during scene setup. At render time, we per-
form a point query in this BVH for every shading point, ex-
tracting only the lights whose influence regions contain that
point. We then restrict sampling to this reduced subset. To
keep the unbiased property, we interleave one uniformly dis-
tributed emitter sample among every k world-oriented sam-
ples, ensuring that every light source has a non-zero chance
of being selected.

Algorithm 2 ReSTIR Initial Candidate Generation [Bitterli
et al. 2020]
Input: m ≥ 1
Output: Reservoir r
r ← empty reservoir
for i← 1 to m do

generate xi ∼ puniform ; // Sample on light
r.update (xi, p̂(xi)/puniform(xi))

3.1. BVH Construction
For the construction of the BVH for the lights, we need to
determine the influence radius, or rather volume, of the light.

In our renderer, we have chosen to only use triangular lights
for the sake of simplicity of modelling scenes. A simple ap-
proach would be to use the luminance value of the light source
as a factor in determining a sphere of influence.

The sizing factor Sr is a constant which has to be determined
for every scene individually. A list of primitives can then
be generated using the build primitives function of Algo-
rithm 3. These bounding boxes can be intersected using any
BVH construction and intersection library, which supports
sphere intersections and point queries.

A more sophisticated algorithm to construct the bounding
boxes takes into consideration the visibility of a certain light
source for a shading point. This method is more costly during
construction, but might lead to even faster convergence. To
achieve this, we suggest using an AABB instead of a sphere.

Algorithm 3 Simple BVH Construction
class LightPrimitive

Data: points: Vec3[], position: Vec3, radius: float
function set position

position←
∑

p∈points p/3

function get aabb()
min vec← position - Vec3(radius)
max vec← position + Vec3(radius)
return AABB(min vec, max vec)

function build primitives(lights)
Input : lights: list of Light, [l1, . . . , ln]
Output: primitives: list of (LightPrimitive, AABB)

primitives← empty list
foreach l ∈ lights do

pos← l.position

r← Sr

√
l.intensity · l.area

prim← new LightPrimitive(pos, r)
box← prim.get aabb()
primitives.append((prim, box))

return primitives

During the construction, we start with a zero-sized AABB.
We then cast i probe rays in different directions to determine
the distance to the farthest shading point in every direction
with for every ray tmax = radius. We adjust the size of the
AABBs min and max after every intersection to enlarge the
influence volume of the light, if any ray gets farther than the
existing AABB. By taking the farthest values from the light
source position, we ensure that no shading point that could
have chosen this source as its sample gets excluded. This
procedure is outlined in Algorithm 4.

Combining AABBs
If the light sources are not imported as objects but as separate
triangles, the AABB construction method will generate many
AABBs at a small distance from each other. This might result
in suboptimal render times, specifically in the performance of
point queries.

To mitigate this problem, we suggest combining light source
AABBs with a clustering algorithm. In our results, we used a
simple clustering algorithm based on proximity described in
Algorithm 5.

Optimising the BVH scaling
The earlier-mentioned parameter Sr is different for every
scene and needs to be adapted based on the scene scale and
light intensity. To automate the parameter tuning of our algo-
rithm, we propose to scale the AABBs automatically. There
are multiple algorithms possible for this purpose, but for sim-
plicity’s sake, we have chosen to go with a naive algorithm,
based on the min and max overlap count of the AABBs,
with a quadratic running time. This algorithm is described
in Algorithm 6. Used values are MAX OVERLAP = 5 and
MIN OVERLAP = 1 (Boxes don’t have to overlap, as the
self-overlap is counted).



Algorithm 4 Visibility-Aware AABB Construction
class LightPrimitive

Data: position: Vec3, radius: float
function get aabb(scene)

Input : lights: list of triangular lights,
scene: acceleration structure for ray intersect

Output: prims: list of visibility-aware primitives

min vec, max vec← position
sampled bounds← initialize empty bounds
for j ← 1 to i do

point← sample a random point on the area of the
light triangle

ray ← generate ray from point in random direc-
tion

Offset origin slightly outward depending on ray
direction

if not scene.intersect(ray, max t=radius) then
set the ray t to radius

expand sampled bounds to include hit point
min vec, max vec← sampled bounds

Algorithm 5 Combining Neighbouring AABBs
function combine aabbs()

Input : primitives: list of bounding-boxed primitives,
max distance: distance threshold

Output: combined groups: list of merged primitive groups

combined groups← empty list
visited← flag array for each primitive, all false

foreach primitive p in primitives do
if visited[p] then

Continue
group← initialize group containing p
visited[p]← true

foreach primitive q in primitives not yet visited do
if distance(p, q) ≤ radius then

add q to group
visited[q]← true

merged box← merge bounds(group)
merged ids← collect ids(group)
combined groups.append((merged box,

merged ids))
return combined groups

Algorithm 6 Optimize AABB’s scales
function OptimizePrims

Input: combined prims
count bounding-box overlaps
scaling← 1.0
while max overlap > MAX OVERLAP or

min overlap < MIN OVERLAP do
adjust Sr (smaller if big overlap, bigger else)
scale all boxes about centers
count bounding-box overlaps

3.2. Candidate Generation
To generate candidates from the BVH, we perform a point
query for the shading point to identify light sources that are
relevant to that shading point. From the light sources returned
by the BVH, we choose m samples uniformly at random. Ad-
ditionally, we want each light to have a non-zero chance of
being selected as a sample to avoid bias. We achieve this by
interleaving the samples generated by the BVH with samples
generated uniformly at random. For every k − 1 BVH sam-
ples, we pick 1 sample from a uniform distribution.

The PDF for the uniform distribution puniform (ReSTIR) is
calculated as shown in Equation (5). Let

• NL = total number of light sources in the scene

• A = area of the sampled light source

• r2 = squared distance from the shading point to the light
source

• cos θ = cosine angle between the light direction and the
normal of the light source

puniform(x) =
r2

cos θ

1

ANL
(5)

for the area of the light source A, a sampled point on the
light x, the angle between the triangle normal and the light
direction θ and the shading point.

For candidate generation using the BVH, we need to mod-
ify this source distribution function to reflect our generation
mechanism. Because we are now sampling from two different
distributions, we need to combine those distributions. We ap-
ply Multiple Importance Sampling (MIS) [Veach et al. 1995]
to do this. Let

• b = the number of BVH-based samples

• u = the number of samples generated by uniform

• Nf = number of light sources found by the BVH

• g = 1 if the sample was found by the BVH, 0 otherwise

We define both area-measure PDFs p1 and p2 as

p1 =
g

ANf
, p2 =

1

ANL
(6)

The mixed area measure PDF is then defined by

pA =
b p1 + u p2

b+ u
=

1

b+ u

(
b

g

ANf
+ u

1

ANL

)
(7)

Finally, converting from area measure to solid-angle measure

introduces the geometry term
r2

cosθ
with the resulting MIS

density being defined as in Equation (8).



pMIS(x) = pA ·
r2

cos θ
=

r2

cos θ

1

b+ u

(
b g

ANf
+

u

ANL

)
(8)

This PDF is then used to calculate RIS weight wi for a sample

i as wi =
p̂(xi)

pMIS(xi)
. In the case that the BVH has no inter-

sections (Nf = 0) we fall back to uniform sampling, which
results in b = 0 and u = m, effectively setting pMIS to the
same value as puniform would have been. The full sampling
function is outlined in Algorithm 7.

Algorithm 7 BVH-Aware ReSTIR Initial Candidate Genera-
tion
Input: m ≥ 1, k > 1, shading point y
Output: Reservoir r
r ← empty reservoir
b, u← 0, 0
F ← lights overlapping y via BVH query
Nf ← |F |
for i← 1 to m in parallel do

if Nf = 0 or i mod k = 0 then
l← uniformly sample from all lights
u← u+ 1
g ← 0

else
l← uniformly sample from F
b← b+ 1
g ← 1

xi ← sample point on light l
A← area(l),
r2 ← distance²(y, xi),
cos θ ← geometry term

pMIS(xi)← pA ·
r2

cos θ
// Equation (8)

r.update(xi, p̂(xi)/pMIS(xi))

4. Responsible Research
To ensure the integrity of our research, we took measures to
make our research open, reproducible and correct. All the
code, including the rendering engine and the models, is avail-
able on a Git repository. This ensures that our results are
reproducible by peers and can be verified. Also, the openness
of our approach ensures that curious-minded developers can
integrate the method into their rendering pipeline.

Furthermore, the experiments are designed to be able to eval-
uate the performance of our method in different environ-
ments, like scenes with few or many lights and with different
scales of geometry.

5. Experimental Setup
This section describes the experimental design employed to
evaluate our BVH light candidate generation. In the fol-
lowing sections, we will discuss the experimental setup, in-
cluding the rendering engine used, the scenes rendered and

the comparison method. Afterwards, the results will be pre-
sented.

5.1. Rendering Engine
To evaluate our method’s performance, we developed a min-
imal 3D rendering engine. This engine is designed to render
direct illumination and supports only diffuse surfaces, provid-
ing a controlled environment for our experiments. It utilises
the Intel® Embree ray tracing library [Wald et al. 2014]. The
engine incorporates various light sampling techniques, in-
cluding Uniform Importance Sampling, RIS, ReSTIR, and
our custom implementation using a light BVH. The source
code for the engine is publicly available on GitHub1.

5.2. Scenes
We selected four synthetic scenes, created in the Blender
3D modelling software, to test the algorithmic performance
across different scales and light–source configurations. Each
scene employs only features supported by our renderer. The
chosen scenarios are:

• Monkey [Blender Foundation 2002]: The Blender test-
ing monkey, Suzanne, illuminated by only one light
source.

• Colourful Mess: A compact arrangement of multiple ob-
jects illuminated by many coloured lights.

• Sponza [Crytek 2001]: A scene with a large number of
triangles, illuminated by one light source.

• Night Cityscape: A city model with a large number
of triangles, illuminated by many light posts and party
lights.

The models are also included in the Git repository, alongside
the code.

5.3. Experiments
For each scene, we have generated the following:

1. A RIS reference render [Talbot et al. 2005].

2. A ReSTIR reference render [Bitterli et al. 2020].

3. A render using our BVH–based sampling method.

4. A ground–truth render, produced via Uniform Impor-
tance Sampling with a high sample count (4096 samples
per pixel).

All scenes are rendered for 20 frames, each having one sam-
ple per pixel. We evaluated image fidelity visually and by
measuring the root mean squared error (RMSE) relative to the
ground–truth render (lower values indicate higher accuracy).
In addition, we recorded the per–frame rendering time as well
as the preprocessing time required to construct the BVH data
structure. To test the effect of the visibility-aware BVH con-
struction, we render the images with both techniques.

1https://github.com/RafayelGardishyan/
BVH-based-Light-Candidate-Generation

https://github.com/RafayelGardishyan/BVH-based-Light-Candidate-Generation
https://github.com/RafayelGardishyan/BVH-based-Light-Candidate-Generation


6. Results
The visual results, particularly from the ”Night Cityscape”
scene depicted in Figure 2, demonstrate the better perfor-
mance of our method in low-light, locally illuminated en-
vironments. Figure 2 illustrates a side-by-side comparison
where our approach, rendered with m = 32 and only 1 sam-
ple per pixel, side by side with the RIS and the ReSTIR tech-
niques, both rendered with the same parameters. It is visu-
ally apparent that our method produces a higher-quality im-
age with noticeably reduced noise, especially in areas close
to light sources. For instance, the illumination caused by the
light posts on the streets (highlighted by red and green insets)
is more accurately resolved by our technique. These chal-
lenging points within the scene converge more rapidly and
exhibit greater fidelity compared to the ReSTIR’s uniform
candidate generation approach.

The yellow inset, where the green party light has a greater
influence on the building wall, demonstrates the ability of our
method to identify the best light source nearby to multiple
light sources, where ReSTIR struggles to do so.

Furthermore, our technique shows the ability to identify dim
light sources that end up contributing to a shading point bet-
ter than uniform candidate generation, because of the world-
oriented approach. A good example of this is found in the
blue inset of Figure 2, where the light under the monkey is
detected by our algorithm. Our technique performs well, also
for other scenes. The comparisons of these scenes can be
found in Appendix A.

6.1. Effect of the radius sizing factor
During experimentation, we noticed that the BVH-guided
candidate generation has a worse performance when many
lights are selected by the point query. This affects both ren-
der times and image quality, which becomes more similar to
that of ReSTIR. Changing the Sr value during BVH construc-
tion helps mitigate this issue. The algorithm detailed in Algo-
rithm 6 works quite well for this purpose, and thus we com-
pare the results utilising that algorithm.

6.2. Real-Time Convergence
The sped-up convergence of our proposed method is further
substantiated in Figure 3, which showcases the progressive
rendering of the ”Night Cityscape” scene. This figure com-
pares our technique (right column, rendered with M = 32, 1
sample per pixel) against the Uniform Candidate generation
approach (left column, [Bitterli et al. 2020]) across frames 1
through 5 without temporal accumulation.

As shown in Figure 3, our method consistently produces im-
ages with lower noise levels from the initial frames. This
rapid convergence is particularly useful for real-time appli-
cations where immediate visual feedback is crucial. Specifi-
cally, our approach effectively illuminates challenging areas,
such as the party lights reflecting on building walls or the
light illuminating the monkey. In contrast, the uniform can-
didate selection implementation exhibits more pronounced
noise and slower convergence in these complex regions un-
der the single sample per pixel constraint. The uniform candi-

Fig. 2. The Night Cityscape scene. First frame comparison. Ren-
dered with M = 32, k = 8 neighbours for spatial reuse in a radius
of 5, 1 sample per pixel.

date generation of ReSTIR did not successfully find the green
party light in the initial frames, highlighting the efficiency of
our BVH-based sampling.

6.3. Error compared to reference
Figure 4 shows that our method achieves lower RMSE values
during the first few frames of the rendering process. As more
frames are accumulated, ReSTIR’s error converges toward
that of our approach. Across different scenes, the RMSE
varies, mostly noticeable in the fact that more complex scenes
start with a higher error and need more time to converge
(Night Cityscape and Sponza); nonetheless, our method’s er-
ror remains closely aligned with ReSTIR’s performance, thus
we see the results as trustworthy. For scenes with large,
more global illumination, the performance seems compara-
ble (Monkey).

In scenes containing only a few light sources, our method and
ReSTIR produce almost identical RMSE curves. In scenes
with many light sources, however, our approach has a con-
sistently lower error throughout rendering. This can also be
observed in the renders in Figure 5.



Fig. 3. The Night Cityscape scene. Frames 1–5, without accumu-
lation. Left: ReSTIR [Bitterli et al. 2020], right: Ours. Rendered
with M = 32, k = 8 neighbours for spatial reuse in a radius of 5, 1
sample per pixel

6.4. Render times & resource usage
When rendering with tuned Sr, the light BVH has a small
overhead. Figure 6 shows that the render times are on av-
erage 12% slower than for uniform candidate generation in
ReSTIR. This increase can be attributed to the unoptimized
implementation of the rendering engine, as well as the over-
head of the point queries and the expensive “find” operation,
to check if the BVH found the light source.

When building the visibility-aware BVH, the BVH construc-
tion time has a significant impact on render times when the
scene changes. On the other hand, the simple BVH construc-
tion method has a small set-up time and needs rebuilding less
often. Table 1 shows the additional overhead of rebuilding
the BVH. During experimentation, we found that the perfor-
mance of visibility-aware BVH construction is not better than
the simple strategy using the radius. This is detailed in Ap-
pendix B.

Furthermore, the handling of the light BVH has a low RAM
consumption, because of the small amount of bounding boxes

Model BVH Simple BVH Visibility Aware

Big City 0.3595 ms 2159.285 ms
Colorful Mess 0.4875 ms 2286.675 ms
Monkey 1.0 ×10−3 ms 0.7895 ms
Sponza 2.0 ×10−3 ms 1.5125 ms

Table 1: Median build time per mode and model

and the target to limit the overlap between the bounding
boxes, resulting in negligible extra memory utilised to store
the found lights. When used with improper values, how-
ever, memory consumption could become problematic. We
recorded an extra 4% of memory usage when rendering with
suboptimal parameters.

7. Discussion
Our results demonstrate that BVH-based light candidate gen-
eration offers benefits over the traditional uniform sampling
strategy, particularly in complex lighting environments con-
taining lots of local illumination. The improvements are
most pronounced in scenes with many light sources, such
as the ”Night Cityscape,” where uniform candidate selection
struggles to identify significant contributors to illumination in
early frames. In contrast, our BVH-based method efficiently
narrows down the candidate lights, improving convergence
speed and perceptual quality with a small per-frame compu-
tational cost increase.

Across most tested scenes, our method consistently outper-
formed ReSTIR in the early frames, excluding the Mon-
key scene, as evidenced by lower RMSE values and visually
cleaner renders. This improvement is largely attributable to
the spatial structure of the BVH, which allows the sampler to
prioritise lights based on proximity, rather than relying solely
on a uniform distribution or resampling over previous results.
In real-time contexts, where initial frame quality is critical,
this faster convergence is a compelling advantage.

Moreover, the qualitative results show that our method cap-
tures contributions from dim nearby light sources, but needs
more time to find distant light sources that contribute to the
image. This is apparent in Figure 3, where our BVH-based
sampling has an equal amount of noise as ReSTIR in darker
areas, where there are no light sources in close proximity.

In scenes with a low count of light sources, the performance
of our method matches that of uniform light selection, which
ensures that our method improves upon the established uni-
form selection.

However, our method has some limitations. The computa-
tional overhead is of the same magnitude as the difference be-
tween RIS and ReSTIR, but is still an additional slowing fac-
tor in the render time. Additionally, while BVH preprocess-
ing introduces an upfront computational cost, most scenes in-
clude static lighting, which justifies the computational over-
head to construct the light BVH. More so, when visibility
data is not accounted for, the overhead is minimal. Because
our experiments show that the performance of the BVH does



Fig. 4. Evolution of error (RMSE) in our scenes over frames rendered (accumulated). We compare ReSTIR [Bitterli et al. 2020] and our
approach for 20 frames. Rendered with M = 32, k = 8 neighbours for spatial reuse in a radius of 5

Fig. 5. Comparison of different scenes. Reference is rendered with
Uniform Importance Sampling, with 4096 samples per pixel. Re-
STIR and Ours rendered with M = 32, k = 8 neighbours for spatial
reuse in a radius of 5, 1 sample per pixel. Accumulated 20 frames

not improve with visibility awareness, we conclude that this
additional computation is too expensive to include.

Because our rendering engine is CPU-based and not opti-
mised, we measured performance per frame rendered and not
in time. The rendering and BVH candidate generation can be
accelerated when rendering on a GPU and will result in faster
frame times.

Overall, our findings suggest that incorporating a world-
space-oriented acceleration structure like a BVH into the light
candidate generation process enhances the effectiveness of
ReSTIR-based rendering. This structured approach is an al-
ternative to uniform sampling and improves sample reuse by
generating better samples from the first frames on.

8. Conclusions and Future Work
Our research addressed the challenge of rendering scenes
with many local lights in Monte Carlo ray tracers. By in-
tegrating a better candidate generation, which effectively is
a better sampling distribution, into the ReSTIR rendering
pipeline, we have demonstrated an easy and effective tech-
nique to achieve images with less noise from the first frames.

Fig. 6. Median frame times across different scenes. N = 20 for
each method. Frames are rendered with a resolution of 1920×1080
pixels. Rendered with M = 32, k = 8 neighbours for spatial reuse
in a radius of 5, 1 sample per pixel.

By interleaving the samples with uniformly generated candi-
dates, we avoided bias.

Our experiments show that this combined approach signifi-
cantly reduces noise and improves visual image quality from
the first frame on, especially in complex scenes with lots of
light sources. Our work contributes to the accessibility and
efficiency of real-time ray tracing, even for larger scenes.

The algorithm suggested by this paper can be improved on,
for example, in the automatic determination of the Sr param-
eter or experimenting with differently shaped bounding vol-
umes. Furthermore, several promising directions for future
research are identified. For example, dynamic scene support,
possibly with a top and bottom-level BVH, would be a good
addition to the algorithm. An implementation of the tech-
nique on a GPU-based rendering engine will also help prove
the suitability of the technique to existing applications. A
more challenging topic would be the integration of the tech-
nique with global illumination.

These extensions are a challenging follow-up to our research
and would help push the boundaries of real-time ray tracing.
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Fig. 7. The Colorful Mess scene. First frame comparison. Rendered
with M = 32, k = 8 neighbours for spatial reuse in a radius of 5, 1
sample per pixel.

A. More Scene Comparisons
This appendix provides a more in-depth comparison of the
Bounding Volume Hierarchy (BVH) based candidate genera-
tion algorithm against the state-of-the-art ReSTIR algorithm
across a variety of scenes. The comparisons focus on the cru-
cial first frame of rendering, which is of high relevance in
real-time rendering.

As shown in Figure 7, the BVH-based candidate genera-
tion algorithm extends its performance beyond the “Night
Cityscape” scene, but also for other scenes with many light
sources, like the “Colorful Mess” scene. By culling away ir-
relevant light sources, the algorithm identifies the most preva-
lent light sources much quicker. The visual improvements are
visible in the insets:

• The blue inset demonstrates better convergence of the
light, especially in the gradient from bright to less bright.

• The yellow and red insets show an earlier convergence
of subtle lighting.

• The green inset shows reduced noise levels on brightly

Fig. 8. The Monkey and Sponza scenes. First frame comparison.
Rendered with M = 32, k = 8 neighbours for spatial reuse in a
radius of 5, 1 sample per pixel.

lit surfaces, even with only one sample per pixel being
rendered.

In scenes with very few light sources, the improvements by
the BVH-based candidate generation are negligible. We do
measure, however, a similar performance as uniform candi-
date generation, which is expected, as our method is target-
ing scenes with a multitude of light sources. Consequently,
Figure 8 shows the visual similarities between the different
methods for scenes with a low emissive triangle count. For
the “Monkey” scene, both uniform and BVH-based candidate
generation show a better performance than plain RIS. For the
“Sponza” scene, this difference is negligible.

B. Visibility Aware BVH-Construction
This appendix provides additional details on the two BVH
construction strategies evaluated in our work. The simple
radius-based algorithm constructs the BVH purely according
to a radius heuristic (described in Algorithm 3). This method
is favourable due to its low construction cost and simple na-
ture. The visibility-aware variant (described in Algorithm 4)
tries to more closely align the light AABBs with the actual
visibility. To achieve this, our visibility-aware method shoots
rays to shrink the AABB parts that are not visible from any
shading point.

As shown in Figure 9, both BVH construction methods result
in similar visual quality. Furthermore, the simple BVH con-
struction method, for some scenes, results in a lower RMSE
error (Figure 10).



Simple BVH construction strategy

Visibility-aware BVH construction strategy

Night Cityscape Colorful Mess Monkey Sponza

Reference

Fig. 9. First frame comparison of all scenes using the simple and visibility-aware BVH construction strategies. Rendered with M = 32,
k = 8 neighbours for spatial reuse in a radius of 5, 1 sample per pixel.

Fig. 10. Evolution of error (RMSE) in our scenes over frames rendered (accumulated). We compare simple BVH construction (Re-
STIR+BVH) and visibility-aware BVH construction (ReSTIR+BVH - VA) for 20 frames. Rendered with M = 32, k = 8 neighbours
for spatial reuse in a radius of 5.
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