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Abstract

Triply Periodic Minimal Surfaces (TPMS) have earned great popularity in porous meta-
biomaterials by cause of unique mass transfer properties, tunable mechanical properties,
large pore space and high surface to volume ratio. Numerical and experimental studies
suggest a great potential for TPMS-based architectures in the treatment of segmental bone
defects, where supporting scaffolds are crucial in bridging the gap unable to heal naturally.
However, current studies are limited to investigating the properties of classic TPMS archi-
tectures. In this thesis, I present the design, fabrication and characterisation of a novel
type of meta-biomaterials inspired by TPMS morphology. I show a practical application
of Weierstrass equations to define Schwarz P, Schwarz D and Gyroid surfaces, which pro-
vides an opportunity to remove fundamental patches from the original surface and design
unique structures. Moreover, one of the developed designs applied basics of graph theory
to construct the material which mimics the randomness of the trabecular bone structure,
while preserving the benefits of regular TPMS morphology. The results demonstrate the
improved performance of the modified TPMS scaffolds compared to classic structures in
terms of permeability and compliance properties, crucial for the materials applied in or-
thopaedic implants. The porosity and permeability values of the developed metamaterial
were found to be in the range of trabecular bone. Additionally, the possibilities to simulate
the mass transfer properties of the novel material were examined in COMSOL and valu-
able qualitative results, like fluid velocity distribution and flow-induced wall shear stress,
retrieved. Overall my thesis introduces an innovative idea for biomaterial design and adds
a strong argument in favour of TPMS morphology application in the orthopaedic material
research field.

vii





1
Introduction

The progress in material science and additive manufacturing is a driving force for devel-
oping new metamaterials with novel combinations of properties: mechanical, mass trans-
fer, biological etc. Architectured cellular solids with triply periodic minimal surface (TPMS
hereinafter) morphology is an illustrative example of the advancement in this field. The
deep mathematical background and periodicity of the structure contribute to the simplifi-
cation of the design, reproducibility of samples and lowers computational cost of material
behaviour simulations. Therefore TPMS architecture has been a focus of a growing amount
of studies related to constructing materials, investigating their properties and discovering
the interrelation between the morphology and material behaviour.

In the previous paragraph, I have already introduced the term TPMS. Main character-
istics of the Triply Periodic Minimal Surface are encoded in the definition itself. The math-
ematical term minimal surface indicates a surface that locally minimises its area, triply
periodic means that the surface is created by the translation of unit cell in three directions
of an orthonormal basis in R3. The first TPMS were introduced by Karl Schwarz, including
Schwarz P ("Primitive") and Schwarz D ("Diamond") [49]. Later, Alan Schoen introduced
Gyroid [48]. The minimal surfaces, mentioned above, are the most extensively studied and
applied ones.

TPMS have earned great popularity in porous meta-biomaterials by cause of unique
mass transfer properties, variable mechanical characteristics, large pore space and high
surface to volume ratio. Moreover, similarities in morphological, mechanical and perme-
ability properties between trabecular bone structure and TPMS scaffolds were recently re-
ported [7, 9, 10, 22, 29, 37, 42, 56, 57].

Unique combination of high mechanical strength, relatively low Young’s modulus and
high yield stress were observed for TPMS scaffolds. However, in the study of Bobbert et al.
the stiffness of the TPMS scaffolds, produced from biocompatible Ti alloy, significantly ex-
ceeded the range for trabecular bone [10], while permeability and porosity were consistent
with it. That is why the implants, employing these structures, are prone to stress shielding
and consequently bone degradation according to Wolff’s law.
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2 1. Introduction

Good mechanical support at the early stages of bone healing and sufficient permeabil-
ity of scaffolds are necessary conditions for regeneration processes [10, 58]. It was also
discovered that surface curvature [7, 8, 45], pore shape and size [32, 34, 54], intercon-
nectivity [32] can orchestrate bone tissue regeneration. For instance, pore sizes >300 µm
are advised due to enhanced osteogenesis and vascular growth into scaffold [32]. Small
pores induce osteochondral ossification before osteogenesis [46]. Mechanical stimulation
and fluid shear stress, in particular, are also considered to be important regulators of bone
metabolism. It has been reported that fluid shear stress, generated by interstitial fluid flow,
triggers bone cells to release osteogenic signalling factors [55].

The research goal of this thesis is to design, fabricate and investigate the mechanical
and mass transfer properties of the scaffolds based on TPMS morphology with minor alter-
ations introduced by means of fundamental patches excision. The changes in the classic
geometry of TPMS are aimed to improve permeability and show the possibility of increas-
ing the compliance of the structure. The developed approach allows these two essential
characteristics of the material to reach values, desirable for orthopaedic implants.

Thesis outline
In the following section, I introduce theoretical concepts behind TPMS. Following that, in
chapter 2, the established design process, fabrication, experiments applied to the scaffolds
and the developed COMSOL model are described. Then in chapter 3, I cover the results
of the experiment and Finite Element simulation. The thesis is finalised with a Discussion
and Conclusion chapters 4,5.
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1.1. Theory of TPMS
In this part of the report, the theoretical knowledge required for a better understanding of
the thesis is provided. It includes basic theory of Triply Periodic Minimal Surfaces.

1.1.1. Minimal surface
As already mentioned, a minimal surface is a surface that locally minimises its area. A
simple example of a minimal surface is a soap film spread over a randomly shaped frame
without intersections.

Figure 1.1: Soap solution spread over the frame.

Like any physical system, soap film tends to minimise its energy according to the sec-
ond law of thermodynamics. Surface energy, E , is proportional to the surface area, S, and
can be described by formula E =σS, whereσ is a constant parameter, surface tension. Thus
minimal energy corresponds to a minimal surface. Noteworthy, researchers in the field of
TPMS also conducted soap film experiments in their work, which led to the discovery of
different forms of TPMS.

The defining characteristics of minimal surfaces is zero value of mean curvature, H ,
and non-positive value of the Gaussian curvature, K , at every point on the surface [26, 48].
According to the equations 1.1, 1.2 the second regularity already follows from the first one.

H = κ1 +κ2

2
, (1.1)

K = κ1 ∗κ2, (1.2)

where κ1 and κ2 are defined as principal curvatures of the surface at a given point as visu-
alised in figure 1.2. In line with the definition κ1 =−κ2 in every point, minimal surfaces are
as concave as they are convex, which is equivalent to the saddle- or flat-shaped surround-
ing of each point.
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Figure 1.2: The normal plane, containing the normal vector, n, to the surface at the point P, intersects with
the surface and creates a planar curve. The curvature, κn , of this planar curve can be evaluated as a
reciprocal of the radius of the osculating circle. If we let the normal plane rotate around the normal vector
and calculate curvature at the same point P for each curve of intersection, the maximum, κ1, and minimum,
κ2, values of κn are defined as principal curvatures.

1.1.2. Triply Periodic Minimal Surface
Structure: similar to a crystal structure, all TPMS consist of the simplest repeating unit
called a unit cell or a lattice fundamental domain. Consequently, the properties of TPMS
are defined on the level of unit cells. In figure 1.3 Schwarz P, Schwarz D and Gyroid unit
cells are illustrated. However, even smaller building blocks can be identified in TPMS.
These units under repeated symmetry operations, enable the construction of the infinite
periodic surfaces. The smallest possible building blocks are fundamental patches. A unit
cell can be constructed by proper attachment of patches to open edges of each other. The
principles of the assembling were discovered by Schwarz and successfully applied later by
other researchers. The principles comprised two rules: 1) if one of the boundaries of the
fundamental patch is a straight line, the minimal surface can be smoothly continued across
this line by 180◦ rotation; 2) if the fundamental patch meets the plane perpendicularly, the
mirror reflection of the patch would smoothly continue the surface [17]. In figure 1.3 the
unit cells of the TPMS, exploited in this thesis, are illustrated with the corresponding fun-
damental patches.

Figure 1.3: The unit cells of Schwarz D, Gyroid and Schwarz P with the fundamental patches highlighted in
alternating colours. Shape of the single fundamental patch is presented next to each unit cell.

Parametrization: two great mathematicians of the nineteenth century Riemann and Weier-
strass discovered equations which precisely define the minimal surface. These equations,
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known as Weierstrass equations, consist of three integrals which parameterize the surface
in terms of the complex analytic function R(ω) and map the complex plane to R3. In Carte-
sian coordinates the equations take the following form [26]:

x = Re
∫ ω0

0
e iθ(1−ω2)R(ω)dω, (1.3)

y =−Im
∫ ω0

0
e iθ(1+ω2)R(ω)dω, (1.4)

z = Re
∫ ω0

0
e iθ(2ω)R(ω)dω, (1.5)

Integration is carried out on an arbitrary path from 0 to ω0 in the integration domain on
complex plane. In figure 1.4 the integration domains, indicated by shaded region, for G,
P and D fundamental patches are illustrated. The function R(ω) determines the family of
minimal surfaces, with the varying parameter — Bonnet angle, θ, named in honour of Os-
sian Bonnet. He was the first one to discover the isometric (preserving intrinsic properties)
transformation between minimal surfaces [11]. For instance, Schwarz P, D and Gyroid be-
long to the same family, sharing the same function R(ω) = 1/

p
1−14ω4 +ω8. Thus their

fundamental patches can be transformed one into each other via bending and rolling [18].
In simple terms, along the track of Bonnet transformation (stretching and shrinking for-
bidden) from D surface into P surface Gyroid emerges. This happens at particular Bonnet
angle, derived by Schoen, ∆θG ' 38◦.

A) B)

Figure 1.4: A) Integration domain for G fundamental patch [19]. B) Integration domain for P and D
fundamental patches [20, 21]. The circular arc which limits the domain belongs to a circle of radius

p
2

centered at
(
−

p
2

2 ,−
p

2
2

)
.

After performing the integration over the specified domain with substituted Bonnet an-
gle for each surface (0◦ for D, 38◦ for G and 90◦ for P) the Cartesian coordinates X , Y , Z of
each fundamental patch are defined. The scattered plots of fundamental patches are repre-
sented in figure 1.5. The density of points is defined by the amount of selected integration
points in the integration domain.



6 1. Introduction

Figure 1.5: The scatter plots of D, G and P fundamental patches.

From fundamental patch to unit cell: to assemble the patches into a unit cell, two se-
quential steps should be implemented. First, twelve fundamental patches should be ar-
ranged into a skew hexagon, also called bounding cell. Then, multiple hexagons can be
assembled into the unit cell. For P and G it takes eight skew hexagons, while D unit cell
consists only of four hexagons.

The rules of merging fundamental patches were already described in the section 1.1.2.
Here I only provide the tables 1.1, 1.2, 1.3 with the coordinate linear transformation of the
single fundamental patch required to build one skew hexagon. The implementation was
borrowed from the papers of Gandy et al., but the major refinement was necessary to suit
the requirements of my project [19–21].

Starting with the scatter plot of one fundamental patch, P1, and applying operations
from the tables to each point of the scatter plot coordinates, constituting P1, the other fun-
damental patches, P2 — P12, are computed. This way, nodes of the surface, corresponding
to the original fundamental patch, are created.

Table 1.1: Linear transformations of the D fundamental patch coordinates to evaluate the twelve

fundamental patches which make up the skew hexagon of Schwarz D surface. Constants c1 and c2 equal
p

2
2

and aD
2 correspondingly.

Patch X ′ Y ′ Z ′

P1 c1(X −Y ) c1(X +Y ) Z
P2 −c1(X −Y )+ c2 Z c1(X +Y )
P3 Z −c1(X +Y )+ c2 c1(X −Y )
P4 −c1(X +Y )+ c2 −c1(X −Y )+ c2 −Z + c2

P5 −Z + c2 c1(X −Y ) −c1(X +Y )+ c2

P6 c1(X +Y ) −Z + c2 −c1(X −Y )+ c2

P7 −c1(X −Y )+ c2 −c1(X +Y )+ c2 −Z + c2

P8 c1(X −Y ) −Z + c2 −c1(X +Y )+ c2

P9 −Z + c2 c1(X +Y ) −c1(X −Y )+ c2

P10 c1(X +Y ) c1(X −Y ) Z
P11 Z −c1(X −Y )+ c2 c1(X +Y )
P12 −c1(X +Y )+ c2 Z c1(X −Y )
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Table 1.2: Linear transformations of the G fundamental patch coordinates to evaluate the twelve

fundamental patches which make up the skew hexagon of the Gyroid. Constants c1 and c2 equal
p

2
2 and aG

8
correspondingly.

Patch X ′ Y ′ Z ′

P1 −c1(X +Y ) −c1(X −Y )+2c2 Z +3c2

P2 c1(X −Y ) −c1(X +Y )+2c2 −Z +3c2

P3 −c1(X −Y )+2c2 Z +3c2 c1(X +Y )+4c2

P4 −c1(X +Y )+2c2 −Z +3c2 c1(−X +Y )+4c2

P5 Z +3c2 c1(X +Y )+4c2 c1(X −Y )+2c2

P6 −Z +3c2 c1(−X +Y )+4c2 c1(X +Y )+2c2

P7 c1(X +Y )+4c2 c1(X −Y )+2c2 −Z + c2

P8 c1(−X +Y )+4c2 c1(X +Y )+2c2 Z + c2

P9 c1(X −Y )+2c2 −Z + c2 −c1(X +Y )
P10 c1(X +Y )+2c2 Z + c2 c1(X −Y )
P11 −Z + c2 −c1(X +Y ) −c1(X −Y )+2c2

P12 Z + c2 c1(X −Y ) −c1(X +Y )+2c2

Table 1.3: Linear transformations of the P fundamental patch coordinates to evaluate the twelve

fundamental patches which make up the skew hexagon of Schwarz P surface. Constants c1 and c2 equal
p

2
2

and aP
4 correspondingly.

Patch X ′ Y ′ Z ′

P1 −c1(X +Y ) Z + c2 −c1(X −Y )+2c2

P2 −c1(X +Y ) −c1(X −Y )+2c2 Z + c2

P3 Z + c2 −c1(X +Y ) −c1(X −Y )+2c2

P4 −c1(X −Y )+2c2 Z + c2 −c1(X +Y )
P5 −c1(X −Y )+2c2 −c1(X +Y ) Z + c2

P6 Z + c2 −c1(X −Y )+2c2 −c1(X +Y )
P7 c1(X −Y ) −Z + c2 c1(X +Y )+2c2

P8 c1(X −Y ) c1(X +Y )+2c2 −Z + c2

P9 −Z + c2 c1(X −Y ) c1(X +Y )+2c2

P10 c1(X +Y )+2c2 −Z + c2 c1(X −Y )
P11 c1(X +Y )+2c2 c1(X −Y ) −Z + c2

P12 −Z + c2 c1(X +Y )+2c2 c1(X −Y )

The parameter a is a unit cell size of the surface implicitly defined by Weierstrass equa-
tions and integration domain. For the selected integration domains presented in figure 1.4,
aG = 2.6562,aD = 1.6857,aP = 2.1565. The result of implementing the transformations is
represented in figure 1.6. Each fundamental patch is highlighted in different colour.
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Figure 1.6: Scatter plots of D, G and P bounding cells (also refered to as skew hexagons).

The coordinates of the twelve patches all together comprise a so-called bounding cell,
specific for each surface. These bounding cells undergo linear transformations according
to the tables 1.4 — 1.6 and finally are assembled together into the unit cell.

Table 1.4: Linear transformations of the D bounding cell coordinates to evaluate the four skew hexagons
which make up the unit cell of Schwarz D surface. Constant c3 equals aD

2 .

Hexagon X ′′ Y ′′ Z ′′

H1 −Y ′+ c3 −X ′+ c3 Z ′

H2 Y ′ −X ′ Z ′− c3

H3 Y ′− c3 X ′− c3 Z ′

H4 −Y ′ X ′ Z ′− c3

Table 1.5: Linear transformations of the G bounding cell coordinates to evaluate the eight skew hexagons
which make up the unit cell of Gyroid. Constant c3 equals aG

2 .

Hexagon X ′′ Y ′′ Z ′′

H1 X ′ Y ′ Z ′

H2 −X ′+2c3 −Y ′+ c3 Z ′

H3 −X ′+ c3 Y ′+ c3 Z ′

H4 X ′+ c3 −Y ′+2c3 Z ′

H5 X ′ −Y ′+ c3 Z ′− c3

H6 −X ′+2c3 Y ′ Z ′− c3

H7 −X ′+ c3 −Y ′+2c3 Z ′− c3

H8 X ′+ c3 Y ′+ c3 Z ′− c3
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Table 1.6: Linear transformations of the P bounding cell coordinates to evaluate the eight skew hexagons
which make up the unit cell of Schwarz P surface.

Hexagon X ′′ Y ′′ Z ′′

H1 X ′ Y ′ Z ′

H2 −X ′ Y ′ Z ′

H3 X ′ −Y ′ Z ′

H4 −X ′ −Y ′ Z ′

H5 X ′ Y ′ −Z ′

H6 −X ′ Y ′ −Z ′

H7 X ′ −Y ′ −Z ′

H8 −X ′ −Y ′ −Z ′

After the applied transformations to the bounding cells, the distribution of the points in
three unit cells is computed. In figure 1.7 unit cells are illustrated with each skew hexagon
highlighted with different colour.

aG aP
aG

aG

aP

aP

aD
aD

aD

Figure 1.7: Scatter plots of D, G and P unit cells.

The infinite surface can be generated by appropriate translations of these domains. It
involves shifts on the size of the unit cell in three orthogonal directions which coincide with
the orthonormal basis of the unit cell.

This finalises the mathematical foundations of the conventional TPMS.

1.1.3. Porous solids
There are two major types of TPMS scaffolds design: sheet solids and network solids pre-
sented in figure 1.8 [30]. These approaches can be distinguished by the number of void
domains (labyrinths) they possess. Minimal surface sheet solids follow the structure of an
arbitrary TPMS, but walls of labyrinths have a non-zero thickness. Thus sheet solids have
two non-intersecting void domains. The second architecture of scaffolds (network solids)
is designed by complete filling one of the void domains with a material — one void domain
remains. For my thesis, all the samples were designed as sheet solids because my final
goal was to improve the permeability of the material, while filling one of the void domains
clearly impairs this property.
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Figure 1.8: On the left sheet solid architecture of 2x2x2 Gyroid unit cells. On the right network solid with the
same structure.

The thickness given to the surface affects the mechanical and mass transfer properties
of the scaffolds significantly. Samples with thicker walls can sustain higher mechanical
loads, while the permeability properties follow the opposite trend [10]. Previously, the wall
thickness and the unit cell size were the only variables in the design of TPMS sheet solids. In
this thesis, a new approach to alter mechanical and permeability properties is developed.
The idea is based on the fact that Schwarz P, Schwarz D and Gyroid TPMS are balanced
TPMS and, according to the definition of balanced surface, they separate space into two
disconnected congruent labyrinths. Thus any substance which entered one labyrinth can
not advance to another. By the introduction of extra connections between the labyrinths,
mass transfer and compliance of the scaffolds can be improved. These additional pores
can be created by means of fundamental patches removal. In more detail, the design of the
new type of metamaterials will be discussed in section 2.1.



2
Methodology

2.1. Design
In this section, I present the developed approach of TPMS geometry manipulation. This
technique was aimed to create a new type of metamaterial with improved mass transfer
and mechanical properties.

Material geometry was altered to answer the central question of this research: can mass
transfer properties and compliance of the material be improved by introduction of extra
channels, connecting two labyrinths. The developed designs of the novel metamaterial
were aimed to strike a balance between permeability and stiffness for the future applica-
tions in bone tissue implants.

2.1.1. TPMS manipulations
Suppose that we have a surface composed of Nx by Ny by Nz unit cells. As we already
know, the minimum unit of TPMS is a fundamental patch. One of the methods to achieve
labyrinths interconnection is to remove fundamental patches from the surface in a regular
or random way, with the restriction that the structure keeps its connectivity. When we move
further and make a transition from a surface to a solid scaffold for tissue engineering pur-
poses the restrictions on the number of removed units is imposed on the part of mechanical
and biological properties of the scaffold. The requirements regarding the pore sizes from in
vitro and in vivo studies suggest that pore sizes ≥ 300µm are recommended [32]. The target
values for porosity and stiffness follow from the biomimetic approach to optimise the in-
tegration of the prosthesis. The range of Young’s modulus for trabecular bone lies between
10MPa and 1570MPa [25]. The porosity equals 50%-90% [31]. A fairly high degree of vari-
ation follows from a great number of parameters influencing the trabecular bone structure:
body part, age, sex, health conditions etc.

2.1.2. Pore sizes
To design structures, according to the novel idea of this thesis, the hole size originating from
the fundamental patch excision should have been estimated. For our purposes, rough es-
timation of the critical pore diameter, the diameter of the largest sphere that can freely

11
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pass through a pore, was applicable. The approach entails that the pore size can be ap-
proximated by the inscribed circle of the polygon maximally close to the pore shape. The
diameter of the incircle equals to the ration of the polygon area to its perimeter:

di nci r cle =
S

P
, (2.1)

Previously considered fundamental patches of Schwarz P, Schwarz D and Gyroid sur-
faces have three vertices and can be represented by a triangular saddle-shaped patch as
shown in figure 2.1. From the Heron’s formula, it follows that the radius of an incircle in a
triangle with sides of length A, B , C is given by:

ri nci r cle =
√

(p − A)(p −B)(p −C )

p
, (2.2)

where p = P
2 . The lengths of the sides are computed as the distance between the ver-

tices.

Figure 2.1: Approximation of D, G, P fundamental patches by a triangle D1D2D3, G1G2G3, P1P2P3

correspondingly.

The diameters of the incircles for one fundamental patch, d1, and two adjacent funda-
mental patches, d2, for each surface type with the unit cell size of 2 mm are presented in
the table 2.1:

Table 2.1: Incircle diameters. Pore size estimation.

Schwarz D Gyroid Schwarz P
d1(µm) 339 309 248
d2(µm) 518 518 408

2.1.3. Regular and random designs
Taking into account the above requirements and estimated pore sizes, I developed five
material designs built on Schwarz P geometry (four regular and one random); four — on
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Schwarz D and Gyroid geometries (three regular and one random for each) with the unit
cell size of 2 mm. The computational and fabrication complexity and the geometry stan-
dards of the specimens in the compression test were balanced by the previously specified
size [27].

There is one major difference between regular and random approaches. In the regular
design, the modifications (patches excision) are applied to a single unit cell, while in the
random design, the starting point is the whole structure composed of multiple unit cells.
This way the translation symmetry is preserved only in a regularly designed scaffolds. It
will be explained in more detail further.

Schwarz P regular designs: in the figure 1.7 Schwarz P unit cell is illustrated. The regular
redesign goal is to remove fundamental patches from the unit cell, preserving the structural
connectivity when spanning the volume with unit cells. .

Even though there are a lot of different possibilities to remove fundamental patches, I
have decided on the following four designs, presented in the figure below:

Figure 2.2: Four unit cells with alternative designs of the P unit cell. On top the designs with the changes
introduced to the skew hexagon geometry. Below the unit cells without two (left) and four hexagons (right)
in one unit cell. Next to each design the ratio between the area of the modified unit cell, A, and the original
one, A0, is added.

Each of the modified cells meets the following criteria:

• the incircle diameter of the introduced holes in the surface is more than 300 µm;

• the structure of connected unit cells does not lose its integrity.

However, for the design without four skew hexagons non-connected hexagons, located
at the corners of the spanned volume (two at the top and two at the bottom), had to be
removed. On top, it was orange and blue hexagons from the unit cells in opposite corners,
at the bottom purple and yellow ones from another opposing pair of corners.
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Schwarz D and Gyroid regular designs: the same criteria were applied to the alterations
in Schwarz D and Gyroid unit cells geometries. Only four skew hexagons comprise one D
unit cell, maximum one skew hexagon could be removed. In the figure 2.3 three designs
originating from the D geometry are illustrated:

Figure 2.3: Three unit cells with alternative designs of the D unit cell. On top the designs with the changes
introduced to the skew hexagon geometry. Below the unit cells with one hexagon removed.

The three designs for Gyroid morphology are presented further in figure 2.4. The skew
hexagon without six fundamental patches, used for the D and P variations, did not con-
tribute to the current geometry due to the small hole sizes.

Figure 2.4: Three unit cells with alternative designs of the G unit cell. On top the Gyroid unit cell with skew
hexagons without four fundamental patches. Below the unit cells without two (left) and four(right)
hexagons.
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Random designs: as I already mentioned for random designs the starting point is the
whole structure of Nx by Ny by Nz unit cells. For my project the selected values were:
Nx = 5, Ny = 5 and Nz = 8. This way the scaffolds can be inscribed in a cuboid with the
dimensions 10 mm×10 mm×16 mm. In the figure 2.5 three initial surfaces are presented.

Figure 2.5: By this moment one should easily recognise the surfaces, which are from left to right are D, G, P
surfaces. Each structure consists of 5×5×8 unit cells each. Unit cell is differently coloured. The orientation
of P structure is a different, making the labyrinths more visible.

In these structures, each fundamental patch has either two or three neighbouring fun-
damental patches. Two neighbours correspond to patches which constitute boundary layer,
while internal fundamental patches have three neighbours. The patches are defined as
neighbours if they share one side. Thus the whole structure can be converted to an undi-
rected connected graph. In this graph, each node matches a fundamental patch, and the
graph edges establish connections between the neighbour patches. Since one P or G unit
cells already has 12×8 = 96 fundamental patches and D — 12×4 = 48, for clarity, I provide
an example of graphs representing each unit cell:

Figure 2.6: Connected graphs of the D, G and P unit cells. Each dot is a graph node representing
fundamental patch in a unit cell, while edges connecting nodes represent shared patch boundaries.

Apparent difference of the D graph compared to the P and G is attributed to the fact that
all the hexagons in the D unit cell do not share a common edge with each other. To go from



16 2. Methodology

one unit cell graph to the graph of the whole structure, one extra step should be taken: all
unit cells should be added and the connections between them established.

The idea of the random scaffold design is as follows:

• create a sequence of visiting nodes in the graph. It can be a list of nodes in ascending
or descending order, as well as randomly generated. Depth-first search (DFS) algo-
rithm with different root nodes can also be applied to generate the node sequence;

• going through the list, check whether it is possible to remove the node and at least
one of its neighbours so that the graph remains connected, and hence the scaffold;

• if so delete the nodes from the graph and corresponding patches from the surface,
else move on with the list.

The other minor requirements I imposed on the algorithm for the rationality of the de-
sign were: the boundary patches (ones which touch the bounding cuboid) are prohibited
from removing, and all the remaining patches should have at least two neighbouring ones
to prevent an excessive amount of pores. Again for simplicity, I illustrate the processed
surfaces with only two unit cells arranged vertically, though the developed procedure is
applicable for arbitrary dimensions (multiple of unit cell size) of the surface:

32 fp of 1926 of 48 14 of 192Figure 2.7: From left to right: D, G, P 1×1×2 unit cell structures with randomly removed patches. The path
through the graph was defined by the DFS algorithm.

2.1.4. From the surface to the sheet solid
All the previously described steps of the scaffold’s design result in a scatter of points on the
surface, so-called point cloud. With the help of an open-source software MeshLab a point
cloud can be converted to a solid [12]. In MeshLab the triangular mesh is built on the given
points interpolating the shape of the designed surface. Next, an offset mesh is created,
contouring the original one and closing the gap between them. In more detail:

1. the file with PLY extension, containing the coordinates of the points, is imported into
MeshLab;
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2. the surface is reconstructed with the Ball Pivoting algorithm (three nodes form a
face if the ball with specified radius R touches them without containing any other
point) [6];

3. with the Marching Cube algorithm the surface is given thickness of 200 µm, this way
the aimed porosity of the samples is in the range of trabecular bone porosity;

4. the final structure is exported as an STL file for further processing.

An example in the figure 2.2 with Schwarz P surface design without two hexagons in
each unit cell illustrates previously described steps:

2 31 4

Figure 2.8: Applied sequence of steps to Schwarz P without 2 hexagons 5×5×8 unit cells design. Numbers
above the arrows correspond to the step number in the list.

An important point that in the MeshLab when the surface is converted into solid double
surface is built on the inside and outside of the original one and the gap between is closed
to create a continuous surface. This procedure has a side effect of filling the pores and
reducing their initial size by approximately 40%, depending on the geometry. This effect is
illustrated in the figure 2.9.

Figure 2.9: Conversion of Schwarz P unit cell surface (without 6 fundamental patches in each hexagon) into
the solid.
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2.2. Fabrication
Due to the complex morphology, TPMS scaffolds are mostly fabricated by means of addi-
tive manufacturing (3D printing). The material selection and dimensions of the structure
define the suitable printing process. Two similar techniques: selective laser melting (SLM)
and selective laser sintering (SLS) are commonly used to produce structures from metal
alloys and thermoplastics on the microscale [10, 22, 51]. Another relatively fast and cheap
method of printing on the submicron scale is stereolithography (SLA). The latter was the
printing process applied to fabricate the samples for this research.

A resulting STL file can be used as an input file for Stereolithographic (SLA) 3D printer.
The one I worked with to print my samples was FormLabs, Form2 SLA 3D printer. Accord-
ing to the SLA concept a laser is used to cure liquid resin into hardened plastic. The critical
characteristics of the printer and the material used are summarised in the table 2.2. After
printing the samples, IPA rinsing is required to remove excessive resin and post-curing —
for improvement of mechanical properties.

Table 2.2: 3D printer and printing material properties [3, 4]

3D printer
Grey Pro material

(post-cured)
Laser Spot

Size
Layer

Thickness
Ultimate Tensile

Strength
Tensile

Modulus
Elongation

Flexural
Modulus

140 µm 50 µm 61 MPa 2.6 GPa 13% 2.2 GPa

To minimise the risks of print failure, in the PreForm software the supports for the
structure are generated [1]. They reinforce overhangs and other weak areas and should
be removed after post-curing. Since the support pins are continuously connected to the
samples at touchpoints, it is difficult to remove them without damaging the structure. To
mitigate sample damage, I used support pins, originating from the raft, only at the bottom
of my model as presented in the figure 2.10.

A)

B)

Figure 2.10: A) A visualisation of the STL file with P random surface design 5×5×8 unit cells opened in the
PreForm software with generated support scaffolds and raft. B) Print layer where the support meets the
sample walls, touchpoint size equals 0.2 mm.
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There are no strict instructions from the manufacturer how to remove the support with-
out damaging the structure, but the laboratory tests showed that the support pins were
easier to cut off after heating the sample at 70◦C for 6-8 minutes.

2.3. Porosity of the scaffolds
Further, I would like to focus on the macroscale parameters which describe the porous ma-
terials and can be directly measured or estimated.

The thickness of walls is implicitly incorporated in the term porosity, φ, the critical pa-
rameter of the porous structures. It defines the percentage of void space in a scaffold and
can be expressed by the following equation:

φ= 1− ρsca f f old

ρmater i al
, (2.3)

where ρmater i al is the density of the raw material the scaffold made of and ρsca f f old

is the apparent density of the structure and equals to the scaffold weight divided by its
volume. The porosity values of the printed scaffolds were measured with the dry-weight
method.

2.4. Permeability of the scaffolds
Another crucial characteristics of the biomaterials applied in the bone tissue implants is
permeability. It characterises the resistance to flow through the pores and depends exclu-
sively upon the configuration of the scaffold’s void space [44].

The main issue related to measuring the permeability of porous solids is the absence
of widely accepted standards to run the experiment. In our group, the permeability of
the scaffolds is experimentally determined with a falling head test. Further, the theoreti-
cal background of this experiment will be explained.

It is practically impossible to fully resolve the Navier-Stokes differential equation, gov-
erning the motion of the fluid through the scaffolds. Therefore the simplified version of it —
Darcy’s law, neglecting inertia forces, is applied. Darcy’s law links the flux q to the pressure
gradient vector ∇p:

q =−κ
µ
∇p, (2.4)

where κ is an intrinsic permeability of the medium, µ is a dynamic fluid viscosity. But
this law is only valid when the flow is in a laminar regime. The dimensionless quantity used
to predict the flow condition is Reynolds number, Re.

Re = ρud

µ
, (2.5)

where ρ is a fluid density, u — a fluid velocity, d — a characteristic length (in our case
the maximum pore size in the scaffold) and µ was already introduced as a dynamic fluid
viscosity [23]. Small Reynolds number, for porous media below 10, suggests laminar flow,
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while large Reynolds number corresponds to the turbulent regime when inertia forces are
comparable with the viscous forces [44]. However, it should be noted that there is no sharp
transitions between laminar and turbulent regimes at a particular Reynolds number and
the inequality Re < 10 only allows us to assume that the flow is definitely laminar and the
permeability coefficient κ can be estimated from Darcy’s law.

$%
$∆ℎ

ℎ 1

2

Figure 2.11: Falling head permeability test setup. 1 — sample; 2 — sample holder, silicon plug.

In the falling head experiment, the height of the water column h and time t are tracked
over the course of the experiment. From the acquired data points, one can estimate the
permeability of the sample through the following derivations:

Q = κAsρg h

µL
, (Darcy’s law) (2.6)

where As is the cross-sectional area of the sample, L — the thickness of the scaffold in
the flow direction.

Q = Ac

∣∣∣∣∆h

∆t

∣∣∣∣, (law of conservation of mass) (2.7)

where Ac is the cross-sectional area of the column. Equating the two expressions for
the total discharge Q, we get the following:

− Ac
∆h

∆t
= κAsρg h

µL
, (2.8)

the minus sign on the left side of the equation due to ∆h < 0. In the limit ∆h/∆t =⇒
dh/d t :

− dh

h
= κAsρg

µL Ac
d t (2.9)

Integrating the left side over the water column height from an initial h0 to a current h
and the right one over the time from zero to t :

ln
h0

h
= κAsρg

µL Ac
t (2.10)
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From the previous equation ln h0
h = αt . Coefficient α equals to the slope of a straight

line in the plot of lnh0/h versus t . The permeability coefficient can be extracted from the
value of α:

κ=αµL Ac

Asρg
(2.11)

2.5. Mechanical testing of the scaffolds
The mechanical compression test was performed on all of the 80 samples according to the
ISO 13314:2011 standard [52]. LLOYD Instruments LR 5K materials testing machine with 5
kN load cell was set to 0.05 mm/s strain rate and 1 N of preload. The end criteria of the
test was defined as 50% of strain ⇔ 8 mm displacement (for a few initial samples the limit
was set to 44% ⇔ 7 mm displacement).

From a single experiment, the stress-strain curve of a sample can be retrieved. Pro-
ceeding with the analysis of the curve, the characteristic parameters can be determined:
yield strength, elastic gradient, plateau stress. The typical look of the stress-strain curve for
porous and cellular metals is illustrated in figure 2.12A. Though the material I use is resin
the trend of the material behaviour under the compression is the same.

(

) (%)

A) B)

Y’

0.2

Figure 2.12: A) Stress σ as a function of strain e [27]. 1 — quasi-elastic gradient; 2 — elastic gradient; 3 — first
maximum compressive strength. B) Stress-strain curve for the ductile material [2]. The yield point — Y , the
offset yield point — Y ′, the ultimate strength at point U , F corresponds to the fracture point.

The slope of the linear dependence between stress and strain is the elastic modulus E .
The yield point in figure 2.12B defines the elastic limit of the material, the strain will be
recovered after unloading. So the yield strengthσy equals the stress value at the yield point
Y . If the point is not easily defined the offset yield point Y ′ at 0.2% plastic strain could
be used for the rough estimation. The plateau stress is a typical trend in the stress-strain
curve for porous materials in contrast to solid structures. After the yield stress is reached
the weakest layer of the structure collapses. While the machine continues to apply pressure
at the constant strain rate, the next layers collapse in turn. This explains the observed os-
cillations in the curve. After all the layers deformed and the scaffold is pressed to an almost
solid structure — the densification occurs. The plateau stress, σpl , is defined as the mean
of the stresses between the 20% and 30% (40%) strain rate. The end of the plateau is defined
as the stress at 130% of the plateau stress.
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2.6. Micro-CT scanning
The morphological properties of four samples were assessed with the micro-CT scanning.
It was performed on a Phoenix Nanotom scanner with the voxel size of 7.5 × 7.5 × 7.5 µm.
Top view DICOM slices were then extracted with 7.5 µm slice increment and processed in
Fiji [47]. The picture on the front page of this report is a slice of one of the designed samples.

The mean and standard deviation values of the samples’ wall thickness and pore size
were computed using the plugin for bone image analysis BoneJ [16]. In this plugin, the
thickness at a point is defined as the diameter of the greatest sphere that fits within the
structure and which contains the point. In a similar way, the pore size is measured with the
distinction being that the points relate to the void space. These analyses were made on a
series of 800 images (image 750 — image 1550). The pre-processing consisted of cropping
the images so that the void space outside the sample was removed, thresholding the images
(“Auto Threshold”), followed by five iterations of a noise removal algorithm (“Despeckle”).

The Hausdorff distance filter was applied in MeshLab to the designed mesh and the one
reconstructed from the micro-CT scan sample [12]. This filter measures how similar two
geometries are, computing a distance metric between two meshes. The Hausdorff distance
dH (X ,Y ) between the two subsets X and Y is defined by

dH (X ,Y ) = max

{
sup
x∈X

inf
y∈Y

d(x, y)),sup
y∈Y

inf
x∈X

d(x, y))

}
(2.12)

Figure 2.13: Components of the calculation of the Hausdorff distance between the green line X and the blue
line Y [13]

2.7. COMSOL model
In order to predict the novel material behaviour without the necessity of printing large
number of samples and conducting the experiments, the finite element modelling can be
applied. To predict the fluid dynamics in the developed metamaterial, I used the finite ele-
ment analysis software COMSOL [38].
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In COMSOL, I developed 3D single-phase fluid flow model simulating the passage of
water through the material. One of the common approaches is to simulate only the void
space of the scaffold, where the fluid can go. Even this way, the simulation of the whole
scaffold, consisting of 200 unit cells, is enormously computationally expensive. To create
a feasible COMSOL simulation, the void domain of a single layer (5×××5×××1 unit cells), cor-
responding to each regular design, was used as an input geometry file. For the random
design, each layer is different from the others, which is why this type of design was left out
of focus. The regular designs also have two planes of symmetry orthogonal to each other.
Consequently, only a quarter of a layer was simulated.

The geometry of the void space can be computed with the Boolean operation NOT, ap-
plied to the rectangular cuboid with the quarter layer size, 2.5a ×××2.5a ×××a, and the scaffold
itself. This procedure was implemented in the SolidWorks software. The crucial parts of it
are visualised in the figure 2.14, using an example of the original Schwarz P design.

Figure 2.14: A) Solid rectangular cuboid with the dimensions of the quarter of Schwarz P layer. B) Quarter of
one layer of the Schwarz P scaffold (2.5×××2.5×××1 unit cells). C) The rectangular cuboid and the scaffold
combined. D) The void domain acquired after the Boolean operator NOT was applied to the geometry in C.

All other designs presented in the section 2.1.3 and the non-modified geometries un-
dergone the same procedure. The mesh was exported as a Parasolid file for further import
in COMSOL.

The model set-up and the results of the FE simulations will be presented in chapter 4,
because the model tuning relied on the experimental results.
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Results

3.1. Fabricated samples
Five samples of each design were printed, including standard surfaces without removed
patches. This resulted in 80 samples in total: 30 for P surface, 25 for G and D surfaces. The
picture of each type of scaffold design with the removed support is presented in the figure
below.

Figure 3.1: A) Schwarz P designs from left to right: without 2 hexagons, without 4 fundamental patches,
normal, random, without 4 hexagons,without 6 fundamental patches. B) Schwarz D designs from left to
right: without 1 hexagons, without 4 fundamental patches, normal, random, without 6 fundamental
patches. C) Gyroid designs from left to right: without 2 hexagons, without 4 fundamental patches, normal,
random, without 4 hexagons.

25
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A closer look at the samples is provided in the figure 3.2:

Figure 3.2: Scaffolds with Schwarz D, Gyroid and Schwarz P geometries. On the left of each row — the unit
cell composing the strucuture.

3.2. Experimental results
In this section, I present the main experimental findings of my thesis: the results of falling
head permeability test and compression test for all of the fabricated samples.

3.2.1. Permeability test results
The procedure of the falling head permeability test was previously described in the sec-
tion 2.4. After fixing each sample in the setup, three identical tests in series were performed.
The sample permeability was extracted from the data points and averaged over three mea-
surements. The height of the water, h, and its velocity, u, at each time point were estimated
as:

h = p

ρg
, (3.1)

u = dh

d t
, (3.2)
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where p is a pressuremeter readings, located immediately above the sample. The typi-
cal raw data plot of water height above the sample versus time is presented in the figure 3.3.
Each separate peak is related to one water column going through the sample.

Figure 3.3: An experiment data retrieved after three consecutive experiments on the Schwarz P surface
sample. The data is discrete due to 1 s time resolution of the data acquisition system.

From the equation 2.11 it follows that the sample permeability is proportional to the
slope of a straight (in theory) line on the graph lnh0/h vs t . In practice, the dependency of
the variable lnh0/h on time during the experiment is not linear. This is a result of turbulent
flow at the beginning of a test when the water pressure is relatively high. With water going
through the sample, the pressure drops and the flow regime switches to laminar, with the
previously derived equations being applicable for permeability estimation. Thus only the
data points with Reynolds number less than 10 were selected for calculations, which were
the data points at later stages of the test.

Figure 3.4: A) lnh0/h vs time for Schwarz P sample test 1, figure 3.3. B) Part of the graph where the water flow
is in laminar regime (Re ≤ 10). The red dashed line is a linear fit of the data points.
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In the figure 3.4B the slope of the dashed line corresponds to the parameter α from the
equation 2.11. The permeability of the sample, extracted from the slope, was averaged over
the three tests.

In a similar way, all the samples were measured, and an average and standard devia-
tion for the permeability coefficients κ of each scaffold design were computed. Results are
summarised in the table 3.1.

Table 3.1: Experimental permeability coefficients, κ, for the developed scaffolds. Each cell represent the
average value, µ, and the standard deviation, σ. The units of the coefficient are 1e −9 m2.

normal 1 hex. 2 hex. 4 hex. 4 fund. patches 6 fund. patches random

P
1.527

(0.092)
—

1.816
(0.054)

3.463
(0.310)

2.200
(0.041)

2.173
(0.051)

1.992
(0.061)

D
2.154

(0.044)
2.546

(0.088)
— —

2.061
(0.040)

2.204
(0.047)

2.593
(0.051)

G
0.716

(0.080)
—

1.007
(0.054)

1.678
(0.028)

1.185
(0.062)

—
1.351

(0.055)

To determine if there is a statistically significant difference between the measured per-
meability values, Student’s t-test was applied. The t-test evaluates the difference between
the means of two groups taking into account the number of samples in each group and
their standard deviation. This test was applied pairwise to each group of samples with P, D,
G geometry separately. As the number of samples in each group was the same, and the sign
of the difference is irrelevant, the two-tailed Independent t-test was used. In the Indepen-
dent t-test the t-value is calculated by the following formula [15]:

t − value = µ1 −µ2√
(n1−1)σ2

1+(n2−1)σ2
2

n1+n2−2 ·
√

1
n1

+ 1
n2

(3.3)

where µ1 and µ2 are average values of the sample sets, σ1 and σ2 — variances, n1 and n2

— number of data points in each set. Calculated p-values are presented in the appendix B,
the ones related to the permeability data are presented in the tables B.1 — B.3. The signif-
icance level was set to 0.05.

3.2.2. Mechanical test results
In the figure 3.5, the mean compression graphs of the 80 samples with 95% confidence
interval (CI) are displayed. The CI was calculated with the following formula:

C I =µ±1.96∗ σp
n

, (3.4)

in which µ is a mean stress value over the n = 5 samples, σ is a standard deviation.
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Figure 3.5: Mean stress-strain curves with 95% confidence intervals.

As can be seen in figure 3.5, there is an evident difference in the elastic region between
classic and modified geometries for all design groups. G samples showed much less wa-
vering in the plateau region than D and P scaffolds. At the same time, the densification
occurred in all the scaffolds.

From stress-strain curves characteristic parameters, previously mentioned in section 2.5,
were extracted: elastic gradient, yield stress and plateau stress. The mean and standard
deviation values were calculated for each design and gathered in the table 3.2. To define
whether the mechanical parameters of each design group are statistically different, the
two-tailed t-test was applied. The results of the test are summarized in the appendix B,
tables B.4 — B.12.



30 3. Results

Table 3.2: A combined table of permeability and compression test results.

Surface Design Permeability Elastic gradient Yield stress Plateau stress
10−9 m2 MPa MPa MPa

P normal 1.527 (0.092) 35.241 (4.319) 2.261 (0.193) 2.585 (0.095)
2 hexagons 1.816 (0.054) 12.867 (2.862) 0.854 (0.187) 0.940 (0.146)
4 hexagons 3.463 (0.310) 10.796 (2.924) 0.485 (0.067) 0.886 (0.051)
4 fund. patches 2.200 (0.041) 17.379 (4.761) 1.048 (0.262) 1.418 (0.193)
6 fund. patches 2.173 (0.051) 17.312 (2.178) 0.968 (0.140) 1.218 (0.118)
random 1.992 (0.061) 14.070 (2.130) 0.726 (0.118) 1.217 (0.122)

D normal 2.154 (0.044) 36.309 (7.734) 2.265 (0.371) 2.796 (0.280)
1 hexagon 2.546 (0.088) 6.598 (1.261) 0.189 (0.065) 0.922 (0.126)
4 fund. patches 2.061 (0.040) 22.190 (2.837) 1.115 (0.259) 1.205 (0.061)
6 fund. patches 2.204 (0.047) 24.194 (5.937) 1.573 (0.415) 1.658 (0.209)
random 2.593 (0.051) 17.210 (1.173) 0.790 (0.129) 1.102 (0.130)

G normal 0.716 (0.080) 54.969 (2.984) 3.076 (0.057) 4.225 (0.090)
2 hexagons 1.007 (0.054) 33.611 (3.956) 1.928 (0.181) 2.359 (0.221)
4 hexagons 1.678 (0.028) 13.148 (2.107) 0.734 (0.081) 0.953 (0.111)
4 fund. patches 1.185 (0.062) 13.057 (1.266) 0.940 (0.194) 1.287 (0.146)
random 1.351 (0.055) 21.751 (3.797) 1.236 (0.159) 1.804 (0.229)

The photos of the samples after the compression test are presented in the appendix C.
The failure modes were similar for matching designs. For instance, the asymmetrical de-
signs, like G without 2 hexagons, P without 2 hexagons and D without 1 hexagon, were col-
lapsing in the direction of the removed hexagons, figure 3.6.

Figure 3.6: From left to right: pictures of the P without 2 hexagons, G without 2 hexagons and D without 1
hexagon scaffolds after the compression test.

The other designs, except random ones, preserved the symmetry of the original unit cell
and failed layer by layer without displacement in a horizontal direction, figure 3.7.
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Figure 3.7: From left to right: pictures of the P and G designs without 4 fund. patches after the compression
test.

The previous figure does not include the picture of D without 4 fund. patches scaffold,
because the structure was found to be excessively brittle and lost structure under the com-
pression as shown in figure 3.8. It also applies to other designs from the D group, except the
one without 1 hexagon. Surprisingly, this design improved the mechanical performance of
the structure.

Figure 3.8: Picture of the D design without 4 fund. patches after the compression test.

3.2.3. Relation between porosity and physical properties
Microstructural morphology of porous materials can not be characterised with one macroscale
parameter. Thus permeability and mechanical properties can not be accurately predicted
without conducting an experiment or running a simulation. However, macro parameter
porosity φ is considered to be a valid one while noting the efficiency of the raw material
utilisation.

In figures 3.9 — 3.11 permeability, elastic gradient and yield stress are plotted against
the porosity. The mean dry-weight porosity values of the scaffolds are specified in the ta-
ble A.1. For clarity, correspondence between the abbreviations used in the graphs and the
unit cells’ geometry is provided.
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Figure 3.9: Scatter plot with the mean parameter values and the error bars set to standard deviation of the
Schwarz P designs.

Figure 3.10: Plots of the Schwarz D designs.
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Figure 3.11: Plots of the Gyroid designs.

In most of the graphs, the correlation between the physical properties and porosity is
disrupted from a linear trend. Since in some cases more porous scaffolds have lower per-
meability or more stiff. It suggests that artificially introduced channels in the scaffolds not
only increase the porosity but also significantly affect the topology of the surface and con-
sequently, the physical parameters of the scaffolds. Noteworthy, the design D without 4
fund. patches had a little lower permeability than the non-modified one.

To visualise how the characteristics of the samples from different surface groups relate
to each other, I plot combined permeability, elastic gradient and yield stress. From the
figures 3.12 — 3.14 it can be concluded that the overall linear trend does not prove to be a
good model for the designed samples.
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Figure 3.12: Combined permeability values of the Schwarz P, Schwarz D and Gyroid sample groups versus
porosity.

Figure 3.13: Combined elastic gradient values of the Schwarz P, Schwarz D and Gyroid sample groups versus
porosity.
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Figure 3.14: Combined yield stress values of the Schwarz P, Schwarz D and Gyroid sample groups versus
porosity.

The absence of the clear trend in the previous graphs can be attributed to the signifi-
cantly altered morphology of the modified scaffolds with the material removed. To quantify
the dependence between the permeability and porosity, elastic gradient and porosity, yield
stress and porosity for the scaffolds, the Pearson correlation coefficients were computed,
table 3.3.

Table 3.3: Pearson correlation coefficients.

Permeability Elastic gradient Yield stress
Porosity 0.87 -0.72 -0.73

Tradeoff between permeability and mechanical properties: it is clear that by removing
fundamental patches from the unit cell, the permeability of the samples can be increased
while the stiffness and yield strength will inevitably deteriorate. To quantify this interde-
pendence, I compute the ratio of the parameters, corresponding to the altered and original
structures. I assume these parameters to be statistically independent, thus the mean value
and the variance of the ratios are determined as follows:

E(X /Y ) =E(X )E(1/Y ), (3.5)

Var(X /Y ) =E(X 2)E(1/Y 2)−E(X )2E(1/Y )2, (3.6)

Applying the formulae to the collected data, the percentagewise ratios of permeability
and elastic gradient values were separately estimated.
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Figure 3.15: Schwarz P samples group. Percentagewise permeability (left) and elastic gradient (right) ratios
of the modified scaffolds relative to the normal one (with the original unit cell).

Figure 3.16: Schwarz D samples group. Percentagewise permeability (left) and elastic gradient (right) ratios
of the modified scaffolds relative to the normal one (with the original unit cell).

Figure 3.17: Gyroid samples group. Percentagewise permeability (left) and elastic gradient (right) ratios of
the modified scaffolds relative to the normal one (with the original unit cell).
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3.2.4. Micro-CT scan results
To assess the quality of the 3D printed samples, four scaffolds were subjected to micro-CT
scanning. With help of the image processing program, ImageJ with BoneJ plugin, stacks of
the produced images were analysed and the critical parameters retrieved [16, 47]. First of
all, the mean thickness of the walls and the mean pore size were measured, as displayed in
table 3.4.

Table 3.4: Micro-CT scan data.

Design Wall thickness [µm] Pore size [µm]
mean (SD) max mean (SD) max

P without 4 fp 322 (64) 579 1192 (327) 1917
P without 6 fp 291 (62) 468 1175 (321) 1532
D without 4 fp 262 (57) 521 1343 (216) 1816
G random 282 (50) 541 629 (96) 961

From the table above it is clear that all of the samples had higher thickness than the
design value of 200 µm. This could be explained by the imperfections in the printing and
postprocessing steps during the fabrication. Moreover, the location of the sample on the
printing plate influenced the printing quality, as clearly observed from the wall thickness
of the two P samples, fabricated in one batch. As the thickness was determined to vary
significantly between samples and it was not feasible to scan all 80 of them, for the sim-
ulations I used the designed thickness value. The mean pore size values significantly ex-
ceeded the critical value of 300 µm. It is explained by the performance of the analysing
algorithms, which compute the thickness of the background at each pixel of the image
and not the critical pore diameter, the diameter of the largest sphere that can freely pass
through a porous medium. Though there is no clear guidance on how to define pore size in
the porous medium, the critical diameter was shown to correlate well with the permeabil-
ity [40].

To explore the printing quality further, the 3D structure of one of the samples (D without
4 fundamental patches) was reconstructed. In the figure below the mismatch between the
designed structure and 3D printed one is clearly visible and the gap between the meshes
grows toward the top of the sample.
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Figure 3.18: On the left the reconstructed image of the scaffold from the micro-CT scan. On the right two
views of the original design (meshed one) aligned with the reconstructed scaffold.

In MeshLab one-sided filter is applied, i.e. d = supx∈X infy∈Y d(x, y)). Basically, for a set
of points x from a mesh X (reconstructed sample) the software searches the closest point
y on a mesh Y (design) to determine the Hausdorff distance. For the visualisation, com-
puted distance is represented in colourscale for each point, see figure 3.19. The mean error
between the meshes was 171 µm, with the maximum of 1167 µm. In the figure 3.19 the
clamping of 1% was applied to prevent almost uniformly coloured mesh since only for a
few points the gap reaches the maximum value.

Figure 3.19: Hausdorff distance filter applied to the reconstructed sample. The distance between the meshes
was linearly projected to the red-green-blue colormap.
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Fluid dynamics simulation: tuning model

and results

4.1. COMSOL model
To set up a valid model in COMSOL, a sequence of crucial decisions had to be made. I will
justify all of them in the subsequent subchapters describing each part of the model.

4.1.1. Mesh
Created Parasolid files with the void domain geometry were imported in COMSOL and
meshed with tetrahedral elements. The size of the elements was set to Extra coarse.

The mesh element type and the size directly affect the computation of a problem: how
long it takes a model to solve, the amount of memory required and how accurate the solu-
tion is. Naturally, the time needed for the solver to converge to the solution goes up with
the decrease of the element size. Thus the mesh convergence study should be performed to
be confident in the accuracy of the simulation data. To do that one of the models was run
with finer mesh (extra coarse, coarser, coarse and normal).The dependence of permeability
values on the maximal element size in the mesh is presented in the figure 4.1.

39
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Figure 4.1: Mesh convergence study of the Schwarz P without 4 hexagon design. The values in the graph
correspond to the relative difference in permeability for two meshes.

Since the difference in the permeability coefficient was negligible, the Extra coarse mesh
size (maximum element size 0.00151 m) was found to be a reasonable choice for optimisa-
tion of simulation time.

Figure 4.2: Tetrahedral mesh of the void domain of Schwarz P scaffold

4.1.2. Physics
The governing physics laws in the model were set to the single-phase creeping flow in-
terface. Single-phase regime was chosen because the model describes only the water flow.
The reasoning behind the creeping flow regime is more complex. COMSOL can solve equa-
tions derived from the Navier-Stokes equations suitable for different flow patterns: creep-
ing, laminar, turbulent. Though the Darcy law was determined empirically, it can be shown
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that, by ignoring the inertial terms in the governing equations, the Darcy law can be de-
rived from the Navier-Stokes equation [23]. In figure 3.4, the experimental data shows that
with time when the flow through the sample stabilises, the data points follow the Darcy law
trend. In COMSOL, only the creeping flow equation does not cover inertia effects, thus the
flow regime was set to this one and not laminar. The inlet pressure equalled 1 Pa, though
the specific value is not critical due to the linear proportionality between the flux and pres-
sure drop according to the equation 2.4. The outlet pressure was 0 Pa.

4.1.3. Boundary conditions
I have already mentioned that the computation time could be reduced by benefiting from
the symmetry of the designs. In figure 4.3 C the planes, where the symmetry boundary con-
ditions (BC further) were applied, are highlighted. The inlet and outlet faces with assigned
pressure are illustrated in figure 4.3 A. The pressure drop pi nlet − poutlet was set to 1 Pa.
The remaining part of the boundary was defined as wall BC with a no slip option, figure 4.3
B. This way at the solid-fluid interface the fluid velocity dropped to zero and the friction
effects at the walls were reproduced in the model.

Figure 4.3: A) Inlet and outlet faces. B) Wall BC. C) Symmetry BC.

4.1.4. Study
To assign the study to the model, the choice should have been made between stationary
and time-dependent studies. In case of a steady flow, the first one is applicable. But if
the time of the measurement is less than the time needed for flow stabilisation the solver
should be time-dependent.
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To estimate the time needed for the flow to enter the stationary regime after opening
the valve, I applied the following derivations to the simplified model. I assume the sample
to be a hollow tube with the diameter of the characteristic pore size, d = a

2 = 1 mm, and
length of the sample size parallel to the fluid flow, l = 16 mm.

For laminar fluid flow, the Bernoulli’s equation takes the following form [50]:

H0 + l = 32µl v

ρg d 2
+ l

g

d v

d t
, (4.1)

where H0 is a water column height over the sample. In the stationary regime d v/d t = 0 and

v = ρg d 2

32µl (H0 + l ) correspondingly. Transforming the equation 4.1 to the first order linear
differential equation form:

d v

d t
+αv =β, (4.2)

where α = 32µ
ρd 2 and β = (H0+l )g

l . With an initial condition t = 0, v = 0 the solution of the

equation takes the following form:

v = ρg d 2(H0 + l )

32µl

(
1−e−αt ) (4.3)

From the velocity-time dependence, the characteristic time of flow setting is 32µ
ρd 2 ' 0.03

seconds. For this time period, the level of water drops by 0.4 mm approximately, which
negligibly small in our experiments. The flow velocity dh/d t ' 0.013 m/s was estimated
from Reynold’s number formula with Re = 10. So the flow can be assumed to be stationary.

4.2. Results
Using the postprocessing tools within COMSOL, flow velocity field and fluid shear stress
on the walls can be visualised. The estimation of the permeability was also set within the
model and based on Darcy’s law.

4.2.1. Velocities distribution
In the figures 4.4 — 4.6 flow velocity field is presented. Due to the presence of two sym-
metry planes, the flow distribution over the whole layer can be estimated by mirroring the
simulation results of the quarter. In figure 4.4 it is shown for the Schwarz P geometry.
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Figure 4.4: Results for the designs with Schwarz P structure. Velocity magnitude colour plot with a red arrow
plot representing the orientation of the flow through the scaffold. Next to each sample — a unit cell
geometry.

Figure 4.5: Results for the designs with Schwarz D structure.
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Figure 4.6: Results for the designs with Gyroid structure.

From the velocity distribution fields for all samples groups, the fluid flow rate was higher
for the designs with bigger pores introduced (removed whole hexagons). The velocities in
the Schwarz D group exceeded the others, while Gyroid scaffolds had the lowest flow speed.
The velocity profiles of the designs without 4 or 6 fundamental patches are visually similar
to the original ones, the designs without 1, 2 or 4 hexagons significantly disturbed the flow.

4.2.2. Wall shear stresses
Wall shear stress, τw all , is defined as the tangential force per unit area that is exerted by
the flowing fluid on the surface of the scaffold. The magnitude of the wall shear stress is
calculated in COMSOL by the following equation:

τw all =µγw all ; (4.4)

where µ is the fluid dynamic viscosity and γw all is the wall shear rate, equals to the velocity
gradient near the wall. In the figures 4.7 — 4.9 wall shear stress on the walls of the designed
scaffolds are presented. For visualisation purposes, the colour range was constricted. The
total shear force, Ftot al , and the average value of the computed shear stress is specified for
each design. Ftot al is defined as an integral of shear stress τw all over the surface.
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Figure 4.7: Wall shear stress of the Schwarz P scaffolds.

Figure 4.8: Wall shear stress of the Schwarz D scaffolds.
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Figure 4.9: Wall shear stress of the Gyroid scaffolds.

According to the COMSOL estimation, shear stresses were higher in the designs with
faster flow. In agreement with the velocity fields, the designs with the removed hexagons
exhibited higher average shear stresses, τav g , on the walls than the designs with smaller
parts removed or non-modified ones. Though the total shear forces diverged from this
trend.

4.2.3. Permeability values
With the permeability coefficients, the porosity and specific surface area values were also
computed in COMSOL. These two extra parameters are considered to influence the trans-
port of fluids within scaffold [44]. The semi-empirical Kozeny equation expresses the rela-
tion between permeability, κ, porosity, φ, and specific surface area, s [53]:

κ= 1

cK

φ3

s2
, (4.5)

where cK is the empirical Kozeny constant, which is strongly related to the geometry of
pores and can not be estimated in advance. The permeability values predicted by the model
are presented in the plots permeability, κ, versus Kozeny factor,φ3/s2. The slope of the line,
linearly fitting the data points, equals to the Kozeny constants, cK . The coefficients of de-
termination, R2, measuring the percentage of the permeability variation that is explained
by a linear model, was also extracted and added to the figures.
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Figure 4.10: Relation between permeability and Kozeny factor for Schwarz P samples.

Figure 4.11: Relation between permeability and Kozeny factor for Schwarz D samples.



48 4. Fluid dynamics simulation: tuning model and results

Figure 4.12: Relation between permeability and Kozeny factor for Gyroid samples.

In the figures above the agreement between the theory and simulation results is evident
for the P and G families. Permeability is linearly proportional to the Kozeny factor, which
combines porosity and specific surface area of the samples. Nevertheless, in the D group,
the relation between 4 fund. patches and 6 fund. patches designs is disturbed according to
the Kozeny theory.

Unfortunately, it was not feasible to estimate Kozeny factor for the printed samples, due
to the complexity of acquiring the surface area values for the porous scaffolds.
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Discussion

The central research problem of this thesis was to evaluate the effect of extra channels in-
clusion in Schwarz P, Schwarz D and Gyroid scaffolds on the mass transfer and mechanical
properties.

5.1. Experiment results
The obtained results indicate that by excision of fundamental patches from the original
surface permeability can be increased up to 240% compared to the unmodified scaffolds
(P without 4 hexagons, G without 4 hexagons), while Young’s modulus and yield stress de-
crease with the material removal. For instance, the stiffness of the previously mentioned
designs was less than 30% of the primary value. Roughly 50% material excision explains an
extreme reduction in stiffness and yield strength for these two designs, whereas the other
designs showed to be more balanced on these two aspects. They showed a more reasonable
trade-off between permeability improvement and stiffness decrease. The most efficient
designs were found in the Gyroid family group, and more precisely the design without 2
hexagons (permeability increased by 40% and stiffness constituting 60% of the unmodified
scaffold). Results of the designs with 4 and 6 fundamental patches removed from Schwarz P
unit cell were close to each other with 40% permeability raise and 50% stiffness reduction.
There was no middle ground design in the D surface group due to the brittle nature of the
scaffolds. It can be explained by hexagons horizontal and vertical orientation in relation to
the applied load, which causes local stress concentration and fracture consequently. In the
Schwarz P and Gyroid designs, the smoothly curved walls enabled gradual compression of
layers. The most efficient one in the D group can be considered the random design with
120% permeability and 50% elastic gradient ratios.

The other designs should not be underestimated since they suggest other possibilities
of the material performance. The common problem with the widely applied biomaterial
Ti-6Al-4V is high stiffness of the bone tissue implants produced from this alloy. In the study
of Bobbert et al. the Ti-6Al-4V TPMS scaffolds had stiffness in the range 3.2 — 6.4 GPa,
while the stiffness of trabecular bone tissue is of the order of hundreds MPa (value heavily
depends on location in the human body) [10]. For the same samples, the permeability and
porosity were in the range of trabecular bone [10]. With the described here design approach
the problem of stress shielding can be solved, without compromising the permeability and

49



50 5. Discussion

porosity parameters.

Since my samples were fabricated from non-biocompatible material, plastic, the ab-
solute values of the mechanical parameters, stiffness and yield stress, can not be directly
used to judge about the applicability of the designed structures in orthopaedic implants.
However, one can look at the ratio of scaffolds stiffness to bulk material stiffness. Young’s
modulus of the post-cured Grey Pro resin is 2.6 GPa, which means that classic Schwarz
P architecture with 69% porosity accounts for 1.5% of the original stiffness, Gyroid 55%
porosity — 2.3%, Schwarz D, 78% porosity, — also 1.5%. Despite the surprisingly significant
mechanical performance deterioration, the numbers for the non-modified samples are in
a good agreement with the other studies related to the investigation of TPMS scaffolds with
similar porosity range [10, 35, 37]. The material applicability problem does not concern the
permeability values since it mostly depends on the arrangement of the material and not
its characteristics. The reported permeability of trabecular bone varies between 0.4 — 15
×10−9 m2, which incorporates the range of measured permeability values of the samples
0.72 — 3.46 ×10−9 m2 [24, 39].

5.2. Fabrication issues
In the section 3.2.4, regarding the outcome of the micro-CT scan, the mismatch between
the designed scaffolds and printed ones is clear. The thickness of the walls was extremely
higher than the aimed 200 µm, with the mean thickness values ranging between 282 µm
and 322 µm. The samples were printed in three sets, each with one specific TPMS designs.
So, all the samples inspired by Schwarz P geometry were printed together. Thus it could
have been expected that thickness values would be similar at least for the samples printed
together. However, this was not the case, according to the table 3.4. This could be probably
explained by the position of the samples on the platform and printing on the edge of the
printer resolution. Also, the dimensions of the samples did not agree with the assigned 10
mm × 10 mm × 16 mm. The mean height of the 80 samples was 15.75 mm with standard
deviation of 0.40 mm, the average cross-section area was 97.33 mm2 with standard devi-
ation of 3.92 mm2. It was also noticed that the unit cell size was gradually changing from
bottom to top layers, with bottom layers being more shrunken. The variation was minor
but still visible to the unaided eye. In this case, the temperature regime can be the major
reason. In the SLA printer, the samples are produced upside down, starting from the bot-
tom layers. The starting print temperature is around 31◦C and continues heating to the
target printing temperature around 35◦C. Also, the bottom layers spend more time in the
printer cavity atop of the heated resin. For the samples with larger feature size, this fact can
be ignored, but for my samples it apparently played a significant role.

5.3. Quantitative model results
In the following table, the permeability values measured experimentally are presented next
to the model prediction.
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Table 5.1: Comparison between experimental (exp.) and simulation (sim.) permeability values for the
regular designs for Schwarz P design group. For the experimental data the values are given in the format
mean (SD).

Design Unit cell
Porosity

(exp.)
Permeability

(exp.)
Porosity

(sim.)
Permeability

(sim.)
% 10−9 m2 % 10−9 m2

P normal 68.5 (0.9) 1.527 (0.092) 74.8 10.468

2 hexagons 77.3 (1.2) 1.816 (0.054) 80.2 19.390

4 hexagons 84.0 (0.8) 3.463 (0.310) 85.2 35.312

4 fund. patches 72.7 (1.1) 2.200 (0.041) 79.7 13.645

6 fund. patches 77.7 (0.4) 2.173 (0.051) 81.2 14.004

To better visualise the relation of permeability values of different designs to each other
the following graph is created:

Figure 5.1: Permeability trend in the experiment and the model for Schwarz P design group. The blue line
corresponds to the experimental results, while the orange one — to the simulation. The Y axis have different
scale.
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Table 5.2: Comparison between experimental (exp.) and simulation (sim.) permeability values for the
regular designs for Schwarz D design group.

Design Unit cell
Porosity

(exp.)
Permeability

(exp.)
Porosity

(sim.)
Permeability

(sim.)
% 10−9 m2 % 10−9 m2

D normal 78.2 (0.6) 2.154 (0.044) 79.5 29.378

1 hexagon 83.8 (0.7) 2.546 (0.088) 84.1 43.767

4 fund. patches 82.0 (0.6) 2.061 (0.040) 83.8 32.174

6 fund. patches 81.8 (0.9) 2.204 (0.047) 83.8 32.641

Figure 5.2: Permeability trend in the experiment and the model for Schwarz D design group.
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Table 5.3: Comparison between experimental (exp.) and simulation (sim.) permeability values for the
regular designs for Gyroid design group.

Design Unit cell
Porosity

(exp.)
Permeability

(exp.)
Porosity

(sim.)
Permeability

(sim.)
% 10−9 m2 % 10−9 m2

G normal 55.4 (0.9) 0.716 (0.080) 66.7 6.333

2 hexagons 67.1 (0.6) 1.007 (0.054) 73.7 10.453

4 hexagons 76.9 (0.7) 1.678 (0.028) 79.9 18.445

4 fund. patches 70.2 (1.5) 1.185 (0.062) 72.9 7.895

Figure 5.3: Permeability trend in the experiment and the model for Gyroid design group

Values predicted by the model are prominently higher than the measured ones. This
was already expected from the lower porosity values of the real samples compared to the
designed ones and the micro-CT scan results. Moreover, the agreement in the trend be-
tween the experiment and simulation was not preserved for any of the design groups, which
was visualised in the figures 5.1, 5.2, 5.3. For the Gyroid scaffolds the order was violated for
the designs without 2 hexagons and without 4 fund. patches. According to the model, the
latter was less permeable. But according to the experiment, it has higher permeability co-
efficient. The same appeared in the Schwarz P group for the designs without 2 hexagons,
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without 4 fund. patches and without 6 fund. patches. In the Schwarz D group, the exper-
iment results shown the non-modified surface to be more permeable than the one with
removed material, without 4 fund. patches. The model predictions were opposite for these
two designs. The exact reason behind this problem is hard to assess. The main suspicion
fell on the quality of the 3D printed samples. To prove my hypothesis, the samples with
double unit cell size were fabricated and subjected to the permeability test. It was assumed
that samples with a larger feature size would match the design better.

Unfortunately, it was not feasible to print and test another 80 samples. That is why I
selected two designs with the inverted trend: Schwarz P without 2 hexagons and Schwarz P
without 4 fund. patches. Ten samples with 4 mm unit cell size and 400 µm wall thickness
were fabricated, two samples failed during the printing.

Figure 5.4: New samples next to the old ones. From left to right:without 2 hexagons,without 4 fund. patches.

The dimensions of the new scaffolds allied decently with the assigned 20 mm × 20 mm
× 32 mm. The mean height of the 8 samples was 31.37 mm with standard deviation of
0.25 mm, the average cross-section area was 399.1 mm2 with standard deviation of 1.95
mm2. Because of the enlarged pore sizes, the water flow through the scaffolds could not
be considered laminar anymore. To solve this problem, the more viscous solution of water
and glycerol was prepared. The density and dynamic viscosity of the solution at 20◦ C were
1129.6 kg /m3 and 6.2e − 3 Pa ∗ s. Extracted porosity and permeability values from the
falling head test are presented in the table 5.4.

Table 5.4: The experimental results of the new samples.

Design Porosity Permeability
% 10−9 m2

P 2 hexagons 82.7 (0.2) 20.420 (0.620)
P 4 fund. patches 81.2 (0.4) 24.525 (1.638)

The experiment refuted the hypothesis and proved the accuracy of the previous result.

Another evident difference between the experiment and the model is that in the model
only a quarter of one layer is simulated. Apparently, it was not sufficient to predict accurate
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results. However, the coarse mesh of the quarter already comprised of approximately 25
000 faces and was already close to the limit of SolidWorks performance. The model also
did not encounter the samples’ material properties like roughness and wettability. These
parameters were proved to significantly affect the flow through the porous media [5, 43].
Also, the non-uniform wall thickness in the samples, proven by the CT scan, could not be
embedded in the model.

All these factors push the real experiment and the model away from each other, result-
ing in the discrepancy of the permeability values.

5.4. Qualitative model results
The computational model provides velocity and wall shear stress distribution fields, which
are hard to access experimentally in the porous media. Doppler optical coherence tomog-
raphy or nuclear magnetic resonance velocimetry technique are commonly used for visual-
isation of interstitial flow within porous materials [28, 36]. In our group, these experiments
could not be performed.

From the fluid dynamics simulations, the average wall shear stress lies in between 57
mPa and 145 mPa. I consider, these values to be relevant also for the printed samples
because the stresses are proportional to the velocity gradient and not to its absolute value.
The reported physiological range in the bone matrix is limited by 10 mPa, due to the ex-
tremely slow flow of extravascular fluid [33]. However, in vitro studies, gathered in the re-
view of Wittkowske et al., showed that osteocytes and osteoblasts respond to a wide range
of wall shear stresses, up to 2 Pa [55]. It was also shown that better organised bone apatite
crystals were formed under fluid shear stress below 1 Pa [41]. These facts add arguments
in favour of TPMS structures in general and developed designs in particular.
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Conclusions and outlook

In my master thesis project, I aimed to investigate how fundamental patches removal from
the original TPMS structures would affect its permeability, porosity and mechanical prop-
erties. Based on experimental and computational results, it can be concluded that the de-
veloped design approach has a strong potential in the improvement of mass transfer and
compliance properties compared to the non-modified TPMS structures. The measured
characteristic parameters of the created metamaterial are shown to be in a good agree-
ment with the previously reported values. Moreover, the range of permeability and poros-
ity values for trabecular bone encompasses the corresponding parameters of the fabricated
scaffolds. The absolute values of the stiffness and the yield stress of the designed scaffold
can not be directly utilised to evaluate the applicability of the material in the orthopaedic
implants. But the percentagewise ratios to the bulk material properties suggest a reason-
able decline in elastic gradient and yield strength.

The novelty of this research is also in the extensive implementation of the mathemati-
cal background of Triply Periodic Minimal Surfaces. The established design approach relies
on the Weierstrass equations and presence of the smallest building block in the TPMS unit
cells, fundamental patch. Despite the huge number of possible designs, which can be cre-
ated with my method, the presented ones are considered to be the most relevant in practi-
cal terms: the introduced pore size exceeded the 300 µm, the connectivity of the structures
was not impaired and the porosity of the scaffolds remained in the trabecular bone range.
Moreover, the random method, incorporating the graph theory, provides an extra opportu-
nity to imitate the randomness of the bone structure.

The developed COMSOL model gave insight into the flow velocity distribution through
the samples and induced wall shear stresses. The latter is directly linked to regenerative
properties of the porous material, influencing bone metabolism. According to the simu-
lation results, the developed scaffolds induce mechanical stimulation in the physiological
range. The difference in the average flow-induced wall shear stress and total shear force
between the scaffolds also suggests that biomechanical properties of the material can be
tailored with the presented here design method. However, the future model adjustments
are necessary for the reliable predictions of the material permeability coefficients.
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58 6. Conclusions and outlook

Further, alternative biocompatible materials, like Ti-6Al-4V alloy, can be used to print
scaffolds to discover the effect of different bulk material properties on the presented de-
signs. Also, the developed approach is not limited by the three selected TPMS. For instance,
I-WP minimal surface could be employed, for which Weierstrass representation was found
only recently [14]. Another interesting idea to develop this research further is to design a
material with a gradual change of the material removed. This way the bone structure with
cortical and trabecular parts can be imitated.

Overall, I hope that the original idea of this thesis will be developed further, and the
metamaterials will be applied in the biomechanical research fields.
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A
Combined experimental results

Table A.1: Combined table of the experiment results. The values are given in the format mean (SD).

Design Porosity Permeability Elastic gradient Yield stress Plateau stress
% 10−9 m2 MPa MPa MPa

P normal 68.5 (0.9) 1.527 (0.092) 35.241 (4.319) 2.261 (0.193) 2.585 (0.095)
2 hexagons 77.3 (1.2) 1.816 (0.054) 12.867 (2.862) 0.854 (0.187) 0.940 (0.146)
4 hexagons 84.0 (0.8) 3.463 (0.310) 10.796 (2.924 0.485 (0.067) 0.886 (0.051)
4 fund. patch. 72.7 (1.1) 2.200 (0.041) 17.379 (4.761) 1.048 (0.262) 1.418 (0.193)
6 fund. patch. 77.7 (0.4) 2.173 (0.051) 17.312 (2.178) 0.968 (0.140) 1.218 (0.118)
random 76.8 (0.8) 1.992 (0.061) 14.070 (2.130) 0.726 (0.118) 1.217 (0.122)

D normal 78.2 (0.6) 2.154 (0.044) 36.309 (7.734) 2.265 (0.371) 2.796 (0.280)
1 hexagon 83.8 (0.7) 2.546 (0.088) 6.598 (1.261) 0.189 (0.065) 0.922 (0.126)
4 fund. patch. 82.0 (0.6) 2.061 (0.040) 22.190 (2.837) 1.115 (0.259) 1.205 (0.061)
6 fund. patch. 81.8 (0.9) 2.204 (0.047) 24.194 (5.937) 1.573 (0.415) 1.658 (0.209)
random 83.8 (0.6) 2.593 (0.051) 17.210 (1.173 0.790 (0.129) 1.102 (0.130)

G normal 55.4 (0.9) 0.716 (0.080) 54.969 (2.984) 3.076 (0.057) 4.225 (0.090)
2 hexagons 67.1 (0.6) 1.007 (0.054) 33.611 (3.956) 1.928 (0.181) 2.359 (0.221)
4 hexagons 76.9 (0.7) 1.678 (0.028) 13.148 (2.107) 0.734 (0.081) 0.953 (0.111)
4 fund. patch. 70.2 (1.5) 1.185 (0.062) 13.057 (1.266) 0.940 (0.194) 1.287 (0.146)
random 69.1 (1.7) 1.351 (0.055) 21.751 (3.797) 1.236 (0.159) 1.804 (0.229)
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B
Results of the t-test

Table B.1: P-values from the t-test applied to the permeability data of the P samples. * - hexagon; ** -
fundamental patch.

normal 2 hex∗ 4 hex 4 fp∗∗ 6 fp random
normal 0.036 <0.001 <0.001 <0.001 <0.001

2 hex <0.001 <0.001 0.0012 0.014
4 hex <0.001 <0.001 <0.001
4 fp 0.2748 0.0065

6 fund. p 0.0121
random

Table B.2: P-values from the t-test applied to the permeability data of the D samples. The p-values more
than significance level are underlined.

normal 1 hex 4 fp 6 fp random
normal 0.0024 0.0093 0.1727 <0.001

1 hex <0.001 0.0015 0.3215
4 fp 0.0111 <0.001
6 fp <0.001

random

Table B.3: P-values from the t-test applied to the permeability data of the G samples.

normal 2 hex 4 hex 4 fp random
normal 0.0061 <0.001 <0.001 <0.001

2 hex <0.001 0.0146 <0.001
4 hex <0.001 <0.001
4 fp 0.0291

random
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64 B. Results of the t-test

Table B.4: P-values from the t-test applied to the elastic gradient data of the P samples.

normal 2 hex 4 hex 4 fp 6 fp random
normal <0.001 <0.001 <0.001 <0.001 <0.001

2 hex 0.2361 0.0703 0.0255 0.5726
4 hex 0.0389 0.0133 0.0887
4 fp 0.9759 0.1938
6 fp 0.0445

random

Table B.5: P-values from the t-test applied to the elastic gradient data of the D samples. The p-values more
than significance level are underlined.

normal 1 hex 4 fp 6 fp random
normal 0.0016 0.0122 0.0667 0.0042

1 hex <0.001 0.0015 <0.001
4 fp 0.3399 0.0066
6 fp 0.0448

random

Table B.6: P-values from the t-test applied to the elastic gradient data of the G samples.

normal 2 hex 4 hex 4 fp random
normal <0.001 <0.001 <0.001 <0.001

2 hex <0.001 <0.001 0.0032
4 hex 0.9411 0.0014
4 fp 0.0134

random

Table B.7: P-values from the t-test applied to the yield stress data of the P samples.

normal 2 hex 4 hex 4 fp 6 fp random
normal <0.001 <0.001 0.010 <0.001 <0.001

2 hex 0.0156 0.0934 0.2095 0.3449
4 hex 0.0071 <0.001 0.0217
4 fp 0.5583 0.0804
6 fp 0.0858

random
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Table B.8: P-values from the t-test applied to the yield stress data of the D samples. The p-values more than
significance level are underlined.

normal 1 hex 4 fp 6 fp random
normal <0.001 0.0014 0.0740 0.0020

1 hex 0.0014 0.0016 <0.001
4 fp 0.1915 0.1120
6 fp 0.0049

random

Table B.9: P-values from the t-test applied to the yield stress data of the G samples.

normal 2 hex 4 hex 4 fp random
normal <0.001 <0.001 <0.001 <0.001

2 hex <0.001 0.0023 <0.001
4 hex 0.1271 <0.001
4 fp 0.1167

random

Table B.10: P-values from the t-test applied to the plateau stress data of the P samples.

normal 2 hex 4 hex 4 fp 6 fp random
normal <0.001 <0.001 <0.001 <0.001 <0.001

2 hex 0.3089 <0.001 0.0213 0.0506
4 hex 0.0021 0.0029 0.0058
4 fp 0.0882 0.1705
6 fp 0.9888

random

Table B.11: P-values from the t-test applied to the plateau stress data of the D samples. The p-values more
than significance level are underlined.

normal 1 hex 4 fp 6 fp random
normal <0.001 <0.001 0.032 <0.001

1 hex 0.0078 0.0058 0.1510
4 fp 0.0096 0.1331
6 fp 0.0040

random



66 B. Results of the t-test

Table B.12: P-values from the t-test applied to the plateau stress data of the G samples.

normal 2 hex 4 hex 4 fp random
normal <0.001 <0.001 <0.001 <0.001

2 hex <0.001 0.0015 0.0020
4 hex 0.0359 <0.001
4 fp 0.0257

random



C
Failure modes of the samples

The scaffolds after the compression test with the corresponding unit cell geometry:

Schwarz P
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68 C. Failure modes of the samples

Schwarz D

Gyroid
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