
Techno-economic evaluation of energy markets for 
demand response and congestion management in future 
decentralized energy systems 

Pedro Iván Leal Jáuregui 





T E C H N O - E C O N O M I C E VA L U AT I O N O F E N E R GY M A R K E T S F O R
D E M A N D R E S P O N S E A N D C O N G E S T I O N M A N A G E M E N T I N F U T U R E

D E C E N T R A L I Z E D E N E R GY S Y S T E M S

A thesis submitted to the Delft University of Technology
to obtain the degree of

Master of Science in Sustainable Energy Technology

by

Pedro Iván Leal Jáuregui
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A B S T R A C T

In the context of the energy transition, the energy sector is experiencing a paradigm
shift towards electrification in a decentralized model, where renewable energy sources
are becoming the protagonists. However, such shift comes with several challenges.
In particular for this thesis, the intermittency of renewable energy sources coupled
with increased load demand and generation from small scale prosumers is expected
to increase grid congestion at a distribution level.

The main purpose of this thesis is to investigate and evaluate the techno-economic
feasibility of novel market mechanisms that incentivize demand response from pro-
sumers for congestion management. The focus of this work is on market-based
mechanisms that use economic signals to stir prosumers’ demand response. The
mechanisms investigated are: 1) hard constraint that physically limits prosumers, 2)
capacity subscription, 3) peak tariff, and 4) dynamic tariff; these are capacity mech-
anisms that limit the peak drawing and feeding power from prosumers. Moreover,
the day ahead, intraday and frequency containment reserve (FCR) markets are in-
corporated to the capacity mechanisms to evaluate their compatibility in the context
of the Dutch power markets.

The advent of smart energy systems enables prosumers to become active partic-
ipants in the market and aid in the grid’s management. Thus, the approach of
this thesis is to simulate prosumers’ response to economic signals and evaluate
the effects in a low voltage test feeder. To achieve this, the work develops on an
existing smart charging algorithm that optimizes the components of the smart en-
ergy system. The system is composed of a multi port converter that incorporates
a PV maximum power point tracking device (MPPT), a bidirectional EV charger,
and a bidirectional battery energy storage (BES) charger; additionally, the grid is
connected to a heat pump and load from appliances, which are non-flexible. The
distribution network is IEEE’s European low voltage test feeder, which is comprised
of 55 households.

The techno-economic feasibility evaluation is done by benchamarking the capac-
ity mechanisms against an energy tariff in two scenarios: winter, and summer. The
benchmark results indicate that aligning prosumers with only an energy tariff leads
to congestion in the feeder. In response, all capacity mechanisms evaluated were
effective at managing congestion if properly designed, although, some restrict pro-
sumers more than others. The hard constraint made prosumers lose the most load,
and the total cost incurred by the prosumers in the feeder was greatest with the
capacity subscription. The peak tariff had the lowest cost of lost load, and the least
overall costs, consequently, the peak tariff was chosen to incorporate the day ahead,
intraday and FCR markets to it. The incorporation of day ahead and intraday mar-
kets decreased the exposure to imbalance costs under the assumption that new
forecasts with better accuracy were available one time step (15 min) before delivery.

The incorporation of FCR increased the exposure to imbalance costs due to devi-
ations from the day ahead schedule. Furthermore, FCR with the peak tariff showed
conflicting incentives, i.e., the peak tariff reduces the amount of reserved power for
balancing regulation, else if full available power is reserved congestion increases.
The results of this thesis point towards the potential that prosumers’ demand re-
sponse will have in shaping future decentralized energy systems, however, the mar-
ket mechanisms in place need to be properly designed to ensure economic feasibil-
ity and resolve conflicting incentives between markets such as balancing and local
congestion management.
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1 I N T R O D U C T I O N

�.� �������� ���� ���������
To investigate, evaluate and compare the techno-economic feasibility of novel en-
ergy market mechanisms that incentivize the involvement of prosumers in demand
response and congestion management schemes.

�.� �������� ���������
The research approach is based on the goal statement in the previous section, for
which the following research questions shall be answered.

1. What market mechanisms incentivize prosumers’ demand response and con-
gestion management in a future decentralized generation system?

• What are the main challenges that can potentially be solved with pro-
sumers’ demand response and local congestion management?

• What causes congestion in a low voltage feeder, and how is it expected
to increase (or decrease) with more electrification, e.g., electric vehicle
charging and electric heating?

• What is the current state of energy markets (particularly the Dutch mar-
ket), and what are the main considerations for aligning prosumers with
energy markets assuming smart energy systems are in place?

2. What effects do prosumers with smart energy systems have on the low voltage
feeder?

• What are the main components of smart energy systems that prosumers
might adopt in the near future?

• How can the control in the smart energy system be formulated as an
optimization problem?

• How can the integration of prosumers’ smart energy systems with a low
voltage feeder be modeled?

3. What case study can evaluate and compare the effectiveness at managing con-
gestion of the energy markets investigated?

• What are the assumptions and input data of the case study?

• What is the benchmark for congestion in the feeder based on the case
study?

4. What are the metrics used to evaluate the market mechanisms for techno-
economic feasibility?

• How to expand the formulation of the optimization problem to incorpo-
rate the market mechanisms investigated?

• How to determine the main parameters needed to model the market
mechanisms?

• What is the market mechanism that performs best in the case study used?

1



2 ������������

5. Is it feasible and convenient to integrate the day ahead and intraday market
with the best performing market mechanism in order to minimize imbalance
costs incurred by prosumers?

• How do forecast errors impact on schedule deviations that incur an im-
balance cost?

• How can the schedules and procedures of the day ahead and intraday
market fit together with the best performing market mechanism?

• What are the imbalance cost reductions (if any) achieved by this incorpo-
ration?

6. Is it feasible to add the involvement of prosumers to the frequency contain-
ment reserve market on top of the best performing mechanism, day ahead
and intraday markets?

• What are the implications that providing frequency containment reserves
have on the committed schedules to the day ahead and intraday market?

• Are there any conflicting incentives between balancing regulation at a
transmission level and congestion at a distribution level?

7. What are the main conclusions drawn from this work and what further re-
search can be proposed?



2 L I T E R AT U R E R E V I E W

The literature review investigates novel energy systems with a high penetration
of RES and decentralized generation, outlining the relevant context to demand re-
sponse schemes where prosumers are involved by providing flexibility through eco-
nomic incentives. This is presented in four subsections. In section 2.1, the main
challenges that such energy systems pose to current networks and their causes
are discussed. In section 2.2, some potential methods in which prosumers can be
aligned to the market mechanisms for their involvement are explored. In section 2.3,
a brief description of the current electricity market and its sub markets is presented.

�.� ���� ���������� �� ������������� ����������

�.�.� Electrification and increase in load demand

The human civilization is producing evermore complex societies that, among other
things, increasingly demands more energy to satisfy its needs. Along with these
increases in demand, the systems and infrastructures that provide it are growing in
complexity too. The second half of 18th century brought a massive shift to human
societies; the light bulb and steam engine changed the role energy would play in
development and economic growth. For the most part fossil fuels have been the pro-
tagonists of energy demands until their effects on the environment and its depletion
became clear; this has resulted in about 0.5 trillion tonnes of oil equivalent barrels
extracted worldwide and 1.2 trillion tonnes of carbon dioxide emitted worldwide,
since the Industrial Revolution [15].

The late 20th and beginning of the 21st century marks the energy transition to-
wards sustainability where electricity is becoming the main energy carrier. On one
side, there has been a rise on all kind of appliances and tools that are steadily
demanding more energy. The technology explosion and internet of things is an ex-
ample where data centers, crypto currency mining, personal computers and mobile
phones have been requiring vast amounts of electricity in recent years.The annual
energy consumption from Bitcoin in 2018 was around 45.8 TWh [45]. The battery
capacity of a Nokia 3310, released in 2000, was 900 mAh while the iPhone 12 Pro
Max, released in 2020, has a 3687 mAh capacity [19, 18] . On the other side, there are
two sectors that have been migrating from fossil fuels to electricity as their means
to perform work due to the carbon emissions they cause, transport and heating [33].

The transport and residential building sector accounted for 23% and 10% global
emissions in 2018, respectively [23]. Passenger and light duty vehicles for land
transportation are the biggest emitters, hence, they have had a substantial shift
towards electrification in the past decade. The global electric vehicle (EV) stock
went from 0.02 million in 2010 to 4.79 million in 2019, as per Figure 2.1a. Electric
heating has not had such an increase as electric vehicles, however, according to
IEA’s Sustainable Development Scenario a strong trend should be expected for the
upcoming decades if emission targets are to be met, Figure 2.1b.

All of this means that the electricity sector is under increasing pressure to meet
the global needs of a strong electrified society where load demand is rapidly grow-
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(a)

(b)

Figure 2.1: Electrification of sectors. (a) Global electric car stock,[23]. (b) Heating technology
sales in the Sustainable Development Scenario,[24]

ing. The global electricity demand increased by 75% from 2010 to 2019, whereas, the
fossil fuel demand increased by 20% in that same period [11]. The sector needs to
expand enough to provide the electricity demand and accomplish it in a sustainable
manner to ensure environmental goals. There is no point in electrification efforts
if the electricity is generated with fossil fuels, therefore, an increase of renewable
sources penetration is the second pillar of the energy transition.

�.�.� Intermittent renewable energy sources

The rise of renewable energy sources (RES) has been the result of direct efforts
to mitigate the adverse effects of fossil fuels, resulting in great costs reduction of
renewable technologies, causing further renewable sources penetration. In recent
years the levelized cost of electricity (LCOE) for photovoltaic (PV) and wind tech-
nologies has fallen below their fossil fuel counterparts [17]. Additionally, it has
made small scale consumers (i.e., households and small buildings) to be involved
in the sector as prosumers too, since the LCOE of PV is in many cases less than
the retail price [31]. This is shifting the trend from a paradigm of centralization to-
wards one of decentralization. Furthermore, RES have a massive potential to supply
many times the global energy needs, in some estimations the potential is more than
3,000 times the current energy demand, figure 2.2 [10]. Although this potential is
promising, there are several serious constraints and challenges to overcome before a
full energy transition can be achieved. [34] argues that there are various conflicting
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estimations for RE potential, except for hydro, due to constraints’ considerations.
RES are, mostly, uncontrollable and intermittent by nature since they are energy
flows rather than energy stocks. Hydropower, which is controllable, has had a vast
growth in installed capacity in the last century and is near to its limit in terms of
geographic constraints, however, PV and wind are far from their limit.

Figure 2.2: Global energy resources [10]

PV and wind generation are dependent on a multitude of variables, such as
weather, location and time of the day, hence, they are intermittent in a seasonal
and daily basis. Plus, these sources are unpredictable with great accuracy due to
the reliance on forecasting of complex systems, like the weather. In addition to
generation, the transmission and distribution of the electricity to the end user is
more complex as these sources have more penetration. The proliferation of PV on
the rooftops of prosumers enables the decentralization paradigm. However, the co-
ordination between large-scale producers and small-scale prosumers is increasing
complexity and requires more effort to maintain due to greater stochasticity of the
system’s balance between generation and demand [7]. All of these factors result in
higher levels of congestion in the electricity grid that need to be resolved. There
have been several schemes proposed for future decentralized energy systems to
resolve said issues, these are reviewed in next sections.

�.� ������ ������������� ������ �������

�.�.� Congestion in the network

Generally, the network infrastructure consists of high voltage transmission lines
that transport electricity from remote generation locations to substations near con-
sumers, medium voltage distribution lines from substations to low voltage feeders,
and from the feeders to each household for end consumption. Together with vari-
ous power devices, transformers scale voltage down (or up) along the supply chain
to ensure that the power flow is within the working capacity of devices. Congestion
occurs when devices (i.e., transformer and cables) from the network surpass their
thermal capacities, overloading regions of the system. Frequent instances of over-
loading lead to increased degradation of the network’s assets and reinforcement is
necessary, therefore, congestion management is key to maintain the network opera-
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tional [22].

The system’s operators are responsible, among other things, for maintaining the
balance between supply and demand, and to ensure technical integrity of the net-
work. The transmission system operator (TSO) is responsible at a transmission
level and the distribution system operator (DSO) is responsible at a distribution
level. The scope of this review is focused on the low voltage level, between the DSO
and feeder connected to the households. The rise of EV’s, electric heat pumps and
the reversed power flow of PV’s from prosumers can result in higher congestion
at the low voltage feeder level that needs to be managed [22]. The architecture of
the feeder may affect the nature and magnitude of congestions in a decentralized
energy system with a high amount of decentralized generation (DG). In a densely
clustered network, such as in the Netherlands, congestion could be a severe issue
for MV/LV transformers. [55] shows that by 2040, in the Netherlands, the expected
increase in load demand and DG could overload 87% of these transformers and 34%
of the distributions lines.

It is essential to address current and expected congestion issues in the grid. Tra-
ditionally, the power system has been designed with a top-down approach where
the focus was to ensure capacity for peak loads and conventional flexibility sought
to match loads by varying the controllable generation upon unexpected failures or
disruptions from the power system’s components [32]. The conventional paradigm
would mean to reinforce the network to accommodate new higher peak capacities,
however, this may be considered redundant since peaks (generally) occur in short
a duration throughout the year. Additionally, reinforcement will need huge invest-
ments and will be a slow process, and might not even meet the increasing peak
demand [32, 30, 40, 20]. Hence, the operators face the challenge to continue with
the same paradigm of grid reinforcement or change the paradigm and seek smart
solutions that are tailored for RES and DG integration. An efficient method is to
value consumers’ flexibility through local congestion management and demand re-
sponse schemes [30, 37].

�.�.� Congestion management

The core problem for LV congestion is that prosumers expect availability of elec-
tricity at all times regardless of the network’s status, in other words, demand is
inelastic. Furthermore, the small scale generation from installed PVs is fed to the
grid whenever it is available (assuming no storage), again, disregarding network’s
congestion. In this context, there is a high value to be gained if prosumers’ loads
(and generation) can be shifted to less congested schedules without curtailing over-
all loads Figure 2.3.

In order to achieve the flexibility in demand, there are two broad approaches:
1) direct physical measures, e.g., active power curtailment, automated demand re-
sponse, graceful degradation, 2) indirect incentive-based mechanisms that motivate
prosumers to adjust their demands, i.e., price based [21, 20, 40]. The latter are
in line with a liberalized electricity market rationale. Among the incentive-based
mechanisms, there may be a central control entity that processes the network and
prosumers’ information for dispatching through complex bids, or a decentralized
approach to sort locally the intended goals of the involved entities. A decentralized
view is increasingly desirable because it reduces the need of perfect information and
increased computational complexity that would burden a central operator [22, 39].

Currently, one of the central issues is that the retail prices that small scale pro-
sumers pay do not reflect the real time status of the network. It is important to dis-
tinguish between two different objectives procured by the system operators, which
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Figure 2.3: Example of load shifting,[7]

are not properly reflected by the retail prices: system’s balance and congestion man-
agement. First, the retail prices do not expose the prosumers to the market’s scarcity
or abundance signals that the wholesale electricity prices, in principle, do [29]. Sec-
ond, retail prices also fail at reflecting the true costs incurred by prosumers due to
grid congestion [39]. Therefore, there is no motivation for prosumers to take part
in balancing the system nor managing congestion. [29] showed that prosumers can
be aligned with wholesale prices to better reflect scarcity signals, however, [40, 44]
argue that simply aligning such prices to prosumers may lead to high levels of
congestion. This is a result of energy tariffs being inherently inefficient at valuing
capacity availability and flexibility [38]. In response to this, next section describes
novel market mechanisms that aim to offer a solution to current price inefficiencies.

�.�.� Market based mechanisms

Due to the increasing interest on the potential benefits of flexibility, several mecha-
nisms have been proposed that veer away from conventional retail pricing to achieve
efficient demand response from prosumers [41, 28, 32]. These mechanisms can be
divided into explicit and implicit. The former refers to committed capacity that
can be traded in flexibility markets (usually, via an aggregator) in exchange of a
remuneration. The latter consist of price signals where prosumers are incentivized
to modify their behavior to optimize costs (manually or automatically) [42].

[28] conducted a literature review condensing the concepts, models and clearing
methods of local flexibility markets that have been proposed. The key insights (for
this work) are four. 1) There are three types of flexibility to be traded; balancing for
the TSO at a transmission level, balancing at a distribution level between TSO and
DSO, and voltage control and congestion management for the DSO at a local level.
2) The five main features to consider in a local flexibility markets are: power flow
direction, rate of change of power capacity, starting times and its triggers, duration
and location of the distribution nodes. 3) The participants of local flexibility mar-
kets (at a distribution level) are: DSO, a market operator, aggregators and balance
responsible parties (BRPs); not all proposed mechanisms necessitate BRPs. [40] ar-
gue that it may be more efficient to have prosumers directly trade in the market
without an aggregator. 4) The local flexibility market can work in parallel with
other existing markets, i.e, day ahead and intraday.

There have also been various mechanisms proposed regarding price based in-
centives. The mechanisms can be differentiated between volumetric tariffs (energy
based) and capacity tariffs (power based), among these, they can be static or dy-
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namic depending on the time of use, and based on location (regional/national or
local) [30, 41, 44, 3, 8]. [38] propose power trading in the day ahead market instead
of energy trading to reduce excessive costs and scheduling failures due to increas-
ing resolution of schedules.

[39] evaluates three different designs: integrated market, wholesale energy pric-
ing and locational energy market; they conclude that an integrated market shows
the best results, however, it is infeasible due to perfect information requirements,
although, locational pricing can have similar results unlike wholesale. [29] provide
a market alignment indicator that compares the results (against a benchmark) of
aligning prosumers to the wholesale energy market and indicate that the wholesale
market can lead to congestion. [2] asses the effectiveness of capacity markets where
a high portfolio share of RES is present and conclude that these markets can reduce
consumer costs, improve adequacy and are more efficient that strategic reserve.

[8] proposes a capacity subscription where prosumers subscribe to a peak that
is guaranteed and after that threshold, they can be subject to curtailment through
limiting load devices (LLDs) or are able to buy excess power at a higher price. [3]
further expand on the previous mechanism and evaluate a static and a dynamic
capacity tariffs, in the context of a grid tariff proposed by the Norwegian regulator.
They point out that in a grid tariff prosumers pay an excess price (or value of lost
load) when they surpass the subscribed amount even if there is no capacity scarcity,
hence, the dynamic tariff is a better alternative in the presence of storage; invest-
ment of a battery and presence of an EV were not included.

[44] analyzes the effectiveness of an energy tariff, capacity tariff (with peak and
tier tariffs) and a flexibility market in the context of conflicting interest between
grid balancing and congestion management, They compare their ability to prevent
congestion and value of flexibility in the imbalance market. The results assert that
energy tariffs do not reduce congestion but rather shift the time of occurrence. Ca-
pacity tariffs and the flexibility market both prevent congestion, however, the loss of
value for the imbalance market strongly depends on the design of the mechanisms
and behavior of the grid, i.e., tariff prices, day ahead schedule and EVs’ penetration
in the system.

�.�.� Demand response schemes

In order for demand response to be successful at tackling the challenges discussed
previously, proper financial incentives are not the only aspect to be considered but
integration of technologies in a so-called smart grid. There are some key features
that are expected from prosumers that will enable demand response in a smart grid.
Generally, a prosumer could encompass: smart metering for alignment with real
time circumstances of the grid, power generation (mostly PV), a battery unit for
storage, an EV (or several), heat storage, power electronics for AC/DC conversion,
appliances and a smart optimization control that would determine the power flow
based on internal (load demands) and external (incentives) factors [33, 32, 28]. Fig-
ure 2.4 illustrates the integration. The adoption of these features greatly depends
on a financial decision from the prosumers’ standpoint [29], however, even if not all
are adopted the fundamental concept is that the proliferation of information and
communication technologies (ICT) and power electronics can optimize, bottom-up,
the power flow of smart grids.

Conventionally, small-scale load demand has been inelastic characterized by a
passive role from consumers. Due to the rise of electrification and new technolo-
gies (previously reviewed), prosumers are now able to take an active role. To this
end, there is a distinction to be made between fixed and flexible loads from the pro-
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Figure 2.4: Illustration of smart grid integration

sumers’ comfort side. The traditional appliances in residential buildings would be
considered fixed loads since they are part of the daily patterns of demand from pro-
sumers and rarely contribute to the issues posed by electrification and intermittent
sources of new systems. Flexible loads can be shifted based on financial incentives
and individual preferences, such as, EVs, heat pumps, and electrical heating venti-
lation and air conditioning (HVAC) [21, 32, 33].

The preferences of each prosumer may vary widely, thus, a properly designed
demand response scheme would assign value to the reliability preferences of each
prosumer making it a private good rather than a common good where actors are
subject to involuntary load shedding [7]. Additionally, demand response can pro-
vide flexibility to other markets of the energy sector, e.g., ancillary services to the
balance market. For small-scale prosumers, batteries and EVs open an opportunity
to provide power to the grid when it is needed in exchange of remuneration or
bypass high grid prices and provide internally; smart charging and discharging has
proven to be economically efficient even considering the degradation costs of the
batteries [56]. The International Energy Agency Outlook [25] states that around
40% of global energy consumption corresponds to buildings, hence, there is a vast
value to be gained by integrating them in a smart grid. [32] argues that large-scale
storage will remain with a small contribution to power system in the short and
mid term, whereas, small scale integration has a higher impact in the short term
due to lower overall costs. In consequence of it, there has been a growing interest
introduce demand response around the globe and in some case it has already been
successfully introduced.

[14] evaluated flexibility values for congestion management of four pilots that
have been conducted in the Netherlands.

1. “Your Energy Movement” (YEM) consisted of a two phase pilot where con-
sumers were provided of a smart energy management device where they
could monitor their consumption and dynamic price tariffs. The first phase
(in 2013) focused on washing machines with little results, the second included
batteries, PV and heat pumps. The main results were that dynamic energy tar-
iffs alone can lead to higher congestion due to consumers consuming power at
the lowest prices at once, and that active monitoring involvement of consumer
was challenging due to knowledge levels from participants.

2. “FlexPower” centered solely on EVs. Participants contracted a static profile
with an on-peak hours capacity (2h) and off-peak hours capacity (22h) with a
50% reduction and 25% in capacity, respectively. Participants could overturn
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their contract at on-peak hours at a premium cost. This pilot showed success-
ful results, 46% of peak capacity was reduced, however, this static method can
potentially shift capacity demand immediately after on-peak hour all at once
creating congestion at a later period.

3. “PowerMatching City” evaluated “PowerMatching” technology, where and
agent-based market equilibrium is reached by aggregating all stakeholder
(participants, network and market) and solving the optimization problem
to calculate the marginal pricing of assets. Households were provided with
smart appliances, heat pumps, PVs, EVs (and a wind turbine was added to
the project); they could decide to automatically, semi-automatically or manu-
ally manage their loads. The project showed that consumers were willing to
change their behaviors, however, it is a challenge to fairly distribute benefits
among all stakeholders.

4. “Energiekoplopers” used USEF, a flexibility market framework, where partici-
pants were given smart appliances, heat pumps, PVs and fuel cells; they could
trade flexibility in a day-ahead and intraday market with the DSO and a BRP.
The main results were that around 67% of flexibility purchased was delivered
and that at some points there were conflicting interest between the DSO and
BRP.

�.� ����������� ������ �������

�.�.� Dutch market

By the end of the 20th and beginning of the 21st century, many countries opted
for a liberalized electricity sector based on neoliberal economic theory that argues
efficiency and innovation through free market competition, rather than a strong in-
volvement form the State. A key component of the liberalized sector is unbundling
the previous, highly integrated structure of the sector. The restructuring aims to pro-
vide a competitive and “fair playing field” to all parties involved, however, the na-
ture of the sector forms a natural monopoly for the network’s infrastructure where
the State takes ownership. Europe has taken this market paradigm, furthermore,
the Dutch market is a fairly rigorous case of a decentralized electricity market [27].

The sector in the Netherlands can be divided into two main components: a phys-
ical, technical component and an institutional, economic one. The former entails
the power flow in the system, the generation, transmission and distribution to end
consumers, and all the necessary engineering equipment. The latter encompasses
the actors involved in the control and operation, producers, consumers and inter-
mediaries, and the venue where they interact, the market. TenneT, State owned, is
the TSO responsible for the balance between injections and withdrawals of power
in the system, management of the transmission network and management of im-
port/export capacity. The DSOs, owned by local governments, are responsible for
the distribution networks, balance, congestion management and voltage control at
a distribution level.

The differentiation between transmission and distribution is based on the lines’
voltage; the TSO manages high voltage (>110kV) and the DSOs the medium and
low voltage (<110kV). The standard frequency of operation in the European inter-
connected countries is 50Hz [1]. Additionally, producers are private companies that
own generation plants and can sell electricity directly to large consumers or small
consumers through retailers. The transactions take place in the wholesale market,
which can be subdivided into: bilateral market, power exchange, balancing market
and import/export auctions; Tennet operates the last two. Around 85% of electricity
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is purchased via confidential bilateral contracts, the remaining is traded in the spot
market (APX) . Figure 2.5 provides an illustration of the sector.

Figure 2.5: Diagram of electricity system,[27]

�.�.� Power exchange

The power exchange is divided into sub-markets: forward and futures, day ahead,
intraday, and balancing market. Forward and futures are contracts for physical
delivery of the commodity and speculative “papers” for price risk hedging, respec-
tively [16]. The spot market is formed from the three remaining sub-markets. In
the day ahead electricity is traded based on the marginal costs of generation, where
a single clearing price is achieved in a quarterly basis (15min) in the Dutch market
one day prior to delivery. The balancing market consists of reserve procurement and
imbalance settlements in a real time frame [1, 27]. Figure 2.6 provides a schematic
illustration of the time frames.

Figure 2.6: Wholesale market time frame [49]

Tennet provides an annual market review on the developments of the Central
Western European countries, particularly the Dutch and German market [49]. Fol-
lowing are some relevant insights (for this work). In the Netherlands the electricity
price is strongly influences by the natural gas plants due to their relatively high
portfolio share. The intraday market provides a venue for participants to optimize
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their positions of the day ahead market against load and generation forecasting er-
rors, and unexpected outages; this are continuous auctions where no single price
per hour is set, unlike in the day ahead market. In recent years the intraday market
has had a substantial increase in trading volume due to the growing penetration of
RES in the electricity share portfolio; 2019 saw a 57% increase of energy traded com-
pared to 2018. Figure 2.7a shows this trend and the fact that most intraday trades
occur towards the evening. Since day ahead and intraday prices are correlated,
it is useful to measure their delta. Historically, day ahead prices have been higher
than intraday for more hours in a year. Figure 2.7b illustrates the delta distributions.

(a)

(b)

Figure 2.7: Intraday market,[49]. (a) Intraday trading volumes. (b) Day ahead and intraday
price delta.

�.�.� Balance market

Due to the fact that it is not yet economically feasible to store electricity at a large
scale in the network, all commodities traded in the market need to be generated
and consumed almost instantly. Therefore, all users of the network are considered
“program responsible”, although, there are only a few dozen large users (producers,
consumers or suppliers) that actually bear this responsibilities, while the rest of the
users transfer their program responsibility to them. These are the BRPs, who are
financially responsible to maintain the balance between demand and supply. BRPs
settle any mismatches between demand and supply on a real-time basis against the
imbalance prices from the market where Tennet is the operator [49]. Participants
can provide ancillary services (through their BRP) through bids and the TSO con-
trols the activation of the winning bids. The design of the balancing market entails
three main pillars: balancing responsibility refers to the planning and scheduling
of generation and demand a day before delivery until the closing gate, balance
service consists of the bidding that the TSO can choose to activate, and imbalance
settlement where the deviations from the energy program are set according to the
imbalance prices for any given program time unit (PTU) [46, 27]. Figure 2.8 pro-
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vides an overview of the balancing market.

Figure 2.8: Schematic overview of balancing market, [27]

There are two main distinctions between the balancing services provided: balanc-
ing energy and reserve capacity. The first is dispatched via up or down regulation
to ensure a real time balance between supply and demand for every program time
unit (PTU). The second are procured reserves through contracts of specific dura-
tion before delivery. The TSO contracts the option to use the reserves for control
of the system [6]. The balancing reserves are subdivided into: frequency contain-
ment reserves (FCR), automatic frequency restoration reserves (aFRR) and manual
frequency restoration reserves (mFRR); formerly named primary, secondary and ter-
tiary control, respectively [48]. These reserves are procured to mitigate deviations
from the 50 Hz standard. The interconnected networks need to maintain synchronic-
ity around the standard frequency, hence, the contribution of the Dutch connections
(3.7% of the total network) is the reference for the amount of reserves needed for
dispatching at any given moment. In 2021 the minimum volume of reserves needed
are 114 MW, 300 MW and 1 005 MW for FCR, aFRR and mFRR, respectively [52].

Additionally to frequency control the TSO needs to control the reactive power
flowing through the network. Reactive power does not add to the active power
flow, however, it strongly impacts on the voltage levels within the network. The
operator has several sources to control for reactive power, such as, shunt sinks and
capacitor banks, nevertheless, sometimes it may need to request generator or power
park modules for control. Voltage control is divided into primary and secondary,
the former is designed to activate almost immediately and automatically in the
presence of any disturbance, and the latter is performed solely by the operator
to optimize the use of stationary facilities. Voltage control strongly depends on
the location of disturbance, consequently, TenneT makes a regional estimation of
the amount needed for the coming year and issues an invitation to tender for the
supply of voltage control by generators [50]





3 S M A R T E N E R GY S Y S T E M A N D G R I D
M O D E L

This chapter describes the smart energy system and the distribution network model
employed. The former was developed by [56], and the latter is based on [26]. These
two are integrated together to study the behavior of prosumers in response to dif-
ferent market mechanisms, and the subsequent effects on the grid at a low voltage
level due to those behaviors. The chapter is composed of 4 sections. In section
3.1 the components of the smart energy system are outlined. In section 3.2 the for-
mulation of the system as an optimization problem and its constraints is laid. In
section 3.3 the time frames and control techniques are detailed. In section 3.4 the
distribution network model and the integration with the smart energy system are
presented.

�.� ���������� �� ��� ����� ������ ������
This section was not developed as part of the thesis, however, it is presented as
reference since it has been used to develop the work of this thesis.

As discussed in section 2.2, there has been an accelerating change in the paradigm
of the energy sector. Energy systems are shifting towards a more decentralized ap-
proach where players of smaller scales are becoming more prevalent and relevant.
In this context, the smart energy system provides management of the various com-
ponents and power flows for a typical prosumer within a decentralized system with
high penetration of RES. The system consists of a multi port converter that incor-
porates a PV maximum power point tracking device (MPPT) [5], bidirectional EV
charger [35], and a bidirectional battery energy storage (BES) charger, DC flows.

Additionally, the grid is connected to a heat pump and the load from appliances,
for AC flows. The system is managed by the smart charging algorithm based on
inputs (forecasts and economic signals) and outputs power levels for the PV, BES, EV
and exchange with the grid. The optimization is a cost minimization that considers
inner constraints of the system, such as, state of charge (SoC), degradation of BES
and EV, and availability of the EV. The economic signals may vary depending on the
markets in place, e.g., energy tariffs, capacity mechanisms, ancillary services and
flexibility markets. Figure 3.1 illustrates a schematic representation of the system.

15
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Figure 3.1: Smart energy system’s diagram [56]

�.� ����������� �� ��� ������ �� �� ������������
�������

This section presents the main functions that form the objective function of the
optimization problem. The constraints of the model are not presented here, the
complete model can be found in appendix A. Further reference can be found in
[56].

�.�.� Objective function

The objective of the smart charging algorithm is to minimize overall costs for the
prosumer, hence the main objective function is formulated 3.1. The function consists
of battery costs CBES , EV costs CEV , PV costs CPV , grid costs CGrid and revenue due
to regulation CReg. This function is the basis for subsequent mechanisms and will
be modified accordingly in following sections. In order to model the optimization
problem, CONOPT4 solver on the Generic Algebraic Modeling System (GAMS) is
used.

min(CTotal) = min(CBES + CEV + CPV + CGrid � CReg) (3.1)

�.�.� Battery costs

The battery costs CBES are due to the operation of the Lithium-ion battery. These
costs are calculated by subtracting the degradation of the battery DETotal

BES to its initial
capacity Emax

BES, both in kWh. The degradation model is taken from [57], and consist
of a calendar and a cyclic aging per time step. The model is for a single Nickel-
Manganese-Cobalt (NMC) cell and scaled up considering 14 cells in parallel and
100 in series. Thereafter, the value of the battery VBES, in †/kWh, is determined as
presented in [36]. It is assumed that the battery is in its first life Vnew

BES , which ends at
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80% of the initial capacity. The value of the second life of the battery V2nd
BES is equal

to 50% of a new one. The value of the battery is shown in equation 3.2 and the cost
in .3, in †.

VBES =
V2nd

BES � Vnew
BES

0.2
DETotal

BES + Vnew
BES (3.2)

CBES = Vnew
BES Emax

BES � VBES(Emax
BES � DETotal

BES ) (3.3)

�.�.� Electric vehicle costs

The EV also has operational costs due to driving and due to providing power to the
grid (V2G). The driving costs are not part of the optimization and hence outside
of the control, however, they are accounted for as the whole system is updated in
subsequent time steps (discussed in section 3.3). The costs CEV caused by providing
V2G power have the same treatment as the battery in .1.1 above. The equation for
the value of the EV (for V2G) is 3.4 and for costs is 3.5.

VEV =
V2nd

EV � Vnew
EV

0.2
DETotal

EV + Vnew
EV (3.4)

CEV = Vnew
EV Emax

EV � VEV(Emax
EV � DETotal

EV ) (3.5)

�.�.� Photovoltaic costs

The PV costs CPV are levelised per kWh, as per [43] the parameter used is lPV =
0.03 †/kWh. The cost of providing PV power for the prosumer are calculated with
equation 3.6.

CPV =
T

Â
t=1

PPV(t)DtlPV (3.6)

�.�.� Grid costs

The grid costs CGrid are the result of system’s grid exchange, either drawing PBuy
Grid(t)

or feeding PSell
Grid(t). The power fed/drawn in each time step are subject to a dynamic

energy tariff, in †/kWh, lBuy(t) and lsell(t), respectively. The selling price is 50%
lower than the buying price in order to simulate a scenario where prices for the
prosumer are a function of demand and supply; this also provides arbitrage to
ensure that PBuy

Grid(t) and PSell
Grid(t) are not non-zero simultaneously [56]. These energy

tariffs, in principle, optimize to feed energy at high prices (energy scarcity) and
draw from the grid at low prices (energy abundance). Equation 3.7 shows the
calculation of the grid costs.

CGrid =
T

Â
t=1

PBuy
Grid(t)lBuy(t)Dt �

T

Â
t=1

PSell
Grid(t)lSell(t)Dt (3.7)

�.�.� Regulation revenue

The revenue CReg is the result of acting as a frequency containment reserve (FCR) by
reserving power capacity for primary frequency regulation. It is assumed that an
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aggregator will be the intermediary between the prosumer and the FCR market, and
it will bundle together several prosumers to meet power requirements. Up/down
regulation prices are lUp(t) and lDown(t), respectively. PUp

Reg(t) and PDown
Reg (t) are

the reserved power capacity for up and down regulation, respectively. Additionally,
hinv/ch are the efficiencies of the inverter and BES/EV chargers, correspondingly.
The revenue is calculated with equation 3.8.

CReg = hinvhch

T

Â
t=1

(PUp
Reg(t)lUp(t) + PDown

Reg (t)lDown(t))Dt (3.8)

�.� ���� ������ ��� ������� ����������
The goal of the smart charging algorithm is to find the optimal schedule (as dis-
cussed in previous section 3.2 for all the relevant power flows in the system, which
will result in a schedule for power exchange with the grid. The optimization win-
dow is for the 24 hours of the day at a 15 min resolution Dt, which coincides with
each program time unit (PTU) of Dutch (and interconnected) markets. The system
is fed with forecasts of the necessary parameters, e.g., loads, solar irradiance, EV
availability and prices., to schedule to most cost efficient power levels. However,
these forecasts are subject to errors due to their stochastic nature, and are even ex-
pected to increase in coming years as mentioned in chapter 2. The parameters and
forecasts are further elaborated in the following chapter 4.

�.�.� Moving horizon

In order to cope with forecast errors, a moving horizon predictive controller is put in
place [56]. This control works on the basis that a new forecast with better accuracy
(in principle) will be available every time step. In other words, the forecast for e.g.,
the load at t � 24h will be considerably less accurate than the one for the same load
at the time step previous to delivery t � 15min. This moving horizon ensures that
the best power schedule will result from the most accurate information available
at any given moment in time. The moving horizon will be tailored to the context
in which of the market mechanisms the energy system is embedded, e.g., energy
tariff, capacity tariff, day ahead and/or intraday. This allows the smart charging
algorithm to be flexible and adapt to different market designs.

�.�.� Real time control

Even with the moving horizon errors are still expected due to forecast inaccuracies
and the difference in time resolutions between the optimization’s time steps (15min)
and real time; therefore a real time control is implemented. This real time control
is a rule-based control operating on a 1min resolution. Its purpose is to maintain
power balance at all times between the different components of the system and the
system with the grid. The control works on top of the pre-optimized scheduled cor-
recting the power errors PError at any instance. The error is calculated with equation
3.9.

For example, if the load at an instance t turns out to be larger than expected
and the optimized schedule assigned the BES to supply the load (or part of it)
the control will correct the discharging power Pdis

BES at a higher level, if available.
If this control was not implemented, then all power deviations would have to be
compensated with grid power PGrid. Compensating with the grid may or may not
be beneficial from a cost stand point, hence, the control compares the cost to the
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average cost for the 24h time window. If it is cost efficient grid power will be used,
else if the BES and/or EV are available they will compensate. The availability of
BES and EV depend on their power rating, SoC, and the power balance inside of the
multiport converter. Lastly, at the end of every real time control time step the actual
degradation of BES and EV are calculated and updated for future optimizations of
the schedule at a 15 min resolution. Figure 3.2 illustrates the whole control scheme’s
flowchart.

PError = P f c
Load � Pac

Load � (P f c
PV � Pac

PV) (3.9)

Figure 3.2: Moving horizon and real time control flowchart [56]

�.� ����������� �� ������������ ������� ��� �����
������ ������

Once the smart energy system of prosumers has been defined, the effects of such
systems in the grid at a distribution level need to be modeled. To achieve this, the
IEEE European low voltage feeder [26] is employed as a grid model. Figure 3.3
shows the single line diagram of the low voltage distribution network. It is a radial
feeder with 906 Buses consisting of 55 households connected with 3 phase cables.
Each household has its own load and they are modeled as a constant PQ with a PF
= 0.95, and a 25 A connection. The low voltage feeder is connected to a substation
where a step-down transformer with 0.8 MVA capacity transforms a voltage of 11
kV into 0.416 kV at 1.05 pu. The test feeder is modeled using MathWorks’ Simscape
Electrical - Specialized Power Systems, in SIMULINK [9].

As stated, the purpose of the grid model is to study the effects, e.g., congestion in
the feeder caused by a future decentralized paradigm. In this context, it is assumed
that each one of the 55 households will have a smart energy system in place that
will dictate how much power will be drawn/fed from/to the grid. Of course not
all households will be the same, each one will have its own capacities, constraints
and preferences. For example, some might have a bigger heating demand due to a
higher household volume, which in turn, will allow for larger installed capacity of
PV due to a bigger roof area. Some might have longer commutes in certain days,
hence, higher expected EV charge requirements. These differences result in varied
demand responses to economic signals, e.g., prices, tariffs, penalties, from each
prosumer. However, even if all households are equipped with these smart energy
systems and they are aligned with the current energy market congestion may arise,
as explored in section 2.2. In the following chapter 4 the case study to benchmark
congestion based on the input data of each household is detailed.
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Figure 3.3: Single line diagram of the IEEE European low voltage feeder



4 C A S E S T U DY A N D B E N C H M A R K F O R
C O N G E S T I O N I N T H E F E E D E R

The purpose of this chapter is to describe the case study used to prove that indeed
congestion in the feeder will arise in future decentralized energy systems. This is
achieved by aligning each of the 55 prosumers in the low voltage feeder to an energy
tariff and optimizing their power schedules. This will result in a benchmark to
compare and evaluate the market mechanisms investigated in subsequent chapters.
First, section 4.1 describes the scenarios used for the case study. Second, section
4.2 elaborates on the assumptions taken in the study. Third, section 4.3 details the
input data fed to each of the 55 smart charging algorithms in the network. Fourth,
section 4.4 presents the results of the optimized schedules and congestion levels for
each scenario.

�.� ��������� �� ��� ���� �����
The presence of congestion in the feeder depends heavily in the conditions in which
prosumers find themselves in, therefore, it is key to choose scenarios that are rep-
resentative of these different conditions. Throughout the year prosumers will face
a virtually infinite combination of internal and external conditions. For example,
load and heat demands due to individual preferences and weather, different levels
of irradiance with different sets of PV installed capacities, EV requirements, and en-
ergy prices subject to weather, infrastructure and market dynamics. Nevertheless,
on the yearly aggregate trends tend to be fairly stable with few extreme cases.

The approach for this case study was to select two extreme scenarios where pro-
sumers would have to optimize their power schedules, and evaluate the response of
each prosumer and congestion in the feeder. The assumption is that by optimizing
in the extreme cases the problems that may arise in less extreme cases will also be
implicitly solvable. The two scenarios are: 1) an extremely cold winter day, and 2)
an extremely high irradiance summer day.

1. Winter scenario Cold winter day with highest heating demand coupled, with
general scarce generation at a transmission level resulting on high energy
prices.

2. Summer scenario Sunny summer day with the highest irradiance and low
load demand, coupled with general abundant generation at a transmission
level resulting on low energy prices.

21
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�.� ����������� ��� ��������������
On top of the scenarios there are several general assumptions and considerations in
the case study. These are the following:

• Loads: Each of the 55 households has its own load profile, which represents
the AC appliances without heating.

• Heating: The 55 households are divided into 5 tiers (11 households in each
tier). These 5 tiers are used for the heating profiles, which increase their peak
demands in 5 steps.

• PV: The same 5 tiers are used for PV installed capacity assuming that the
higher the heat demand, the bigger the household volume, and the larger roof
area for installation. The PV installed capacity range is [2kWp - 10kWp] with
a linear increase of 2kWp.

• Energy storage degradation: Both BES and EV are composed of the same
NMC cells, meaning, subject to the same aging and degradation costs, as per
equations .3 and 3.5.

• BES: Each household has the same new BES with maximum charge/discharge
10kW capacity and an energy capacity of 10kWh. The state of charge of the
battery is limited to between 10% and 90%.

• EV: All household have one EV with a 10kW charge/discharge capacity and
80 kWh of energy capacity. The EVs’ scheduled commutes are predefined
based on the time of departure tdepart and arrival tarrival ; during this time the
EV is unavailable (unconnected to the multi-port). The user can choose the
minimum state of charge required at tdepart. For the commute an efficiency of
15kWh / 100km and an average single trip of 30km are assumed [13]. When
the EV returns the state of charge is updated.

• Demand elasticity: The appliances’ loads and heating (both AC) are non con-
trollable, thus, they need to be supplied without the possibility of shedding.
The controllable side consists of the BES, EV and PV power; these are control
variables in the smart charging algorithm.

• Optimization: All households are equipped with the same smart charging
algorithm for cost minimization. The same economic signals apply to all
households, i.e., prices, tariffs and penalties. The combination of profiles is
assigned randomly to all households, except for PV capacity and heating peak
demands, as explained above.
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�.� ����� ����
Having laid the scenarios and assumptions, the input data is detailed in this section.
The data consists of two sets for each of the parameters, the forecast is in a 15min
resolution and the actual data in a 1min resolution. The data profiles are obtained
from various real-life sources as explained below.

�.�.� PV data

The source of the PV data is a single profile of actual data. The forecast profile was
generated by averaging the actual profile every 15 min time steps and multiplying
the averages with a randomized vector between [ 0.9 1.15 ] for every household.
This procedure yields forecasts that do not have the same average as the actual
data, even if both the actual and forecast profiles come from the same source data.
Figure 4.1 shows the forecasted power generation for each of the 5 tiers in the two
scenarios. Figure 4.2 compares the actual and forecasted power generation of a
single household.

(a) Winter scenario (b) Summer scenario

Figure 4.1: PV generation forecast of each tier

(a) Winter scenario (b) Summer scenario

Figure 4.2: Actual and forecast PV profiles of tier 1
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�.�.� Load data

The actual load profiles are sourced from the Dutch DSO Alliander, this data was
measured from 77 residential clients in 2018. To arrive at 55 profiles, the clients
with highest peak power [W] and highest energy consumption [Wh] were selected.
The forecasted data is the average load profile from all types of buildings, and then
randomized for the 55 households with the same treatment as the PV data above.
The rationale is that, in general, loads are highly stochastic and the forecasts are
aggregated trends. In figure 4.3 5 forecasts profiles or each tier and scenario are
presented. In figure 4.4 a comparison between actual and forecasted profiles is
found.

(a) Winter scenario (b) Summer scenario

Figure 4.3: Load forecast of each tier

(a) Winter scenario (b) Summer scenario

Figure 4.4: Actual and forecast load profiles of tier 1
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�.�.� Heating data

The heating profiles come from the measurements of electric heat pumps done
by TNO in 2015 [54]. These are 5 distinct profiles that are assigned to each of
household depending on the tier they belong. The forecasted data is an average for
the month of January (winter scenario) and August (summer scenario). The actual
data is the profile of the highest demand day and the highest irradiance day of the
year, and then randomized with the same [0.9 1.15] vector as above. Figure 4.5 and
4.6 illustrate the profiles for each tier in each scenario, and actual and forecasted
profiles, respectively.

(a) Winter scenario (b) Summer scenario

Figure 4.5: Heating forecast of each tier

(a) Winter scenario (b) Summer scenario

Figure 4.6: Actual and forecast heating profiles of tier 1
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�.�.� EV data

The EV schedules of each household are taken from Alliander’s data on charging
stations. This data is divided into public and private spaces for weekdays and week-
ends. With this data a distribution of 55 schedules is constructed and assigned to
each household. This means that each of the 55 households has its own unavail-
ability where the EV is disconnected from the multi-port connection and cannot be
considered in the optimization for those hours. The range of the unavailable hours
is [0h-10h] and has an average of 8.4h. Both scenarios have the same EV schedules,
figure 4.7 shows the EVs’ distribution of (un)availability.

Figure 4.7: Availability distribution of EVs

�.�.� Price data

In order to obtain the benchmark for congestion the price signals considered are
energy tariffs for buying and selling frequency. The price in the energy market is
equal to the Amsterdam Power Exchange market (APX) in 2018 [4] averaged to 0.20
†/kWh. As mentioned in section 3.7, the average selling price is 50% lower than the
buying price. Figure 4.8 presents the prices for both scenarios. It can be observed
that these prices represent extreme cases, especially in the summer scenario where
prices go to negative between 14:00h and 16:00h, presumably, due to generation
abundance.

(a) Winter scenario (b) Summer scenario

Figure 4.8: Energy and regulation prices for each scenario
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�.�.� Optimized power flows

The optimized power schedules of the 55 prosumers are the result of considering
all the assumptions and feeding the input data presented into the smart charging
algorithm. The power flows of the components of two different households reacting
to price are presented in figures 4.9-4.10 for both scenarios. Figure 4.9 is household
No. 1 from EV schedules 4.7, and has the EV available the whole day. Notice that
PEV is active throughout the day with high drawing and feeding peaks. Figure 4.10
is a common case where the EV is unavaiable from 9:00 to 18:00 and cannot provide
storing flexibility, it is household No. 24.

It is worth mentioning that positive values for PGrid mean feeding the grid (and
negative drawing), for PBES and PEV positive charges (and negative discharges); this
sign convention will be maintain in the whole thesis. From the figures it is clear
that the smart charging algorithm is working in the desirable way. For example,
in the winter case high load and heating demand with high prices are exhibited,
therefore the stored energy is used as much as possible to avoid exposure to high
prices and reduce PGrid In summer, when prices are negative big drawing peaks to
store energy and feed back in the evening with higher prices.

(a) Winter scenario (b) Summer scenario

Figure 4.9: Optimized power flows of household 1 (EV available 24hrs)

(a) Winter scenario (b) Summer scenario

Figure 4.10: Optimized power flows of household 24 (EV available 14hrs)
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�.�.� Grid exchange

From the feeder’s standpoint, the only important profile is the power exchange
with the grid because this will determine congestion in it. The grid exchange pro-
files from the 55 households in the feeder are presented in figure 4.11. Expectedly,
a general pattern can be observed from all the profiles because all are residential
prosumers and they are responding to the same price signals with the same op-
timization scheme. Even though, they have different needs and preferences that
result in the variations also seen in the figures.

The winter case shows a big demand in the first hours of the day. This may be
explained due to very cold weather with high heating demands, but more interest-
ingly, the expectation of a rise in energy prices induces an over consumption for
storage and later selling. The PV generation, although small, does provide some
relief to grid drawing for the hours it is available.

The summer case illustrates a more extreme situation where, even if there is a
high irradiance, no power is been fed back until later in the day where the prices
are more attractive. Unsurprisingly, power is been drawn at nearly the power rating
of the inverter (10kW) when the prices are negative. These negative prices mean that
prosumers are been paid to draw from the grid and charged for feeding in, which
indicates high generation abundance. This is quite a drastic situation, nevertheless
it is inline with the extreme scenarios described in section 4.1. Notably, for several
hours at the beginning of the day and between 8:00h and 10:00h no grid change at
all is required because the storage can supply the small loads.

(a) Winter scenario (b) Summer scenario

Figure 4.11: Grid power exchange from 55 households in the feeder (+ feeds, - draws)
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�.�.� Congestion in the feeder

It is key to understand how the grid will be affected in decentralized future energy
systems were prosumers have in place smart energy systems similar to the one
presented in chapter 3. Modeling the IEEE European low voltage test feeder with
the optimized power schedules of the prosumers gives a picture of the potential
behavior of the distribution network. Figures 4.12-4.13 show this behavior in the
two scenarios compared to the standard IEEE loads. These figures are for BUS 1
at the beginning of the feeder, and BUS 906 at the end of it. From figure 4.12a
and 4.13a it can be observed that at BUS 1 there is a small deviation in the voltage,
however, in figures 4.12b and 4.13b for BUS 906 the voltage has surpassed by a big
margin the operational limits of [0.9 1.1] pu. These violations coincide with the big
overlapping power peaks due to the price signals, as observed in figures 4.11a and
4.11b.

(a) Voltage BUS 1 (b) Voltage BUS 906

Figure 4.12: Voltage in the feeder in winter scenario

(a) Voltage BUS 1 (b) Voltage BUS 906

Figure 4.13: Voltage in the feeder in summer scenario
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The energy tariff is the clearing price where wholesale demand and supply are
matched. For example, in the summer scenario energy prices drop to even negative
values around noon (highest PV irradiance) because the system is flooded with gen-
eration and there is not enough demand for it. At a wholesale level the system is
signaling that there is an abundance of generation (hence the low price), however,
at a distribution level this causes great congestion problems because almost every
household is drawing at maximum storing power to sell later.

This illustrates how energy tariffs are inefficient at assigning value to available
capacity and flexibility at a distribution level, as reviewed in 2.2.2. These results
support the general discussion reviewed in chapter 2, that calls for new market
mechanisms that can address demand response and flexibility at a distribution level.
Therefore, the congestion levels obtained from the grid model by optimizing the
power flows of each prosumer will be the benchmark for the market mechanisms
analyzed in chapters 5-7.



5 E VA L U AT I O N O F C A PA C I T Y
M E C H A N I S M S

This chapter contains the evaluation of four capacity mechanisms whose purpose
is congestion management through prosumers’ demand response. The selection of
the mechanisms is based on the discussion in section 2.2. The mechanisms are: 1)
a hard constraint (as a generalization of physically limiting load techniques), 2) ca-
pacity subscription, 3) peak tariff, and 4) dynamic tariff. The chapter is consists of 3
sections. In section 5.1 a description of each mechanisms with its mathematical for-
mulation is detailed. In section 5.2 the determination of the key parameters of each
mechanism is explained. In section 5.3 the results and analysis of the mechanisms
are discussed.

�.� ����������� ��� ����������� �� ��� �����-
�����

The straightforward method to mitigate congestion is to physically limit the peak
power from prosumers whenever congestion is present or expected, however, this
does not provide prosumers with a choice. This diverges from the paradigm of a lib-
eralized decentralized energy market because it discards any assignation of value to
prosumers’ flexibility. Nevertheless, it is useful to compare it against market based
mechanisms for a more robust analysis. The formulation of a these mechanisms
consist on modifying the grid’s cost minimization function 3.7 (as presented in the
sections below). It is worth mentioning that regardless of the mechanism in place,
prosumers are limited by their physical connection to the grid PMax

Grid = 17.5 kW.

�.�.� Hard constraint

There are several techniques for congestion management based on direct physical
measures, e.g., active power curtailment, automated demand response, and graceful
degradation. Here, a hard constraint is used as a generalization of the various
techniques. A hard constraint simply means physically limiting the load after a
certain power threshold PSub. The assumption is that the determination of the
threshold will depend on the DSO and the prosumers will know such limit. Then,
equation 3.7 becomes 5.1 in the optimization problem. It is relevant to point out
that |PBuy

Grid(t) and |PSell
Grid(t) are never simultaneously non-zero, as discussed in 3.2.

CHard
Grid =

T

Â
t=1

PBuy
Grid(t)lBuy(t)Dt �

T

Â
t=1

PSell
Grid(t)lSell(t)Dt 8t

s.t. |PSell
Grid(t)� PBuy

Grid(t)|  PSub

(5.1)

�.�.� Capacity subscription

The approach for the capacity subscription is based on [3] and [7]. It takes a simi-
lar approach to the hard constraint where a power threshold PSub is used. In this
case, the threshold is a for the prosumer to determine by subscribing to it. The
prosumer pays for the assurance that below that power level the energy tariff paid
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will be low. After such level the prosumer is exposed to very high penalties lPenalty,
several times the energy tariff price under the subscription. The prosumer could
chose and pay for their subscription level on a yearly, seasonally or monthly basis.
Retailer providers seem the most adequate party to provide intel services to pro-
sumers since they would compete by providing more accurate subscription levels
tailored to their needs, much like data providers in Telecom.

The optimization problem for grid costs becomes 5.2 - 5.4. Note that the subscrip-
tion level PSub in 5.2 and 5.3 is not a decision variable in the optimization problem,
it is a parameter that constraints the problem but unlike the previous case it is not
a hard constraint. This means that the prosumer could still surpass the limit and
pay the penalty lPenalty(t) for it. This gives flexibility to the prosumer but a very
high cost that does not necessarily represent the actual cost of congestion at that
instance; the prosumer is penalized regardless if there is congestion or not.

The formulation of 5.2 and 5.3 makes the function continuous by avoiding dis-
cretization with conditional logic i f PBuy/Sell

Grid (t) > PSub for penalty payments.
Since PBuy/Sell

Grid (t) is always positive, the difference PBuy/Sell
Grid (t)� PSub will be neg-

ative when PBuy/Sell
Grid (t) < PSub and will be canceled with |PBuy

Grid(t)� PSub|. When
PBuy/Sell

Grid (t) > PSub both differences (with and without absolute operator) will be
positive and doubled, hence, the division by 2. In general, continuous functions are
more desirable than discrete ones in optimization problems because they reduce
computation expense, therefore this same formulation will be used in for penalty
payments in the mechanisms below.

CBuy
Sub =

T

Â
t=1

PBuy
Grid(t)lBuy(t)Dt +

PBuy
Grid(t)� PSub + |PBuy

Grid(t)� PSub|
2

lPenalty(t)Dt

(5.2)

CSell
Sub =

T

Â
t=1

PSell
Grid(t)lSell(t)Dt �

PSell
Grid(t)� PSub + |PSell

Grid(t)� PSub|
2

lPenalty(t)Dt

(5.3)

CGrid
Sub = CBuy

Sub � CSell
Sub (5.4)

�.�.� Peak tariff

This mechanism elaborates on the work of [44]. The peak tariff further develops
on the idea of providing prosumers with a more active role on the market. In
the present case, a tariff j

Buy
Peak and jSell

Peak is paid for the peak power achieved for
drawing PBuy

Peak and feeding PSell
Peak, respectively. This allows for a symmetric capacity

mechanism (j
Buy
Peak = jSell

Peak) or an asymmetric one (j
Buy
Peak 6= jSell

Peak). The assumption
here is that the prosumer knows in advance, i.e., day ahead, the price of the tariffs
and can optimize accordingly. Similar to the capacity subscription, the prosumer
gets energy tariffs below the peaks and is exposed to a penalty above them. The
optimization problem for grid costs is now equations 5.5 - 5.7.

It is important to remark that now the peak powers PBuy/Sell
Peak are decision variables

in the optimization problem. Consequently, prosumers are given the flexibility to
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choose what value they place on power availability. For example, one might have a
long commute on the next day and require a full EV charge early in the morning that
requires a higher peak than someone with a shorter commute. Prosumers are still
subject to an energy tariff which means that their demand response is incentivized
by the capacity tariffs j

Buy/Sell
Peak and energy tariffs lBuy/sell(t). Of course, the relation

between these tariffs will impact the output of each optimization, this is discussed
in 5.2.

CBuy
Peak = PBuy

Peak j
Buy
Peak +

T

Â
t=1

PBuy
Grid(t)lBuy(t)Dt+

PBuy
Grid(t)� PBuy

Peak + |PBuy
Grid(t)� PBuy

Peak|
2

lPenalty(t)Dt

(5.5)

CSell
Peak = �PSell

Peak jSell
Peak +

T

Â
t=1

PSell
Grid(t)lSell(t)Dt�

PSell
Grid(t)� PSell

Peak + |PSell
Grid(t)� PSell

Peak|
2

lPenalty(t)Dt

(5.6)

CGrid
Peak = CBuy

Peak � CSell
Peak (5.7)

�.�.� Dynamic tariff

The last mechanism is a dynamic tariff which builds on the peak tariff. This mech-
anism has a similar formulation as the previous case, but the tariff j

Buy
Dynamic(t) and

jSell
Dynamic(t) are time dependent. The price paid for the peak capacity achieved

PBuy/Sell
Peak depends on when the peak is achieved. This allows the dynamic tariffs to

reflect the grid’s situation in a more granular fashion, by assigning a price for ca-
pacity at PTU. Similarly, the prosumer is still subject to energy tariffs and penalties
above the peak capacities paid for. The formulation for grid costs takes the form of
5.9 - 5.10.

CBuy
Dynamic = PBuy

Peak j
Buy
Dynamic(t

Buy
Peak)+

T

Â
t=1

PBuy
Grid(t)lBuy(t)Dt+

PBuy
Grid(t)� PBuy

Peak + |PBuy
Grid(t)� PBuy

Peak|
2

lPenalty(t)Dt

(5.8)

CSell
Dynamic = �PSell

Peak jSell
Dynamic(t

Sell
Peak)+

T

Â
t=1

PSell
Grid(t)lSell(t)Dt�

PSell
Grid(t)� PSell

Peak + |PSell
Grid(t)� PSell

Peak|
2

lPenalty(t)Dt

(5.9)

CGrid
Dynamic = CBuy

Dynamic � CSell
Dynamic (5.10)
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The determination of the different parameters, i.e., PSub, lPenalty, and j
Buy/Sell
Peak/Dynamic

plays a key role in the performance of the mechanisms formulated. The evaluation
of the mechanisms is based on a technical and economic approach. For the techni-
cal side the main focus is the effectiveness of mechanisms at managing congestion
below the permissible levels. Solving congestion may come at different costs for
different mechanisms. For the economic evaluation three metrics are employed: 1)
total lost load in the feeder, 2) cost of the lost load, and 3) total cost incurred by pro-
sumers in the feeder. Both the technical and economic metrics are compared against
the energy tariff benchmark presented in chapter 4. This entails that all data inputs,
parameters, constraints and formulations apply equally in all cases, except for the
formulation of equation 3.7, as explained in section 5.1 above.

�.�.� Determination of hard constraint and subscription, PSub

For the hard constraint and capacity subscription PSub is determined in the same
way using [3] approach. The method consists on assuming a that in a certain
amount of instances the grid will be congested. For this case, it is assumed that
5% of the year’s PTUs will be congested. Then, by matching the yearly load du-
ration curve of each household in the feeder with that 5%, PSub is set for every
household. Figure 5.1 illustrates this procedure for one prosumer in each of the five
tiers. Figure 5.2 shows where PSub is set for all 55 households.

Figure 5.1: Yearly load curve for all tiers
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Figure 5.2: Subscribed capacity with 5% congestion occurrence

�.�.� Determination of peak tariffs, j
Buy/Sell
Peak

The peak tariff j
Buy/Sell
Peak to feed and draw is determined by analyzing the sensitivity

of prosumers different levels of tariffs. A price is set at j
Buy/Sell
Peak = 0.015 †/kW [44]

and increased linearly an order of magnitude to j
Buy/Sell
Peak = 0.15 †/kW. Running

the simulation for all prosumers a sensitivity curve to price, DPBuy/Sell
Peak /Dj

Buy/Sell
Peak ,

can be constructed for all in each scenario. Figures 5.3-5.4 show these curves for
drawing and feeding peak capacity in winter and summer, correspondingly. These
figures present the peak capacity determined by the optimization as a function of
price levels. Figures 5.3a and 5.4a are peak drawing capacities, they never fall to
zero because there is load and heating demand (for the most part) that needs to be
satisfied. Figures 5.3b and 5.4b are feeding capacities, these do fall to zero at some
point because selling energy is not strictly necessary. These peak capacities strongly
depend on the energy tariff in place, in this case the summer scenario has lower
prices than winter, therefore, the feeding peak capacities fall to zero at lower peak
tariff prices compared to the winter scenario.

It is worth noting the somewhat asymptotic nature of the curve, this indicates
that after certain price level the smart charging algorithm cannot further reduce
the peak capacity because of the inner constraints need to be satisfied, especially
in the drawing curve. After this limit any extra increase on the price is punishing
prosumers unnecessarily. As a result the tariff is set at j

Buy/Sell
Peak = 0.06 †/kW to

allow some room for further increase if needed. Figures 5.5a and 5.5b display the
optimized feeding and drawing capacity from each household in the feeder, in each
scenario. It can be argued that the proper determination of the tariff should also
reflect the cost incurred by the congestion, but such analysis is out of scope of this
thesis.



36 ���������� �� �������� ����������

(a) Peak drawing capacity (b) Peak feeding capacity

Figure 5.3: Price sensitivity of peak capacities for each tier in winter

(a) Peak drawing capacity (b) Peak feeding capacity

Figure 5.4: Price sensitivity of peak capacities for each tier in summer

(a) Winter scenario (b) Summer scenario

Figure 5.5: Optimized peak capacity for each household
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�.�.� Determination of dynamic tariffs, j
Buy/Sell
Dynamic

The determination of j
Buy
Dynamic(t) and jSell

Dynamic(t) develops on the peak tariff’s
method. The price sensitivity between [0.015†/kW 0.15†/kW] as presented in fig-
ures 5.3 and 5.4 sets the basis for a time dependent version.

In order to reflect the capacity of the feeder as a function of time, the maximum
expected congestion from figure 4.12 and 4.13 are matched with the maximum tariff
jMax = 0.15†/kW. The voltage v(t) deviates from the nominal value vNom = 1.0 pu,
then it is divided by the maximum deviation in that time horizon to obtain a [0 1]
range. Multiplying times the maximum tariff jMax yields the maximum price when
the maximum deviation occurs. Equation 5.11 shows this calculation. Similar to the
peak tariff, this should also include the actual cost of capacity, but is out of scope
here.

This procedure is proxy for the competing price signals between energy and ca-
pacity. Such competition can be observed in figures 5.6. For instance, the summer
case (figure 5.6b) shows a negative energy price between 14:00-15:00hrs implying
wholesale generation abundance which signals to draw, at that same instance the
tariff is the highest because too much drawing is expected and that would lead to
congestion. Notice how the energy and dynamic tariff are not just inversely cor-
related, by the evening in the summer scenario both rise. In this case, the higher
energy tariff from the evening relative to the afternoon is an incentive to feed energy
stored earlier, the dynamic tariff responds to that potential feeding congestion too.

j
Buy/Sell
Dynamic (t) =

|v(t)� vNom|
max(|v(t)� vNom|)

jMax (5.11)

(a) Winter scenario (b) Summer scenario

Figure 5.6: Dynamic tariff and energy tariff
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�.�.� Determination of penalty, lPenalty(t)

The penalty lPenalty(t) is determined with the same approach as the with the
peak tariff, by analyzing the sensitivity of prosumers peak capacity to the penalty
DPBuy/Sell

Peak /DlPenalty. The penalty is obtained by multiplying the energy tariff by
a factor µ between 5 and 15 [3], as calculated in equation 5.12. Figure 5.7 illus-
trates the peak capacity achieved by varying the penalty factor. As expected, the
penalty level does not make a difference because it is paid only when the peak is
surpassed (regardless of mechanism type). Therefore, due to the cost minimization
formulation the optimization will always try to avoid incurring any extra costs.

lPenalty(t) = |µ ⇤ lBuy(t)| (5.12)

Figure 5.7: Price sensitivity of peak capacities of each tier
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�.�.� Grid exchange of all mechanisms

The capacity mechanisms implemented as described in sections above yield unique
power exchanges with the grid for each household in the feeder. These power
exchanges for both scenarios are presented in figures 5.8-5.11. Notably, they all
successfully limit drawing and feeding peaks when most needed, i.e., in the first
and last hours of the day for the winter scenario, and during the afternoon for the
summer scenario. One main distinction between the mechanisms is weather the
capacity limits are parameters or decision variables, as stated earlier, for the hard
constraint and capacity subscription the limits are parameters, and for the peak and
dynamic tariff they are decision variables. The effect of this can be observed in the
grid schedules.

For instance, the dynamic and peak tariffs tend to be flatter than the hard con-
straint and subscription particularly in the summer scenario when load and heat-
ing demand are lower. This may be explained because at lower non flexible de-
mands the optimization can spread more evenly, over time, the power drawn (or
fed) whenever the capacity limit is a decision variable because minimizing costs
implies minimizing capacity prices while satisfying constraints and maximizing
selling revenue. Whenever the limits are parameters there is less flexibility to flat-
ten the power drawn/fed because the optimization is constrained by it, meaning
that it allocates the grid exchange within does boundaries while trying to avoid
penalty costs for the capacity subscription (in the hard constraint it is not possible
to surpass them).

Figure 5.12 compares the congestion levels of all mechanisms against the energy
tariff benchmark. These results indicate that all mechanisms can be successful at
managing congestion for this case study, if properly designed. Furthermore, these
results also show that some mechanisms can be more restrictive towards prosumers
than others. The key feature of these mechanisms is the determination of the pa-
rameters (presented in section5.2) since they dictate the response from prosumers’
optimization. For example, the hard constraint is more restrictive than the peak
tariff due of to the parameters they operate with. The peak tariff is the closest to
the limits of the feeder, however, if a higher tariff is chosen it will restrict prosmuers
more, and loosening the limits of the hard constraint and capacity subscription will
push closer to the feeder’s limits.

In general, the mechanisms make the profiles be less variable in each time step,
even for several hours, which is desirable from a congestion management stand
point. Of course, this is only possible due to the energy storage of all prosumers,
especially for schedules where the EV is available for several hours. For example,
household No. 1 where the EV is available during the whole day, as seen inf figure
4.7. However, limiting peaks is not the only desirable feature of the mechanisms.
The implications of limiting peaks on overall demand is analysed in the next sec-
tions.
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(a) Winter scenario (b) Summer scenario

Figure 5.8: Grid exchange of all households with hard constraint

(a) Winter scenario (b) Summer scenario

Figure 5.9: Grid exchange of all households with capacity subscription

(a) Winter scenario (b) Summer scenario

Figure 5.10: Grid exchange of all households with peak tariff



�.� ������� ��� �������� 41

(a) Winter scenario (b) Summer scenario

Figure 5.11: Grid exchange of all households with dynamic tariff

(a) Winter scenario

(b) Summer scenario

Figure 5.12: Voltage at BUS 906 in the feeder for all mechanisms
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�.�.� Demand shifted due to mechanisms

It is key to evaluate how much of the demand has been shifted as a consequence of
implementing the capacity mechanisms. In order to achieve this, the summation of
all household demands in the feeder are benchmarked against the energy tariff only
case described in chapter 4. The ideal case would be that the net demand from the
energy tariff was kept for all mechanisms, hence, no loss on their utility functions
of demand. Figures 5.13-5.12 present the total demand shifted per PTU (15 min).
In the figures a negative (-) and a positive (+) value means more demand and less
demand, respectively. This, to maintain convention consistency of (-) drawn from
the feeder, and (+) fed to the feeder. Generally, it can seen that the winter case for all
mechanisms had the biggest demand shifts comparatively to the summer scenario.
It is clear that periods of lost demand (+) are compensated to an extent by periods
of more demand (-), compared to the energy tariff benchmark. However, not all
PTUs weigh the same from a utility point of view, thus, a cost analysis is presented
in next section.

(a) Winter scenario (b) Summer scenario

Figure 5.13: Demand shifted with hard constraint (- more demand, + less demand)

(a) Winter scenario (b) Summer scenario

Figure 5.14: Demand shifted with capacity subscription (- more demand, + less demand)
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(a) Winter scenario (b) Summer scenario

Figure 5.15: Demand shifted with peak tariff (- more demand, + less demand)

(a) Winter scenario (b) Summer scenario

Figure 5.16: Demand shifted with dynamic tariff (- more demand, + less demand)

�.�.� Cost analysis of the mechanisms

Having presented the technical aspects of the capacity mechanisms in the sections
above, an economic analysis is discussed in this section by focusing on three main
metrics: 1) Lost load, 2) Cost of lost load, and 3) Total cost incurred by prosumers
in the feeder. First, the lost load ELost is obtained by comparing the summation
of all loads of both scenarios in the feeder, for each mechanism against the energy
tariff benchmark. Equation 5.13 is used to calculate this. Second, the cost of lost
load CLost is calculated with equation 5.14, assuming that the price lEnergy(t) is the
market clearing price and reflects the utility of demand at any t. Third, the total
cost incurred by the feeder CFeeder

Total is the summation of all objective functions (3.1 in
the feeder, equation 5.15 is such summation.

ELost =
H=55houses

Â
h=1

T=24hrs

Â
t=1

EEnergy
h (t)�

H=55houses

Â
h=1

T=24hrs

Â
t=1

EMechanism
h (t) (5.13)

CLost =
H=55houses

Â
h=1

T=24hrs

Â
t=1

EEnergy
h (t)lEnergy(t)�

H=55houses

Â
h=1

T=24hrs

Â
t=1

EMechanism
h (t)lEnergy(t)

(5.14)

CFeeder
Total =

H=55houses

Â
h=1

min(Ch
Total) (5.15)
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In figures 5.17, 5.18, 5.19 the lost load, cost of lost load and total cost of all mech-
anisms are displayed, correspondingly. From the former it can be appreciated that
the hard constraint is the mechanisms that loses the most load because it allows the
least flexibility to prosumers, whereas the dynamic tariff loses the least. However,
analyzing the cost of the load lost it is the peak tariff that shows a better outcome
than the dynamic. This may be explained due to the fact that the dynamic tariff
prices capacity according to demand size (through expected congestion), thus, it
incurs a higher cost to the utility of prosumers. Lastly, the least total cost incurred
by prosumers in the feeder is the peak tariff too, therefore, it can be concluded that
the peak tariff shows the best performance of all mechanisms for this case study. As
a consequence, the following chapters will build their developments on top of the
peak tariff.

Figure 5.17: Lost load in the feeder

Figure 5.18: Cost of lost load in the feeder

Figure 5.19: Total cost incurred by all households



6 DAY A H E A D A N D I N T R A DAY M A R K E T S

In chapter 5 the evaluation of four different capacity mechanisms yielded the peak
tariff with the best techno-economic performance for the case study. However, in
such analysis the effects of forecast errors and imbalance costs were not incorpo-
rated. Thus, this chapter describes the integration of a day ahead and intraday
market using the Dutch market structure as reference. The goal of this integration
is to minimize imbalance costs due to forecast errors by compensating day ahead
schedule deviations in the intraday market. Section 6.1 explains the incorporation of
said markets with the peak tariff mechanisms. Section 6.2 details the methodology
to simulate new forecasts with better accuracy being fed into the smart charging al-
gorithm’s moving horizon, and the intraday prices. Section 6.3 presents the results
of the simulation and an analysis of them.

�.� ������������� �� ��� ����� ��� �������� ����
���� ������

In section 2.3 a general overview of the Dutch energy market was presented. The
power exchange of the Netherlands operates within the interconnection of Central
Western European countries. The venue where most of the short term electricity
trading occurs is the EPEX Spot market [12]. In the Dutch day ahead market po-
sitions are closed at 12:00hrs one day prior to delivery for the 24hrs of the next
day in blocks of 15 min (PTU). This market is an auction where all participants get
the same clearing price for every PTU according to where demand meets supply’s
merit order. Both demand and generation are bids based on expected schedules for
the day.

However, real time demand and generation may deviate from the day ahead
schedules, in part due to their dependence on forecasts, especially for RES as seen
in 2. Thus, the intraday market provides a venue for continuous peer to peer trad-
ing to correct the deviations. For the Netherlands, the trading starts at 15:00hrs
(three hours after day ahead closure) allowing for trades until 5 min prior to deliv-
ery. Since it is peer to peer, there is no single price for any given PTU as discussed in
2.3.2. Further deviations from schedule are subject to the imbalance market where
the price paid is typically much higher than previous markets, essentially penaliz-
ing for being in imbalance. Figure 6.1 presents the time flow of these markets.

45
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Figure 6.1: EPEX SPOT trading time flow [12]

The integration of these markets with the peak tariff mechanism into the smart
charging algorithm has two main objectives: 1) evaluate closer to the real life mar-
ket dynamics, 2) minimize prosumers’ imbalance costs due to deviations caused by
forecast errors. In order to achieve these objectives the following assumptions have
been made.

Assumptions:

• The day ahead optimized scheduled is determined one PTU before closure,
i.e., 11:45hrs, based on the best available forecast at that instance.

• The peak capacity (drawing and feeding) is determined in the day ahead
schedule as described in section 5.2.2.

• A new forecast of all data input data 4.3 is used every time step (PTU) with
improving accuracy.

• The intraday energy volumes (kWh) for any instance are traded one PTU
before delivery, i.e., 15 min prior, at the average intraday price of that time.

• All remaining deviations from the day ahead schedule incur an imbalance
penalty.

The costs incurred by the prosumer now also consider equations 6.1-6.4 for the
intraday tradings CID and imbalance costs CImbalance. PID(t) is the power scheduled
one PTU before delivery of t, and PDA(t) is the initial power scheduled day ahead
with equation5.7. PSell

ID (t) and PBuy
ID (t) are positive and negative, respectively, to

maintain sign convention. Figure 6.2 presents the flowchart of the optimization
within the different schedules.
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CID =
T

Â
t=1

|PBuy
ID (t)|lID(t)Dt �

T

Â
t=1

PSell
ID (t)lID(t)Dt (6.1)

PSell
ID (t) = PID(t)� PDA(t) for PSell

ID (t) > 0 (6.2)

PBuy
ID (t) = PID(t)� PDA(t) for PBuy

ID (t) < 0 (6.3)

CImbalance =
T

Â
t=1

|PActual(t)� PID(t)|lImbalance(t)Dt (6.4)

Figure 6.2: Flow chart of optimization with peak tariff, day ahead and intraday

�.� ����� ���� ��� ��������� �������� ��������
In order to simulate new forecasts with improving accuracy every time step, new
profiles are created based on the same input data described in 6.3c. The assumption
is that every time step the forecast will reduce its error from 100% error at t � 24hrs
(day ahead) to 5% error at t� 15min (intraday). Figure 6.3 illustrates this simulation
for load, heat and PV forecasts. The blue line is the forecast used to optimize the
day ahead schedule, it has the highest uncertainty. The yellow line is the actual
profile. The orange line shows the simulation of a new forecast received with better
accuracy closer to time of delivery.

The simulation initializes at t = 0 where the optimization begins with a time
horizon of 24 hrs. In the first couple of hours the orange and yellow (simulated and
actual) almost overlap but as time horizon becomes larger, the orange line becomes
closer to the initial forecast. In practice an actual new forecast would be obtained
from various sources and methods, e.g., machine learning, more accurate weather
data, etc., however, this approach aims to simulate that behavior. In principle, fore-
casts would be more accurate closer to the time of realization.
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(a) Load forecast

(b) Heat forecast

(c) PV forecast

Figure 6.3: Simulation of forecasts improving over time
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As mentioned above, there is no single intraday price lID(t) for every time step as
there is for day ahead. Therefore, the profile of lID(t) is constructed by extracting
the actual trading prices lActual

ID from 2018, and averaging them to the average yearly
difference to day ahead prices DYear

DA�ID reported by Tennet [49] presented in figure
2.7b. Equation 6.5 is the formulation of this procedure, and figure 6.4 compares the
results of the formulation with the day ahead price. Lastly, the imbalance penalty
lImbalance is obtained by adding the average imbalance delta of the year DlImb�DA =
0.0225 †/kWh, reported by TenneT [49], to the day ahead price lDA. The calculation
is done with equation 6.6.

lID(t) =
lActual

ID (t)
mean[lActual

ID (t)]|T0
DlYear

DA�ID (6.5)

lImbalance(t) = lDA(t) + DlImb�DA (6.6)

Figure 6.4: Intraday and day ahead prices
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�.� ������� ��� ��������
The incorporation of the day ahead and intraday market yields new optimized
schedules for grid exchange that try to minimize the exposure to imbalance penal-
ties. The results of this incorporation are presented in figure 6.5 for one household.
The day ahead schedule (blue line) is the result of the optimization with the avail-
able forecast one day prior to delivery. Then, every time step of the moving horizon
(orange line) a new, more accurate, forecast is fed to the smart charging algorithm.
The model aims to stay within the initial optimized schedule by adjusting the power
flows of the inner components. Whenever it is not possible to stay within the initial
schedule, it relies on intraday trades. However, there are still errors due to forecast
inaccuracy and difference in time resolution. The forecasted schedules are in blocks
of 15 min, and the actual profile in a 1 min basis. This is compensated with the real
time control described in section 3.2, hence, the yellow line represents the actual
grid exchange.

Figure 6.5: Grid exchange from different time frames

Figure 6.6 displays the initial power deviations due to forecast errors, it is the
difference between the forecast available for the day ahead optimization and the
actual profiles in real time (equation 3.9). Figure 6.7 shows the volumes traded in-
tradaily one time step before delivery, these are the corrections to deviations after
new forecasts and adjustments to the power flows of the smart charging algorithm’s
components. Figure 6.8 presents the remaining errors that are corrected in real time
and settled with imbalance penalties. It is worth noting that by including intraday
trading in the optimization the power errors are significantly reduced, i.e, from 6.6
to 6.8.
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Figure 6.6: Grid power deviations due to forecast errors

Figure 6.7: Intraday volumes traded

Figure 6.8: Real time corrections with imbalance penalty
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Of course, these results depend substantially on the accuracy improvement of
forecasts, nevertheless it proves that an integration of current markets with a capac-
ity mechanism can be implemented. Furthermore, it provides relevant insights on
the costs reductions that would benefit prosumers. Figure 6.9 presents a cost com-
parison between having optimized intradaily and not, for the whole feeder. In both
cases, the day ahead costs are identical (376.89 †), since the cases were identical thus
far. Trading deviations on the intraday adds 304.66 †, and the remaining imbalance
cost add to a total of 823.02 †. Whereas not optimizing intradaily adds 567.46 † to
the day ahead, with a total of 944.35 †. This provides a combined cost reduction of
13% to prosumers in the feeder, for this case.

Figure 6.9: Cost comparison with and without intraday optimization



7 F R E Q U E N C Y R E G U L AT I O N A N D
M A R K E T S C O N F L I C T S

The formulation of the smart energy system described in chapter 3 considers the
revenue obtained by reserving capacity for primary frequency regulation. Thus far,
previous chapter have not considered the implications that providing this power
have on the optimized schedules. This chapter incorporates the frequency regula-
tion market, and analyzes the implications on the previous mechanisms studied.
Section 7.1 describes the frequency regulation market and the relevance to include
it the model. Section 7.2 explains the methodology to determine the power needed
for regulation and its effects on power schedules. Section 7.3 presents the results of
this incorporation and evaluates the effects on costs, and the compatibility with the
capacity mechanism, day ahead and intraday integration.

�.� ����������� �� ��������� ������� ����������
A general overview of the Dutch balance market, frequency containment reserve
being part of, is presented in section 2.3.3. The TSO (TenneT) is responsible for
maintaining grid’s frequency within range of the 50 Hz standard. Whenever there
are deviations between scheduled demand and supply there is an imbalance and
frequency will deviate form its standard. In order to restore this imbalance, the
TSO contracts reserved capacity in an auction through a bidding process. TenneT
receives bids from prequalified balancing service providers (BSPs) that want to take
part in the auction. BSPs can bid at least 1MW, 14 days prior (D-14) until 1 day
prior (D-1) to delivery in 4 hourly blocks [53]. TenneT has recognized the potential
of smaller decentralized providers and conducted the pilot project FCR to investigate
its technical barriers, in the pilot the minimum bid was decreased to 0.1 MW [47].

The TSO decides which bids will be taken based on merit orders for up regulation
and down regulation. Upward bids are for feeding power to the grid, and down-
ward bids are for drawing power from the grid. In the Netherlands up and down
regulation bids have to be symmetrical, PUp

Bid = PDown
Bid . The up/down power reg-

ulation is measured against the latest approved commercial schedule, i.e., feeding
more or drawing less than the schedule, up regulates; and feeding less or drawing
more, down regulates. On the day of delivery TenneT activates the amount required
from the bids to keep grid’s stability. Figure 7.1 shows a diagram of the balancing
process [51].

�.� �����������
There are to main objectives for incorporating frequency regulation with the previ-
ous market mechanisms: 1) to make the smart charging algorithm more versatile to
future integrated decentralized energy markets, 2) to evaluate the techno-economic
feasibility of such incorporation, at a prosumer and feeder’s level. In order to
achieve this, the specifications and requirements considered are; maximum insensi-
tivity range, frequency deviation from the standard, and the amount of power that
needs to be provided based on the frequency deviation. It is assumed that an aggre-

53
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Figure 7.1: Balancing process diagram, [51]

gator will be an intermediary between prosumers and the market to meet minimum
capacities and handle all other requirements.

The maximum insensitivity range is 10 mHz, this means that a deviation from
the operating point of less than the range does not result in a power change. Any
frequency deviation D f , equation 7.1, from the nominal frequency fnom = 50 Hz
(above the insensitivity range) requires a power change proportional to the devia-
tion. A deviation of at least ±200 mHz requires the full capacity reserved. The
power required depend on the droop setting of the reserve providing unit (RPU).
Equation 7.2 is used to calculate the droop setting. Each unit has its own droop
based on their power capacity bid for FCR PUp/down

Reg and their nominal power Pnom
[53]. Consequently, the power needed for regulation from the provider PReg is de-
termined with equation 7.3.

D f = f � fnom (7.1)

x =
D f / fnom

PUp/down
Reg /Pnom

(7.2)

PActual
Reg =

D f / fnom
x/Pnom

(7.3)

The implementation of FCR in the smart charging algorithm was developed by
[56], and then adapted for every prosumer in the feeder as described in chapter
3. For this case, the reserve capacity for FCR of each prosumer is constrained by
the capacity of the inverter PMax

Inv = 10 kW, therefore that sets the nominal capacity
Pnom = PMax

Inv . Figure 7.2 illustrates the FCR power curve for 5 kW reserved capacity
as a function of frequency deviation based on equations 7.2 - 7.3.

It is important to note that FCR participation is added to the peak tariff (it showed
the best performance in 5) with the day ahead and intraday markets as described in
chapter 6. This means that the smart charging algorithm will determine in the day
ahead (D-1): peak capacity PBuy/Sell

Peak (equation 5.7), grid exchange PBuy/Sell
Grid (equa-

tion 3.7), and capacity reserved for frequency regulation PUp/down
Reg (equation 3.8).
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Figure 7.2: Droop corresponding to 5kW reserve capacity and 10kW nominal capacity

Consequently, corrections in the intraday will include deviations due to forecast er-
rors (as before) and also corrections due to power called for regulation. The actual
power provided for FCR PActual

Reg (equation 7.3) is not forecasted, thus, it is supplied
in real time and updated for the next time step of the moving horizon.

�.� ������� ��� ��������
This section presents the results from the incorporation of FCR as described above,
additionally, it analyzes the implications and compatibility of FCR with all market
mechanisms involved. Firstly, figures 7.3 and 7.4 present the frequency deviation
from the 50 Hz standard, and the power requirement for regulation from one house-
hold, respectively. A positive value value in figure 7.3 (according to equation 7.1)
means that frequency is above the standard and power needs to be drawn from
the grid. This results in a negative value in figure 7.4 maintaining sign convention,
and vice versa. It can be noted that around 5:00 hrs and 23:59 hrs the deviation is
close to +100 mHz, half the requirement for maximum capacity of +200 mHz. As a
consequence the power supplied is around 5 kW, half the reserved capacity at that
instance. Lastly, figure 7.5 displays the grid exchange from the different optimized
schedules. The day ahead is the schedule set at 11:45 hrs one day prior with the
best available forecasts, the moving horizon is the schedule with the intraday cor-
rections one time step before delivery (t-15min), and the actual profile with FCR is
the actual exchange with the grid considering remaining forecast errors and power
for regulation.
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Figure 7.3: Frequency deviation

Figure 7.4: Power called for regulation

Figure 7.5: Power grid exchange with different schedules of one household
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In order to evaluate the effects that FCR integration have on the feeder, the power
exchange of all 55 prosumers is presented in figure 7.6. It is important to remark
that the input data and constraints are identical to the case with peak tariff pre-
sented in figure 5.10, except for the FCR consideration. Comparing these two grid
exchanges, it is clear that FCR has a significant effect on them. There are several
hours with constant power schedules without considering power regulation, espe-
cially when storage is available and demand is comparatively lower, e.g., from 2:00 -
6:00 hrs. As expected, once regulation is considered these constant power exchanges
disappear because of the stochastic nature of frequency regulation observed in fig-
ure 7.3. Furthermore, the peak capacities are frequently surpassed achieving power
levels up to -12 kW (drawing), and almost 10 kW (feeding). These peaks coincide
with the maximum frequency deviations, e.g., 5:00, 12:00, and 20:00 hrs.

Running the grid exchange profiles in the test feeder model presented in section
3.4, yields the results in figure 7.7. The figure compares the case with and without
FCR. It can be seen that the general pattern is consistent in both cases, but the
FCR case adds extra stress to the grid due to the extra power. As a consequence,
the gird limits are surpassed considerably for long periods of time, especially the
upper limits for feeding back in. It can be argued that if there is increasing scarcity
of generation coupled with increasing demand, more congestion towards the upper
limits would be expected. Scarcity will push energy prices higher incentivizing feed
in from prosumers with smart energy systems, on top of this, frequency will deviate
below 50 Hz (due to the shortage) and call for extra feed in regulation power. A
solution would be to cap the amount of capacity reserved for FCR with the peak
tariff (or any other mechanism), however, the frequency deviations are not known
in advance and that would represent a loss of opportunity for prosumers’ revenue
and grid’s aid for balancing. This points to one key conflict between the incentives
of imbalances at a transmission level and local congestion at a distribution level.
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Figure 7.6: Power grid exchange with FCR of all households

Figure 7.7: Voltage at BUS 906 in the feeder with FCR and without

Lastly, figure 7.8 displays the cost comparison between the incorporation of FCR
and not incorporating it to the optimization, for all prosumers in the feeder. The
case without FCR does not include the revenue from reserving capacity for regula-
tion making the day ahead costs higher than with FCR. The FCR case has a revenue
of 55.84 †, however, it incurs higher costs due to schedule deviations from the day
ahead schedule. The effects of these deviations can be seen in the increased costs
for intraday trades and imbalance costs. It is relevant to remark that these imbal-
ances are not equal to the power supplied for regulation, they are consequence of
the power supplied.
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The key issue is that the power called for regulation depends on the frequency
deviation, which is not known beforehand, thus, the optimization is updated every
time step after providing power for regulation. This causes the deviations from
the day ahead schedule, for example, if at an instance close to EV departure a big
amount of power (e.g., 5 kW) is called for up regulation from the EV, it will decrease
the SoC more than the smart charging algorithm had ”accounted for”. Then, in the
next time step the optimization would compensate by drawing more power than
scheduled to satisfy the minimum SoC required from the EV before departure.

This happens due to the fact that the same available storage capacity (EV and BES)
is participating in the day ahead and FCR market. To avoid this, capacity would
need to be reserved exclusively for FCR, hence, it would not be subject to imbalance
penalties due to deviations of schedule. This points towards a trade off between pro-
sumers’ flexibility because of the conflicting incentives between markets, discussed
above.

Figure 7.8: Feeder’s costs with FCR incorporation and without





8 C O N C L U S I O N S A N D F U R T H E R
R E S E A R C H

�.� �����������
The main objective of this thesis was: to investigate, evaluate and compare the techno-
economic feasibility of novel energy market mechanisms that incentivize the involvement of
prosumers in demand response and congestion management schemes. In order to achieve
this objective, the formulations, results, and analysis of previous chapters were
presented. Figure 8.1 summarizes the key steps taken and insights drawn from this
thesis.

Figure 8.1: Key steps and conclusions

First, the energy sector is facing a shift from a centralized to a decentralized
paradigm due to, in part, the penetration of renewable energy sources and increases
electrification of the energy sector. This has been part of the effort towards an energy
transition away from fossil fuels because of their negative impact on the environ-
ment and health. However, this transition comes with serious challenges that are
increasingly pressing the energy sector. The challenges that this thesis has focused
on have a technical side and economic one. On the technical side, the focus has
been on the effects intermittent RES and increased load demand due to electrifica-
tion have on congestion at a distribution level. For the economic part, the aim has
been on the inefficiency that current energy markets have at assigning value to pro-
sumers’ demand flexibility. Prosumers are becoming increasingly active players in
a decentralized energy sector, therefore, it is key to have properly designed market
mechanisms that align them with the economic incentives of the market.

Second, a case study was developed to benchmark congestion in the feeder by
aligning prosumers to an energy tariff as the only price signal. This benchmark
was achieved by modeling the IEEE European low voltage test feeder with the op-
timized grid exchange profiles of the 55 households connected in the distribution
network. It was assumed that each household would be a prosumer with a PV, EV,
and BES connected to a multiport converter where a smart charging algorithm op-
timizes grid exchange schedules satisfying non flexible load and heating demands,
and EV schedules. The development of the smart energy system as an optimization
problem was not part of this work, nevertheless, it was adapted to the case study to
evaluate congestion levels in two extreme scenarios for winter and summer. The re-
sults of this model showed that prosumers can be aligned to the market and allow
a more active participation by being demand responsive. Although, if an energy
tariff is the only economic signal, then, congestion was present in the feeder in both
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scenarios. Even though prosumers have individual constraints and requirements,
they all have the objective to minimize costs and are incentivized to draw and store
at low energy prices to feed in at instances with high prices, whenever possible.
Consequently, there are overlaps when the majority of prosumers in the feeder are
drawing/feeding near peak power.

Third, a techno economic evaluation of capacity mechanisms for congestion man-
agement was conducted. The mechanisms assessed where: 1) hard constraint, 2)
capacity subscription, 3) peak tariff, and 4) dynamic tariff. On the technical side, all
mechanisms successfully prevented congestion in the feeder in the case study, how-
ever, some where more restrictive than others. The hard constraint lost the most
amount of load, and the dynamic tariff the least. On the economic side, cost of the
lost load was again highest for the hard constraint but lowest for the peak tariff.
This may be explained because the dynamic tariff is set to restrict peak capacities
at instances when highest demand is expected, whereas the peak tariff sets a price
for the whole time period (one day in this case) regardless of the instance when the
peak is achieved. Finally, the total cost incurred by all prosumers in the feeder was
highest for the capacity subscription because the subscription level is not a decision
variable but a parameter (unlike the peak and dynamic tariff) and it is allowed to
be surpassed at a high penalty; the hard constraint physically limits the load above
the subscription level, hence, no penalty is paid. The peak tariff incurred the lowest
overall cost to the whole feeder, thus, it was selected as the best performing mecha-
nism to build on top of it the next markets.

Fourth, the day ahead and intraday market were incorporated to the peak tariff in
order to minimize the exposure to imbalance costs due to forecast error, previously
not considered. The smart charging algorithm relies on forecasted data to output
optimized power exchange schedules, however, these forecasts are not 100% accu-
rate and will cause deviations between the actual and scheduled power exchange,
these deviations are subject to imbalance costs. The incorporation of the day ahead
and intraday market works by setting an optimized power schedule (and peak ca-
pacity) before day ahead closure (11:45 hrs) with the best available forecast at that
instance. Then, as time passed the optimization in the moving horizon corrects de-
viations based on new more accurate forecasts by trading intradaily one time step
before delivery (t-15min). By adding this incorporation to the optimization, the
imbalance costs were indeed reduced for prosumers in the feeder, furthermore, it
aligns the whole model closer to the real situation in current markets.

Last, it was assessed wether it is feasible to additionally include the participation
in the frequency containment reserve market. The development of this market in
the smart charging algorithm was not part of this work, but it was adapted to all
prosumers in the feeder. The assessment was centered around the implications that
FCR have on power schedules of prosumers, and the effects on congestion in the
feeder. It showed that it is possible to include FCR with the other markets studied,
however, it significantly increased the peak capacity achieved by prosumers. Addi-
tionally, it may increase imbalance costs because the power provided for regulation
requires extra compensation in subsequent time steps to satisfy inner constraints,
thus, deviating from day ahead schedules. Moreover, the surpassing of peak capac-
ities achieved resulted in increased congestion in the feeder. These results point to
conflicting incentives between balancing and local congestion.
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Once the main results and conclusions have been discussed, the following are
some recommendations for further research related to the implementation of mar-
ket mechanisms for demand response in future decentralized energy systems.

• To simulate different scenarios with longer time horizons in order to have
more representative results. Consider a broader range of EV and BES capaci-
ties for prosumers in the feeder.

• To investigate and determine which players in the energy sector will take
the different roles needed, while maintaining transparency and no conflict of
interests. For example, what role do retail companies will have?; who will be
the aggregator intermediary between prosumers and the market and how will
potential gaming be avoided?; if prosumers become more active participants
in the market, will they bear the same participation in financial risk due to
price volatility?

• To develop proper schemes that can resolve the conflicting incentives between
different markets and levels of operation. For example, the conflicting inter-
ests between balancing the grid at a TSO level and managing congestion at a
DSO level.
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This model was developed by [56], and adapted for this thesis as presented in chap-
ter 3. This sections elaborates on the constraints and limitations of the optimization
problem.

.�.� Objective function

min(CTotal) = min(CBES + CEV + CPV + CGrid � CReg) (.1)

Battery costs

VBES =
V2nd

BES � Vnew
BES

0.2
DETotal

BES + Vnew
BES (.2)

CBES = Vnew
BES Emax

BES � VBES(Emax
BES � DETotal

BES ) (.3)

Electric vehicle costs

VEV =
V2nd

EV � Vnew
EV

0.2
DETotal

EV + Vnew
EV (.4)

CEV = Vnew
EV Emax

EV � VEV(Emax
EV � DETotal

EV ) (.5)

Photovoltaic costs

CPV =
T

Â
t=1

PPV(t)DtlPV 8t (.6)

Grid costs

CGrid =
T

Â
t=1

PBuy
Grid(t)lBuy(t)Dt �

T

Â
t=1

PSell
Grid(t)lSell(t)Dt 8t (.7)

Regulation revenue

CReg = hinvhch

T

Â
t=1

(PUp
Reg(t)lUp(t) + PDown

Reg (t)lDown(t))Dt 8t (.8)
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.�.� Constraints and limitations

Power balance and limitations
Pinv(t) is the power balance on the DC link of the multiport converter, connecting
PV power PPV(t), BES power PBES(t), and EV power PEV(t). Pgrid(t) is the power
balance of the AC side, between the inverter and the meter. Pappl.(t) and Pheat(t) are
non-flexible appliances and heating loads, respectively. PX(t) are the bidirectional
power flows of BES, EV, and inverter, where there is a distinction between positive
(charge), and negative (discharge) powers. hX are the efficiencies: 96% for BES and
EV, and 98% for the inverter.

Pinv(t) = PPV(t)� PBES(t)� PEV(t) 8t (.9)

Pgrid(t) = Pinv(t)� Pappl.(t)� Pheat(t) 8t (.10)

PX(t) = hXP+
X (t)� 1

hX
P�

X (t) 8t (.11)

Grid constraints
The grid power for feeding P+

grid(t) and drawing P�
grid(t) is constrained by the the

physical connection Pmax
grid = 17.5 kW. Additionally, hcable = 98% is introduced as

a soft constraint to avoid the use of binary variables by making the optimization
recognize losses and not allowing non-zero feed/draw power simultaneously.

P�
grid(t)  Pmax

grid 8t (.12)

P+
grid(t)  Pmax

grid 8t (.13)

Pgrid(t) = hcableP+
grid(t)�

1
hcable

P�
grid(t) 8t (.14)

Energy balance and limitations

For this model it is assumed that Nseries
cell and Nparallel

cell single Li-ion cells form the
energy storage pack of the BES and EV, Erated

X . Once the model has started (t >
0), the storage capacity Emax

X (t) decreases by DEX(t) according to the degradation
model (presented below), thus, the energy charge of the BES and EV EX(t) at any
instance are limited. The SoC is managed between 10% and 90%. Additionally, g(t)
is a parameter introduced to denote the availability of the EV (figure 4.7) and make
PEV(t) = 0 when not available, it is assumed a reduction of energy due to EV’s
commute Pdrive(t), and Edepart

EV is the minimum EV charged required by the user
before leaving at tdepart.

Erated
X =

Nseries
cell Nparallel

cell
1000

Vnom
cell Qcell,nom (.15)

Emax
X (t) =

(
Erated

X , for t = 1
Emax

X (t � 1)� DEX(t), for t > 1
(.16)
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EX(t)  Emax
X (t) 8t (.17)

SoCX(t) =
EX(t)

Emax
X (t)

8t (.18)

0.1  SoCX(t)  0.9 8t (.19)

EBES(t) = EBES(t � 1) + PBES(t)Dt for t > 1 (.20)

EEV(t) = EEV(t � 1) + (g(t)PEV(t)� Pdrive(t))Dt for t > 1 (.21)

EEV(t) = Edepart
EV for t > tdepart (.22)

EV and BES constraints
EV and BES power (PX(t)) are limited by their maximum power Pmax

X (t) which
depends on the SoC. Here, three different regions for (dis)charge are recognized:
1) pre-charge region (very low SoC), 2) constant charge, and 3) constant voltage
region; thus Dch/dis sets the limit for constant charge region, [56] for further ref-
erence. Lastly, the maximum power Pmax

X (t) is limited by the power rating PRated
X

which depends on the C-rate and size of the battery. The C-rate for the EV and BES
considered is equal to 1.

P+
X (t)  Pmax

X (t) 8t (.23)

Pmax
X (t)  Prated

X 8t (.24)

Pmax
X (t) 

Prated
X

(1 � Dch)

✓
EX(t)
Emax

X
� 1

◆
8t (.25)

P�
X (t)  Pmin

X (t) 8t (.26)

Pmin
X (t)  Prated

X 8t (.27)

Pmin
X (t) 

Prated
X

Ddis

EX(t)
Emax

X
8t (.28)
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Energy storage degradation model
The cost of energy storage degradation is modeled for the BES and EV based on
a single Nickel-Manganese-Cobalt (NMC) cell. A distinction is made between
lost capacity due to cyclic and calendar aging, DEcycle

X (t) and DEcal
X (t) respectively.

Vlinear
oc (t) is the linerized open circuit voltage of an NMC cell, and DEcal

X (t) is liner-
ized with a fixed percentage per time step.

Vlinear
oc (t) = Nseries

cell (i)
⇣

3.42 + 0.7SoCX(t)
⌘

8t (.29)

icell
X (t) =

PX(t)

Nparallel
cell Vlinear

oc (t)
8t (.30)

DE%
X (t) = c1ec2|Icell

X (t)|icell
X (t)|Icell

X (t)|Dt 8t (.31)

DEcycle
X (t) =

✓
DE%

X (t)
◆

Erated
X
100

, 8t (.32)

DEcal
X (t) =

✓
c3
p

te�24kJ/RT
◆

Erated
X
100

=

✓
c4Dt

◆
Erated

X
100

8t

DEtot
X =

T

Â
t=0

✓
DEcycle

X (t) + DEcal
X (t)

◆
8t (.33)








