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Feasibility and validity of a single
camera CNN driven
musculoskeletal model for
muscle force estimation during
upper extremity strength
exercises: Proof-of-concept

Lisa Noteboom1*, Marco J. M. Hoozemans1, H. E. J. Veeger2

and Frans C. T. Van Der Helm2

1Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije

Universiteit Amsterdam, Amsterdam, Netherlands, 2Department of Biomechanical Engineering,

Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft,

Netherlands

Muscle force analysis can be essential for injury risk estimation and

performance enhancement in sports like strength training. However,

current methods to record muscle forces including electromyography or

marker-based measurements combined with a musculoskeletal model

are time-consuming and restrict the athlete’s natural movement due to

equipment attachment. Therefore, the feasibility and validity of a more

applicable method, requiring only a single standard camera for the recordings,

combinedwith a deep-learningmodel andmusculoskeletal model is evaluated

in the present study during upper-body strength exercises performed by five

athletes. Comparison of muscle forces obtained by the single camera

driven model against those obtained from a state-of-the art marker-based

driven musculoskeletal model revealed strong to excellent correlations

and reasonable RMSD’s of 0.4–2.1% of the maximum force (Fmax) for

prime movers, and weak to strong correlations with RMSD’s of 0.4–0.7%

Fmax for stabilizing and secondary muscles. In conclusion, a single camera

deep-learning driven model is a feasible method for muscle force analysis

in a strength training environment, and first validity results show reasonable

accuracies, especially for prime mover muscle forces. However, it is evident

that future research should investigate this method for a larger sample size

and for multiple exercises.

KEYWORDS

musculoskeletal modeling, strength training, fitness, markerless motion capture,

artificial intelligence, video-based motion capture
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Introduction

Knowledge of the level of muscle forces during sports

activities can be essential for injury risk estimation and

performance enhancement. Especially in strength training, a

sports domain that deals with a high prevalence of (mainly

upper extremity) muscle injuries (1), athletes could benefit from

knowledge of their personal muscle load during a workout, to

optimize the training stimulus and prevent muscle overload.

Multiple methods for muscle force estimation can be employed

in human movement and sport science. A common method

is surface electromyography (EMG), a technique that detects

muscle activation signals from electrodes placed on the skin.

Another method is to employ a musculoskeletal model, a

computational representation of the human musculoskeletal

system, to simulate movements based on captured motion and

external force data (e.g., from dumbbells). Via a process called

inverse dynamics, the net internal joint moments responsible for

the given motions can be estimated by solving equations based

on Newton’s laws of motion (2). Subsequently, the model can

estimate the most cost-effective combination of muscle forces

required to deliver this net joint moment (2). Typically, motions

for musculoskeletal modeling are captured by an optoelectronic

measurement system (OMS) (state-of-the-art). AnOMS consists

of multiple cameras that detect light from either active or

passive markers placed on an athlete’s skin, usually at or

related to predetermined bony landmarks, to determine the

three-dimensional (3D) location of those markers by time-of-

flight triangulation (3). Another option to capture motions for

musculoskeletal modeling is by placing inertial measurements

units (IMUs) on body segments of the athlete. IMUs consist

of an accelerometer, gyroscope and usually a magnetometer

and combine the data from these sensors to obtain segment

orientations (3).

However, these described methods for muscle force

estimation are not easily applicable on a large scale in

a gym environment. For EMG, sensor placement can be

time-consuming, estimating muscle force levels from muscle

activations can be complex, and only the activation of superficial

(large) muscles groups can be detected. For marker-based

kinematic assessments, limitations include high costs, long set-

up times, soft tissue artifacts, and the restrictions in performance

because of the laboratory setting (3). Furthermore, positions

obtained from IMU data can suffer from large integration drifts,

and IMU sensors are sensitive to measurement errors when

there is metal nearby, which could form a large issue in a gym

environment (3). In addition, all thesemethods are accompanied

by limitations in activity performance due to the attachment of

equipment to participants.

A potential solution tomakemuscle force analysis applicable

for the gym is by using markerless pose estimation in

combination with a musculoskeletal model, as markerless

measurements are advantageous in terms of costs, set-up time

and not restricted to a laboratory setting. Markerless methods

combine recordings from one or multiple standard or depth

cameras with a computer vision algorithm to estimate 2D

or 3D locations of joint centers (3). The Microsoft Kinect

is a commonly used markerless pose estimation tool in

biomechanics, which uses an infra-red depth sensor and a

random forest approach to obtain 3D joint kinematics (4).

Interestingly, the large field of pose estimation is developing

rapidly and more sophisticated algorithms than used by the

Kinect can be employed. With the rise of deep neural networks

(DNNs), pose estimation accuracies improved substantially

over the past years, with the best recent models reporting

mean per joint position errors (MPJPE) of about 20mm (5,

6). DNNs are well-suited for pose estimation because their

multi-layer structure allows for incorporation of a lot of

data to optimize estimations while remaining efficient (7, 8).

For instance, temporal information of previous joint position

solutions, and information of other joint positions can all be

used in the estimation, whereas the random forest approach

makes estimations separately for each joint and based on

single images (7). DNNs could therefore potentially be more

accurate and more robust in situations like temporary segment

occlusion. Especially convolutional neural networks (CNNs),

a type of DNNs, are powerful for image-processing and are

typically employed for pose estimation (5). Remarkably, some

of these networks can even estimate 3D joint positions from

a single 2D video, which means that only a single standard

camera is required for the recordings (8). When joint centers

obtained from a single camera and CNN are used to drive a

musculoskeletal model, this could result in a feasible method to

obtain muscle forces in a sports environment.

However, as stated by Wade et al. (9), the transfer of deep

learning-based pose estimation methods toward application in

biomechanics has been slow, potentially due to the requirement

of advanced coding skills and in-depth computer science

knowledge. Indeed, only few studies have evaluated markerless

driven musculoskeletal models so far (10–12), and all used the

Kinect rather than a deep learning-based method. Moreover,

from those studies only Skals et al. (10) assessed muscle forces

as output parameter. Although promising root-mean-square-

deviations (RMSDs) and correlations for the middle deltoid

muscle forces compared to forces obtained from a marker-

driven model were found during a loaded and unloaded lateral

raise task (2.88–5.45% of body weight (BW) and r = 0.66–

0.88, respectively), one muscle is not sufficient for validation

of a complete upper-extremity musculoskeletal model given the

complexity and coherence of the system. Therefore, the validity

of muscle forces estimated by markerless musculoskeletal

modeling remains to be determined. In addition, Skals et al.

(10) used a set-up with two Kinect sensors, which still requires

calibration that can be time-consuming. There is need for

assessment of a more practical set-up, requiring only a single

standard camera for the recordings.
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TABLE 1 Anatomical locations of markers/coordinates used per

system.

Segment Marker-based Camera-based

method method

Thorax Incisura Jugularis Mid spine

Processus Xiphoideus Mid thorax

Cervical Vertebrae 7

Thoracic Vertebrae 10

Upper arm (dominant side) Acromion Shoulder joint center

Epicondylus Medialis

Epicondylus Lateralis

Upper arm (tracking marker)

Lower arm (dominant side) Head of the Ulna Elbow joint center

Styloid processes of radius

Lower arm (tracking marker)

Hand (dominant side) Interphalangealis proximal III Wrist joint center

Therefore, the objective of the present study was to assess

the feasibility of a single camera, CNN driven musculoskeletal

model (proof-of-concept) and provide some first clues

regarding the accuracy of estimated upper-body muscle forces

(including prime mover and stabilizing muscles) during

strength exercises, by comparing against forces obtained from

a (state-of-the-art) marker driven musculoskeletal model.

To bridge the gap between deep-learning and biomechanics,

an open source pretrained model that included a clear

step-by-step documentation on GitHub was used. The

presented method should therefore also be suited for

biomechanical researchers or clinicians without extensive

deep-learning knowledge.

Materials and methods

Participants

Five healthy male participants (mean ± SD age 16.8 ±

1.3 years, body mass 80.4 ± 4.2 kg, body height 1.84 ±

0.07m) were included in this study. The participants were

high-level baseball pitchers with a lot of experience in strength

training. The study was approved by the local ethics committee

of the Faculty of Behavioral and Movement Sciences, Vrije

Universiteit Amsterdam (VCWE-2019-033). All participants

provided written (parental) informed consent.

Procedure

During preparation, participants were equipped with a

set of 12 reflective markers on the thorax and dominant arm

(Table 1). Subsequently, participants performed a 10-min

warm-up protocol. During the actual measurements,

participants performed two upper extremity dumbbell

exercises: the lateral fly and the biceps curl (Figure 1). The

lateral fly movement occurs predominantly in the frontal

plane, whereas the biceps curl movement occurs mainly in

the sagittal plane. In addition, axial rotation of the upper and

lower arm can be expected during the lateral fly, and segment

occlusion of the upper arm can be expected during the biceps

curl, allowing for evaluation of the motion capture system and

musculoskeletal model during these challenging conditions. In

total, each exercise was performed for 3 sets of 5 repetitions, at a

self-selected pace. In-between each set participants rested for 30

seconds. The mass of each dumbbell was 5 kg for the biceps curl

and 3 kg for the lateral fly.

Materials

The whole data collection and processing pipeline is

presented in Figure 2. The performed strength exercises were

simultaneously measured by two motion capture systems: an

opto-electrical measurement system (OMS) (Figure 2 1.A) and

a normal RGB camera (Figure 2 2.A) built-in in a Kinect

(v2, Microsoft Corporation, Redmond, WA, USA) (depth

sensor not used) which was used for the single camera

markerless motion capture. The OMS (Vicon Motion Systems,

Oxford, United Kingdom) consisted of eight high-speed infrared

cameras that registered the 3D coordinates of the reflective

markers at a sample frequency of 400Hz. Coordinates were

expressed in the laboratory’s coordinate system and recordings

were processed with the Vicon Nexus software (Vicon Motion

Systems, Oxford, United Kingdom). The single camera was

placed 1.5 meters in front of the subject at a height of 1.5 meters

and a downwards angle of 15 degrees. The sample frequency

of the camera was 30Hz and the image resolution was 1,920 x

1,080 pixels.

Pose estimation model

To generate 3D joint center coordinates from the captured

videos, a two-step approach for 3D pose estimation, developed

by Pavllo et al. (8), was used (Figure 2 2.B). In their approach,

first a pretrained convolutional neural network (CNN) is used

to detect a person in an image, and detect their 2D joint

center locations, which are subsequently lifted to 3D using a

newly developed temporal dilated convolutional model. The

second step additionally allows for modeling of temporal

relations between individual poses. A recent review (6) revealed

that this model from Pavllo et al. (8) is one of the most

accurate single-view models with mean per joint position

errors (MPJPE) of 23.1mm on the HumanEva dataset and

46.8mm on the human 3.6M dataset. This model is available

from an open-source well-documented GitHub repository (13),
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FIGURE 1

Pictures of the start (left) and mid (right) pose of the biceps curl (top) and lateral fly (bottom) exercise.

making this method readily available and easy to use without

requiring extensive deep-learning knowledge. To apply this

model on the recorded videos, the steps under (14) were

followed. A Detectron2 model trained on the COCO dataset

was used for 2D keypoint detection, and the pretrained h36m

detectron coco.bin model was used for the final 3D pose

estimation, which was pretrained on the extensive Human

3.6M dataset. This method generated the 3D coordinates of

17 joint centers for the full body, from which five were

used as input for the upper-body musculoskeletal model

(Table 1).

Data cleaning and preparation

For the eventual analysis, the program OpenSim will be

used. OpenSim is free, open-source software that allows users

to run simulations with computational models of the human

musculoskeletal system. By simulating recorded motions with

an OpenSim model in combination with external forces (e.g.,

forces from dumbbells) it can be estimated which muscle forces

are required to obtain the given motions and external forces by

following the steps: inverse kinematics (IK), inverse dynamics

(ID) and static optimization (SO) (these steps are elaborated in
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FIGURE 2

Workflow data collection and analysis from the marker-based optolectronic measurement system (OMS) (top) and the markerless camera

(bottom) methods. The OMS consisted of 8 infrared cameras that captured the 3D trajectories of reflective markers placed on bony landmarks

of the participant (1.A). Additionally, joint center trajectories were estimated from bony landmarks and added to the data (1.B), before importing

in OpenSim. The generic thoracoscapular model with virtual markers (pink) that corresponded to locations of the collected bony landmarks and

joint centers (experimental markers) (blue and red) was imported in OpenSim (1.C). The camera captured standard 2D videos of the participant

from a frontal view (2.A). A deep-learning model (8) was employed to obtain 3D joint center trajectories from these videos (2.B), which were

subsequently imported into OpenSim. The generic thoracoscapular model was also imported in OpenSim with virtual markers (pink) (di�cult to

see in the figure as these are located within the joints) that corresponded to locations of the joint centers (experimental markers) (blue) (2.C).

The OpenSim pipeline was almost the same for both methods (1.D and 2.D), including the steps: scaling, inverse kinematics (IK) and static

optimization (SO) (with the external dumbbell force as additional input). The only di�erence was that for scaling and IK, experimental markers

from bony landmarks and joint centers were used for the marker-based method, whereas only joint centers were used for the marker-less

camera method.

the following paragraphs). The motion data from the marker-

based and from the deep learning-based method had to be

cleaned and prepared before it could be processed in OpenSim.

Coordinate data from the marker-based method were first

imported in MATLAB (2020a, The MathWorks, Inc., Natick,

Massachusetts, United States) to correct the data for switched

or missing markers, under the hypothesis of rigid bodies. Some

trials had to be excluded due to too many missing markers

(minimal three markers required per segment).

Subsequently, joint center locations of the shoulder, elbow,

and wrist, were estimated from bony landmarks (Figure 2 1.B).

This step is recommended by the guidelines of OpenSim, as

the tracking accuracy of the model likely improves when joint

center trajectories are used in addition to the bony landmark

trajectories. For the shoulder, the joint center was calculated

based on regression equations reported by De Leva (15). For

the elbow and wrist, the joint centers were calculated as the

midpoint between the medial and lateral epicondyle markers,

and the midpoint between the radial and ulnar styloid markers,

respectively (16). For the coordinate data generated by the

deep-learning model, visualizations of the joint center stick

figures (that were provided along with the coordinate data), were

inspected to check if estimations seemed realistic. In the case

of completely insufficient and unrealistic joint tracking, trials

were excluded. No further data post-processing or cleaning was

required for the single camera deep learning-based method.

Musculoskeletal model

An OpenSim musculoskeletal model of the shoulder and

elbow (Figure 3) (17) was used in the present study. The

model included muscle parameters and architecture based on

Breteler et al. (18), with aggregated muscle bundles from Van

der Helm (19) (Table 2), combined with an accurate model

of scapulothoracic kinematics (20). Two generic models were

used, one for the camera-based input data and one for the

marker-based input data. The marker-based model contained

so-called virtual markers (pink markers in Figure 2 1.C) on

locations that corresponded to the experimental markers from

bony landmarks and joint centers (blue and red markers in

Figure 2 1.B), whereas the camera-based model only contained
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FIGURE 3

Musculoskeletal model with (A) scapular degrees-of-freedom and (B) shoulder muscles that control the scapula. Reprinted from Muscle

contributions to upper-extremity movement and work from a musculoskeletal model of the human shoulder by Seth et al. (17).

virtual markers at the joint centers (which cannot be seen

clearly in Figure 2 2.C because these virtual markers are within

the joints).

The generic model has a default size, which does not

yet reflect the actual size of the participant. For both the

markerless and marker-based models, it is important that the

model is scaled to match the dimensions of each participant

(Figures 2 1.D,2.D). For this scaling step, a static measurement

of a neutral pose was used. In this neutral pose, scale factors

were computed for each body segment, by calculating the

factor of the difference in distances between virtual markers

on the generic model segments (pink in Figures 2 1.C,2.C)

and the corresponding experimental markers (blue and red in

Figures 2 1.B,2.B) measured from the participant. This scaling

step scales the size and mass properties of the body segments,

and many of the elements attached to the segments, including

muscle actuators and wrapping objects. Since the camera-based

experimental data have only a limited number of markers, the

scaling of this model was in some cases less specific than for the

marker-basedmodel, meaning that certain scale factors had to be

used to scale multiple body segments or directions. For instance,

while the front-back width of the thorax can be scaled separately

in the marker-based method, the markerless method only has

the length (up-down) distance and must use this factor to scale

all thorax directions uniformly.

Inverse kinematics

The scaled models were used for Inverse Kinematics (IK)

analysis of each motion trial in OpenSim (Figures 2 1.D,2.D).

The IK input data for the marker-based method were different

than for the marker-less method, but the procedure was

the same for both methods from this step onwards. During

IK analysis, the pose of the model that best matched the

experimental marker data on each time frame was computed,

so the differences between virtual markers on the model

and corresponding experimental markers from the participant

were minimized. In addition to the input from experimental

markers, it is possible to specify certain joint angles that

are measured or calculated beforehand as input for IK. In

the present study, precalculated joint orientations of the

scapula and clavicula [based on regression equations of

Pascoal et al. (21)] were used as additional input for IK.

The best match of the pose was determined during IK by

solving a weighted least squares equation, minimizing both

marker errors and joint angle errors between the model and

experimental data.

Static optimization

The IK solution for each motion trial was used as input

for Static Optimization (SO) of muscle forces in OpenSim. As

additional input, the gravitational force at the dumbbell was

applied at the center of mass of the hand as a downwards

directed vector of 29.4N for the lateral fly or 49.1N for the

biceps curl (Figures 2 1.D,2.D). Based on this information, first,

net joint moments were estimated through inverse dynamics

(ID) for each frame, and subsequently the optimal cost-effective

combination of muscle forces was estimated that could have

generated this net joint moment, based on minimization of the

squared muscle activation (default in OpenSim).
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TABLE 2 Thoracoscapular shoulder model muscle parameters adapted from Breteler et al. (18) with aggregated bundles from by Van der Helm (19).

Muscle Group Max isometric

force

Optimal fiber

length

Tendon slack

length

Pennation

angle

Van der Helm

bundles

Trapezius Scapula superior 1,043 0.1127 0.027 0 1–6

Scapula middle 470.4 0.0832 0.032 0 7–9

Scapula inferior 414.4 0.1264 0.035 0 10–12

Clavicle 201.6 0.1116 0.027 0 C1–C2

Serratus anterior Superior 387.8 0.0945 0.000 0 9–12

Middle 508 0.1538 0.012 0 5–8

Inferior 430 0.1587 0.000 0 1–4

Rhomboideus Superior 200.2 0.0986 0.015 0 1–2

Inferior 407.4 0.1152 0.028 0 3–4

Levator scapulae 280 0.1578 0.019 0 All

Coracobrachialis 648.2 0.0683 0.104 0 All

Deltoideus Anterior 707.7 0.0940 0.088 5 C1–C4

Middle 2,597.8 0.0748 0.064 5 4–11

Posterior 1,324.4 0.0949 0.076 5 1–3

Latissimus dorsi Superior 201.6 0.2109 0.081 0 1–2

Middle 315 0.2656 0.095 0 3–4

Inferior 270.2 0.3062 0.062 0 5–6

Pectoralis major Clavicle 408.8 0.1087 0.014 0 C1–C2

Thorax middle 683.2 0.1500 0.026 0 4–6

Thorax inferior 571.2 0.1830 0.043 0 1–3

Teres major 851.2 0.1410 0.006 0 All

Infraspinatus Superior 967.4 0.0698 0.050 0 4–6

Inferior 1,037.4 0.0677 0.084 0 1–3

Pectoralis minor 429.8 0.1183 0.032 0 All

Teres minor 695.8 0.0550 0.051 0 All

Subscapularis Superior 540.4 0.0676 0.059 5 1–3

Middle 609 0.0744 0.055 5 4–5, 10

Inferior 854 0.0721 0.059 0 6–9, 11

Supraspinatus Anterior 543.2 0.0554 0.031 0 3–4

Posterior 326.2 0.0591 0.025 0 1–2

Triceps long 1,580.6 0.0969 0.241 10 All

Biceps Long 485.8 0.1412 0.257 0 All

Brevis 693 0.1264 0.212 0 All

Reprinted fromMuscle contributions to upper-extremity movement and work from a musculoskeletal model of the human shoulder by Seth et al. (17).

Data analysis and statistics

For the lateral fly, relevant muscles included all heads of

the deltoid and trapezius muscles (Table 2) as these can be

considered the prime movers, and the rotator cuff muscles

as these are the stabilizing muscles of the shoulder. For the

biceps curl, the long and short heads of the biceps were

included as these are the prime movers, the triceps muscle was

included as this is a potential co-contractor, and the rotator

cuff muscles were included as these are the shoulder stabilizers.

The time series of muscle forces obtained from the camera-

based method were up-sampled to the sample frequency of

the marker-based method and synchronized. Synchronization

was performed separately for each movement cycle, at the

peak shoulder elevation angle for the lateral fly exercise and

at the peak elbow flexion angle for the biceps curl exercise.

One second before and after the peak instants were included

for analysis. Subsequently, muscle forces were filtered with a

low-pass 2nd order Butterworth filter with cutoff frequency of

4Hz. For all repetitions, root-mean-square-deviations (RMSDs)

expressed in Newton (N) and in percentage of the maximum

force that the muscle can deliver (%Fmax) were calculated

between the muscle force time series obtained from the single

camera and from the marker-based method. This meant that at
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FIGURE 4

Results for the middle (left), anterior (middle) and posterior (right) deltoid muscle forces during the lateral fly exercise. Results obtained from

OMS (blue) and a single camera (red) are presented as mean ± 1SD (shaded) over all participants.

each frame, the deviation between the muscle force estimated

by the single camera-based and the muscle force estimate by

marker-based methods was calculated and squared, the squared

deviations were averaged over the whole signal, and the root

of this average represented the RMSD for that trial. For each

subject, the mean RMSD over all trials for a specific exercise

was calculated, and finally, the mean RMSD averaged over

all subjects was reported, including a standard deviation that

represented the between-subject variation. According to the

same method, Pearson’s correlation coefficients were calculated

per trial and finally averaged over the subjects. The absolute

values of r were categorized as weak, moderate, strong, and

excellent for r ≤ 0.35, 0.35 < r ≤ 0.67, 0.67 < r ≤ 0.90

and 0.90 < r, respectively (22). In addition, peak muscle force

values estimated by both methods were obtained for the prime

movers (that had a large contribution to the total force), and the

measurement errors between the two methods were visualized

in Bland-Altman plots.

Result

Due to missing markers of the OMS, 12% of the lateral fly

trials and 23% of the biceps curl trials had to be excluded. Based

on the standard camera and deep-learning method, almost

all trials could be included except three trials (2%) in which

joint estimations were completely insufficient because there was

a second person visible in the background. Insufficient trials

were identified from the stick figure videos and joint center

coordinate data, which for instance showed segment lengths of

just a few centimeters, or (unrealistic) stick figure projections at

the wrong location not near the participant. In total, 64 lateral

fly repetitions and 58 biceps curl repetitions were included for

the muscle force analysis. Figures 4–8 show the muscle forces

estimated by the two methods during a repetition, averaged

first over all trials per subject and subsequently averaged over

all subjects. Overall, the magnitude and shape of the muscle

forces responsible for the largest part of the force, including

the middle deltoid, anterior deltoid, and trapezius scapularis for

the lateral fly, and the long and short heads of the biceps for

the biceps curl, seemed comparable between the two methods.

In line with the figures, correlations were strong or excellent

(ranging between 0.71 and 0.92) for these muscles, and RMSDs

ranged between 3.1 and 53.3N, which corresponded to errors

of 0.4–2.1% of the maximum force that these muscles can

deliver (Table 3, in bold). The other evaluated muscles clearly

played a smaller role during the investigated exercises, exerting

forces that were typically below 3% of their maximum force,

as revealed by Figures 4–8. RMSDs for these muscles ranged

between 2.2 and 11.8N, which corresponded to errors of 0.4–

0.7% of the maximum force that these muscles can deliver

(Table 3). Correlations for these muscles ranged from weak to

strong (Table 3). In addition, it appeared from the Bland-Altman

plots (Appendix A) that the camera and deep-learning method

tended to underestimate the peak forces of the anterior deltoid

and tended to overestimate the peak values of the trapezius

scapula superior (during the lateral fly) and biceps brevis (during

the biceps curl). Average errors in estimations of middle deltoid

and biceps long peak forces were near zero. Moreover, the

plots revealed that the between-method errors were usually

comparable over the different mean peak force values, meaning

that there was no clear sign of proportional errors. However,

for both the trapezius scapula superior and biceps brevis peak

forces, it was observed that the measurement error was clearly

different for one of the subjects (although not for the same

subject). These results indicate that the kinematics captured by
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FIGURE 5

Results for the trapezius scapula superior (left), trapezius scapula middle (middle), and trapezius scapula inferior (right) muscle forces during the

lateral fly exercise. Results obtained from OMS (blue) and camera (red) are presented as mean ± 1SD (shaded) over all participants.

FIGURE 6

Results for the rotator cu� muscle forces during the lateral fly exercise. Results obtained from OMS (blue) and camera (red) are presented as

mean ± 1SD (shaded) over all participants.

FIGURE 7

Results for the biceps brevis (left), biceps long (middle) and triceps (right) muscle forces during the biceps curl exercise. Results obtained from

OMS (blue) and camera (red) are presented as mean ± 1SD (shaded) over all participants.
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FIGURE 8

Results for the rotator cu� muscle forces during the biceps curl exercise. Results obtained from OMS (blue) and camera (red) are presented as

mean ± 1SD (shaded) over all participants.

TABLE 3 Mean Root-Mean-Square-Deviations (RMSD) expressed in Newton (N) and in percentage of the maximummuscle force (Fmax) and

Pearson’s correlation (r) between the OMS and the camera methods.

Muscle RMSD in Newton (mean ± SD) RMSD in % Fmax (mean ± SD) r (mean ± SD)

Lateral fly

Deltoid middle 53.3 ± 15.6 N 2.1 ± 0.6% 0.92 ± 0.04

Deltoid anterior 5.7 ± 0.6 N 0.8 ± 0.1% 0.87 ± 0.05

Deltoid posterior 6.2± 1.7N 0.5± 0.1% 0.31± 0.21

Trapezius scapula superior 16.2 ± 2.5 N 1.5± 0.2% 0.72 ± 0.09

Trapezius scapula middle 3.4± 0.6N 0.7± 0.1% −0.20± 0.53

Trapezius scapula inferior 2.2± 1.1N 0.5± 0.3% 0.36± 0.13

Infraspinatus 11.8± 2.1N 0.6± 0.1% 0.30± 0.15

Teres minor 3.4± 0.6N 0.5± 0.1% −0.20± 0.53

Subscapularis 10.4± 1.1N 0.5± 0.1% 0.44± 0.17

Supraspinatus 3.5± 0.6N 0.4± 0.1% 0.72± 0.09

Biceps curl

Biceps brevis 7.1 ± 0.9 N 0.9 ± 0.1% 0.84 ± 0.08

Biceps long 3.1 ± 0.9 N 0.7 ± 0.1% 0.90 ± 0.08

Triceps 7.9± 2.8N 0.5± 0.2% 0.61± 0.20

Infraspinatus 8.7± 2.5N 0.4± 0.1% 0.00± 0.23

Teres minor 2.6± 0.6N 0.4± 0.1% 0.09± 0.43

Subscapularis 7.8± 0.8N 0.4± 0.0% 0.19± 0.23

Supraspinatus 3.1± 0.5N 0.4± 0.1% −0.04± 0.27

RMSDs and correlations were determined over the whole movement cycles. All variables were presented as mean and standard deviation over the averages of participants. Numbers in

bold represent results from the muscles that generated the largest parts of the force.

the camera-based method are not always consistent between

different subjects.

Discussion

The aim of the present study was to evaluate the feasibility

and validity of a single camera CNN driven musculoskeletal

model for muscle force estimation during strength exercises.

Recordings by this method appeared feasible and fast since

only one camera is required. In addition, more trials could

be included (fewer missing data), and postprocessing was

less effort-consuming since instead of marker cleaning (for a

marker-based method) only a pre-made script was used to

obtain joint centers from recorded videos. First results regarding

the validity showed that the prime movers involved in the
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upper-body exercises could be estimated by the camera driven

musculoskeletal model with reasonable accuracy, indicated by

strong to excellent correlations and RMSDs of 0.4–2.1% of

the maximum forces. Stabilizing (rotator cuff) and secondary

muscles showed similar acceptable RMSDs between 0.4 and

0.7% of the maximum force but correlations that ranged from

weak to strong. The low contribution of these muscles makes

the validity more difficult to determine, since correlations are

sensitive to data distributions and tend to be smaller for variables

with a small value range.

The differences compared to the state-of-the art may have

multiple explanations. First, the inverse kinematic solution

(and therewith muscle force estimation) may have been

influenced by the limited number of markers used for the

camera-driven model. This limited number of markers may

have led to less precise scaling and different information

to solve Inverse Kinematics (based on only joint centers

instead of many bony landmarks), which could (partially)

explain the differences in muscle force estimations. Secondly,

muscle force estimation errors may be the result of errors

in the kinematics estimated by the deep-learning model,

which will likely have had the largest contribution to the

total muscle force estimation error. Our previous work has

shown that upper-extremity joint angle RMSDs between the

deep-learning camera-based and state-of-the-art marker-based

biomechanical (linked segment) model, are about 4–8 degrees

on average (23), which could also be an explanation for

the muscle force estimation errors in the present study.

Accuracy might be improved by training the deep-learning

model on more and more relevant (strength training) data.

In addition, more accurate estimations may be achieved if

OpenSim parameters like scaling factors and joint angles,

can be estimated directly from videos, without conducting

the in-between step of joint center estimation, as fewer

steps may reduce the overall error. Furthermore, since the

Bland-Altman plots (Appendix A) revealed inconsistencies in

the peak force estimations between different subjects, the

deep-learning model might be improved by training on more

subjects with varying anthropometries.

In comparison with previous work, similar RMSDs and

correlations were found for the middle deltoid muscle by

Skals et al. (10). They compared the middle deltoid force

obtained by a dual depth-sensor driven musculoskeletal model

to those obtained by a marker driven musculoskeletal model

during loaded and unloaded shoulder elevation and found

RMSDs and correlations of 5.45%BW (corresponding to 43N

for a person of 80 kg) and 0.88, and 2.88%BW (corresponding

to 23N for a person of 80 kg) and 0.66, respectively (10).

For the deltoid in the present study (Table 3) comparable

accuracies were achieved while only the data obtained from a

single standard camera were used to drive the musculoskeletal

model, whereas Skals et al. (10) used two Kinect depth-sensors.

Potentially, this can be explained by the more sophisticated

pose estimation algorithm employed in the present study.

Whereas, the Kinect extracts pose information based on a

random forest approach from single images, the camera-based

method used CNNs which can incorporate more temporal

and spatial information to optimize predictions (4, 24). In

summary, the more feasible camera-driven musculoskeletal

model showed comparable accuracies as a dual depth-sensor

driven model, although results could only be compared for

one muscle.

Multiple limitations applied to the present study. Firstly, the

sample size and number of measured exercises was relatively

small in the present study, as this was an explorative study

into a new technology. It would be interesting for future

research to investigate the camera-drivenmusculoskeletal model

in a larger sample and with a larger variety of exercises.

Secondly, an opto-electronical measurement system combined

with a musculoskeletal model was used as ground truth in the

present study, while it is known that soft-tissue artifacts may

influence marker measurements, and musculoskeletal model

estimations may deviate from true muscle forces because several

assumptions regarding muscle parameters, geometries and joint

kinematics must be made (25). Nevertheless, this method was

the best ground truth option since we were also interested

in muscles that could not be measured by surface EMG,

and the comparable methodology between the marker-based

and camera-based muscle force estimations made it easier

to interpret the results as the number of error sources was

minimized. Thirdly, the initial idea for this study was to use

only marker data (from both systems) as input for IK and

no joint angles. However, it appeared that for the marker-

based measurements, scapula and clavicula orientations could

not be measured accurately with the marker data, probably

due to well-developed deltoid muscles of the participants that

interfered with the orientation of the cluster marker placed on

the acromion, leading to a mismatch between the orientation of

the scapula and this cluster marker. Scapula tracking with skin

markers remains a large challenge in biomechanical research

because the scapula moves beneath the skin and muscles

(26). Therefore, regression equations were employed in the

present study to estimate scapula and clavicula orientations

from the humerus and thorax orientations (21). These estimated

coordinates were used as additional input besides the marker

data for IK analysis. Since these estimations were added for

both the marker-driven and camera-driven models, the error

this may have induced will not have affected the comparison.

Finally, it must be mentioned that multiple limitations are

associated with the single camera-based set up. Single standard

cameras can have issues in detecting body segments during

occlusions, are known to be sensitive to varying light conditions,

and generally provide less accurate results than multi-camera

set-ups (6).

The results of the present study may have implications

to the strength training science and practice. While it is
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evident that the validity of the single camera-driven model

should be assessed for more subjects and movements, the

method shows potential as a feasible tool for movement

scientists to investigate (prime mover) muscle contributions

during upper-body exercises on a larger scale and in a gym-

environment. Information regarding muscle contributions per

exercise is currently mainly based on anatomical knowledge,

and measurement-based quantification could be valuable to

optimize strength training guidelines. In addition, in the future,

this method could potentially be applied in the gym to provide

strength training athletes with personalized feedback regarding

their muscle load during their workout, which could aid in

personalized training optimalization and in preventing muscle

overload injuries. However, the computation time required by

the deep-learning model and OpenSim calculations currently

limits the camera-based method to an offline analysis tool,

but future research may attempt to apply faster deep-learning

and OpenSim models to allow for more direct feedback.

The results of the present study may also have implications

for other sports. However, as strength training exercises are

usually performed at a fixed location, and movements are

typically not high-speed, the gym environment seems well-

suited for the camera-based method. It would be interesting

for future research to investigate if the camera-based method

performs similarly for other sports that may deal with high

movement speeds or varying distances between the camera

and athlete.

In conclusion, a single camera-driven musculoskeletal

model is a feasible way to estimate upper-extremity muscle

forces during strength exercises. First results regarding

the validity show strong to excellent correlations and

reasonable RMSDs for prime mover forces compared to

those obtained by the state-of-the-art. The accuracy for

stabilizing and secondary muscles was difficult to determine

due to the low force contributions of these muscles. Future

research should validate this method for more subjects

and exercises and should focus on further improving the

accuracy (e.g., by direct OpenSim parameter estimation

from videos). In addition, if the current limitation of

computational time could be tackled by future research,

this method could be applied in the gym to provide strength

training athletes with personalized feedback regarding

their muscle load during their workout, which could aid

in personalized training directions and preventing muscle

overload injuries.
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