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Abstract

This paper accelerates the rendering of diffusion
curves using the ray tracing cores found on mod-
ern NVIDIA graphics cards using the method de-
scribed by Bowers et al. [2]. This method approxi-
mates the final result of the Poisson equation and in
this paper is accelerated using Optix and dedicated
ray tracing hardware. Using this method yielded a
render time decrease of around 8 times between the
Quadro P1000 and RTX 2060, while retaining the
complex colour gradients and ease of use of tra-
ditional diffusion curves solved using the Poisson
equation.

1 Introduction

From old pixel sprites to mipmaps, insufficient image fidelity
is a problem that comes up in a host of different situations.
In these situations vector graphics offers a solution. Vector
graphics are an improvement over standard representations in
the sense that they do not store an image at an explicit res-
olution. This is possible because vector graphics store their
graphical information as a set of shapes and definitions on
how to colour the areas that they surround or sometimes how
to colour the area around the shapes.

Research into vector graphics is roughly divisible into two
separate directions. Firstly Improving the efficiency of ren-
dering more traditional vector graphic representations such as
Support Vector Graphics (SVG) [17], PostScript and Portable
Document Format (PDF). Secondly to find novel solutions to
make the format more flexible the most notable example be-
ing diffusion curves [12].

Traditional vector graphics are usually tedious to use since
they do not support complex colour gradients. These graph-
ics use paths and simple shapes as a boundary which then can
be filled using a flat colour fill or simple linear or radial gra-
dients [17]. This means that we need a lot of primitives to
make a realistic looking image. Needing a lot of primitives is
undesired since it negates the effect of compact storage and
makes creating images in the format a tedious task.

Diffusion curves set out to solve this problem by not defin-
ing the colour areas of the image explicitly but instead as-
signing a colour to each side of a path. These colours are
then diffused into the image by solving complex differential

equations. A visual aid for this process can be dropping food
colouring into water and using the final result as the image.
This method gives stunning visual results, but getting to the
final image is slow ranging from 0.5 [4] to 4 seconds [1].

An ideal solution would be a method which has the render-
ing speed of traditional vector graphics and the flexibility of
diffusion curves. This would allow the user to interact freely
in real time with the final image instead of the current stan-
dard of a limited detail version, while still maintaining the
ease of use of diffusion curves.

This solution might be possible with the approximation de-
scribed by Bowers, Leahey and Wang. They showed that
if we consider the curves light sources in a 2d global illu-
mination problem we can get a reasonable approximation of
the solution acquired using the Poisson Equation [2]. Their
method achieved an impressive speed-up of 2x, this however
is still far from the ideal solution. Recent developments in
hardware acceleration might be able to give another signifi-
cant speed-up. Namely, the NVIDIA RTX cards with their
dedicated ray tracing cores can help us [11].

This leads to the research question :

Can the method of Bowers, Leahey and Wang to ap-
proximate the final product of diffusion curves be
used in combination with the dedicated ray tracing
hardware to achieve real time rendering of diffu-
sion curve based graphics ?

Thus, the main contribution of this work is to see if the
performance of rendering diffusion curves can be further im-
proved without significant loss of image quality. To achieve
this Optix will be used which can access the dedicated ray-
tracing cores on the NVIDIA RTX cards and has not yet been
used.

Achieving this goal in combination with the ray tracing as-
pect would mean that the image can also be rendered at an
arbitrary point in a very short amount of time. With random-
access rendering at a good speed, diffusion graphics could be
integrated into 3d rendering where its graphics could be used
as textures as shown by Sun. et al. [16] and Jeschke, Cline
and Wonka [5].

Increasing the speed of diffusion curve rendering would
also allow instant feedback for drawing software which uses
this as their primitive. With instant feedback diffusion curves
become usable by artists since they do not have to guess for
the end-result.



The rest of this paper is structured as follows: Previous
work will be discussed in Section 2, the concept of ray trac-
ing diffusion graphics will be explained in Section 3, how
to integrate this with Optix will be discussed Section 4, the
results will be shown in Section 5, Section 6 discusses the re-
producibility, Section 7 will reflect on the results, and lastly
Section 8 will conclude the research.

2 Related work

Diffusion curves were originally formulated by Orzan et al.
[12] they are defined as lines with zero width and a colour
on either side. These colours define the initial condition for
a partial differential equation called the Poisson equation and
the colour gradient across the curve serves as the boundary
condition for this equation. Solving this PDE gives an image
with a colour gradient which is as low as possible at every
point. This produces an image with a smooth colour gradient
everywhere except where were the curves define discontinu-
ities.

While research which focuses on accelerating traditional
vector graphics using the GPU is plentiful [71[81[10]. Re-
search into diffusion curves is scarce and reseach into accel-
erating the rendering of diffusion curves is even rarer.

Methods described in papers focusing on path rendering
acceleration such as stencil then cover [7] and scanline ras-
terization [8] rely on comparatively simple in-out checking
thus their techniques are not applicable for the purposes of
diffusion curves. These methods work for traditional vector
graphics since all pixel which should be coloured must be
surrounded by a path or be part of the border of such a path,
while for diffusion curves this is not the case.

After the original formulation of diffusion curves several
extensions have been proposed. Diffusion barriers which im-
prove the usability for artist by not having to define a colour
along every point along the curve was done by Bezzera et
al. [1]. Besides, this they also proposed directional diffusion
which guides diffusion into a certain direction, and different
diffusion strengths along the curve.

The second extension of diffusion curves was Poisson vec-
tor graphics which introduced Poisson regions and Poisson
curves which allow the user to control extrema. This allows
for easy specular highlights and halos. Together with the pre-
vious extension it makes diffusion curves much easier to use,
and consequently the images these extensions produce are a
lot better. The image quality they provide however, comes at
a cost in performance.

These performance issues arise from the fact that the PDE
defining the image needs to be solved. While ordinary dif-
ferential equation have relatively simple numerical approxi-
mation techniques such as the Euler method and the Runge-
Kutta method, similar techniques do not exist for PDEs due to
their nature of multiple, in general inseparable, variables de-
pending on each other. This means more complicated meth-
ods are necessary. Such methods consist of methods based
on the fast Fourier transform [13, p. 8571[6], or the multigrid
method [13, p. 8711[9]. The multigrid method is the most
prevalent solution to render diffusion curves as it has been
used by Orzan et al. [12]. This method works by finding a

very coarse solution first which it uses to accelerate the con-
vergence of the solution at higher resolutions.

To alleviate the performance problem of solving PDEs
Bowers, Leahey and Wang proposed a method which can be
used to approximate the image without solving a differen-
tial equation [2]. In their approximation the diffusion curves
are light sources and the light each pixel collects from these
light sources is an approximation to the colour it is assigned
by solving the Poisson equation. Their method was a success
since it almost doubled the previous frames per second (FPS).
However, it exhibits some artefacts which do not occur when
directly solving the Poisson equation.

Building on this approach, Prévost, Jarosz and Sorkine-
Hornung devised a method which uses a triangle mesh gen-
erated by a constrained Delaunay triangulation. This allows
for only evaluating the colour on the vertices of this mesh and
interpolating the colour.

The method of Bowers Leahey and Wang will also be used
in this paper, but it will be sped up by using dedicated ray
tracing hardware which has not been done before.

3 Diffusion curves and their approximation

Diffusion curves are defined in their simplest form as cubic
Bézier curves with a colour on both sides. Cubic Bézier
curves are piecewise polynomial splines defined using four
control points per piece. The first and the last of these control
points are interpolated and the other two control points guide
where the curve should go. To find the curve defined by con-
trol points P;, P», P; and P, these points need to be multi-
plied by the basis matrix for Bézier splines and the monomial
basis vector up to and including degree 3 as shown in Equa-
tion 1.
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This function has the domain v = [0, 1] and defines the

entirety of the curve. To vary colour along the curve an arbi-
trary amount of colour control points with associated values
for the curve parameter u are allowed. These colour control
points are then linearly interpolated along w.

Rendering these curves requires solving the Poisson equa-
tion where the diffusion curves define the boundary and initial
conditions. With these simple rules impressive images such
as Figure 1 can be created.

This process is slow but, it can be sped up using approx-
imations. The specific approximation used in this paper is
one where the problem is transformed into a global illumi-
nation problem as formulated by Bowers, Leahey and Wang
[2]. In this method the diffusion curves are light sources. The
estimated light each pixel receives from these curves is our
goal and can be found by solving a version of the rendering
equation seen in Equation 2. Here I(p) is the illumination of
pixel p and the final colour of this pixel. the function ch(p, 0)
returns the closest hit point for pixel p and ray angle 6 and
the R and W functions return the radiance/colour of the that



Figure 1: Image generated using method of Orzan et al. [12] which
solves the Poisson equation. The image only contains diffusion
curves which have only colour control points.

point and the normalized weight due to distance of the colour
respectively.
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Solving this equation can not be done analytically, and we
will approximate the solution by sampling it uniformly. This
leads to Equation 3 where the integral is replaced by a sum-
mation and N is the number of samples that is used to esti-
mate the colour of each pixel.
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The uniform sampling will be done by ray tracing from
each pixel and using the closest intersection with the diffu-
sion curves as the point to gather the weighting and colour
information from. After which this information can be dis-
played as the final image. Because this method is intuitive,
easy to understand, leads to good quality images and can ben-
efit greatly from hardware acceleration this method is chosen
to be implemented in Optix.

4 Using Optix

Implementing the algorithm proposed by Bowers, Leahey and
Wang [2] into Optix is not as straightforward as one might
hope. Several difficulties come into play regarding ray colli-
sion with the curves, primitive types of the rays, and artefacts
occurring.

Intersecting rays with Bézier splines is non-trivial for this
reason Bower, Leahey and Wang used an increasingly fine
linear approximation for the curves. However, A lot of re-
search has been done about how to efficiently intersect cu-
bic splines and Optix already implements such an algorithm
for us. This algorithm is most probably based on work by
Reshetov [15]. And takes a set of three-dimensional cubic B-
spline curves as input and produces intersections at any curve
and/or at the closest curve for a given ray. To leverage the
speed of this algorithm the curves will not be approximated
but will be intersected directly.

4.1 Intersecting curves

The algorithm implemented in Optix however has two mis-
matches with our input. The first of these mismatches is

due to the dimensionality of the splines. Optix is build for
three-dimensional ray tracing while diffusion graphics are
two-dimensional. Since splines do not mix dimensions, the
function in each dimension can be evaluated separately, this
is easily fixed by setting the z coordinate of each control point
to zero.

The second mismatch is somewhat more complex.
Namely, it requires unclamped b-splines. This is a slightly
different primitive than the Bézier splines which are the input
of the algorithm of this paper. There are two ways to alleviate
this problem.

The first option is the quick-and-dirty approach, where we
take the control points for the Bézier curve and interpret them
as b-spline control points. This can be a reasonable approx-
imation since both types are cubic splines. However, these
b-spline curves are unclamped which means they do not in-
terpolate any of the control points i.e., they never intersect
them. This was already foreseen by the Optix developers
and in their programming guide [3] they propose to use phan-
tom points, a reflection of the point preceding the end point
through the end point of the curve. This means we get an ex-
tra b-spline consisting of the first phantom point and the first
three points of the original curve if we want to clamp the start.
Similarly, we can repeat this process at the end of the curve
to clamp it there as well.

This method thus adds two extra primitives to each Bézier
spline. Besides the performance hit that this has, the error is
also relatively big as can be seen in Figure 2.
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Figure 2: An example of a b-spline curve and a Bézier curve using
the same control points. The green curve represents the b-spline
curve and the orange and red parts are the curves added by adding
phantom points to clamp the b-spline. The blue curve is the Bézier
curve generated from the control points. The x and y-axis are in
arbitrary units.

This leads to the second method which transforms the con-
trol points of the Bézier curve in such a way that they form
the control points for a b-spline which is exactly the same
as the Bézier curve. To achieve this we need to circumvent
the multiplication with b-spline basis matrix and instead use
the Bézier spline matrix. Since Optix has the monomial basis
vector and the b-spline basis matrix pre-multiplied we need
to transform our points using the inverse b-spline basis ma-
trix and then multiply them by the Bézier spline basis matrix
as shown in Equation 4. In this equation f(u) is the func-
tion describing the Bézier-spline, M; and M~ L are the b-
spline basis matrix and its inverse respectively and M., is



the Bézier basis matrix. simplifying this equation would lead
to Equation 1.
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Now the Bézier splines are transformed into b-splines, and
we can use the algorithm Optix provides. This allows us to
find the intersection but not yet the colour information.

4.2 Interpolating values

Now the intersection point is known some value needs to be
returned. First it needs to be determined on which side the
ray hits the curve since the curve has different colours on ei-
ther side. Secondly the value needs to be interpolated to the
intersection point and lastly this value needs to be returned
with an appropriate weight.

Since Optix only provides the value of the curve-parameter
at the point where an intersection occurred, we need to manu-
ally determine which side the ray has hit. This can be done by
comparing the ray direction and the curve normal. To deter-
mine the curve normal we take the gradient of the curve which
can be analytically calculated and rotate it. Determining the
side on which the ray hits is now a simple case of checking
whether the sign of the dot product between the normal and
ray direction is positive or negative.

Another obstacle occurs due to only getting the curve pa-
rameter of the intersected spline, which is between 0 and 1.
This is a problem since the colour properties are stored for the
entire curve only and each spline in the curve adds 1 to the
parameter used for interpolation. This can be fixed by main-
taining a list, which maps each Bézier spline to the curve it is
part of and a map for each curve in what order the splines are.
These two maps allows for calculating of the total curve pa-
rameter and the curve properties can be deduced by linearly
interpolating the values of the curve along the curve parame-
ter.

The last problem after hitting a curve is determining the
weight function W () in Equation 3. This function should in-
tuitively take the distance until the hit into account. Bowers,
Leahey and Wang [2] propose |« — p|~¢ where |z — p| is the
distance between the intersection point x and the pixel p and ¢
is a constant set for the entire rendering process, which deter-
mines the weight fall-off. This works well for dense graphics
however for very sparse graphics this may lead to artefacts.
For this reason, we also tested w,.c.|*~?! where w, and ¢, are
curve parameters. This lead to slightly better results for elim-
inating rays that have too much weight (Figure 3). However,
due to the exponential nature w, and ¢, were very sensitive
and a useful image would only appear with c. very close to
1 (0.999) and w, around 100000, was the minimum to get an
image like Figure 4. This led to the choice of using a polyno-
mial weight function like in the original method [2] but letting
the degree be a curve parameter to allow for extra customiza-
tion. The final weight function is thus w.|z — p| .

Another difference in the weight function compared to pre-
vious work is the ability to change the effect of distance. Pre-
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Figure 3: A comparison between three different weight functions
W (z,p) at the end of a diffusion curve. The rays to the right of the
curve can never hit any red and no blue can be hit for the rays on the
left. this means the colours will never mix, a method to fix this is
shown in subsection 4.5. The rays underneath the curve will mostly
hit a white area outside the view port causing a white area to appear
where the rays hit neither the blue nor red side of the curve. This
can be reduced by using weight function with very fast drop-off like
an exponential, however a high degree polynomial works as well.

vious work [1]1[2] only allowed the change of a constant mul-
tiplier. Now it is possible to create areas, which will have
a high weight nearby but quickly drop off because another
area, being less affected by distance, takes over. An example
is shown in Figure 4.

Figure 4: An example of different ways to use the weight function
generated from weight_demo.xml . The red area decays quickly due
to a high c. but is still expressed due to a high w. and thus has a
small gradient with the green and blue areas. The green and the blue
areas are a straight curve at the top and bottom respectively.They
have a lower c. and thus decays slower leading to a larger gradient
they also vary w. along the x-axis.

4.3 Gaussian blur

While the method discussed in the previous section already
produces great images Orzan et al. also proposed interpolated
Gaussian blur. This blur is defined in such a way that just like



the colours a sigma value for the Gaussian blur is defined
along the diffusion curve using control points. This value is
then diffused into the image to create a blur map. In this paper
this blur map is created in the same manner as the colours
are accumulated per pixel. The resulting blur map is then
used to define a Gaussian kernel implemented in CUDA using
a vertical and horizontal pass to blur the image. This can
be used to recreate the effect of depth of field on a diffusion
curve image. A comparison between no blur and blur can be
seen in Figure 5.

Figure 5: A comparison of the lady_bug.xml [12] rendered with and
without blur left and right respectively. The blur in the left image
is reducing the edge sharpness only at the flowers. This gives it an

effect like it is out of focus just like a real photograph would.

4.4 Portals and transparency

Bezzera et al. [1] proposed a way to connect two areas within
the image such that the diffusion process can cross between
them even though they are spatially separated. This feature
is also present in our implementation. This is done using
curves which have the connects attribute set and thus con-
nect 2 or more curves. These portal curves transfer a ray
from one curve to the connecting curve preserving its direc-
tion with regard to the curve normal. This allows for the
creation of lenses guiding the diffusion process in a specific
direction. For these curves the colours are still used, but in-
stead of adding colour to the ray it uses the RGB values as
a colour filter. This together with the fact that a portal can
connect to itself, essentially letting the ray pass, allows for
partially transparent diffusion curves, filtering out only a spe-
cific colour. A demonstration of these portals are shown in
Figure 6.

4.5 Artefact reduction

Using ray tracing for rendering diffusion curves does not only
have positives. It also introduces several artefacts. While
these artefacts are mostly limited to areas with very sparse
diffusion curves some are really obvious and grossly disturb
the image. Two of the effects are a direct consequence of
switching the implementation from solving the Poisson equa-
tion to ray tracing and the last is due to diffusion curves need-
ing to have a width to be implemented in Optix.

The first defect is caused by ray tracing is shown in Fig-
ure 3, where it causes a light patch although this area should
be purple. It is caused by the fact that the red and blue areas in
this image can never mix since the rays cannot go around the
corner and thus cannot have line of sight on both sides of the

Figure 6: The PortalDemo.xml image rendered. In the middle is a
diffusion barrier blocking the colour emitted by the diffusion curve
on the far left. a portal connects the two sides and filters out the
red light. The round left portal focusses the rays only on the white
part of the curve. Finally, completely on the right there is a portal
connecting to itself filtering the blue light out. Thus, the image has
only one emitting diffusion curve but has wildly different colours.

curve. This artefact is thus only visible if there are no other
curves nearby the endpoint of a curve. The problem only oc-
curs in this situation because another curve can hide the fact
that the colour transition is not really working. A possible
solution to this artefact is to give the artist an option to add
an endcap to a curve. This endcap will connect the left and
right side in such a way that a ray has a greater area to hit
and the rays originating from a pixel affected by this artefact
can hit both a bit of the left side and a bit of the right side of
the diffusion curve in question. This is achieved by creating
a Bézier curve which starts and ends in the same point and
the other two control points are on the top left and top right,
creating a kind of drop shape as seen in Figure 7.

Figure 7: Image generated from endcap.xml showing an extra large
endcap with a black inside to make the shape better visible.

The curve colour control points are chosen such that on the
outside and inside this drop the colour interpolates in such
a way that it smoothly transitions from the left colour of the
curve to the right colour. this drop is then rotated to align with
the tangent of the curve and translated to the correct spot at
the endpoint of the curve. Creating a colour gradient connect-
ing the left and right side of the curve as seen in Figure 8.

Another artefact is caused by the fact that Optix forces
curves to have a width. This means if a pixel lays inside a
curve it cannot hit that curve and consequently does not get
the expected colour, but instead a radically different colour
than either left or right of curve. Since pixels are typically
1000 times smaller than the curve width, we can vary the
starting point inside the pixel such that the curve can be hit.
Bowers, Leahey and Wang also implemented this but for dif-



Figure 8: Comparison of without and with endcap on left and right

respectively. The endcap improves the transition by making the
colour transition smoother

ferent reasons it namely also provides some crude anti alias-
ing. The result of this technique is shown in Figure 9.

Figure 9: Comparison between an image without the randomization
within the pixel on the left and with this feature on the right. We can
clearly see some artefacts occur in the left figure, in the figure with
random sampling inside the pixel this disappears.

Besides using this randomization technique for the edges
the ray direction can also be randomized within its assigned
angle. This allows circumvention of the image gradients
which occur when only a few rays per pixel hit a curve which
can occur at lower ray counts as shown in Figure 10.

)

Figure 10: Comparison between two methods to reduce the effect
of low ray count per pixel. From left to right we have an image
generated with 128 rays per pixel, 512 rays per pixel, 128 rays per
pixel and randomization of start location and angle within each pixel
and the previous steps plus the Optix Denoiser. The endcaps were
removed for this picture to give a stronger colour gradient to exag-
gerate the artefacts.

Although the discontinuities are gone after randomization,
it does introduce a lot of noise in areas where only a few rays
are hitting diffusion curves. To alleviate this the Optix de-
noiser is applied to the image. The Optix denoiser is an Al
based denoiser originally meant to reduce the amount of sam-
ples required for path tracing 3d scenes. Having not enough
samples in path tracing creates similar noise as we encounter.
This means the results from this denoiser are quick and reli-
able for our purposes as well. The final image is shown in the

right most image of Figure 10.

5 Runtime of the algorithm

To answer the research question it is important to get an indi-
cation of the runtime of the algorithm. To give an indication
on the effects of the ray-tracing cores the renderer is tested
on both a RTX 2060 and a Quadro P1000 card. The RTX
card is supported by an Intel i5 10300H CPU at 2.5GHz and
16 GB RAM on Windows 10. The Quadro P1000 system
has an Intel i7-8750H CPU at 2.2 GHz and 16 GB of RAM
also on Windows 10. The latter components should however
not be a bottleneck since the entire frame generation happens
on the GPU. Several XML files, most from the original diffu-
sion curve formulation [12], were chosen for this comparison.
They range from 1 to 1500 diffusion curves per file and each
curve consists of at least several splines. All were rendered in
an 512 by 512 window with the picture centred. This means
that some curves were not inside the view, however they were
taken into consideration for the ray tracing. Besides the GPU
split the results are also rendered with three settings for the
amount of rays since some pictures do not suffer much from
reducing the amount of rays due to a very dense curve lay-
out. Lastly we evaluate performance with blur, without blur
and randomization within each pixel together with denoising.
The time required for portals remains untested since it does
not contribute to the time if no portals are present and if they
are present it will heavily depend on the size of and amount
of portals. This separation is done since not all the previous
work has all our features, and we wanted a comparison. The
results of this experiment are shown in Figure 11 and the full
results as table are shown in Appendix A Table 1 and Table 2.

In Figure 11 we can see a clear difference between the RTX
card which has dedicated ray-tracing cores and the Quadro
P1000 which does not. This means simply porting the al-
gorithm to Optix achieved an 8 times speed-up for systems
which have RTX support, but the system is also viable with
lower ray counts on systems that do not have this capability.
We can also clearly see a linear relation between the amount
of rays and the time required for rendering. Besides this ex-
ploiting the symmetry of the Gaussian kernel for a horizontal
and vertical pass means that the time required for the Gaus-
sian blur is virtually non-existent.

The setup time however is about four seconds the first time
the program is run regardless of which image is used. This
time is used for Optix to generate some cache relating to the
module compilation, which is done at runtime. This lowers
the setup time to between one and three seconds for the next
run of the program. The exact times are shown in Appendix A
which are taken after this initial setup run.

Because the Optix denoiser allows for much lower sample
rates while retaining image quality, the limit of how much the
sample rate can be reduced without noticeable artefacts was
also tested. This showed that lowering the rays per pixel, to as
low as 8 rays per pixel gives an image which, with the naked
eye, is indistinguishable from one with 128 rays per pixel for
the lady_bug.xml image. To investigate the differences fur-
ther we took the RGB difference between 8, 16, 32 and 64
rays per pixel with the 128 ray per pixel variant the results
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(a) Results for the rendertime per frame for the quadro p1000 sys-
tem.
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(b) Results for the rendertime per frame for the quadro RTX 2060
system.

Figure 11: Results showing the render time per frame for the Quadro
P1000 and the RTX 2060 system, render time in milliseconds are on
the y-axis. The results are clustered per XML file on the x-axis
with each cluster consisting of a render with 64, 128 and 512 rays,
128 rays with blur and 128 rays with blur and randomization from
left to right. The complexity of the XML files increases along the
x-axis with 1, 20, 71,131 and 1521 diffusion curves respectively.
Mind the 8 times difference on the y-axis between Figure 11a and
Figure 11b. The roses spirales XML is much more difficult since it
has more splines per curve and densely covers the entire screen. All
files except Arch.xml are taken from work by Orzan et al. [12].

are shown in Appendix A, Table 3. This showed that the er-
ror was mostly along the edges, possibly because the Optix
denoiser seems to create some visible artefacts around sharp
edges.

6 Responsible Research

In this specific subfield of research there are not many ethi-
cal issues to consider. While there are certainly ethical con-
cerns about how end-users could use the software created in
this research, the extra concerns for this research are minimal.
While all software used is freely available Optix only works
on NVIDIA GPUs and thus not all users can run the software.

In contrast, reproducibility is a much bigger issue. Besides
the fact that code-sharing is easy and only under specific cir-

cumstances impossible due to copyright issues, it does not
happen enough in computer science as a whole and vector
graphics is certainly not leading the charge on this issue. Out
of all the citations in this paper only two shared their imple-
mentations [9][12]. For both of these it was a big success
since the multigrid method from Real-Time Gradient-Domain
Painting [9] is used in the solver of Orzan et al. [12]. The
code publication of Orzan et al. made their diffusion curve
primitives and art generated during their research the de facto
standard for representation and test images.

Besides code-sharing hardware is also a contributor to lack
of reproducibility. With the unbreakable connection between
computer graphics and the graphics card, and the uncount-
able amount of different types of graphics cards, exact re-
production of results is nearly impossible even if the original
code is used. What makes this even worse is the reliance on
render time in ms as the main quantitative evaluation. Since
GPUs are increasing in processing power and specialization
quickly, this metric will increase over time without the code
being changed.

While the second issue is an inherent problem of the field
and this research also suffers from it, it can be mitigated by
releasing the code. this allows future researchers to rerun the
code on their own setup to make a fair comparison.

A second way to try and mitigate the second issue is to run
the code on multiple devices and gather performance data for
more hardware in this way. This has also been done for this
project and led, although expected, to wildly differing results.

Since there is no specific copyright licence required for this
project the source code can freely be made available online
under an Apache V2.0 licence where specific files are under
the same licence but published in other work. This means that
any future work can re-use this code for their project. This
makes sure the first issue is not applicable to this project. The
source code is made available in the following GitHub repo :
https://github.com/MikaZeilstra/RaytracingDiffusionCurves.

7 Discussion

The measured runtime of the results shows that the algorithm
is very fast compared to previous work. Extra effort was also
put into trying to hide the artefacts caused by ray tracing.
Comparison with previous work will thus focus on these two
aspects.

7.1 Speed comparison

As seen in Figure 11 the algorithm performs at about 98 ms
per frame or about 10 FPS for the lady_bug XML file. This
file is comparable in number of diffusion curves to other artist
drawn images at 72 curves in the image. Each of these curves
consists of tens of splines. The 10 FPS reached at 128 rays
per pixel. This ray count is chosen since it is the same Bow-
ers, Leahey and Wang used [2] and typically sufficient for
artist created images. The 10 FPS reached with these settings
includes blur and pixel and ray randomization. This is an
almost 4 times increase in speed over the high quality imple-
mentation used by Bowers, Leahey and Wang [2].

Another algorithm we can compare against is the work
of Prévost, Jarosz and Sorkine-Hornung [14]. Their algo-
rithm had a total render time per frame of 74 ms for the


https://github.com/MikaZeilstra/RaytracingDiffusionCurves

lady_bug.xml image at 1024 by 1024 resolution. This is really
impressive and to compare against this higher resolution an
extra test was ran with 8 rays per pixel. This slightly reduces
the quality near the edges and can introduce some inconsis-
tencies between subsequent frames. This test showed that for
the setup with 8 rays and all the other features the image can
be rendered in 74 ms for the lady_bug.xml and thus tying this
the previous work.

This new-found speed allows rendering of images with sig-
nificantly more curves such as the dolphin image. This means
we could use diffusion curves as some kind of compression.

Besides the previous point it also allows interaction with
the final product of an image without delay. Interaction means
that artists get better tools to work on diffusion curve images
and thus better art can be created.

7.2 Image quality

But not only the speed of the algorithm is important the qual-
ity of the produced image is important as well. While the im-
ages look visually similar, there are some obvious and some
more subtle difference that are revealed in the absolute differ-
ence between the images as seen in Figure 12.

At first glance we can see that the image generated using
the Poisson method is slightly darker than the other image
and that some gradients are slightly different. This can all
be tweaked by optimizing the weighting parameters of each
curve to get a closer resemblance to the preferred look. But
when we take a closer look at the absolute difference image
in Figure 12c it also becomes clear that the blur and the edges
are different. The difference in the blur is due to the imple-
mentation of the blur filter, which is different since the im-
plementation needed to be guessed. Differences along edges
are a recurring effect also observed by Bowers, Leahey and
Wang [12].

8 Conclusions and Future Work

With the main research question in mind : Can the method of
Bowers, Leahey and Wang to approximate the final product
of diffusion curves be used in combination with the dedicated
ray tracing hardware to achieve real time rendering of dif-
fusion curve based graphics? it can be concluded that this
is most definitely possible since the application reaches 10
FPS on typical artist created images. The use of ray tracing
hardware provided an 8 times speed-up over the same imple-
mentation without this specialized hardware. However, the
achieved rate of 10 FPS is still on the slower side but reaches
interactability without giving up a lot of quality.

The speed-up also increases the effectiveness also in other
ways. One of these ways is in allowing for more diffu-
sion curves in the image while maintaining acceptable perfor-
mance. This allows photo-realistic images to be shown and
possibly compressed by using methods which allow raster im-
ages to be converted to diffusion curve images.

Besides this there are still some aspects left for future work.
Namely, the intersection algorithm, currently the Optix de-
fault b-spline intersection algorithm is used, but this requires
some workarounds and works in three dimensions which is
not really necessary. Optix allows for custom intersection

(a) lady_bug.xml rendered
using the method of orzan
et.al [12]

(b) lady_bug.xml rendered
using the proposed method

(c) the absolute difference between the images

Figure 12: Comparison of lady _bug.xml [12] rendered using the
method of Orzan et al. [12] and the proposed method. The ren-
dered images are shown on top and the absolute difference is shown
in the large image.

methods and in the future this should definitely be used mean-
ing future version do not need to give the curves width and
achieve extra speed-up by dropping support for 3 dimensions.

Another possibility is now that the viability of Optix is
shown for diffusion curve images, is to also implement an
improved version of the work by Prévost, Jarosz and Sorkine-
Hornung [14]. Their algorithm calculates the colour of the
image at a lot less points taking sparsity of the curves into
account and thus a lot less rays are being traced. This makes
their method as fast as the implementation in this paper, How-
ever their main bottleneck is still ray-tracing as it takes up
about 50% of the time required. Thus using Optix can drasti-
cally improve the runtime of their algorithm.
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A Results Tables

Name Frames | frametime | setup
Arch
64 291 118,8 | 3111
128 86 227 | 1131
512 58 878,2 | 1099
128-blur 59 223 | 1117
128-AA 74 274,8 | 2560
Roses spirales
64 42 799,5 | 1077
128 27 1002 | 2214
512 27 6387 | 1105
128-blur 23 1005 | 1116
128-AA 28 1688 | 1340
lady_bug
64 892 2829 | 1151
128 226 560,4 | 1148
512 53 2223 | 1080
128-blur 97 5584 | 1094
128-AA 99 630 | 1333
behind The curtain
64 104 268,2 | 1077
128 63 525,5 | 2214
512 22 2085 | 1105
128-blur 90 527,6 | 1100
128-AA 91 630,86 | 1305
dolphin
64 393 447 | 1219
128 104 882 | 1187
512 43 3524 | 1111
128-blur 41 8904 | 1175
128AA 67 946,2 | 1327

Table 1: Render time on the Quadro P1000 system. The name of
each image, the amount of rays and possible extra features is spec-
ified in the first column. The amount of frames rendered and the
average time to render each frame for all XML variants is shown in
the second and last column respectively. In the last column the setup
time or time before the first frame is rendered is shown.

Name Frames | frametime | setup
Arch
64 381 21,71 | 2540
128 325 40,97 | 2590
512 184 156,9 | 2567
128-blur 337 44,85 | 2997
128-AA 312 57,23 | 3056
Roses spirales
64 259 113,3 | 2591
128 637 223,77 | 2508
512 29 878,2 | 2532
128-blur 128 2243 | 2516
128-AA 94 241,8 | 2127
lady_bug
64 274 42,18 | 2599
128 132 81,74 | 2529
512 69 315,6 | 2511
128-blur 105 82,35 | 2547
128-AA 165 98,7 | 2552
behind The curtain
64 126 41,52 | 2364
128 155 79,34 | 2341
512 218 307,8 | 2521
128-blur 150 81,06 | 2525
128-AA 125 99,87 | 2576
dolphin
64 177 66,32 | 2403
128 260 128,77 | 2311
512 73 510,7 | 2319
128-blur 112 130,3 | 2566
128AA 163 146,2 | 2557

Table 2: Render time on the RTX 2060 system. The name of each
image, the amount of rays and possible extra features is specified in
the first column. The amount of frames rendered and the average
time to render each frame for all XML variants is shown in the sec-
ond and last column respectively. In the last column the setup time
or time before the first frame is rendered is shown.

Number of rays | Max difference | MSE Absolute Difference
64 66 1,4403 | 455321
32 63 1,6843 | 513393
16 54 2,0469 | 583851
8 57 2,6783 | 693640

Table 3: A comparison of several different quality of renderings of
the lady_bug.xml with a version rendered with 128 rays per pixel.
The first column contains the amount of rays used per pixel, the
second column displays the maximum difference between the image
and the 128 version, the third column shows the mean squared error
(MSE) and the last column the absolute error for the 512x512, 8 bit,
3 color channel image.
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