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Abstract 

The Pearson product-moment correlation coefficient (rp) and the Spearman rank correlation coefficient (rs) are 

widely used in psychological research. We compare rp and rs on 3 criteria: variability, bias with respect to the 

population value, and robustness to an outlier. Using simulations across low (N = 5) to high (N = 1,000) sample sizes 

we show that, for normally distributed variables, rp and rs have similar expected values but rs is more variable, 

especially when the correlation is strong. However, when the variables have high kurtosis, rp is more variable than rs. 

Next, we conducted a sampling study of a psychometric dataset featuring symmetrically distributed data with light 

tails, and of 2 Likert-type survey datasets, 1 with light-tailed and the other with heavy-tailed distributions. Consistent 

with the simulations, rp had lower variability than rs in the psychometric dataset. In the survey datasets with heavy- 

tailed variables in particular, rs had lower variability than rp, and often corresponded more accurately to the 

population Pearson correlation coefficient (Rp) than rp did. The simulations and the sampling studies showed that 

variability in terms of standard deviations can be reduced by about 20% by choosing rs instead of rp. In comparison, 

increasing the sample size by a factor of 2 results in a 41% reduction of the standard deviations of rs and rp. In 

conclusion, rp is suitable for light-tailed distributions, whereas rs is preferable when variables feature heavy-tailed 

distributions or when outliers are present, as is often the case in psychological research. 
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Comparing the Pearson and Spearman Correlation Coefficients 
Across Distributions and Sample Sizes: A Tutorial Using 

Simulations and Empirical Data 
 

The Pearson product-moment correlation coefficient (rp; Pearson, 1896) and the Spearman rank correlation 
coefficient (rs; Spearman, 1904) were developed over a century ago (for a review, see Lovie, 1995). Both 
coefficients are widely used in psychological research. According to a search of ScienceDirect, of the 18,419 articles 
published in psychology in 2014, 24.7% reported an effect size measure of some kind. As shown in Table 1, rp and rs 
are particularly popular in sciences involving the analysis of human behavior (social sciences, psychology, 
neuroscience, medicine). Table 1 further shows that rp is reported about twice as frequently as rs. Moreover, Table 1 
almost certainly underestimates the prevalence of rp, because rp is the default option in many statistical packages; so 
when the type of correlation coefficient goes unreported, it is likely to be rp.  
 
Table 1  
Percentage of the papers with abstract published in 2014 that contain a correlation or effect size term, for eight 
selected subject areas. 

1. 
Psychology

2. Neuro-
science

3. Medicine 
& Dentistry

4. Social 
Sciences

5. 
Economics, 
Econome-

trics, & 
Finance

6. 
Computer 
Sciences

7. 
Engineering

8. 
Chemistry

All eight 
subject 
areas

Any of the keywords below 24.70% 19.18% 18.62% 12.56% 6.61% 4.15% 1.94% 1.17% 10.42%

ABS({.}) AND ALL("odds ratio" OR "risk ratio" OR "relative risk RR") 6.80% 5.60% 10.37% 4.21% 1.76% 0.46% 0.35% 0.08% 4.88%

ABS({.}) AND ALL("Pearson correlation" OR "Pearson product-moment " OR "Pearson r" 
OR "Pearson’s correlation" OR "Pearson’s product-moment " OR "Pearson’s r")

9.37% 7.97% 4.21% 4.58% 2.85% 1.98% 0.97% 0.80% 3.01%

ABS({.}) AND ALL("Spearman rank" OR "Spearman correlation" OR "Spearman rho" OR 
"Spearman’s rank" OR "Spearman’s correlation" OR "Spearman’s rho" OR "rank-order 
correlation")

3.36% 3.87% 3.11% 1.85% 1.70% 0.79% 0.39% 0.20% 1.81%

ABS({.}) AND ALL("intraclass correlation" OR "intra-class correlation" OR "intraclass r" 
OR "intra-class r")

3.24% 1.66% 1.63% 1.32% 0.20% 0.19% 0.11% 0.03% 0.85%

ABS({.}) AND ALL("Cohen's d" OR "Cohen d" OR "Cohen's effect size") 4.47% 2.18% 0.73% 1.17% 0.08% 0.22% 0.06% 0.00% 0.52%

ABS({.}) AND ALL("Cohen's kappa" OR "kappa statistic" OR "Cohen's k" OR "k-
statistic")

1.12% 0.54% 0.73% 0.81% 0.27% 0.54% 0.11% 0.02% 0.44%

ABS({.}) AND ALL("Kendall tau" OR "Kendall correlation "OR "Kendall’s tau" OR 
"Kendall’s correlation")

0.23% 0.20% 0.10% 0.17% 0.45% 0.25% 0.09% 0.01% 0.11%

ABS({.}) AND ALL("Hedges's g" OR "Hedges g" OR "Hedges effect size") 0.58% 0.23% 0.10% 0.06% 0.01% 0.03% 0.01% 0.00% 0.06%

ABS({.}) AND ALL("Cramer's V" OR "Cramer's phi") 0.34% 0.13% 0.07% 0.21% 0.08% 0.03% 0.01% 0.00% 0.06%

ABS({.}) AND ALL("point biserial" OR "point bi-serial") 0.34% 0.14% 0.08% 0.12% 0.02% 0.03% 0.01% 0.00% 0.05%

ABS({.}) AND ALL("concordance correlation") 0.01% 0.02% 0.07% 0.03% 0.01% 0.02% 0.01% 0.01% 0.04%

ABS({.}) AND ALL("polychoric correlation" OR "tetrachoric correlation"  OR "tetrachoric 
coefficient")

0.33% 0.11% 0.05% 0.12% 0.10% 0.01% 0.00% 0.00% 0.04%

ABS({.}) AND ALL("RV coefficient" OR "congruence coefficient" OR "distance 
correlation" OR "Brownian correlation" OR "Brownian covariance")

0.09% 0.13% 0.02% 0.03% 0.04% 0.06% 0.03% 0.04% 0.04%

ABS({.}) AND ALL("Fleiss kappa") 0.11% 0.04% 0.06% 0.07% 0.01% 0.06% 0.01% 0.00% 0.03%

ABS({.}) AND ALL("correlation phi" OR "phi correlation" OR "mean square contingency 
coefficient" OR "Matthews correlation")

0.08% 0.04% 0.03% 0.03% 0.02% 0.14% 0.03% 0.04% 0.03%

ABS({.}) AND ALL("correlation ratio" OR "eta correlation") 0.02% 0.03% 0.02% 0.04% 0.02% 0.04% 0.01% 0.00% 0.02%

Total number of publications in 2014 18419 33758 131076 32137 12261 26120 64616 53604 297669*  
Note. This table is based on a full-text search of ScienceDirect conducted on October 9, 2015. The horizontal bars within individual cells linearly 
correspond to the listed percentages. Searching for “correlation coefficient” while excluding all search terms in Table 1 yielded 9,443 papers; in 
other words, the type of correlation coefficient often goes unreported. 
*“All eight subject areas” is not the sum of the eight columns, but the number of articles retrieved when searching in all eight subject areas 
simultaneously. This number is smaller than the sum of the publications in the eight individual subject areas because some articles are classified in 
two or more subject areas. 



3 

 

 
Many more researchers use rp rather than rs, perhaps because rp appears to match more closely the linear relationship 
they aim to estimate. Other reasons why most researchers choose rp could be because rp allows for inferences such as 
calculation of the variance accounted for, or because it is consistent with the methods of available follow-up 
analyses, such as linear regression (or ANOVA) by least squares or factor analysis by maximum likelihood. Yet 
another reason for the widespread use of rp may be that statistical practices are very much determined by what SPSS, 
R, SAS, MATLAB, and other software manufacturers implement as their default option (Steiger, 2001; 2004). For 
example, in MATLAB, the command corr(x,y) yields the Pearson correlation coefficient between the vectors x and y. 
It requires a longer command (corr(x,y, ‘type’, ‘spearman’) to calculate the Spearman correlation. Thus, the software 
may implicitly give the impression that rp is the preferred option and it also requires more knowledge of the software 
commands to calculate rs. 

 
Some Well-Known and Less Well-Known Properties of rp and rs 

The sample Pearson correlation coefficient rp is defined according to Equation 1. Here, we have first performed a 
mean centering procedure on the x and y vectors. 
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The sample Spearman correlation coefficient rs is calculated in the same manner as rp, except that rs is calculated 
after both x and y have been rank transformed to values between 1 and N (Equation 2). When calculating rs, a so-
called fractional ranking is used, which means that the mean rank is assigned in case of ties. For example, suppose 
that the two smallest numbers of x are equal, then they will be both ranked as 1.5 (i.e., [1+2]/2). Again, a mean 
centering is first performed (by subtracting N/2+1/2 from each of the two ranked vectors). 
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Assuming there are no ties, Equation 2 can be rewritten in various formats (Equation 3). 
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(3) 
 
It can be inferred from Equations 1–3 that rp will be high when the individual points lie close to a straight line, 
whereas rs will be high when both vectors have a similar ordinal relationship. As mathematically shown by Yuan and 
Bentler (2000), the distribution of rp depends only on the fourth-order moments (or kurtoses) of the two variables, 
not on their skewness (see also Yuan, Bentler, & Zhang, 2005). After all, rp is a function of second-order sample 
moments, and so the variance of rp is determined by fourth-order moments. The non-parametric measure rs, on the 
other hand, is relatively robust to heavy-tailed distributions and outliers; all data are transformed to values ranging 
from 1 to N, so the influence function is bounded (Croux & Dehon, 2010). Several of the above characteristics of rp 
and rs are covered in many introductory statistics books and graduate-level psychology programs. Furthermore, a 
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large number of research papers have previously described the differences between rp and rs, and have confirmed that 
rs has attractive robustness properties (e.g., Bishara & Hittner, 2014; Fowler, 1987; Hotelling & Pabst, 1936).  
 
Nonetheless, several characteristics of rp and rs may not be well known to researchers, even for the standard scenario 
of normally distributed variables. The derivation of the probability density function of rp for bivariate normal 
variables can be traced back to contributions by Fisher (1915), Sawkins (1944), Hotelling (1951; 1953), and Kenney 
and Keeping (1951), and was reported more recently by Shieh (2010): 
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Here, Rp is the population Pearson correlation coefficient, β is the beta function, and 2 1F  is Gauss’ hypergeometric 

function. The hypergeometric function is available in software packages (e.g., hypergeom([1/2 1/2],N-
1/2,(Rp*rp+1)/2) in MATLAB), but can also be readily calculated according to a power series, with Γ being the 
gamma function:  
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     (5) 

 
Shieh (2010) stated: “It is not well understood that the underlying probability distribution function of r is 
complicated in form, under the classical assumption that the two variables follow a bivariate normal distribution. The 
complexity incurs continuous investigation” (p. 906). Figure 1 illustrates the probability density function of rp for 
two sample sizes (N = 5 and 50) and three population correlation coefficients (Rp = .2, .4, and .8). It can be seen that 
the mode of the distribution is greater than Rp and that the distribution is negatively skewed, with the skew being 
stronger for higher Rp and for smaller N. 
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Figure 1. Probability density function of the Pearson correlation coefficient (rp) for three levels of the population 
Pearson correlation coefficient (Rp = .2, Rp = .4, Rp = .8) and two levels of sample size (N = 5, N = 50). The area 
under each curve equals 1. 

 
Equation 4 allows one to calculate exact p-values and confidence intervals. However, the popular and considerably 
more straightforward Fisher transformation can also be used in statistical inference (e.g., Fisher, 1921; Fouladi & 
Steiger, 2008; Hjelm & Norris, 1962; Hotelling, 1953; Winterbottom, 1979). For rs, exact probability density 
functions are available for small sample sizes, and over the years various approximations (in terms of bias, mean 
squared error, and relative asymptotic efficiency) of the distribution and its moments have been published (Best & 
Roberts, 1975; Bonett & Wright, 2000; Croux & Dehon, 2010; David & Mallows, 1961; David, Kendall, & Stuart, 
1951; Fieller, Hartley, & Pearson, 1957; Xu, Hou, Hung, & Zou, 2013). Furthermore, several variance-stabilizing 
transformations have been developed for rs. These transformations, which can be applied in analogous fashion to the 
Fisher z-transformation for rp, may be practical for statistical inference purposes (Bonett & Wright, 2000; Fieller et 
al., 1957; but see Borkowf, 2002 demonstrating limitations of this concept). 
 
Typically in psychology, investigators undertake research on samples (i.e., a subset of the population) with the aim 
of estimating the true relationships in the population. It is useful to point out that the expected values of both rp and rs 
are biased estimates of their respective population coefficients Rp and Rs (Ghosh, 1966; Zimmerman, Zumbo, & 
Williams, 2003). Zimmerman et al. (2003) stated: “It is not widely recognized among researchers that this bias can 
be as much as .03 or .04 under some realistic conditions” (p. 134). Equation 6 provides the expected value of rp 
(Ghosh, 1966), while Equation 7 provides the expected value of rs (Moran, 1948; Xu et al., 2013; Zimmerman et al., 
2003). Both these equations indicate that the population value is underestimated, especially for small N. This 
underestimation is relatively small if Rp is small or moderate. For example, if Rp = .2 (corresponding Rs = .191, 
calculated using Equation 9), then E(rp) and E(rs) are .177 and .160, respectively at N = 5, and .195 and .182 at N = 
20. The underestimation is more severe for Rp between .3 and .9. If Rp = .8 (Rs = .786), then E(rp) and E(rs) are .754 
and .688 at N = 5, and .792 and .758 at N = 20. 
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Equation 7 can be rewritten into a form that clarifies how the expected value of rs relates to the population value of 
the Spearman coefficient and another well-known rank coefficient, Kendall’s tau (Durbin & Stuart, 1951; Hoeffding, 
1948). 
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The Pearson, Spearman, and Kendall correlation coefficients at the population level (i.e., Rp, Rs, Rt) for normally 
distributed variables can be described by a closed-form expression (e.g., Croux & Dehon, 2010; Pearson, 1907). In 
other words, for an infinite sample size, the Pearson, Spearman, and Kendall correlation coefficients differ when the 
two variables are normally distributed (Equations 9, 10, & 11). 
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The maximum difference between Rp and Rs is .0181 and occurs at Rp = .594 
24 36


 
  
 

and Rs = .576  

26 9
arcsin


 

        
, see also Guérin, De Oliveira, and Weber (2013). Figure S1 of the supplementary  

 
material illustrates the relationships between Rp, Rs, and Rt (see also Kruskal, 1958). 

 
Aim of the Present Study 

As shown above, the definitions and essential characteristics of rp and rs are probably well known. However, rp and 
rs exhibit a variety of interesting features in the case of bivariate normality. Of course, in real-life scenarios, 
psychologists are likely to encounter non-normal data as well. 
 
In light of the widespread use of correlations in psychology and the predominance of rp over rs, the goal of this 
contribution is to review the properties of the rp versus rs, and to clarify the situations in which rp or rs should be 
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preferred. We examine the properties of both coefficients with the aim of providing researchers with empirically 
derived guidance about which coefficient to use.  
 
We use simulations and analyses of existing datasets to compare rp with rs for conditions that are representative of 
those found in psychological research. We start out by comparing rp versus rs for normally distributed variables, 
which as we indicated above, may have various unfamiliar properties. We aim to depict the characteristics of rp and 
rs in an intuitive, graphical manner. Next, we evaluate rp versus rs when the two variables have a non-normal 
distribution, a situation that is common in psychological research. We also graphically illustrate the strength of rs 
when one or more outliers are present. Finally, we provide a demonstration of the differences of rp versus rs for 
typical psychological data. The main contribution of these sampling studies is to explain the relative performance of 
rp versus rs as a function of item/scale characteristics and sample size. In all cases, we compare the two coefficients 
in terms of variability, bias with respect to the population value, and robustness to an outlier. 

 
 

rp Versus rs With a Normally Distributed Population 
 
Normally Distributed Variables in Psychological Research 
The central limit theorem states that the sum of a large number of independent random variables conforms to a 
normal distribution. Psychologists often aggregate data into constructs, and furthermore, various types of human 
attributes (such as personality and intelligence) may be seen as the effect of a large number of unobserved random 
processes. Hence, the central limit theorem can explain why certain psychological variables are approximately 
normally distributed (see Lyon, 2014, for a discussion on the factors that contribute to normality). Intelligence and 
physical ability are prime examples of human attributes that follow an approximately normal distribution (Burt, 
1957; Plomin & Deary, 2015). The normal distribution occurs empirically regardless of whether the attribute is 
measured on an ordinal scale (e.g., a paper and pencil intelligence test) or on a ratio scale (e.g., intelligence defined 
chronometrically; Jensen, 2006). Let us therefore first evaluate how rp and rs behave when the two variables are 
normally distributed.  

 
Selected Population Correlation Coefficients  
To describe the behavior of rp and rs for bivariate normal variables and finite sample sizes, we undertook a 
simulation study. To ensure that the ranges of coefficient sizes were representative of those potentially encountered 
in psychological research, we consulted the literature. In published research, correlations among psychometric test 
scores, and correlations between psychological assessment scores and performance criteria, generally range between 
0 and .5 (cf. Jensen, 2006; Meyer et al., 2001; Tett, Jackson, & Rothstein, 1991). One review of 322 meta-analyses 
showed that the absolute correlation coefficients in social psychology average at .21, with 95% of the coefficients 
between 0 and .5, and the remaining 5% between .5 and .8 (Richard, Bond, & Stokes-Zoota, 2003). Only variables 
that are conceptually similar to one another, such as intelligence test scores and scholastic performance, will 
correlate as highly as .8 (Deary, Strand, Smith, & Fernandes, 2007; Frey & Detterman, 2004). In short, population 
correlations between 0 and .8 reflect the range found in virtually all psychological/behavioral research. Therefore, 
simulation studies were performed with population Pearson correlation coefficients that were zero (Rp = 0), moderate 
(Rp = .2), strong (Rp = .4), and very strong (Rp = .8). The corresponding population Spearman correlation coefficients 
(Rs) were calculated according to Equation 9. 

 
Selected Sample Sizes  
Sample sizes used by psychologists are known to vary widely. One analysis of hundreds of articles (Marszalek, 
Barber, Kohlhart, & Holmes, 2011) showed that in the Journal of Experimental Psychology in the year 2006, the 
median total sample size was 18 (Q1 = 10, Q3 = 32), whereas in the Journal of Applied Psychology, the mean sample 
size was 148 (Q1 = 45, Q3 = 269). Fraley and Vazire (2014) showed that the median sample size in five high-impact 
psychological journals in the years 2006–2010 ranged between 73 (Q1 = 41, Q3 = 143) for Psychological Science and 
178 (Q1 = 100, Q3 = 344) for the Journal of Personality (we calculated the interquartile ranges from the 
supplementary material of Fraley & Vazire, 2014). Here we note that personality psychology is more likely than 
experimental psychology to use correlation coefficients (e.g., Cronbach, 1957; Tracy, Robins, Sherman, 2009), and 
so a sample size of about 200 is regarded as typical for correlational analyses. This sample size is in line with a 
recent simulation study that investigated at which sample size correlations stabilize, and which concluded that “there 
are few occasions in which it may be justifiable to go below n = 150 and for typical research scenarios reasonable 
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trade-offs between accuracy and confidence start to be achieved when n approaches 250” (Schönbrodt & Perugini, 
2013, p. 611). 
 
To cover the range of sample sizes found in psychological research, we used 25 sample sizes (Ns) logarithmically 
spaced between 5 and 1,000. To generate stable estimates of rp and rs, for each sample size, 100,000 samples of 
variable 1 (hereafter called x) and variable 2 (hereafter called y) were drawn, and rp and rs were calculated for each of 
the 100,000 samples. 

 
Results of the Simulations 
The simulation results for Rp = .2 are shown in Figure 2. The mean rs is slightly lower than the mean rp, for all 
sample sizes. For small sample sizes, the mean rp and mean rs are both slight underestimates of their respective 
population values Rp and Rs (see also Equations 6 and 7). Figure 2 also shows how the absolute variability decreases 
with sample size for both rp and rs. However, rs has a slightly higher variability, with the standard deviation of rs 
being about 0.7% greater than the standard deviation of rp, for each tested sample size. Similarly, the root mean 
squared error (RMSE) of rs with respect to Rs is 0.7% greater than the RMSE of rp with respect to Rp. 
 
Note that rs can take on only a distinct number of values, rapidly increasing with increasing N (Sloane, 2003; 
sequence A126972). For example, for N = 5, rs can be only 1 of 21 different values (−1, −.9, −.8, ..., .8, .9, 1; see 
Figure S2 for an illustration of the distribution of rp and rs at N = 5). The supplementary material (Figures S3, S4, 
and S5) includes the distributions of rp and rs for Rp = 0, Rp = .4, and Rp = .8. For Rp = 0, rp and rs behave almost 
identically. For Rp = .4, the standard deviation of rs is 3 to 4% higher than the standard deviation of rp, and for Rp = 
.8, the standard deviation of rs is as much as 18% higher than the standard deviation of rp. The smaller variability of 
rp compared to rs is consistent with previous research (Bonett & Wright, 2000; Croux & Dehon, 2010; Fieller et al., 
1957) and suggests that when both population variables are known to have approximately normal distributions, rp 
should be used instead of rs, especially when the correlation is thought to be strong.  

 
 

rp Versus rs With a Non-Normally Distributed Population 
 
Non-Normally Distributed Variables in Psychological Research  
It frequently happens that psychological measurements feature a non-normal distribution. For example, it is known 
that psychiatric and other types of disorders follow a skewed distribution among individuals (Delucchi & Bostrom, 
2004; Keats & Lord, 1962; McGrath, Saha, Welham, El Saadi, MacCauley, & Chant, 2004). Yet in other cases, 
measurement scales may be limited by artefacts such as ceiling and floor effects (Van den Oord, Pickles, & 
Waldman, 2003). One analysis of 693 distributions of cognitive measures and other psychological variables with 
sample sizes ranging from 10 to 30 showed that 39.9% of the distributions were considered as slightly non-normal, 
34.5% as moderately non-normal, 10.4% as highly non-normal, and a further 9.6% as extremely non-normal (Blanca, 
Arnau, Lόpez-Montiel, Bono, & Bendayan, 2013). Another analysis of 440 large-sample distributions of 
achievement and psychometric data classified 31% of the distributions as extremely asymmetric, and 49% as having 
at least one extremely heavy tail (Micceri, 1989).  
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Figure 2. Simulation results for normally distributed variables having a population Pearson correlation 
coefficient of .2 (Rp = .2). The population Spearman correlation coefficient (Rs) was calculated according to 
Equation 9. The figure shows the mean, 5th percentile (P5), and 95th percentile (P95) of the Pearson correlation 
coefficient (rp) and the Spearman correlation coefficient (rs) as a function of sample size (N). 
 
Selected Kurtosis of the Marginal Distributions 
In light of these kinds of observations, we explored the behavior of rp and rs for two correlated variables having 
leptokurtic distributions, meaning that kurtosis was greater than would be expected from a normal distribution (see 
Figure 3 for illustration, and DeCarlo, 1997, for an explanation of kurtosis). The variables x and y were 
approximately exponentially distributed (hence, skewness = 2 & kurtosis = 9) and strongly correlated (Rp = .4). We 
used a fifth-order polynomial transformation method for generating the correlated non-normally distributed variables 
(Headrick, 2002). Because Rp and Rs could not be determined exactly, we defined these parameters by calculating the 
correlation coefficients for a very large sample size (N = 107). 

 
Results of the Simulations 
Figure 4 shows the distributions of rp and rs for the same range of sample sizes as those used to create Figure 2. It 
can be seen that the expected values of rp and rs are about the same and unbiased with respect to their respective 
population values, but rp is more variable than rs. Specifically, the standard deviation of rp is 13.5%, 26.0%, and 
27.3% greater than the standard deviation of rs, for N = 18, N = 213, and N = 1,000, respectively. Similarly, the 
RMSE of rp with respect to Rp is 13.0%, 25.9%, and 27.3% greater than the RMSE of rs with respect to Rs, for N = 
18, N = 213, and N = 1,000, respectively. 

 
Additional Simulation Results With Other Kurtosis and Rp 
If the two variables have greater kurtosis than exponentially distributed variables, then rp is likely to be even more 
variable (see Figure S6 of the supplementary material). Also note that the size of the correlation coefficient is an 
important determinant of the behavior of rp and rs. For example, when choosing Rp = .2 instead of Rp = .4, the 
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standard deviation of rp is only 8.0%, 14.5%, and 15.5% greater than the standard deviation of rs, for N = 18, N = 
213, and N = 1,000, respectively. However, for Rp = .8, the standard deviation of rp is 13.5%, 36.0%, and 38.9% 
greater than the standard deviation of rs, for N = 18, N = 213, and N = 1,000, respectively (see Figures S10–S13).  

 
Figure 3. Depiction (using N = 1,000) of two correlated variables having an exponential distribution with 
population Pearson correlation coefficient (Rp) of .4. Rp was obtained by calculating rp for a sample of N = 107 
pairs. 

 
In summary, our simulations showed that when the two variables have leptokurtic distributions, rp is likely to be 
more variable than rs. These observations are consistent with theory showing that the standard deviation of rp is 
proportional to the kurtosis of the variables (Yuan & Bentler, 2000). Moreover, our results are in line with several 
simulation studies which demonstrated lower variability of rs compared to rp for (severely) non-normal distributions 
(Bishara & Hittner, 2014; Chok, 2010; Kowalski, 1972). Obviously, our set of simulations provide only a snapshot 
of the constellation of the bivariate relationships that may occur in psychological research. Furthermore, note that 
when the two variables are mesokurtic or platykurtic (i.e., kurtosis ≤ 3), rp will tend to be more stable than rs.  

 
rp Versus rs When There Are Outliers 

It has been well documented that the Pearson correlation coefficient is sensitive to outliers (e.g., Chok, 2010; Croux 
& Dehon, 2010). Formal treatments of so-called “influence functions” or “expected resistance” of rp and rs can be 
found in Blair and Lawson (1982), Zayed and Quade (1997), and Croux and Dehon (2010). Herein, we graphically 
and numerically illustrate how rp and rs respond to adding a spurious data point in conditions that are likely to occur 
in psychological research.  
 
Although sample sizes in psychological research vary widely, we used N = 200 because this is in line with typical 
sample sizes used in applied and personality psychology (Fraley & Vazire, 2014; Marszalek et al., 2011). A sample 
(N = 200) was drawn from two standard normal distributions having a moderate interrelationship in the population 
(Rp = .2). Next, one data point was added so that N = 201. The value of the spurious data point was systematically 
varied from −5 to 5 with a resolution of 0.05 for the two variables, x and y. Accordingly, 40,401 (i.e., 201 x 201) rps 
and 40,401 rss were determined.  



11 

 

 
Figure 4. Simulation results for two correlated variables having an exponential distribution (see Figure 3 for a 
large-sample illustration of the distribution). The figure shows the mean, 5th percentile (P5), and 95th percentile 
(P95) of the Pearson correlation coefficient (rp) and the Spearman correlation coefficient (rs) as a function of 
sample size (N). The population coefficients Rp and Rs were obtained by calculating rp and rs, respectively, for a 
sample of N = 107.  
 
Figure 5 illustrates the influence of the added (201st) data point on the obtained rp and rs, respectively. It can be seen 
that rp is sensitive to this data point. Specifically, rp equaled .231 without the data point, and has values between .100 
(at x = −5, y = 5) and .312 (at x = 5, y = 5) by including it, with 19% of the rps differing by more than .05 from the 
original rp of .231. In contrast, rs is robust: rs equals .222 without the extra data point, and adding it results in rs 
values between .204 and .233. rs is robust to outliers because the data in x and y are transformed to integers between 
1 and N. This means it is impossible for very low or very high values in x or y to have a large effect on rs.  
 
Of course, in most real data there may be more than one outlier. Suppose, for example, that one outlier is located at x 
= 5 and y = 5, then adding a second outlier at all possible positions between −5 and 5 results in an rp ranging between 
.186 and .377 (N = 202), with 77% of the rps differing by more than .05 from the original rp of .231. Now suppose 
that the first outlier is at x = 5 and y = −5, then adding the second outlier results in an rp between −.003 and .191. 
Again, rs is robust, and always between .186 and .245 when two outliers were present. So, having more than one 
outlier can create even more problems for rp, as the second outlier does not alleviate the distortive effect of the first 
outlier.  

 
Five Demonstrations Using Empirical Data 

The simulations above are indicative of the differences between rp and rs for normally and non-normally distributed 
variables. However, the simulations do not necessarily reflect situations encountered by empiricists. To test rp versus 
rs on data likely to be found in psychological studies, we undertook a sampling study using empirical data.  
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Figure 5. Simulation results demonstrating the influence of a spurious data point at location (x, y) on the Pearson 
correlation coefficient (left figure) and on the Spearman correlation coefficient (right figure). The circles 
represent a sample (N = 200) drawn from two standard normal distributions with population Pearson correlation 
coefficient (Rp) = .2. The sample Pearson correlation coefficient (rp) = .231. The sample Spearman correlation 
coefficient (rs) = .222. The grayscale background represents the absolute deviation from rp (left figure) and the 
absolute deviation from rs (right figure), after adding one data point so that N = 201. Isolines are drawn at every 
0.005 increment. The vertical bars next to each figure signify the numeric values corresponding to a particular 
level of grayness. The value of the data point was systematically varied from −5 and +5 with a resolution of 0.05 
for the two variables, x and y.  

 
Selected Datasets  
Three large datasets were used: a psychometric test battery (Armed Services Vocational Aptitude Battery; ASVAB), 
and two survey-based datasets: 5-point Likert-scale data from the Big Five Inventory (BFI) and 6-point-scale data 
from the Driver Behaviour Questionnaire (DBQ). The ASVAB, BFI, and DBQ datasets were all large (N = 11,878, N 
= 1,895,753, and N = 9,077, respectively), and were therefore used as populations from which we could draw 
samples to calculate sample correlation coefficients. The ASVAB consists of 10 very strongly intercorrelated test 
results, each symmetrically distributed with light tails (Table 2). Recall that the simulation results above showed that 
rp is less variable than rs for normally distributed variables that are strongly correlated, so we expected the ASVAB 
sampling results to reflect these findings. The primary difference between the BFI and DBQ is that the BFI items 
have low kurtosis because the means of all 44 items are close to the middle option on the five-point scale (Table 2). 
In contrast, the DBQ items are leptokurtic, with the majority of participants reporting that they “never” make a 
certain error or violation in traffic (see also Mattsson, 2012). In light of the above simulation results, we expected rs 
to outperform rp for the DBQ dataset, and to a lesser extent for the BFI dataset. 
 
Sampling Study 1: ASVAB. The ASVAB dataset is a psychometric dataset consisting of 11,878 subjects who, in 
the framework of the National Longitudinal Survey of Youth 1979, had taken a test battery (Bureau of Labor 
Statistics, 2002; Frey & Detterman, 2004; Maier & Sims, 1986; Morgan, 1983). The population included 5,951 men 
and 5,927 women. The mean age of the subjects was 18.8 years (SD = 2.3). The ASVAB consists of 10 tests (general 
science [25 items], arithmetic reasoning [30 items], word knowledge [35 items], paragraph comprehension [15 
items], numerical operations [50 items], coding speed [84 items], auto and shop information [25 items], mathematics 
knowledge [25 items], mechanical comprehension [25 items], and electronics information [10 items]). The Pearson 
correlation matrix among the 10 variables contained 45 (=10*(10−1)/2) unique elements. The maximum Rp was .825, 
occurring between “general science” and “word knowledge” (corresponding Rs = .834). The distribution of the 
variables was symmetric and platykurtic, that is, having somewhat lighter tails than would be expected from a 
normal distribution (Table 2). 
 
Sampling Study 2: BFI items. The BFI is a 44-item personality questionnaire answered on a Likert scale from 1 = 
disagree strongly to 5 = agree strongly. The BFI data (N = 3,093,144) were obtained via noncommercial, 
advertisement-free Internet websites between 1999 and 2013 as part of the Gosling-Potter Internet Personality 
Project (e.g., Bleidorn et al., 2013; Gosling, Vazire, Srivastava, & John, 2004; Obschonka, Schmitt-Rodermund, 
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Silbereisen, Gosling, & Potter, 2013; Rentfrow et al., 2013; Srivastava, John, Gosling, & Potter, 2003). Only 
participants who filled in the English version of the inventory, who answered all items without giving identical 
answers to all 44 items, and who were between 18 to 98 years were included, leaving a dataset of 1,895,753 
respondents. The mean age of the respondents was 28.2 (median = 25.0, SD = 10.4). The population included 
921,670 women and 651,914 men, and the sex was unknown for a further 322,169 respondents. The average mean 
response across the 44 items was 3.45 (SD = 0.47), with a minimum mean of 2.48 for the item “is depressed blue” 
and a maximum mean of 4.33 for the item “is a reliable worker.” The BFI correlation matrix contained 946 (= 
44*(44−1)/2) unique off-diagonal elements. The maximum Rp was .597, occurring between “is talkative” and “is 
outgoing, sociable” (corresponding Rs = .595). The variables were symmetric with low kurtosis (Table 2). 
 
Sampling Study 3: BFI scales. Psychological researchers often conduct their analysis at the scale level instead of 
the item level, so we also carried out the sampling study based on the five BFI scales. The following five sum scores 
were calculated: agreeableness (9 items), conscientiousness (9 items), extraversion (8 items), openness (10 items), 
and neuroticism (8 items). The 10 off-diagonal Rps ranged between −.32 (for agreeableness vs. neuroticism; 
corresponding Rs = −.30) and .28 (for agreeableness vs. conscientiousness; corresponding Rs = .28). Table 2 shows 
that the five scales were fairly symmetric with low kurtosis. 
 
Table 2 
Means, standard deviations, minima, and maxima of absolute population correlation coefficients, and of population 
skewness and population kurtosis of the items/scales.  
Measure 

 

ASVAB, 45 
correlations 

BFI items, 946 
correlations 

BFI scales, 10 
correlations 

DBQ items, 
561 
correlations 

DBQ scales, 10 
correlations 

|Rp| Mean .6273 .1206 .1778 .1713 .4197 
 SD .1205 .1146 .0985 .0790 .1363 
 Min .3317 .0002 .0283 .0003 .1511 
 Max .8247 .5973 .3158 .5106 .5805 
       
|Rs| Mean .6281 .1223 .1690 .1622 .4157 
 SD .1207 .1148 .0935 .0748 .1155 
 Min .3362 .0001 .0309 .0024 .1742 
 Max .8336 .6029 .3035 .4747 .5362 
       
 

 
ASVAB, 10 
tests 

BFI, 44 items BFI, 5 scales DBQ, 34 
items 

DBQ, 5 scales 

Skewness Mean −0.02 −0.37 −0.21 2.19 1.65 
 SD 0.40 0.42 0.10 1.44 0.72 
 Min −0.59 −1.33 −0.30 0.50 0.83 
 Max 0.50 0.42 −0.06 6.42 2.46 
       
Kurtosis Mean 2.32 2.54 2.89 11.96 8.89 
 SD 0.18 0.67 0.15 13.90 5.17 
 Min 2.03 1.80 2.74 3.16 4.03 
 Max 2.73 4.73 3.08 60.89 16.61 
Note. Rp = population Pearson correlation coefficient, Rs = population Spearman correlation coefficient, ASVAB = Armed Services Vocational 
Aptitude Battery, BFI = Big Five Inventory, DBQ = Driver Behaviour Questionnaire. Skewness was defined as the third central moment divided 
by the cube of the standard deviation. Kurtosis was defined as the fourth central moment divided by the fourth power of the standard deviation. 
Kurtosis of a normal distribution = 3. Rp and Rs were defined as the correlation coefficients for the total sample (i.e., N = 11,878 for the ASVAB, 
N = 1,895,753 for the BFI, and N = 9,077 for the DBQ). The population skewness and population kurtosis have a strong correlation (ASVAB: rs 
between skewness and kurtosis = −.50 [N = 10 items]), BFI items: rs = −.83 [N = 44 items], BFI scales: rs = −.70 [N = 5 scales], DBQ items: rs = 
.99 [N = 34 items], DBQ scales: rs = 1.00 [N = 5 scales]). 
 
Sampling Study 4: DBQ items. The DBQ dataset consisted of 9,077 respondents who, as part of a cohort study of 
learner and new drivers, had responded to the query “when driving, how often do you do each of the following?” 
with respect to 34 items (Transport Research Laboratory, 2008; Wells, Tong, Sexton, Grayson, & Jones, 2008). The 
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responses ranged from 1 = never to 6 = nearly all the time. The mean age of the respondents was 22.6 years (median 
= 18.7; SD = 8.1). The population consisted of 5,754 women and 3,323 men. The average mean response across the 
34 items was 1.46 (SD = 0.26), with a minimum mean of 1.05 and a maximum mean of 2.06. The correlation matrix 
contained 561 (= 34*(34−1)/2) unique off-diagonal elements. The maximum Rp was .511 (between “Disregard the 
speed limit on a motorway” and “Disregard the speed limit on a residential road”) with a corresponding Rs of .475. 
Items were highly skewed and leptokurtic (Table 2). 
 
Sampling Study 5: DBQ scales. The DBQ analysis was repeated at the scale level. The following five sum scales 
were calculated (as in Wells et al., 2008): violations (6 items), errors (8 items), aggressive violations (6 items), 
inexperience errors (7 items), and slips (7 items). The 10 off-diagonal Rps ranged between .151 (between aggressive 
violations and inexperience errors; corresponding Rs = .174) and .581 (between violations and aggressive violations; 
corresponding Rs = .536). As with the DBQ items, the DBQ scales had high kurtosis, but the scale data were more 
strongly intercorrelated than the item data (Table 2). 
 
Sampling Methods 
For each of the five datasets (i.e., ASVAB, BFI items, BFI scales, DBQ items, and DBQ scales), 50,000 random 
sample of N = 200 were drawn with replacement. For each drawn sample, the Pearson and Spearman correlation 
matrices were calculated. Next, for each element of the correlation matrices, we calculated the absolute of the mean 
and the standard deviation across the 50,000 samples. To assess how accurately the sample correlation coefficients 
corresponded to the population values, we calculated the mean absolute difference of each rp and rs with respect to 
the population values (Rp and Rs). Rp and Rs were defined as the correlation coefficients for the full population (N = 
11,878 for the ASVAB, N = 1,895,753 for the BFI, and N = 9,077 for the DBQ). 
 
Results of the Five Sampling Studies 
A numerical comparison between the performance of rp and rs is provided in Table 3. It can be seen that for the 
ASVAB data, rp gives the same average values as rs, with about 6% lower variability (i.e., lower SD). For the BFI 
and DBQ data, the opposite results were found: the mean absolute difference between rs and Rs is smaller than the 
mean absolute difference between rp and Rp. In other words, Spearman correlation coefficients are closer to their 
population value than are Pearson correlation coefficients. Furthermore, for the DBQ data in particular, the mean 
absolute difference between rs and Rp is smaller than the mean absolute difference between rp and Rp. That is, rs even 
outperformed rp in recovering rp’s own population value.  
 
Table 3 further shows that the superior performance of rs is evident for the DBQ dataset (featuring kurtosis > 3 for all 
items) and is less evident for the BFI dataset (featuring average kurtosis < 3). rp on average has 2% higher variability 
(i.e., higher SD) than rs for the BFI items, 4% higher variability for the BFI scales, 18% higher variability for the 
DBQ items, and 24% higher variability for the DBQ scales.  
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Table 3 
Means and standard deviations of sample correlation coefficients, and mean absolute difference between sample 
correlation coefficients and population correlation coefficients (N = 200). 
 ASVAB BFI items BFI scales DBQ items DBQ scales 

Measure 

Mean across  
45  
correlations 

Mean across 
946  
correlations 

Mean across 
10 
 correlations 

Mean across 
561 
correlations 

Mean across 
10  
correlations 

|Mean rp| .6269 .1205 .1772 .1694 .4178 
|Mean rs| .6258 .1221 .1683 .1616 .4144 
|Mean rp|−|Rp| −0.0005 −0.0001 −0.0005 −0.0019 −0.0019 
|Mean rs|−|Rs| −0.0022 −0.0002 −0.0008 −0.0006 −0.0013 
SD rp .0411 .0732 .0741 .0872 .0750 
SD rs .0436 .0715 .0714 .0742 .0605 
Mean |rp−Rp| .0327 .0585 .0592 .0697 .0596 
Mean |rp−Rs| .0352 .0587 .0602 .0701 .0628 
Mean |rs−Rp| .0371 .0574 .0579 .0606 .0522 
Mean |rs−Rs| .0347 .0571 .0570 .0593 .0483 
Note. Rp = population Pearson correlation coefficient; Rs = population Spearman correlation coefficient; ASVAB = Armed Services Vocational 
Aptitude Battery; BFI = Big Five Inventory; DBQ = Driver Behaviour Questionnaire. Skewness was defined as the third central moment divided 
by the cube of the standard deviation. Kurtosis was defined as the fourth central moment divided by the fourth power of the standard deviation. 
Kurtosis of a normal distribution = 3. Rp and Rs were defined as the correlation coefficients for the total sample (i.e., N = 11,878 for the ASVAB, 
N = 1,895,753 for the BFI, & N = 9,077 for the DBQ).  
 
The mean absolute difference of rp (and to a lesser extent of rs) with respect to the population value is particularly 
large for pairs of DBQ items that have distributions with high kurtosis (see Figure S7 of the supplementary material). 
The distributions of rp and rs for the two DBQ items having the highest kurtosis (60.9 and 57.2, respectively) are 
illustrated in Figure 6. It can be seen that for this selected pair of variables, rp was considerably more variable than rs, 
with the standard deviation at N = 1,000 being .071 for rp and .049 for rs. Figure 7 illustrates the variability of rp and 
rs as a function of Rp for each of the five sampling studies. It can be seen that rs is considerably less variable than rp, 
especially for the BFI scales, DBQ items, and DBQ scales.  
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Figure 6. Sampling results for the two variables of the Driver Behaviour Questionnaire (DBQ) having the highest 
kurtosis of the 34 items (population kurtosis = 60.9 and 57.2, respectively; population skewness = 6.42 and 6.05, 
respectively). The figure shows the mean, 5th percentile (P5), and 95th percentile (P95) of the Pearson 
correlation coefficient (rp) and the Spearman correlation coefficient (rs) as a function of sample size (N). The 
population coefficients Rp and Rs were defined as the correlation coefficients for the total sample (N = 9,077). 
The results were based on 50,000 samples. Note that 8,272 of 9,077 respondents answered “never” to both items, 
and hence the correlation coefficient could often not be calculated when the sample size was small. The sampling 
was repeated when the correlation coefficient could not be calculated. 

 
Additional Simulations With N = 25 and N = 1,000  
The results in Table 3 and Figure 7 were based on a sample size of 200. To test whether the results depend on sample 
size, the simulations were repeated for N = 25 and N = 1,000 (Tables S1 & S2 in the supplementary material). For N 
= 25, the variabilities of rp and rs are obviously higher than for N = 200, but the pattern of differences between rp and 
rs is the same. For N = 1,000, the variabilities of rp and rs are considerably lower than for N = 200, but again the 
pattern of differences is the same, with rs having a lower standard deviation than rp for the BFI and DBQ datasets. 
For N = 1,000 it is less likely that the mean absolute difference between rs and Rp is smaller than the mean absolute 
difference between rp and Rp, because at such high sample size, the correlation coefficients rp and rs are close to their 
own respective population values. 
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Figure 7. Standard deviation (SD) of the Pearson correlation coefficient (rp) and the standard deviation of the 
Spearman correlation coefficient (rs) (N = 200) as a function of the population Pearson correlation coefficient 
(Rp). The population coefficient Rp was defined as the correlation coefficients for the total sample (N = 11,878 for 
the ASVAB, N = 1,895,753 for the BFI, and N = 9,077 for the DBQ). Top left: Armed Services Vocational 
Aptitude Battery (ASVAB; 45 correlation coefficients). Top right: Big Five Inventory (BFI) items (946 
correlation coefficients). Middle left: BFI scales (10 correlation coefficients). Middle right: Driver Behaviour 
Questionnaire (DBQ) items (561 correlation coefficients). Bottom left: DBQ scales (10 correlation coefficients). 
 

 
 

Discussion 
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The Pearson product-moment correlation coefficient (rp) and the Spearman rank correlation coefficient (rs) are 
widely used in psychology, with rp being the most popular. The two coefficients have different goals: rp is a measure 
of the degree of linearity between two vectors of data, whereas rs measures their degree of monotonicity.  
 
The characteristics of rp and rs have been widely studied for over 100 years, and in the case of bivariate normality, 
the distribution of rp is known exactly (Equation 4). The influence functions of the Pearson and Spearman 
correlations have been described exactly as well (e.g., Croux & Dehon, 2010). However, several of these features of 
rp and rs may not be known among substantive researchers, and hence our simulations of normally distributed 
variables are presented as a helpful tutorial. In other words, we illustrated in an intuitive graphical manner the 
variability, bias, and robustness properties of both coefficients, with a focus on the effect sizes and sample sizes that 
are likely to occur in psychological research. The relative performance of rp and rs in real psychological datasets for 
different item characteristics, sample sizes, and aggregation methods (i.e., item and scale levels) is intended to 
facilitate informed decision making regarding when to select rp and when to select rs. 
 
Our computer simulations showed that for normally distributed variables rs behaves approximately the same as rp, 
with rs being slightly lower and more variable than rp. The difference between the standard deviation of rp and rs was 
minor (< 1%) when the association was weak or moderate in the population (Rp = 0 and Rp = .2). However, rs had a 
substantially higher standard deviation than rp when the correlation was strong (i.e., a 3 to 4% higher standard 
deviation when Rp = .4) or very strong (i.e., 18% higher standard deviation when Rp = .8). 
 
In psychological research, near-normally distributed data, such as the ASVAB test scores, do occur. We showed that 
for the strongly intercorrelated and approximately normally distributed variables of the ASVAB, rp slightly 
outperformed rs in terms of variability. The expected values of rp and rs were almost the same, but the standard 
deviation of rp was about 6% lower than the standard deviation of rs. The similarity of rs and rp for normally 
distributed psychometric variables is consistent with empirical sampling research in the physical sciences, where 
normally distributed variables tend to be common (McDonald & Green, 1960). However, in psychological research, 
heavy-tailed distributions are common (Blanca et al., 2013; Micceri, 1989). Using a simulation of two correlated 
variables with heavy-tailed distributions, we showed that rs was between 13 and 27% less variable than was rp.  
 
The comparative efficacy of rp versus rs was further explored in a sampling study of BFI and DBQ survey data at 
both the item and scale levels. For these survey datasets, rs turned out to be between 2% and 24% less variable than 
rp. In fact, for the DBQ dataset, we found that the sample Spearman correlation coefficient (rs) was a more accurate 
approximation of the population Pearson correlation coefficient (Rp) than was the sample Pearson correlation 
coefficient (rp). This inaccuracy of rp with respect to Rp was particularly large when the two variables had heavy-
tailed distributions (see Figure S7 of supplementary material).  
 
Our simulations further made clear that rs is robust, while rp is sensitive to an outlier, even for a sample size as high 
as 200. Outliers may be caused by a recording error, an error in the experimental procedure, or an accurate 
representation of a rare case (Cohen et al., 2013). It is likely that real-life data are contaminated with “faulty data” 
(Spearman, 1910) or an “accidental error” (Spearman, 1904, p. 81), and therefore the robustness of the Spearman 
estimator (rs) is a virtue for empirical researchers. Using Anscombe’s (1960) insurance policy analogy, rs yields a 
slight loss of efficiency when bivariate normality assumptions are met, but this seems a small premium given the 
impressive protection it provides against outliers (Figure 5). 
 
Our study also illustrated the dramatic effect of sample size on the variability of the correlation coefficients. A 
sample size of 25 yields average errors that are often even larger than the absolute magnitude of the correlation 
coefficient (e.g., Figure 2; Table S1), which essentially means that the observed correlations are almost meaningless. 
The standard deviations of rs and rp decrease approximately according to the square root of sample size, which 
means that the standard deviations reduce by approximately 41% when sample size is doubled (cf. Figure S6). In 
other words, although substantial efficiency gains can be achieved by choosing rs instead of rp, the effect of sample 
size is much more dramatic, and therefore we urge researchers to always monitor the confidence interval of their 
obtained effects. 
 
So, should a practitioner use rp or rs? Of course, the two correlation coefficients have different goals: rp represents 
the strength of the linear relationship between two vectors of data, whereas rs describes their degree of monotonicity. 
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Because rp and rs have different goals, they strictly ought not to be seen as competing approaches. That is, if one’s 
aim is solely to assess whether the individual sample data points are linearly related (regardless of any nonlinearity 
that exists), and one’s sample size is very large, then rp should be used. However, it is likely that practitioners are 
interested in obtaining a high quality correlational measure in terms of low variability, low bias, and high robustness. 
In such case, rs clearly has attractive properties compared to rp. If one expects that the two variables have low 
kurtosis (i.e., normal or platykurtic distributions) and outliers are unlikely to be present, rp is to be recommended. In 
other circumstances, rs seems to be the preferred method because of its superior performance in terms of variability 
and robustness. The ‘embarrassing’ failure of rp to accurately estimate its own population value (Rp) in the DBQ 
dataset, both at the item and at the scale levels, strongly argues in favor of using rs for heavy-tailed survey data. Note 
that the behavior of rp and rs depends not just on kurtosis, but also on sample size, the population correlation 
coefficient, and the type of nonlinear relationship between the two variables (see supplementary material). These 
factors may explain some of the idiosyncratic behaviors of the datasets (see Table 3). Ambiguity arises when having 
to analyze a large set of variables, whereby half of the data are platykurtic and the other half leptokurtic. In this case, 
again using Anscombe’s (1960) insurance parallel, we recommend using rs instead of rp, because the premium-
protection trade-off is not symmetric. After all, there is a relatively small increase of variability for the variables that 
are indeed platykurtic, while rs offers marked robustness to heavy tails and outliers. 
 
There are, of course, a large number of other types of data transformations, such as a logarithmic, multiplicative 
inverse, or power transformation, that can be successfully applied prior to calculating the Pearson correlation 
coefficient (Bishara & Hittner, 2012). However, whereas the rank transformation as used in the Spearman correlation 
coefficient is broadly applicable, other types of data transformation are not. For example, a logarithmic or square 
root transformation is impossible on negative numbers (unless applying an arbitrary offset), and the multiplicative 
inverse transformation dilutes any meaningful association when some of the numbers are close to zero. In other 
words, it is quite possible to mess up one’s data by choosing the ‘wrong’ type of transformation, so that, for example, 
a normal distribution becomes highly non-normal. As a result, selecting an appropriate nonlinear data transformation 
requires either prior knowledge of the population distribution or the ethically dubious practice of ‘peeking’ at the 
data (Sagarin, Ambler, & Lee, 2014), and it is therefore difficult to come up with systematic meaningful guidelines. 
In contrast, the Spearman correlation appears to be applicable across a broad array of normal and non-normal 
distributions. 
 
Alternative measures of association, such as the percentage bend correlation (Wilcox, 1994), the Winsorized 
correlation (Wilcox, 1993), and the Kendall tau rank correlation coefficient (rt), may be even more robust and 
efficient than rs (see Croux & Dehon, 2010). rt is attractive because it can be interpreted intuitively as the proportion 
of pairs of observations that are in the same order on both variables minus the proportion that are opposite (Cliff, 
1996; Noether, 1981). Other attractive properties of rt are that it is an unbiased estimator of its population value and 
that the variance is given in closed form (Esscher, 1924; Fligner & Rust, 1983; Hollander, Wolfe, & Chicken, 2013; 
Kendall, 1948; Kendall, Kendall, & Babington Smith, 1939; Xu, Hou, Hung, & Zou, 2013). However, Xu et al. 
(2013) argued that rs has a lower computational load than rt, and that the variance of rs can be approximated with 
high numerical accuracy, leading the authors to conclude that the mathematical advantage of rt over rs is not of great 
importance. Another issue is that rt converges to markedly different population values than rp and rs. For typical 
bivariate normal distributions, rp and rs are about 50% greater than rt (Equations 9 and 10, Fredricks & Nelsen, 2007, 
see also Figure S16). Because present-day researchers are familiar with interpreting rp (see Table 1), it seems 
unlikely that rt could replace rp. rs on the other hand has the potential to be used in place of rp, because, as we 
showed, rs can surpass rp in estimating Rp. Corrected correlations, such as polychoric correlations, may also be useful 
alternatives to the Spearman correlation, especially for multivariate applications. Although multivariate methods 
using the polychoric correlation matrix have been implemented in almost all SEM packages, and are still under 
scrutiny (e.g., Rhemtulla, Brosseau-Liard, & Savalai, 2012; Yuan, Wu, & Bentler, 2011), the polychoric correlation 
has not yet caught on among substantive researchers (see Table 1). 
 
There are established ways of dealing with outliers, including outlier removal and robust approaches such as least 
absolute deviation, least trimmed squares, M-estimates, and bounded inference estimators (Cohen et al., 2013; 
Rousseeuw & Leroy, 2005), or procedures that take into account the structure of the data (Wilcox & Keselman, 
2012, see Pernet, Wilcox, & Rousselet, 2012 for an open source MATLAB toolbox). However, removing outliers is 
an inherently subjective procedure, and retaining too much flexibility could easily lead to inflated effect sizes and 
false positive inferences (Bakker & Wicherts, 2014; Cohen et al., 2013). It is noted that high kurtosis and outliers can 
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be indicative of problems in the measurement procedure. Subtle changes in questionnaire wording or anchoring can 
have large effects on the obtained results (Schwarz, 1999). We recommend that researchers remedy the root causes 
of outliers and high kurtosis before they continue their study.  
 
The choice of correlation coefficient is important not only for establishing bivariate relationships. Psychologists 
often intend to do follow-up analyses, such as to calculate a percentage of variance explained, to perform an 
ANOVA or MANOVA, to carry out a meta-analysis of correlation coefficients, or to establish a matrix of correlation 
coefficients to be submitted to a multivariate statistical method such as principal component analysis, factor analysis, 
or structural equation modeling. Cliff (1996) argued that perhaps most of the answers that psychologists want to get 
from their data are ordinal ones, and the data they work with have, at best, ordinal justification. He concluded that 
ordinal questions should be answered ordinally, instead of trying to answer them with Pearson correlations, mean 
differences, and parametric techniques. Using ordinal statistics has the added benefit that the inferences remain 
unchanged if the variables are monotonically transformed (Cliff, 1996). Unfortunately, purely ordinal multivariate 
statistical methods are rare and generally less developed than traditional parametric methods (for a possible 
exception using Kendall’s tau, see Cliff, 1996).  
 
Indeed, there has been considerable controversy about the use of a rank transformation, because corresponding 
statistical procedures in complex research designs are sometimes unavailable, inexact, and difficult to interpret (e.g., 
Fligner, 1981; Sawilowsky, 1990; Zimmerman, 2012). In some cases, the rank transformation may be even entirely 
inappropriate. For example, when testing the null hypothesis of no interactions in a multifactorial layout, the rank 
transformation can yield a test statistic that goes to infinity as the sample size increases (Thompson, 1991; see also 
Akritas, 1993; Sawilowsky, Blair, & Higgins, 1989). Hence, our present results, which favor rs over rp, seem to lead 
to a “cul de sac” for researchers in psychology. 
 
However, one could set aside such theoretical constraints, and adopt “a pragmatic sanction” (Stevens, 1951, p. 26). 
We argue that there is no good reason to stick to rp for the mere reason that it is consistent with follow-up analyses 
such as ANOVA and principal component analysis. It is easily forgotten that the assumption of normality is almost 
always violated in the population, and that calculating rp on ordinal data, such as those obtained from Likert items, is 
not strictly permissible anyway (Stevens, 1946). The debate of representational versus pragmatic measurement is a 
long and bitter one with deep philosophical roots (e.g., Hand, 2004; Michell, 2008; Velleman & Wilkinson, 1993). 
We support Lord’s (1953) pragmatic view that “the numbers don’t remember where they came from” (p. 21), and we 
argue that if rs outperforms rp in terms of bias, variability, and robustness, then there is no justifiable reason for not 
using rs. We illustrate this point by submitting an rs correlation matrix and an rp correlation matrix of the DBQ data 
to a principal component analysis (and see Babakus, Ferguson, & Jöreskog, 1987 and Mittag, 1993, for a similar 
approach). Results showed that the first six eigenvalues of the rp correlation matrix were between 26% and 68% 
more variable than the eigenvalues of the rs correlation matrix (see Table S3), which means that the factor structure 
is more stable if researchers simply base their multivariate analyses on the rs matrix. In some software packages, it is 
relatively easy to submit the rs matrix to a multivariate analysis (e.g., in MATLAB factoran(corr(X, ‘type’, 
‘spearman’),2, ‘xtype’, ‘covariance’) performs a maximum likelihood factor analysis on the X matrix, extracting two 
factors). However, in SPSS, for example, this analysis requires extensive scripting (Garcia-Granero, 2002). 
Therefore, we recommend the simpler approach of transforming all variables to ranks prior to running the 
multivariate analysis (e.g., factoran(tiedrank(X),2) in the MATLAB command window or Transform > Rank Cases 
from SPSS’s pull-down menu). Summarizing, a rank-transformation is an appropriate bridge between non-
parametric and parametric statistics (Conover & Iman, 1981). 
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Supplementary material 
 
Table S1 
Means and standard deviations of sample correlation coefficients, and mean absolute difference between sample 
correlation coefficients and population correlation coefficients (N = 25). 
 ASVAB BFI items BFI scales DBQ items DBQ scales 
 mean across  

45  
correlations 

mean across 
946  
correlations 

mean across 
10 
 correlations 

mean across 
561 
correlations 

mean across 
10  
correlations 

|Mean rp| .6230 .1194 .1739 .1810 .4102 
|Mean rs| .6104 .1202 .1633 .1749 .4063 
|Mean rp|−|Rp| −0.0043 −0.0012 −0.0039 0.0096 −0.0096 
|Mean rs|−|Rs| −0.0177 −0.0020 −0.0057 0.0126 −0.0094 
SD rp .1214 .2094 .2122 .2315 .1943 
SD rs .1309 .2057 .2053 .2125 .1756 
Mean |rp−Rp| .0954 .1689 .1709 .1895 .1561 
Mean |rp−Rs| .0962 .1690 .1713 .1898 .1572 
Mean |rs−Rp| .1038 .1655 .1652 .1739 .1414 
Mean |rs−Rs| .1031 .1653 .1649 .1742 .1401 
Note. rp = sample Pearson correlation coefficient, Rp = population Pearson correlation coefficient, rs = sample Spearman correlation coefficient, Rs 
= population Spearman correlation coefficient, ASVAB = Armed Services Vocational Aptitude Battery, BFI = Big Five Inventory, DBQ = Driver 
Behaviour Questionnaire. The absolute means, standard deviations, and mean absolute differences were calculated for each off-diagonal item of 
the correlation matrix (45, 946, 10, 561, & 10 correlations for the ASVAB, BFI items, BFI scales, DBQ items, & DBQ scales, respectively) and 
subsequently averaged. Rp and Rs were defined as the correlation coefficients for the total sample (N = 11,878 for the ASVAB, N = 1,895,753 for 
the BFI, & N = 9,077 for the DBQ). The results were based on 50,000 samples of N = 25. When the correlation matrix could not be calculated due 
to the small sample size, the sampling was repeated. 
 
 
Table S2 
Means and standard deviations of sample correlation coefficients, and mean absolute difference between sample 
correlation coefficients and population correlation coefficients (N = 1,000). 
 ASVAB BFI items BFI scales DBQ items DBQ scales 
 mean across  

45  
correlations 

mean across 
946  
correlations 

mean across 
10 
 correlations 

mean across 
561 
correlations 

mean across 
10  
correlations 

|Mean rp| .6273 .1206 .1778 .1709 .4193 
|Mean rs| .6277 .1222 .1690 .1621 .4154 
|Mean rp|−|Rp| 0.0000 0.0000 0.0000 −0.0004 −0.0005 
|Mean rs|−|Rs| −0.0004 0.0000 0.0000 −0.0001 −0.0003 
SD rp .0182 .0327 .0332 .0401 .0348 
SD rs .0193 .0319 .0319 .0331 .0269 
Mean |rp−Rp| .0145 .0261 .0265 .0320 .0277 
Mean |rp−Rs| .0195 .0267 .0284 .0338 .0342 
Mean |rs−Rp| .0201 .0261 .0274 .0291 .0294 
Mean |rs−Rs| .0154 .0255 .0255 .0264 .0214 
Note. rp = sample Pearson correlation coefficient, Rp = population Pearson correlation coefficient, rs = sample Spearman correlation coefficient, Rs 
= population Spearman correlation coefficient, ASVAB = Armed Services Vocational Aptitude Battery, BFI = Big Five Inventory, DBQ = Driver 
Behaviour Questionnaire. The absolute means, standard deviations, and mean absolute differences were calculated for each off-diagonal item of 
the correlation matrix (45, 946, 10, 561, & 10 correlations for the ASVAB, BFI items, BFI scales, DBQ items, & DBQ scales, respectively) and 
subsequently averaged. Rp and Rs were defined as the correlation coefficients for the total sample (N = 11,878 for the ASVAB, N = 1,895,753 for 
the BFI, & N = 9,077 for the DBQ). The results were based on 50,000 samples of N = 1,000. 
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Table S3 
Means and standard deviations of the first six eigenvalues of the 34 x 34 correlation matrices of the Driver 
Behaviour Questionnaire (DBQ). 

 
rp matrices 
Mean (SD) 

rs matrices 
Mean (SD) 

Rp matrix Rs matrix 

Eigenvalue 1 6.977 (0.896) 6.666 (0.577) 6.830 6.547 
Eigenvalue 2 2.910 (0.317) 2.704 (0.234) 2.673 2.517 
Eigenvalue 3 1.845 (0.155) 1.689 (0.092) 1.274 1.238 
Eigenvalue 4 1.606 (0.092) 1.530 (0.069) 1.256 1.205 
Eigenvalue 5 1.459 (0.073) 1.416 (0.058) 1.206 1.174 
Eigenvalue 6 1.346 (0.066) 1.321 (0.052) 1.049 1.061 
Note. rp = sample Pearson correlation coefficient, Rp = population Pearson correlation coefficient, rs = sample Spearman correlation coefficient, Rs 
= population Spearman correlation coefficient. The sample correlation coefficients were based on 50,000 samples of N = 200. Rp and Rs were 
defined as the correlation coefficients for the total sample (N = 9,077). 
 
 

 
Figure S1. The red line is the relationship between the population Spearman correlation coefficient (Rs) and the 
population Pearson correlation coefficient (Rp) in the case of bivariate normality. The green line is the 
relationship between the population Kendall’s tau (Rt) and Rp in the case of bivariate normality. The dashed black 
line represents Rp versus Rp and therefore runs diagonally.  
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Figure S2. Simulation results for normally distributed variables having a population Pearson correlation 
coefficient of .2 (Rp = .2). The figure shows the distribution of the Pearson correlation coefficient (rp) and the 
Spearman correlation coefficient (rs) for a sample size (N) of 5. The distribution was obtained from a 
simulation of 107 repetitions. The resolution of the distribution was 0.01. The results have been normalized so 
that the sum of the 201 counts equaled 1. The figure also depicts the exact distribution of rp calculated with 
Equation 4, which lies almost exactly on top of the results of the simulation study. 

 

 
Figure S3. Simulation results for normally distributed variables having a population Pearson/Spearman 
correlation coefficient of 0 (Rp = Rs = 0). The figure shows the mean, 5th percentile (P5), and 95th percentile 
(P95) of the Pearson correlation coefficient (rp) and the Spearman correlation coefficient (rs) as a function of 
sample size (N). 
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Figure S4. Simulation results for normally distributed variables having a population Pearson correlation 
coefficient of .4 (Rp = .4). The population Spearman correlation coefficient (Rs) was calculated according to 
Equation 9. The figure shows the mean, 5th percentile (P5), and 95th percentile (P95) of the Pearson 
correlation coefficient (rp) and the Spearman correlation coefficient (rs) as a function of sample size (N). 

 

 
Figure S5. Simulation results for normally distributed variables having a population Pearson correlation 
coefficient of .8 (Rp = .8). The population Spearman correlation coefficient (Rs) was calculated according to 
Equation 9. The figure shows the mean, 5th percentile (P5), and 95th percentile (P95) of the Pearson 
correlation coefficient (rp) and the Spearman correlation coefficient (rs) as a function of sample size (N).  
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Supplementary material explaining the behavior of rp and rs for non-normal distributions and non-linear 
associations  
 
We explored the behavior of rp and rs for two correlated variables (Rp = .4) having a χ2 distribution. Figure S6 shows 
the standard deviation of rp as a function of sample size. It can be seen that the lower the degrees of freedom of the χ2 
distributions (and hence the greater the skewness and kurtosis of the two variables), the more variable rp is. A χ2 
distribution with 32 degrees of freedom closely resembles a normal distribution, which is why the standard deviation 
of rp and rs are almost the same in that case. 

 
Figure S6. Standard deviation of rp and standard deviation of rs for three approximated χ2 distributions with 
different degrees of freedom (df) and population Pearson correlation coefficient of .4. The population 
skewness is 2.83, 2.00, and 0.50 for 1 df, 2f, and 32 df, respectively. The population kurtosis is 15, 9, and 3.38 
for 1 df, 2 df, and 32 df, respectively. A χ2 distribution with 2 df is an exponential distribution (see also 
Figures 3 & 4). The distributions were created using a method by Headrick (2002). 
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Figure S7. Mean absolute differences between sample Pearson correlation coefficient (rp) and population Pearson 
correlation coefficient (Rp) (black dots) and mean absolute differences between sample Spearman correlation 
coefficient (rs) and population Spearman correlation coefficient (Rs) (red dots) for pairs of variables (x, y) of the 
Driver Behaviour Questionnaire (DBQ) dataset as a function of the population kurtosis of x plus the population 
kurtosis of y (N = 9,077). The mean absolute differences for rp and rs are connected by a gray vertical line for 
each pair of variables. These results were based on 50,000 pairs of samples of N = 200. The x-axis is logarithmic. 
 
When the two variables have a joint normal distribution, then the expected value of y for a given x is a linearly 
related to x (e.g., Bertsekas & Tsitsiklis, 2014). Figure S8 below illustrates an Rp of .95 and an Rp of .50 for two 
variables having a mean of 0 and a standard deviation of 1. The cyan (corresponding to R = .95) and yellow 
(corresponding to Rp = .5) lines represent the means for a given x. The slopes of the lines are equal to the correlation 
coefficient. 
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Figure S8. Simulation of two normally distributed variables (x & y) having a population Pearson correlation 
coefficient Rp = .95 (visualized for N = 100,000) and Rp = .5 (visualized for N = 100,000). The lines represent the 
mean value of y for a given x for Rp = .95 and Rp = .5. The means are calculated for bins of x that are 0.1 wide. 
 
A nonlinear relationship between two variables can only occur when at least one of the two variables is non-normally 
distributed. However, even two highly skewed variables can be linearly related, if they have the same type of 
distribution. Figure S9 illustrates the relationship between two items of the Driver Behaviour Questionnaire (DBQ). 
Both variables are skewed (skewness of x = 2.85; skewness of y = 1.45; skewness of x = 14.5; skewness of y = 4.83), 
yet their relationship is approximately linear. In other words, when two variables are normally distributed, then their 
relationship is linear. But two highly skewed distributions are not necessarily non-linearly related.  
 

 
Figure S9. Relationship between two items of the Driver Behaviour Questionnaire (x represents the response to 
the item “Brake too quickly on a slippery road, or steer the wrong way into a skid”; y represents the response to 
the item “Forget where you left your car in a car park”). Noise with a random distribution and a standard 
deviation of 0.05 is added for each response to prevent overlap of dots (Rp = .128; Rs = .119; N = 9,077). The line 
represents the mean value of y for a given x. 
 
We also carried out simulations to explore the effect of the population correlation coefficient (Rp). Figures S10 and 
S12 illustrate the relationship that we generated, with x and y being exponentially distributed and Rp = .2 and Rp = .8, 
respectively. The simulation results are provided in Figures S11 and S13, respectively. 
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It is possible to devise nonlinear relationships where rp is considerably less variable than rs. Figures S14 and S15 
show results for a nonlinear relationship where an exponential distribution is combined with a beta distribution 
having a negative skewness (−0.85). So, variables having high skewness or high kurtosis can still yield a stable rp. 

 
Figure S10. Depiction (using N = 1,000) of two correlated variables having an exponential distribution with 
population Pearson correlation coefficient (Rp) of .2. Rp was obtained by calculating rp for a sample of N = 107 
pairs. 
 

 

 
Figure S11. Simulation results for two correlated variables having an exponential distribution (see Figure S10 
for a large-sample illustration of the distribution). The figure shows the mean, 5th percentile (P5), and 95th 
percentile (P95) of the Pearson correlation coefficient (rp) and the Spearman correlation coefficient (rs) as a 
function of sample size (N). The population coefficients Rp and Rs were obtained by calculating rp and rs, 
respectively, for a sample of N = 107 pairs. 
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Figure S12. Depiction (using N = 1,000) of two correlated variables having an exponential distribution with 
population Pearson correlation coefficient (Rp) of .8. Rp was obtained by calculating rp for a sample of N = 107 
pairs. 

 
Figure S13. Simulation results for two correlated variables having an exponential distribution (see Figure S12 
for a large-sample illustration of the distribution). The figure shows the mean, 5th percentile (P5), and 95th 
percentile (P95) of the Pearson correlation coefficient (rp) and the Spearman correlation coefficient (rs) as a 
function of sample size (N). The population coefficients Rp and Rs were obtained by calculating rp and rs, 
respectively, for a sample of N = 107 pairs. 
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Figure S14. Depiction (using N = 1,000) of a nonlinear relationship between two variables. The variable x has 
a population skewness of −0.85 and a population kurtosis of 3.22, whereas the variable y has a population 
skewness of 2 and a population kurtosis of 9 (Rp = .417). These population coefficients were calculated for a 
sample of N = 107 pairs. 

 
Figure S15. Simulation results for a nonlinear relationship between two variables (see Figure S14 for a large-
sample illustration of the distribution). The figure shows the mean, 5th percentile (P5), and 95th percentile 
(P95) of the Pearson correlation coefficient (rp) and the Spearman correlation coefficient (rs) as a function of 
sample size (N). The population coefficients Rp and Rs were obtained by calculating rp and rs, respectively, for 
a sample of N = 107 pairs. 
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Figure S16. Simulation results for normally distributed variables having a population Pearson correlation 
coefficient of .2 (Rp = .2). The figure shows the mean, 5th percentile (P5), and 95th percentile (P95) of the 
Pearson correlation coefficient (rp) and the Kendall tau rank correlation coefficient (rt) as a function of sample 
size (N). The population Kendall correlation coefficient (Rt) was calculated according to Equation 10. 
  
Reference 
Bertsekas, D. P., & Tsitsiklis, J. N. (2014). The bivariate normal distribution. Retrieved from 
http://athenasc.com/Bivariate-Normal.pdf 
 
MATLAB code for producing the figures in this article can be found here 
https://supp.apa.org/psycarticles/supplemental/met0000079/met0000079_supp.html 
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