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ARTICLE INFO ABSTRACT

Keywords: Aggregation is crucial to the effective use of flexibility, especially in the case of electric vehicles (EVs) because
Aggregation of their limited individual battery sizes and large aggregate impact. This research proposes a novel method to
Electric Vehicles quantify and represent the aggregate charging flexibility of EV fleets within a fixed flexibility request window.
Fl?Xibﬂity, These windows can be chosen based on relevant network operator needs, such as evening congestion periods.
r;gr;‘:;];tsis? The proposed representation is independent of the number of assets but scales only with the number of discrete

time steps in the chosen window. The representation involves 2T parameters, with T being the number of
consecutive time steps in the window. The feasibility of aggregate power signals can be checked using 2T
constraints and optimized using 2(2" — 1) constraints, both exactly capturing the flexibility region. Using a
request window eliminates uncertainty related to EV arrival and departure times outside the window. We
present the necessary theoretical framework for our proposed methods and outline steps for transitioning
between representations. Additionally, we compare the computational efficiency of the proposed method with

the common direct aggregation method, where individual EV constraints are concatenated.

1. Introduction

Integrating Electric Vehicles (EVs) into the power network presents
challenges and opportunities. Unregulated EV charging can strain the
grid, but smart control of these processes can benefit the power net-
works [1]. EV batteries offer flexibility as they are often available at
charging stations for longer periods than the time required to charge
them, creating a buffer of energy storage. This flexibility can be lever-
aged by adjusting charging power levels, delaying charging, or enabling
bi-directional power flow to the grid [2].

While leveraging the flexibility of a single EV is straightforward,
its potential to support the grid is limited due to its smaller battery
capacities. To effectively deploy EV flexibility at a large scale, it is
necessary to aggregate the flexibility of individual EVs, taking into
account their operational and technical constraints [3]. However, the
aggregate control of EV fleets is a complex process that necessitates
appropriate mathematical models, extensive calculations, advanced ICT
infrastructure, and upgraded charging facilities and poses challenges,
particularly in terms of scalability and accuracy [4]. This paper looks
at the challenges associated with efficient and scalable aggregation of
EV flexibility.

Aggregation of multiple flexible assets can be done using bottom-up
or top-down approaches. Bottom-up approaches start from the proper-
ties of individual assets, which are combined to estimate the flexibility
of the overall system. A common example is the direct aggregation of
EV flexibility, where constraints for individual EVs are concatenated to
determine the overall system flexibility. This approach is frequently em-
ployed in classical EV scheduling problems, where charging schedules
are optimized by one or more aggregators [5,6]. In many cases, direct
aggregation can include other operational constraints, for instance, the
power flow of the network [7].

One of the primary challenges of direct aggregation is the increase
of model size with the number of assets. This rapidly results in a
large computational burden; even when advanced solvers are used,
making real-time utilization difficult. Another challenge lies in the
lack of a concise representation for efficient information sharing and
decentralized optimization.

Applying set-based aggregation can effectively address many of the
challenges associated with direct aggregation. In this approach, in-
dividual asset constraints are initially transformed into quantifiable
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parameters or metrics that can capture their unique flexibility char-
acteristics. These parameters are then aggregated to determine the
overall system’s flexibility. Using aggregate parameters facilitates a
more efficient representation; for instance, representing the feasible
flexibility using convex polytopes can aid aggregators in participating
in flexibility markets. This has the potential to enhance scalability and
simplify decentralized decision-making. In the context of markets, it is
imperative that such flexibility representations align with the market
design [3].

The exact aggregation of individual feasible flexibility sets (i.e.,
achievable power consumption patterns) is known as the Minkowski
sum or simply M-sum. However, computing the M-sum is challenging
and, in general, an NP-hard problem, which may become intractable in
practice [8]. Researchers have attempted to address this issue through
various approximation methods, such as inner and outer approximation
techniques [3,9-11]. For instance, in [12], the authors introduced a
virtual battery model to aggregate flexibility from thermostatically
controlled loads in buildings for providing grid services by summing
up individual asset parameters to obtain the aggregate approximation,
an outer approximation of the feasible flexibility. At a larger scale,
power system units such as generators can be aggregated by adding
their individual flexibility metrics, such as energy, power and ramp
rates [13]. However, such direct summation of individual flexibility
constraints results in outer approximations that are overly optimistic re-
garding aggregate flexibility. To avoid this, inner approximations based
on zonotopes [10], inner volume maximization [3], and homothets [9]
have been proposed. Although inner approximations will not lead to
infeasible operating points, they may grossly underestimate flexibil-
ity, potentially causing economic losses. Striking a balance between
accuracy and computational complexity is crucial in such scenarios.

Top-down approaches such as [14] directly approximate EV fleet
flexibility. Data-driven approximation methods have emerged that di-
rectly identify parameters of aggregate EV load models and simulate
EV charging demand under diverse electricity market scenarios [15].
However, such data-driven approaches may suffer from computational
complexity, limited scalability, and high specificity to particular cases.

Exact set-based aggregation methods have been developed for the
special case of discharging (or charging) of heterogeneous stationary
batteries in [16-18]. The E-p and E-t representations proposed in [16,
17] respectively present a continuous-time exact representation of fea-
sible flexibility. However, unlike our proposed methodology, which
considers discrete timesteps, these methods do not include minimum
charge requirements of batteries. This makes them less suitable for
application to EV smart charging scenarios, where minimum charge re-
quirements are often enforced. Further, in their continuous-time form,
these representations are not easy to integrate into an optimization
framework. Concurrently with the work presented in this paper, the
authors of [19] have developed an exact characterization of flexibility
in a population of EVs that is independent of fleet size, for vehicles hav-
ing the same arrival and departure time. However, it strictly enforces
full charging by the end of the interval, which reduces the application
scope.

This paper proposes a novel method for aggregating the flexibility
of EVs across a set of discrete time intervals, which can be used for
efficient scheduling of EV fleet power consumption. The method, based
on set-based aggregation concepts, offers scalability and independence
from the size of the EV population. The proposed representations incor-
porate both maximum and minimum charging requirements, which is
essential for practical fleet management. Secondly, we show different
representations (including H- and V-representations) for the aggregate
EV flexibility and their applicability to various use cases. Further,
we show that the proposed method can achieve considerable com-
putational gain in terms of time and memory when scheduling EVs
compared with direct aggregation methods.
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2. Problem definition
2.1. Notation

Matrices are denoted in upper case (M), vectors by arrows (¥),
and their components by subscripts (M,;,v;) respectively. A subscript
referring to a specific EV may be added to a vector (7,). Element-wise
comparison between vectors is indicated by <, <, > and >. We use EV

as shorthand for battery EV (BEV).
2.2. Single EV flexibility

We consider the smart charging of an EV during a flexibility window
T consisting of T discrete time intervals indexed by r = 1,...,T. Each
interval is of duration At, and power consumption is assumed to be
constant within the interval. The charge requirements and flexibility
of each EV are determined by four parameters: the lower and upper
charging rate limits (p,p) and the minimum and maximum energy
requirements (e, e). These parameters are assumed to be internally
consistent, e.g., ¢ > Tp, and discharging is not permitted (p > 0).
Together, the parameters constrain the power 5 € R” with which the
EV can charge as follows:

P<p <P vieT @™
e<AtY p <@ vieT ®)
teT

It is straightforward to verify that this is a convex set.

Definition 1 (Feasible EV Flexibility). The feasible flexibility F£V =
FEV(p, b, e,e) is the set of permissible power levels

FEY (p,p.e,®) 1= {p € R"| p subject to (1), (2)} (3)

Definition 2 (Polytope Representation of Feasible EV Flexibility). The
feasible flexibility of an EV (F£”) can also be written in the form of
a polytope (PEY = PEV (p,p, e,)) whose H-representation (c.f. [20]) is
given as: -

I Mp
- -1 |- |-
PEV .=3peRT ()7 At p=< El;[é , @
—(D)T 4t —(De

where (1) is a column vector of length T with elements equal to 1.
2.3. Aggregate flexibility

Having defined the charging flexibility of a single EV, we consider
a population of EVs indexed by n € N = {1,..., N}. We assume all EVs
under consideration are connected during the window 7. In reality,
vehicles are connected to and disconnected from chargers at different
times during the day. This idealized model representation accurately
represents various relevant use cases:

» The period 7 is a relatively short flexibility request window.
Only EVs that are completely available during this window are
assumed to contribute to system flexibility. The minimum and
maximum charge levels of the EV may be adjusted to reflect the
amount of charge that must/can be stored during the window.
Large fleets of EVs, such as commercial delivery vehicles or
buses, spend the night hours in a depot connected to a charger.
The flexibility request window where (nearly) all vehicles are
connected can be substantial in this case.

For very large fleets, we may consider only the flexibility of
all vehicles that connect around time ¢, and disconnect around
time #,, and construct different flexibility representations for all
relevant combinations of ¢,,1,.
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Fig. 1. Different approaches for aggregating flexibility in EVs. Computational complexity is indicated by the number of parameters (P), variables (V) and constraints (C), where

N is the number of vehicles and T is the number of time steps.

To utilize the flexibility of all EVs in N effectively, it is essential to
understand the operational and technical constraints of the aggregate
system. The charging flexibility of each individual EV n is given by (3),
with vehicle-specific parameters 0 s Pn» €, €,). The remainder of this
paper is concerned with the question of how to represent the feasible
flexibility of a fleet of EVs, i.e. the set of feasible aggregate power
signals P, where

F’ = Z ﬁn' ®)
neN

We denote the aggregate flexibility by FZEV = { P}, with constraints
derived from the elementary EV flexibilities.

Two common approaches for determining F*£V exist. The first
is by direct aggregation [5-7], where (5) is directly embedded in the
problem, alongside (1)-(2) for each EV. This effectively constructs
FZEV as a NT-dimensional polytope projection to T dimensions. A
downside of this approach is that the complexity scales linearly with
N: this representation has 4N parameters, (N + 1)T variables, 2N (T +
1) inequalities, and equality (5). For large N, this becomes highly
inefficient and increases memory and processing speed requirements.

A second approach is the direct representation of F*£V as a poly-
tope in R”, a geometric object that is bounded by a finite number of
facets that are generated by intersecting hyperplanes. It can provide a
concise representation of feasible flexibility by capturing the feasible
points that lie within the boundaries. Each hyperplane corresponds to
a different constraint, allowing for a clear delineation of the feasible
region. Polytopes are valuable as they enable efficient optimization,
constraint modeling, and analysis of feasible solutions. The set-based
aggregation into a polytope is written as [21]:

PEEV _ 7L=113V ® FZEV EN T‘f", 6)

where the @ operator represents Minkowski summation.

Definition 3 (Minkowski Summation). The Minkowski sum of two
polytopes in RT defined by the two sets 7, € R” and 7, C R, is
defined as

FI®F,={p +p| P €F, b €F5} 7

It follows from (7) that Minkowski summation is associative and
commutative so that the aggregation can be done in any order. More-
over, as (3) is convex, so is (6). By definition, this procedure results
in a T-dimensional representation of F*EY (T variables), but the
process of determining the constraints is NP-hard in general, and direct
approaches to compute (6) without approximations have so far not been
successful [8,10].

Fig. 1 shows both approaches to aggregating flexibility alongside
the approaches that will be developed in the remainder of this paper,
with references to relevant theorems and definitions.

2.4. Motivating example

Let us consider two EVs that are connected for a duration of three-
time steps of 1 hr. The first EV has a maximum charge rate of 20 kW,
a minimum charge rate of 0 kW, and an energy requirement of 15—
25 kWh. If desired, it can satisfy its minimum charge requirements in
a single time step. The second has permissible charge rates between
5 kW and 10 kW and requires a total energy of 20-30 kWh; it needs a
minimum of two-time steps to satisfy its charge requirements.

A representation as a ‘simple virtual battery’ that is obtained by
the addition of the parameters of both EVs (as proposed in [13,14])
results in limits on the instantaneous power consumption of 5-30 kW
and energy consumption of 35-55 kWh. This representation is overly
optimistic: at the low end of power consumption, the aggregate rep-
resentation would suggest that p = (5,30,0) kW is a valid solution,
but this would force EV #2 to charge at an unattainable rate during
the second interval to meet its minimum charge requirement. At the
high end of power consumption, the solution p = (25,30,0)" kW fails
because it either violates the upper energy limit of EV #1 or the upper
power limit of EV #2.

3. UL-flexibility

The feasible flexibility of an individual EV as defined in (3) has three
generic properties:

(1) It is restricted to positive values (FFY c RT).

(2) It considers discrete time intervals within which the power
consumption is constant.

(3) Permutations of feasible charging patterns p are also feasible.
This also implies that the EV must be connected during all T
time steps.

In this section, we develop the concept of UL-flexibility, a discrete-time
permutable flexibility representation that is built on these properties.

3.1. Definition

In analogy with a view of vector # as function a function v(i) = v;,
we define the following.
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Definition 4 (Convex/concave Vectors). A vector & € RT is convex iff
v; > (v;+v,)/2 or concave iff v; < (v;+v;)/2, for any (i, j,k) € {1,..., T}
with i < j < k.

Definition 5 (Zero-extended Vectors). For any vector o € RT we define
the zero-extended vector 7 as (0, vy, ..., vp)T € RT*.,

Using these auxiliary concepts, we define the UL-flexibility repre-
sentation for an energy consuming flexible asset as:

Definition 6 (UL-flexibility). The UL-flexibility F (i, 7), with 17,7 e RT,
is given by the set of all signals 5 € R for which, for all k € {1,...,T}:

(1) The energy consumed in any k intervals does not exceed the
upper bound u;

(2) The energy consumed in any k intervals does not drop below the
lower bound /,.

The vectors i and [ must satisfy the following properties:

(i) The vector "% is concave, and element-wise non-negative and
increasing.
(ii) The vector 7 is convex, and element-wise non-negative and
increasing.
(iii) The vector % + R - °I, with the order-reversing matrix R €
RT+IXT+1 s element-wise increasing.

Lemma 1 (Ordered UL Representation). The UL-flexibility for vectors &, [
can be expressed as

B:= descending(p)
ALl p<ii ) (8)
AL Rp> T

F@h=4peRrR"

Here, j is the component-wise descending permutation of p, 1= € RT*T is
the lower triangular matrix where all lower triangular elements are 1 and
R € R™T s the order reversing matrix, where the 1 elements reside on the
antidiagonal and all other elements are zero.

Proof. Definition 6 states the constraints in an inherently permutation
invariant manner (“any k intervals”), so that we may restrict ourselves
to the decreasing signal j := descending(p). The largest energy con-
sumption in k intervals is then given by the partial sum over the k
first intervals: At Zj;l p;- Imposing the energy upper bound for all k
results in At1L5 < i. Similarly, the partial sum over the last k values
of the ordered vector j reflects the lowest energy consumption during
k intervals, resulting in the final constraint At1ZR5 > 1. []

The ordered representation presented in (8) can come in handy to
check the feasibility of a discrete power signal graphically. For an asset
with flexibility parameterized by i and 7, we can arrange the reference
power signal in ascending and descending order. For a signal to be
feasible (cf. Fig. 2), the integral of the ascending power signal should
always be greater or equal to the lower energy bounds (/), and the
integral of the descending power signal should be smaller or equal than
the upper energy bound (). Fig. 2 shows an examples for &/ given
by (24), corresponding to the parameters of EV 1 in Section 2.4. The
reference power signal [10,5,10] kW (left plot) is feasible as it satisfies
(8), whereas the reference signal [2,22,11] kW is infeasible as it violates
u; (power att = 2 exceeds the maximum power).

For the simpler case with I = 0, this graphical approach is equivalent
to the E-t diagram presented in [18] and (in different coordinates) the
E-p diagram [16], when applied to piecewise constant power signals.

Lemma 2 (Properties of UL-Flexibility). A valid UL-flexibility set F i, 1)
satisfies the following properties:

(i) The pair ﬁ,fsatisfy T<i

Electric Power Systems Research 235 (2024) 110811
(i) F@,1) is non-empty.

Proof. Property (i) follows directly from the fact that /; < u; (implied
by (iii) in Definition 6), combined with the knowledge that % is
concave and %7 is convex. To prove (ii), we can define the constant
power signal p¢ = (c, ..., c), with ¢ = uy /(T At). Concavity of % and
convexity of °J, together with (8) show that this is a feasible signal.
Therefore, the set F(i, 7) is non-empty. []

3.2. Polytope representation

Theorem 3 (Polytope, H-representation). The UL-flexibility set F(i,1) =
P(i, 1), where the polytope can be represented in H-space as:

. Bii
PG, )={56RT [_ﬂﬁf [_B’}]} ©

with the 27 — 1) x T matrices

C My O - (0
a=| @ [B=| @ @2 Ok (10)
Cr Or Op - Dr

Here, (0); and (1); represent column vectors of length (T) with values 0

and 1, respectively, and C; is the (T) x T matrix with rows that contain all
permutations of i 1s and T — i Os.

Proof. The representation follows directly from Definition 6, by enu-
merating all permutations of k time intervals and matching them with
the relevant bounds /, and u,. [J

Lemma 4 (Polytope, V-representation). The polytope P(i,]) is spanned by
the set of vertices

V:{Hﬁ(")eRT|H eperm(T),ke{O,...,T}}, an

where perm(T) is the set of T-dimensional permutation matrices and p® is
the unique decreasing vector defined by equality of the T constraints related
to {uy,...,u } and {I,....1p_; }.

p(k) — { (uy —u,_p)/ 4t
! (IT—t+1 - lT—r)/At>

where we define u, = |, = 0 for notational simplicity.

fort <k,

fort >k, a2

Proof. As a convex, closed polytope with a finite number of constraints,
P(i,1) is spanned by a finite set of vertices. Each vertex is a feasible
point, characterized by 7 non-identical binding constraints in (9) [22].
Because of permutation invariance, we restrict ourselves to analyzing
vertices that correspond to decreasing power signals. The remaining
vertices are generated by multiplication by IT € perm(T’). For a decreas-
ing power signal, the active constraints are indexed unambiguously by
the lower and upper energy limits: /,,...,/; (with /, applying to the
final k time steps) and u,,...,u; (with u;, applying to the first k time
steps). Identifying the vertices is equivalent to determining which of
the 2T constraints are simultaneously active.

Let us suppose that 4, and /;_,,; are simultaneously active for any
positive integer i < k. Let us denote the energy consumed during the
first k—i intervals by A, the energy consumed during the next i intervals
by B and the energy consumed during the final T —k intervals by C. We
then have A+ B = u, (active constraint), but also A < u;_; (definition of
uy_;). Therefore, B > u;—u;_;. We also have B+C =I;_;;and C > I_,,
so that B <Iy_;,;—I7_,. Combining these yields u; —u;_; < Iy_ii—Il7_;.
However, property (iii) from Definition 6 implies uy—u;_; > I7_ji—lr_x
(opposite inequality).

This yields two possibilities: (i) simultaneous activation of con-
straints u;, and I;_,,; is impossible; (ii) the parameters satisfy the
equality uw, —u,_; = Iy_;4; — I7_;. In the latter case, we also know
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time intervals (k)
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Fig. 2. Graphical check of feasibility using ordered UL-flexibility. The UL values plotted here correspond to EV 1 as explained in Section 2.4. & and I for the EV is represented by
—®— and ~ ® - respectively. The feasibility of the reference signals ( ) is checked by comparing the Y descending(p) (—®—) and Y ascending(p) (- ® -) by their respective
Proof. To prove (14), we first show that if p, € F(&,,l;) = F, and
Py € Fliiy. [,) = F,, then p, +5, € F (171 +iiy, 1 +72) = Fy,. This follows
1e6)

upper and lower limits.
that A = w_;, B = u, C = Iy_;, which results in /;_,,; being a

redundant constraint. We conclude that /;_, ,; is never (independently)

active when u;, is active.
For a given vertex, let k be the largest index corresponding to an
active constraint u,, with k = 0 if no upper energy limit constraints are

active. Because we can disregard constraints I;_,;, for i € {1,...,k},
the only way to attain 7 active constraints under this assumption is

by considering the set {u,, ... ,u;, 1, ..., lr_}. This implies there are at
most T + 1 vertices that correspond with decreasing power signals, one

Next, we show that these T + 1 power signals (3, indexed by

(k)

2 Prtr

directly from (9).
The reverse implication requires that
VPE P14 : 3P, EF LI, EF), Dy +Pr =D
This follows from Lemma 4: UL-flexibility sets are convex and spanned
by vertices V. Therefore, if (16) holds for j € V,,,, then it holds for
all p € F,, by taking positive linear combinations of the vertices.
Moreover, the set of vertices is defined by (12), which is linear in # and
T. Hence, there is a valid and unique solution to (16) for each vertex.
This completes the proof of (14). Finally, repeated application of (14)
O

proves (15) for arbitrary (finite) n.

for each k.
k) are positive, decreasing and uniquely defined by the constraints.
Constraints {u,,...,u,} define the values p;k) = (u, —u,_y)/At for t < k,
with u, = 0. Because i is concave and increasing, the sequence pf)k:)k
is positive and decreasing. Similarly, constraints {/,,...,l;_,} define 4. Representing EV flexibility
p§k> = (p_pq — l7_p)/At for t > k, with I, = 0. Because 07 is convex
. X (k) . s .
and increasing, the sequence p/, ;. is posltlve.a.nd decreasing. ) . In this section, we will use the previously developed UL-flexibility
For the whole power sequence to be positive and decreasing, it to represent and aggregate EV flexibility efficiently.
Inserting (12) yields the require-
Theorem 6 (UL Parameterization of EV). The feasible flexibility of an EV
satisfying (1) & (2) can be parameterized using Definition 6 and expressed
a7n

remains to be shown that P,

ment
kUt 2l = Iy

(or redundant) constraints {u,...,ur} and {I;_; 1, ....I7}.
This concludes the proof: for every k a vertex is uniquely defined

by (12), and it corresponds to a valid, decreasing power signal

3.3. Aggregation of UL-flexibility

Theorem 5 (Minkowski Summation of UL-flexibility). Minkowski summa-

tion of feasible sets for UL-flexibility is additive in parameters, i.e.,

FiyI) @® Fliyly) = F (171 iy )+ 72)

and more generally,
Fiiy, 1) @ - @ Fliiy,1,) = F (Z i ZE) :

u

Property (iii) of Definition 6 guarantees that I;_, — I;_;_| < up —
uy. The concavity of % then implies (13). Finally, Property (iii) of
Definition 6 also implies that the signal p® cannot violate the inactive

13

as:
PEV(E”?’E,E) —F (HEVJEV)
where
uE¥ = min [kﬁAt,E —(T- k)gAt] , keT 1s)
keT 19)

IEY = max [kpdt, e - (T — kopat],

. O

Proof. We note that the EV charging constraints (1)—(2) directly map
onto u; =p, I} = p, up = ¢ and I; = e. The other components of # and T

are defined as necessary consequences of the properties in Definition 6
and do not further constrain the feasible space.

Concavity of %4 with u; = p implies i, < kpAt, and convexity of

7 with I, = p implies I, > kpAt. Property (iii) results in additional

(20)

keT
@1

a4
coupling constraints, yielding

w =min [up — Ip_y, kpAt],
keT

(15) I, =max [IT P kpAt] ,
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EVi @ EV;

5 5

Fig. 3. Graphical representation of 3-d polytope representing the feasible flexibility of EV 1, EV 2 and EV 1 @& EV 2 respectively as described in Section 2.4.

Using (21) to replace I7_; in (20) and uy =¢, I} = e:
u; = min [kﬁAt,E — max [e_? —uy, (T — k)pAtH
= min [k;At,z —etune—(T - k)EAt]

= min [KpAt.& - (T - kypat] 22)

where the final step follows from the fact that e — e + u; > u,, proving
(18). The derivation of (19) follows similarly. It is readily verified that
these parameter vectors satisfy all three properties in Definition 6. []

After representing EVs using the UL parameters, they can be ag-
gregated using Theorem 5 to get their aggregate flexibility as follows.

Corollary 7 (Aggregate UL Representation of EVs). The feasible set of
attainable aggregated flexibility for a fleet of N EVs can be computed by
Minkowski summation of individual UL-feasible sets for each EV, which is
additive in parameters, i.e.

F@E 1) @ - @F @l 1)

-r(panze)

neN n

(23)

A single EV’s flexibility region represented by F£V (p, b, e, ) contains
all permissible power signals by which it can charge to its desired level
without violating the given parameters as given in Definition 1. Theo-
rem 6 gives the exact equivalence with a UL-flexibility representation
for a single EV. Therefore, the exact feasible flexibility of a fleet of
EVs is given by the Minkowski summation of their UL representations,
which is a trivial operation, as shown in Corollary 7.

We note that the number of constraints in the polytope represen-
tations can be drastically reduced in special cases. For example, if full
charging is required (e = e) or if vehicles have no minimum charge and
no minimum charging power level (e = p = 0, so that T=0).

5. Numerical examples

We consider the same set of EVs as detailed in Section 2.4. The UL
parameters for both EVs are

i, =[20,25,25] 1, =10,5,15], 24
i, = [10,20,30] I, = [5,10,20]. (25)

Using Corollary 7, the aggregated UL parameters for the two EVs are

@ =Y i, =1[30,45,55], (26)
n=1,2
=Y I,=1515,35]. 27)

n=1,2

The H-space representation of the polytope representing the aggregate
flexibility of the two EVs is given by

. . R A R B Z7101‘
PG 1) = {p € R3‘ [_A] p= [_B 7,0,] , }

(28)

where
[ 1 0 0] [1 0 0]
01 0 1 0 0
0 0 1 1 0 0
A=[1 1 0|, B=lo 1 0
1 0 1 01 0
0 1 1 01 0
1 1 1 0 0 1

The polytopes representing the feasible flexibility region of EV,, EV,
and EV, @ EV, are plotted in Fig. 3 for three-time steps.

6. Computational efficiency

To assess the effect of scaling on computational times and peak
memory usage for the proposed UL-flexibility representation, a simple
linear problem is considered. The objective of the LP is to find the
maximum aggregate capacity that an EV fleet could deliver for the
considered time window. This is achieved by solving

max 7 (29)
subject to, for the direct aggregation case:
PSPy <Py VneN;teT (30a)
t
e< Y pdt <, VneN;teT (30b)
k=1
Y bzt vieT (30¢)
neN
or for the UL-flexibility case:
P =T (31a)
Al - Biito!
[—A] 7988 < [—BT’”’] (31b)
(31¢)

@ =N, &I =1, VneN
n n

where A&B are the matrices defined by (10). 4, and fn are generated
for each individual EVs using (18) and (19).

The above problem was solved for a range of vehicle counts and
time steps. Real-world transactions from charging stations in the Nether-
lands were used and applied to maximize the charging demand between
6 pm and 7 pm. Individual charging transactions were preprocessed
to consider computing the minimum and maximum charged energy
during the one-hour window, given the arrival and departure times,
maximum charging power and the need to complete the charging
transaction by the departure time. Transactions that did not (or not
fully) cover the 6-7 pm window were discarded. The scaling with time
steps was investigated by dividing the considered 1-hour window into
T € {1,2,4,16} intervals, resulting in timesteps of sizes 1, 0.5, 0.25 and
0.0625 h. The simulation was run for different fleet sizes, consisting of
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Fig. 4. Comparison of computational resources used by the UL-flexibility approach with direct aggregation for different time steps and quantities of EVs. The results of the base

case are shown using dashed lines.

N € {121,5700,36108,90084, 166286,245706} EVs. The computational
complexity of the solved problem is indicative of general optimization
problems using UL-flexibility for EV aggregation.

The optimization problem was solved using a machine configuration
featuring the Apple M2 MAX chip with a 12-core CPU, macOS Ventura
Version 13.5.1, 32 GB RAM, in conjunction with Python 3.10.11 and
the Gurobi 10.0.2 optimization solver. The code used in this work is
available at [23]

Solve and build time, along with the peak memory use, was recorded
and plotted in Fig. 4. As expected from the formulation and supported
by the results, the direct aggregation approach’s computational time
and memory requirements increase as a function of the number of time
intervals T and vehicles N. In contrast, the UL-flexibility approach has
requirements independent of N. Both time and memory requirements
are minimal for a low number of time intervals 7 (up to 4, in this
case), but they increase sharply for larger numbers of time intervals.
Nevertheless, for sufficiently large N, the UL-flexibility approach is
always more efficient.

7. Conclusion

As shown in earlier sections, the proposed UL-flexibility can be
easily used to aggregate feasible flexibility exactly using set-based
aggregation, replacing an NP-hard operation. Unlike direct aggrega-
tion, the complexity of the proposed approach is independent of the
number of assets to aggregate. Moreover, UL-flexibility improves on
approximate flexibility aggregation algorithms by its exact aggrega-
tion properties, which is beneficial for aggregators in planning and
operational decision-making. Hence, the proposed methodology is an
efficient and scalable approach for aggregating EVs, especially when
optimizing their charging behavior across short time windows. In future
work, populations with varying and potentially stochastic arrival and
departure times will be considered.
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